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Abstract: Massive U(1) gauge theories featuring parametrically light vectors are sus-

pected to belong in the Swampland of consistent EFTs that cannot be embedded into a

theory of quantum gravity. We study four-dimensional, chiral U(1) gauge theories that

appear anomalous over a range of energies up to the scale of anomaly-cancelling massive

chiral fermions. We show that such theories must be UV-completed at a finite cutoff be-

low which a radial mode must appear, and cannot be decoupled — a Stückelberg limit

does not exist. When the infrared fermion spectrum contains a mixed U(1)-gravitational

anomaly, this class of theories provides a toy model of a boundary into the Swampland,

for sufficiently small values of the vector mass. In this context, we show that the limit of

a parametrically light vector comes at the cost of a quantum gravity scale that lies para-

metrically below MPl, and our result provides field theoretic evidence for the existence of

a Swampland of EFTs that is disconnected from the subset of theories compatible with

a gravitational UV-completion. Moreover, when the low energy theory also contains a

U(1)3 anomaly, the Weak Gravity Conjecture scale makes an appearance in the form of a

quantum gravity cutoff for values of the gauge coupling above a certain critical size.
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1 Introduction

Within the realm of effective field theory (EFT), certain features of continuous Abelian

gauge theories starkly differ from those of their non-Abelian counterparts. Charge quanti-

zation is not ‘built-in’, and the gauge group may be taken to be R as much as U(1). Even if

ratios of charges are assumed to be integer, arbitrarily large values appear consistent with-

out the need to introduce an equally large number of degrees of freedom. However, some

of these features are not expected to survive further UV-completion. Several arguments

suggest that in a theory of quantum gravity Abelian charges must be quantized, and the

corresponding gauge group compact [1]. To the extent that theories featuring large integer

charge ratios approximately realize the non-compact limit — abiding by the letter of the

law but violating its spirit — a shadow of suspicion hangs over those constructions.1 In

the language of our times, continuous Abelian gauge theories that exhibit some of these

exotic features are expected to belong in the Swampland of consistent EFTs that cannot

be UV-completed into a theory of quantum gravity [2–5].

A further distinction between Abelian and non-Abelian gauge theories arises when

the corresponding vector bosons are massive. In massive Yang-Mills, the breakdown of

perturbation theory, manifest in the loss of perturbative unitarity in longitudinal gauge

1Throughout, whenever we allude to “theories featuring large integer charge ratios” we are making

reference to EFTs that contain elementary charged particles that are light enough to belong in the EFT,

and whose ratio of electric charges is ≫ 1. By the requirement that the theory admits a weakly coupled

description, this necessarily implies a tiny gauge coupling, in turn realizing an approximate global symmetry

in the EFT.
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boson scattering, requires that the theory be UV-completed at scales of order Λ . 4πm/g

(up to group theoretic factors). On the other hand, a massive Abelian gauge theory coupled

to a conserved current is renormalizable: the photon mass mγ and the gauge coupling

strength g are free parameters of the theory — ignoring Landau poles, such a theory may

be valid up to arbitrarily high scales [6–9].

It is easy to see that an Abelian gauge theory coupled to a conserved current is renor-

malizable even when the photon is massive. We may start with an Abelian Higgs model,

where the photon mass arises as a result of spontaneous symmetry breaking. In the broken

phase, a scalar excitation — the Higgs ‘radial mode’ — is part of the spectrum, with mass

proportional to the vacuum expectation value (vev) of the Higgs field. The low energy

theory, featuring a massive photon coupled to charged matter, will therefore break down

at the scale at which this radial mode appears. However, we may fully decouple the radial

mode by taking the limit of infinite Higgs vev, f →∞. Doing so while keeping the photon

mass finite requires that the charge of the Higgs field must be simultaneously taken to zero.

If charged matter is to remain coupled to the photon is this limit, then the ratio of charges

between the infrared charged spectrum and the Higgs must diverge. This implementation

is often referred to as the ‘Stückelberg limit’ of a massive Abelian gauge theory. Even if

we moderate our ambitions, and only allow the scale of spontaneous symmetry breaking

to grow as high as f ∼ MPl, we might still make the photon lie as far below the scale of

the radial mode as we want by taking the Higgs charge tiny. A large, albeit potentially

integer, hierarchy of charges ensures that charged matter remains coupled to the photon

in this limit, while allowing for the gauge group to remain compact.

The above discussion makes it clear that there cannot be a model-independent upper

bound on the cutoff scale of a massive Abelian gauge theory coupled to a conserved current.

Unlike the situation for massive Yang-Mills, the scale of a massive Abelian gauge boson,

together with the IR gauge coupling, do not determine an upper bound on the scale of UV-

completion. However, it also highlights how theories with massive photons that feature

parametrically high cutoffs are highly suspect: decoupling additional degrees of freedom

related to the dynamical mechanism that generates a photon mass requires introducing a

parametrically large ratio of charges that we suspect is not allowed within a gravitational

UV-completion.

In light of the above, one is prompted to ask: do tiny photon masses belong in the

Swampland? This question was the focus of [10], where a first attempt was made to un-

derstand the difficulties of realizing parametrically small photon masses in UV-completions

that include gravity by studying the properties of string theory constructions where the

photon mass is non-zero everywhere in field space, and which appear qualitatively different

from the Abelian Higgs model.2 Heuristic arguments involving the expectation that a large

number of degrees of freedom must become part of the low energy theory when wandering

over large distances in field space [4], as well as the corresponding lowering of the quantum

2Implementations of a massive Abelian gauge theory such that at no point in field space the photon mass

vanishes are commonly referred to in the string literature as ‘Stückelberg masses’, which is the terminology

employed in [10]. By contrast, in this paper we will simply use the term ‘Stückelberg limit’ to refer to the

limit where a radial mode related to the mechanism that generates the photon mass can be fully decoupled.
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gravity cutoff in a theory with a large number of species [11, 12], make for a compelling

argument that the limit of tiny photon masses is problematic. Ref. [10] further suggests

that such constructions must feature a non-decoupling radial mode, and advocates for de-

manding that the theory satisfies the Weak Gravity Conjecture (WGC) [3] even though

the photon mass is non-vanishing.

Here, we will be concerned with an a priori unrelated class of theories for which

the limit mγ → 0 is also singular: four-dimensional, chiral gauge theories whose infrared

fermion content is anomalous. Apart from being interesting in their own right, this class

of theories frequently arise in the low energy limit of string theory constructions [13–17].

An anomalous gauge theory can be consistently quantized in perturbation theory so long

as gauge bosons are massive, and the theory is further UV-completed at some finite cutoff

scale [18–20]. For a non-Abelian theory the role of the anomaly is incidental: it forces

the gauge bosons to acquire a mass, but plays no role in the cutoff size — instead, the

non-renormalizability of massive Yang-Mills already sets an upper bound Λ . 4πm/g. On

the other hand, the upper bound on the cutoff of an anomalous Abelian gauge theory is

set purely by the anomaly. In keeping with the renormalizability of the Abelian non-linear

sigma model, as the effects of the anomaly vanish, any upper bound on the cutoff of the

anomalous EFT correspondingly disappears. In four dimensions, the cutoff of the anoma-

lous EFT corresponds to the scale at which massive fermions appear, with the appropriate

charge assignments to cancel the anomalies of the low energy spectrum.

This disparity between Abelian and non-Abelian gauge theories becomes particularly

significant in the presence of gravity. Contrary to their non-Abelian counterparts, chiral

Abelian gauge theories may present a mixed gravitational anomaly in four dimensions.

In such case, the anomaly implies an upper bound on the cutoff scale of the anomalous

EFT, of the form Λgrav ∼ 4π
(
M2

Plmγ/|tr(gi)|
)1/3

[20, 21]. The effect decouples in the limit

MPl → ∞ where gravity is turned off, whereas Λgrav → 0 in the limiting of vanishing

photon mass — as advertised, the limit mγ → 0 is not allowed. For finite MPl, this class

of theories provide a rare, field-theoretic toy model of a boundary into the Swampland, by

setting an upper bound on the scale of additional degrees of freedom required for theoretical

consistency in the presence of gravity.

Motivated by this unique feature of Abelian gauge theories, in this paper we focus on

chiral U(1) gauge theories that are anomaly-free, but for which anomaly cancellation occurs

due to fermions appearing at different scales. As illustrated in figure 1, these theories, which

represent partial UV completions of the anomalous EFTs that are the focus of [20], feature

a variety of mass scales above the photon mass. When gravitational effects are decoupled,

the most relevant scales are the masses Mf of the heavy fermions responsible for anomaly-

cancellation, as well as a possible cutoff Λ∗ of the anomaly-free theory. When gravitational

effects are included, the four-dimensional Planck scale, and the quantum gravity scale ΛQG

(which may differ from MPl) also enter into the discussion. The main focus of this paper

is to explore the properties of this class of chiral gauge theories, paying special attention to
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Figure 1. Illustration of the different scales relevant to our discussion. At low energies, the

anomalous EFT contains a number of massless fermions (χi), and a massive photon. Massive

fermions (ψi) responsible for cancelling the anomalies of the low energy spectrum appear at scale

Mf . This anomaly-free extension may require further UV-completion at some higher scale Λ∗. In

the presence of gravity, the quantum gravity scale, which may be below MPl, will play an interesting

role in our discussion.

the consequences of probing the regime of a parametrically light vector.3 In doing so, we

show that:

(i) This class of massive Abelian gauge theories are themselves EFTs, and require further

UV-completion at a finite scale Λ∗ above the scale of the heavy fermions. This cutoff

scale corresponds to an upper bound on the mass of a radial mode that cannot be

decoupled — in this class of theories, a Stückelberg limit does not exist.

The above result is a consequence of the presence of massive fermions with chiral charge

assignments necessary to cancel the anomalies of the low energy EFT. The loss of pertur-

bative unitarity in fermion-anti-fermion annihilation into a number of longitudinal photons

sets an upper bound on the scale of UV-completion required to recover a perturbative ex-

pansion. An additional degree of freedom must become part of the spectrum, and we will

generically refer to it as a ‘radial mode’, although we emphasize that it need not corre-

spond to the radial mode of a weakly coupled Abelian Higgs UV-completion. Although

the limit Λ∗ → ∞ is not accessible, a parametric separation of scales mγ � gΛ∗/4π re-

mains possible, but only at the cost of introducing a large hierarchy of charges within the

UV-completion. The consequences of introducing a large hierarchy of charges as required

to realize a parametrically light vector differ dramatically depending on whether the low

3Throughout this paper, the expression “parametrically light vector” refers to the regime where mγ �
gΛ∗/4π, where g is the value of the IR gauge coupling, and Λ∗ the cutoff scale related to whatever dynamical

mechanism is responsible for generating a non-zero photon mass (e.g. the scale of the radial mode in a weakly

coupled Abelian Higgs model).
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energy theory features a mixed U(1)-gravitational anomaly. When this is the case, we

find that:

(ii) Introducing a large hierarchy of charges necessarily requires the presence of an equally

large number N of massive fermion species to cancel the anomaly of the low energy

spectrum. Correspondingly, the quantum gravity scale is lowered down to ΛQG ∼
4πMPl/

√
N [11, 12]. Thus, probing the (approximately) non-compact limit that is

required to realise a parametrically small photon mass comes at the cost of a quantum

gravity cutoff that lies parametrically below MPl.

(iii) Although the cutoff scale Λ∗ of the anomaly-free theory cannot be decoupled, it may

be pushed all the way up to the quantum gravity scale. When this is possible, and

the limit is saturated:

Λ∗ ∼ ΛQG ∼ 4π

(
M2

Plmγ

g

)1/3

. (1.1)

The right-hand-side of eq. (1.1) parametrically coincides with the scale Λgrav below

which the massive, anomaly-cancelling fermions must appear. To the extent that

theories that remain anomalous above this scale would belong in the Swampland of

consistent non-gravitational EFTs that cannot be coupled to gravity, our result shows

that such a possibility is self-consistently avoided by the lowering of the quantum

gravity scale as mandated by the presence of a large number of species. This class of

theories therefore provides field-theoretic evidence for the existence of a Swampland

of EFTs that is disconnected from the subset of theories that are compatible with a

gravitational UV-completion.4

(iv) In the more generic case where the low energy fermion spectrum features both U(1)3

and U(1)-gravitational anomalies, there exists a critical value of the gauge coupling,

given by

g∗ ∼
(

64π3mγ

MPl

)1/4

. (1.2)

When g . g∗ the cutoff scale of the anomaly-free EFT may be taken as high as the

quantum gravity cutoff, and the statements in (iii) apply. On the other hand, when

g & g∗ the upper bound on Λ∗ lies parametrically below the quantum gravity scale.

In this case, a large separation of scales mγ � gΛ∗/4π comes at the cost of lowering

the quantum gravity cutoff down to

ΛQG ∼ gMPl , (1.3)

which parametrically coincides with the WGC scale as seen from the low energy

EFT [3]. Moreover, in this regime g ∼ g
1/3
0 , where g0 is the charge quantum of

4Of course, there are more consistency conditions an EFT needs to satisfy in order to be compatible

with an underlying theory of quantum gravity than those stemming from the requirement that gravitational

anomalies are cancelled, and it is the goal of the Swampland Program to identify and understand all of

those conditions. However, whereas a consistent EFT would need to satisfy all of those requirements, it is

enough to fail one to fall into the Swampland.
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the anomaly-free theory, and therefore ΛQG ∼ g
1/3
0 MPl, which is the version of the

magnetic WGC scale advocated for in [22, 23]. This provides a four-dimensional,

field-theoretic example of a class of massive Abelian gauge theories where the WGC

scale emerges in the role of a quantum gravity cutoff in a way that is tied to the

presence of a large number of species.

This paper is organized as follows. In section 2 we review some of the properties

of anomalous Abelian gauge theories in four dimensions that are most relevant to our

discussion, following [20]. In 3, we show how the presence of massive fermions with chiral

charge assignments leads to the breakdown of perturbation theory at high energies, calling

for further UV-completion of the anomaly-free theory. We discuss how the Stückelberg

limit in which the upper bound on the cutoff is decoupled is not accesible in this class

of models. In section 4 we focus on the implications of our results for Abelian gauge

theories featuring anomalous fermion content at low-energies, with special attention to the

implication of mixed U(1)-gravitational anomalies. Section 5 contains our conclusions.

2 EFT cutoffs in anomalous Abelian gauge theories

Unlike massive Yang-Mills, a non-zero gauge boson mass in the context of an Abelian gauge

theory does not lead to the breakdown of perturbation theory at high external momenta.

Although not obvious in unitary gauge, where the gauge boson propapagator falls off

slower than 1/k2, it becomes apparent if we enlarge the theory so as to introduce a gauge

redundancy by incorporating an additional degree of freedom θ transforming non-linearly

under the gauge action. This allows us to rewrite the vector mass term as

L ⊃ 1

2
m2
γA

2
µ → 1

2
(∂µθ −mγAµ)2 , (2.1)

which remains invariant under gauge transformations of the form Aµ → Aµ + 1
g0
∂µα and

θ → θ+
mγ
g0
α, where g0 refers to the unit of electric charge. This is the so-called ‘Stückelberg

trick’ — its crucial insight being that it is possible to restore gauge invariance without

introducing operators of dimension higher than 4, making the renormalizability of a massive

Abelian gauge theory manifest [7]. This remains true if any fermionic current that Aµ
couples to is vector-like, regardless of the fermion mass. In this case, mγ is a free parameter

of the theory, and the limit mγ → 0 remains unproblematic.

This is no longer true if the current that Aµ couples to is not conserved, such as in the

context of theories with anomalous fermion content. Nevertheless, for both Abelian and

non-Abelian groups, gauge theories with anomalies can be consistently quantized, so long

as the corresponding vector bosons are massive, and that the theory is treated as an EFT

only valid up to a finite cutoff scale [18–20]. For an Abelian gauge theory, the upper bound

on the EFT cutoff depends solely on the anomaly, and differs parametrically for U(1)3 and

mixed U(1)-gravitational anomalies. In the remainder of this section, we review the status

of theories with Abelian gauge anomalies, closely following [20].

For illustration, we focus on a theory containing a single massless fermion, coupled to

Aµ through a left-handed current. Allowing for a non-zero photon mass, the corresponding

– 6 –
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lagrangian reads

L = −1

4
FµνF

µν +
1

2
(∂µθ −mγAµ)2 + χ̄iγµ∂µχ+ gAµχ̄Lγ

µχL , (2.2)

where g ≡ g0Q.5 Although eq. (2.2) remains invariant under gauge transformations, under

which the left- and right-handed components of χ transform as χL → eiQαχL and χR → χR,

the corresponding path integral does not due to the non-trivial jacobian of the fermionic

functional determinant. Effectively, the presence of a U(1)3 anomaly leads to an additional

term in the lagrangian, of the form

δL =
1

3

g2
0Q

3

16π2
αFF̃ . (2.3)

At this point, one could try to restore gauge invariance by modifying the theory into an

anomaly-free one, e.g. by introducing a coupling between Aµ and the right-handed fermion

current with identical strength, rendering the entire interaction vector-like. Alternatively,

one could choose to leave the theory as it is, and instead build a gauge invariant version

of the anomalous EFT by adding a term to the lagrangian proportional to θF F̃ with the

appropriate coefficient to cancel eq. (2.3):

L ⊃ −1

3

g3

16π2mγ
θF F̃ . (2.4)

This is the Abelian version of the Wess-Zumino term [24, 25] — eq. (2.2) extended with

this new term provides a gauge invariant description of our anomalous EFT. However, it

is apparent from eq. (2.4) that gauge invariance of the anomalous theory has only been

achieved at the cost of renormalizability. Moreover, the coefficient of the θF F̃ term diverges

in the limit mγ → 0, which provides an easy way to see that the limit of a massless

photon is indeed not allowed in an anomalous theory. The scale suppressing this operator

corresponds to the cutoff of the anomalous EFT. Following standard NDA counting [26],

an upper bound on the scale of UV-completion as mandated by the presence of a U(1)3

anomaly is given by [20]

ΛU(1)3 ∼
64π3mγ

g3
. (2.5)

Turning on gravity, eq. (2.3) is accompanied by an extra term ∝ αRR̃ due to the pres-

ence of a mixed U(1)-gravitational anomaly. As before, gauge invariance may be restored

in perturbation theory by including the following term:

L ⊃ − 1

24

g

16π2mγ

√
|detg|θRR̃ . (2.6)

The scale suppressing this operator sets an upper bound on the scale of UV-completion as

mandated by the presence of a mixed U(1)-gravitational anomaly. Parametrically [20, 21]:

Λgrav ∼ 4π

(
M2

Plmγ

g

)1/3

. (2.7)

5Distinguishing between g0 and g may seem unnecessary at this point. However, it will be relevant in

our subsequent discussion, where we will consider extensions of the anomalous EFT featuring a quantum

of charge that differs from the typical gauge coupling of the infrared spectrum.
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Figure 2. Upper bound on the cutoff of a massive Abelian gauge theory coupled only to a left-

handed fermion current. The solid blue and dashed orange lines correspond to the scale at which per-

turbation theory breaks down as a result of the presence of a U(1)3 and a mixed U(1)-gravitational

anomaly respectively, as given in eq. (2.5) and (2.7). The value of g at which the two lines meet is

given in eq. (1.2). To the extent that theories living in the orange shaded region (above the orange

dashed line but below the solid blue line) correspond to consistent non-gravitational EFTs that

become inconsistent in the presence of gravity, the orange wedge represents a piece of Swampland.

Notice that the upper bound on the EFT cutoff always lies above the scale 4πmγ/g, further high-

lighting the qualitative difference between massive Abelian gauge theories and their non-Abelian

counterparts. (Both axes are in a log scale.)

In a four-dimensional theory, eq. (2.5) and (2.7) correspond to the scale below which

massive fermions must appear, with charge assignments appropriate to cancel the corre-

sponding anomaly. As depicted in figure 2, the cutoff of the anomalous EFT may lie para-

metrically above the scale 4πmγ/g for all perturbative values of the gauge coupling, and so

long as the implied cutoff falls below the gravitational scale (that is, mγ/MPl . g . 4π).

The special value of the gauge coupling advertised in eq. (1.2) already makes an appearance

here: the upper bound on the cutoff scale of the anomalous EFT is dominated by either the

mixed gravitational anomaly or the U(1)3 anomaly depending on whether g . g∗ or g & g∗,

respectively. (We will have more to say about the behaviour of the quantum gravity scale

in these two regimes in section 4.3.) Eq. (2.5) and (2.7) can be adapted to a more general

fermion content after the respective substitutions g3 → g3
0

∣∣tr(Q3
i )
∣∣, and g → g0 |tr(Qi)|.

However, in the absence of large hierarchies of charges in the low energy spectrum, eq. (2.5)

and (2.7) will still provide a parametrically correct estimate of the upper bound on the

EFT cutoff, for theories featuring the corresponding anomaly, with g being understood as

the typical size of the gauge coupling present in the infrared.

Eq. (2.5) and (2.7) were first obtained in [20] and [21] respectively, and, as sketched

above, can be derived within the anomalous EFT alone. However, they can be readily

– 8 –
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Figure 3. A non-zero radiative contribution to the photon mass, parametrically of the form

eq. (2.8), arises from this three-loop diagram, with massive fermions responsible for cancelling the

U(1)3 anomaly of the low energy theory propagating inside the loops [20]. If the low energy theory

also contains a mixed U(1)-gravitational anomaly, there is an analogous diagram with gravitons

(instead of vectors) propagating in the internal lines.

understood by considering the effect of heavy fermions with mass Mf that must be present

in any four-dimensional UV-completion in order to render the full theory anomaly-free.

Through the diagram depicted in figure 3, the heavy fermions responsible for cancelling

the U(1)3 anomaly lead to a non-zero contribution to the photon mass, of the form [20, 27]

δm2
γ ∼

(
g3

64π3
Mf

)2

. (2.8)

The requirement that m2
γ & δm2

γ yields eq. (2.5), with the role of ΛU(1)3 played by the mass

of the heavy fermions. Crucially, as discussed in [20], this is more than a statement about

the natural size of mγ — fine-tuning the photon mass below δmγ would require fine-tuning

the coefficients of an infinite number of higher-dimensional-operators, effectively signalling

the breakdown of perturbation theory within the anomalous EFT. Identical considerations

apply to a version of figure 3 with gravitons propagating in the internal lines in theories with

a mixed gravitational anomaly, and similarly lead to the scale in eq. (2.7) being identified

with an upper bound on the mass of the anomaly-cancelling fermions.

3 Chiral Abelian gauge theories and massive fermions

We now turn our attention to the ultraviolet fate of the anomalous Abelian gauge theories

discussed in section 2, cancelling the anomalies of the low energy theory by including

massive fermions with appropriate quantum numbers, which is the only option in four

dimensions. For simplicity, we focus first on a single heavy fermion ψ with mass Mf and

chiral U(1) charges. The terms in the lagrangian involving ψ read

L ⊃ ψ̄iγµ∂µψ + gLAµJ
µ
L + gRAµJ

µ
R −Mf (ψ̄LψR + h.c.) , (3.1)

where

JµX ≡ ψ̄Xγ
µψX and gX ≡ g0QX for X = L,R , (3.2)

and QL 6= QR in general. By assumption, QL and QR are such that the full theory is free

of both U(1)3 and mixed gravitational anomalies. Thus, when QL = QR, and the heavy

fermion couples to Aµ through a vector current, the massless fermion sector must itself be
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non-anomalous. However, when QL 6= QR the heavy fermion will play a role in anomaly

cancellation, and the theory will appear anomalous below the scale Mf .

Having enlarged the fermion spectrum so as to make the theory anomaly-free, a gauge

transformation leaves the fermionic functional determinant in the path integral unchanged.

However, it is the fermion mass term that now breaks gauge invariance, which we may

restore by introducing appropriate couplings to θ, as follows:

L ⊃ −Mf

(
e
± iθ
f ψ̄LψR + h.c.

)
= −Mf

[
cos

(
θ

f

)
ψ̄ψ ± i sin

(
θ

f

)
ψ̄γ5ψ

]
, (3.3)

where

f ≡ mγ

|gL − gR|
=

mγ

g0|QL −QR|
, (3.4)

and the upper (lower) sign in eq. (3.3) applies when QL−QR > 0 (QL−QR < 0). Expanding

the sine and cosine in eq. (3.3) as an infinite sum of higer-dimensional-operators suppressed

by increasing powers of f suggests that our attempt to restore gauge invariance has only

been successful at the cost of renormalizability, and one might expect the theory to be valid

only up to scales not much above f itself. Indeed, any attempt to rewrite eq. (3.3) in a way

that involves only renormalizable interactions necessarily requires introducing additional

degrees of freedom. For instance, if the theory is further embedded into a weakly coupled

Abelian Higgs model with condensate charge QL − QR and vev f , then a radial mode

will be present below the scale 4πf . The UV-completion of the anomalous EFT by the

addition of massive fermions is itself an effective field theory. In what follows, we will refer

to this partial UV-completion as the anomaly-free EFT. We now confront a nested set of

EFTs: the anomalous EFT valid up to the scale Mf , and the non-anomalous EFT valid

from the scale Mf up to some cutoff Λ∗. Several questions then arise: what is the cutoff of

the anomaly-free EFT? When does it coincide with the apparent cutoff of the anomalous

EFT? And when, if ever, can we take Λ∗ → ∞? These are the questions that we address

in this section.

In the absence of gravity, it is clear from the form of eq. (3.3) that there are at least

some cases in which the limit Λ∗ → ∞ will be allowed and the theory becomes fully

renormalizable, regardless of the value of the photon mass: (i) when Mf → 0, regardless

of the left- and right-handed charge assignments, and (ii) when QR → QL, regardless of

the fermion mass. In both cases, any upper bound on Λ∗ due to eq. (3.3) must decouple,

and a Stückelberg limit must exist.

However, to the extent that eq. (3.3) involves irrelevant operators, one might wonder

whether the description of the non-anomalous EFT should be enlarged to include additional

irrelevant operators compatible with the gauge symmetry, whose appearance might lead to

an independent bound on Λ∗, and additional conditions on the realization of a Stückelberg

limit. The status of such operators can be readily ascertained from a chiral lagrangian

analysis, which we carry out in section 3.1. In 3.2, we show how, whenever Mf 6= 0 and

QL 6= QR, the loss of perturbative unitarity at high energies signals the breakdown of

perturbation theory, and leads to an upper bound on Λ∗, beyond which the theory requires

further UV completion. In this case, a Stückelberg limit does not exist, as we elaborate on

in section 3.3.
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3.1 Chiral Lagrangian analysis

Although the irrelevant operators appearing in eq. (3.3) are the minimal set required to

preserve gauge invariance, the symmetries allow (and one in general expects) a whole host

of irrelevant operators to appear, any of which could point to the scale Λ∗ at which the

anomaly-free EFT breaks down. While these could be enumerated by simply writing down

the most general set of gauge-invariant irrelevant operators involving Aµ, θ, χ, and ψ, this

does not provide clear guidance as to the relative size of the various operators, and hence

to the size of the corresponding cutoff Λ∗.

Indeed, not all irrelevant operators in the anomaly-free EFT are created equal. This

can be seen most clearly by considering the simplest UV completion of the anomaly-free

EFT: the Abelian Higgs model. The operators in eq. (3.3) can be obtained from a theory

of a massless vector, massless fermions, and complex scalar Φ with Lagrangian

L = |DµΦ|2 − λ

2

(
|Φ|2 − f2

2

)2

−
(
yΦψ̄LψR + h.c.

)
+ L(Aµ, ψ, χ) , (3.5)

where DµΦ = (∂µ − i(gL − gR)Aµ)Φ. The potential for Φ leads to spontaneous symme-

try breaking, which can be conveniently parameterized in terms of a radial mode ρ and

goldstone θ via

Φ =
1√
2

(f + ρ) e
iθ
f . (3.6)

The radial mode ρ acquires a mass mρ =
√
λf and may be integrated out to give an

effective lagrangian of the form

Leff =
1

2
(∂θ)2 +

1

2f2(λf2)
(∂θ)4

−
(
Mfe

iθ
f ψ̄LψR −

Mf

f2(λf2)
(∂θ)2ψ̄LψR

)
+ h.c.+ . . .

(3.7)

This contains precisely the effective operator appearing in eq. (3.3), as well as higher-

derivative terms for θ, and derivative couplings between θ and the fermions. The former

operator arose even before integrating out ρ and is correspondingly independent of mρ,

while the latter are generated by integrating out ρ and proportional to negative powers

of mρ. While this is suggestive, one would like to understand the natural size of various

operator coefficients independent of the specific UV completion.

The relative size of these irrelevant operators can be understood more generally by

approaching the anomaly-free EFT from the perspective of the chiral symmetries weakly

gauged by the vector field and broken by the fermion mass, allowing us to bring NDA [26]

power counting to bear on the problem. To do so, we begin by framing the non-anomalous

EFT as one in which the U(1)L × U(1)R chiral symmetry of ψL, ψR is weakly gauged

and spontaneously broken. Under the U(1)L × U(1)R global symmetry the fermion fields

transform as ψL → LψL and ψR → RψR. Parameterizing L,R as L = ei(α+β)/2 and R =

ei(−α+β)/2 for real α, β, we have axial transformations LR† = eiα. The fermion mass arises

due to unspecified (and potentially strong) interactions that break U(1)L×U(1)R → U(1)V ,
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giving one goldstone mode, which we can organize as

U = e
iπ
f , (3.8)

where U transforms linearly under U(1)L × U(1)R, U → U ′ = LUR†. The goldstone π

correspondingly transforms under the shift π → π′ = π + αf . (Although we will identify

π with θ momentarily, it is useful to differentiate the two for the time being.) From

this perspective, the Abelian gauge symmetry can be thought of as gauging a particular

subgroup of the vector and axial chiral symmetries, under which α = (QL − QR)γ and

β = (QL + QR)γ. Clearly when QL = QR we are gauging the vector symmetry preserved

by the fermion mass, while for QL 6= QR chiral symmetry breaking necessarily implies

gauge symmetry breaking.

We can then construct the non-anomalous EFT as the most general one invariant

under the local U(1)L × U(1)R symmetries. The leading derivative interaction allowed by

these symmetries is

L ⊃ f2

2
|DµU |2 =

1

2
(∂π)2 − f(gL − gR)Aµ∂

µπ +
1

2
f2(gL − gR)2AµA

µ . (3.9)

From this, it is clear that the chiral lagrangian can be matched to the anomaly-free EFT

by making the identifications π = θ and f |gL − gR| = mγ . Note the latter identification is

a consequence of starting with the chiral symmetry breaking — in reality, it is possible for

the gauge symmetry to be broken more strongly than the chiral symmetry (by e.g. a UV

completion in which multiple scalars acquire vevs and contribute to the mass of the vector,

while only one scalar couples to the fermions), but not visa versa. So one expects in full

generality mγ ≥ |gL − gR|f whenever f denotes the scale of chiral symmetry breaking.

The chiral lagrangian formulation then allows us to use NDA power counting to enu-

merate irrelevant operators consistent with the symmetries and estimate the size of the

corresponding Wilson coefficients in terms of their dependence on ḡ,Λ∗, and f , where ḡ is

defined implicitly through the relation Λ∗ = ḡf . The most interesting operators for our

purposes include (with Hermitian conjugates added where appropriate)

Oy = cyMfU
†ψ̄RψL , (3.10)

On =
cn

ḡ2Λ2n−4
∗

|DµU |2n , (3.11)

Of =
cfMf

Λ2
∗

(DµD
µU †)ψ̄RψL , and (3.12)

OL,R = cL,RU
†DµUJ

µ
L,R , (3.13)

where the coefficients ci are all O(1) numbers. In general, the precise values of the ci are

not fixed and depend on details of the UV completion. However, there is one exception:

we must have |cy| = 1, since Oy defines the fermion mass Mf . Indeed, we recognize Oy
(plus its Hermitian conjugate) as giving the operators in eq. (3.3), now reproduced via the

chiral Lagrangian.

As for the remaining factors, NDA power counting cleanly distinguishes different op-

erator classes. The operator Oy is independent of ḡ and depends only on Mf and f (via
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U). In contrast, operators such as On and Of depend on ḡ via Λ∗. This agrees precisely

with the Abelian Higgs UV completion considered earlier, which corresponds to λ = ḡ2,

cy = −1, c2 = 1
2 , cf = −1, and cL,R = 0.

In principle, any of these operators can lead to an upper bound on the scale Λ∗ at

which the anomaly-free EFT breaks down. For example, the operators On give the leading

unitarity violation at large Mandelstam s, independent of Mf , implying Λ∗ ∼ 4πf/
√
cn.

Taking Mf → 0 only decouples some of the irrelevant operators allowed by the symmetries

of the non-anomalous EFT. This leads to a refinement of our criteria for acheiving the

Stückelberg limit for arbitrary mγ : (i) when Mf → 0 and either f → ∞ or ci → 0 ∀ i,
regardless of the left- and right-handed charge assignments, and (ii) when QR → QL,

regardless of Mf , f, and the coefficients ci.

In practice, however, when setting a quantitative upper bound on the scale Λ∗ it bears

emphasizing that only the coefficient of Oy is uniquely fixed in terms of the spectrum of

the anomaly-free EFT, whereas the coefficients of all other irrelevant operators depend

on the UV completion. This is in contrast to massive non-Abelian theories, where the

same two-derivative operator that gives rise to the goldstone kinetic terms also induces

derivative interactions with fixed relative coefficients that can be used to bound the cutoff.

As such, only Oy leads to a model-independent bound on Λ∗ in the Abelian case. As for

the other operators, one might imagine a UV completion in which all of the ci except cy are

suppressed (or tuned) to approach a Stückelberg limit. This justifies proceeding with an

analysis of the breakdown of perturbative unitarity using Oy, or, equivalently the operators

in eq. (3.3), to which we turn next.

3.2 Loss of perturbative unitarity

To set a model-independent upper bound on Λ∗ in the anomaly-free EFT, we will study

the high-energy behaviour of scattering amplitudes in a theory described by the following

lagrangian:

L =− 1

4
FµνF

µν +
1

2
(∂µθ −mγAµ)2

+ ψ̄iγµ∂µψ + gLAµJ
µ
L + gRAµJ

µ
R −Mf

[
cos

(
θ

f

)
ψ̄ψ ± i sin

(
θ

f

)
ψ̄γ5ψ

]
+ Lg.f. + Lχ ,

(3.14)

where Lg.f. = − 1
2ξ (∂µA

µ + ξmγθ)
2 is a standard gauge-fixing term, JµL,R is as given in

eq. (3.2), and Lχ refers to the terms in the lagrangian involving massless fermions (kinetic

terms plus couplings to Aµ), which will not be relevant for the subsequent discussion, other

than noting that their charge assignments are such that the full theory is anomaly-free.

(As in eq. (3.3), the + (−) sign corresponds to the case QL −QR > 0 (QL −QR < 0).)

A process that reflects the breakdown of perturbation theory in the context of the EFT

described by eq. (3.14) concerns scattering of a fermion-anti-fermion pair into a number

of longitudinal vectors at high center of mass energy. Making use of the Goldstone equiv-

alence theorem, we can obtain the leading high-energy contribution to the corresponding

scattering amplitude by considering the process ψψ̄ → nθ in a general gauge. Expanding

– 13 –



J
H
E
P
1
1
(
2
0
2
0
)
0
6
3

s t u

P1 P2 103 Pit

i r i n e
DI pz i r i
n e v i

n e et t
e i rP2 pit r i rr i r

i r i121 Pz PIL r 103 PH
n e v Pz

EHT n r yP2 Pit y ay pz P'tP2 r i P't r

DI 103 P1 103

ii pitP2 Pit

P1 103

a

P2 Pit

y I 103PI PIPI 103 n e 2 Twe3 ere
e P2p P't MmEmreL
P2 Pit X P2 n nigeny

P1 103 P1 103 P1 103
i s e s e n

sa e n w n
P2 Pit P2 Pit P2 Pit

X Q W Q
a a rre
L L

W Q X Q

Figure 4. Eq. (3.3) contains operators coupling two fermions to any number of θ’s. At high center

of mass energies, this contact interaction provides the leading contribution to the scattering process

ψψ̄ → nθ.

eq. (3.3) as a power series in θ/f , we see that it contains operators coupling two fermions

to any number of θ’s:

L ⊃ −Mf

ψ̄ψ ∑
{n even}

(−1)
n
2

n!

(
θ

f

)n
± iψ̄γ5ψ

∑
{n odd}

(−1)
n−1

2

n!

(
θ

f

)n . (3.15)

At high energies,
√
s &Mf , the leading contribution is due to the contact operator depicted

in figure 4 — diagrams involving more vertices will contain further powers of Mf , and

therefore feature a milder high-energy behaviour.

The observation that the presence of massive fermions with chiral charge assignments

leads to the breakdown of perturbation theory at sufficiently high scales was first made

in [28] in the context of the Standard Model without a dynamical mechanism responsible

for generating fermion masses, and later refined in [29, 30]. Of course, in the ‘Higgsless’

Standard Model, a bound Λ . 4πv already follows from the loss of perturbative unitarity

in longitudinal gauge boson scattering. Thus, for a non-zero fermion mass to reliably

indicate a cutoff scale parametrically above the weak scale, the mechanism responsible

for restoring perturbation theory at scales above ∼ 4πv needs to be introduced into the

analysis. In contrast, for a massive U(1), the two-derivative terms in the action involving

only longitudinal gauge bosons do not imply the loss of perturbative unitarity. Although

higher-derivative operators such as the On encountered in section 3.1 can lead to the

breakdown of perturbation theory in longitudinal gauge boson scattering, the precise bound

in this case depends on the UV-completion via the unknown operator coefficients cn. We

can, however, derive a model-independent upper bound on the cutoff scale that stems

purely from the presence of massive chiral fermions.

As discussed in [31], a reasonable estimate of the range of validity of perturbation

theory within a unitary theory can be obtained by demanding that

〈Ψ|T †T |Ψ〉 =
∑
X

|M(Ψ→ X)|2 . π2 , (3.16)

for any unit-normalized state |Ψ〉, and where iT = S−1 as usual.
∑

X refers to a sum over

all possible final states, with an integral over the corresponding phase space being implicit.

For the case at hand, we will estimate the scale of perturbation theory breakdown when
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the following inequality is saturated:

∞∑
n=2

1

n!

∫
Πn

|M(ψψ̄ → nθ)|2
∣∣∣∣√
s=Λ∗

. π2 , (3.17)

where
∫

Πn
refers to the integral over the final n-body phase space, and the factor of 1/n!

takes care of the fact that all n particles in the final state are identical. The scale Λ∗
provides an upper bound on the cutoff scale at which the theory requires UV-completion.

Allowing for the possibility of several fermion species with the same value of |QL−QR|,
we choose our initial state to be the spin-singlet:

|ψψ̄〉 ≡ 1√
2N

N∑
a=1

|ψa+ψ̄a+ − ψa−ψ̄a−〉 . (3.18)

This specific choice is of course not necessary to derive a unitarity bound. However, choos-

ing the initial state to be a spin-eigenstate is convenient since in that case only operators

with n being either even or odd lead to a non-vanishing contribution, simplifying our analy-

sis. Including a (conveniently normalized) sum over fermion flavors allows us to keep track

of factors of N , which may be relevant when N � 1.

Further specifying our initial state to be the s-wave component of eq. (3.18), we have,

for even n:6

iM(ψψ̄ → nθ) = − i√
16π

(−1)
n
2

√
2N

Mf

fn

N∑
a=1

[
v̄a+(p2)ua+(p1)− v̄a−(p2)ua−(p1)

]
' − i√

16π
(−1)

n
2

√
2N

Mf

fn
√
s ,

(3.19)

where we have used v̄a±(p2)ua±(p1) ' ±
√
s at large momentum. The asymptotic expression

for the volume of the n-body phase space factor when all particles in the final state are

massless is given by [30, 32]∫
Πn

' 2π

(4π)2(n−1)

sn−2

(n− 1)!(n− 2)!
. (3.20)

Up to overall O(1) corrections, eq. (3.17) can then be written as

∞∑
n=2

1

n!(n− 1)!(n− 2)!

(
Λ∗

4πf

)2(n−1)

≡ F
(

Λ∗
4πf

)
.

(
4πf√
NMf

)2

, (3.21)

where F(x) ≡ x2

2 0F5

(
1
2 , 1,

3
2 ,

3
2 , 2; x

4

64

)
, and 0Fq(b1, · · · , bq; z) is a generalized hypergeomet-

ric function. We do not need the specific form of F(x), except for noting that it is a

6As advertised, to use a bound of the form of eq. (3.17), the initial state must be unit-normalized.

This can be achieved by choosing the initial state to be a spherical wave, which for an s-wave leads to the

corresponding scattering amplitude being smaller by a factor of
√

16π compared to a plane-wave calculation.
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monotonically increasing function, with asymptotic expansions at small and large x (up to

irrelevant overall O(1) factors):

F(x) ∼


x2 for x . 1

e3x2/3

x2/3
for x & 1

(3.22)

In the regime where Mf . 4πf/
√
N , the right-hand-side of eq. (3.21) is always & 1,

and so it is appropriate to expand F(x) for x & 1. Eq. (3.21) then reads

e3x2/3

x2/3

∣∣∣∣∣
x= Λ∗

4πf

.

(
4πf√
NMf

)2

. (3.23)

Thus, up to O(1) corrections, we have

Λ∗ . 4πf

(
log

4πf√
NMf

)3/2

=
4πmγ

|gL − gR|

(
log

4πmγ√
NMf |gL − gR|

)3/2

, (3.24)

where in the last step we have written f in terms of the vector mass, and the left- and right-

handed gauge couplings (remember eq. (3.4)). Eq. (3.24) provides a model-independent

upper bound on the cutoff scale of a massive Abelian gauge theory coupled to (N copies

of) a massive fermion featuring chiral charge assignments, and it is the main result of this

section.

An a priori weaker bound could be obtained by applying the perturbativity bound to

each term in eq. (3.17), instead of performing the full sum over n, and this highlights how

different values of n dominate the overall bound in the different regimes. For instance, the

case n = 2 already implies a non-trivial bound:

Λ
(n=2)
∗ . 4πf

4πf√
NMf

, (3.25)

which agrees with eq. (3.24) when Mf ∼ 4πf/
√
N , but leads to a much weaker bound in the

limit of small fermion mass Mf � 4πf/
√
N . In general, we may impose the perturbativity

bound on the n-th term in eq. (3.17). After expanding for large values of n, using Stirling’s

approximation n! '
(
n
e

)n√
2πn, we find

Λ
(n)
∗ . 4πf

(
n− 1

e

) 3
2

(2π(n− 1))3/2

(
4πf√
NMf

)2


1
2(n−1)

. (3.26)

The value of n for which the bound is the strongest is given by

n∗ − 1 ' 2

3
log

4πf√
NMf

∼ log
4πf√
NMf

, (3.27)
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Figure 5. The presence of a radial mode featuring derivative couplings to θ is necessary in order

to cancel the pathological high energy behaviour in ψψ̄ → nθ. When n = 2, the diagram on the

right precisely cancels the leading high energy piece of the left graph.

which is large for Mf � 4πf/
√
N , justifying our earlier approximation. Evaluating

eq. (3.26) for n = n∗, we find

Λ
(n=n∗)
∗ . 4πf

(
log

4πf√
NMf

)3/2

, (3.28)

which reproduces eq. (3.24).

Our bound eq. (3.24) applies so long as all massive fermion species appear roughly at

the same scale Mf , and the value of qi ≡ |Q(i)
L −Q

(i)
R | is parametrically of the same size for

all i = 1, · · · , N . If the qi are parametrically different, then the bound will be dominated

by the species with the largest qi = qmax. In this case, the strongest bound can be obtained

by choosing an initial state that involves only the fermion with the largest qi (instead of

summing over flavors, as in eq. (3.18)), and the resulting bound is just eq. (3.24) with

N → 1, and f as given in eq. (3.4) with |QL −QR| → qmax.

3.3 No Stückelberg limit

Eq. (3.24) provides a finite, model-independent upper bound on the cutoff scale of an

Abelian gauge theory that contains massive chiral fermions. As advertised in the Intro-

duction, no Stückelberg limit exists in this class of models, and the theory requires further

UV-completion at or below the scale Λ∗ in order to recover a perturbative expansion. If

this UV-completion is in the form of a weakly coupled Abelian Higgs model, Λ∗ is an

upper bound on the mass of the radial mode, ρ, and it cannot be decoupled. Due to the

derivative couplings between ρ and the longitudinal mode of the massive vector, of the

form L ⊃ ρ
f (∂µθ)

2, diagrams involving the radial mode now cancel the pathological high

energy growth of scattering amplitudes describing the process ψψ̄ → nθ. This is illustrated

in figure 5 for n = 2.

The behavior of eq. (3.24) is also consistent with our expectations: the upper bound

on the cutoff decouples in the limit where the theory contains no massive chiral fermions.

This can happen in two ways: in the limit |QL − QR| → 0, regardless of the fermion

mass, and in the limit Mf → 0, regardless of the left- and right-handed charges. In the

former case, all massive fermions couple to the gauge field through a vector current, the

theory is anomaly-free at all scales, and, in keeping with the discussion of section 1, no

model-independent upper bound exists on the scale of UV-completion. Similarly, the limit
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Mf → 0 also allows for a Stückelberg limit, but the cutoff scale decouples much slower

than before. Rewriting eq. (3.24) as:

Mf ∼
4πf√
N
e
−
(

Λ∗
4πf

)2/3

, (3.29)

it becomes apparent that a cutoff scale that is parametrically above 4πf requires the

massive chiral fermions to appear exponentially below this scale. As noted in section 3.1,

in this case the existence of other UV-dependent irrelevant operators whose coefficients are

independent of Mf additionally requires ci → 0 ∀ i to prevent them from independently

obstructing the Stückelberg limit.

Barring the possibility of massive chiral fermions that are exponentially light, we may

ignore the log factor in eq. (3.24). In this case, the upper bound on the scale of UV-

completion is parametrically given by

Λ∗ .
4πmγ

|gL − gR|
=

4πmγ

g0|QL −QR|
, (3.30)

which can be rewritten as a lower bound on the photon mass:

mγ &
|gL − gR|Λ∗

4π
=
g0|QL −QR|Λ∗

4π
. (3.31)

Thus, although an arbitrarily light vector is not possible in this class of models, in keep-

ing with eq. (3.31), a parametric separation of scales mγ � gΛ∗/4π remains a possibility

so long as an equally large ratio of electric charges is introduced in the UV-completion:

g

|gL − gR|
=

Q

|QL −QR|
� 1 . (3.32)

In other words, the typical value of the gauge coupling present in the low energy theory

must be much larger than the quantum of electric charge. Such a large ratio of charges

allows us to probe the regime of a parametrically small vector mass that is only available to

Abelian gauge theories (above the dotted line in figure 2). In the next section, we discuss

the implications of introducing a large hierarchy of charges in theories where the low energy

spectrum contains uncanceled gauge anomalies. If the anomalous EFT features a mixed

gravitational anomaly, such a large ratio of charges will come at a hefty price.

4 Abelian anomalies and very light vectors

Consistent, four-dimensional gauge theories with anomalous fermion content in the infrared

necessarily feature massive chiral fermions responsible for canceling the anomalies of the

low energy spectrum. They are correspondingly subject to the general constraints obtained

in section 3. In this section, we discuss the implications of these constraints for Abelian

gauge theories that appear anomalous below a certain scale. In particular, we focus on the

consequences of probing the regime of a parametrically light vector, which in turn requires

the presence of a parametrically large ratio of electric charges, as discussed in section 3.3.
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We begin with purely non-gravitational phenomena, focusing on the effect of the U(1)3

anomaly in section 4.1. We turn on gravity in section 4.2, and discuss the implications

of a low energy fermion spectrum featuring a mixed U(1)-gravitational anomaly. Finally,

in 4.3, we consider the more generic case where both anomalies are present, and elaborate

on their surprising interplay.

4.1 U(1)3 anomaly

Picking up where we left off in section 2, we focus first on an anomalous EFT that contains

a single massless fermion coupling to Aµ through a left-handed current. As advertised, we

will first neglect gravitational interactions in our discussion, i.e. we ignore the presence of

a mixed gravitational anomaly, as well as any potential extra requirements stemming from

quantum gravity consistency such as compactness of the gauge group.

In this case, the U(1)3 anomaly of the anomalous EFT can be cancelled by introducing

a single massive fermion with chiral charge assignments QL and QR such that

trall(Q
3
i ) = Q3 +Q3

L −Q3
R = 0 . (4.1)

As per Fermat’s Last Theorem, the only integer solutions to this equation are either {QR =

Q,QL = 0} or {QR = 0, QL = −Q}. However, since we are ignoring gravitational effects

for the time being, we will allow ourselves to entertain non-integer solutions to eq. (4.1),

and WLOG we set q ≡ QR −QL = 1 in what follows.7

So long as the heavy fermion is not exponentially light, an upper bound on the cutoff

scale of this anomaly-free extension is given by eq. (3.30):

Λ∗ .
4πmγ

g0
=

4πmγ

g
Q . (4.2)

Probing the regime Λ∗ � 4πmγ/g therefore requires Q � 1, and a solution to eq. (4.1)

in this limit implies QL ' Q3/2/
√

3. Taking Q large, we can then push Λ∗, as well as

the mass of the heavy fermion, parametrically above ∼ 4πmγ/g. An upper bound on

Q, however, stems from the requirement that the heavy fermion remains weakly coupled,

parametrically:

g2
0

(
Q2
L +Q2

R

)
16π2

∼ g2
0Q

3

16π2
. 1 ⇒ Q .

16π2

g2
. (4.3)

With this requirement, we obtain an upper bound on the scale of UV-completion, of

the form

Λ∗ .
64π3mγ

g3
, (4.4)

which coincides with the scale ΛU(1)3 in eq. (2.5). Since Mf . Λ∗, this allows us to saturate

the upper bound on the cutoff of the anomalous EFT obtained in [20], at the cost of a

further UV-completion incorporating a radial mode appearing roughly at the same scale.

Although we have focused the discussion on an anomalous EFT with a single left-

handed fermion, our conclusion applies more generally in the context of anomalous EFTs

7Factors of q may be restored by performing the simultaneous rescaling Qi → Qi/q and g0 → g0q.
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with U(1)3 anomalies so long as the infrared fermion spectrum does not feature wild hier-

archies of charges. Even with gravity turned on, the above result applies, parametrically,

so long as trIR(Qi) = 0, and trIR(Q3
i ) ∼ Q3, with Q the typical charge present in the

low energy spectrum. A concrete example is a theory with massless left-handed fermions

carrying charges Q, Q, and −2Q. This theory has a vanishing U(1)-gravitational anomaly,

whereas trIR(Q3
i ) = −6Q3 ∼ Q3. We can extend this theory into one free of anomalies by

introducing two pairs of massive chiral fermions, with charges:

Q
(1)
R −Q

(1)
L = −

(
Q

(2)
R −Q

(2)
L

)
≡ 1 . (4.5)

(As before, we have set the right-hand-side above to unity WLOG.) With this charge

assignments, the heavy fermions do not introduce a mixed gravitational anomaly. The

upper bound in eq. (4.2) similarly applies in this case, and Q� 1 is required to achieve a

parametrically high cutoff. As in our previous example, an upper bound on Q stems from

the requirement that the massive fermions remain weakly coupled, while at the same time

having appropriate charge assignments so as to cancel the U(1)3 anomaly. The optimal

choice of charges, i.e. allowing for the largest Q while maintaining perturbativity, is such

that Q
(2)
L � Q

(1)
L , in which case anomaly-cancelation in turn requires Q

(2)
L '

√
2Q3/2 � 1.

Moreover, unlike in our previous example, integer solutions to the anomaly equations now

exist for values Q � 1. The resulting upper bound on Q from the requirement of weak

coupling is, again, given by eq. (4.3), and therefore Λ∗ . 64π3mγ/g
3 follows.

Thus, in general, Abelian gauge theories that only feature a U(1)3 anomaly at low en-

ergies may be UV-completed into anomaly-free extensions by introducing an O(1) number

of massive fermion species, while at the same time allowing for a parametrically large ratio

of electric charges. In turn, this allows us to probe the regime mγ � gΛ∗/4π, in keeping

with the results of [20], while maintaining a quantum gravity cutoff at scales of order MPl.

4.2 Mixed U(1)-gravitational anomaly

We now focus on the implications of a mixed U(1)-gravitational anomaly by considering

theories such that trIR(Q3
i ) = 0 but trIR(Qi) ∼ Q, with Q the typical charge of the low

energy spectrum. Although such charge assignments may seem non-generic, the purpose of

this section is to illustrate the effect of the mixed gravitational anomaly, without distrac-

tions stemming from additional requirements imposed by the presence of a U(1)3 anomaly.

A specific example of this kind is the ‘taxicab number’ theory with massless left-handed

fermions carrying charges −Q,−12Q, 9Q, and 10Q.

Cancelling the gravitational anomaly without introducing a U(1)3 anomaly requires

more than a single massive fermion. In general, we may introduce a number N of chiral

fermion species, with charge assignments

Q
(i)
R −Q

(i)
L ≡ qi . (4.6)

The requirement that the massive fermions cancel the mixed gravitational anomaly of the

low energy spectrum can then be written as8

q1 + · · ·+ qN = trIR(Qi) ∼ Q . (4.7)

8For our taxicab number theory, eq. (4.7) reads q1 + · · ·+ qN = 6Q ∼ Q.
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If one, or an O(1) number, of the qi is much larger than the rest, then satisfying eq. (4.7)

requires qmax ∼ Q. As discussed in section 3.3, the upper bound on the scale of UV-

completion is then given by eq. (3.24) with N ∼ 1 and |QL − QR| ∼ qmax ∼ Q. Ignoring

the log factor, this leads to Λ∗ . 4πmγ/g — i.e. a parametric separation of scales is not

possible if an O(1) number of heavy fermions is responsible for cancelling the anomaly of the

low energy EFT. Instead, probing the regime of a parametrically light vector in a theory with

a mixed gravitational anomaly in the infrared requires the presence of a parametrically large

number of massive fermion species, all of which contribute significantly to the anomaly. In

turn, this implies a quantum gravity cutoff that lies parametrically below MPl.

The optimal charge assignment (that is, requiring the smallest number of species for a

given Q) is such that the largest possible number of qi have equal sign, adding coherently in

eq. (4.7) to cancel the anomaly of the low energy EFT. The case with qi = q ∀ i = 1, · · · , N
does not allow for the massive fermions to be themselves free of U(1)3 anomalies. However,

it will generally be enough to have qi = q for an O(1) fraction of all the fermion species,

with a small number of the qi having opposite sign. Setting q = 1 WLOG, this implies9

N ∼ Q . (4.8)

Thus, through the requirement that the U(1)-gravitational anomaly of the low energy

spectrum is cancelled by the heavy fermions, the anomaly links a large ratio of charges,

required to achieve a large separation of scales mγ � gΛ∗/4π, to a large number of species.

Parametrically, the cutoff of our anomaly-free extension can now be written as

Λ∗ .
4πmγ

g
Q ∼ 4πmγ

g
N . (4.9)

An upper bound on N immediately follows from the requirement that the scale of UV-

completion falls bellow the quantum gravity scale, ΛQG ∼ 4πMPl/
√
N [11, 12]. Demanding

that Λ∗ . ΛQG, we find

N .

(
gMPl

mγ

)2/3

. (4.10)

Plugging this back in eq. (4.9), we obtain an upper bound on the cutoff of the anomaly-free

EFT, of the form

Λ∗ . 4π

(
M2

Plmγ

g

)1/3

, (4.11)

which is precisely the upper bound on the cutoff scale of the anomalous EFT obtained

in [20, 21], given by Λgrav in eq. (2.7).

More generally, it is illuminating to obtain upper bounds on Λ∗ and ΛQG, which can

be written in the following form

Λ∗ . 4π

(
M2

Plmγ

g

)1/3(
Λ∗

ΛQG

)2/3

and ΛQG . 4π

(
M2

Plmγ

g

)1/3(
ΛQG

Λ∗

)1/3

. (4.12)

9Again, for the taxicab number example, it is enough to have qi = 1 for i = 1, · · · , N − 1, and qN = −1.

In this case, integer solutions to the anomaly equations exist, and eq. (4.7) reads N − 2 = 6Q ⇒ Q =

(N − 2)/6 ∼ N , in agreement with eq. (4.8).
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Figure 6. The cutoff Λ∗ of an anomaly-free theory that UV-completes an anomalous EFT with

a mixed U(1)-gravitational anomaly can be taken large at the cost of increasing the number N

of massive fermion species responsible for rendering the theory anomaly-free. In turn, this low-

ers the quantum gravity scale parametrically below MPl. The cutoff of the anomaly-free theory

may be taken to saturate the apparent cutoff of the anomalous EFT, Λgrav, and all three scales

parametrically coincide in that limit: Λ∗ ∼ Λgrav ∼ ΛQG.

Eq. (4.12) highlights how pushing the cutoff scale up comes at the cost of lowering the quan-

tum gravity scale, as we further illustrate in figure 6. Our analysis further shows how the

consistency requirement that an Abelian gauge theory that contains a U(1)-gravitational

anomaly be UV-completed below the scale of eq. (2.7) is self-imposed by the theory itself.

As we push the scale of UV-completion up, the quantum gravity cutoff will correspond-

ingly come down. In the limit where these two scales meet, they further coincide with

the orange line on figure 2. In other words: it is not possible to access the Swampland of

EFTs living in the orange region of figure 2 from the subset of consistent theories lying

below. More generally, our result provides evidence, purely in the context of field theory,

of the existence of a Swampland of EFTs that are not smoothly connected to the subset

of consistent theories that are compatible with a gravitational UV-completion.10

4.3 Both Abelian anomalies

We now turn to the more generic case where the low energy spectrum features both a U(1)3

anomaly and a mixed gravitational anomaly. We will focus on the example of a theory with

a massless left-handed fermion, but as before our conclusions will apply more generally so

long as trIR(Q3
i ) ∼ Q3 and trIR(Qi) ∼ Q. Introducing N massive fermion species such that

Q
(i)
R −Q

(i)
L ≡ 1 ∀ i = 1, · · · , N (4.13)

is now enough for the heavy fermions to cancel both anomalies. Solving both the gravita-

tional and U(1)3 anomalies requires, respectively:

Q = N , (4.14)

and Q3 = N
(
3Q2

L + 3QL + 1
)
, (4.15)

10See [33] for another example in a similar spirit.
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where for simplicity we have assumed that Q
(i)
L = QL ∀ i. In the regime where Q = N � 1,

as required to realize a large separation of scales mγ � gΛ∗/4π, QL ' N/
√

3, and integer

solutions exists for certain values of N � 1.

As in section 4.2, an upper bound on N as given in eq. (4.10) follows from the re-

quirement that the theory be UV-completed below the quantum gravity scale. However,

the requirement that the heavy fermions be weakly coupled now sets an additional upper

bound on N , of the form

g2
0N
(
Q2
L +Q2

R

)
16π2

∼ g2
0N

3

16π2
. 1 ⇒ N .

(
16π2

g2
0

)1/3

.
16π2

g2
, (4.16)

which is just eq. (4.3) after setting Q = N .

Comparing eq. (4.10) and eq. (4.16), we identify a critical value of the gauge coupling:

g∗ ∼
(

64π3mγ

MPl

)1/4

. (4.17)

When g . g∗, the upper bound on eq. (4.10) is the most stringent, and the conclusions of

section 4.2 apply in this regime: Λ∗ can saturate the cutoff scale of the anomalous EFT,

which in this regime corresponds to Λgrav ∼ 4π
(
M2

Plmγ/g
)1/3

, at the cost of bringing the

quantum gravity cutoff down to the same scale. On the other hand, in the regime g & g∗,

the upper bound in eq. (4.16) is dominant, in turn implying Λ∗ . 64π3mγ/g
3, which again

coincides with the upper bound on the cutoff of the anomalous EFT for this range of

couplings. Overall, Λ∗ can be taken to saturate min
{

Λgrav,ΛU(1)3

}
for all values of g.

Intriguingly, in the regime where g & g∗ the scale of quantum gravity ΛQG is also

subject to a surprising constraint of its own. On the one hand, the upper bound on N in

eq. (4.16) implies ΛQG & gMPl. On the other hand, after identifying N ∼ (4πMPl/ΛQG)2,

eq. (4.9) can be rewritten as an upper bound on ΛQG. In combination, these bounds give

gMPl . ΛQG . gMPl

√
64π3mγ/g3

Λ∗
. (4.18)

Thus, saturating the upper bound on the scale of UV-completion entails bringing the

quantum gravity cutoff down to coincide with the scale gMPl — the WGC scale as seen in

the infrared. Moreover, from eq. (4.16), gMPl ∼ g
1/3
0 MPl in this limit, which is the form of

the ‘magnetic’ WGC scale that has been advocated for in [22, 23]. The upper bound on

Λ∗, and the behavior of ΛQG in the various coupling regimes, are illustrated in figure 7.

There are a variety of noteworthy features in this result. The appearance of the

WGC scale in association with the scale of quantum gravity was due not to any direct

applications of the WGC, but rather a direct consequence of the large number of species

required to probe effective non-compactness of the anomalous U(1). Even more surprising

is the fact that the WGC scale emerges in a largely field-theoretical example featuring

a massive photon, where the direct applicability of the WGC remains conjectural [10].

Finally, although the WGC scale appearing in eq. (4.18) plays the role of the quantum

gravity cutoff only for g & g∗, note that g∗ → 0 in the limit of a vanishing photon mass.
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Figure 7. Upper bound on Λ∗ (purple line; to be identified with the scale of the radial mode), and

corresponding behavior of the quantum gravity scale (green line) when the bound is saturated. For

g . g∗, the maximum value of Λ∗ simultaneously coincides with both Λgrav and ΛQG. For g & g∗,

the upper bound on Λ∗ coincides with ΛU(1)3 , while ΛQG matches the apparent WGC scale gMPl

in the same limit. (Both axes are in a log scale.)

5 Conclusions

The study of chiral gauge theories — the Standard Model being a prime example — has

provided deep insight into general aspects of quantum field theory, as well as concrete

understanding of phenomena realized in nature. Moreover, it is in this context that the

fundamental differences between Abelian and non-Abelian theories become most apparent.

In particular, the existence of mixed U(1)-gravitational anomalies — absent in the non-

Abelian case — provides hope that further scrutiny of this class of theories may provide

some insight into the properties of Abelian gauge theories in the context of a gravitational

UV-completion.

In this paper, building on the seminal work of [20], we have focused on four-dimensional,

massive Abelian gauge theories that are anomaly-free but for which anomaly-cancellation

occurs due to fermions appearing at different scales. We have shown that the presence of

massive chiral fermions leads to an upper bound on the scale below which a radial mode

must become part of the spectrum, and cannot be decoupled. In this class of massive U(1)

gauge theories, a Stückelberg limit is not allowed.

Maximizing the separation of scales between the massive photon and the scale of the

radial mode requires wandering into the (morally) non-compact limit, by introducing a

parametrically large ratio of charges in the UV-completion. We have shown that when

a U(1)-gravitational anomaly is present in the low energy theory, such cavalier behavior

is automatically penalized by the quantum gravity scale appearing parametrically below

MPl. In turn, this precludes the possibility of falling into the Swampland of theories that

remain anomalous above the cutoff scale of the anomalous low energy theory, providing

field-theoretic evidence for the existence of a Swampland that is disconnected from the
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Landscape of consistent EFTs. When the low energy theory also contains a U(1)3 anomaly,

there exists a critical value of the gauge coupling, g∗. When g & g∗, saturating the upper

bound on the mass of the radial mode comes at the cost of lowering the quantum gravity

scale down to ΛQG ∼ gMPl, which coincides with the WGC scale as seen from the low

energy EFT. Our work therefore provides a four-dimensional, field-theoretic example of

the WGC scale emerging in the role of a quantum gravity cutoff, in a massive Abelian

gauge theory, tied to the presence of a large number of species.

Our results resonate with those of [10], and provide qualitative evidence in favor of some

of the suggestions contained therein, especially as pertains to the non-decoupling behavior

of additional degrees of freedom, as well as to the lowering of the quantum gravity scale in

theories with parametrically light vectors. Our work provides strong motivation to further

investigate the suggestions of [10], in the context of string theory constructions with massive

photons that feature anomalous infrared fermion content, which are also commonplace in

the context of string constructions [13–17].

Finally, our work opens several avenues for further exploration. For example, in dimen-

sions higher than four, there exist additional possibilities for cancelling gauge anomalies

that do not require the presence of heavy fermions, such as the ten-dimensional Green-

Schwarz mechanism [34] and variations thereof [13, 35]. Extending our work to study

UV-completions in dimensions higher than four could provide more insight into the struc-

ture of this class of massive U(1)s. Last but not least, we would be remiss to not mention

the ubiquity of massive photons in various extensions of the Standard Model, most notably

as mediators for dark matter, or as dark matter itself [36, 37]. If these theories were to

contain an anomaly canceled by massive chiral fermions (see e.g. [38] for work along these

lines), our result would apply and could restrict the validity of some of these approaches.
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