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1 Introduction

The counting of Bogomol’nyi-Prasad-Sommerfield (BPS) states [1, 2] has been one of the

most central questions in quantum field theories, black holes, and string theory. Toric

Calabi-Yau manifolds provide an ideal setup for addressing this problem — the geometry

of a toric Calabi-Yau manifold in itself is described by the combinatorial data of the toric

diagram, and the BPS state counting problem can be recast as the statistical counting

problem of crystal melting [3, 4].

The original crystal melting model of [3] counts three-dimensional plane partitions,

and counts BPS states on the simplest Calabi-Yau geometry, C3. The crystal melting

configuration was subsequently generalized to arbitrary toric Calabi-Yau threefold [5],1

based on earlier works [7, 8]. This description also accommodates BPS wall crossing,

where the wall crossing is described by a change of the crystal configuration [9–17] (see

e.g. [18] for a summary).

Despite the success of the BPS state counting program for toric Calabi-Yau manifolds,

there remained one unsatisfactory aspect of the program. While the BPS counting problem

generates an infinite set of numbers (BPS degeneracies), there are clearly some structures in

them, and it has long been expected that there is an underlying algebra, the algebra of BPS

states acting on BPS states [19]. One hopes such an algebra will provide a better organizing

1This crystal is different from that obtained from the topological vertex formalism [6]. The two crystal

descriptions are related by BPS wall crossing.
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principle for the BPS state counting problem. There was, however, little discussion of this

algebra, in particular not for general toric Calabi-Yau threefolds.

Recently there have been impressive developments in this direction. For the case of the

C3-geometry, it was found that we can define an action of Y (ĝl1) (the affine Yangian of gl1,

which is equivalent with the universal enveloping algebra of W1+∞-algebra [20–25]) on the

set of plane partitions [23, 24, 26] (see also [27]), and hence on the BPS states contributing

to the BPS degeneracy. The BPS partition function (which is the MacMahon function) is

identified with the character of the affine Yangian of gl1. In other words, the problem of

explicitly constructing the algebra for the C3 has now been solved.

The natural question is then whether similar algebras exist for other toric Calabi-Yau

geometries. Namely, can we explicitly construct an infinite-dimensional algebra such that

it acts on the BPS crystal configurations of [5]?2

The goal of this paper is to provide an answer to this question. We explicitly define an

infinite-dimensional algebra Y for an arbitrary toric Calabi-Yau threefold, and show that

we can define a representation of the algebra in terms of the statistical model of BPS crystal

melting. Indeed, for each toric Calabi-Yau threefold M , its associated BPS algebra Y is

“bootstrapped” from the set of the colored crystals that describes the BPS states of the

IIA string in M , by demanding that the algebra acts on the corresponding set of crystals

appropriately. Our algebra and representation reduce to Y (ĝl1) and its plane-partition

representation for the special case of C3.

The colored crystals furnish the representations that we use to “bootstrap” the al-

gebras. However for the purpose of defining the algebra, once the algebras are obtained,

one can forget about the details of the crystal configurations. Namely, what enters the

definition of the BPS algebra are only the basic ingredients that defines the crystal, which

is a pair (Q,W ) of a quiver diagram Q and a superpotential W , which are determined by

the toric Calabi-Yau geometry. For this reason one can denote our algebra as Y(Q,W ), and

call it the BPS quiver Yangian, or simply the quiver Yangian.

In our discussion it is crucial to keep track of the orientations of the quiver, and also to

have closed loops in the quiver diagram Q; the quiver is in general chiral. The existence of

loops in the quiver is the necessary ingredient for the existence of a non-zero superpotential

W , which in itself is an independent data. In this respect our discussion seems to be more

general than similar discussions of infinite-dimensional algebra in the literature, e.g. the

work of [21] where the Yangian associated with the quiver acts on the cohomologies of

quiver varieties. It would be interesting to fully understand the relation with [21] and

other works, e.g. [29], as we will discuss further in section 10. Let us also mention that

during the preparation of this manuscript we have been notified of the ongoing work [30],

who studies cohomological Hall algebras [31] for some toric Calabi-Yau manifolds.3

The rest of this paper is organized as follows. We begin with a review of the BPS

crystal melting (section 2) and affine Yangian of gl1 (section 3). We introduce the BPS

quiver Yangian in section 4. In order to motivate this definition, in section 5 we first go

2Related problems were posed recently in [28].
3The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA captures

the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation part.
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Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended Pinched

Point geometry xy = z2w.

back to the plane partitions discussed in section 3 and bootstrap the affine Yangian of gl1.

Then in section 6 we repeat a similar analysis for a general quiver corresponding to a toric

Calabi-Yau threefold, to obtain our BPS quiver Yangian. We discuss the truncation of the

algebra and the relation with D4-branes in section 7. We present many examples both for

toric Calabi-Yau threefolds without compact 4-cycles (section 8) and with compact 4-cycles

(section 9). These examples will provide useful illustrations of many of the general results

of the previous sections. The final section 10 is devoted to a summary and discussions.

2 Review: BPS crystal melting

2.1 Quiver diagram and superpotential

Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau three-

folds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric Calabi-Yau

threefold X. Combinatorially, the choice of X is encoded in the so-called toric diagram ∆,

a lattice convex polytope in Z2, see figure 1 for an example.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes) wrapping

holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The effective theory

on the D-branes is a supersymmetric quiver quantum mechanics, and the moduli space

of BPS states can be identified with the vacuum moduli space of the quiver quantum

mechanics.

The quiver quantum mechanics generically has four supercharges, and can be thought

of as the dimensional reduction of a four-dimensional N = 1 supersymmetric quiver gauge

theory. The theory is specified by a pair (Q,W ), where Q is a quiver diagram and W is a

holomorphic superpotential.

A quiver diagram Q = {Q0, Q1} is given by a set of vertices Q0 and a set of arrows Q1

between vertices. In the following we use the notation

Q0 = {a}a∈Q0 and Q1 = {I}I∈Q1 , (2.1)

namely we use a, b, . . . to label the vertices, and I, J, . . . to label the edges. We denote the

number of vertices and arrows by |Q0| and |Q1|, respectively. The source and the target of

an arrow I ∈ Q1 will be denoted by s(I) ∈ Q0 and t(I) ∈ Q0, respectively.

In quiver quantum mechanics Q0 and Q1 specify the gauge groups and the bifundamen-

tal matter fields: we have a vector multiplet Va for each vertex a ∈ Q0 and a bifundamental

matter chiral multiplet ΦI for each arrow I ∈ Q1.

– 3 –
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The superpotential W specifies the interactions between the matter. Given W , we can

write down the so-called F-term relations ∂W/∂ΦI = 0 for each bifundamental matter ΦI

corresponding to the arrow I. In the mathematics literature W is known as a potential [32]

and defines the so-called “path algebra for quiver with relations” A(Q,W ). This is defined to

be the Jacobian algebra CQ/(∂W ), where CQ is the path algebra generated by the set of (in

general open) paths on the quiver diagram, with multiplication defined by concatenations

of the paths. The infinite-dimensional algebra A(Q,W ) underlies the definition of the crystal

melting model, and is closely related to our infinite-dimensional algebra Y(Q,W ).

In general it is a highly non-trivial problem to identify the pair (Q,W ) for a Calabi-

Yau manifold X. Fortunately, for a non-compact toric Calabi-Yau threefold, there is a

systematic algorithm to obtain such a pair, starting with the toric diagram ∆ [33–36]. We

will not need details of this procedure in this paper, except to note that the algorithm

generates the pair (Q,W ) in the form of the periodic quiver, a quiver diagram realized on

the torus (see figure 2 for an example).

Given a periodic quiver, we can first forget the fact that the quiver is realized on a

two-dimensional torus, and thus obtain a quiver diagram Q as an abstract graph. The

periodic quiver, however, contains more information — for each polygonal region of the

torus the arrows of the quiver diagram point in the same direction (either clockwise or

counterclockwise), and the product of the bifundamental fields along the polygonal region

represents a gauge-invariant superpotential term. The superpotential W is recovered as a

sum of such monomial contributions

W =
∑

F :face of the periodic quiver

±Tr

(∏
e∈F

Φe

)
, (2.2)

where the product over e ∈ F is taken along the edges of the face F and the sign ± is

determined by the orientations (clockwise or counter-clockwise, respectively) of the arrows.

For the example in figure 2, the periodic quiver gives the superpotential

W = Tr (−Φ11Φ13Φ31 + Φ11Φ12Φ21 − Φ21Φ12Φ23Φ32 + Φ32Φ23Φ31Φ13) , (2.3)

where we have denoted the bifundamental chiral multiplet associated to an arrow from

vertex a to b by Φab (in this example there are at most one arrow for any vertices a, b).

In the periodic quiver description, monomial terms of the superpotential W are as-

sociated with the faces of the periodic quiver, the set of which we denote by Q2. In this

notation, the quiver Q = (Q0, Q1) and the superpotential W combines nicely into the data

Q̃ = (Q0, Q1, Q2) of the periodic quiver.

The dual of the periodic quiver is often represented as a bipartite graph, i.e. a graph

where vertices are colored with two colors (black and white) and every black vertex is

connected to one single white vertex and vice versa. The orientation of the quiver diagram

canonically determines the colors of the vertices of the bipartite graph: the rule is that

quiver arrows are oriented clockwise (counterclockwise) around white (black) vertices of

the bipartite graph, see figure 3 for an example. Such a bipartite graph in high energy

theory is often called a brane tiling [37–39] (see e.g. [40, 41] for reviews), and has been

– 4 –
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Figure 2. The periodic quiver for the Suspended Pinched Point geometry of figure 1. The green

region is the fundamental region of the two-dimensional torus. The periodic quiver compactly

encodes both the quiver diagram Q as an abstract graph and the superpotential W .

Figure 3. The bipartite graph for the Suspended Pinched Point geometry of figure 1 (shown on the

left), which is a dual graph to the periodic quiver of figure 2 (as shown on the right). The color of a

vertex of the bipartite graph is determined from the orientations of the quiver arrows surrounding

it (black for counterclockwise, and white for clockwise).

heavily utilized in the study of supersymmetric quiver gauge theories. We will later show

in section 7 that the concept of the perfect matching of the bipartite graph will help us

relate the truncation of the algebra to the charges of the D4-branes.

The periodic-quiver representation of the superpotential makes it easy to read off the

F-term relations (see figure 4): two paths on the periodic quiver with the same starting

point and endpoint are F-term equivalent. This will be useful when we discuss global

symmetries of the quiver quantum mechanics.

2.2 Crystal as a lift of periodic quiver

Let us next construct the BPS crystal. For this purpose, consider a new quiver diagram

Q obtained by uplifting the periodic quiver diagram to the universal cover of the two-

dimensional torus (namely the two-dimensional plane). Each vertex a on the resulting

quiver is still labelled (colored) by a ∈ Q0. Note that as before we will use the symbols

a, b, . . . for the vertices of the original quiver diagram Q (and hence of the periodic quiver

diagram), while we use the symbols a, b, . . . for vertices of the quiver Q on the universal

cover.

– 5 –
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Figure 4. This figure represents a part of the periodic quiver diagram. In this example, the

superpotential W contains two monomial terms W = Tr(−ΦbaΦacΦcb + ΦbaΦadΦdeΦeb). The F-

term relation ∂W/∂Φba = −ΦacΦcb + ΦadΦdeΦeb = 0 for the field Φba is represented by the fact

that the two different paths a→ c→ b and a→ d→ e→ b starting from a ending at b represents

two F-term equivalent fields (i.e. same element in the chiral ring).

Figure 5. Module F-term relations, any path starting at the origin o and ending at the position a

(e.g. the green path in the left figure) is equivalent to the shortest path po,a (e.g. the blue arrow in

both figures) times a power of the closed loop ω (e.g. the green loop in the right figure) along the

faces of the periodic diagram.

Let us choose a particular vertex a0 ∈ Q0 as the “initial color”, and choose a vertex in

Q on the universal cover that has this color to be the origin o ∈ Q.4 Let us then consider

a set of paths starting with the origin o modulo the F-term relation. Any such path in Q,

modulo the F-term relations (as described in figure 4), defines an atom in the crystal. This

atom is placed at the location a of the two-dimensional plane, where a is the endpoint of

the path. This defines the two-dimensional projection of the BPS crystal.

To fully describe the three-dimensional structure of the crystal, note that any path

starting at the origin o and ending at a can be expressed in the form po,a ω
n, modulo the

F-term relations, where po,a is one of the shortest paths connecting the two points o and

a, and ω represents a loop in the quiver diagram along any of the face of the periodic

diagram (see figure 5). The corresponding atom is then placed at depth n in the crystal

(see figure 6).

As an example, we show in figure 7 the example of the BPS crystal for the Suspended

Pinched Point geometry discussed in figure 2.

It follows from the definition that for an atom � and an arrow I ∈ Q1, there is a

canonically-defined atom I ·� in the crystal — I ·� is defined by concatenation of a path

4This choice corresponds to the choice of framing, and represents the effect of the non-compact D6-brane

filling the whole Calabi-Yau threefold.
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Figure 6. The three-dimensional structure of the crystal configuration. An atom in the crystal is

represented by a path from the origin o ∈ Q to a ∈ Q. If the path is represented as po,a ω
n modulo

F-term relations, the corresponding atom is placed at depth n at the location a.

Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity. We have

chosen the vertex 1 of figure 1 as the origin o of the crystal, whose location is shown by the blue

dot in the center.

representing � and an arrow I, and this definition is consistent with the identification

modulo F-term relations. In other words, the BPS crystal naturally gives a representation

of the path algebra of the quiver.

2.3 Crystal melting and molten crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten crystal

if it satisfies the following melting rule:

– 7 –
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Figure 8. An example of a configuration of the molten crystal (left) and the complement (right)

for the crystal of figure 7. This contributes a term q41q
3
2q

2
3 to the BPS partition function.

melting rule:

� ∈ K whenever there exists an edge I ∈ Q1 such that I ·� ∈ K .
(2.4)

This is equivalent to the condition that I · � /∈ K whenever � /∈ K, namely the condition

that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is always

contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number of atoms

with color a as |K(a)|. The statistical partition function of BPS crystal melting is then

defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
∑
K

∏
a∈Q0

q|K(a)|
a . (2.5)

The statement is that this coincides with the BPS configuration of the crystal.

The partition function has an infinite product form for the resolved conifold and more

generally for toric Calabi-Yau geometries without compact 4-cycles, as explained by M-

theory [42–44]. This suggests an identification of the BPS partition function as a character

of some infinite-dimensional algebra. We will see that this is indeed the case.

5More precisely we need to insert signs for this definition [5, 8].

– 8 –
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3 Review: plane partition and affine Yangian of gl1

As explained in Introduction, the current work is inspired by the relation between the affine

Yangian of gl1 and the set of plane partitions. We will now review the affine Yangian of

gl1, its relation to the W1+∞ algebra, and its action on the set of plane partitions.

3.1 Affine Yangian of gl1

The affine Yangian of gl1, which we denote by Y (ĝl1), is an infinite-dimensional associative

algebra generated by the following three families of operators:

en , ψn , fn , with n ∈ Z≥0 , (3.1)

and whose algebraic relations are

0 = [ψn, ψm] ,

σ3{ψn, em} = [ψn+3, em]− 3[ψn+2, em+1] + 3[ψn+1, em+2]− [ψn, em+3]

+ σ2 ([ψn+1, em]− [ψn, em+1]) ,

σ3{en, em} = [en+3, em]− 3[en+2, em+1] + 3[en+1, em+2]− [en, em+3]

+ σ2 ([en+1, em]− [en, em+1]) ,

−σ3{ψn, fm} = [ψn+3, fm]− 3[ψn+2, fm+1] + 3[ψn+1, fm+2]− [ψn, fm+3]

+ σ2 ([ψn+1, fm]− [ψn, fm+1]) ,

−σ3{fn, fm} = [fn+3, fm]− 3[fn+2, fm+1] + 3[fn+1, fm+2]− [fn, fm+3]

+ σ2 ([fn+1, fm]− [fn, fm+1]) ,

ψn+m = [en, fm] .

(3.2)

These relations are further supplemented by the initial conditions

[ψ0, em] = 0 , [ψ1, em] = 0 , [ψ2, em] = 2em ,

[ψ0, fm] = 0 , [ψ1, fm] = 0 , [ψ2, fm] = −2fm ,
(3.3)

and the so-called Serre relations

Sym(n,m,`)[en , [em , e`+1]] = 0 ,

Sym(n,m,`)[fn , [fm , f`+1]] = 0 .
(3.4)

Note that the algebra has two parameters σ2 and σ3 and two central elements ψ0 and ψ1.

The algebraic relations (3.2) can be more elegantly repackaged in terms of the following

three fields

e(z) ≡
∞∑
n=0

en
zn+1

, ψ(z) ≡ 1 + σ3

∞∑
n=0

ψn
zn+1

, f(z) ≡
∞∑
n=0

fn
zn+1

, (3.5)

– 9 –
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where z is sometimes called the “spectral parameter” in this context. In terms of

(e(z), ψ(z), f(z)), the relations (3.2) can be rewritten as

ψ(z)ψ(w) ∼ ψ(w)ψ(z) ,

ψ(z) e(w) ∼ ϕ3(∆) e(w)ψ(z) ,

ψ(z) f(w) ∼ ϕ−1
3 (∆) f(w)ψ(z) ,

e(z) e(w) ∼ ϕ3(∆) e(w) e(z) ,

f(z) f(w) ∼ ϕ−1
3 (∆) f(w) f(z) ,

[e(z) , f(w)] ∼ − 1

σ3

ψ(z)− ψ(w)

z − w
,

(3.6)

where here and throughout this paper ∆ is defined as

∆ ≡ z − w , (3.7)

and the ϕ3 function is a cubic rational function defined as

ϕ3(z) ≡ (z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
. (3.8)

Here the triplet parameters (h1, h2, h3) satisfy

h1 + h2 + h3 = 0 , (3.9)

and are related to the two parameters σ2 and σ3 introduced earlier by

σ2 ≡ h1 h2 + h2 h3 + h3 h1 and σ3 ≡ h1 h2 h3 . (3.10)

(Note that the function ϕ3(z) and hence the full algebra of affine Yangian of gl1 are invariant

under permutation of {h1, h2, h3}.) Unless stated explicitly otherwise, the ∼ sign in this

paper denotes equality up to zn≥0wm terms and znwm≥0 terms. One can easily reproduce

the relations in terms of modes (3.2) by expanding (3.6) using (3.5) (after first moving the

denominator of the coefficient ϕ(∆) or ϕ−1(∆) to the l.h.s.) and taking the z−n−1w−m−1

term.

Although the (e(z), ψ(z), f(z)) are not fields in a two-dimensional CFT, the rela-

tions (3.8) bear some resemblance to OPE (Operator Product Expansion) relations in

a two-dimensional CFT in that (1) they are written in terms of fields (e(z), ψ(z), f(z)) and

when expanded using (3.5) reproduce the algebraic relations in terms of modes; and (2)

the relations in (3.8) are defined up to regular terms. Therefore throughout this paper, we

will abuse the terminology and call this type of relation “OPE relations”, to distinguish

them from the corresponding mode relation such as (3.2).

Similarly, the Serre relations (3.4) can be rewritten in terms of (e(z), f(z)) collectively:

Symz1,z2,z3(z2 − z3)[ e(z1) , [ e(z2) , e(z3)]] = 0 ;

Symz1,z2,z3(z2 − z3)[f(z1) , [f(z2) , f(z3)]] = 0 .
(3.11)
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Finally, the initial conditions (3.3) can be derived from the ψ(z) e(w) and ψ(z) f(w) OPEs

in (3.6), respectively, by taking the z−n−1w−m−1 with n = −3,−2,−1 terms of these two

equations (after first moving the denominator of the coefficient ϕ(∆) or ϕ−1(∆) to the

l.h.s.), namely, these two equations are true up to zn≥3wm terms and znwm≥0 terms.

For the purpose of this paper, the relations in terms of fields are much more useful

than those written in terms of the modes,6 for the following two reasons:

1. The OPE relations (3.6) make manifest the S3 symmetry (permuting the triplet

{h1, h2, h3}) that is intrinsic to the algebra but is somewhat hidden in (3.2).

2. The action of the algebra on the representations in terms of plane partition is much

more transparent in terms of the OPE relations (3.6) than the mode relations (3.2),

see later.

It is convenient to use the following figure to summarize the OPE relations (3.6):

ψ fe
ϕ3(∆) ϕ−1

3 (∆)

ϕ3(∆) ϕ−1
3 (∆)

(3.12)

Finally, as already mentioned in Introduction, it is known that the affine Yangian of gl1 is

equivalent to the universal enveloping algebra of the W1+∞ algebra, see [20–25].

3.2 Plane partition

A partition λ of an integer n can be characterized by a set of integers λi:

partition of n :

{
λi

∣∣∣ λi ∈ Z≥0 , λi ≥ λi+1 ,
∑
i

λi = n

}
. (3.13)

A plane partition Λ is a three-dimensional generalization of the integer partition

plane partition of n :

Λi,j

∣∣∣Λi,j ∈ Z≥0 ,Λi,j ≥ Λi+1,j ,Λi,j ≥ Λi,j+1 ,
∑
i,j

Λi,j = n

 ,

(3.14)

and can be given by the stacking of three-dimensional boxes (denoted as � in this paper),

which are 3D generalization of 2D Young diagrams. The coordinates of these �’s are chosen

to be

(x1(�), x2(�), x3(�)) with x1,2,3(�) ∈ Z≥0 . (3.15)

6Except in the discussion of the initial condition, which is necessary to define the finite part of the affine

Yangian algebra, and in the computation of the vacuum module directly in terms of algebra (i.e. without

invoking the colored crystal representations). The latter is important in deriving/checking Serre relations.
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The generating function of plane partition counting is the MacMahon function [45]

M(q) ≡
∑

Λ∈ plane partition

q|Λ| =

∞∏
k=1

1

(1− qk)k

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + . . . ,

(3.16)

where |Λ| denotes the number of boxes � in the plane partition Λ. This partition function

is also the partition function of the topological A-model on C3 [3]; and it is also identical

to the vacuum character of W1+∞ algebra (at general central charge c and coupling λ).

3.3 Action of affine Yangian of gl1 on plane partitions

The affine Yangian of gl1 acts on the set of plane partitions (this representation is known

as the MacMahon module in the literature). To describe this action, it is necessary to first

endow plane partitions with additional structures, to accommodate the two parameters in

the algebra, i.e. (h1, h2, h3) satisfying h1 + h2 + h3 = 0.

Recall that each plane partition configuration consists of a collection of 3D-boxes, with

coordinates given by (3.15). To each box �, we can associate a coordinate function

h(�) ≡ h1 x1(�) + h2 x2(�) + h3 x3(�) , (3.17)

which naturally incorporates the parameters (h1, h2, h3).

The action of affine Yangian of gl1 on a plane partition configuration Λ is given by [23,

24, 26]

ψ(z)|Λ〉 = ΨΛ(z)|Λ〉 ,

e(z)|Λ〉 =
∑

�∈Add(Λ)

[
− 1

σ3
Resw=h(�)ΨΛ(w)

] 1
2

z − h(�)
|Λ + �〉 ,

f(z)|Λ〉 =
∑

�∈Rem(Λ)

[
1
σ3

Resw=h(�)ΨΛ(w)
] 1

2

z − h(�)
|Λ−�〉 .

(3.18)

Recall the ψ(u) contains all the Cartan operators of the algebra, see the first line of (3.2).

Each plane partition |Λ〉 is an eigenstate of ψ(u), hence of all the Cartan modes ψn with

n ∈ Z≥0. The eigenvalue is

ΨΛ(z) = ψ0(z)
∏
�∈Λ

ϕ3(z − h(�)) , (3.19)

where

ψ0(z) = 1 + h1h2h3
ψ0

z
(3.20)

is the vacuum contribution. Given a |Λ〉, e(z) adds a � in all legitimate locations, while

f(z) removes a � in all legitimate locations.7 In summary:

� : e(u) : creation , ψ(u) : charge , f(u) : annihilation . (3.21)

7Here “legitimate” means that the final state |Λ±�〉 is again a plane partition configuration.
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The actions of the modes (en, ψn, fn) on the plane partition state |Λ〉 can be obtained

from the action (3.18) and the mode expansion (3.5). From the action of en one can check

that the character of the vacuum module of affine Yangian of gl1 reproduces the MacMahon

function (3.16). In this computation, the (e part of the) Serre relations (3.3) plays a crucial

role, for more details see section 3.5.

4 BPS quiver Yangian for general quivers

In this section let us define the BPS quiver Yangian Y(Q,W ) from a pair (Q,W ).8 Since the

pair (Q,W ) is obtained from a toric Calabi-Yau geometry X (as we discussed in section 2),

the algebra Y(Q,W ) in itself can be associated with the geometry X.

In general, for the same Calabi-Yau manifold X, there exist multiple quiver gauge

theories (Q,W ) which are dual to one another. In these situations the quiver gauge theories

are believed to be related by a sequence of Seiberg dualities (quiver mutations) [46], and

we conjecture that the resulting algebras Y(Q,W ) are all isomorphic. We will see concrete

examples of this phenomenon in sections 8.3 and 9.2: the relevant isomorphisms are already

known in the mathematical literature for the examples in 8.3, but not for those in 9.2. It

would be interesting to explore this point further.

In this section we provide a top-down definition of the algebra. Let us mention, how-

ever, that later in section 6 we will provide bottom-up justifications of the algebra. Indeed,

as we will see in section 6, under some reasonable ansatz, the condition that this algebra

acts on the configurations of molten crystal can completely fix the algebra. In this sense

our algebra and its representation on the BPS crystal are intimately connected.

4.1 Parameters

To define the BPS quiver Yangian Y(Q,W ), we first consider a set of charge assignments hI
for each arrow I ∈ Q1. We impose the condition that this charge assignment is compatible

with the superpotential W . In other words, the charges hI can be regarded as charges

under a global symmetry of the quiver quantum mechanics. The superpotential W will

enter into the definition of the algebra Y(Q,W ) through this charge-assignment constraint

only.

In the periodic quiver diagram, a monomial term in the superpotential is represented

by a closed loop. This means that the constraint on the parameters hI can be written as9

loop constraint:
∑
I∈L

hI = 0 , (4.1)

where L is an arbitrary loop in the periodic quiver. We will hereafter call this condition the

loop constraint, and the parameters satisfying these conditions as coordinate parameters.

8While our interest in this paper is to those pair (Q,W ) originating from toric Calabi-Yau threefolds,

our definition in itself applies to more general choices of (Q,W ). It is not clear, however, if the algebra acts

on BPS states of some gauge/string theory in these more general situations.
9Note that all arrows are in the same direction in the smallest loops.
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In section 6.4 we will see that this constraint is instrumental in ensuring the consistency

of the crystal-melting representation of the algebra.

We can count the number of coordinate parameters to be

Nh = # (edges of the quiver) − (# (monomial terms in the superpotential) − 1) . (4.2)

Here we have subtracted one from the superpotential constraints, since any bifundamental

field appears exactly twice in the superpotential (this follows since each edge belongs to

two neighboring faces in the periodic quiver) and thus one of the constraints is redundant.

Since each monomial term in the superpotential corresponds to a polygonal region of the

periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver) − (# (faces of the periodic quiver) − 1) . (4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler character

zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh− 1) is known to be the same as

the area of the toric diagram ∆, where the normalization of the area is chosen such that

the minimal lattice triangle spanned by the three lattice points (0, 0), (1, 0), and (0, 1) has

area 1. One can then use Pick’s theorem to rewrite this as

Nh = E + 2I − 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the toric

diagram ∆. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges associated

to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote these Nh

independent parameters that characterize the algebra.

4.2 Generators and relations

The algebra is generated by a triplet of fields (e(a)(u), ψ(a)(u), f (a)(u)) for each quiver

vertex a ∈ Q0:

a : e(a)(u) : creation , ψ(a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ≡
+∞∑
n=0

e
(a)
n

zn+1
, ψ(a)(z) ≡

+∞∑
n=−∞

ψ
(a)
n

zn+1
, f (a)(z) ≡

+∞∑
n=0

f
(a)
n

zn+1
, (4.7)

10For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z) and

f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current paper, but

can be determined once we know the map between the quiver Yangians and the W algebras.
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and contain infinitely many generators e
(a)
n , ψ

(a)
n , f

(a)
n . As we will show later in section 8,

for Calabi-Yau threefolds without compact 4-cycles, ψ
(a)
n<−1 = 0 and ψ

(a)
−1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators e
(a)
n , f

(a)
n

of the generators) to be

grading rule: |a| =

{
0 (∃I ∈ Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators ψ
(a)
n are Cartan

and hence are set to be even.

4.2.1 Relations in terms of fields

The generators satisfy the OPE relations

ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(b)(w) ' ϕb⇒a(∆) e(b)(w)ψ(a)(z) ,

e(a)(z) e(b)(w) ∼ (−1)|a||b|ϕb⇒a(∆) e(b)(w) e(a)(z) ,

ψ(a)(z) f (b)(w) ' ϕb⇒a(∆)−1 f (b)(w)ψ(a)(z) ,

f (a)(z) f (b)(w) ∼ (−1)|a||b|ϕb⇒a(∆)−1 f (b)(w) f (a)(z) ,[
e(a)(z), f (b)(w)

}
∼ −δa,bψ

(a)(z)− ψ(b)(w)

z − w
,

(4.9)

where throughout this paper “'” means equality up to znwm≥0 terms, “∼” means equality

up to zn≥0wm and znwm≥0 terms, and finally

∆ ≡ z − w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense. Namely,

it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and is a commutator

[e(a)(z), f (b)(w)] otherwise.

The function ϕa⇒b(z), which we call the “bond factor” since roughly speaking it de-

scribes the “bonding” between atoms of color a and atoms of color b, is defined to be

ϕa⇒b(u) ≡
∏
I∈{b→a}(u+ hI)∏
I∈{a→b}(u− hI)

, (4.11)

where {a→ b} denotes the set of edges from vertex a to vertex b. When there is no arrow

between vertex a and vertex b in the quiver (denoted as a 6←→ b), the bond factor is trivial:

a 6←→ b : ϕa⇒b(u) = ϕb⇒a(u) ≡ 1 ; (4.12)

– 15 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

and the corresponding operators from (e(a)(z), ψ(a)(z), f (a)(z)) commute — or anti-commute

when the relevant sign (−1)|a||b| is −1 — with those from (e(b)(w), ψ(b)(w), f (b)(w)). The

bond factor satisfies the reflection property

ϕa⇒b(u)ϕb⇒a(−u) = 1 , (4.13)

which is needed for the consistency of the OPE relations. The relations (4.9) (except for

the relation between e and f) are summarized in the following graph:11

ψ(a) f (a)e(a)

ψ(b) f (b)e(b)

ϕa⇒a 1/ϕa⇒a

ϕa⇒a 1/ϕa⇒a

ϕb⇒b 1/ϕb⇒b

ϕb⇒b 1/ϕb⇒b

ϕa⇒b

ϕb⇒a 1/ϕa⇒b 1/ϕb⇒a
ϕb⇒a 1/ϕb⇒a

(4.14)

We emphasize that the bond factor ϕa⇒b(u) (4.11) should be treated as a “formal”

rational function. Namely, all the factors in its numerator and denominator, one pair (i.e.

one in the numerator and one in the denominator) from each arrow in the quiver, need to

be kept even when the charges hI take some special values such that some factors of the

numerator and the denominator cancel each other. The reason is that the algebra can also

be expressed in terms of modes (e
(a)
n , ψ

(a)
n , f

(a)
n ), using the mode expansions (4.7), and it is

important that we keep all factors in ϕa⇒b(u), in order to reproduce the correct algebraic

relations in terms of modes.

4.2.2 Relations in terms of modes

With the mode expansions of the fields in (4.7), it is straightforward to expand the OPE

relations (4.9) and write down the corresponding relations in terms of modes.

The first and the last equations in (4.7) do not involve the bond factor ϕb⇒a(z − w)

and are easy to translate into the mode relations:[
ψ(a)
n , ψ(b)

m

]
= 0 and

[
e(a)
n , f (b)

m

}
= δa,b ψ

(a)
n+m . (4.15)

11Note that to reduce clutter, in the graph (4.14) we have omitted the additional statistics factors

in (4.9), i.e. (−1)|a| for the e(a)(z)e(a)(w) and f (a)(z)f (a)(w) relations, (−1)|b| for the e(b)(z)e(b)(w) and

f (b)(z)f (b)(w) relations, and (−1)|a||b| for the e(a)(z)e(b)(w) and f (a)(z)f (b)(w) relations.

– 16 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

All the remaining ones involve the bond factor ϕb⇒a(z − w) (see definition (4.11)),

whose numerator and denominator can be rewritten as

∏
I∈{a→b}

(z − w + hI) =

|a→b|∑
k=0

σa→b|a→b|−k (z − w)k ,

∏
I∈{b→a}

(z − w − hI) =

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k (z − w)k ,

(4.16)

where |a→ b| denotes the number of arrows from a to b in the quiver diagram, and σa→bk

denotes the kth elementary symmetric sum of the set {hI} with I ∈ {a→ b}.
Now take the ψ(a) e(b) OPE for example. Moving the denominator of ϕb⇒a(z − w) to

the l.h.s. of the equation, and using the expansion (4.16), one can rewrite the ψ(a) e(b) OPE

relation in terms of quiver data {hI}:

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k (z−w)kψ(a)(z)e(b)(w)'
|a→b|∑
k=0

σa→b|a→b|−k (z−w)k e(b)(w)ψ(a)(z) .

(4.17)

Plugging in the mode expansions of ψ(a)(z) and e(b)(w) from (4.7), expanding the (z−w)k

in (4.17), and extracting the terms of order z−n−1w−m−1 with n ∈ Z and m ∈ Z≥0, we

have the mode relation:

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [ψ(a)
n e(b)

m ]k =

|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m ψ(a)

n ]k , (4.18)

for n ∈ Z and m ∈ Z≥0, where we have defined the shorthand

[AnBm]k ≡
k∑
j=0

(−1)j
(
k
j

)
An+k−j Bm+j ,

[BmAn]k ≡
k∑
j=0

(−1)j
(
k
j

)
Bm+j An+k−j .

(4.19)

Here we can see that it is important to keep all factors in ϕb⇒a(z−w), even when the

charges hI take special values such that some factors in the numerator and denominator

cancel each other. Ultimately what is important is the expansions (4.16) of the numerator

and the denominator separately, which in particular control the mode shifting in the mode

relation (4.18).

Repeating this exercise for the remaining equations in (4.9), we have their correspond-

ing relations in terms of the modes:
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[
ψ(a)
n , ψ(b)

m

]
= 0 ,

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [ψ(a)
n e(b)

m ]k =

|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m ψ(a)

n ]k ,

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [e(a)
n e(b)

m ]k = (−1)|a||b|
|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m e(a)

n ]k ,

|a→b|∑
k=0

σa→b|a→b|−k [ψ(a)
n f (b)

m ]k =

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [f (b)
m ψ(a)

n ]k ,

|a→b|∑
k=0

σa→b|a→b|−k [f (a)
n f (b)

m ]k = (−1)|a||b|
|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [f (b)
m f (a)

n ]k,[
e(a)
n , f (b)

m

}
= δa,b ψ

(a)
n+m ,

(4.20)

where for ψ
(a)
n modes, n ∈ Z, and for e

(a)
n and f

(a)
n modes, n ∈ Z≥0. When the set of charges

hI with I ∈ {a→ b} is identical to the set hI with I ∈ {b→ a}, we have σa→bk = σb→ak for

all k. In this case, the equations in (4.20) can all be expressed in terms of commutators

and anti-commutators.

4.3 Some properties of the algebra

4.3.1 Grading and filtration

As a vector space, the algebra Y(Q,W ) has a triangular decomposition

Y(Q,W ) = Y+
(Q,W ) ⊕ B(Q,W ) ⊕ Y−(Q,W ) , (4.21)

where Y+
(Q,W ) (Y−(Q,W )) are generated by the e

(a)
n ’s (f

(a)
n ’s), and B(Q,W ), which we call the

Bethe subalgebra, is generated by the ψ
(a)
n ’s.

First of all, we have an Z2 transformation

e(a)(z)↔ f (a)(z) , ψ(a)(z)↔ ψ(a)(z)−1 , (4.22)

which exchanges Y+
(Q,W ) and Y−(Q,W ) while preserving B(Q,W ).

The algebra has some more structures in addition to the Z2 grading just introduced.

First, for each vertex a ∈ Q0 we can define an associated Z grading dega (termed “grading

by color a” or “mode grading”) by

dega(e
(b)
n ) = δa,b , dega(ψ

(b)
n ) = 0 , dega(f

(b)
n ) = −δa,b . (4.23)
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Second, the algebraic relations (4.9) with (4.11) have a rescaling symmetry for the param-

eters hI , the spectral parameter u, and the generators:12

hI → αhI , u→ αu ,

e(a)(u)→ α−
1
2 e(a)(u) , f (a)(u)→ α−

1
2 f (a)(u) , ψ(a)(u)→ ψ(a)(u) .

(4.24)

In terms of the mode generators, (4.24) is

hI → αhI , e(a)
n → αn+ 1

2 e(a)
n , f (a)

n → αn+ 1
2 f (a)

n , ψ(a)
n → αn+1 ψ(a)

n , (4.25)

due to the mode expansion (4.7). The rescaling symmetry (4.25) defines the grading

deglevel(e
(b)
n ) = deglevel(f

(b)
n ) = n+ 1

2 , deglevel(ψ
(b)
n ) = n+ 1 , (4.26)

together with deglevel(hI) = 1. We can also regard this as a filtration (termed “level

filtration” or “spin filtration”) on the algebra when we assign zero degree to hI , while

keeping the assignments on mode generators (4.26).

4.3.2 Spectral shift

One can shift the spectral parameter z by an overall constant. This linearly mixes the

generators, and generates an automorphism of the algebra. More explicitly, in terms of the

mode expansions introduced in (4.7), one obtains under the shift z → z − ε a new set of

modes e′l, ψ
′
l, f
′
l :

e′l =
l∑

k=0

(
l

k

)
εkel−k , f ′l =

l∑
k=0

(
l

k

)
εkfl−k , ψ′l =

l∑
k=0

(
l

k

)
εkψl−k (l = 0, 1, . . . ) ,

ψ′−l−1 =

∞∑
k=l

(
k

l

)
(−ε)k−lψ−k−1 (l = 0, 1, . . . , ) . (4.27)

Namely, since the mode expansion (4.7) is in powers of z−1, the shift z → z − ε mixes

the generators e
(a)
n only with e

(a)
m with m < n, and similarly for f

(a)
n and ψ

(a)
n . The last

equation involves an infinite sum and should be regarded as a formal sum. This equation

is trivialized to ψ′−1 = ψ−1 for the toric Calabi-Yau threefold geometries without compact

4-cycles, where we have ψn<−1 = 0.

4.3.3 Gauge-symmetry shift

As we discussed above, the parameters {hI} can be regarded as global-symmetry assign-

ments of the algebra. We have therefore imposed the loop constraints (4.1).

12The scaling behaviors of ψ(a)(u) is determined by the consideration that in some examples (i.e. for

Calabi-Yau threefolds without compact 4-cycles), we are allowed to fix ψ
(a)
−1 = 1. (For other cases, even if

we do not fix any ψ
(a)
n mode, we are still allowed to choose the same scaling behavior for ψ(a)(u).) This

then gives e(a)(u)f (b)(v)→ α−1e(a)(u)f (b)(v), following from the e− f relation in (4.9). The most natural

choice (and without loss of generality) is then the one given in (4.24).
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One notices, however, that some of these symmetries are actually gauge symmetries.

Indeed, if we mix the global symmetry with a gauge symmetry associated with a particular

vertex a, then the parameters hI are shifted as

hI → h′I = hI + εa signa(I) , (4.28)

where

signa(I) ≡


+1 (s(I) = a , t(I) 6= a) ,

−1 (s(I) 6= a , t(I) = a) ,

0 (otherwise) ,

(4.29)

and εa parametrizes the mixing between global symmetries and the ath gauge symme-

try. This shift is consistent with the loop constraint (4.1), which is expected since the

superpotential is gauge-invariant.

What happens to the algebra under this shift? The parameters hI enter into the

algebra only through the function (4.11), which transforms as

ϕa⇒b(u)→ ϕa⇒b′(u) =

∏
I∈{b→a} (u+ hI + εa signa(I))∏
I∈{a→b} (u− hI − εa signa(I))

. (4.30)

In other words, this amounts to constant shifts of the spectral parameter for various loca-

tions, i.e. u→ u+ εa for (e(a)(u), ψ(a)(u), f (a)(u)) at vertex a. From (4.27), one concludes

that the shift (4.28) mixes the generators ψ
(a)
n only with ψ

(a)
m with m < n, and similarly for

e
(a)
n and f

(a)
n . Since automorphism merely reshuffles the generators by linear combinations,

one can regard the shift (4.28) as a gauge symmetry.

Instead of modding out by the gauge shift (4.28), we can impose gauge-fixing condi-

tions. One possible choice, which we adopt in this paper, is to impose the vertex constraint

vertex constraint:
∑
I∈a

signa(I)hI = 0 (4.31)

for each vertex a. Note that the number of independent constraints is given by the number

of vertices minus one, since the quiver quantum mechanics has only bifundamental/adjoint

matters and hence the overall U(1) gauge symmetry decouples.

How many parameters are there once we impose both the loop and the vertex con-

straints? Since the number of parameters with the loop constraints is given as |Q0|+1 (4.4),

and since we have |Q0| − 1 vertex constraints, there are two remaining parameters. We

can identify these two parameters as the coordinate parameters of the toric Calabi-Yau

threefold — a toric Calabi-Yau threefold has three U(1) isometries, one of which can be

identified with the R-symmetry of the supersymmetric quiver quantum mechanics, leav-

ing behind two U(1) symmetries.13 Readers familiar with four-dimensional N = 1 quiver

13The two parameters can be regarded as an element of the first cohomology of the exact sequence

0→ CQ0 → CQ1 → CQ2 → 0 , (4.32)

which can be viewed as a cohomology cochain complex for the periodic quiver, see e.g. section 2.3 of [47].
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quantum gauge theories will recognize the two U(1) symmetries as the so-called mesonic

(non-R) global symmetries.14

4.4 Serre relations

For the examples in section 8, the BPS algebra Y(Q,W ) is related to the affine Yangian of gln
and more generally glm|n. More precisely, while the quiver Yangians Y(Q,W ) are themselves

different from affine Yangians, we can add a set of new relations, which are traditionally

called the Serre relations, to define a reduced quiver Yangian algebra

Y(Q,W ) = Y(Q,W )/(Serre relations) , (4.33)

and it is this algebra Y(Q,W ) which coincides with Y (ĝln) or Y (ĝlm|n). We will discuss

explicit examples of the Serre relations in section 8.

We will find in section 6 that the algebra Y(Q,W ) acts on the configurations of molten

crystal. On the other hand, the reduced algebra Y(Q,W ) also acts on the same configu-

rations of the molten crystal. Namely, the extra Serre relation are also satisfied for the

representations φ : Y(Q,W ) → End(V ) discussed in this paper:

Y(Q,W )

Y(Q,W ) End(V ) .

φ
π

π∗φ

(4.34)

We have checked that for Calabi-Yau threefolds without compact 4-cycles, the Serre

relations are precisely the conditions — in addition to the algebraic relations (4.20) — that

ensure that the vacuum characters of the reduced quiver Yangian algebra Y(Q,W ) reproduce

the correct generating functions of the corresponding crystals. (Namely, without the Serre

relations, the vacuum character of the algebra Y(Q,W ) given by (4.20) would give more

states that the crystal counting.)

For a general toric Calabi-Yau threefold there seems to be no known counterpart of

the affine Yangian Y (ĝlm|n), and hence one needs to find the appropriate Serre relations

such that (4.34) holds. More precisely, one wishes to find a maximum set of relations such

that Y(Q,W ) is still non-trivial and (4.34) holds. In other words, the Serre relation can

be obtained by demanding that the reduced quiver Yangian algebra Y(Q,W ) reproduce the

correct generating functions of the corresponding crystals. We also note that a possible

alternative approach is to take advantage of the invariant bilinear pairing (Shapovalov form,

see e.g. [24] for the case of Y (ĝl1)): one can define the Serre relations to be the generators

for the radical for the invariant pairing, so that the Shapovalov form is non-degenerate in

the reduced quiver Yangian Y(Q,W ). We leave detailed exploration of this for future work

14In this context one also has the so-called U(1) baryonic global symmetries, which, however, are not

present in our context. The difference arises since in four-dimensional quiver gauge theories one often

considers SU(N) gauge groups at the nodes of the quiver, while here one considers U(N) gauge groups.
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5 Bootstrapping affine Yangian of gl1 from plane partitions

In section 6 we will discuss the representation of the BPS quiver Yangian Y(Q,W ) and

motivate the definition of the algebra. As a preparation of the discussion, let us first

discuss the case of the C3 and the associated algebra, the affine Yangian of gl1.

Historically, the affine Yangian of gl1 was constructed first and then plane partitions

were found to be one of its representations. The review in section 3 followed this logic.

However, suppose we do not know about the affine Yangian of gl1, but rather want to

construct an algebra that acts transitively on the set of plane partitions. Within a certain

ansatz, we would find that this algebra is precisely the affine Yangian of gl1.

In this section, we will reconstruct the affine Yangian of gl1 purely from its action on

the set of plane partitions. Although the algebra itself is known, the goal of this section is to

develop a procedure that can be generalized in the next section to construct algebras that

act on the colored crystals, which describe the BPS states of type IIA string on arbitrary

toric Calabi-Yau threefolds.

The plane partition configuration as the familiar 3D box stacking can be regarded as

a particular example of the crystal melting model introduced in section 2. The quiver

diagram for C3 is

1

h3

h1

h2

(5.1)

and the periodic quiver for the C3-theory is a triangular graph on the two-dimensional

torus. Its uplift Q to the universal cover is the triangular lattice, which is the dual graph

of the hexagonal tiling describing the plane partitions (in other words, the hexagonal tiling

is the brane tiling graph).

5.1 Ansatz

The algebra consists of three families of operators

e(z) ≡
∞∑
n=0

en
zn+1

, ψ(z) ≡ 1 + σ3

∞∑
n=0

ψn
zn+1

, f(z) ≡
∞∑
n=0

fn
zn+1

, (5.2)

where z is the “spectral parameter” and σ3 is a parameter to be defined later.15

The action on the plane partitions is chosen such that

1. Each plane partition Λ is an eigenstate of the Cartan generators ψ(u), which means

that Λ is an eigenstate of all the zero modes ψn with n ∈ Z≥0.

15Note that the general mode expansion (4.7) specializes for this case with ψ<−1 = 0, as in all quiver

Yangians for Calabi-Yau threefolds with no compact 4-cycles. Moreover, we have rescaled the modes ψn

in (4.7) in order to match the convention for the mode expansions of the affine Yangian of gl1 in the

literature.
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2. Given a plane partition Λ, the action of e(u) on it adds a box � at all possible

positions (where a box � can be legitimately added).16

3. Similarly, the action of f(u) on a plane partition Λ removes a box � from all possible

positions (where a box � can be legitimately removed).

These actions can be summarized as

� : e(u) : creation , ψ(u) : charge , f(u) : annihilation . (5.3)

An ansatz for the action of the algebra on plane partitions that satisfies the three

conditions above is

ψ(z)|Λ〉 = ΨΛ(z)|Λ〉 ,

e(z)|Λ〉 =
∑

�∈Add(Λ)

[
− 1

σ3
Resw=h(�)ΨΛ(w)

] 1
2

z − h(�)
|Λ + �〉 ,

f(z)|Λ〉 =
∑

�∈Rem(Λ)

[
1
σ3

Resw=h(�)ΨΛ(w)
] 1

2

z − h(�)
|Λ−�〉 ,

(5.4)

where ΨΛ(z) is the eigenvalue of Λ. The ansatz (5.4) is the only assumption for our

construction of the algebra without the Serre relations.17

Given this ansatz, the goal of the bootstrap is to

1. Determine the structure of poles h(�) in the e(z) and f(z) action part of the

ansatz (5.4). The criterion is that by applying the creation operator e(z) iteratively

on the vacuum |∅〉, i.e. the plane partition configuration with no box present, one

can generate all plane partitions. In the other way around, applying the annihilation

operator f(z) repeatedly on any plane partition |Λ〉 would eventually reduce it to the

vacuum |∅〉.

2. Determine the charge function ΨΛ(z) for arbitrary plane partition Λ. The criterion is

that the pole structures of the actions of e(z) and f(z) in (5.4) should be encoded in

the function ΨΛ(z). Namely, for a given plane partition Λ, all the poles of its charge

function ΨΛ(z) correspond to either a location where a � can be added to Λ or the

location of an existing � (in Λ) that can be removed by applying f(z) once.

3. Find all relations between the three families of operators (5.2) that are automatically

satisfied when acting on an arbitrary Λ, given the ansatz (5.4) and the charge function

ΨΛ(z) determined in step-2.

16Here by “legitimate” we mean that after a box � is added, the resulting configuration Λ + � should

again be a plane partition.
17To obtain the Serre relations, we need the additional assumption that the Serre relations help reduce

the vacuum character of the final algebra to the MacMahon function (see later).
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4. The relations found in step-3 define the algebra without the Serre relations. Further

demanding that the vacuum characters of the final algebra reproduces the generat-

ing function of the plane partitions (with trivial asymptotics), i.e. the MacMahon

function, reproduces the Serre relations of affine Yangian of gl1.

5.2 Analysis

Let us now start with the step-1. A box � in the plane partition is labelled by the coordinate

(x1(�), x2(�), x3(�)) with x1,2,3(�) = 0, 1, 2, . . . ,∞ . (5.5)

To each �, we can associate a coordinate function

h(�) ≡ h1 x1(�) + h2 x2(�) + h3 x3(�) , (5.6)

where hi with i = 1, 2, 3 are formal variables for now, whose role is just to translate the

coordinate-triplet (x1(�), x2(�), x3(�)) to one number h(�), so that one can directly relate

a � to the poles of ΨΛ(z). As we will see, the hi might not be mutually independent, and

their relations will be determined by the criterion in step-2.

Now we move on to step-2, fixing the charge function ΨΛ(z) for an arbitrary plane

partition Λ. Given that a plane partition consists of a set of �’s, each with its coordinate

function h(�), the most natural ansatz for ΨΛ(z) is18

ΨΛ(z) = ψ0(z)
∏
�∈Λ

ψ�(z) , (5.7)

where ψ0(z) is the contribution from the vacuum, i.e. before any � is added, and ψ�(z) is

the contribution of an individual �. Therefore we only need to fix the functions ψ0(z) and

ψ�(z). The main constraint is that for any Λ, all poles of Λ should correspond to either a

location where a � can be added or a location where a � can be removed.

5.2.1 Vacuum −→ level-1

Let us start with the vacuum contribution ψ0(z). Starting with the vacuum state |Λ〉 = |∅〉,
the action of e(z) should create the first � at the corner, with coordinates and h(�) given by

level-1 : �0 : x1(�) = x2(�) = x3(�) = 0 =⇒ h(�) = 0 . (5.8)

Since this is the very first � that can be added in the plane partition, we call it level-1 box:

1
(5.9)

Here the box is labelled by 1 since we have only one vertex in this example. (We will

encounter more general situation in the next section.) The charge function for the vacuum

18It will soon be clear why the other natural guess where all the contribution ψ�(z) are summed over

(instead of multiplied together) fails the criterion that all poles of Λ should correspond to either a location

where a � can be added or a location where a � can be removed.
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ΨΛ(z) = ψ0(z) should have one and only one pole,19 at

adding-pole of � : z∗ = h(�) = 0 . (5.10)

Furthermore, ψ0(z)’s residue at z = 0 should be non-zero — otherwise by the ansatz (5.4)

the action of e(z) on vacuum would annihilate the vacuum instead of creating the first �.

The simplest solution is

ψ0(z) =
z + C

z
, (5.11)

where C 6= 0 will be fixed later. Finally, since there is no � to be removed, the box-removing

operator f(z) should annihilate the vacuum |∅〉. (This is consistent with the fact that

vacuum charge function ψ0(z) in (5.11) only has one pole, which we have already seen to

be the adding-pole for the level-1 � in (5.8).) In summary, the actions of (e(z), ψ(z), f(z))

on the vacuum |∅〉 are:

level-0 : ψ(z)|∅〉 = ψ0(z)|∅〉 =
z + C

z
|∅〉 , e(z)|∅〉 =

#

z
|�〉 , f(z)|∅〉 = 0 . (5.12)

5.2.2 Level-1 −→ level-2

To fix ψ�(z), first consider the initial state |Λ〉 = |�〉, where |�〉 denotes the configuration

where only the first � at the corner is present. The next � to be added can be placed in

three possible positions:

level-2 :


�1 : (x1, x2, x3) = (1, 0, 0) =⇒ h(�) = h1 ,

�2 : (x1, x2, x3) = (0, 1, 0) =⇒ h(�) = h2 ,

�3 : (x1, x2, x3) = (0, 0, 1) =⇒ h(�) = h3 ,

(5.13)

shown as the three blue boxes below

1

1

1

1

h1

h2

h3

(5.14)

This means that the function ΨΛ(z) for the initial state |Λ〉 = |�〉 needs to contain these

three poles hi with i = 1, 2, 3.

In addition, ΨΛ(z) for the initial state |Λ〉 = |�〉 should contain a pole at z∗ = 0,

corresponding to the pole for f(z) to remove this � to reduce it to vacuum:

removing-pole of � : z∗ = h(�) = 0 . (5.15)

19The reason is that there is only one possible position for the first � to be added, i.e. only one pole for

e(z); and there is no � to be removed, i.e. no pole for f(z).
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This pole is already accounted for by the pole in ψ0(z) in (5.11). Namely, the pole in ψ0(z)

corresponds to both the creating-pole of e(z) when acting on |∅〉 and the removing pole of

f(z) when acting on |�〉. Indeed, this is a general feature for ψΛ(z) of all Λ — namely, a

creating-pole for e(z) acting on Λ and generating a particular � is also the same pole for

the (removing) action of f(z) when acting on the configuration |Λ +�〉 and removing this

same �.

Therefore, the three poles that correspond to the three �’s in (5.13) must all come

from the function ψ�(z) when � is the level-1 box in (5.8):

ψ�(z) =
N(z)

(z − h1)(z − h2)(z − h3)
for h(�) = 0 , (5.16)

where N(z) is the numerator to be fixed momentarily. Let us define

ψ�0(z) ≡ N(z)
(z−h1)(z−h2)(z−h3) for later use. In summary, the charge function for |Λ〉 = |�〉 is

ΨΛ(z) = ψ0(z)ψ�0(z) , (5.17)

which has three adding-poles at

adding-pole of �i : z∗ = h(�) = hi for i = 1, 2, 3 , (5.18)

in addition to the removing-pole given in (5.15). The actions of (e(z), ψ(z), f(z)) on the

level-1 state |�〉 are:

level-1 :



ψ(z)|�〉 = ψ0(z)ψ�0(z)|�〉 =
z + C

z
· N(z)

(z − h1)(z − h2)(z − h3)
|�〉 ,

e(z)|�〉 =
∑

i=1,2,3

#

z − hi
|��i〉 ,

f(z)|�〉 =
#

z
|∅〉 ,

(5.19)

where again # denotes various numerical constants to be fixed later systematically.

5.2.3 Level-2 −→ level-3

We have just seen that to fix the denominator of the charge function for the state at level-1,

we need to consider the creation of the three level-2 �’s in (5.13). By the same logic, to

fix the denominator of the charge function for the level-2 states, we need to consider the

creation of the level-3 �’s.

There are 6 �’s at level-3, at position

level-3 :



�(2,0,0) : (x1, x2, x3) = (2, 0, 0) =⇒ h(�) = 2h1 ,

�(0,2,0) : (x1, x2, x3) = (0, 2, 0) =⇒ h(�) = 2h2 ,

�(0,0,2) : (x1, x2, x3) = (0, 0, 2) =⇒ h(�) = 2h3 ,

�(0,1,1) : (x1, x2, x3) = (0, 1, 1) =⇒ h(�) = h2 + h3 ,

�(1,0,1) : (x1, x2, x3) = (1, 0, 1) =⇒ h(�) = h1 + h3 ,

�(1,1,0) : (x1, x2, x3) = (1, 1, 0) =⇒ h(�) = h1 + h2 ,

(5.20)
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shown as the 6 red boxes below

1

1

1

1 1

1

1

1

1

1

h1

h1

h1

h1

h2 h2

h2

h2

h3

h3

h3

h3

(5.21)

To create them, the charge function of the level-2 states, i.e. the states that contain one

level-1 � and one or more level-2 �’s, must contain these poles.

Let us first consider the first three �’s in (5.20). Take the first one for example. To

create the � at the position (x1, x2, x3) = (2, 0, 0), there must be at least two existing �’s

sitting at (x1, x2, x3) = (0, 0, 0) and (x1, x2, x3) = (1, 0, 0). Namely, the charge function of

the (minimal) initial state20 has to be ΨΛ(z) = ψ0(z)ψ�0(z)ψ�1(z), which must contain

a pole at z∗ = h(�(2,0,0)) = 2h1. Considering all the first three states in (5.20), we see

that the charge function of a (minimal) initial state on which one of the first three states

in (5.20) can be added is

ΨΛ(z) = ψ0(z)ψ�0(z)ψ�i(z) for i = 1, 2, 3 , (5.22)

which must contain a pole at

z∗ = 2hi for i = 1, 2, 3 . (5.23)

Recall that the poles from the first two factors ψ0(z) and ψ�0(z) of (5.22) contain poles

at 0 and h1,2,3, given by (5.15) and (5.18). Therefore the adding-pole z∗ = 2hi must come

from the 3rd factor of (5.22).

Similarly, for any of the last three �’s to be added, we need the (minimal) initial state

to have at least one level-1 � sitting at (x1, x2, x3) = (0, 0, 0) (given by (5.8) and two of

the three level-2 �’s in (5.8), with charge function

ΨΛ(z) = ψ0(z)ψ�0(z)ψ�i(z)ψ�j (z) for i, j = 1, 2, 3 and i 6= j . (5.24)

which must contain the adding-pole of

z∗ = hi + hj for i, j = 1, 2, 3 and i 6= j . (5.25)

20It is possible to have more complicated initial state on which one can add these three boxes. But for

the purpose of fixing the charge function for the level-2 state, it is enough — and easier — to consider the

minimal state.
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It is then easy to see that the following choice satisfies these two constraints (5.23)

and (5.25):

ψ�i(u) = ψ�0(u− hi) , (5.26)

where ψ�0(u) is given by (5.16). It is more instructive to rewrite it as

ψ�(u) = ψ�0 (u− h(�)) . (5.27)

Having obtained (5.27), we are now ready to fix the numerator in (5.16). Consider a

plane partition |Λ〉 that contains the level-1 � and one of the three level-2 �’s in (5.13).

The presence of the level-2 � means that the level-1 � can no longer to removed. This

means that the removing-pole z∗ = h(�) = 0 must be canceled by a factor in the numerator

of the charge function of the level-2 �. Namely, N(z − hi) must contain a factor of z for

any i = 1, 2, 3. This constraint fixes the minimal N(z) to be

N(z) = (z + h1)(z + h2)(z + h3) . (5.28)

We now have the most important function in the construction of the algebra acting on

the set of plane partitions:

ϕ3(z) ≡ (z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
= ψ�(z) for h(�) = 0 . (5.29)

By (5.27), we see that the each of the level-2 �’s contribute a factor of ϕ3 function, with

argument shifted by h(�).

Before we move on, we need to check whether the three parameters h1,2,3 are mutually

independent. Compare the minimal initial state (5.22) (in order to add one of the first

three �’s in (5.20)) and the minimal initial state (5.24) (in order to add one of the last

three �’s in (5.20)). For example, if one starts with the initial state (5.22), one can only

add a � at h(�) = 2hi, but not the � at h(�) = hi + hj with j 6= i.

But this fact has to be implemented automatically by the pole structure of the charge

function (5.22). Without loss of generality, consider i = 1, for which the charge func-

tion (5.22) is explicitly

ΨΛ(z) = ψ0(z)ψ�0(z)ψ�1(z)

=
z + C

z
· (z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
· z(z + h2 − h1)(z + h3 − h1)

(z − 2h1)(z − h2 − h1)(z − h3 − h1)
.

(5.30)

Before we proceed to consider the adding poles, first note that the factor of z in the

numerator of ψ�1(z) cancels the factor of z in the denominator of ψ0(z), which used to be

the removing pole of the first �. This guarantees that in the presence of the second �, the

first one cannot be removed anymore.

Now we resume the consideration of the adding poles. Note the three poles in the

ψ�1(z). The first one allows e(z) to add a level-3 � at (x1, x2, x3) = (2, 0, 0), with h(�) =
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Figure 9. The configuration on the left (depicting (5.31)) is a legitimate plane partition. By

contrast the configuration on the right (depicting the left graph in (5.32)) violates the melting rule

and is not a plane partition.

2h1, shown by the red box below

1

1

1

h1

h1

(5.31)

The other two poles, however, correspond to two �’s (with h(�) = h1 +hj for j = 2, 3)

that are not allowed to be added now, shown by the two red boxes below:

1

1 1

1

1

1

h1

h2

h1h3

(5.32)

Also see figure 9 for a comparison between a legitimate configuration (5.31) and an illegit-

imate one (the left one in (5.32)) in their plane partition presentations. This means that

these two poles have to be canceled by factors in the numerator of ψ�0(z), which gives the

constraint

h1 + h2 + h3 = 0 . (5.33)
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which is precisely the loop constraint (4.1) for the case of C3:

1

1

1

1 1

1

1

1

1

1

h1

h1

h1

h1

h1
h2 h2

h2

h2

h2

h3

h3

h3

h3

h3

(5.34)

From the plane partition presentation, we can see that for any of the last three �’s

in (5.20) to be added, the two level-2 �’s that have arrows pointing it in (5.21) have to be

already present. (This is a manifestation of the general “melting rule” (2.4).) For example,

for the � with (x1, x2, x3) = (1, 1, 0) to be added (with adding pole z∗ = h(�) = −h3),

both the � with (x1, x2, x3) = (1, 0, 0) and the one with (x1, x2, x3) = (0, 1, 0) need to be

already present. Again, this need to be automatically implemented by the pole structure

of the charge function ΨΛ(z):

ΨΛ(z) = ψ0(z)ψ�0(z)ψ�1(z)ψ�2(z)

=
z + C

z
· (z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
· z(z + h2 − h1)(z + h3 − h1)

(z − 2h1)(z + h3)(z + h2)

· (z + h1 − h2)z(z + h3 − h2)

(z + h3)(z − 2h2)(z + h1)
,

(5.35)

where we have used the constraint (5.33). One can see that different from the charge

function (5.30), the required pole z∗ = −h3 appears twice: one in ψ�1(z) and one in

ψ�2(z). While one of them is canceled by the factor in the numerator of ψ�0(z), we are

left with exactly one to account for the pole to add the � at (x1, x2, x3) = (1, 1, 0).

This example demonstrates how the “melting rule” (2.4) is ensured by the pole struc-

tures of the charge functions ΨΛ(z) and the loop constraint (5.33), for the case of C3. As

we will see in the next section, the same holds for general toric Calabi-Yau threefolds.

5.2.4 General levels

One can now repeat the argument above and try to generate all possible plane partition

configurations iteratively. It is straightforward to see that the result (5.27) applies to all

�’s in a plane partition. Namely, each � in a plane partition Λ contributes a factor of ϕ3

function, with argument shifted by h(�):

ψ�(z) = ϕ3(z − h(�)) . (5.36)
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The full charge function of the plane partition Λ is then

ΨΛ(z) = ψ0(z)
∏
�∈Λ

ϕ3(z − h(�)) ,

where ψ0(z) ≡ z + σ3ψ0

z
,

ϕ3(z) ≡ (z + h1)(z + h2)(z + h3)

(z − h1)(z − h2)(z − h3)
with h1 + h2 + h3 = 0 .

(5.37)

Here we have taken advantage of this opportunity to determine the constant C inside

ψ0(z) to be σ3ψ0, so that the mode expansion of ΨΛ(z) has the same form as in (5.2).

We now revisit the ansatz for the action of (e(z), ψ(z), f(z)) on arbitrary plane parti-

tions. With the assignment of the charge function (5.37) for an arbitrary plane partition Λ,

one can check that indeed all the poles of ΨΛ(z) belong to one of the following two classes:

• The pole is equal to the coordinate function of a � that is on the “surface” of Λ.

This pole is a removing-poles for the action of f(z).

• The pole is equal to the coordinate function of a � that can be added to Λ, which

means that the pole is related to one of the removing-pole by a shift of hi with

i = 1, 2, 3 depending on the direction the � is relative to Λ. This pole is an adding

pole for the action of e(z).

Namely, the charge assignment (5.37) enables the ansatz (5.4) to define the action of

(e(z), ψ(z), f(z)) on the set of plane partitions, where the adding and removing of �’s

are implemented automatically due to the pole structure of the charge function (5.37). In

particular, one can apply the action of e(z) in (5.4) (without worrying about the coefficient

given by the residue for now21) repeatedly starting from the vacuum |∅〉 and generate all

possible plane partition configurations. The “melting rule” (2.4) is implemented automat-

ically by the pole structures of the charge function ΨΛ(z).

The action of the generators (e(z), ψ(z), f(z)) on arbitrary plane partitions (5.4) to-

gether with the charge function prescription (5.37) then allows us to determine the alge-

braic relations. Since we will explain the procedure of determining the algebraic relations

of quiver Yangian based on the algebra’s action on sets of colored crystals in detail later

in section 6.5, and since the affine Yangian of gl1 is the simplest special case, we would

not explain the details of the procedure for affine Yangian of gl1 here. One can just follow

the procedure in section 6.5, but setting all the colors to be the same and use the charge

function prescription (5.37). One can show that the resulting algebraic relation is given

by (3.6).

5.3 Serre relation and state counting

The algebraic relations (3.6) we just fixed have equivalent descriptions in terms of modes,

given in (3.2). We have already seen that the representation of the affine Yangian of gl1

21As long as the coefficients are non-zero — we will come back to this issue later in section 7.
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can be described by set of plane partitions. In particular, for the vacuum representation

that we focus in this paper, the states in the representation are given by various plane

partition configurations with trivial asymptotics, namely, the box stacking starts from the

empty room.22

On the other hand, the states in a representation should also be expressible in terms

of the creating operators en acting on the ground state of the representation. In particular,

for the vacuum module, all the states should have the form

N∏
i=1

eni |∅〉 , (5.38)

where N equals the number of boxes in the corresponding plane partition configurations.

The description by (5.38) should match the plane partition configuration, up to suitable

change of basis. In particular, the counting of states in terms of (5.38) should reproduce the

counting of plane partitions, which for the vacuum module should reproduce the MacMahon

function (3.16).

When counting the states of the form (5.38), one need to use the algebraic rela-

tions (3.6) to reduce the number of states. However, starting from N = 3, we see that

the relations (3.6) are not enough to reproduce the MacMahon function (3.16). Only after

imposing the Serre relations (3.4) can one obtain the correct counting. Let us now do this

state counting starting from N = 0, i.e. the vacuum.

5.3.1 Vacuum

There is one state at N = 0, the vacuum:

vacuum : |∅〉 . (5.39)

5.3.2 One box

There is only one plane partition configuration with one box. To reproduce this counting,

we consider all states en|∅〉 with n ∈ Z≥0. The action of e(z) on vacuum, given in (5.12),

together with the mode expansion (3.5), means

en|∅〉 = 0 for n ≥ 1 . (5.40)

Namely, there is only one state for N = 1:

1 box : e0|∅〉 (5.41)

The condition (5.40) can be thought of as part of the definition of the vacuum module, in

terms of en modes.

22A generic plane partition representation is labeled by a triplet of Young diagrams (λ1, λ2, λ3), which

are the asymptotics along the (x1, x2, x3) directions. To bootstrap the algebra, it is enough to consider the

vacuum representation, which has trivial asymptotics along all three directions.
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5.3.3 Two boxes

There are three plane partition configurations with two boxes, see (3.16). To reproduce

this counting, we start from the single state e0|∅〉 for one box, and apply another en, and

obtain

en e0|∅〉 , with n ∈ Z≥0 . (5.42)

However, they are not all independent. Using the e − e algebraic relations in (3.2),

and also the condition (5.40), one can see that there are only three independent states.

Without loss of generality, let us choose them to be en e0|∅〉 with n = 0, 1, 2; and all en e0|∅〉
with n ≥ 3 can be expressed as linear combinations of these three states. Namely, the three

states at N = 2 are

2 boxes : e0 e0|∅〉 , e1 e0|∅〉 , e2 e0|∅〉 . (5.43)

5.3.4 Three boxes

Now we come to the first level where the Serre relations are required in order for the

counting to work right. First, before imposing the quadratic relations (3.2), the states

with three boxes can be obtained by applying en with n ∈ Z≥0 on the three states (5.43).

Then after imposing the quadratic relations (3.2) and the condition (5.40) on the vacuum,

there are 12 independent states:

en e0 e0|∅〉 , with 0 ≤ n ≤ 2 ;

en e1 e0|∅〉 , with 0 ≤ n ≤ 3 ;

en e2 e0|∅〉 , with 0 ≤ n ≤ 4 ;

(5.44)

However, we know from the MacMahon function (3.16) (or from a direct counting by

hand) that there are only 6 plane partition configurations with three boxes. This means

that we need 12 − 6 = 6 (independent) additional relations in order to bring down the

count to 6. It is straightforward to check that one can choose

(n,m, `) = (0, 0, 0) , (0, 0, 1) , (0, 0, 2) , (0, 1, 2) , (0, 2, 2) , (0, 2, 3) , (5.45)

for the indices in (the first line of) the Serre relation (3.4) to give 6 independent constraints

on (5.44) in order to cut down the number of independent states to 6. These 6 independent

states at N = 3 can be chosen to be

3 boxes : e0 e0 e0|∅〉 , e1 e0 e0|∅〉 , e2 e0 e0|∅〉 ,
e1 e1 e0|∅〉 , e2 e1 e0|∅〉 , e3 e1 e0|∅〉 .

(5.46)

5.3.5 Four boxes and beyond

One can then check iteratively that the Serre relations (3.4), though cubic, are enough to

bring down the number of states at all N to the correct counting giving by the MacMahon

function (3.16).23 For example, at N = 4, there should be 13 plane partition configuration

with 4 boxes, from (3.16) or a direct counting by hand.

23It would be nice to have a general proof for arbitrary N .
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Applying en with n ∈ Z≥0 on the 6 states at N = 3 in (5.46), imposing the quadratic

relations (3.2) and the condition (5.40) on the vacuum, we got 27 states:

en e0 e0 e0|∅〉 , with 0 ≤ n ≤ 2 ;

en e1 e0 e0|∅〉 , with 0 ≤ n ≤ 3 ;

en e1 e1 e0|∅〉 , with 0 ≤ n ≤ 3 ;

en e2 e0 e0|∅〉 , with 0 ≤ n ≤ 4 ;

en e2 e1 e0|∅〉 , with 0 ≤ n ≤ 4 ;

en e3 e1 e0|∅〉 , with 0 ≤ n ≤ 5 ,

(5.47)

before imposing the Serre relations (3.4). One can then show that there are 14 independent

Serre relations applicable at this level, and bring the number of independent states to 13:

4 boxes : e1 e0 e0 e0|∅〉 , e1 e1 e0 e0|∅〉 , e1 e1 e1 e0|∅〉 , e1 e2 e0 e0|∅〉 e1 e2 e1 e0|∅〉 ,
e2 e0 e0 e0|∅〉 , e2 e1 e0 e0|∅〉 , e2 e2 e0 e0|∅〉 , e2 e2 e1 e0|∅〉 ,
e3 e1 e0 e0|∅〉 , e3 e1 e1 e0|∅〉 , e3 e2 e1 e0|∅〉 , e4 e2 e0 e0|∅〉 .

(5.48)

The computation for N ≥ 5 is similar and can be automized in Mathematica.

5.4 Summary

Finally, recall that the affine Yangian of gl1 has initial conditions (3.3) to supplement the

quadratic relations (3.6). They cannot be determined by the action on plane partition

representations, unlike the OPE and the Serre relations. Instead, they are chosen to be

consistent with the quadratic relations (3.6). As we explained earlier, they can be simply

determined by demanding that the ψ(z) e(w) and ψ(z) f(w) OPEs in (3.6) are true up to

zn≥3wm terms, not just up to zn≥0wm terms.

Let us summarize the relations for our algebra:

OPE:


ψ(z)ψ(w) ∼ ψ(w)ψ(z) ,

ψ(z) e(w) ∼ ϕ3(∆) e(w)ψ(z) ,

ψ(z) f(w) ∼ ϕ−1
3 (∆) f(w)ψ(z) ,

e(z) e(w) ∼ ϕ3(∆) e(w) e(z) ,

f(z) f(w) ∼ ϕ−1
3 (∆) f(w) f(z) ,

[e(z) , f(w)] ∼ − 1

σ3

ψ(z)− ψ(w)

z − w
,

(5.49)

Initial:

{
[ψ0, en] = 0 ,

[ψ0, fn] = 0 ,

[ψ1, en] = 0 ,

[ψ1, fn] = 0 ,

[ψ2, en] = 2en ,

[ψ2, fn] = −2fn ,
(5.50)

Serre :

{
Symz1,z2,z3(z2 − z3)[ e(z1) , [ e(z2) , e(z3)]] = 0 ;

Symz1,z2,z3(z2 − z3)[f(z1) , [f(z2) , f(z3)]] = 0 .
(5.51)
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6 Bootstrapping general BPS algebras

In this section we generalize the discussion of the previous section for C3 to the case of an

arbitrary toric Calabi-Yau threefold. It takes the following four steps:

crystal −→ ansatz for action −→ charge function −→ algebra −→ action . (6.1)

1. Fix the ansatz for the action of the algebra (to be determined) on the set of colored

crystals (in section 6.1).

The ansatz contains three layers of information: (1) the pole structure of the action,

which guarantees that applying the creation operators of the algebra iteratively on

the vacuum can create the entire set of colored crystals; (2) the moduli of coefficients

of the action, which fixes the algebra (apart from the signs); and (3) the signs in front

of these coefficients. Both (1) and (2) are determined by the “charge function” of the

colored crystals; whereas (3) needs to be fixed after the algebra (including signs in

it) is fixed.

2. Fix the charge function from the quiver data (in section 6.2–6.4), by demanding that

part (1) of the ansatz, i.e. the pole structure of the action (for building up the crystal

iteratively), is automatically realized by the poles of the charge function. The result

of the charge function also determines the part (2) of the ansatz.

3. Fix the algebra from the quiver data and the ansatz of the action (part (1) and (2))

(in section 6.5). The former controls the statistics (i.e. bosonic or fermionic) of the

operators, which manifest as various signs in the algebraic relations; whereas the

latter controls the magnitudes in the algebraic relations.

4. Fix the part (3) of the action, i.e. signs in front of the coefficients of the action, from

the statistics of the algebra (in section 6.6).

6.1 Ansatz for representation

A molten configuration of the BPS crystal, which we have reviewed in section 2, is a

generalization of the plane partition in two ways:

1. The atoms in the crystal can be of multiple colors labelled by a quiver vertex a ∈ Q1.

We will use a to label an atom of color a, generalizing � for a 3D-box in the plane

partition Λ.

2. The geometric crystal structure is given by the quiver diagram, following the rules

outlined in section 2. It is still periodic since it corresponds to a tiling of a torus,

but it does not need to have the hexagonal symmetry of the (rhombus tilings of the)

plane partitions.

We use the letter K (in text mode) to label a colored crystal configuration. The plane

partition can be viewed as the simplest colored crystal, with only one color and the most

symmetric shape.
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As reviewed earlier in section 2.2, for the construction of the colored crystal we need

to choose an atom as the origin of the crystal. Without loss of generality, we will choose

the atom at the origin to be of color a = 1.24 It corresponds to the level-1 box 1 in (5.8).

In the C3 case, where there is only one type of atom, the algebra has a triplet of fields,

i.e. family of generators, (e(z), ψ(z), f(z)), see (5.3), acting on all the atoms in the crystal

(or equivalently, all the �’s in the plane partition). For a generic toric Calabi-Yau whose

corresponding crystal has |Q0| colors, we need |Q0| triplets of fields labelled by a ∈ Q0, each

acting on the atoms of the corresponding color as in (4.6); they have the mode expansion

as in (4.7).

Now we write down the ansatz for the action of the fields (4.6) on an arbitrary crystal

configuration |K〉, as a natural generalization of the ansatz (5.4) for the action of the affine

Yangian of gl1 on the set of plane partitions:

ψ(a)(z)|K〉 = Ψ
(a)
K (z)|K〉 ,

e(a)(z)|K〉 =
∑

a ∈Add(K)

E(a)(K→ K + a )

z − h( a )
|K + a 〉 ,

f (a)(z)|K〉 =
∑

a ∈Rem(K)

F (a)(K→ K− a )

z − h( a )
|K− a 〉 ,

(6.2)

for a = 1, . . . , |Q0|, where

E(a)(K→ K + a ) ≡ ε(K→ K + a )

√
p(a)Res

u=h( a )
Ψ

(a)
K (u)

F (a)(K→ K− a ) ≡ ε(K→ K− a )

√
q(a)Res

u=h( a )
Ψ

(a)
K (u) ,

(6.3)

with

ε(K→ K + a ) = ± and ε(K→ K− a ) = ± . (6.4)

Here a ∈ Add(K) means that we consider an atom of color a which can be added to the

crystal K (a similar comment applies to a ∈ Rem(K)).

Before we proceed, let us explain the reason behind the ansatz (6.2). First of all, as

a natural generalization of the action (5.4) of the affine Yangian of gl1 on the set of plane

partitions, each colored crystal state |K〉 is an eigenstate of the zero modes ψ(a)(z). The

operator e(a)(z) adds an atom with color a to |K〉 at all allowed places, whereas f (a)(z)

removes an atom with color a from |K〉 at all allowed places.

The important part of the ansatz is that the actions of e(a)(z) and f (a)(z) are de-

termined by the ψ(a)(z) eigenfunction of the initial state |K〉, i.e. Ψ
(a)
K (z), which is called

“charge function” here. In particular, the position of the atom a to be added to |K〉 by

24It is easy to generalize to representations with superpositions of colored crystals with the atom at

the origin o having colors other than a = 1, see section 6.3.2. However, the algebra obtained from such

more general representations (i.e. tensored representations of crystals starting with different a ) via the

bootstrap procedure would be the same as the one obtained using the crystal starting with 1 .
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e(a)(z) or removed from |K〉 by f (a)(z) is given by the poles of the charge function Ψ
(a)
K (z)

of |K〉.
The coefficients of the action, i.e. E(a)(K→ K + a ) and F (a)(K→ K− a ), are then

given by the residue of the charge function at that particular pole. The square roots in

the coefficients in (6.3) are due to the natural generalization of (5.4). The factors p(a) and

q(a) are constants allowed by the ansatz, i.e. they do not affect the pole structure of the

e(a)(z) and f (a)(z) actions. As we will see later, only their product p(a)q(a) matters; hence

without loss of generality we can set q(a) = 1. Later in section 6.5.3 we will show that pa

is given by

p(a) = ϕa⇒a(0) = (−1)#(self-loops of a) , (6.5)

and is related to the bosonic/fermionic nature of the operators e(a)(z) and f (a)(z) via:

p(a) = −(−1)|a| . (6.6)

This explains the grading rule that we stated earlier in (4.8).25 We postpone the proof

of (6.6) to section 6.5.3. For the affine Yangian of gl1, p(1) = (−1)3 = −1, which explains

the sign difference inside the square roots of the e(z)’s and f(z)’s actions in (5.4).

Finally, the ± signs in front of the square roots, i.e. ε(K→ K+ a ) and ε(K→ K− a )

in (6.3), depend both on the initial crystal state K and on the atom a (to be added or

removed). As explained earlier, they need to be chosen so as to reproduce the statistics of

the algebra, which will be fixed by the quiver data.

Although a crystal K consists of atoms of possibly multiple colors, each triplet

(e(a), ψ(a), f (a)) has its own charge function Ψ
(a)
K (z) and only acts upon the atoms of its

own color a. However, we emphasize that this does not mean that each charge function

Ψ
(a)
K (z) only receive contribution from atoms of color a — it is just that the action of

(e(a), ψ(a), f (a)) is only controlled by the charge function Ψ
(a)
K (z) of color a.

With the ansatz (6.2), we are now ready to construct the algebra that realizes (6.2).

Similar to the case of the affine Yangian of gl1, the procedure is the following.

1. Determine the structure of the poles h( a ) in the e(a)(z) and f (a)(z) action part of

the ansatz (6.2). The criterion is that by applying all the creation operators e(a)(z),

with a = 1, . . . , |Q0|, iteratively on the vacuum |∅〉, i.e. the crystal with no atom

present yet, one can generate all possible crystal configurations of this type. In a

similar manner, applying all the annihilation operators f (a)(z), with a = 1, . . . , |Q0|,
iteratively on any crystal |K〉 would eventually reduce it to the vacuum |∅〉.

2. Determine the charge function Ψ
(a)
K (z) for an arbitrary crystal K and for all the colors

a = 1, . . . , |Q0|. The criterion is that the pole structures of the actions of e(a)(z) and

f (a)(z) in (6.2) should be encoded in the Ψ
(a)
K (z). Namely, for a given crystal K, and

for any color a, all the poles of the charge function Ψ
(a)
K (z) of color a correspond to

either a location where an a can be added to K or the location of an existing a in

K that can be removed.
25Quivers in which vertices have 2n, with n ∈ N, number of self-loops do not seem to exist, when we

consider toric Calabi-Yau threefolds.
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3. Find all relations between the three families of operators (4.7) that are automatically

satisfied when acting on an arbitrary crystal K, given the ansatz (6.2) and the charge

function Ψ
(a)
K (z) determined in step-2.

The relations found in step-3 then define the BPS algebra Y(Q,W ), without the Serre rela-

tions. The Serre relations that are needed to define the (reduced) quiver Yangian algebra

Y(Q,W ) are to be determined by demanding that the vacuum character of Y(Q,W ) repro-

duces the generating function of the corresponding colored crystal. In this paper, we will

treat the Serre relations for each (Q,W ) separately.

Let us note that the strategy above already suggests the Z2-grading (Bose or Fermi

statistics) of the generators. Suppose that none of the arrows I ∈ Q1 satisfies s(I) =

t(I) = a, namely none of the arrows starts and ends at the same vertex a. When we apply

e(a)(z) multiplet times as e(a)(z1)e(a)(z2) . . . |K〉, this then necessarily vanishes after a finite

number of e(a)’s. This is because for any finite K we can add only a finite number of atoms

of color a. In this case we expect e(a)(z) to have Fermi statistics. A similar argument

suggests Fermi statistics for f (a)(z). The remaining generator ψ(a)(z) are even, since they

are Cartan generators, under which each crystal state |K〉 is an eigenvector; consistent with

this claim, we will also later find that ψ(a)(z) is obtained from the commutators between

e(a)(z) and f (a)(z), see e.g. (4.9). This suggests the Z2-grading as in (4.8).

6.2 Fixing coordinate function

We first need a coordinate system generalizing (5.5). For a crystal of generic shape, it

is no longer natural to assign each atom a 3D coordinate. Instead, an atom a can be

(non-uniquely) characterized by a path in the periodic quiver Q staring from the origin o.

Let us denote this path as

a : path[o→ a ] . (6.7)

Note that there are infinitely many such paths for each a , due to the presence of loops in

the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted to the

coordinate system (6.7), generalizing the coordinate function (5.6). The most natural way

would be to associate a charge hI to each edge I in the quiver diagram, where I ∈ {a→ b}
for two vertices a and b (which are possibly identical). We then define the coordinate

function for a to be the sum of all the charges along the path [o→ a ]:

h( a ) ≡
∑

I ∈ path[o→ a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom � is the

way to translate the position of the � to the pole of the charge function ΨΛ(z). We need

the same for the colored crystal. Therefore, although for a given a , the path [o→ a ] is

not unique, we need its coordinate function to be uniquely defined, in order to associate

it to the poles of Ψ
(a)
K (z). This requires that the sum over charges on the edges around
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any loop has to vanish, which is precisely the loop constraint (4.1). This condition is the

generalization of (5.33) for plane partitions.

6.3 Fixing charge function

We are now ready to fix the charge function Ψ
(a)
K (z) for an arbitrary colored crystal K and

any color a.

6.3.1 Ansatz

Generically, the charge function of Ψ
(a)
K (z) can receive contributions from all the atoms in

the crystal configuration K. Generalizing the result for C3 in (3.19), we write down the

ansatz for the charge function Ψ
(a)
K (z)

Ψ
(a)
K (u) = ψ

(a)
0 (z)

∏
b∈Q0

∏
b ∈K

ϕb⇒a(u− h( b )) , (6.9)

where ψ
(a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by their

colors, with the color label b running over all vertices in the quiver diagram, including the

color a itself. For each color a, each atom of color b contributes a factor of ϕb⇒a function,

with argument shifted by the coordinate function of that atom h( b ), given by (6.8) with

the charges subject to the loop constraint (4.1).

Given the ansatz for the charge function (6.9), the goal is to determine the bond factor

ϕb⇒a(z) (so called because it describes the “bonding” between atoms of color a and those

of color b). We use the ansatz for the algebra’s action (6.2) on crystals |K〉, following the

procedure outline in section 6.1. As in the case of C3, we first consider how to grow the

first few layers (or levels) of the crystal by applying e(a)(z) (for all a) starting from the

vacuum.

In particular, the poles for the charge function at level-n are fixed by considering

adding atoms at level-(n + 1), since they control the (creation) action of the operator

e(a)(z). Similarly, the numerators for the charge function at level-n are fixed by demanding

that they should cancel relevant poles in the charge function at the level n − 1, since the

presence of these level-n atoms prevents the level-(n − 1) atoms from being removed by

the operators f (a)(z). The whole computation is facilitated by the fact that to the charge

function Ψ
(a)
K (u), atoms of the same color (e.g. b) contribute the same factor ϕb⇒a, with

only the argument shifted by the coordinate function of the atoms, see ansatz (6.9).

6.3.2 Vacuum −→ level-1

The vacuum contribution to the charge function Ψ
(a)
K (z) determines the creation of the first

atom in the crystal. Since the first atom sits at the origin, namely, its coordinate function

h( a ) = 0, the vacuum contribution ψ
(a)
0 (z) is a straightforward generalization of (5.11):

ψ
(a)
0 (z) = 1 +

C(a)

z
, (6.10)
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where {C(a)} is the set of |Q0| numerical constants that label the representation. The

action of (e(a)(z), ψ(a)(z), f (a)(z)) on the vacuum is

e(a)(z)|∅〉 =
±
√
p(a)C(a)

z
| a 〉 , ψ(a)(z)|∅〉 =

(
1 +

C(a)

z

)
|∅〉 , f (a)(z)|∅〉 = 0 .

(6.11)

When acting on the vacuum, e(a)(z) creates an atom a at the origin if C(a) 6= 0.

In general, one can allow arbitrary {C(a)}. The vacuum representation, labeled by

{C(a)}, would consist of tensored representations in which each irreducible representation,

labeled by C(a) 6= 0 with a ∈ Q0, consists of crystal states whose leading atom (at the origin)

has color a. However, the algebra obtained from such more general representations (i.e.

tensored representations of crystals starting with different a ) via the bootstrap procedure

would be the same as the one obtained using the crystal starting with a with a particular

color a ∈ Q0. Therefore it is enough to consider the irreducible representation, where only

one C(a) is nonzero.26

Without loss of generality, we assume that the first atom in the crystal has color a = 1,

namely

C(a) = C δa,1 , (6.12)

therefore the vacuum contribution to the charge function is

ψ
(a)
0 (z) = (ψ0(z))δa,1 =

{
ψ0(z) (a = 1)

1 (otherwise)
with ψ0(z) = 1 +

C

z
, (6.13)

with C 6= 0 a constant to be fixed later. Therefore, the charge function for the vacuum

|K〉 = |∅〉, for any color a, is

Ψ
(a)
K (z) = (ψ0(z))δa,1 =

(
1 +

C

z

)δa,1
, (6.14)

whose pole corresponds to the adding pole for e(a)(z) at level-1:

level− 1 : adding-pole z∗ = h( 1 ) = 0 . (6.15)

The resulting state at the level-1 is denoted by

1
(6.16)

In summary, the action of (e(a)(z), ψ(a)(z), f (a)(z)) on the vacuum is

e(a)(z)|∅〉 = δa,1
±
√
p(a)C

z
| 1 〉 , ψ(a)(z)|∅〉 =

(
1 +

C

z

)δa,1
|∅〉 , f (a)(z)|∅〉 = 0 .

(6.17)

26In this paper we only focus on the vacuum representation, which is enough to bootstrap the algebra.
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6.3.3 Level-1 −→ level-2

The level-1 atom is unique, and has coordinate function

h( 1 ) = 0 (6.18)

(see (6.15)) and its color a charge function, for any a ∈ Q0, is

Ψ
(a)

1
(z) = (ψ0(z))δa,1 ϕ1⇒a(z) . (6.19)

We need to fix ϕ1⇒a(z).

As in the case of C3, the poles of the charge function at level-1 is fixed by considering

adding the level-2 atoms. In the quiver diagram, consider the arrows that emit from the

vertex b = 1, the vertices these arrows end at correspond to the atoms to be added at

the level-2. In order for the creation operators e(a)(z) for these colors to be able to create

these atoms, the factors ϕ1⇒a(z) in the charge function (6.19) has to contain the pole 1
z−hI ,

where hI is the charge associated to the arrow 1 → a. (Note that there can be multiple

arrows going from 1 to a, then for each arrow there is an independent hI .) If a vertex a is

not connected by any arrow starting from 1, it doesn’t contribute any pole factor. Namely,

the factor ϕ1⇒a(z) for all a contains:

ϕ1⇒a(z) ⊃


1∏

I∈{1→a}(z − hI)
(1→ a) ,

1 (1 6→ a) ,

(6.20)

where a→ b denotes the case when there is an arrow from a to b, whereas a 6→ b indicates

otherwise. Define the numerator and denominator of the factor ϕb⇒a(z)

ϕb⇒a(z) ≡ N b⇒a(z)

Db⇒a(z)
. (6.21)

The minimal solution for the denominator D1⇒a(z) is

D1⇒a(z) =
∏

I∈{1→a}

(z − hI) . (6.22)

The pole structure (6.20) is for the color-a charge function of the leading atom which

has color b = 1. However, the argument in deriving (6.20) applies to all colors b, given that

we could have chosen the leading atom in the crystal to be of any color. Thus we have

Db⇒a(z) =
∏

I∈{b→a}

(z − hI) (6.23)

for any two colors a and b. Note that this notation allows us to express the contribution

from atoms of color b to the color-a charge function uniformly, irrespective of whether there

is an arrow from b to a in the quiver Q or not.
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Therefore, each color b contributes a factor ϕb⇒a(z) to the color-a charge function.

The charge functions of the level-1 atom are thus

Ψ
(a)
K (z) = ψ

(a)
0 (z)ϕ1⇒a(z) ,

with ψ
(a)
0 (z) =

(
1 +

C

z

)δa,1
, ϕ1⇒a(z) =

N1⇒a(z)∏
I∈{1→a}(z − hI)

.
(6.24)

We could have chosen another color b 6= 1 as the color for the leading atom of the crystal;

in this case the charge function of the level-1 atom would be

Ψ
(a)
K (z) = ψ

(a)
0 (z)ϕb⇒a(z)

with ψ
(a)
0 (z) =

(
1 +

C

z

)δa,b
, ϕb⇒a(z) =

N b⇒a(z)∏
I∈{b→a}(z − hI)

.
(6.25)

To determine the numerator N1⇒a(z), or more generally N b⇒a(z), we need to move to the

next level.

The level-1 charge function (6.19) has poles at

removing-pole : z∗ = 0 ,

adding-pole : z∗ = hI with I ∈
⋃
a∈Q0

{1→ a} . (6.26)

The action of (e(a), ψ(a), f (a)(z)) on the level-1 state |K〉 = | 1 〉 is then

ψ(a)(z)|K〉 = ψ
(a)
0 (z)ϕ1⇒a(z)|K〉 ,

e(a)(z)|K〉 =
∑

a∈n[1→]

∑
i

#

z − h( a
i
)
|K + a

i
〉 ,

f (a)(z)|K〉 = δa,1
#

z
|∅〉 ,

(6.27)

where by n[1→] we mean the set of vertices connected to by an arrow from 1 in the periodic

quiver Q, i distinguishes different such vertices, and h( a
i
) measures the distance of the

added atom to the origin:

h( a
i
) = hI with I : 1 → a

i
. (6.28)

6.3.4 Level-2

Let us consider the state with one level-1 atom of color b = 1 and one level-2 atom of color

c = 2, for which the arrow from 1 → 2 has to exist in the quiver diagram. The charge

function of this state is

Ψ
(a)
K (z) =

[
ψ

(a)
0 (z)ϕ1⇒a(z)

] [
ϕ2⇒a(z − h( 2 ))

]
, (6.29)

where the first bracket contains contributions from the vacuum and the level-1 atom and

hence is identical to (6.25), and the second bracket is the contribution from the one level-2

atom 2 that we are considering, with

ϕ2⇒a(z) =
N2⇒a(z)∏

I∈{2→a}(z − hI)
. (6.30)
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Compare the charge function (6.29) to the level-1 charge function (6.24). Since the

presence of the level-2 atom prevents the level-1 atom from being removed by the f (1)(z)

operator, we need a numerator factor in the second bracket of (6.29) when a = 1, i.e. the

numerator of ϕ2⇒1(z) has to contain the factor that cancels the z∗ = 0 removing pole in

ψ
(a=1)
0 (z). In addition, since this needs to happen for any atom of color c = 2 at the level-2,

we have

N2⇒1(z) =
∏

I∈{1→2}

(z + hI) . (6.31)

Take

1 22
h1h3

(6.32)

for example, which indicate the relevant part in the periodic quiver Q, we have

N2⇒1(z) = (z + h1)(z + h3) . (6.33)

As with the denominator, this argument works for any two colors a and b, therefore we

have

N b⇒a(z) =
∏

I∈{a→b}

(z + hI) . (6.34)

To summarize, the contribution to the color-b charge function from atoms of color a is

given by the bond factor (4.11). An atom of color b at a position with coordinate function

h( b ) contributes to the color-a charge function by:

ϕb⇒a(u− h( b )) . (6.35)

Taking the contributions from all the atoms in the crystal — all colors including color a,

we get the color-a charge function:

Ψ
(a)
K (u) = ψ

(a)
0 (u)

∏
b∈Q0

∏
b ∈K

ϕb⇒a(u− h( b )) , (6.36)

where the vacuum contributes only to the charge function of color a = 1:

ψ
(a)
0 (u) =

(
1 +

C

z

)δa,1
. (6.37)

6.4 Melting rule in general and loop constraint

We can now verify in general that the representation given by (6.2) and (6.3), with charge

function Ψ
(a)
K (u) defined in (6.9) and bond factors ϕb⇒a(u) defined by (4.11), realizes the

melting rule of (2.4). In particular, we will show that the loop constraint (4.1), which is a

generalization of the constraint (5.33) that comes from the box-stacking rules for the plane

partitions, is necessary to ensure the general melting rule (2.4). The crux of the argument

is the same as in the low-level examples above.

Suppose that we have an atom a ∈ K inside a molten crystal configuration K. Suppose

moreover there exists another atom b which is connected to the atom a by an arrow
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I : a → b and which moreover is not in the crystal configuration K. We can now try to

create atom b by applying the generator e(b)(z) to the state |K〉.

One might expect that it is always possible to create atom b . However, the melting

rule says that this is not possible if there exists another atom c which is not in the crystal

K and is connected to the atom b by an arrow J : c → b , shown below:

a b

c

hI
hJ

crystal K

(6.38)

This obstruction should be reflected in the charge function Ψ
(b)
K (u).

In order to see this, let us first project the crystal down to the periodic quiver Q.

(Recall that an atom a of the crystal is specified by a pair (a, n), where a is a vertex of

the periodic quiver and the non-negative integer n specifies the depth along the crystal

(see figure 6).) In the periodic quiver one can find a vertex d such that (1) there exists an

arrow K : b→ d and (2) there exists a path d→ a, shown below:

a b

c

d

hI
hJ

hKhd→a

(6.39)

In other words, the arrows I : a → b and K : b → d belong to the same polygonal region

of the periodic quiver. In figure (6.39) we have used the wiggly line between d and a to

emphasize that this is in general not a single arrow, but a path consisting of several arrows.

We have denoted the weight for this path by hd→a.

Let us now uplift this picture to the three-dimensional crystal. Since b is not con-

tained in the crystal K, the melting rule says that another atom d = K · b is also not

in the crystal K. However, since there exists a path from d to a , the melting rule also

suggests that there exists another atom d̃ in the same position d of the periodic quiver
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such that d̃ belongs to the crystal configuration K, shown by

a b

c

d̃ d

hI
hJ

hKhd→a

crystal K

(6.40)

Assume that the depth of the atom d is n, i.e. d = (d, n). We can choose the atom

d̃ to have the maximal depth, which is n − 1, i.e. d̃ = (d, n − 1). We emphasize that

d̃ = (d, n− 1) and d = (d, n) are in different depths inside the crystal.

Let us now consider the charge function Ψ
(b)
K (u). Since the crystal configuration K

contains the atom a , the charge function Ψ
(b)
K (u) has a factor ϕa⇒b(u − h( a )), which

contains the factor (u − hI − h( a ))−1 = (u − h( b ))−1, as expected. However, Ψ
(b)
K (u)

also contains the factor ϕd⇒b(u − h( d̃ )) from the atom d̃ , which contains a factor

(u+hK−h( d̃ )). Since h( d )−hK = h( b ), this factor can cancel the pole (u−h( b ))−1 if

h( d̃ ) = h( d ) . (6.41)

On the other hand, since the difference between d and d̃ is only a loop around the

periodic quiver, we have

h( d )− h( d̃ ) =
∑

I∈loop L

hI , (6.42)

where L is the loop in the periodic quiver that characterizes the difference between d and

d̃ . For (6.41) to hold in general, we need to impose the loop constraint (4.1) for all loops

in the period quiver.27

A careful reader might have noticed that we have not used explicitly the condition that

the atom c is not contained in the crystal. This condition is needed because, had c been

in the crystal, it would have contributed to the pole of the charge function Ψ
(b)
K (u), just

like the atom a does. More generally, each atom that is inside the K and has an arrow

pointing to the atom b contributes an adding-pole z∗ = h( b ). Let us call them a
i
.

By the previous argument, for each of them there exists at least one atom deeper inside

the crystal K and playing the role of d̃ that can cancel this adding pole. However, these

27One small caveat to our argument occurs when the atom d is on the surface of the crystal (n = 1 in

our previous notation), such that we cannot find d̃ . For example, the atom a in itself can be an origin

o of the crystal. However, one can check that this is not possible in the crystal with c /∈ |K〉 as in (6.38).
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deeper atoms d̃ j are shared among the atoms a
i

leading to b ; on the other hand, each

atom a
i

can have more than one deeper atom d̃ j to cancel the adding-pole z∗ = h( b ).

The end result is that if all the atoms that have arrows pointing to b are already inside

the K, there is precisely one adding pole z∗ = h( b ) left after all the cancellation from the

deeper atoms d̃ j . Therefore, when there is an atom c that has an arrow pointing to b

yet is not inside K, the cancellation is such that there is no adding pole at z∗ = h( b ).

In section 5.2.3, we gave an example of this melting rule for the case of affine Yangian

of gl1. See the left figure of (5.32) for the quiver and the right figure of figure 9 for the

plane partition. In this example, the atoms a , b , and c have coordinate

a : (x1, x2, x3) = (1, 0, 0) , b : (x1, x2, x3) = (1, 1, 0) , c : (x1, x2, x3) = (0, 1, 0) ,

(6.43)

where c is the missing box in the right figure of figure 9. The atoms d and d̃ have

coordinate

d : (x1, x2, x3) = (1, 1, 1) , d̃ : (x1, x2, x3) = (0, 0, 0) ; (6.44)

namely, d (not shown in figure 9) should be right on top of the box b and d̃ is the

box at the origin.

Finally, for later convenience, let us summarize the action of the algebra on any colored

crystal state |K〉:

action :



ψ(a)(z)|K〉 = Ψ
(a)
K (z)|K〉 ,

e(a)(z)|K〉 =
∑

a ∈Add(K)

±
√
p(a)Res

u=h( a )
Ψ

(a)
K (u)

z − h( a )
|K + a 〉 ,

f (a)(z)|K〉 =
∑

a ∈Rem(K)

±
√
q(a)Res

u=h( a )
Ψ

(a)
K (u)

z − h( a )
|K− a 〉 ,

with : Ψ
(a)
K (u) ≡ ψ0(u)δa,1

∏
b∈Q0

∏
b ∈K

ϕb⇒a(u− h( b )) ,

ψ0(z) ≡ 1 +
C

z
,

ϕb⇒a(u) ≡
∏
I∈{a→b}(u+ hI)∏
I∈{b→a}(u− hI)

,

h( a ) ≡
∑

I ∈ path[o→ a ]

hI ,

subject to :
∑

I∈loop L

hI = 0 ,

(6.45)
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where q(a) = 1, p(a) ≡ ϕa⇒a(0) = ±1 and is related to the statistics of the operators e(a)(z)

and f (a)(z). The ± signs in the coefficients of the e(a)(z) and f (a)(z) actions depend on

both the initial state K and the atom a , and will only be fixed after we determine the

statistics of the algebra.

The numerical constant C in the vacuum contribution to the charge function should

be considered as a parameter that defines the quiver Yangian algebra. As we will see

later, it enters the eigenvalues of the zero modes ψ
(a)
0 on crystal state |K〉, together with

charges {hI} on the quiver. In particular, when the quiver satisfies certain conditions under

which the quiver Yangian has central terms, C is directly related to the (leading) central

term. Since this discussion depends crucially on the quiver, in particular, whether the

corresponding Calabi-Yau threefold has compact 4-cycles, we will discuss the two classes

in section 8 (without compact 4-cycles) and section 9 (with compact 4-cycles), respectively.

6.5 From action on colored crystals to relations of quiver Yangian

In section 4, we summarized the relations of the quiver Yangian (see (4.9)) before deriving

them. The goal of the current section is to derive the algebra (4.9) from its action on the

set of colored crystals. We will show that, starting from our ansatz for the action of the

algebra on the set of colored crystals |K〉 given in (6.45), one can derive the relations (4.9)

by demanding that the set of colored crystals |K〉 furnishes a representation of the quiver

Yangian.

6.5.1 ψ − ψ relations

First of all, since any crystal state |K〉 is an eigenstate of all ψ(a)(z) (see the first equation

in (6.45)), we have

ψ(a)(z)ψ(b)(w) |K〉 = Ψ
(a)
K (z) Ψ

(b)
K (w) |K〉 = ψ(b)(w)ψ(a)(z) |K〉 . (6.46)

Since this is true for any |K〉, we have

ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) , (6.47)

as shown in the first equation in (4.9).

6.5.2 ψ − e and ψ − f relations

To derive the ψ − e relation in (4.9), apply first e(b)(w) and then ψ(a)(z) on an arbitrary

crystal state |K〉, and use the actions of ψ(a)(z) and e(b)(w) in (6.2):

ψ(a)(z) e(b)(w) |K〉 =
∑

b ∈Add(K)

Ψ
(a)

K+ b
(z)E(b)(K→ K + b )

w − h( b )
|K + b 〉 . (6.48)

Reversing the order of ψ(a)(z) and e(b)(w), we have

e(b)(w)ψ(a)(z) |K〉 =
∑

b ∈Add(K)

Ψ
(a)
K (z)E(b)(K→ K + b )

w − h( b )
|K + b 〉 . (6.49)
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Now compare the coefficients in (6.48) and (6.49): for each final state |K + b 〉, the

ratio between the coefficient in (6.48) and the one in (6.49) is

Ψ
(a)

K+ b
(z)

Ψ
(a)
K (z)

= ϕb⇒a(z − h( b )) , (6.50)

which can be written as ϕb⇒a(z−w) in (6.48) and (6.49) since in both equations w → h( b )

for each final state |K + b 〉, and for the ψ − e relation we only care about the singular

terms ∼ w−m−1 with m ∈ Z≥0. Since this is true for any |K〉, we have

ψ(a)(z) e(b)(w) ' ϕb⇒a(z − w) e(b)(w)ψ(a)(z) , (6.51)

as shown in the second equation of (4.9).

Similarly, to derive the ψ − f relations, we consider

ψ(a)(z) f (b)(w) |K〉 =
∑

b ∈Rem(K)

Ψ
(a)

K− b
(z)F (b)(K→ K− b )

w − h( b )
|K− b 〉 ,

f (b)(w)ψ(a)(z) |K〉 =
∑

b ∈Rem(K)

Ψ
(a)
K (z)F (b)(K→ K− b )

w − h( b )
|K− b 〉 ,

(6.52)

and compute the ratio between the two coefficients as

Ψ
(a)

K− b
(z)

Ψ
(a)
K (z)

=
(
ϕb⇒a(z − h( b ))

)−1
, (6.53)

which gives

ψ(a)(z) f (b)(w) ' ϕb⇒a(z − w)−1 f (b)(w)ψ(a)(z) , (6.54)

as shown by the fourth equation of (4.9).

6.5.3 e− f relations and statistics of e and f operators

Next, let us consider the e− f relation. This would also fix the bosonic/fermionic nature

of the operators e(a)(z) and f (a)(z), namely, we will prove the relation (6.6).

To derive the e− f relation, consider applying

O(a,b)(z, w) ≡ e(a)(z) f (b)(w) + εabf (b)(w) e(a)(z) (6.55)

on an arbitrary initial state |K〉, where εab is a shorthand for −(−1)|a||b|, which characterizes

the (mutual) statistics of the operators e(a)(z) and f (b)(w) and will be determined (in terms

of the self bond factor ϕa⇒a) shortly.
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First, on an arbitrary initial state |K〉, we have

e(a)(z)f (b)(w) |K〉

=
∑

b ∈Rem(K)

∑
a ∈Add(K− b )

E(a)(K− b →K− b + a )

z−h( a )
·
F (b)(K→K− b )

w−h( b )
|K− b + a 〉 ,

(6.56)

and

f (b)(w)e(a)(z) |K〉

=
∑

a ∈Add(K)

∑
b ∈Rem(K+ a )

F (b)(K+ a →K+ a − b )

w−h( b )
·
E(a)(K→K+ a )

z−h( a )
|K+ a − b 〉 .

(6.57)

Generically there are three scenarios

1. a = b, and the atom a removed by f (a)(w) coincides with the atom a added by

e(a)(z).

2. a = b, the atom a removed by f (a)(w) is different from the atom a
′

added by

e(a)(z).

3. a 6= b, which implies that the atom b removed by f (b)(w) is different from the atom

a added by e(a)(z).

6.5.3.1 Scenario (1)

Let us first consider the scenario (1) and (2), in which a = b. Namely we consider the

operator

O(a)(z, w) ≡ e(a)(z) f (a)(w)− (−1)|a|f (a)(w) e(a)(z) , (6.58)

where the factor −(−1)|a| is to be fixed in terms of the self bond factor ϕa⇒a(u). For the

scenario (1), where the atom a removed by f (a)(w) coincides with the atom a added by

e(a)(z), we have

e(a)(z) f (a)(w) |K〉 3
∑

a ∈Rem(K)

E(a)(K− a → K)

z − h( a )
·
F (a)(K→ K− a )

w − h( a )
|K〉 ,

f (a)(w) e(a)(z) |K〉 3
∑

a ∈Add(K)

F (a)(K + a → K)

w − h( a )
·
E(a)(K→ K + a )

z − h( a )
|K〉 .

(6.59)
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Consider the first equation in (6.59). For each atom a to be removed, the coefficient is

E(a)(K− a → K)F (a)(K→ K− a )

= ε(K− a → K) · ε(K→ K− a )

√
p(a)Res

u=h( a )
Ψ

(a)

K− a
(u)

√
q(a)Res

u=h( a )
Ψ

(a)
K (u)

=

[
ε(K− a → K) · ε(K→ K− a )

√
p(a)q(a)ϕa⇒a(0)

]
Res

u=h( a )
Ψ

(a)
K (u) ,

(6.60)

where we have used that ϕa⇒a(0)−1 = ϕa⇒a(0) = ±1 in the last step. If the constant p(a)

and q(a) satisfy

p(a)q(a)ϕa⇒a(0) = 1 , (6.61)

and if we further demand

ε(K− a → K) · ε(K→ K− a ) = 1 , (6.62)

we have

E(a)(K− a → K)F (a)(K→ K− a ) = Res
u=h( a )

Ψ
(a)
K (u) , (6.63)

which implies that the coefficient for the second equation of (6.59) is

F (a)(K + a → K)E(a)(K→ K + a ) = Res
u=h( a )

Ψ
(a)

K+ a
(u)

= Res
u=h( a )

Ψ
(a)
K (u) · ϕa⇒a(0) .

(6.64)

If further the statistics factor −(−1)|a| is related to the ϕa⇒a(0) by

− (−1)|a| ϕa⇒a(0) = 1 , (6.65)

we have

e(a)(z) f (a)(w) |K〉 − (−1)|a|f (a)(w) e(a)(z) |K〉

3

 ∑
a =Rem(K)

+
∑

a =Add(K)

 Res
u=h( a )

Ψ
(a)
K (u)

(z − h( a ))(w − h( a ))
|K〉 ∼ −

Ψ
(a)
K (z)−Ψ

(a)
K (w)

z − w
|K〉 ,

(6.66)

when the atom a removed by f (a)(w) coincides with the atom a added by e(a)(z), where

in the last step we have used

∑
p=pole(Ψ

(a)
K (u))

Resu=pΨ
(a)
K (u)

(z − p)(w − p)
∼ −

Ψ
(a)
K (z)−Ψ

(a)
K (w)

z − w
. (6.67)
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6.5.3.2 Scenario (2)

For the scenario (2), i.e. when the atom a removed by f (a)(w) is different from the atom

a
′

added by e(a)(z), we have

e(a)(z)f (a)(w) |K〉

=
∑

a ∈Rem(K)

∑
a
′
∈Add(K− a )

E(a)(K− a →K− a + a
′
)

z−h( a
′
)

·
F (a)(K→K− a )

w−h( a )
|K− a + a

′〉 ,

(6.68)

and

f (a)(w)e(a)(z) |K〉

=
∑

a
′
∈Add(K)

∑
a ∈Rem(K+ a

′
)

F (a)(K+ a
′→K+ a

′− a )

w−h( a )
·
E(a)(K→K+ a

′
)

z−h( a
′
)

|K+ a
′− a 〉 ,

(6.69)

where we have focused on the generic situation where the addition of the atom a
′

by

e(a)(z) and the removal of the atom a by f (a)(w) do not depend on each other.28 The

ratio of the two coefficients, for the same final state |K + a
′ − a 〉, is

E(a)(K− a →K− a + a
′
)·F (a)(K→K− a )

F (a)(K+ a
′→K+ a

′− a )·E(a)(K→K+ a
′
)

=
ε(K− a →K− a + a

′
)·ε(K→K− a )

ε(K+ a
′→K+ a

′− a )·ε(K→K+ a
′
)

√√√√√√Res
u=h( a

′
)
Ψ

(a)

K− a
(u)

Res
u=h( a

′
)
Ψ

(a)
K (u)

·
Res

u=h( a )
Ψ

(a)
K (u)

Res
u=h( a )

Ψ
(a)

K+ a
′(u)

=
ε(K− a →K− a + a

′
)·ε(K→K− a )

ε(K+ a
′→K+ a

′− a )·ε(K→K+ a
′
)

=±1 ,

(6.70)

where we have used the reflection property of the bond factor (4.13) to reduce the square

root factor to 1.

If we demand that this ratio is related to the statistics factor of a by

ε(K− a → K− a + a
′
) · ε(K→ K− a )

ε(K + a
′ → K + a

′ − a ) · ε(K→ K + a
′
)

= (−1)|a| , (6.71)

the process in which the atom a removed by f (a)(w) is independent from the atom a
′

added by e(a)(z) would not contribute to the action of e(a)(z) f (a)(w)−(−1)|a|f (a)(w) e(a)(z)

28We have checked that the non-generic situations give the same result.
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on |K〉. Namely, the 3 in (6.66) would become an = sign:

e(a)(z) f (a)(w) |K〉 − (−1)|a|f (a)(w) e(a)(z) |K〉

=

 ∑
a =Rem(K)

+
∑

a =Add(K)

 Res
u=h( a )

Ψ
(a)
K (u)

(z − h( a ))(w − h( a ))
|K〉 ∼ −

Ψ
(a)
K (z)−Ψ

(a)
K (w)

z − w
|K〉 .

(6.72)

Since (6.72) is true for arbitrary |K〉, we have the relation of the operators:

e(a)(z) f (a)(w)− (−1)|a|f (a)(w) e(a)(z) ∼ −ψ
(a)(z)− ψ(a)(w)

z − w
. (6.73)

We will explain in section 6.6 how to determine the ε function such that (6.71) holds.

6.5.3.3 Statistics of generators from crystal

Before we proceed to the scenario (3), let us first determine the statistics of the generators

{ψ(a)(z), e(a)(z), f (a)(z)}. The result was already summarized in (4.8).

First of all, given the action of ψ(a)(z) on the crystal state |K〉 (see (6.45)), we see that

all the ψ(a) generators are bosonic, since the eigenvalues Ψ
(a)
K (u) all commute with each

other.

For the operators e(a)(z) and f (a)(z), we have just seen that in order to have (6.73),

we need the condition (6.65), namely

(−1)|a| = −ϕa⇒a(0) , (6.74)

where we have used the fact that ϕa⇒a(0) = ±1. Since ϕa⇒a(0) = (−1)#(self-loops of a), we

conclude that the e(a)(z) and f (a)(z) operators are bosonic (i.e. |a| = 0) when there are odd

number of self-loops for the vertex a in the quiver, and fermionic (i.e. |a = 1|) otherwise.

Since quivers in which vertices have even positive number of self-loops do not seem to exist

for toric Calabi-Yau threefolds, this proves the grading rule (4.8).

In particular, for a vertex a that has no self-loop in the quiver, the corresponding e(a)(z)

and f (a)(z) operators are fermionic. This is consistent with the intuition that when there

is no self-loop for a, e(a)(z)e(a)(w)|∅〉 = 0, even when we choose the atom at the origin to

have color a, signaling the fermionic nature of the creation operator e(a)(z) (and therefore

for its corresponding annihilation operator). This is also consistent with the conclusion

drawn from the vacuum characters of known examples.

Finally, by the condition (6.61), the constants p(a) and q(a) are also related to the

statistics of e(a)(z) and f (a)(z) operators:

p(a) q(a) = ϕa⇒a(0) = (−1)#(self-loops of a) = −(−1)|a| . (6.75)

We are free to set q(a) = 1, and have (6.6).
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6.5.3.4 Scenario (3)

Now let us resume with the scenario (3), where a 6= b, and consider the generic situation

where the addition of a and the removal of b are independent. The computation is

similar to scenario (2), where the atom a removed by f (a)(w) is independent from the

atom a
′

added by e(a)(z).

Compare the two processes (6.56) and (6.57). The ratio between the coefficients at the

two sides (for the same final state) is

E(a)(K− b →K− b + a )·F (b)(K→K− b )

F (a)(K+ a →K+ a − b )·E(a)(K→K+ a )

=
ε(K− b →K− b + a )·ε(K→K− b )

ε(K+ a →K+ a − b )·ε(K→K+ a )

√√√√√√Res
u=h( a )

Ψ
(a)

K− b
(u)

Res
u=h( a )

Ψ
(a)
K (u)

·
Res

u=h( b )
Ψ

(b)
K (u)

Res
u=h( b )

Ψ
(b)

K+ a
(u)

=
ε(K− b →K− b + a )·ε(K→K− b )

ε(K+ a →K+ a − b )·ε(K→K+ a )
=±1 ,

(6.76)

where again we have used the reflection property of the bond factor (4.13) to reduce the

square root factor to 1.

Demanding

ε(K− b → K− b + a ) · ε(K→ K− b )

ε(K + a → K + a − b ) · ε(K→ K + a )
= (−1)|a||b| , (6.77)

we have

a 6= b : e(a)(z) f (b)(w) |K〉 − (−1)|a||b|f (b)(w) e(a)(z) |K〉 = 0 , (6.78)

for an arbitrary state |K〉, which gives

a 6= b : e(a)(z) f (b)(w)− (−1)|a||b|f (b)(w) e(a)(z) ∼ 0 . (6.79)

Together with the result for a = b in (6.73), we have

e(a)(z) f (b)(w)− (−1)|a||b|f (b)(w) e(a)(z) ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
, (6.80)

given in the last equation of (4.9).

Finally, we emphasize that to reach (6.80), we have demanded the ε function to satisfy

various constraints, i.e. (6.62), (6.71), and (6.77). We will solve these constraints, together

with two more coming from the e− e and f − f relations, after we fix the algebra.

6.5.4 e− e and f − f relations

The computation for the e−e and f−f relations are similar to the ones for the scenario (2)

and (3) of the e− f relation. First, use the action of e(a) on arbitrary |K〉, given in (6.45),

– 53 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

we have

e(a)(z)e(b)(w) |K〉

=
∑

b ∈Add(K)

∑
a ∈Add(K+ b )

E(a)(K+ b →K+ b + a )

z−h( a )
·
E(b)(K→K+ b )

w−h( b )
|K+ b + a 〉 ,

(6.81)

and

e(b)(w)e(a)(z) |K〉

=
∑

a ∈Add(K)

∑
b ∈Add(K+ a )

E(a)(K+ a →K+ a + b )

w−h( b )
·
E(a)(K→K+ a )

z−h( a )
|K+ a + b 〉 .

(6.82)

Consider the generic situation29 where the creation of the atom a by e(a)(z) and the

creation of the atom b by e(b)(w) do not depend on each other. In such cases, the ratio

between the coefficients in (6.81) and (6.82) is

E(a)(K+ b →K+ b + a )·E(b)(K→K+ b )

E(a)(K+ a →K+ a + b )·E(a)(K→K+ a )

=
ε(K+ b →K+ b + a )·ε(K→K+ b )

ε(K+ a →K+ a + b )·ε(K→K+ a )

√√√√√√Res
u=h( a )

Ψ
(a)

K+ b
(u)

Res
u=h( a )

Ψ
(a)
K (u)

·
Res

u=h( b )
Ψ

(b)
K (u)

Res
u=h( b )

Ψ
(b)

K+ a
(u)

.

(6.83)

The square root factor gives√
ϕb⇒a(h( a )− h( b )) · 1

ϕa⇒b(h( b )− h( a ))
= ϕb⇒a(h( a )− h( b )) ∼ ϕb⇒a(z − w) ,

(6.84)

where in the first step we have used the reflection property of the bond factor (4.13), and in

the second step we have used the fact that in (6.81) and (6.82), z → h( a ) and w → h( b )

and we only care about terms ∼ z−n−1w−m−1 with n,m ∈ Z≥0. For each K, a , and b ,

the ε factors should be chosen such that

ε(K + b → K + b + a ) · ε(K→ K + b )

ε(K + a → K + a + b ) · ε(K→ K + a )
= (−1)|a||b| . (6.85)

Namely, the sign should be − when both e(a) and e(b) are fermions, and + otherwise. In

summary we have

e(a)(z) e(b)(w) ∼ (−1)|a|·|b|ϕb⇒a(z − w) e(b)(w) e(a)(z) , (6.86)

as shown in the third equation in (4.9).

29The non-generic situation where the adding of a requires the adding of b first need to be discussed

within concrete examples. We have checked that the result remains the same.
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Finally, a parallel derivation gives

f (a)(z) f (b)(w) ∼ (−1)|a|·|b|ϕb⇒a(z − w)−1 f (b)(w) f (a)(z) , (6.87)

as shown in the fifth equation of (4.9). The constraint on ε needed for the f − f relation is

ε(K− b → K− b − a ) · ε(K→ K− b )

ε(K− a → K− a − b ) · ε(K→ K− a )
= (−1)|a||b| . (6.88)

6.6 Prescription for choice of ε

In deriving the algebraic relations (4.9) from the ansatz of the action (6.2), we have de-

manded the five conditions on the ε signs, namely (6.62), (6.71), (6.77), (6.85), and (6.88).

Now we need to show that there always exists an assignment for ε such that this set of five

equations hold.

First of all, these five equations are not all independent. First, the condition (6.71) is

merely a specialization of (6.77). Second, since all ε = ±1, (6.62) can be rewritten into the

reciprocity condition

ε(K→ K + a ) = ε(K + a → K) , (6.89)

using which we can show that of the three equations (6.77), (6.85), and (6.88), only one is

independent. For example, we can use (6.89) to reverse the directions of various processes

in (6.77) and (6.88), thus bringing both of them into the form of (6.85), with the new initial

state being |K − b 〉 for (6.77) and |K − a − b 〉 for (6.88). Therefore we only need to

impose (6.89) and (6.85), the latter of which we repeat here:

ε(K + b → K + b + a ) · ε(K→ K + b )

ε(K + a → K + a + b ) · ε(K→ K + a )
= (−1)|a||b| . (6.90)

Given the reciprocity condition (6.89), we can simply assign the value of the ε function

for each adding process K → K + a iteratively, starting from the vacuum K = ∅. The

value for the ε function for a removing process is taken to be identical to the one for

the corresponding adding process, due to (6.89). In this iterative assigning process, one

only needs to observe (6.90), which is a condition that is associated to the “faces” of

the adding diagram. But since we are starting from the atom at the origin and adding

atoms according to a (two-dimensional) periodic quiver, the condition (6.90) is very easy

to satisfy. For example, we can choose the ε for the first few processes to be +, and

for the new adding processes switch the sign whenever demanded by (6.90), and since

this is an iterative process, the sign assignment demanded by (6.90) is always pushed to

the outskirt of the adding diagram, such that we are always free to assign ε to whatever

value that satisfy (6.90). Thus we conclude that one can always fix a prescription of the ε

function in the ansatz (6.2) such that by this action, the set of colored crystals furnishes a

representation of the quiver Yangian algebra, whose algebraic relations are bootstrapped

from the (6.2) and the quiver data.
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7 Truncations of quiver Yangians and D4-branes

7.1 Truncations of quiver Yangians

The representation we constructed in the previous section is generically a cyclic module

of the algebra, since we can arrive at any molten crystal configuration starting with the

empty room (i.e. the vacuum) and applying a finite number of creation operators e(a)(u).

Conversely, starting from any molten crystal configuration we can arrive at the vacuum

by appropriately applying a finite number of annihilation operators f (a)(u). This ensures

that the representation is irreducible.

As explained in section 4.1, the algebra associated to the quiver (Q,W ) has |Q1|
coordinate parameters {hI}, corresponding to the |Q1| edges of the quiver diagram. After

the loop constraint (4.1) is imposed, they reduce to |Q0| + 1 = E + 2I − 1 independent

parameters {hA}. In this section we will show that the representation can become reducible

when the coordinate parameters {hI} (or more precisely {hA}) take certain fine-tuned

values, causing the residue of the charge function Res
u=h( a )

Ψ
(a)
K (u) in (6.45) to vanish for

some atom a . In this case, it is impossible to add this atom (and hence all subsequent

ones) to the crystal, and consequently this stops the growth of the crystal for the part

beyond this atom. The representation is then no longer irreducible.

Since we have motivated the definition of the algebra Y(Q,W ) by its action on the crystal,

it is natural to translate the truncation of the growth of the crystal into a truncation of

the algebra. Namely, when the coordinate parameters take certain fine-tuned values, the

algebra develops an ideal, quotienting out which gives the truncation of the algebra. The

representation that is reducible with respect to the original algebra becomes irreducible in

the truncated algebra.

Now we will show that the special values for {hI} that characterize the truncation

of the algebra are defined by certain linear equations with integer coefficients ~N . We

denote the corresponding truncated algebra by Y
~N
(Q,W ).

30 Moreover we find that the (linear

combination of) integers ~N corresponds to the number of D4-branes.

Suppose the growth of the crystal stops at an atom a of color a. Let us express its

coordinate function as

h( a ) =
∑

I ∈ path[o→ a ]

hI =
∑
I∈Q1

NI hI =

|Q0|+1∑
A=1

NA hA , (7.1)

where NI ∈ Z≥0 and NA ∈ Z; in the last step we have used the loop constraint (4.1) to

reduce the parameters {hI} to the independent ones {hA}. Note that since the edges have

fixed positions on the quiver, on each path from o to a , only certain hI appear. As a

result, the non-negative integers NI do not take arbitrary values in Z≥0, and NA do not

take arbitrary values in Z.

30For earlier discussions on truncations of the affine Yangian of gl1, see [24, 48–50]. For truncations of

W algebras that are related to some of the quiver Yangians constructed in this paper, see [51, 52].
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When we add this atom to the initial state K, the numerical coefficient is(
Res

u=h( a )
Ψ

(a)
K (u)

) 1
2

=

(
Res

u=h( a )
ψ

(a)
0 (u)ψ

(a)
K (u)

) 1
2

, (7.2)

where in the last step we have extracted out the vacuum part of the charge function

ψ
(a)
0 (u) =

(
1 +

C

u

)δa,1
. (7.3)

(Recall that we label the color of the atom at the origin of the crystal to be a = 1, and the

vacuum only contributes to the charge function of color a = 1.)

Only the atoms on the surface of K contribute to the residue in (7.2). In particular,

to add the atom a , we need to consider all the paths from the origin o to the atom

a : for the atom a to be added, all the atoms right before the atom a in these paths

need to be already present. However, none of the contributions from these penultimate

atoms on the surface of K contain all the information of {NI}, since it is the difference

between their coordinate functions and the coordinate function h( a ) in (7.1) that enters

the residue (7.2). Instead, when a = 1, the contribution from the vacuum part of the

charge function ψ0(u) contains all {NI}:

Res
u=h( a )

ψ
(a)
0 (u) ∼

∑
I∈Q1

NI hI + C for a = 1 , (7.4)

where ∼ means that we only take into account of the numerator in ψ0(u) here.

The condition for the algebra to truncate at the level {NI}, i.e. for the growth of the

crystal to stop beyond the atom a with a = 1 and at the position defined in (7.1), is that

∑
I∈Q1

NI hI + C = 0 . (7.5)

One can use these non-negative integers {NI} to label the truncation of the algebra.

As we have already described, only |Q0|+ 1 out of the |Q1| non-negative integers {NI}
are independent. This is realized by the fact that, due to the loop constraint (4.1), the

truncation condition (7.5) is invariant under the shift

NI → NI + n ∀I ∈ L , (7.6)

where L is any loop in the periodic quiver. We can use these shifts to obtain |Q0| + 1

non-negative integers, whose linear combinations map to the |Q0|+ 1 integers NA.

7.2 Multiple truncations and rational algebras

An important motivation to consider truncations of the algebra is to obtain “rational”

versions of the algebra, namely the quiver Yangian analogue of rational W algebras, which

has only finitely many irreducible representations.
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The truncation condition (7.5) is one condition on the charge parameters hI , imposed

by the fact that the growth of the crystal stops at one particular atom, labeled by {NI}. It

is possible for the truncation of the growth of the crystal to happen at multiple locations,

each characterized by integers {Ni,I}, where i labels the different obstructing atoms. The

truncation condition (7.5) is then enhanced to∑
I∈Q1

Ni,I hI + C = 0 i = 1, . . . , T . (7.7)

where T is the number of “obstructions”.

Consider the simplest quiver Yangian: the affine Yangian of gl1. Let us demand that

the growth of the crystal, in this case the plane partition where all atoms have the same

color a = 1, stops at an atom with position (x1, x2, x3) = (N1, N2, N3). Correspondingly

the parameter {hi} with i = 1, 2, 3 must satisfy

3∑
i=1

Ni hi + (h1h2h3ψ0) = 0 (7.8)

up to the loop constraint h1 +h2 +h3 = 0 and the scaling freedom (hi, ψ0)→ (αhi, α
−2ψ0).

Now suppose the growth of the plane partition happens at two positions:31

(N1, N2, N3) = (0, 0, N) and (N1, N2, N3) = (k, k + 1, 0) . (7.9)

The first atom effectively truncates the plane partition along the x3 direction with the

x3 = N plane, which ensures that no box can be added with x3 ≥ N . The second atom

acts as a “pit” on the x1− x2 plane, at position (x1, x2) = (k, k+ 1), which means that no

box can be added with x1 ≥ k and x2 ≥ k + 1.

Recall that the representation of the affine Yangian of gl1 is labeled by the three

Young diagrams (λ1, λ2, λ3) as the asymptotic along the (x1, x2, x3) directions. When both

of these obstructing atoms are present, the three Young diagrams (λ1, λ2, λ3) cannot take

arbitrary values anymore. First of all, the presence of the cutoff along x3 = N means there

is no non-trivial asymptotic along the x3 direction, namely λ3 = ∅. Moreover, it also means

that the heights of both λ1 and λ2 cannot exceed N . Lastly, the presence of the “pit” at

(x1, x2) = (k, k + 1) means that the width of λ1 cannot exceed k and that of λ2 cannot

exceed k + 1. Therefore, there are only finitely many representations, suggesting that the

corresponding algebra is rational.

One can check this by direct computation of the {hi} parameter of the affine Yangian

of gl1. Solving the double truncation condition (7.8) with the {Ni} taking the two triplets

in (7.9), we get

h1 = −
√
N + k + 1

N + k
, h2 =

√
N + k

N + k + 1
, h3 =

1√
(N + k)(N + k + 1)

, (7.10)

together with

ψ0 = N , (7.11)

31For earlier discussions on double truncations of the affine Yangian of gl1, see [24, 48, 50].
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up to the scaling freedom (hi, ψ0) → (αhi, α
−2 ψ0).32 This is precisely the values of {hi}

and ψ0 obtained by a direct translation between the affine Yangian of gl1 and the WN,k

algebra in [25], where N, k are both positive integers (or one of the S3 image of the “triality

symmetry” of the WN,k algebra [53]).

Note that to obtain a rational algebra, only the first condition in (7.9) is necessary:

one can relax the second condition by choosing

(N1, N2, N3) = (k, k +m, 0) (7.12)

with m ∈ N. The coupled equation (7.8) whose second one having coefficient in the

form (7.12) can be brought back to the one with coefficients in the forms of (7.9) but with

k non-integer:

(k, k +m, 0) −→ (k′, k′ + 1, 0) with k′ =
k +N

m
−N (7.13)

This corresponds to a rational WN,k algebra with k no longer an integer, but a rational

number of the form k+N
m −N with N, k,m ∈ N. (Moreover, one can check that the (N, k′)

pair from (7.13) is not an triality image from an integer pair (M,k).33) These are precisely

the admissible (non-integer) levels for the rational WN,k algebra when p ≡ N + k and

p′ ≡ k + N + m are coprime [54].34 We have just obtained them by an easily-visualizable

truncation of the affine Yangian of gl1.

This can be generalized to all quiver Yangian algebras of this paper. Namely, for each

quiver Yangian algebra, one can study its multiple truncations and use them to obtain

the “rational” version of the algebra, whose number of irreducible representations becomes

finite. The procedure is actually easier than the one for the corresponding W algebra. The

rational W algebras usually belong to a family of generically irrational W algebras; when

the parameters of the family take specific values, enough null vectors arise and the algebra

becomes rational. Locating such rational points requires an analysis of the null vector

structure and needs to be done case by case for each family. In contrast, the truncations

of the quiver Yangian algebras follow a universal mechanism which is easy to visualize and

to classify. One can use the truncation of the quiver Yangian algebras to find new rational

W algebras.

7.3 Relation with D4-branes

We now claim that these non-negative integers correspond to the number of D4 branes

wrapping the 4-cycles (divisors) in the Calabi-Yau threefold. These 4-cycles can be ei-

ther compact or non-compact. In short, adding D4-branes corresponds to truncating the

algebra.

32To compare with the literature, here we are using the mode expansion (5.2) adopted in [24, 25], instead

of (8.3), which is universal for all quiver Yangians of Calabi-Yau threefolds without compact 4-cycles. Had

we adopted the convention (8.3), the solution for ψ0 would have been ψ0 = − N√
(N+k)(N+k+1)

(while the

solutions for hi remain unchanged), and up to the scaling freedom (hi, ψ0)→ (αhi, α ψ0).
33The two generators of the S3 symmetry (so-called “triality symmetry”) are (N, k)→ (N,−2N − k− 1)

and (N, k)→ ( N
N+k

, 1−N
N+k

) [53].
34The map of the parameters (N, k,m) to those of the non-unitary WN (p, p′) minimal model (with

gcd(p, p′) = 1) in [54] is p = N + k, p′ = k +N +m.
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In order to see this, we first need to see the effect of the D4-branes to the supersymmet-

ric quiver quantum mechanics (see [55, 56] for discussions in the context of brane tilings35).

Let us first recall that in the absence of the D4-brane we have an effective D0-brane quan-

tum mechanics. This D0-brane probes the geometry of the toric Calabi-Yau threefold, and

hence the vacuum moduli space of the quiver quantum mechanics (when the gauge group

is Abelian) reproduces the geometry of the toric Calabi-Yau threefold.

When the D4-brane wraps a non-compact 4-cycle we have a non-dynamical gauge

symmetry on it, whereas for a compact 4-cycle a dynamical gauge symmetry appears. In

either case, from the viewpoint of the D0-brane quantum mechanics the D4-brane looks

like a flavor brane.

The divisors in question are regions of the (p, q) 5-brane webs. This is also in one-to-

one correspondence with a lattice point of the toric diagram. Since we have denoted the

number of external (internal) lattice points by E (I), we have E non-compact (I compact)

D4-brane divisors.

When we include D4-branes, we need to include strings connecting D0-brane to the

D4-brane, which gives a pair of the quark chiral multiplet q and the anti-quark chiral

multiplet q̃. They couple to one of the bifundamental fields ΦI of the D0-brane quiver

quantum mechanics, with superpotential

W = q̃ΦI q . (7.14)

Which bifundamental field do we get? To answer this, it is useful to take T-duality

twice, so that both the D0-brane and the D4-brane are turned into D2-branes [56]. We

then have a brane configuration consisting of D2-branes and an NS5-brane (see [41] for a

detailed analysis), which gives a physical realization of the brane tilings and the periodic

quiver.

Let us consider the situation where the flavor D4-brane (which is now a flavor D2-

brane) is associated with a non-compact region corresponding to the corner external vertex

of the toric diagram. One then finds that the D2-brane in the D2/NS5 brane configuration

is sandwiched between two asymptotic NS5-brane cylinders, which are related by string

duality to two asymptotic lines of (p, q)-webs surrounding D4-brane region. The string at

the intersection of the two NS5-branes gives rise to a bifundamental chiral multiplet, which

can be identified with the bifundamental field ΦI in question.

When we include the D4-brane, the bifundamental chiral multiplet ΦI will in general

have a VEV (Vacuum Expectation Value), and this gives masses to the quarks. This means

that the probe D0-brane and the flavor D4-brane are separate. In order to identify the D4-

brane divisor, one therefore needs to probe the locus where the VEV of the chiral multiplet

vanishes: ΦI = 0. Since we have one complex equation, we could expect a divisor.

While ΦI = 0 is a legitimate equation, one needs to remember that we need to take

into account the F-term relations arising from the derivatives of the superpotential. One

35Since we are discussing quiver quantum mechanics and not four-dimensional quiver gauge theories, we

need to dimensionally-reduce the setup. For example, a D3-brane probing the toric Calabi-Yau threefold is

turned into a D0-brane probe in our context.
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bipartite graph was shown in figure 3. There are six perfect matchings, each of which is associated

with one of the five lattice points of the toric diagram (with multiplicity two for the lattice point

(1, 0)); this association is determined by the height function, as explained in the main text.

systematic approach is to solve the F-term equations first, and then impose the condition

ΦI = 0. This process is helped greatly by the fact that the F-term equations can be solved

by a set of fields Φ̃p associated with perfect matchings p of the dimer model [38]. Here

a perfect matching refers to a subset of the edges of the bipartite graph such that any

vertex of the bipartite graph is contained in exactly one edge (see figure 10). Since the

periodic quiver is the dual of the bipartite graph, this means that a perfect matching can

be regarded as a subset of Q1, the set of arrows of the quiver. The relation between ΦI

and Φ̃p can now be stated as

ΦI =
∏
p3I

Φ̃p . (7.15)

This means that the divisor {ΦI = 0} can now be regarded as the union of the submanifolds

{Φ̃p = 0}.

– 61 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

Now, for each perfect matching we can associate a lattice point of the toric diagram (in

general this can either be on the boundary or inside of the toric diagram), see figure 10 for

an example. This is determined by the so-called height function introduced in the dimer

model literature — one chooses one of the perfect matchings as a reference matching, and

when this is superimposed with another perfect matching we have a set of closed paths

on the torus. The total winding numbers of the resulting paths, labeled by two integers

corresponding to winding in α and β cycles of the two-dimensional torus, determine the

corresponding lattice point of the toric diagram. (One can show that the resulting toric

diagram is independent of the choice of the reference perfect matching, up to a GL(2,Z)-

transformation on the toric diagram.)

In general multiple perfect matchings can be associated with the same lattice point.

In this paper we consider the case of D4-branes associated with a corner lattice point of

the toric diagram. In this case, it is known that there is a unique perfect matching p

corresponding to the lattice point (cf. [33]), and one can show [56, Theorem 2] that the

D4-brane divisor can be identified with the locus {Φ̃p = 0} associated with that perfect

matching p. In this locus {Φ̃p = 0}, we set all the bifundamental fields belonging to

the perfect matching to zero. Such a truncation for the BPS crystal melting model was

discussed previously in [57] (see also [58, 59]).

For the present purpose of identifying the number of D4-branes, when we consider a

D4-brane wrapping the divisor {Φ̃p = 0}, we impose the condition

hI = 0 when I ∈ p . (7.16)

This leaves a restricted set of parameters, which we regard as the parameter space needed

for the truncation with D4-branes.

∑
p

Np

∑
I∈p

hI

+ C = 0 . (7.17)

Since we consider divisors associated with perfect matchings for the corner lattice

points of the toric diagram, this will be specified by Ecorner, the number of such lattice

points. This should be compared with the set of |Q0| + 1 = E + 2I − 1 integers NA
associated with truncations of the algebra. Note, however, not all the possible sets of

integers NA are realized in the quiver diagram, and hence the actual possible truncations

are much more limited. We will discuss many examples in section 8 and section 9, and find

that the truncations of the algebra are always labelled by a set of two integers, at least for

all the examples studied in this paper. This is actually smaller than the number Ecorner of

independent D4-brane charges associated with corner perfect matchings. Moreover, we in

general have many more complex submanifolds described by non-corner perfect matchings.

This suggests that there exist more general representations of the quiver Yangians than

studied in this paper. We leave a detailed discussion of these subtleties for future work.
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8 Examples: Calabi-Yau threefolds without compact 4-cycles

In the next two sections we apply the algorithm outlined in section 4 on various toric

Calabi-Yau threefolds. For each example, we will construct explicitly its associated algebra,

and define its truncations. For some examples, we will also discuss special points in the

parameter space where our algebra reduces to known affine Yangian algebras.

This section deals with toric Calabi-Yau threefolds without compact 4-cycles and sec-

tion 9 will study those with compact 4-cycles.

8.1 Simplification when no compact 4-cycles are present

8.1.1 Mode expansion

For Calabi-Yau threefolds without compact 4-cycles, the corresponding quiver has the

property that the number of arrows from a to b is the same as the number of arrows from

b to a:

|a→ b| = |b→ a| . (8.1)

As a result, the bond factor ϕa⇒b(u), defined in (4.11), become homogeneous rational

functions. Therefore the eigenvalue of the charge function Ψ
(a)
K (u), which is a product of

all ϕb⇒a(u− h( b )) together with the possible vacuum contribution (see definition (6.9))

for any crystal state K, is also a homogeneous rational function, which has the expansion

Ψ
(a)
K (u) = 1 +

+∞∑
n=0

Ψ
(a)
n (K)

un+1
. (8.2)

Since the expansion (8.2) is true for any K and a, the operator ψ(a)(u) has the same

expansion. Namely, for Calabi-Yau threefolds without compact 4-cycles, the general mode

expansion (4.7) specializes to

e(a)(z) ≡
+∞∑
n=0

e
(a)
n

zn+1
, ψ(a)(z) ≡ 1 +

+∞∑
n=0

ψ
(a)
n

zn+1
, f (a)(z) ≡

+∞∑
n=0

f
(a)
n

zn+1
. (8.3)

Accordingly, in the algebraic relations in terms of modes (4.20), the ψ
(a)
n , e

(a)
n , and f

(a)
n

modes all have n ∈ Z≥0. Finally, the mode expansion of ψ(a)(z) in (8.3) also gives

ψ
(a)
−1 = 1 , (8.4)

for all a.

8.1.2 Initial conditions

As explained just now, for Calabi-Yau threefolds without compact 4-cycles, the mode rela-

tions (4.20) are all from terms of order z−n−1w−m−1, with n,m ∈ Z≥0, in the corresponding

OPE relation (4.9). In particular, for the ψe and ψf relations, the mode relations are from

terms of order z−n−1w−m−1, with n,m ∈ Z≥0.

One can also supplement these ψe and ψf relations with “initial conditions” that come

from terms of order z`−1w−m−1 with ` = 1, . . . , |a → b| and m ∈ Z≥0. Note that these
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additional initial conditions are allowed by the algebraic relations (4.9) with the mode

expansions (8.3), and are consistent with the algebra’s action (6.45) on colored crystals K.

For Calabi-Yau threefolds without compact 4-cycles, these initial conditions contain the

finite part of the affine Yangian. One can derive from these initial conditions the central

elements of the algebra.

Let us again take the ψ(a) e(b) OPE for example. Plugging the mode expansions of

ψ(a)(z) and e(b)(w) from (8.3) into (4.17) and extracting the terms of order z`−1w−m−1

with ` = 1, . . . , |a→ b| and m ∈ Z≥0, and using (8.4), we have the mode relation:

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [ψ
(a)
−` e

(b)
m ]k =

|a→b|∑
k=0

σa→b|a→b|−k [e(b)
m ψ

(a)
−` ]k , (8.5)

where the notations for [ψ
(a)
−` e

(b)
m ]k and [e

(b)
m ψ

(a)
−` ]k were defined in (4.19), and ψ

(a)
n<−1 = 0

due to the mode expansion (8.3). Similarly, the ψf initial condition is

|a→b|∑
k=0

σa→b|a→b|−k [ψ
(a)
−` f

(b)
m ]k =

|b→a|∑
k=0

(−1)|b→a|−k σb→a|b→a|−k [f (b)
m ψ

(a)
−` ]k , (8.6)

for ` = 1, . . . , |a→ b| and m ∈ Z≥0.

One can impose the initial conditions (8.5) and (8.6) to supplement the mode rela-

tions (4.20) with n,m ∈ Z≥0. Note that since ψ
(a)
n<−1 = 0, the relations (8.5) and (8.6)

are non-empty only for ` ≤ |a → b|. For example, let us first consider the case with

` = |a→ b| = |b→ a|, which gives[
ψ

(a)
0 , e(b)

m

]
=
(
σa→b1 + σb→a1

)
e(b)
m =

 ∑
I∈{a→b}

hI +
∑

I∈{b→a}

hI

 e(b)
m ,

[
ψ

(a)
0 , f (b)

m

]
= −

(
σa→b1 + σb→a1

)
f (b)
m = −

 ∑
I∈{a→b}

hI +
∑

I∈{b→a}

hI

 f (b)
m ,

(8.7)

where we have used ψ
(a)
−1 = 1. Next, for |a → b| = |b → a| ≥ 2, consider ` = |a → b| − 1,

which gives[
ψ

(a)
1 , e(b)

m

]
=
(
σa→b2 − σb→a2

)
e(b)
m +

(
σb→a1 ψ

(a)
0 e(b)

m + σa→b1 e(b)
m ψ

(a)
0

)
,[

ψ
(a)
1 , f (b)

m

]
= −

(
σa→b2 − σb→a2

)
f (b)
m −

(
σa→b1 ψ

(a)
0 f (b)

m + σb→a1 f (b)
m ψ

(a)
0

)
.

(8.8)

The initial conditions with ψ
(a)
`≥2, if exist, can be derived similarly from the general for-

mulae (8.5) and (8.6). Since details of these initial conditions depend on the quiver data

{a→ b}, we will discuss them further when we consider concrete examples.

8.1.3 Central element of the algebra

From the initial condition, one can construct various central terms (if exist) of the algebra.

For a given vertex b, define

Σb ≡
∑
a∈Q0

 ∑
I∈{a→b}

hI +
∑

I∈{b→a}

hI

 =
∑
I∈b

hI , (8.9)
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where the sum in the last term runs over all charges both incoming and outgoing (without

signs) from the vertex b. The combination

ψ0 ≡
∑
a∈Q0

ψ
(a)
0 (8.10)

obeys

[ψ0 , e
(b)
k ] = Σb · e

(b)
k and [ψ0 , f

(b)
k ] = −Σb · f

(b)
k . (8.11)

If the following condition is satisfied:

central condition :
∑
I∈a

hI = 0 for ∀ a , (8.12)

then the combination (8.10) is a central term of the algebra. (Note the difference between

the vertex constraint (4.31) and the central condition (8.12)). For the Calabi-Yau threefolds

without compact 4-cycles, this condition is always guaranteed by the loop constraint (4.1).

The central term ψ0 defined in (8.10) is thus the universal central term in the quiver

Yangians for all the Calabi-Yau threefolds without compact 4-cycles. There could be other

central terms, depending on specifics of each quiver diagram. We will define these additional

central terms when we consider specific examples later.

8.1.4 Identification between universal central term ψ0 and vacuum charge C

Now we show that in quiver Yangians for Calabi-Yau threefolds without compact 4-cycles,

the numerical constant C in the vacuum contribution to the charge function can be iden-

tified as the universal central term ψ0 defined in (8.10).

It is enough to consider the state where only the first atom 1 is present, i.e. |K〉 =

| 1 〉. (Recall that we have assumed that the atom at the origin of the crystal is labelled

by color 1.) From the ansatz (6.36) with (6.37), this state has a charge function Ψ
(a)
K (u)

for each color a:

Ψ
(a)
K (u) =

(
1 +

C

z

)δa,1
ϕ1⇒a(u) . (8.13)

We can now expand this charge function to obtain its charges ψ
(a)
n using the expansion (4.7).

In particular, we are interested in the leading charge ψ
(a)
0 , which satisfies

ψ
(a)
0 = δa,1C +

∑
I∈{1→a}

hI +
∑

I∈{a→1}

hI . (8.14)

Summing (8.14) over all atoms a, and recalling the definition of the generic central term

in (8.10) and that of Σa in (8.9), we have

ψ0 = C + Σ1 . (8.15)

Now we can impose the central condition Σ1 = 0 (8.12), which has two consequences

for (8.15). First, ψ0 is central, due to (8.11). Second,

C = ψ0 . (8.16)
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It is also straightforward to check that one can obtain (8.16) if we start with an arbitrary

state |K〉. The analogue of (8.15) for an arbitrary crystal state |K〉 is

ψ0 = C +
∑
a ∈K

Σa , (8.17)

where each atom a in the crystal |K〉 contributes a term Σa, where a is the color of the

atom a . Due to the central condition (8.12), all Σa = 0, and we have (8.16) for any |K〉.
The identification (8.16) is a natural generalization of the gl1 case (3.20).

8.2 Quiver Yangians for (C2/Zn)× C and affine Yangian of gln

We start with the toric Calabi-Yau threefold (C2/Zn) × C. The quiver algebra has n + 1

parameters. If we impose the n − 1 vertex constraints (4.31), we can reduce the number

of parameters to 2, which are the two coordinate parameters. We find that the reduced

quiver Yangian in this sub-parameter space is the affine Yangian of gln constructed in [60,

61], which are rational limits of quantum toroidal algebra of gln constructed in [62] (see

also [63]).

Let us study the cases of n = 1, n = 2, and n ≥ 3 in turn.

8.2.1 C3 and affine Yangian of gl1

8.2.1.1 Quiver Yangian for C3

For C3, the toric diagram and its dual graph are

(0,0)

(0,1)

(1,0)

3

1

2

(8.18)

Its associated quiver diagram is

1

(X3, h3)

(X1, h1)

(X2, h2)

(8.19)

where we have labelled the three adjoints X1,2,3, together with their three charges h1,2,3.

The super-potential is

W = Tr[−X1X2X3 +X1X3X2] . (8.20)
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Figure 11. Two ways to draw the periodic quiver for C3. The left one emphasizes its connection to

the projection of the plane partitions and the triality symmetry of the three directions, whereas the

right one is for later comparison with the periodic quiver for (C2/Zn)×C and generalized conifolds.

Since in the quiver the vertex 1 has a self-loop, it is bosonic: |1| = 0.

The periodic quiver is

1

1

1

1

h1 h1

h2

h2

h3 (8.21)

where the fundamental region of the torus is shown as a shaded region. The map to

the crystal configuration is easier to visualize from a bigger domain, shown in the left of

figure 11. In the right of figure 11, we have redrawn this period quiver in a slightly different

shape, for the later comparison with periodic quivers for (C2/Zn) × C and generalized

conifolds.

The loop constraint (4.1) gives

h1 + h2 + h3 = 0 . (8.22)

Therefore we have two coordinate parameters, corresponding to the two equivariant pa-

rameters (ε1, ε2). Note that the central condition (8.12) is guaranteed by the loop con-

straint (8.22).

8.2.1.2 Affine Yangian of gl1

Note that in this case the vertex constraint (4.31) also gives (8.22). Therefore the minimal

number of parameters we can have is two, corresponding to the U(1)2 toric isometries.

There is only one bond factor:

ϕ1⇒1(u) = ϕ3(u) =
(u+ h1)(u+ h2)(u+ h3)

(u− h1)(u− h2)(u− h3)
. (8.23)

Plugging this into the general formulae for the OPE relations (4.9) and the initial condi-

tions (8.5) and (8.6), and supplementing them with Serre relations, we have the full list of

algebra relations of the affine Yangian of gl1:
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OPE:


ψ(z)ψ(w) ∼ ψ(w)ψ(z) ,

ψ(z) e(w) ∼ ϕ3(∆) e(w)ψ(z) ,

ψ(z) f(w) ∼ ϕ−1
3 (∆) f(w)ψ(z) ,

e(z) e(w) ∼ ϕ3(∆) e(w) e(z) ,

f(z) f(w) ∼ ϕ−1
3 (∆) f(w) f(z) ,

[e(z) , f(w)] ∼ − ψ(z)− ψ(w)

z − w
,

(8.24)

Initial:

{
[ψ0, em] = 0 ,

[ψ0, fm] = 0 ,

[ψ1, em] = 0 ,

[ψ1, fm] = 0 ,

[ψ2, em] = 2σ3 em ,

[ψ2, fm] = −2σ3 fm ,

(8.25)

Serre :

{
Symz1,z2,z3 (z2 − z3) [e(z1) , [e(z2) , e(z3)]] ∼ 0 ,

Symz1,z2,z3 (z2 − z3) [f(z1) , [f(z2) , f(z3)]] ∼ 0 .
(8.26)

where σ3 ≡ h1h2h3. It is straightforward to write down the relation in terms of modes,

following (4.20).

In the ef relation in (8.24), note its difference from (5.50) in the factor of 1
σ3

. This

is due to the different convention in our mode expansion of ψ(u) in (8.3) — which is

the universal for all quiver Yangian of Calabi-Yau threefolds without 4-cycle — from the

one (3.5) in the literature. (This difference also manifests itself in the two initial conditions

involving ψ2.)

In the derivation of the initial conditions (8.25), we have used |a→ a| = 3, and setting

` = 3, 2, 1 in the general formulae (8.5) and (8.6) gives the initial conditions involving

ψ0,1,2, respectively, and we have also used σ1 ≡ h1 + h2 + h3 = 0. We see that there are

two central terms, ψ0 and ψ1.

8.2.1.3 Truncation

For the affine Yangian of gl1, the vacuum charge C is identical to the leading central term

ψ0. Applying the general truncation condition (7.5) on the quiver (8.21), we have the

truncation condition

N1 h1 +N2 h2 +N3 h3 + ψ0 = 0 , (8.27)

which is invariant under the shift

Ni → Ni + n (8.28)

due to the loop constraint (8.22).

There are three non-compact divisors where the D4-branes wrap, which are related by

the permutation (S3) symmetry. These correspond to the three perfect matchings of the

dimer model (see figure 13), each of which corresponds to one of the triple {h1, h2, h3}, thus

giving rise to the same condition (8.27). This means that the Ni’s can indeed be regarded

as the number of D4-branes in that region. We therefore obtain the algebra YN1,N2,N3

(Q,W ) and

YN1,N2,N3

(Q,W ) . The latter was studied previously in [49, 51, 64, 65]. Note that due to the
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Figure 12. The bipartite graph and its dual, the periodic quiver, for the C3 geometry.

Figure 13. The three perfect matchings for the C3 geometry. Each of these perfect matchings

corresponds to one of the non-compact regions of the (p, q)-web, and to one of the parameters

h1, h2, h3.

loop constraint (8.22) one can simultaneously shift all the Ni’s by the same amount, hence

leaving two non-negative integers.

8.2.2 (C2/Z2)× C and affine Yangian of gl2

8.2.2.1 Quiver Yangian for (C2/Z2)× C

For C2/Z2 × C, the toric diagram and its dual graph are

(0,0)

(0,1)

(0,2)

(1,0)

3

3̂

1

1̂

(8.29)
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Figure 14. Two ways to draw the periodic quiver (C2/Z2) × C. The left one shows that the

representation can be realized by coloring the plane partitions, whereas the right one is for later

comparison with the periodic quiver for the conifold and (C2/Zn)× C. For clarity we have shown

several copies of the fundamental region of the two-dimensional torus; one choice of the fundamental

region is shown as a shaded region.

Its associated quiver diagram is the A2-quiver

1 2(C1, γ1) (C2, γ2)

(A1, α1), (B2, β2)

(B1, β1), (A2, α2)
(8.30)

with super-potential

W = Tr[−C1A1B1 + C1B2A2 − C2A2B2 + C2B1A1] . (8.31)

Both vertices are bosonic:

|a| = 0 , a = 1, 2 , (8.32)

since there is a self-loop for each of them in the quiver (8.30).

The periodic quiver is shown in figure 14, drawn in two slightly different ways. Com-

paring the left one to the left drawing in figure 11, one can see the representation of the

algebra for (C2/Z2) × C can be realized by coloring plane partitions accordingly — the

color alternates between 1 and 2 as one moves along the x1 or x2 directions, but remains

unchanged along the x3 direction. The right drawing in figure 11 is for later comparison

with the conifold and (C2/Zn)× C.

Applying the loop constraint (4.1) gives the constraints on the charges:

γ1 = γ2 ≡ γ , α1 + β1 + γ = 0 , α2 + β2 + γ = 0 . (8.33)

Namely, there are only three independent parameters for the algebra for C2/Z2 × C. The

central condition (8.12) is guaranteed by the loop constraint (8.33).

One can immediately read off the bond factors from the periodic quiver shown in

figure 14 by the definition (4.11)

ϕa⇒a(u) =
u+ γ

u− γ
and ϕa⇒a+1(u) =

(u+ αa+1)(u+ βa)

(u− αa)(u− βa+1)
, (8.34)
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where the indices are understood as mod 2. The resulting algebra is

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ ∆+γ
∆−γ e

(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ ∆+γ
∆−γ e

(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ ∆−γ
∆+γ f

(a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ ∆−γ
∆+γ f

(a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ (∆+αa+1)(∆+βa)
(∆−αa)(∆−βa+1) e

(a)(w)ψ(a+1)(z) ,

e(a+1)(z) e(a)(w) ∼ (∆+αa+1)(∆+βa)
(∆−αa)(∆−βa+1) e

(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ (∆−αa)(∆−βa+1)
(∆+αa+1)(∆+βa) f

(a)(w)ψ(a+1)(z) ,

f (a+1)(z) f (a)(w) ∼ (∆−αa)(∆−βa+1)
(∆+αa+1)(∆+βa) f

(a)(w) f (a+1)(z) ,

[e(a)(z) , f (b)(w)] = −δa,b ψ
(a)(z)− ψ(a)(w)

z − w
.

(8.35)

The initial conditions can be computed using the general formula (8.5). For a = b,

only the equation with ` = 2 is non-empty, giving the initial condition on [ψ
(a)
0 , e

(a)
m ]. For

b = a− 1, the equation with ` = 2 gives the relation on [ψ
(a+1)
0 , e

(a)
m ] whereas the one with

` = 1 gives [ψ
(a+1)
1 , e

(a)
m ].

Initial:



[ψ
(a)
0 , e(a)

m ] = 2γ e(a)
m , [ψ

(a+1)
0 , e(a)

m ] = −2γ e(a)
m ,

[ψ
(a)
0 , f (a)

m ] = −2γ f (a)
m , [ψ

(a+1)
0 , f (a)

m ] = 2γ f (a)
m

[ψ
(a+1)
1 , e(a)

m ] = (αa+1βa − αaβa+1) e(a)
m

+ (αa + βa+1)ψ
(a+1)
0 e(a)

m + (αa+1 + βa) e
(a)
m ψ

(a+1)
0 ,

[ψ
(a+1)
1 , f (a)

m ] = −(αa+1βa − αaβa+1) f (a)
m

− (αa+1 + βa)ψ
(a+1)
0 f (a)

m − (αa + βa+1) f (a)
m ψ

(a+1)
0 .

(8.36)

One can check that ψ0 ≡ ψ
(1)
0 + ψ

(2)
0 is the central term. Now one can study how to

find additional relations (i.e. Serre relations) such that the vacuum module of the reduced

quiver Yangian reproduces the generating function of the 2-colored plane partitions. For

simplicity, we leave the discussion of Serre relation for later (in section 8.2.2.3) after we

imposed the vertex constraint.

8.2.2.2 Truncation

To study the truncation of the algebra, consider a path from the origin o (on which the

atom has color a = 1) to another atom 1 with the same color, at which the growth of the

crystal stops. The coordinate function of the second atom can be written as

h( 1 ) = Nγ γ +N1 (α1 + α2) +N2 (α1 + β1) +N3 (β2 + α2) +N4 (β2 + β1) . (8.37)

Here Nγ counts the number of self-loops at the vertices 1 and 2 (recall γ1 = γ2 = γ), and

N1,2,3,4 counts the number of loops 1 → 2 → 1; since there are two choices of arrows for

both 1→ 2 and 2→ 1, one obtains 22 = 4 different choices.
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Figure 15. The bipartite graph for the (C2/Z2)× C geometry.

We still need to fully take into account the loop constraints (8.33). Eliminating β1 and

β2, one obtains the truncation condition to be

γ (Nγ −N2 −N3 − 2N4) + (α1 + α2) (N1 −N4) + (ψ
(1)
0 + ψ

(2)
0 ) = 0 . (8.38)

We find that the truncation is described by a set of two integers, namely the two coefficients

in front of γ and α1 + α2, respectively.

We can compare this with the expectation from the perfect matchings. The bipartite

graph is shown in figure 15, and leads to five perfect matchings as shown in figure 16. They

correspond to five different combinations of parameters

γ1 + γ2 = 2γ , α1 + α2 , β1 + β2 , α1 + β2 , α2 + β1 . (8.39)

Of these five, only the first three correspond to the corner lattice points of the toric diagram:

γ1 + γ2 = 2γ , α1 + α2 , β1 + β2 = 2γ − (α1 + α2) , (8.40)

and these span almost the same combinations as in (8.38) above, except that the D4-branes

give even integer coefficients in front of γ.

8.2.2.3 Affine Yangian of gl2

In addition to the loop constraint (8.33), we can also impose the vertex constraint (4.31),

which in this case give

α1 + β2 = α2 + β1 . (8.41)

The loop constraint (8.33) and the vertex constraint (8.41) together give

α1 = α2 ≡ h1 , β1 = β2 ≡ h2 , γ1 = γ2 = γ ≡ h3 ,

and h1 + h2 + h3 = 0 .
(8.42)

Namely, after imposing the vertex constraints on top of the loop constraint, we have two

parameters (h1, h2), same as in the case of the affine Yangian of gl1 for C3.

Restricting the parameters to (8.42), the bond factors (8.34) become:

ϕa⇒a(u) =
u+ h3

u− h3
and ϕa+1⇒a(u) =

(u+ h1)(u+ h2)

(u− h1)(u− h2)
, (8.43)
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Figure 16. The perfect matchings for the (C2/Z2)×C geometry. There are five perfect matchings,

corresponding to the combination of parameters α1 + α2, β1 + β2, γ1 + γ2, α1 + β2, α2 + β1.

The resulting algebra is given by restricting the charges in (8.35) as in (8.42). The initial

conditions becomes

Initial:


[ψ

(a)
0 , e(a)

m ] = 2h3 e
(a)
m , [ψ

(a+1)
0 , e(a)

m ] = −2h3 e
(a)
m ,

[ψ
(a)
0 , f (a)

m ] = −2h3 f
(a)
m , [ψ

(a+1)
0 , f (a)

m ] = 2h3 f
(a)
m ,

[ψ
(a+1)
1 , e(a)

m ] = −h3 {ψ(a+1)
0 , e(a)

m } ,
[ψ

(a+1)
1 , f (a)

m ] = h3 {ψ(a+1)
0 , f (a)

m } .

(8.44)

Finally, the relations above can be supplemented by the Serre relations

Serre :

Symz1,z2,z3

[
e(a)(z1) ,

[
e(a)(z2) ,

[
e(a)(z3) , e(a±1)(w)

]]]
∼ 0 ,

Symz1,z2,z3

[
f (a)(z1) ,

[
f (a)(z2) ,

[
f (a)(z3) , f (a±1)(w)

]]]
∼ 0 ,

(8.45)

It only remains to check that after imposing the Serre relations, the character of the

vacuum module of the algebra reproduces the generating function of the 2-colored partition

functions. In the class of (C2/Zn)×C, which corresponds to affine Yangian of gl2, the case

n = 2 is special in that the Serre relations given in the literature is quartic. However,
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as we show in appendix, we already need additional relations at the level of three atoms;

namely, we need Serre relations in the form of cubic relations. One can derive a pair of

cubic relations using the quartic Serre relations (8.45) and the mode version of the OPE

relation (8.35). However, the computation is rather involved, and we leave it to future

work.

8.2.3 (C2/Zn)× C and affine Yangian of gln

8.2.3.1 (C2/Zn)× C

For C2/Zn × C, the toric diagram and its dual graph are

(0,0)

(0,1)

(0,2)

(0,n)

(1,0)

3(1)

3(2)

3(n)

1

(8.46)

The quiver diagram for C2/Zn × C is

1

2

3

n

n−1

γ1

γ2

γ3

γn

γn−1

α1

β1

α2β2

αn

βn

αn−1 βn−1

(8.47)

with super potential

W =
n∑
a=1

Tr[−Φa,a Φa,a+1 Φa+1,a + Φa,a Φa,a−1 Φa−1,a] , (8.48)

and the charges assignment

Φa,a+1 : αa , Φa+1,a : βa , Φa,a : γa . (8.49)
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γn

γ1

1 n2

n

2
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13

1
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β2 β1

αn

α1

γ1

γ1

γn

γ2

Figure 17. Two ways to draw the periodic quiver (C2/Zn) × C. The left one shows that the

representation can be realized by coloring the plane partitions, whereas the right one is for later

comparison with the periodic quiver for the generalized conifolds. Note that this shows only part

of the periodic quiver diagram around the vertex 1.

We see that all vertices are bosonic:

|a| = 0 , a = 1, 2, · · · , n , (8.50)

since there is a self-loop for each of them in the quiver.

The periodic quiver for (8.47) is given in figure 17, where we have shown only the

part of the graph around the vertex 1; the full graph is obtained by periodically extending

the graph. Comparing the left drawing in figure 17 with the left one in figure 11 (i.e.

the periodic quiver that gives the affine Yangian of gl1), we see the representation of the

algebra for (C2/Zn)×C can be obtained by coloring the plane partitions by the following

rules: the box at the origin has color 1; the color increases by 1 as one moves by one step

along the positive x1 direction, decreases by 1 by each step along the positive x2 direction,

and remains the same along the x3 direction.

Again, the loop constraint (4.1) gives

αa + βa + γa = 0 and αa + βa + γa−1 = 0 , for a = 1, 2, . . . , n , (8.51)

which gives

γ1 = γ2 = · · · = γn ≡ γ and αa +βa = αa+1 +βa+1 , for a = 1, 2, . . . , n , (8.52)

which are in total 2n − 1 independent constraints on the 3n variables (αa, βa, γa) with

a = 1, 2, . . . , n. Namely, the algebra for C2/Zn × C has n + 1 parameters. Again, the

central condition (8.12) is guaranteed by the loop constraint (8.52).

One can immediately read off the bond factors from the periodic quiver in figure 17

by the definition (4.11)

ϕa⇒a(u) =
u+ γ

u− γ
, ϕa⇒a+1(u) =

u+ βa
u− αa

, ϕa⇒a−1(u) =
u+ αa−1

u− βa−1
,

ϕa⇒b(u) = 1 , (b 6= a , a± 1) ,

(8.53)

where the indices are understood as mod n.
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The bond factors (8.53) give the algebra

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ ∆+γ
∆−γ e

(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ ∆+γ
∆−γ e

(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ ∆−γ
∆+γ f

(a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ ∆−γ
∆+γ f

(a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ ∆+βa
∆−αa

e(a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) e(a)(w) ∼ ∆+αa−1

∆−βa−1
e(a)(w)ψ(a−1)(z) ,

e(a+1)(z) e(a)(w) ∼ ∆+βa
∆−αa

e(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ ∆−αa
∆+βa

f (a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) f (a)(w) ∼ ∆−βa−1

∆+αa−1
f (a)(w)ψ(a−1)(z) ,

f (a+1)(z) f (a)(w) ∼ ∆−αa
∆+βa

f (a)(w) f (a+1)(z) ,

ψ(b)(z) e(a)(w) ∼ e(a)(w)ψ(b)(z) (b 6= a, a± 1) ,

e(b)(z) e(a)(w) ∼ e(a)(w) e(b)(z) (b 6= a, a± 1) ,

ψ(b)(z) f (a)(w) ∼ f (a)(w)ψ(b)(z) (b 6= a, a± 1) ,

f (b)(z) f (a)(w) ∼ f (a)(w) f (b)(z) (b 6= a, a± 1) ,

[e(a)(z) , f (b)(w)] ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(8.54)

Initial:


[ψ

(a−1)
0 , e(a)

m ] = −γ e(a)
m ,

[ψ
(a)
0 , e(a)

m ] = 2γ e(a)
m ,

[ψ
(a+1)
0 , e(a)

m ] = −γ e(a)
m ,

[ψ
(b)
0 , e(a)

m ] = 0 ,

[ψ
(a−1)
0 , f (a)

m ] = γ f (a)
m ,

[ψ
(a)
0 , f (a)

m ] = −2γ f (a)
m ,

[ψ
(a+1)
0 , f (a)

m ] = γ f (a)
m ,

[ψ
(b)
0 , f (a)

m ] = 0 , (b 6= a , a± 1) ,

(8.55)

where in the computation of the initial conditions, only equations with ` = 1 in the general

formula (8.5) is non-empty, since all the bond factors are of order 1. As a result, we only

have initial conditions on [ψ
(a)
0 , e

(b)
m ] and [ψ

(a)
0 , f

(b)
m ]. From the initial conditions one can

check that the combination
∑n

a=1 ψ
(a)
0 is indeed the central term of the algebra.

8.2.3.2 Serre relations

We now demonstrate how to check that the vacuum module of the reduced quiver Yangian

Y(Q,W ) reproduces the generating function of the colored crystals, using the example of

(C2/Zn)×C with n ≥ 3. In particular, we will show that the Serre relations are necessary

in reducing the number of the states to the correct counting. The case of n = 1 corresponds

to affine Yangian of gl1 and was explained in section 5.3. See appendix for a discussion on

the case of n = 2.

As we will explain later, the analysis is the same for all the (C2/Zn)× C with n ≥ 3,

since both the OPE relations and the Serre relations have the same structures for all n ≥ 3.

(As a contrast, the case of n = 1 and n = 2 are special.) For concreteness, we explain in

detail the case of n = 3.
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The generating function of the 3-colored plane partition (with the coloring scheme

explained in section 8.2.3.1) is

Z(q1, q2, q3) =
∑

n1,n2,n3

d(n1, n2, n3)qn1
1 qn2

2 qn3
3

=1 + q1 + (q2
1 + q1 q2 + q1 q3) + (q3

1 + q2
1 q2 + q2

1 q3 + 3 q1 q2 q3)

+ (q4
1 + q3

1 q2 + q3
1 q3 + q2

1 q
2
2 + q2

1 q
2
3 + 6 q2

1 q2 q3 + q1 q
2
2 q3 + q1 q2 q

2
3) + . . .

(8.56)

where d(n1, n2, n3) counts the number of distinct configurations with ni number of ith

colored atom in the crystal. Inside each bracket we have grouped all the terms with the

same total number of atoms N = n1 + n2 + n3.

Let us now reproduce the counting (8.56) level by level. As we will show presently,

the first non-trivial level is N = 3, which is the first level where one needs the Serre

relations in order to reduce the counting of the vacuum module of the quiver Yangian to

that of the reduced quiver Yangian in order to match the counting in (8.56). The Serre

relations introduced for the level N = 3 are actually sufficient for all higher levels. We will

demonstrate this explicitly for N = 4.

Vacuum. There is a unique vacuum:

(n1, n2, n3) = (0, 0, 0) : |∅〉 (8.57)

shown by the 1 in (8.56).

One atom. Since the leading atom has color a = 1 by our convention, there is only one

state with one atom: | 1 〉. Let us verify this in terms of e
(a)
n |∅〉.

The action of e(a)(z) on vacuum is

e(1)(z)|∅〉 =
#

z
| 1 〉 and e(2)(z)|∅〉 = e(3)(z)|∅〉 = 0 , (8.58)

which, when translated into modes, gives

e
(1)
0 |∅〉 = #| 1 〉 and e

(1)
n≥1|∅〉 = e

(2)
n≥0|∅〉 = e

(3)
n≥0|∅〉 = 0 . (8.59)

Namely, there is only one state at N = 1:

(n1, n2, n3) = (1, 0, 0) : e
(1)
0 |∅〉 . (8.60)

Two atoms. There are three possible configurations with two atoms: with (n1, n2, n3) =

(2, 0, 0), (1, 1, 0), and (1, 0, 1), respectively. We need to reproduce this counting in terms

of e
(b)
m e

(a)
n |∅〉.

Starting from the unique N = 1 state (8.60), the potential N = 2 states are

e(1)
n e

(1)
0 |∅〉 , e(2)

n e
(1)
0 |∅〉 , e(3)

n e
(1)
0 |∅〉 with n ∈ Z≥0 . (8.61)
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Now we use the mode version of the relevant algebraic relations from (8.54), namely

[e
(1)
n+1, e

(1)
m ]− [e(1)

n , e
(1)
m+1] = γ{e(1)

n , e(1)
m } ,

[e
(2)
n+1, e

(1)
m ]− [e(2)

n , e
(1)
m+1] = α1 e

(2)
n e(1)

m + β1 e
(1)
m e(2)

n ,

[e
(3)
n+1, e

(1)
m ]− [e(3)

n , e
(1)
m+1] = β3 e

(3)
n e(1)

m + α3 e
(1)
m e(3)

n ,

(8.62)

to eliminate the set (8.61) down to only three independent states:

e
(1)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(1)
0 |∅〉 , e

(3)
0 e

(1)
0 |∅〉 . (8.63)

They correspond to the three configurations with (n1, n2, n3) = (2, 0, 0), (1, 1, 0), and

(1, 0, 1), respectively. Note that for all affine Yangian of gln≥3, all the e
(a)
n e

(b)
m relations

are step-1 relations, irrespective of the relation between a and b. We see that the OPE

relations are enough to reproduce the counting up to N = 2 level, same as the case of affine

Yangian of gl1

Three atoms. From the generating function (8.56), we see that there are six different

configurations with N = 3 atoms, one with (n1, n2, n3) = (3, 0, 0), one with (n1, n2, n3) =

(2, 1, 0), one with (n1, n2, n3) = (2, 0, 1), and finally three with (n1, n2, n3) = (1, 1, 1). We

need to reproduce this counting in terms of states of the form e
(c)
` e

(b)
m e

(a)
n |∅〉.

Starting with the three independent states (8.63) with N = 2, applying e
(a)
n , and finally

using the relations (8.62) to eliminate dependent states, we have

(n1, n2, n3) = (3, 0, 0) : e
(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 1, 0) : e
(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(1)
1 e

(2)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 2, 0) : e
(2)
0 e

(2)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 0, 1) : e
(3)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(1)
1 e

(3)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 0, 2) : e
(3)
0 e

(3)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 1, 1) : e
(3)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 .

(8.64)

Comparing (8.64) with the counting (8.56) from the 3-colored crystal at the level N = 3, we

see that the states with (n1, n2, n3) = (3, 0, 0) and (1, 1, 1) match on the nose, whereas (8.64)

contains too many states for the other four classes, which all have the form e
(b)
` e

(b)
m e

(a)
n |∅〉

or e
(a)
` e

(b)
m e

(a)
n |∅〉 with b 6= a.

We see that we need Serre relations involving terms of the form e
(b)
` e

(b)
m e

(a)
n and

e
(a)
` e

(b)
m e

(a)
n with b 6= a. The correct Serre relations (for all n ≥ 3) turn out to be

Symz1,z2

[
e(a)(z1) ,

[
e(a)(z2) , e(a±1)(w)

]]
∼ 0 , (8.65)

whose mode version is

Symn1,n2

[
e(a)
n1
,
[
e(a)
n2
, e(a±1)
m

]]
= 0 . (8.66)

(There are also parallel Serre equations with e replaced by f . However we do not need

them for the computation of the vacuum characters.)

– 78 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

Using the Serre relation (8.66) to eliminate additional dependent states from the 2nd

to 4th lines of (8.64), we have

(n1, n2, n3) = (3, 0, 0) : e
(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 1, 0) : e
(2)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 0, 1) : e
(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 1, 1) : e
(3)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 ,

(8.67)

which match precisely with the counting (8.56) from the 3-colored crystal.

Four atoms and beyond. The generating function (8.56) indicates that there are 13

different configurations with N = 4 atoms, in 8 different classes. We need to reproduce

this counting in terms of states of the form e
(d)
k e

(c)
` e

(b)
m e

(a)
n |∅〉.

The analysis is similar to the case with three atoms. Applying the e
(a)
n generator on

the 6 states (8.67) from the level N = 3 and imposing the OPE relations (8.62), we get

(n1, n2, n3) = (4, 0, 0) : e
(1)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (3, 1, 0) : e
(2)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
1 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 2, 0) : e
(2)
0 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (3, 0, 1) : e
(3)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(1)
1 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 0, 2) : e
(3)
0 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 1, 1) : e
(3)
0 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(3)
1 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

e
(1)
0 e

(3)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 2, 1) : e
(2)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 , e

(2)
1 e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 ,

e
(2)
0 e

(3)
0 e

(2)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 1, 2) : e
(3)
0 e

(3)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(3)
0 e

(3)
1 e

(2)
0 e

(1)
0 |∅〉 , e

(3)
1 e

(3)
1 e

(2)
0 e

(1)
0 |∅〉 ,

e
(3)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 ,

(8.68)

which contain more states than the counting (8.56) indicates.
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However, after applying Serre relation (8.66), the independent states in (8.68) are

reduced to

(n1, n2, n3) = (4, 0, 0) : e
(1)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (3, 1, 0) : e
(2)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 2, 0) : e
(2)
0 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (3, 0, 1) : e
(3)
0 e

(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 0, 2) : e
(3)
0 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (2, 1, 1) : e
(3)
0 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(3)
1 e

(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(3)
0 e

(1)
0 e

(1)
0 |∅〉 ,

e
(1)
0 e

(3)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 , e

(1)
0 e

(2)
1 e

(3)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 2, 1) : e
(2)
0 e

(2)
0 e

(3)
0 e

(1)
0 |∅〉 ,

(n1, n2, n3) = (1, 1, 2) : e
(3)
0 e

(3)
0 e

(2)
0 e

(1)
0 |∅〉 ,

(8.69)

which match precisely with the counting (8.56) from the 3-colored crystal. The higher level

(with more than 5 atoms) can be checked in this way.

We emphasize that although we have only shown the detailed computation for (C2/Zn)×
C with n = 3, the computation for all n ≥ 3 works in exactly the same way, and the expres-

sions for all n ≥ 3 have the same structure. The reason is that both the OPE relations (8.54)

and the Serre relations (8.65) have exactly the same structure for all n ≥ 3.

8.2.3.3 Truncation

For the truncation, consider a path from the origin o to an atom 1 of color a = 1, at

which the growth of the crystal stops. The coordinate function of this atom 1 is

h( 1 ) =

n∑
a=1

Nγaγa +

n∑
a=1

Na(αa + βa) +Nα

n∑
a=1

αa +Nβ

n∑
a=1

βa , (8.70)

where Nγa denotes the number of edges with γa in the path, Na the number of segment

a → a + 1 → a, Nα the number of the segment 1 → 2 → · · · → n → 1, and Nβ the

number of segment 1 → n → · · · → 2 → 1. Using the loop constraint (8.51) and (8.52),

the coordinate function can be rewritten as

h( 1 ) = γ
n∑
a=1

(Nγa −Na −Nβ) +

(
n∑
a=1

αa

)
(Nα −Nβ) , (8.71)

Therefore the algebra truncates when the parameter {αa, γ} satisfy

γ
n∑
a=1

(Nγa −Na −Nβ) +

(
n∑
a=1

αa

)
(Nα −Nβ) +

n∑
a=1

ψ
(a)
0 = 0 , (8.72)

namely the truncation can be characterized by the two integer coefficients multiplying γ

and (
∑n

a=1 αa).
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We can compare this result with expectations from perfect matchings. While the

number of perfect matchings grows quickly as n increases, one can draw the bipartite

graphs and perfect matchings (as in figures 15 and 16 for n = 2), and one finds that the

perfect matchings correspond to linear combinations of the form

nγ ,

{
α1

β1

}
+ · · ·+

{
αn
βn

}
, (8.73)

where in the second term we choose either αi or βi for each i = 1, . . . , n. Out of these

combinations only three correspond to lattice points in the corner of the toric diagram

(which in this case is a triangle):

nγ , α1 + · · ·+ αn , β1 + · · ·+ βn = nγ − (α1 + · · ·+ αn) . (8.74)

The span of the three again gives rise to integer span of nγ and
∑n

a=1 αa. This almost

matches the result above in (8.72), except that the coefficient for γ is a multiplet of n, as

in the case of n = 2 before.

8.2.3.4 Affine Yangian of gln

If in addition to the loop constraint (8.52), we impose the vertex constraint (4.31), which

in this case give

αa − βa = αa+1 − βa+1 for a = 1, 2, · · · , n , (8.75)

which together with the loop constraint (8.52) give

α1 = α2 = · · · = αn ≡ h1 , β1 = β2 = · · · = βn ≡ h2 , γ1 = γ2 = · · · = γn ≡ h3 ,

and h1 + h2 + h3 = 0 .
(8.76)

Namely, after imposing the vertex constraints (8.75) on top of the loop constraint (8.52),

we have two parameters (h1, h2), same as in the case of the affine Yangian of gl1 for C3

and the affine Yangian of gl2 for C3/Z2.

With the restriction of the n+ 1 parameters to the two parameters (h1, h2), the bond

factors in (8.53) become

ϕa⇒a(u) =
u+ h3

u− h3
, ϕa⇒a+1(u) =

u+ h2

u− h1
, ϕa⇒a−1(u) =

u+ h1

u− h2
,

ϕa⇒b(u) = 1 , (b 6= a , a± 1) ,

(8.77)

which gives the algebra
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OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ ∆+h3
∆−h3 e

(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ ∆+h3
∆−h3 e

(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ ∆−h3
∆+h3

f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ ∆−h3
∆+h3

f (a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ ∆+h2
∆−h1 e

(a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) e(a)(w) ∼ ∆+h1
∆−h2 e

(a)(w)ψ(a−1)(z) ,

e(a+1)(z) e(a)(w) ∼ ∆+h2
∆−h1 e

(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ ∆−h1
∆+h2

f (a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) f (a)(w) ∼ ∆−h2
∆+h1

f (a)(w)ψ(a−1)(z) ,

f (a+1)(z) f (a)(w) ∼ ∆−h1
∆+h2

f (a)(w) f (a+1)(z) ,

ψ(b)(z) e(a)(w) ∼ e(a)(w)ψ(b)(z) (b 6= a, a± 1) ,

e(b)(z) e(a)(w) ∼ e(a)(w) e(b)(z) (b 6= a, a± 1) ,

ψ(b)(z) f (a)(w) ∼ f (a)(w)ψ(b)(z) (b 6= a, a± 1) ,

f (b)(z) f (a)(w) ∼ f (a)(w) f (b)(z) (b 6= a, a± 1) ,

[e(a)(z) , f (b)(w)] ∼ −δa,b ψ
(a)(z)− ψ(a)(w)

z − w
,

(8.78)

Initial:


[ψ

(a−1)
0 , e(a)

m ] = − e(a)
m ,

[ψ
(a)
0 , e(a)

m ] = 2 e(a)
m ,

[ψ
(a+1)
0 , e(a)

m ] = − e(a)
m ,

[ψ
(b)
0 , e(a)

m ] = 0 ,

[ψ
(a−1)
0 , f (a)

m ] = f (a)
m ,

[ψ
(a)
0 , f (a)

m ] = −2f (a)
m ,

[ψ
(a+1)
0 , f (a)

m ] = f (a)
m ,

[ψ
(b)
0 , f (a)

m ] = 0 (b 6= a , a± 1) ,

(8.79)

Serre :

Symz1,z2

[
e(a)(z1) ,

[
e(a)(z2) , e(a±1)(w)

]]
∼ 0 ,

Symz1,z2

[
f (a)(z1) ,

[
f (a)(z2) , f (a±1)(w)

]]
∼ 0 ,

(8.80)

where we have supplemented the algebra with Serre relations. Note that the initial condi-

tions on ψ
(a)
0 and e

(b)
m give the algebra of sln.

Finally, one can check that the Serre relations are needed to reproduce the generating

function of the n-colored plane partitions by the vacuum module of the reduced quiver

Yangian. We leave detailed discussions to appendix.

8.3 Quiver Yangian for generalized conifolds and affine Yangian of glm|n

Let us next discuss the toric Calabi-Yau geometries described by the algebraic equation

xy = zmwn , (8.81)

where x, y, z, w are complex numbers and m,n are non-negative integers (excluding m =

n = 0). We can assume m ≥ n without loss of generality.

The geometry (8.81) is sometimes called the generalized conifold, and is the most

general toric Calabi-Yau geometry without compact 4-cycles (mathematically, such toric

Calabi-Yau singularities are known to have small resolutions). The case of n = 0 are the
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Figure 18. The toric diagram for the generalized conifold geometry of (8.81).

Figure 19. The choice of the resolution of the singularity is encoded by the signs σ. We here show

two choices of σ, σ1 = {+1,+1,+1,−1,−1} (left) and σ2 = {+1,+1,−1,+1,−1} (right).

Am singularities (C2/Zm)×C studied in section 8.2 (which includes C3 as the special case

m = 1, n = 0), and the case of m = n = 1 is the conifold (see section 8.3.6). The toric

diagram, up to a suitable SL(2,Z)-transformation, can be chosen as in figure 18.

8.3.1 Quivers and superpotentials

When discussing BPS crystals it is important to note that there are several different quiver

gauge theories corresponding to the same geometry (8.81); their quiver diagrams are dif-

ferent but they all have the same moduli space of vacua, and the module categories of their

associated path algebras are derived-equivalent.

Geometrically, such ambiguities arise from the choice of the resolution of the singular-

ity (8.81). This is described by a choice of the triangulation of the toric diagram, and any

two such choices are related by a sequence of flop transitions. Combinatorially, this choice

is encoded by a set of signs σ, which has m +1’s and n −1’s [11, 15] (see figure 19):

σ : {1, 2, . . . ,m+ n} → {+1,−1} such that #(+1) = m, #(−1) = n . (8.82)

For our later purposes we can regard the domain periodically as Zm+n, so that σ is a map

from Zm+n to {+1,−1}.
Given these data, we can identify the quiver diagram as follows [11]:

• We have m+ n vertices a = 1, . . . ,m+ n.

• For each vertex a we have an arrow from a to a+ 1, and another from a+ 1 to a (the

quiver is therefore non-chiral).

• We have an arrow starting and ending at the same vertex a when σa = σa+1; otherwise

we do not have such an arrow. From the grading rule (4.8) one finds that in the former

case the vertex a is an even vertex (|a| = 0), where in the latter case an odd vertex

(|a| = 1).
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a

a+ 1a− 1

Φa,a

Φa,a+1

Φa+1,a

Φa−1,a

Φa,a−1

a

a+ 1a− 1

Φa,a+1

Φa+1,a
Φa−1,a

Φa,a−1

Figure 20. The quiver diagram around a vertex a. Depending on whether we have σa = σa+1 or

σa = −σa+1 we require superpotential terms as in (8.83).

• There are no arrows from vertex a to b when |a−b| ≥ 2, where a and b are considered

mod m+ n.

Here the indices a, b, . . . are regarded as an element of Zm+n.

Let us describe the superpotential W . For each vertex a, we add superpotential terms

W 3

{
−σaTr(Φa,aΦa,a+1Φa+1,a) + σaTr(Φa,aΦa,a−1Φa−1,a) (σa = σa+1) ,

σaTr(Φa,a+1Φa+1,aΦa,a−1Φa−1,a) (σa = −σa+1) ,
(8.83)

where as before Φa,b denotes the bifundamental chiral multiplet corresponding to the arrow

from a vertex a to a vertex b.

The charge assignment for the bifundamental multiplets is described in terms of

(αa, βa, γa):

Φa,a+1 7→ αa , Φa+1,a 7→ βa , Φa,a 7→ γa . (8.84)

The loop constraints imposed by the superpotential terms (8.83) have different forms for

the case with σa = σa+1 and σa = −σa+1:

σa = σa+1 :

{
αa−1 + βa−1 + γa = 0 ,

αa + βa + γa = 0 ,

σa = −σa+1 : αa−1 + βa−1 + αa + βa = 0 .

(8.85)

Again, one can check that the central condition (8.12) is guaranteed by the loop con-

straint (8.85).

The loop constraints (8.85) for the two scenarios can be rewritten in a uniformed way:

αa + βa = −σa+1 γ and γa =

(
σa + σa+1

2

)
γ , (8.86)

for all a. Imposing (8.86) leaves us with m+n+ 1 variables, i.e. αa for a = 1, 2, . . . ,m+n

and γ. The charge assignment is summarized in figure 21, satisfying (8.86).
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a

a+ 1a− 1

(σa+σa+1

2 ) γ

αa

βa

αa−1

βa−1

Figure 21. The charge assignment for the bifundamental/adjoint chiral multiplets around a vertex

a, with the constraint αa + βa = −σa+1 γ.

Figure 22. The building blocks for the bipartite graphs for the generalized conifold geometry. For

a ∈ Zm+n one stacks the hexagons as above (squares as below) when σa+1 = σa (σa+1 = −σa).

8.3.2 Periodic quivers and dimers

The quiver and the superpotential described above are sufficient for the discussion of the

BPS quiver Yangian. Let us nevertheless describe the periodic quiver [11], which will be

needed for the explicit construction of the BPS crystal melting, as well as for the discussion

of the truncation of the algebra later in section 8.3.4.

Instead of directly writing down the periodic quiver, it is useful to discuss its dual

graph, which is a bipartite graph known as the brane tiling.

Let us again start with a choice of the signs σ. We consider m+n stacks of fundamen-

tal building blocks as shown in figure 22, either hexagons or squares (with length of each

edge 1). For a ∈ Zm+n one consider hexagons (squares) when σa+1 = σa (σa+1 = −σa).
One then chooses a fundamental region such that the parallelogram representing the fun-

damental region is shifted by m − n units. The examples of m = 3, n = 2 are shown in

figure 23. We can then choose a fundamental region as in figure 23.

The dual graph of the bipartite graph gives the periodic quiver, which in turn gives

the quiver and the superpotential. For the examples of figure 23, they are shown as in

figure 24.
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Figure 23. The bipartite graphs for m = 3, n = 2, for the two sign choices σ1 =

{+1,+1,+1,−1,−1} and σ2 = {+1,+1,−1,+1,−1}. The shaded regions are the fundamental

regions of the torus.

Figure 24. The bipartite graphs for m = 3, n = 2, for the two sign choices σ1 =

{+1,+1,+1,−1,−1} and σ2 = {+1,+1,−1,+1,−1}. The region enclosed by the dotted lines

is the fundamental region of the torus.

8.3.3 Algebra

We can now write down the algebra.

In order to write down the OPE relations one first needs to know the Bose/Fermi

statistics of the generators. From the rules of the quiver diagrams above, the presence/ab-

sence of the arrows starting and ending on the same vertex a depends on the relative

sign of σa and σa+1 — it then follows from the grading rule of (4.8) that the genera-

tors e(a)(z), f (a)(z), ψ(a)(z) are bosonic (even) when σa = σa+1, and fermionic (odd) when
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σa = −σa+1. The OPE relations are then determined by the function

ϕa⇒b(u) =

∏
I∈{b→a}(u+ hI)∏
J∈{a→b}(u− hJ)

, (8.87)

which gives for example

e(a)(z)e(b)(w) ∼ (−1)|a||b| ϕb⇒a(∆) e(b)(w) e(a)(z) . (8.88)

Let us first concentrate on the general case m+ n ≥ 3. The special case of m+ n ≤ 2

need to be considered separately: in particular, the case of C3 (m = 1, n = 0) and C2/Z2×C
(m = 2, n = 0) have been considered in section 8.2.1 and 8.2.3, and the resolved conifold

(m = n = 1) will be considered in section 8.3.6. When m+ n ≥ 3, for any pair of vertices

a, b there is at most one arrow in the quiver from vertex a to vertex b (this is the case even

for the cases with a = b):

ϕa⇒a+1(u) =
u+ βa
u− αa

, ϕa⇒a−1(u) =
u+ αa−1

u− βa−1
,

ϕa⇒a(u) =
u+ (σa + σa+1)γ/2

u− (σa + σa+1)γ/2
,

(8.89)

and all other ϕa⇒b trivial. Now it is straightforward to write down the algebra

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ ∆+(σa+σa+1)γ/2
∆−(σa+σa+1)γ/2 e

(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ (−1)|a|∆+(σa+σa+1)γ/2
∆−(σa+σa+1)γ/2 e

(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ ∆−(σa+σa+1)γ/2
∆+(σa+σa+1)γ/2 f

(a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ (−1)|a|∆−(σa+σa+1)γ/2
∆+(σa+σa+1)γ/2 f

(a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ ∆+βa
∆−αa

e(a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) e(a)(w) ∼ ∆+αa−1

∆−βa−1
e(a)(w)ψ(a−1)(z) ,

e(a+1)(z) e(a)(w) ∼ (−1)|a||a+1|∆+βa
∆−αa

e(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ ∆−αa
∆+βa

f (a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) f (a)(w) ∼ ∆−βa−1

∆+αa−1
f (a)(w)ψ(a−1)(z) ,

f (a+1)(z) f (a)(w) ∼ (−1)|a||a+1|∆−αa
∆+βa

f (a)(w) f (a+1)(z) ,

ψ(b)(z) e(a)(w) ∼ e(a)(w)ψ(b)(z) (b 6= a, a± 1) ,

e(b)(z) e(a)(w) ∼ (−1)|a||b|e(a)(w) e(b)(z) (b 6= a, a± 1) ,

ψ(b)(z) f (a)(w) ∼ f (a)(w)ψ(b)(z) (b 6= a, a± 1) ,

f (b)(z) f (a)(w) ∼ (−1)|a||b|f (a)(w) f (b)(z) (b 6= a, a± 1) ,[
e(a)(z) , f (b)(w)

}
∼ −δa,b ψ

(a)(z)− ψ(b)(w)

z − w
,

(8.90)

together with the initial conditions
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Initial:



[ψ
(a)
0 , e(a)

m ] = (σa + σa+1) γ e(a)
m ,

[ψ
(a)
0 , f (a)

m ] = −(σa + σa+1) γ f (a)
m ,

[ψ
(a+1)
0 , e(a)

m ] = −σa+1 γ e
(a)
m ,

[ψ
(a+1)
0 , f (a)

m ] = σa+1 γ f
(a)
m ,

[ψ
(a−1)
0 , e(a)

m ] = −σa γ e(a)
m ,

[ψ
(a−1)
0 , f (a)

m ] = σa γ f
(a)
m ,

[ψ
(b)
0 , e(a)

m ] = [ψ
(b)
0 , f (a)

m ] = 0 (b 6= a , a± 1) ,

(8.91)

from which one can check that the combination ψ0 ≡
∑m+n

a=1 ψ
(a)
0 is a central term.

8.3.4 Truncation

The truncation condition for the algebra for the generalized conifold can be derived in a

similar way to the one for the algebra of (C2/Zn)× C, given in (8.72).

Consider a path from the origin o to an atom 1 of color a = 1, at which the growth

of the crystal stops. The coordinate function of this atom 1 is

h( 1 ) =

m+n∑
a=1

Nγaγa +

m+n∑
a=1

Na(αa + βa) +Nα

m+n∑
a=1

αa +Nβ

m+n∑
a=1

βa , (8.92)

where Nγa denotes the number of edges with γa in the path, Na the number of segment

a → a + 1 → a, Nα the number of the segment 1 → 2 → · · · → m + n → 1, and Nβ the

number of segment 1→ m+n→ · · · → 2→ 1. This is identical to the coordinate function

of the truncation atom 1 for (C2/Zn)× C (see (8.70)).

The difference from the case of (C2/Zn)×C enters through the loop constraints (8.86)

(cf. (8.51) and (8.52) for (C2/Zn) × C). Imposing (8.86) reduces the coordinate func-

tion (8.92) to

h( 1 ) = γ

m+n∑
a=1

(
Nγa(σa + σa+1)

2
− (Na +Nβ)σa+1

)
+

(
m+n∑
a=1

αa

)
(Nα −Nβ) . (8.93)

Therefore the algebra truncates when the parameters {αa, γ} satisfy

γ
m+n∑
a=1

(
Nγa(σa + σa+1)

2
− (Na +Nβ)σa+1

)
+

(
m+n∑
a=1

αa

)
(Nα−Nβ)+

m+n∑
a=1

ψ
(a)
0 = 0 , (8.94)

namely the truncation can be characterized by the two integer coefficients multiplying γ

and (
∑m+n

a=1 αa).

We can compare this result with perfect matchings. Since in general there are many

(2n+ 2m) perfect matchings, we will present all the details only for examples of m = n = 1

and m = 2, n = 1 below. We can nevertheless present here the linear combinations which

appear in perfect matchings, for the choice of sign σ = {+, . . . ,+,−, . . . ,−}:

(n− 1)γ +
∑

a:σa+1=+

{
αa
βa

}
, (m− 1)γ +

∑
a:σa+1=−

{
αa
βa

}
, (8.95)
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of which four correspond to corner perfect matchings:

(n− 1)γ +

{∑
a:σa+1=+ αa∑
a:σa+1=+ βa

}
, (m− 1)γ +

{∑
a:σa+1=− αa∑
a:σa+1=− βa

}
, (8.96)

One can choose a basis for the integer span of these vectors to be

(n− 1)γ +
∑

a:σa+1=+

αa , (m− 1)γ +
∑

a:σa+1=−
αa , gcd(n− 2,m− 2)γ . (8.97)

8.3.5 Vertex constraint and affine Yangian of glm|n

The vertex constraint (4.31) is

αa−1 − βa−1 = αa − βa (8.98)

for any vertex a. Imposing the vertex constraint (8.98) on top of the loop constraints (8.86),

we have
σa = σa+1 : αa = αa−1 , βa = βa−1 , γa = σa γ .

σa = −σa+1 : αa = −βa−1 , βa = −αa−1 , γa = 0 .
(8.99)

with αa, βa and γ obeying αa + βa + σa+1γ = 0.

Now we can give the charge assignment in the presence of both loop and vertex con-

straints. First, define γ ≡ h3. Then without loss of generality, we can define, for an

arbitrary vertex a,

αa−1 ≡ σa h1 , βa−1 ≡ σa h2 , γa ≡
(
σa + σa+1

2

)
h3 , (8.100)

where (h1, h2, h3) satisfy h1 +h2 +h3 = 0. Then applying the constraints (8.99) iteratively

starting from vertex a, we have the general rule for the charge assignment with the vertex

constraint (see figure 25):

• The arrow in the clockwise direction (vertex a to vertex a + 1) has a weight αa =

σa+1h1 or σa+1h2, where the choice of h1 versus h2 flips whenever we cross the odd

quiver vertex a.

• Similarly, the arrow in the clockwise direction (vertex a+ 1 to vertex a) has a weight

βa = σa+1h1 or σa+1h2, where again the choice of h1 versus h2 flips whenever we

cross the odd quiver vertex a.

• When σa = σa+1 we have an arrow starting and ending at the vertex a, to which we

assign a charge σah3.

For example, consider the case of m = 3, n = 2. We show in figure 26 quiver diagrams for

two choices σ1 = {+1,+1,+1,−1,−1} and for σ2 = {+1,+1,−1,+1,−1}.
Given the charge assignment, and the fact that the exchange of h1, h2 and the simul-

taneous flip of the orientation of all the arrows preserve the weights of the quiver, we can

write the bond factor (8.89) ϕa⇒b(u) as

ϕa⇒b(u) =
u+ ((Q+)a,bh1 + (Q−)a,bh2)

u− ((Q+)a,bh2 + (Q−)a,bh1)
, (8.101)
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a

a+ 1a− 1

(σa+σa+1

2 )h3

σa+1h1

σa+1h2

σah1

σah2

a

a+ 1a− 1

σa+1h2

σa+1h1σah1

σah2

Figure 25. The charge assignment to the bifundamental/adjoint chiral multiplets around a vertex

a. Note we have σa = σa+1 on the left and σa = −σa+1 on the right.

1

2

34

5

h3

h3

−h3

h1

h2

h1
h2

−h2

−h1

−h2−h1

h1

h2

1

2

34

5

h3

h1

h2

-h2
-h1

h1

h2

-h2-h1

h1

h2

Figure 26. The quiver diagram for the choices σ = {+1,+1,+1,−1,−1} and σ =

{+1,+1,−1,+1,−1}

where Q+ and Q− are matrices such that (Q+)a,a = (Q−)a,a for all vertices a.

The explicit expression for Q+ and Q− are (recall the charge assignments in figure 25

as well as the relation h1 + h2 + h3 = 0):

Q+
a,b = −σa + σa+1

2
δa,b +

σa+1 − 1

2
δa+1,b +

σa + 1

2
δa−1,b ,

Q−a,b = −σa + σa+1

2
δa,b +

σa+1 + 1

2
δa+1,b +

σa − 1

2
δa−1,b .

(8.102)

It turns out that the algebra defined from the function ϕa⇒b coincides with the relations

of the affine Yangian of glm|n, up to Serre relations which we come to momentarily.

This is slightly easier if we define a symmetric matrix A and an anti-symmetric matrix

M by

A := −Q+ −Q− , M := −Q+ +Q− , (8.103)
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so that
Aa,b = (σa + σa+1) δa,b − σa+1 δa+1,b − σa δa−1,b ,

Ma,b = δa+1,b − δa−1,b .
(8.104)

We can then write

ϕa⇒b(u) =
u+ (Ma,b (h2 − h1) +Aa,b h3)/2

u+ (Ma,b (h2 − h1)−Aa,b h3)/2
. (8.105)

This coincides with the same function for the affine Yangian for the Lie superalgebra glm|n,

which in turn arises from the rational reduction of the quantum toroidal glm|n algebra

constructed recently in [66, 67]36 (which generalizes the case of quantum toroidal gln con-

structed earlier in [63]). In particular, the symmetric matrix A is nothing but the Dynkin

diagram for the Lie superalgebra ĝlm|n. In this language, different choices of the signs σ are

interpreted as different choices of the simple roots and of the Dynkin diagram for the Lie

superalgebra glm|n. (It is known that the choice of the Dynkin diagram is not unique, see

e.g. [68] for review of Lie superalgebras). The ambiguity of the quiver gauge theory, which

as we have seen corresponds to the ambiguity in the choice of the resolution of the toric

diagram, now is identified precisely with the ambiguity of the Dynkin diagram of the Lie

superalgebra. Moreover the boson/fermion statistics of the generators as we derived from

the quiver diagram coincides with the even/odd nature of the Lie superalgebra generators.

The quantum toroidal algebra in principle depends on the choice of the sign σ, however

it has recently been shown that algebras with different choices of the signs are related by

toroidal braid groups [67]. This is the mathematical manifestation of the physical statement

that different quiver gauge theories describe the same geometry.37

Note that for the identification for the affine Lie superalgebra, it is crucial that both

our quiver and the superpotential are invariant under a cyclic permutation of the signs σ.

This existence of the affine Weyl group symmetry was noticed before, and also appears

in the chamber structure of the Kähler moduli space when we consider BPS wall crossing

phenomena [11, 15].

The bond factor (8.105) is only non-trivial when b = a, a± 1:

ϕa⇒a(u) =
u+ (σa + σa+1)h3/2

u− (σa + σa+1)h3/2
,

ϕa⇒a+1(u) =
u+ (h2 − h1 − σa+1 h3)/2

u+ (h2 − h1 + σa+1 h3)/2
,

ϕa⇒a−1(u) =
u+ (h1 − h2 − σa h3)/2

u+ (h1 − h2 + σa h3)/2
,

(8.107)

36In the notations of [66], the quantum-toroidal counterpart of the function (8.105) is given by

ϕa⇒b
trig. (u) =

(
dM̂a,bz − q−1w

dM̂a,bq−1z − w

)Âa,b

, (8.106)

where q1 = dq−1, q2 = q2, q3 = d−1q−1, Âa,b = Aa,b, and M̂a,b = −σa+1 δa+1,b + σa δa−1,b. After taking the

trigonometric limit, using the fact that Âa,bM̂a,b = Ma,b, and finally identifying their (h1, h2, h3) with our

(h2, h3, h1), one obtains (8.105).
37The special choice s = {+1,+1, . . . ,+1,−1,−1, . . . ,−1} corresponds to the so-called distinguished

Cartan matrix in the Lie superalgebra literature.
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which gives the algebra

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ ∆+(σa+σa+1)h3/2
∆−(σa+σa+1)h3/2

e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ (−1)|a|∆+(σa+σa+1)h3/2
∆−(σa+σa+1)h3/2

e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ ∆−(σa+σa+1)h3/2
∆+(σa+σa+1)h3/2

f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ (−1)|a|∆−(σa+σa+1)h3/2
∆+(σa+σa+1)h3/2

f (a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ ∆+(h2−h1−σa+1 h3)/2
∆+(h2−h1+σa+1 h3)/2 e

(a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) e(a)(w) ∼ ∆+(h1−h2−σa h3)/2
∆+(h1−h2+σa h3)/2 e

(a)(w)ψ(a−1)(z) ,

e(a+1)(z) e(a)(w) ∼ (−1)|a||a+1|∆+(h2−h1−σa+1 h3)/2
∆+(h2−h1+σa+1 h3)/2 e

(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ ∆+(h2−h1+σa+1 h3)/2
∆+(h2−h1−σa+1 h3)/2 f

(a)(w)ψ(a+1)(z) ,

ψ(a−1)(z) f (a)(w) ∼ ∆+(h1−h2+σa h3)/2
∆+(h1−h2−σa h3)/2 f

(a)(w)ψ(a−1)(z) ,

f (a+1)(z) f (a)(w) ∼ (−1)|a||a+1|∆+(h2−h1+σa+1 h3)/2
∆+(h2−h1−σa+1 h3)/2 f

(a)(w) f (a+1)(z) ,

ψ(b)(z) e(a)(w) ∼ e(a)(w)ψ(b)(z) (b 6= a, a± 1) ,

e(b)(z) e(a)(w) ∼ (−1)|a||b|e(a)(w) e(b)(z) (b 6= a, a± 1) ,

ψ(b)(z) f (a)(w) ∼ f (a)(w)ψ(b)(z) (b 6= a, a± 1) ,

f (b)(z) f (a)(w) ∼ (−1)|a||b|f (a)(w) f (b)(z) (b 6= a, a± 1) ,

[e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(8.108)

Initial:



[ψ
(a)
0 , e(a)

m ] = (σa + σa+1)h3 e
(a)
m ,

[ψ
(a)
0 , f (a)

m ] = −(σa + σa+1)h3 f
(a)
m ,

[ψ
(a+1)
0 , e(a)

m ] = −σa+1 h3 e
(a)
m ,

[ψ
(a+1)
0 , f (a)

m ] = σa+1 h3 f
(a)
m ,

[ψ
(a−1)
0 , e(a)

m ] = −σa h3 e
(a)
m ,

[ψ
(a−1)
0 , f (a)

m ] = σa h3 f
(a)
m ,

[ψ
(b)
0 , e(a)

m ] = [ψ
(b)
0 , f (a)

m ] = 0 (b 6= a , a± 1) ,

(8.109)

Serre :



{
Symz1,z2

[
e(a)(z1) ,

[
e(a)(z2) , e(a±1)(w)

]]
∼ 0 ,

Symz1,z2

[
f (a)(z1) ,

[
f (a)(z2) , f (a±1)(w)

]]
∼ 0 ,

(|a| = 0){
Symz1,z2

[
e(a)(z1) ,

[
e(a+1)(w1) ,

[
e(a)(z2) , e(a−1)(w2)

}}}
∼ 0 ,

Symz1,z2

[
f (a)(z1) ,

[
f (a+1)(w1) ,

[
f (a)(z2) , f (a−1)(w2)

}}}
∼ 0 ,

(|a| = 1)

(8.110)

Let us remark that the appearance of the Lie superalgebra glm|n for generalized conifold

geometries was noticed in [52], which discussed W-algebras associated with glm|n. While

we expect relations between our results and the results of [52], any such relation will

likely require a non-trivial change of the generators of the algebra (see [69] for a related
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discussion). It is also the case that the BPS state counting in [52] is in a particular chamber

of the Kähler moduli space. Our discussion by contrast applies to general chambers, which

are known to have crystal-melting description.

8.3.6 Conifold and affine Yangian of gl1|1

8.3.6.1 Conifold

The toric diagram and its dual graph for the conifold O(−1)×O(−1)→ P1 are

(0,0)

(0,1) (1,1)

(1,0)

3

3̂

1

1̂

(8.111)

Its associated quiver diagram is similar to the one for the orbifold (C2/Z2)× C:

1 2

(A1, α1), (B2, β2)

(B1, β1), (A2, α2)
(8.112)

with super-potential

W = Tr[−A1B1B2A2 +A1A2B2B1] . (8.113)

Since there is no self-loop for either vertex 1 or 2, both vertices are fermionic:

|a| = 1 , a = 1, 2 , (8.114)

to be compared with the case of (C2/Zn) × C shown in (8.30), where both vertices are

bosonic, i.e. |a| = 0.

The periodic quiver is shown in the left picture of the following

1 22

2

2

1

11

1

α2β1

α1

β2

α1

β2

β1α2

α2 β1

β2

α1

1 22

2

2

1

11

1

−h2h2

h1

−h1

h1

−h1

h2−h2

−h2 h2

−h1

h1

(8.115)
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where the fundamental regions of the torus are shown as shaded regions. Note its relation

to the one for the orbifold (C2/Z2)×C, shown in (the right picture in) figure 14. Starting

from the right picture in figure 14, if one removes all the diagonal arrows, which correspond

to the self-arrows in the quiver, and further flip the directions of arrows as one passes each

vertex as one moves along either x1 or x2 direction, one then obtains the periodic quiver

shown in (8.115). As we will see later, this is a general pattern relating the periodic quivers

for the orbifold (C2/Zn)×C and the generalized conifold with the same rank, resulting in

the relation between affine Yangians of glm+n and glm|n.

The loop constraint (4.1) translates to

α1 + α2 + β1 + β2 = 0 . (8.116)

Again, the central condition (8.12) is guaranteed by the loop constraint (8.116). One

can then immediately read off the bond factors from the periodic quiver (8.115) by the

definition (4.11)

ϕa⇒a(u) = 1 , ϕa⇒a+1(u) =
(u+ αa+1)(u+ βa)

(u− αa)(u− βa+1)
, (8.117)

where the indices are understood as mod 2 and the four charges (α1,2, β1,2) satisfy (8.116).

Accordingly, the resulting algebra is

OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z) ,

ψ(a+1)(z) e(a)(w) ∼ (∆+αa+1)(∆+βa)
(∆−αa)(∆−βa+1) e

(a)(w)ψ(a+1)(z) ,

e(a+1)(z) e(a)(w) ∼ − (∆+αa+1)(∆+βa)
(∆−αa)(∆−βa+1) e

(a)(w) e(a+1)(z) ,

ψ(a+1)(z) f (a)(w) ∼ (∆−αa)(∆−βa+1)
(∆+αa+1)(∆+βa) f

(a)(w)ψ(a+1)(z) ,

f (a+1)(z) f (a)(w) ∼ − (∆−αa)(∆−βa+1)
(∆+αa+1)(∆+βa) f

(a)(w) f (a+1)(z) ,

{e(a)(z) , f (b)(w)} = −δa,b ψ
(a)(z)− ψ(a)(w)

z − w
.

(8.118)

Note that these relations form a subset of the relations for (C2/Zn)×C, given in (8.35), up

to statistics factors in the e− e and f − f relations. Correspondingly, the initial conditions

are also a subset of those in (8.36). But the presence of the stronger constraint (8.116)

simplify the expressions:

Initial:



[ψ
(a)
0 , e(a)

m ] = [ψ
(a)
1 , e(a)

m ] = [ψ
(a)
0 , f (a)

m ] = [ψ
(a)
1 , f (a)

m ] = 0 ,

[ψ
(a+1)
0 , e(a)

m ] = 0 ,

[ψ
(a+1)
0 , f (a)

m ] = 0 ,

[ψ
(a+1)
1 , e(a)

m ] = (αa+1βa − αaβa+1) e(a)
m ,

[ψ
(a+1)
1 , f (a)

m ] = −(αa+1βa − αaβa+1) f (a)
m .

(8.119)
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Figure 27. The bipartite graph for the conifold geometry.

From the initial conditions one can check that the combination ψ0 ≡ ψ(1)
0 + ψ

(2)
0 is indeed

a central term.

8.3.6.2 Truncation

Consider the path from the origin to an atom 1 of color 1, at which the growth of the

crystal stops. The coordinate function of 1 is a special case of (8.92), with γa = 0:

h( 1 ) = N1(α1 + β1) +N2(α2 + β2) +Nα(α1 + α2) +Nβ(β1 + β2) , (8.120)

where Na is the number of segments a → a + 1 → a with charge αa and then βa, etc.

Imposing the loop constraints (8.116) gives the truncation condition:

(N1 −N2)(α1 + β1) + (Nα −Nβ)(α1 + α2) +

2∑
a=1

ψ
(a)
0 = 0 , (8.121)

namely the truncation can be characterized by the two integer coefficients multiplying

(α1 + β1) and (α1 + α2).

One can compare this result with the expectation from D4-branes. Starting with the

bipartite graph in figure 27, one obtains that the four perfect matchings (shown in figure 28)

give the linear combinations

α1 , α2 , β1 , β2 = −(α1 + α2 + β1) . (8.122)

One might therefore conclude that we obtain linear combination of the first three elements

with non-negative integer coefficient. This is more general than the previous result (8.121),

which suggests that there should be more general representations than those in this paper.

8.3.6.3 Affine Yangian of gl1|1

For the periodic quiver (8.115), the vertex constraint (4.31) translates to

α1 + β2 = α2 + β2 . (8.123)
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parameters α1, α2, β1, β2.

Together with the loop constraint (8.116), it reduces the four parameters (α1,2, β1,2) to two

independent parameters

α1 = −β2 = h1 and β1 = −α2 = h2 . (8.124)

We have drawn the period quiver with both loop and vertex constraints imposed in the

right figure of (8.115). With both the loop and vertex constraints imposed, the bond

factor (8.117) becomes

ϕ1⇒1(u) = ϕ2⇒2(u) = 1 ,

ϕ1⇒2(u) =
(u+ h2)(u− h2)

(u− h1)(u+ h1)
,

ϕ2⇒1(u) =
(u+ h1)(u− h1)

(u− h2)(u+ h2)
.

(8.125)

The resulting algebra is
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OPE:



ψ(a)(z)ψ(b)(w) ∼ ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ∼ e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ∼ f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z) ,

ψ(2)(z) e(1)(w) ∼ (∆+h2)(∆−h2)
(∆+h1)(∆−h1) e

(1)(w)ψ(2)(z) ,

ψ(1)(z) e(2)(w) ∼ (∆+h1)(∆−h1)
(∆+h2)(∆−h2) e

(2)(w)ψ(1)(z) ,

e(2)(z) e(1)(w) ∼ − (∆+h2)(∆−h2)
(∆+h1)(∆−h1) e

(1)(w) e(2)(z) ,

ψ(2)(z) f (1)(w) ∼ (∆+h1)(∆−h1)
(∆+h2)(∆−h2) f

(1)(w)ψ(2)(z) ,

ψ(1)(z) f (2)(w) ∼ (∆+h2)(∆−h2)
(∆+h1)(∆−h1) f

(2)(w)ψ(1)(z) ,

f (2)(z) f (1)(w) ∼ − (∆+h1)(∆−h1)
(∆+h2)(∆−h2) f

(1)(w) f (2)(z) ,

{e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(8.126)

Initial:



[ψ
(a)
0 , e(a)

m ] = [ψ
(a)
1 , e(a)

m ] = [ψ
(a)
0 , f (a)

m ] = [ψ
(a)
1 , f (a)

m ] = 0 ,

[ψ
(a+1)
0 , e(a)

m ] = 0 ,

[ψ
(a+1)
0 , f (a)

m ] = 0 ,

[ψ
(a+1)
1 , e(a)

m ] = (−1)a (h2
2 − h2

1) e(a)
m ,

[ψ
(a+1)
1 , f (a)

m ] = −(−1)a (h2
2 − h2

1) f (a)
m ,

(8.127)

Serre :

Symz1,z2

{
e(a)(z1) ,

[
e(a+1)(w1) ,

{
e(a)(z2) , e(a+1)(w2)

}]}
∼ 0 ,

Symz1,z2

{
f (a)(z1) ,

[
f (a+1)(w1) ,

{
f (a)(z2) , f (a+1)(w2)

}]}
∼ 0 ,

(8.128)

where a, b = 1, 2.

Here we adopted the Serre relation from [66].38 Note that e(a) and f (a) are fermionic

generators, and hence we have both commutators [−,−] and anti-commutators {−,−} in

the Serre relations.

While we do not have a top-down understanding of the Serre relations of the quiver

Yangian in general, we seem to be finding some pattern here. Namely, the Serre relation for

the fermionic generators e(a) involve the e(a), e(a+1), e(a), e(a+1) from left to right in that or-

der, and this seems to correspond to the superpotential term Tr(Φa,a+1Φa+1,aΦa,a−1Φa−1,a)

in (8.83). Similarly, we have a cubic Serre relation for the bosonic generators e(a) for

the affine Yangian for glm|n [66] (recall also the cubic Serre relation for the C3 geometry

in (5.51)), and this corresponds naturally to the cubic superpotential term

Tr(Φa,aΦa,a+1Φa+1,a) in (8.83). It is tempting to speculate that this is a general pattern

and that the Serre relations can be identified from the data of the superpotential.

38The paper [66] strictly speaking does not deal with affine Yangians of gl1|1, or more generally gln|n.
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8.3.7 Suspended Pinched Point and affine Yangian of gl2|1

Let us close this subsection with another special case of m = 2, n = 1. This is the Suspended

Pinched Point geometry discussed in section 2. With both the loop constraints and the

vertex constraint imposed, the corresponding algebra is the affine Yangian of gl2|1.

The quiver diagram for SPP is

1

23

γ

α1
β1

α2

β2

α3
β3

1

23

h3

h1
h2

−h2

−h1

h1
h2

(8.129)

where in the left one the charges are before any constraints are imposed; whereas in the

right one, we have imposed both the loop constraints

−γ = α1 + β1 = α3 + β3 = −α2 − β2 , (8.130)

and the vertex constraint

α1 − β1 = α2 − β2 = α3 − β3 . (8.131)

The solutions to the two sets of constraints are denoted by the three parameters (h1, h2, h3)

satisfying h1 + h2 + h3 = 0. The corresponding periodic quivers are

1 32

3

2

2

13

1

β3β1

β2

α3

α1

β2

α2β3

α2 β1

α3

α1

γ

γ

1 32

3

2

2

13

1

h2h2

−h1

h1

h1

−h1

−h2h2

−h2 h2

h1

h1

h3

h3

(8.132)

with the fundamental regions of the torus shown as shaded regions. (In these figures

the fundamental regions are split into two to save space in this figure; in each case the

understanding is that the trapezoids are meant to be glued together along edges with

labels α2 and −h2 to obtain a parallelogram.) The vertex 1 is even while the vertices 2

and 3 are odd:

|1| = 0 , |2| = |3| = 1 . (8.133)
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Figure 29. The bipartite graph for the Suspended Pinched Point geometry.

The algebra before the vertex constraints (8.131) are imposed is given by

ϕa⇒a+1(u) =
u+ βa
u− αa

, ϕa⇒a−1(u) =
u+ αa−1

u− βa−1
,

ϕ1⇒1(u) =
u+ γ

u− γ
, ϕ2⇒2(u) = ϕ3⇒3(u) = 1 ,

(8.134)

where a = 1, 2, 3, and the βa is fixed in terms of αa and γ by the loop constraints (8.130).

The algebra relations and the initial conditions for the SPP geometry can then be obtained

by plugging the choice (σ1, σ2, σ3) = (+,+,−) and the bond factors (8.134) into the general

formulae (8.90) and (8.91).

8.3.7.1 Truncation

The truncation condition can be obtained by taking the general

formula (8.94) and plugging in (σ1, σ2, σ3) = (+,+,−). This gives

γ (Nγ −N1 +N2 −N3 −Nβ) + (α1 + α2 + α3)(Nα −Nβ) +

3∑
a=1

ψ
(a)
0 = 0 , (8.135)

namely the truncation can be characterized by the two integer coefficients multiplying γ

and (α1 + α2 + α3).

Let us re-derive this result from perfect matchings. We have already shown the bipar-

tite graph and the perfect matchings in figures 3 and 10. Now we reproduce them in slightly

different-looking (albeit equivalent) forms in figures 29 and 30, to make the comparison

with the quiver in (8.132) easier.

There are six perfect matchings as show in figure 30, giving rise to linear combinations

α2 + γ , β2 + γ , α1 + α3 , β1 + β3 , α1 + β3 , β1 + α3 . (8.136)

When we impose the vertex constraints, these reduce to

−h1 − 2h2 , −2h1 − h2 , 2h1 , 2h2 , h1 + h2 , h1 + h2 . (8.137)
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Figure 30. The 6 perfect matchings for the Suspended Pinched Point geometry. They correspond

to the combinations β2 + γ, α2 + γ, α1 + α3, β1 + β3, α1 + β3, α3 + β1.
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From this we find that only the first four perfect matchings are corner perfect matchings:

α2 + γ , β2 + γ = 2γ − α2 , α1 + α3 , β1 + β3 = −2γ − (α1 + α3) , (8.138)

which by a change of basis can be replaced by

γ , α2 , α1 + α3 . (8.139)

This is (as in the conifold example) more general than the expectations from the represen-

tation theory.

8.3.7.2 Affine Yangian of gl2|1

On top of the loop constraints (8.130), if we further impose the vertex constraints (8.131),

the charge assignment on the quiver is given in the right figure of (8.129). Accordingly, the

matrices defined in (8.102) are

Q+ =

−1 0 1

1 0 −1

0 0 0

 and Q− =

−1 1 0

0 0 0

1 −1 0

 , (8.140)

which gives

A =

 2 −1 −1

−1 0 1

−1 1 0

 and M =

 0 1 −1

−1 0 1

1 −1 0

 . (8.141)

The bond factors are

ϕ1⇒1(u) =
u+ h3

u− h3
, ϕ2⇒2(u) = ϕ3⇒3(u) = 1 ,

ϕ1⇒2(u) = ϕ3⇒1(u) =
u+ h2

u− h1
, ϕ2⇒3(u) =

u− h1

u+ h2
,

ϕ2⇒1(u) = ϕ1⇒3(u) =
u+ h1

u− h2
, ϕ3⇒2(u) =

u+ h1

u− h2
.

(8.142)

One can check that the resulting algebra (from plugging the bond factors (8.142) into the

general formulae (4.9), (8.7) and (8.8)) agrees with the affine Yangian of gl2|1 obtained by

plugging (σ1, σ2, σ3) = (+,+,−) and taking a = 1, 2, 3 in the general formula (8.108).

9 Examples: Calabi-Yau threefolds with compact 4-cycles

In the previous section we have restricted ourselves to the toric Calabi-Yau threefolds

without compact 4-cycles. Our discussion of the BPS quiver Yangian, however, works

for arbitrary toric Calabi-Yau threefolds, most of which have compact four-cycles and

goes beyond the examples discussed in the previous section. This is in contrast with other

existing approaches in the literature, where there seems to be technical problems associated

with such generalizations. We will discuss in detail examples of the canonical bundles overs

P1 × P1 and P2 in the next subsections.
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9.1 Quiver Yangians for KP2

9.1.1 Quiver and superpotential

Let us consider the geometry KP2 , the canonical bundle over P2. The geometry coincides

with C3/Z3, where the action of Z3 is (z1, z2, z3)→ (ωz1, ωz2, ωz3) with ω3 = 1. The toric

diagram and its dual graph are

(0,0)

(-1,0)

(1,1)

(0,-1)
(9.1)

Note that this is different from the (C2/Z3)× C geometry discussed in section 8.2.3.

The quiver diagram is the McKay quiver [70] for the Z3-action

1

23

(X
(1)
i , α

(1)
i )i=1,2,3

(X
(2)
i , α

(2)
i )i=1,2,3

(X
(3)
i , α

(3)
i )i=1,2,3

(9.2)

with the superpotential

W = −
3∑

i,j,k=1

εijkTr(X
(1)
i X

(2)
j X

(3)
k ) , (9.3)

with the totally antisymmetric tensor εijk.

The loop constraint (4.1) from the superpotential is

α
(1)
i + α

(2)
j + α

(3)
k = 0 for {i, j, k} ∈ {1, 2, 3} , (9.4)

which reduces the 9 parameters to E + 2I − 1 = 4:

α
(a)
i = hi + g(a) , (9.5)

with

h1 + h2 + h3 = 0 and g(1) + g(2) + g(3) = 0 . (9.6)
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The periodic quiver is given in the left figure of the following:

3 12

2

1

3

23

1

α
(3)
2α

(2)
2

α
(3)
1

α
(1)
1

α
(1)
1

α
(2)
1

α
(2)
2α

(1)
2

α
(3)
2 α

(1)
2

α
(2)
1

α
(3)
1

α
(3)
3

α
(2)
3

α
(1)
3

α
(1)
3

3 12

2

1

3

23

1

h2h2

h1

h1

h1

h1

h2h2

h2 h2

h1

h1

h3

h3

h3

h3

(9.7)

where we have shown the fundamental regions of the torus as shaded regions. Since there

is no self-loop in the quiver diagram (9.2), all vertices are fermionic:

|a| = 1 , a = 1, 2, 3 . (9.8)

9.1.2 Algebra

From the quiver (9.2) with charge assignment (9.5), one can read off the bond factors

ϕa⇒b(u):

ϕa⇒a(u) = 1 ,

ϕa⇒a+1(u) =
1∏

i=1,2,3

(
u− hi − g(a)

) ,
ϕa⇒a−1(u) =

∏
i=1,2,3

(
u+ hi + g(a−1)

)
.

(9.9)

Using (9.9), one can then write down the charge functions Ψ
(a)
K (u) for any crystal K.

Here we give Ψ
(a)
K (u) for the first few |K〉 as examples. For the vacuum:

|K〉 = |∅〉 :

Ψ
(1)
K (u) = 1 +

C

u
,

Ψ
(2)
K (u) = Ψ

(3)
K (u) = 1 .

(9.10)

– 103 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

For the state with only the first atom 1 :

|K〉 = | 1 〉 :



Ψ
(1)
K (u) = 1 +

C

u
,

Ψ
(2)
K (u) =

1∏
k=1,2,3

(
u− hk − g(1)

) ,
Ψ

(3)
K (u) =

∏
k=1,2,3

(
u+ hk + g(3)

)
.

(9.11)

For the state with the first atom 1 and one atom 2 (at the direction i, with i = 1, 2, 3)

at the level-2:

|K〉 = | 1 2 i〉 :



Ψ
(1)
K (u) =

(
1 +

C

u

) ∏
k=1,2,3

(u+ hk − hi) ,

Ψ
(2)
K (u) =

1∏
k=1,2,3

(
u− hk − g(1)

) ,
Ψ

(3)
K (u) =

∏
k=1,2,3

(
u+ hk + g(3)

)(
u− hk + g(3) − hi

) .
(9.12)

One can thus proceed iteratively, and write down the charge function Ψ
(a)
K (u) for all states

K. At each step, one can check the each pole u∗ of Ψ
(a)
K (u) corresponds to the position of

either an atom a (of color a) that can be added to K or an atom a that can be removed

from K. Since the ϕa⇒b(u) in (9.9) is not homogeneous, generically the charge functions

Ψ
(a)
K (u) is also not homogeneous.

We can now write down the quiver Yangian

OPE:



ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ' e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ' f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z)

ψ(a±1)(z) e(a)(w) ' ϕa⇒a±1(∆) e(a)(w)ψ(a±1)(z) ,

e(a+1)(z) e(a)(w) ∼ −ϕa⇒a+1(∆) e(a)(w) e(a+1)(z) ,

ψ(a±1)(z) f (a)(w) ' ϕa⇒a±1(∆)−1 f (a)(w)ψ(a±1)(z) ,

f (a+1)(z) f (a)(w) ∼ −ϕa⇒a+1(∆)−1 f (a)(w) f (a+1)(z) ,

{e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(9.13)

where a = 1, 2, 3 ∈ Z3.

9.1.3 Truncation

Let us consider the truncation induced by the truncation of the crystal at an atom of color

1. The path starting and ending at the same vertex 1 goes around the loop of the quiver

diagram. Each loop has the total weight of the form α
(1)
i + α

(2)
j + α

(3)
k where i, j, k runs
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separately from 1 to 3. Using the loop constraints (9.5) and (9.6), this is computed to be

hi + hj + hk. This means that the coordinate function at the location of the truncation

takes the form

h( 1 ) =

3∑
i,j,k=1

Ni,j,k(hi + hj + hk) , Ni,j,k ∈ Z≥0 . (9.14)

Since h1 + h2 + h3 = 0, we have integer linear combination of h1 and h2, so that we have

a truncation condition

N1 h1 +N2 h2 + C = 0 , N1, N2 ∈ Z . (9.15)

We can check this result from the perfect matching prescription introduced earlier, as

worked out in figures 31 and 32. There are six perfect matchings as shown in figure 32,

corresponding to the linear combinations

α
(1)
i + α

(2)
i + α

(3)
i = 3hi (i = 1, 2, 3) ,

α
(a)
1 + α

(a)
2 + α

(a)
3 = 3g(a) (a = 1, 2, 3) .

(9.16)

When we further impose the vertex constraints, these reduce to

3h1 , 3h2 , 3h3 = −3h1 − 3h2 , 0 , 0 , 0 , (9.17)

and when divided by a factor 3 this matches with the lattice points

(−1, 0) , (0,−1) , (1, 1) , (0, 0) , (0, 0) , (0, 0) , (9.18)

of the toric diagram (9.1).

When we take the corner lattice points from the list (9.16) one obtains non-negative

integer linear combinations of

3h1 , 3h2 , 3h3 = −3h1 − 3h2 , (9.19)

so that we have integer linear combination of 3h1 and 3h2. This matches with the analysis

of the truncation above up to a rescaling of C by a factor of 3.

9.1.4 Vertex constraint

The vertex constraint (4.31) for this case is

3∑
i=1

α
(a)
i =

3∑
i=1

α
(a+1)
i for a = 1, 2, 3 , (9.20)

which reduces the number of parameters to two, given by the triple (h1, h2, h3):

α
(1)
i = α

(2)
i = α

(3)
i = hi (i = 1, 2, 3) , h1 + h2 + h3 = 0 . (9.21)

We have also drawn the periodic quiver with the charge assignment (9.21) in the right

figure of (9.7).
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Figure 31. The bipartite graph for the KP2 geometry.

The bond factors (9.9) reduces to

ϕa⇒a(u) = 1 ,

ϕa⇒a+1(u) =
1∏

i=1,2,3 (u− hi)
≡ ϕ−(u) ,

ϕa⇒a−1(u) =
∏

i=1,2,3

(u+ hi) ≡ ϕ+(u) .

(9.22)

Accordingly the (reduced) quiver Yangian can be obtained by setting g(a) = 0 for a = 1, 2, 3

in (9.13).

9.2 Quiver Yangian for KP1×P1

9.2.1 Quiver and superpotential

The toric diagram and its dual graph for KP1×P1 are

(0,0)

(0,-1)

(1,0)

(0,1)

(-1,0)

(9.23)
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Figure 32. The 6 perfect matchings for the KP2 geometry. They correspond to the combinations

α
(i)
1 + α

(i)
2 + α

(i)
3 (i = 1, 2, 3) and α

(1)
i + α

(2)
i + α

(3)
i (i = 1, 2, 3).
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The quiver for P1 × P1 is shown in the left figure of (9.24)

1 4

2 3

α
(1)
1,2

α
(2)
1,2

α
(3)
1,2

α
(4)
1,2

1 4

2 3

h1 + δ1, h3 + δ1

h2 + δ2, h4 + δ2

h1 − δ1, h3 − δ1

h2 − δ2, h4 − δ2

(9.24)

The superpotential is

W =−X(1)
1 X

(2)
1 X

(3)
1 X

(4)
1 −X(1)

2 X
(2)
2 X

(3)
2 X

(4)
2

+X
(1)
1 X

(2)
2 X

(3)
1 X

(4)
2 +X

(1)
2 X

(2)
1 X

(3)
2 X

(4)
1 .

(9.25)

The corresponding periodic quiver is shown in the left figure of (9.26)

1 44

2

2

3

33

3

α
(4)
1α

(4)
2

α
(3)
2

α
(3)
1

α
(3)
2

α
(3)
1

α
(2)
1α

(2)
2

α
(2)
2 α

(2)
1

α
(1)
2

α
(1)
1

1 44

2

2

3

33

3

h4 − δ2h2 − δ2

h1 − δ1

h3 − δ1

h1 − δ1

h3 − δ1

h2 + δ2h4 + δ2

h4 + δ2 h2 + δ2

h3 + δ1

h1 + δ1

(9.26)

where the fundamental regions are the shaded regions in the figure. The loop constraint (4.1)

translates to

α
(1)
1 + α

(3)
1 = α

(1)
2 + α

(3)
2 = −(α

(2)
1 + α

(4)
1 ) = −(α

(2)
2 + α

(4)
2 ) , (9.27)

whose solutions (shown in the right figure of (9.24)) are

α
(1)
1 = h1 + δ1 , α

(1)
2 = h3 + δ1 ; α

(2)
1 = h2 + δ2 , α

(2)
2 = h4 + δ2 ;

α
(3)
1 = h1 − δ1 , α

(3)
2 = h3 − δ1 ; α

(4)
1 = h2 − δ2 , α

(4)
2 = h4 − δ2 ;

(9.28)

with

h1 + h2 + h3 + h4 = 0 . (9.29)

Namely, the number of parameters is E + 2I − 1 = 5.
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We can further impose the vertex constraint. One then obtains

h1 = −h3 , h2 = −h4 , δ1 = δ2 = 0 . (9.30)

The periodic quiver is shown in the right figure of (9.26). All the vertices are fermionic

|a| = 1 , a = 1, 2, 3, 4 . (9.31)

The only non-trivial bond factors are

ϕ1⇒2(u) =
1

(u− h1 − δ1)(u− h3 − δ1)
, ϕ3⇒4(u) =

1

(u− h1 + δ1)(u− h3 + δ1)
,

ϕ2⇒3(u) =
1

(u− h2 − δ2)(u− h4 − δ2)
, ϕ4⇒1(u) =

1

(u− h2 + δ2)(u− h4 + δ2)
,

ϕ2⇒1(u) = (u+ h1 + δ1)(u+ h3 + δ1) , ϕ4⇒3(u) = (u+ h1 − δ1)(u+ h3 − δ1) ,

ϕ3⇒2(u) = (u+ h2 + δ2)(u+ h4 + δ2) , ϕ1⇒4(u) = (u+ h2 − δ2)(u+ h4 − δ2) .

(9.32)

It is now straightforward to write down the relations for the quiver Yangian. Since the

resulting commutation relations are rather lengthy and require several pages for the general

case, we will only write down the algebra when the vertex constraints are imposed.

9.2.2 Truncation

Let us consider the truncation induced by the truncation of the crystal at an atom of color

1. When we have a closed path starting and ending at the quiver vertex 1, we go around

the quiver diagram. In each loop we obtain one of the 24 = 16 possible weights:{
h1 + δ1

h3 + δ1

}
+

{
h2 + δ2

h4 + δ2

}
+

{
h1 − δ1

h3 − δ1

}
+

{
h2 − δ2

h4 − δ2

}
. (9.33)

The factors of δ1, δ2 cancel out. Moreover, we need to impose the loop constraint (9.29), so

that we obtain a linear combination of the following with non-negative integer coefficients:

2(h1 + h2) , 2(h1 + h4) , 2(h3 + h2) , 2(h3 + h4) ,

± (h1 − h3) , ± (h2 − h4) .
(9.34)

The coordinate function can then be written as

h( 1 ) = 2N1(h1 + h2) + 2N2(h1 + h4) + 2N3(h3 + h2) + 2N4(h3 + h4)

+N5(h1 − h3) +N6(h2 − h4)

= (2N1 − 2N2 + 2N3 − 2N4)(h1 + h2) + (2N2 − 2N3 +N5 −N6)(h1 − h3) ,

(9.35)

where in the last line we eliminated h4 via (9.29). This implies the truncation condition

2M1(h1 + h2) +M2(h1 − h3) + C = 0 , (9.36)

for integers M1,M2.
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Figure 33. The bipartite graph for the KP1×P1 geometry.

Let us next consider truncations of the algebra corresponding to D4-branes. The

bipartite graph and the perfect matchings are shown in figures 33 and 34. There are eight

perfect matchings, and they correspond to the linear combinations

2h1 , 2h2 , 2h3 , 2h4 ,

h1 + h3 + 2δ1 , h1 + h3 − 2δ1 , h2 + h4 + 2δ2 , h2 + h4 − 2δ2 .
(9.37)

When we further impose the vertex constraint, they reduce to

2h1 , 2h2 , − 2h1 , − 2h2 ,

0 , 0 , 0 , 0 .
(9.38)

and (after rescaling by a factor to 2) are identified with the lattice points of the toric

diagram (9.23):

(1, 0) , (0, 1) , (−1, 0) , (0,−1) ,

(0, 0) , (0, 0) , (0, 0) , (0, 0) .
(9.39)

Note that the internal lattice point (0, 0) has multiplicity four.

For the comparison with the truncation analysis, one needs to choose perfect matchings

corresponding to the corner lattice points (±1, 0), (0,±1). In the list (9.37) these are

2h1 , 2h2 , 2h3 , 2h4 = −2(h1 + h2 + h3) . (9.40)

9.2.3 Vertex constraint

The vertex constraint (4.31) imposes

h1 + h3 = h2 + h4 , δ1 = δ2 = 0 . (9.41)

These two constraints, when imposed together, leave two independent parameters

h1 , h2 , h3 = −h1 , h4 = −h2 . (9.42)

– 110 –



J
H
E
P
1
1
(
2
0
2
0
)
0
3
5

Figure 34. The eight perfect matchings for the KP1×P1 geometry. They correspond to the eight

parameters h1 + h3 + 2δ1, h1 + h3 − 2δ1, h2 + h4 + 2δ2, h2 + h4 − 2δ2, 2h1, 2h2, 2h3, 2h4.
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The charge assignment on the quiver becomes

1 44

2

2

3

33

3

−h2h2

h1

−h1

h1

−h1

h2−h2

−h2 h2

−h1

h1

(9.43)

Accordingly the (non-trivial) bond factors (9.32) are reduced to

ϕ2⇒1(u) = ϕ1⇒2(u)−1 = ϕ4⇒3(u) = ϕ3⇒4(u)−1 = (u+ h1)(u− h1) ≡ ϕ1(u) ,

ϕ3⇒2(u) = ϕ2⇒3(u)−1 = ϕ1⇒4(u) = ϕ4⇒1(u)−1 = (u+ h2)(u− h2) ≡ ϕ2(u) ,
(9.44)

which give the algebra

OPE:



ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ' e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ' f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z) ,

ψ(k)(z) e(l)(w) ' ϕ1(∆) e(l)(w)ψ(k)(z) ,

ψ(l)(z) e(k)(w) ' ϕ1(−∆)−1 e(k)(w)ψ(l)(z) ,

e(k)(z) e(l)(w) ∼ −ϕ1(∆) e(l)(w) e(k)(z) ,

ψ(k)(z) f (l)(w) ' ϕ1(∆)−1 f (l)(w)ψ(k)(z) ,

ψ(l)(z) f (k)(w) ' ϕ1(−∆) f (k)(w)ψ(l)(z) ,

f (k)(z) f (l)(w) ∼ −ϕ1(∆)−1 f (l)(w) f (k)(z) ,

ψ(m)(z) e(n)(w) ' ϕ2(∆) e(n)(w)ψ(m)(z) ,

ψ(n)(z) e(m)(w) ' ϕ2(−∆)−1 e(m)(w)ψ(n)(z) ,

e(m)(z) e(n)(w) ∼ −ϕ2(∆) e(n)(w) e(m)(z) ,

ψ(m)(z) f (n)(w) ' ϕ2(∆)−1 f (n)(w)ψ(m)(z) ,

ψ(n)(z) f (m)(w) ' ϕ2(−∆) f (m)(w)ψ(n)(z) ,

f (m)(z) f (n)(w) ∼ −ϕ2(∆)−1 f (n)(w) f (m)(z) ,

ψ(a+2)(z) e(a)(w) ' e(a)(w)ψ(a+2)(z) ,

e(a+2)(z) e(a)(w) ∼ −e(a)(w) e(a+2)(z) ,

ψ(a+2)(z) f (a)(w) ' f (a)(w)ψ(a+2)(z) ,

f (a+2)(z) f (a)(w) ∼ −f (a)(w) f (a+2)(z) ,

{e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(9.45)

where a, b = 1, 2, 3, 4, {k, l} = {1, 2} or {3, 4}, {m,n} = {2, 3} or {4, 1}.
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9.2.4 Dual algebra

9.2.4.1 Dual quiver diagram

The geometry KP1×P1 has another quiver description, related to the one above by Seiberg

duality. The quiver, obtained by Seiberg duality at vertex 4, is given by

1 2

4 3

h1 + δ1, h3 + δ1

h2 + δ2, h4 + δ2

−h1 + δ1, −h3 + δ1

−h2 + δ2, −h4 + δ2

h1 + h3 − δ1 − δ2 , h1 + h4 − δ1 − δ2

h2 + h3 − δ1 − δ2 , h2 + h4 − δ1 − δ2

(9.46)

which gives the periodic quiver

1 22

4

4

3

33

3

h1 + δ1h3 + δ1

h2 + δ2

h4 + δ2

h2 + δ2

h4 + δ2

−h3 + δ1−h1 + δ1

−h1 + δ1 −h3 + δ1

−h4 + δ2

−h2 + δ2

h3 + h4 − δ1 − δ2

h2 + h3 − δ1 − δ2

h1 + h4 − δ1 − δ2

h1 + h2 − δ1 − δ2

(9.47)

In the parametrization of the charge parameters as in (9.47), the loop constraints (4.1)

and the vertex constraint (4.31) can be solved in exactly the same way as before, as in (9.29)

and (9.41).
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9.2.4.2 Dual Algebra

The non-trivial bond factors are

ϕ1⇒2(u) =
1

(u− h1 − δ1)(u− h3 − δ1)
, ϕ3⇒4(u) = (u− h1 + δ1)(u− h3 + δ1) ,

ϕ2⇒3(u) =
1

(u− h2 − δ2)(u− h4 − δ2)
, ϕ4⇒1(u) = (u− h2 + δ2)(u− h4 + δ2) ,

ϕ2⇒1(u) = (u+ h1 + δ1)(u+ h3 + δ1) , ϕ4⇒3(u) =
1

(u+ h1 − δ1)(u+ h3 − δ1)
,

ϕ3⇒2(u) = (u+ h2 + δ2)(u+ h4 + δ2) , ϕ1⇒4(u) =
1

(u+ h2 − δ2)(u+ h4 − δ2)
,

ϕ1⇒3(u) =
∏
i=1,2

∏
j=3,4

(u+ hi + hj − δ1 − δ2) ,

ϕ3⇒1(u) =
1∏

i=1,2

∏
j=3,4(u− hi − hj + δ1 + δ2)

.

(9.48)

When we impose the vertex constraint as in (9.41), these functions simplify as

ϕ2⇒1(u) = ϕ3⇒4(u) = ϕ1⇒2(u)−1 = ϕ4⇒3(u)−1 = (u+ h1)(u− h1) ≡ ϕ1(u) ,

ϕ3⇒2(u) = ϕ4⇒1(u) = ϕ2⇒3(u)−1 = ϕ1⇒4(u)−1 = (u+ h2)(u− h2) ≡ ϕ2(u) ,

ϕ1⇒3(u) = ϕ3⇒1(u)−1 = u2(u+ h1 − h2)(u− h1 + h2) ≡ ϕ3(u) .

(9.49)

It is again straightforward to write down relations for the quiver Yangian. Since the

resulting commutation relations are rather lengthy and require several lines for the general

case, let us here write down the algebra only when the vertex constraints are imposed:
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OPE:



ψ(a)(z)ψ(b)(w) = ψ(b)(w)ψ(a)(z) ,

ψ(a)(z) e(a)(w) ' e(a)(w)ψ(a)(z) ,

e(a)(z) e(a)(w) ∼ −e(a)(w) e(a)(z) ,

ψ(a)(z) f (a)(w) ' f (a)(w)ψ(a)(z) ,

f (a)(z) f (a)(w) ∼ −f (a)(w) f (a)(z) ,

ψ(k)(z) e(l)(w) ' ϕ1(∆) e(l)(w)ψ(k)(z) ,

ψ(l)(z) e(k)(w) ' ϕ1(−∆)−1 e(k)(w)ψ(l)(z) ,

e(k)(z) e(l)(w) ∼ −ϕ1(∆) e(l)(w) e(k)(z) ,

ψ(k)(z) f (l)(w) ' ϕ1(∆)−1 f (l)(w)ψ(k)(z) ,

ψ(l)(z) f (k)(w) ' ϕ1(−∆) f (k)(w)ψ(l)(z) ,

f (k)(z) f (l)(w) ∼ −ϕ1(∆)−1 f (l)(w) f (k)(z) ,

ψ(m)(z) e(n)(w) ' ϕ2(∆) e(n)(w)ψ(m)(z) ,

ψ(n)(z) e(m)(w) ' ϕ2(−∆)−1 e(m)(w)ψ(n)(z) ,

e(m)(z) e(n)(w) ∼ −ϕ2(∆) e(n)(w) e(m)(z) ,

ψ(m)(z) f (n)(w) ' ϕ2(∆)−1 f (n)(w)ψ(m)(z) ,

ψ(n)(z) f (m)(w) ' ϕ2(−∆) f (m)(w)ψ(n)(z) ,

f (m)(z) f (n)(w) ∼ −ϕ2(∆)−1 f (n)(w) f (m)(z) ,

ψ(3)(z) e(1)(w) ' ϕ3(∆) e(1)(w)ψ(3)(z) ,

ψ(1)(z) e(3)(w) ' ϕ3(−∆)−1 e(3)(w)ψ(1)(z) ,

e(3)(z) e(1)(w) ∼ −ϕ3(∆) e(1)(w) e(3)(z) ,

ψ(3)(z) f (1)(w) ' ϕ3(∆)−1 f (1)(w)ψ(3)(z) ,

ψ(1)(z) f (3)(w) ' ϕ3(−∆) f (3)(w)ψ(1)(z) ,

f (3)(z) f (1)(w) ∼ −ϕ3(∆)−1 f (1)(w) f (3)(z) ,

ψ(4)(z) e(2)(w) ' e(2)(w)ψ(4)(z) ,

ψ(2)(z) e(4)(w) ' e(4)(w)ψ(2)(z) ,

e(4)(z) e(2)(w) ∼ −e(2)(w) e(4)(z) ,

ψ(4)(z) f (2)(w) ' f (2)(w)ψ(4)(z) ,

ψ(2)(z) f (4)(w) ' f (4)(w)ψ(2)(z) ,

f (4)(z) f (2)(w) ∼ −f (2)(w) f (4)(z) ,

{e(a)(z) , f (b)(w)} ∼ −δa,b ψ
(a)(z)− ψ(b)(w)

z − w
,

(9.50)

where a, b = 1, 2, 3, 4, {k, l} = {1, 2} or {4, 3}, {m,n} = {1, 4} or {2, 3}.
Our conjecture states that the algebra (9.50) is equivalent to the algebra (9.45), since

its quiver (9.46) is the Seiberg dual of the quiver (9.24) that the algebra (9.45) is based on.

9.3 Quiver Yangians for general toric Calabi-Yau threefolds

We can repeat straightforwardly the analysis above for more general toric Calabi-Yau

threefolds. For example, when the toric diagram contains one internal lattice point, the

geometry is a canonical bundle over a toric Fano surface: P1 × P1, P2, and their toric

blow-ups (Hirzebruch surfaces Fn=0,1,2 and del Pezzo surfaces dPn=0,1,2,3). All the data

required for the quiver Yangian, including the periodic quiver and the charge assignments,
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are known and can be obtained by following the algorithms in the literature. It is more

challenging to obtain the reduced quiver Yangian, which requires the Serre relations. It

would be interesting to identify the Serre relations in general, and study the representation

theory of the reduced quiver Yangian, see section 4.4 for a general discussion.

10 Summary and discussion

In this paper, we have proposed a general definition of an infinite-dimensional algebra, the

BPS quiver Yangian Y(Q,W ), associated with a quiver Q and a superpotential W . This

algebra acts on configurations of BPS crystal melting model, which is also constructed by

Q and W . The pair (Q,W ) specifies a supersymmetric quantum mechanics dual to a toric

Calabi-Yau threefold X, whose torus fixed points of the vacuum moduli space are classified

by the configurations of BPS crystals. Our algebra therefore acts on the (torus fixed points

of) the BPS states in the type IIA compactifications on a toric Calabi-Yau threefold.

When the toric Calabi-Yau threefold has no compact 4-cycles, the quiver Yangian

Y(Q,W ), when supplemented with appropriate Serre relations, reproduces the affine Yangian

for the Lie superalgebra glm|n. More generally, our algebra seems to be new in the literature,

but still acts on the configurations of the associated BPS crystals.

The algebra depends on the set of charge parameters hI . We can consider a truncation

of the algebra when the charger parameters are non-generic. The resulting truncated

algebra Y
~N
(Q,W ) is labelled by 2 integers. We have discussed the relations of these integers

to the numbers of D4-branes wrapping divisors.

The quiver/crystal-melting description of our algebra is rather powerful, and can nat-

urally be adopted to discuss wall crossing phenomena of BPS states and open/closed BPS

degeneracies.

We hope that the current paper uncovers only the tip of a huge iceberg, and we believe

there are many interesting avenues for further research. Let us conclude this paper by

mentioning some of the problems for future investigation.

• In this paper we studied BPS state counting in a particular chamber of the mod-

uli space. Since BPS wall crossing for (closed/open) BPS state counting has been

discussed in the literature in terms of crystal melting [9–18], our discussion should

generalize straightforwardly to other chambers.

• A gluing construction for the affine Yangians has been worked out in [71–74]. It

would be interesting to compare the results of the current paper with those from the

gluing approach in [71–74]. Similarly, the truncations of our algebra, as discussed in

section 7, should be related to another set of “web of W-algebras” obtained by gluing

W1+∞-algebras [49, 51].

• Given a quiver and a superpotential one can define the cohomological Hall alge-

bra [31]. We expect that the algebra Y+
(Q,W ) in the triangular decomposition (4.21),

which we recall are generated by e
(a)
n ’s, can be directly related to the shuffle algebra

description of the cohomological Hall algebra. While cohomological Hall algebras for
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C3 are known [28], it seems to be difficult to generalize the discussion to a larger

class of Calabi-Yau threefolds, and we hope that our work will shed some light on

this problem (see [75–78] for examples of recent studies of cohomological Hall alge-

bras). Note also that the cohomological Hall algebra was recently discussed in the

language of supersymmetric quiver quantum mechanics, which is closely related to

the approach of this paper [79].

• As we discussed in section 4.4, the question remains to identify the maximal set

of Serre relation for the reduced quiver Yangian Y(Q,W ), for a general toric quiver

(Q,W ) (see the related discussion towards the end of section 8.3.6.3). We have shown

that for (C2/Zn)×C, the Serre relations are important in ensuring that the vacuum

character of the reduced quiver Yangian Y(Q,W ) reproduces the generating function

of the colored crystals. One might try to use this criterion to help determine the

Serre relations for the general toric quiver (Q,W ).

• We expect that the definition of our quiver Yangian Y(Q,W ), as well as its repre-

sentation in terms of crystal melting, can be lifted straightforwardly to the quiver

quantum toroidal algebra Uq,(Q,W ). The latter will contain the quantum toroidal alge-

bras for gln [62] and glm|n [66] as special examples. It seems that the crystal-melting

representation for the glm|n case was previously not known in the literature.

• BPS crystal melting allows for a refinement (a one-parameter extension) [14, 15,

80], which is natural in the context of wall crossing phenomena [81]. Is there a

corresponding refinement for our algebra?

• It is known that the thermodynamic limit of the crystal melting model reproduces

the geometry of the B-model mirror Calabi-Yau geometry [82]. It is then natural to

ask if our BPS algebra has anything to do with the integrable hierarchies studied in

the B-model geometry [83].

• Recently a new approach to integrable models has been proposed based on a four-

dimensional analogue of Chern-Simons theory [84–86], which in particular explains

the Yangians of integrable models in terms of the algebra of loop operators. It would

be interesting to see if the quiver Yangians in this paper can be reproduced in a similar

manner by a suitable Chern-Simons type gauge theory. This will in particular explain

the geometrical origin of the spectral parameters, which are introduced as auxiliary

parameters in the current discussion.
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A Serre relations and state counting

A.1 (C2/Z2)× C, 2-colored plane partitions, and affine Yangian of gl2

Recall that in the class of (C2/Zn)×C, the cases with n = 1, n = 2, and n ≥ 3 need to be

treated separately. The Serre relations for n = 1 was discussed in section 5.3, and the case

of n ≥ 3 was discussed in section 8.2.3.2. Let us now repeat this exercise for n = 2.

The counting from the 2-colored plane partitions gives

Z(q1, q2) =
∑
n1,n2

d(n1, n2)qn1
1 qn2

2

= 1 + q1 + (q2
1 + 2 q1 q2) + (q3

1 + 4 q2
1 q2 + q1 q

2
2) + (q4

1 + 4 q3
1 q2 + 8 q2

1 q
2
2) + . . . ,

(A.1)

where we have grouped the terms with the same number of atoms N = n1 +n2. The goal is

to reproduce this counting by the vacuum character of the reduced quiver Yangian algebra.

We will do this level by level. For simplicity, we impose the vertex constraint, which does

not change the essence of argument but make the expressions shorter.

A.1.1 Vacuum

There is one state at (n1, n2) = (0, 0), i.e. vacuum:

vacuum: |∅〉 . (A.2)

A.1.2 One atom

Since we have assumed that the first atom in the crystal has color a = 1, we have

e(1)(z)|∅〉 =
#

z
| 1 〉 and e(2)(z)|∅〉 = 0 , (A.3)

which give

e
(1)
0 |∅〉 = #| 1 〉 and e

(1)
n≥1|∅〉 = e

(2)
n≥0|∅〉 = 0 , (A.4)

when translated in terms of modes. Namely, there is only one state of the form e
(a)
n |∅〉,

which is

(n1, n2) = (1, 0) : e
(1)
0 |∅〉 . (A.5)

This reproduce the counting in (A.1) at N = 1.

A.1.3 Two atoms

As shown by the counting (A.1) directly from the 2-colored plane partitions, there are three

states with 2 atoms, one with (n1, n2) = (2, 0) and two with (n1, n2) = (1, 1). We need to

reproduce this counting by enumerating independent states of the form e
(b)
m e

(a)
n |∅〉.
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The mode version of the OPE relations (8.34) is

[e
(a)
n+1, e

(a)
m ]− [e(a)

n , e
(a)
m+1] = h3{e(a)

n , e(a)
m } ,

([e
(a+1)
n+2 , e(a)

m ]− 2 [e
(a+1)
n+1 , e

(a)
m+1] + [e(a+1)

n , e
(a)
m+2]) + h1h2 [e(a+1)

n , e(a)
m ]

= −h3 ({e(a+1)
n+1 , e(a)

m } − {e(a+1)
n , e

(a)
m+1}) .

(A.6)

Applying the e
(a)
n with n ∈ Z≥0 on the unique N = 1 state in (A.5) and imposing the

relations (A.6), we obtain 3 independent states, which can be chosen as

(n1, n2) = (2, 0) : e
(1)
0 e

(1)
0 |∅〉 ,

(n1, n2) = (1, 1) : e
(2)
0 e

(1)
0 |∅〉 , e

(2)
1 e

(1)
0 |∅〉 .

(A.7)

This match exactly with the counting (A.6) at N = 2.

A.1.4 Three atoms

As shown by the counting (A.1) directly from the 2-colored plane partitions, there are 6

states with 3 atoms, one with (n1, n2) = (3, 0), four with (n1, n2) = (2, 1), and one with

(n1, n2) = (1, 2). We need to reproduce this counting by enumerating independent states

of the form e
(c)
` e

(b)
m e

(a)
n |∅〉.

First, applying e
(a)
n on the three states (A.7) from N = 2 and using (A.6) to eliminate

dependent ones, we get

(n1, n2) = (3, 0) : e
(1)
0 e

(1)
0 e

(1)
0 |∅〉 ,

(n1, n2) = (2, 1) : e
(2)
0 e

(1)
0 e

(1)
0 |∅〉 , e

(2)
1 e

(1)
0 e

(1)
0 |∅〉 ,

e
(1)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(1)
1 e

(2)
0 e

(1)
0 |∅〉 , e

(1)
2 e

(2)
0 e

(1)
0 |∅〉 ,

e
(1)
0 e

(2)
1 e

(1)
0 |∅〉 , e

(1)
1 e

(2)
1 e

(1)
0 |∅〉 , e

(1)
2 e

(2)
1 e

(1)
0 |∅〉 ,

(n1, n2) = (1, 2) : e
(2)
0 e

(2)
0 e

(1)
0 |∅〉 , e

(2)
0 e

(2)
1 e

(1)
0 |∅〉 , e

(2)
1 e

(2)
1 e

(1)
0 |∅〉 ,

(A.8)

which contain more states for (n1, n2) = (2, 1) and (1, 2) than the counting (A.1) at N = 3

gives. Therefore we need “cubic” Serre relations, i.e. relations that contain only terms of

the form e
(b)
` e

(b)
m e

(a)
n and e

(b)
` e

(a)
n e

(b)
m with b 6= a.

The known Serre relation for the affine Yangian of gl2 are quartic:

Symz1,z2,z3

[
e(a)(z1) ,

[
e(a)(z2) ,

[
e(a)(z3) , e(a±1)(w)

]]]
∼ 0 , (A.9)

whose mode version is

Symn1,n2,n3

[
e(a)
n1
,
[
e(a)
n2
,
[
e(a)
n3
, e(a±1)
m

]]]
= 0 . (A.10)

Therefore, in order to use the Serre relations to reduce the number of states to the one

dictated by the counting of the 2-colored plane partitions, we need to derive a cubic version

of the Serre relations using the quadratic relations (A.6) and the quartic relations (A.10).

We leave this to future work.
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