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Abstract: We further advance the study of the notion of computational complexity for
2d CFTs based on a gate set built out of conformal symmetry transformations. Previously,
it was shown that by choosing a suitable cost function, the resulting complexity functional
is equivalent to geometric (group) actions on coadjoint orbits of the Virasoro group, up to a
term that originates from the central extension. We show that this term can be recovered
by modifying the cost function, making the equivalence exact. Moreover, we generalize
our approach to Kac-Moody symmetry groups, finding again an exact equivalence between
complexity functionals and geometric actions. We then determine the optimal circuits for
these complexity measures and calculate the corresponding costs for several examples of
optimal transformations. In the Virasoro case, we find that for all choices of reference state
except for the vacuum state, the complexity only measures the cost associated to phase
changes, while assigning zero cost to the non-phase changing part of the transformation. For
Kac-Moody groups in contrast, there do exist non-trivial optimal transformations beyond
phase changes that contribute to the complexity, yielding a finite gauge invariant result.
Moreover, we also show that our Virasoro complexity proposal is equivalent to the on-shell
value of the Liouville action, which is a complexity functional proposed in the context of
path integral optimization. This equivalence provides an interpretation for the path integral
optimization proposal in terms of a gate set and reference state. Finally, we further develop
a new proposal for a complexity definition for the Virasoro group that measures the cost
associated to non-trivial transformations beyond phase changes. This proposal is based
on a cost function given by a metric on the Lie group of conformal transformations. The
minimization of the corresponding complexity functional is achieved using the Euler-Arnold
method yielding the Korteweg-de Vries equation as equation of motion.
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1 Introduction

An important question in the context of the AdS/CFT correspondence [1] is how the bulk
geometry is encoded in the boundary field theory. In this context, much attention has re-
cently been paid to quantum computational complexity, a concept adapted from quantum
information. In general, computational complexity counts the minimum number of simple
steps necessary to perform a calculation. In the context of quantum computing, computa-
tional complexity is defined as the minimum number of unitary operators, gates, necessary
to reach a certain target |ψT 〉 from a simple reference state |ψR〉. From the point of view
of the AdS/CFT correspondence, interest in complexity arose due to similarities between
the growth of a black hole interior and time evolution of complexity [2]. This observation
lead to concrete proposals for holographic complexity in the dual gravity theory [3, 4]. An
open question that remains in view of establishing a concrete AdS/CFT dictionary entry
for complexity is how to define it in general quantum field theories, for which the Hilbert
space is infinite. While a number of complexity definitions have been proposed for free
theories (see e.g. [5–12], though this list of references is by no means exhaustive), it re-
mains an open question how to define it for interacting and even strongly coupled quantum
field theories. For making progress in this direction, it is useful to consider conformal field
theories (CFTs) in 1+1 dimensions, for which symmetries impose significant constraints on
dynamics and observables.

The foundation of much progress in this direction is the geometric approach that
Nielsen formulated for finite-dimensional Hilbert spaces [13–15]. This approach relates the
minimum number of gates, i.e. the shortest quantum circuit, to the length of the shortest
geodesic in the space of unitary operators. Instead of a discrete chain of gates acting on the
reference state, this approach is based on a path ordered exponential of a time-dependent
Hamiltonian referred to as the instantaneous gate Q(t),

U(T ) = ~P exp
[
−
∫ T

0
Q(t)dt

]
. (1.1)

The simple counting of gates is replaced by a notion of cost associated to the path in the
space of unitaries,

D(U(T )) =
∫ T

0
dtF(U(t), U̇(t)). (1.2)

Here, F(U(t), U̇(t)) is the cost function, a functional in the space of unitaries that tells us
how expensive the application of the infinitesimal unitary operator along the path at time
t is. The computational complexity is then obtained by minimizing D(U(T )) with respect
to all possible paths in the space of unitaries taking us from the reference state |ψR〉 to the
target state |ψT 〉.

Based on Nielsen’s approach, a recent proposal by Caputa and Magán [16] for defining
complexity in quantum field theories suggests to restrict the allowed set of gates to symme-
try transformations. Then, the complexity may be computed in terms of compositions of
infinitesimal symmetry transformations, which represent the gates. A particular advantage
of this method is that the cost function F is fixed up to a prefactor and a choice of norm.
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This proposal was employed to compute complexity for conformal transformations in 2d
CFTs [17]. The cost functions used in [16, 17] are state dependent, in contrast to the ap-
proach of Nielsen where the cost and thus the complexity depends only on the path taken
through the space of unitaries. As a consequence of this choice, the expression for the cost
D(U(T )) proposed in [17] takes the form of an action functional which is dependent on the
reference state and on the path through the space of unitaries. Equivalently, because only
symmetry transformations are considered, the action is dependent on a path through the
symmetry group manifold. Complexity is defined as the minimum of this action functional,
i.e. as the on-shell value after variation w.r.t. the group elements specifying the path from
the reference to the target state. Strikingly, in [17] the action functional obtained in this
way was found to be equivalent to two different actions. The first one of these is the well-
known Polyakov action for induced two-dimensional gravity [18]. Moreover, it was found
that the complexity functional is equivalent to a geometric action defined on a coadjoint
orbit [19–24] of the Virasoro group. Geometric actions in general may be thought of as an
analogue of Hamiltonian actions of classical systems defined on phase spaces, where the
phase space is now a coadjoint orbit. In [17], terms arising from the central extension of the
Virasoro group were discarded from the on-shell action functional in establishing this equiv-
alence. These terms were argued not to spoil the equivalence in the large central charge
limit. As we discuss in the present paper however, these terms do play an important role.

This publication is dedicated to the further study of the proposal of [16, 17] and in
particular of its relation to geometric actions. We also study the relation between the
proposal of [16, 17] and an alternative complexity proposal based on path integral opti-
mization [25]. This proposal, at first glance completely different, is based on intuition from
tensor networks. Its starting point is the fact that ground-state wave functionals may be
computed by Euclidean path integrals. These path integrals may be discretized by using
a lattice regularization. The geometry of this lattice regularization is not fixed and can be
changed by modifying the background metric for the path integration without introducing
a change in the wave functional. The authors of [25] then argue that the number of lattice
points is a measure of the complexity needed to prepare the state whose wave functional
is computed by the path integral. For 2d CFTs, under a change of the background metric,
the path integral changes by an on-shell value of the Liouville action. In [25], the minimum
of this on-shell value is identified with the complexity. The minimization is taken over all
possible background metrics, subject to boundary conditions that fix the path integral to
the wave functional for the target state in question. In this way, background metrics that
are time slices of asymptotically AdS3 spacetimes are obtained, for which the complexity
is equal to the volume of the corresponding time slice. See also [26–28] for further devel-
opments in this direction. Finally, we note that unlike most complexity definitions, the
path integral optimization proposal is not based on a set of gates, nor on reference and
target states. These ingredients are only implicitly contained. In this paper, we examine
a possible interpretation of the path integral optimization proposal in terms of unitary
transformations acting on a reference state.

Before we turn to the main questions addressed in the present paper, let us briefly
mention further related work on geometric actions and complexity. This includes [29–31].

– 2 –
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[29] studied in a general setup the conditions under which cost functions provide lower
bounds to the circuit complexity for a discrete set of quantum gates. The authors find that
lower bounds are best achieved by considering cost functions whose associated complexity
functionals are closely related to geometric actions. In [30], connections were found between
the complexity definition of [17] and Berry phases in unitary representations of the Vira-
soro group that have recently been studied in [32]. In [31], the path integral optimization
procedure of [25] is generalized to the warped AdS3/warped CFT2 correspondence. More-
over, [31] also considers the application of the complexity proposal of [16, 17] to the case of
Kac-Moody symmetries — a point that we will study in more detail in the present paper.

In this paper, we aim at answering three questions: can the cost function proposed
in [17] be modified in such a way that the complexity of symmetry transformations in
CFTs becomes exactly equal to the geometric action, including the central extension terms
discarded previously? In this case, the complexity will simply be given by the on-shell value
of the geometric action. This will hold the advantage that we may use the well-understood
geometric actions to gain valuable insight into CFT complexity. The properties of the
geometric action, such as gauge invariance under certain subgroups called stabilizers, will
directly influence the complexity measurement. This leads us to the second question: do
geometric actions provide good complexity measures, in the sense that they are physically
meaningful? Here again, the properties of geometric actions provide valuable means to
address this question. And finally, the third question is: what is the relation between this
notion of complexity and the path integral approach proposed in [25]?

For answering the first question, we obtain a precise relation between the complex-
ity and the geometric action by identifying corresponding elements in both actions. In
particular, we perform this identification not only for the Virasoro group, but also for
generalizations to CFTs with Kac-Moody symmetries. In addition to the usual conformal
symmetries, these CFTs have a symmetry given by a semisimple Lie group. We show that
the complexity functional obtained for Kac-Moody symmetries shares the same similarities
with the geometric action already observed in [17] for conformal symmetries: the complex-
ity is equal to the geometric action up to terms arising from the central extension of the
corresponding symmetry group. We then proceed to deriving a new generalized cost func-
tion that is sensitive to contributions from the central extension of the symmetry group.1

With this new cost function, the complexity then becomes exactly equal to the geometric
action of the considered symmetry group (Kac-Moody or Virasoro). This is one of the
main results of this work.

We note an aspect that distinguishes our work from the complexity proposal by Caputa
and Magán [17]. A new element of the present paper is that in contrast to the definition
of [17], we consider an additional contribution to the cost function that involves the central
extension of the Maurer-Cartan form. While it was argued previously that this central

1Geometric actions are in general defined only up to addition of a Hamiltonian term
∫
dtHX , where HX

is a Hamiltonian function on the coadjoint orbit [24, 33]. The additional contribution to the cost function
that we consider here is not of this form: it is a term arising from the central extension that we show to be
necessary to obtain the geometric action. In the following, we choose a vanishing Hamiltonian HX = 0 on
the coadjoint orbit.

– 3 –



J
H
E
P
1
1
(
2
0
2
0
)
0
0
3

extension term does not lead to additional contributions to the equations of motion, we
show that these terms are indeed physically significant. In particular, we find that the
equations of motion for both cost functions are different2 and only when we include the
central extension, the complexity functional becomes equivalent to a geometric action.
Hence, the additional contribution has to be taken into account when deriving equivalence
statements between geometric actions and complexity functionals.

In order to answer the second question whether geometric actions provide viable com-
plexity measures, we determine the optimal transformations, i.e. those with minimal cost,
for both the Virasoro and Kac-Moody groups. We then use these results to compute the
complexity for simple examples of optimal transformations. We demonstrate that for both
symmetry groups, the complexity is non-vanishing for transformations changing only the
phase of the reference state. Moreover, for the Virasoro group, we obtain different costs for
identical transformations. We explain that this inconsistency is caused by a lack of gauge
invariance of the geometric action under transformations that relate physically indistin-
guishable states. Generally, invariance of actions implies invariance only up to boundary
terms that leave the equations of motion invariant. Since we identify the on-shell value of
the geometric action with the complexity, these boundary terms contribute to the complex-
ity and thus must be added to the geometric action to obtain consistent results. Adding
these terms cancels the cost of phase changes. Moreover, we observe that a general opti-
mal transformation for the Virasoro group instantaneously jumps to the target state up to
phase. For all reference states except for the vacuum, the complexity assigns zero cost to
the instantaneous jump, hence yielding zero once the boundary term is added to the action.

A further interesting observation is that upon adding the boundary terms, the Virasoro
complexity becomes a special case of a Virasoro Berry phase, as introduced in [32]. This
Berry phase arises from unitary highest-weight representations of the Virasoro group when
certain conformal transformations are applied to a primary state. These transformations
must form a closed path under projection onto the coadjoint orbit associated with the state.
The equivalence of our Virasoro complexity functional and the Berry phases considered
in [32] further illustrates that we cannot expect the Virasoro complexity to count anything
but a phase change. Moreover, the Virasoro complexity is even more restrictive than the
Berry phase as the latter only requires the path on the coadjoint orbit to be closed, whereas
the complexity functional additionally demands the transformation be optimal.

In contrast, the space of optimal transformations obtained from the Kac-Moody com-
plexity functional is much larger: an optimal circuit is given by the product of two matrices
that belong to the specific semisimple group considered. It only has to satisfy certain mild
conditions. Therefore, there exist many non-trivial optimal transformations for the Kac-
Moody group. Non-trivial transformations map the reference state, which we take to be a
highest weight state, to a particular linear combination of its descendants. Trivial trans-
formations, on the other hand, change only the phase of the reference state. We give
examples of non-trivial transformations for several Kac-Moody groups and show that their
associated complexity is non-vanishing. While as in the Virasoro case, additional boundary

2See (5.1) and (8.1).
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terms are required to ensure gauge invariance of the action under the orbit stabilizer group,
the complexity of optimal paths is generally non-zero even when these terms are added.
This implies that in contrast to the Virasoro case, for Kac-Moody groups geometric actions
do provide physically viable complexity measures.

We then move on to answer the third question and show how the complexity resulting
from geometric actions is related to the path integral approach of [25]. We achieve this
by identifying solutions of the Liouville equations leading to path integral complexity with
solutions of the equations of motion of the Virasoro geometric action. In this way we show
how the path integral optimization approach of [17] is related to more conventional notions
of complexity based on gate sets as well as on target and reference states.3 We then show
that the examples considered in [25] in the context of path integral complexity correspond
to transformations again leading just to a phase change in the geometric action approach.
This suggests that the complexity definition based on geometric actions as considered in the
present paper does not provide a physically meaningful interpretation of the path integral
approach. This does not, however, invalidate the path integral approach, but simply implies
that one should look elsewhere for its physical interpretation.

Our results show that for the geometric actions, in many cases (and in particular
for the Virasoro group) the optimal paths jump instantaneously to the target state with
the complexity definition measuring only trivial phase changes. To obtain a non-trivial
complexity definition for conformal transformations, we propose a different approach based
on an idea put forward in [17]. This proposal is based on the Euler-Arnold equations
describing the geodesic flow on a group manifold. Equipping the tangent space of this
manifold with a metric, the complexity may then be determined as the length of a geodesic
in the group manifold and hence in terms of the length of the velocity vector. For the choice
of metric given by the inner product of the Virasoro algebra, the equations of motion are
given by the well-known Korteweg-de Vries equation. We show that the space of solutions
of this equation, i.e. the space of optimal transformations, is much larger than that of the
geometric action. In particular, we demonstrate that, in contrast to the geometric action
approach, many non-trivial transformations exist that do not jump instantaneously to the
target state. Although we do not determine the most general optimal transformations
for this approach explicitly, the existence of these non-trivial transformations shows that
the approach is a promising proposal for defining a non-trivial complexity for conformal
transformations.

The outline of our paper is as follows. In section 2, we review the complexity pro-
posal [17] of Caputa and Magán and generalize this approach to the case of two dimensional
CFTs with Kac-Moody symmetry groups. In section 3, we present a short introduction
to coadjoint orbits and geometric actions. This mathematical framework is then used in
section 4 to show that by a modification of the approach of [17] the equivalence between ge-
ometric actions and the complexity action functionals becomes exact for both the Virasoro
and Kac-Moody group. Section 5 is dedicated to the study of optimal transformations and

3Note that subtracting the aforementioned boundary terms from the Virasoro complexity spoils the
equivalence between both approaches.
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their associated complexity. In section 6, we briefly comment on coadjoint orbit actions
arising from 3d gravity and their equivalence to the complexity expression derived before.
Moreover, we find a precise connection between the complexity definitions of [17] and [25].
To address the issues encountered in section 5, we sketch a modified complexity proposal
based on a different cost function arising from the Euler-Arnold formalism in section 7.
Finally, we present our conclusions in section 8.

2 Complexity for Kac-Moody and Virasoro groups

In this section, we review how complexity may be obtained for 2d CFTs. Since these
calculations concern infinite-dimensional systems, they necessarily differ in certain aspects
from Nielsen’s geometric approach to finite-dimensional problems. We discuss where both
approaches deviate and why it is useful to restrict the allowed set of gates to symmetry
transformations as suggested in [16]. The general procedure to obtain complexity for 2d
CFTs is described in section 2.1. We then review its application to the Virasoro group
based on [17] in section 2.2 and compute complexity for Kac-Moody groups in section 2.3.

2.1 Complexity for symmetry groups

Since Nielsen’s geometric approach relates a discrete gate-counting procedure to finding
geodesics in a smooth manifold, it may be applied to continuous systems. Nevertheless, as
discussed in [16], in order to obtain complexity for CFTs some modifications are necessary.

First, Nielsen’s cost functions F involve penalty factors. As the name suggests, these
penalize certain unitary gates that are associated with difficult transformations and are
thus expected to be more costly. Unfortunately, a prescription for choosing these penalty
factors in order to match holographic complexity proposals does not exist, introducing some
arbitrariness into complexity calculations. This was one of the reasons in [16] to restrict
the allowed set of gates to symmetry transformations. If the system of interest is invariant
under these transformations, all infinitesimal symmetry transformations should be equally
difficult to apply. The penalty factors then reduce to an overall prefactor, bearing no
relevance on the form of the complexity functional itself. Of course, by restricting the set
of allowed gates to symmetry transformations, the set of possible target states is restricted
to those reachable by symmetry transformations.

Let |ψT 〉 be a possible target state. The reference state |ψR〉 may be conveniently
chosen. Consequently, the complexity of the target state always depends on the particular
choice of reference state. Let G be a symmetry group of the system of interest. Unitary
representations of group elements g are denoted by Ug. Then, the circuit connecting the
reference and target state is a path through the unitary manifold, and the target state is
given by

|ψT 〉 = Ug(T )|ψR〉, (2.1)

where T specifies the time after which the target state is reached. Additionally, we re-
quire Ug(t=0) = 1 to ensure the initial state is the reference state. In accordance with
Nielsen’s geometric approach, the complexity of the target state is given by the length of

– 6 –
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the shortest path connecting the reference and the target state in the unitary manifold.
The finite transformation Ug(T ) may be decomposed into infinitesimal transformations,
Ug(T ) = Uε(T )Uε(T−dt) . . . Uε(dt)1. Since we are considering symmetry groups, the gates are
thus infinitesimal symmetry transformations and may be written in terms of the generators.

Let J denote the conserved current and ε the velocity, specifying which generator is
applied at a given time. Then, the gate reads

Q(t) = 1
2π

∫
dx ε(t, x)J(x). (2.2)

Note that the gate (2.2) is path ordered according to (1.1), which implies that earlier
gates are applied first. In other words, the time-dependent velocity ε(t, σ) specifies which
infinitesimal symmetry transformation is applied at the given time. Infinitesimally close
points along the path are related by,

U(t+ dt) = e−Q(t)dtU(t), (2.3)

where Ug(T ) = U(T ). The instantaneous velocities ε may be computed in terms of group
elements g by employing

g(t+ dt, x) = eε(t,x)dtg(t, x) (2.4)

and expanding to first order.
Finally, we need to specify an appropriate cost function, which assigns computational

cost to every symmetry transformation. At this point, we return to the point that Nielsen’s
approach requires modifications in the context of CFTs. While the issues caused by un-
known penalty factors are readily solved by restricting the gates to symmetry transforma-
tions, we have yet to address the effects of infinite-dimensional manifolds as encountered
in CFTs.

Nielsen considered finite-dimensional systems with cost functions that do not yield
finite results in infinite-dimensional systems. A remedy is obtained by introducing an
explicit state-dependence in the cost function, i.e. the gate is evaluated in the state present
at any given time t along the path. This corresponds to introducing a density matrix
ρ(t) = U(t)ρ0U

†(t), where the transformations U(t) evolve the initial density matrix ρ0 =
|ψR〉〈ψR|. Then, the state-dependent one-norm cost function is given by

F = |tr[ρ(t)Q(t)]| = |〈ψR|U †(t)Q(t)U(t)|ψR〉|. (2.5)

Note that the choice of cost function is not unique. For example, a closely related possibility
is the state-dependent two-norm whose leading term, however, reduces to the one-norm in
the large c limit [17]. Hence, we work with the one-norm cost function for most of this
paper and defer a discussion of the two-norm case to section 8.4 The complexity functional
obtained with this cost function yields the geometric action of the corresponding symmetry
group up to terms arising from the central extension of the group. This will allow us to

4For a more extensive discussion about the merits of cost functions with different choices of state de-
pendence and norm, see [29].
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obtain the full geometric action by a slight modification of this cost function, as we discuss
in detail in section 4 below.

The total cost of a possible path connecting the reference and target state is then
given by

C =
∫
dtF = 1

2π

∫
dt

∫
dx ε(t, x)〈ψR|U †(t)J(x)U(t)|ψR〉. (2.6)

The complexity, i.e. the minimal cost, is obtained from (2.6) as follows. First, find ex-
pressions for the velocity ε(t, σ) and the transformed current U †(t)J(x)U(t) in terms of
the group paths g(t). Then, choose a reference state and evaluate the expectation value
in (2.6). Finally, to minimize the new expression for (2.6) given in terms of the group path
g(t), solve the equation of motion arising from (2.6). The solutions correspond to optimal
circuits. Choose the solution that yields the desired target state upon application to the
chosen reference state. Inserting this solution into the complexity measure (2.6) gives rise
to its appropriate on-shell value. This on-shell value is the complexity associated with the
optimal transformation that yields the desired target state. In section 5 this procedure is
applied to the modified complexity functional introduced in section 4.

We now review the application of the above method to the Virasoro group based on [17]
in section 2.2 and present new results for the Kac-Moody group in section 2.3.

2.2 Virasoro group

Before we proceed with the Kac-Moody group, we now briefly review the results of [17] on
applying the procedure of the previous subsection to the Virasoro group.

The Virasoro group is centrally extended, and we denoted group elements by (f(σ), α),
where σ ∈ S1. The first element f(σ) are the orientation-preserving diffeomorphisms of
the circle Diff+(S1). In more physical terms, f(σ) are conformal transformations in two
dimensions; for example, upon interpreting σ as a light-cone coordinate x+, f ∈ Diff+(S1)
are coordinate transformations x+ → f(x+). Since the group is centrally extended, there is
an additional number α ∈ R from the central extension of the group. The cost function (2.6)
does not associate any cost to contributions from the central extension. We may hence
disregard α for the moment and consider only the conformal transformations f(t, σ). We
comment on the significance of the central extension for deriving the equivalence of the
complexity functional to a geometric action later on in section 4.

To every diffeomorphism f , there exists an inverse diffeomorphism F such that at any
given time f(t, F (t, σ)) = σ. The gate (2.2) may be written in terms of the conserved
energy-momentum tensor T ,

Q(t) = 1
2π

∫
dσε(t, σ)T (σ). (2.7)

The velocities ε may be computed from the gate equation (2.4) in terms of the group path
f(t, σ). Since the resulting expression involves both the diffeomorphism f and its inverse
F , it proves convenient to recast the velocity in terms of F only,

ε(t, σ) = − Ḟ (t, σ)
F ′(t, σ) . (2.8)

– 8 –
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To calculate the complexity functional (2.6), we still need an expression for the trans-
formation of the energy-momentum tensor under conformal transformations. Since the
velocity (2.8) is given in terms of the inverse F rather than the diffeomorphism f itself, it
is convenient to write the transformation law as a function of F , too. It is given by

U †fTUf = F ′ 2T (F ) + c

12{F, σ}, (2.9)

where {F, σ} is the Schwarzian derivative,

{F, σ} = F ′′′(σ)
F ′(σ) −

3
2

(
F ′′(σ)
F ′(σ)

)2
. (2.10)

A convenient reference state is the highest-weight state |h〉. With the results (2.8) and (2.9),
the complexity (2.6) is then given by

C =
∫
dtF = 1

2π

∫
dt

∫
dσ

[
−ḞF ′〈h|T (F )|h〉 − c

12
Ḟ

F ′
{F, σ}

]
. (2.11)

Whereas this expression is useful in the context of geometric actions on coadjoint orbits,
which will be the focus of the next section, in order to explicitly calculate the complexity,
it is more convenient to recast the functional in terms of the group path f ,

C[f ] = 1
2π

∫ T

0
dt

∫ 2π

0
dσ

ḟ

f ′

(
−〈h|T (σ)|h〉+ c

12{f, σ}
)
. (2.12)

Finally, the expectation value may be evaluated using the mode expansion on the cylinder,

T (σ) =
∑
n

(
Ln −

c

24δn,0
)
e−inσ. (2.13)

Here, the zero-mode shift L0 → L0 − c
24 is a consequence of a change in the ground-state

energy on the cylinder with respect to the plane. Inserting (2.13) into the complexity
functional (2.12) gives

C[f ] = c

24π

∫ T

0
dt

∫ 2π

0
dσ

ḟ

f ′

(1
2

(
1− 24h

c

)
+ {f, σ}

)
. (2.14)

In particular, only L0 contributes upon evaluating the expectation value since the highest-
weight state |h〉 is annihilated by all Ln with n > 0, and the generators L−n with n > 0
yield states |h+ n〉 satisfying the orthogonality condition 〈h|h+ n〉 = δn,0. The eigenvalue
of L0 is denoted by h.

An analogous expression to (2.14) may be obtained for antiholomorphic transfor-
mations.

2.3 Kac-Moody group

We now proceed to consider a CFT with an additional symmetry given by a semisimple Lie
group G. Let T aλ denote the generators of G in a representation λ. The finite Lie algebra
may be generalized to an infinite-dimensional algebra on a circle in such a manner that it
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contains the original algebra as a subalgebra, and the Virasoro algebra is a subalgebra of its
enveloping algebra. The resulting algebra is a Kac-Moody algebra, with an associated Kac-
Moody group. Note that there exist many different Kac-Moody groups. They are classified
by the semisimple Lie group on which they are based. The relation to the Virasoro group
implies that the Kac-Moody group is centrally extended. The analogue of the Virasoro
central charge c is the level k ∈ Z in the Kac-Moody case. Since we aim at computing the
complexity functional for CFTs with Kac-Moody symmetries in analogy to section 2.2, we
need the following ingredients: the conserved current for the gate (2.2), the transformation
of the current under symmetry transformations as required by (2.5) and an appropriate
reference state.

Let us begin with the currents and their transformation. We denote the conserved
currents of the Kac-Moody symmetry by J . Consequently, the gate (2.2) reads

Q(t) = 1
2π

∫
dσ ε(t, σ)J(σ). (2.15)

The currents J may be expanded in terms of the generators T aλ of the semisimple Lie
group G,

J =
∑
n∈Z

dim g∑
a=1

JanT
a
λ . (2.16)

Here, Jan are the generators of the infinite-dimensional Kac-Moody algebra.
Next, we derive how the currents transform under symmetry transformations Ω ∈ G.

This is accomplished by considering Kac-Moody group elements, which are denoted by
(g, α). Just as the Virasoro group, the Kac-Moody group is centrally extended, and thus
α ∈ R belongs to the center, while g(σ) are transformations valued in G. In particular, g
now is a map g : S1 → G, i.e. we consider maps from the unit circle into the group manifold
of the semisimple group G. In terms of the Kac-Moody group element g, the conserved
current associated with left-multiplication symmetry g → Ωg is given by J = −k∂σgg−1.
The transformation of the currents under symmetry transformations Ω then directly follows
from the transformation property of g,

U †JU = Ω(t, σ)J(σ)Ω−1(t, σ)− kΩ′(t, σ)Ω−1(t, σ). (2.17)

A similar expression may be obtained for the antiholomorphic current.
Next, we derive the velocity ε from the gate equation (2.4), which for a group path Ω

in G reads
Ω(t+ dt, σ) = eε(t,σ)dtΩ(t, σ). (2.18)

Expanding to first order, we obtain the velocity in terms of the transformations Ω,

ε(t, σ) = Ω̇(t, σ)Ω−1(t, σ). (2.19)

Finally, we pick an appropriate reference state. Just as in section 2.2, a highest-weight
state |Φ〉 is most convenient. In particular, |Φ〉 is a highest-weight state in the same sense
as |h〉 for the Virasoro group, i.e. it is annihilated by all Jan with n > 0. Moreover, Ja−n
with n > 0 yield states orthogonal to |Φ〉.
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We now have all necessary ingredients to obtain an expression for the complexity.
With (2.19) and (2.17), (2.6) becomes

C =
∫
dtF = 1

2π

∫
dt

∫
dσ tr

[
Ω̇Ω−1〈Φ|J(σ)|Φ〉 − kΩ̇Ω−1Ω′Ω−1

]
. (2.20)

To evaluate the expectation value, we use the mode expansion (2.16) and the action of
the generators on the highest-weight state |Φ〉 as described above. Since the action of the
generators is completely analogous to the Virasoro case, we observe here as well that only
J0 survives the expectation value. Its eigenvalue is the generator −T aλ in the representation
λ. Thus, the complexity functional (2.6) takes the form

C = 1
2π

∫ T

0
dt

∫ 2π

0
dσ tr

−Ω̇Ω−1
dim g∑
a=1

T aλT
a
λ − kΩ̇Ω−1Ω′Ω−1

 , (2.21)

where
∑dim g
a=1 T aλT

a
λ is the Casimir element Cλ in the representation λ. This is our final

result for the generalization of the complexity definition of [17] to the case of a Kac-Moody
symmetry group. In section 4, we comment on its interpretation and in particular the
relation to geometric actions, a topic which we now introduce in section 3.

3 Geometric actions on coadjoint orbits

It was observed in [17] that the complexity functional (2.14) is closely related to the geo-
metric action on a coadjoint orbit of the Virasoro group. In particular, (2.14) is equal to
this geometric action up to terms which we show in section 4 to be arising from the central
extension of the Virasoro group. To this end, we now give a brief introduction to geometric
actions. Section 3.1 contains the basic definitions for the general case. Section 3.2 intro-
duces central extensions, for which geometric actions are constructed in section 3.3. Finally
in section 3.4 we present geometric actions for Virasoro and Kac-Moody symmetry groups.

3.1 Coadjoint orbits as symplectic manifolds

Geometric actions were first introduced by Kirillov [19] in the context of geometric quan-
tization. Here, we briefly introduce relevant concepts to construct the geometric action.

Let G be a Lie group with group elements g and Lie algebra g. The space dual to g is
denoted by g∗. For any v ∈ g∗ and X ∈ g, g∗ is the space of linear maps v : g→ R,

〈v,X〉 = v(X). (3.1)

This pairing may be used to implicitly define the coadjoint action Ad∗g of G on g∗,

〈Ad∗g(v), X〉 = 〈v,Adg−1(X)〉. (3.2)

The space g∗ foliates into symplectic leaves. These symplectic manifolds are the coadjoint
orbits defined as the set of points related by a coadjoint transformation. Each of these
orbits carries a label, which we call v0. We may think of each of these orbits as a phase
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space. Similar to a classical system, where we define Hamiltonian actions on the phase
space, we may define an action that is invariant under G on the coadjoint orbit. This is
the geometric action. First, let us define the coadjoint orbit Ov0 . It is given by

Ov0 = {v = Ad∗g(v0) | g ∈ G}. (3.3)

The manifold is isomorphic to G/Hv0 , where Hv0 is the stabilizer of the orbit given by all
elements h ∈ Hv0 that leave v0 invariant under coadjoint transformations.

On these orbits, we may define a symplectic form, the Kirillov-Kostant form, which in
turn may be used to define a geometric action on the orbit. This action will depend on
a path on the orbit. In the context of complexity, it is more convenient to represent the
geometric actions in terms of group elements g. Therefore, we use a presymplectic form ω

on G that is related to the Kirillov-Kostant form by a pullback to the orbit. The definition
of ω involves the Maurer-Cartan form θg, which maps elements from the tangent space at
some point g to those in the tangent space at the identity. In terms of two points s and t,
it reads

θg = d

ds

∣∣∣∣
s=t

(
(g−1(t) · (g(s)

)
. (3.4)

The presymplectic form ω is then given by

ω = −d〈v, θg〉. (3.5)

ω is closed and locally exact, but in contrast to the Kirillov-Kostant form degenerate. Since
it is locally exact, we may define a symplectic potential α by ω = dα. The geometric action
on the orbit is then given by

I =
∫
α = −

∫
g(t)
〈v, θg〉 = −

∫
g(t)
〈Ad∗g(v0), θg〉, (3.6)

where g(t) is a group path in G.

3.2 Central extension

We briefly review how central extensions of Lie groups G arise from projective unitary
representations in Hilbert space. For a detailed discussion, we refer to [34].

Let G be a Lie group with Lie algebra g and Ug a unitary operator representing a group
element g in Hilbert space. In particular, any two operators Ug satisfy Ug1Ug2 = Ug1g2 .
Note that Ug acts on vectors, not on states, the latter being represented by a ray, defined
as the set of vectors that only differ by a phase. Therefore, the action of two operators Ug1

and Ug2 on a vector |Φ〉 is ambiguous by a phase,

Ug1Ug2 |Φ〉 = eC(g1,g2)Ug1g2 |Φ〉. (3.7)

In case of a non-trivial phase, i.e. a phase that cannot be eliminated by redefining Ug, the
operators Ug furnish a projective representation of G. The central extension of a group G
by S1 then arises from this non-trivial phase, and the representation becomes exact for the
centrally extended group Ĝ = G⊗ R.
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Let V be a vector space; in the present context, this is the Hilbert space. Then, the
central extension is defined by the phase C, which is the 2-cocycle of the group G, defined
as a map

C : G×G→ V : g1, g2 → C(g1, g2). (3.8)

The 2-cocycle satisfies
C(g, g−1) = 0. (3.9)

Group elements of the centrally extended group Ĝ are pairs (g, α) with g ∈ G and α ∈ R.
The inverse element is given by

(g, α)−1 = (g−1,−α). (3.10)

The group multiplication is defined by

(g1, α)(g2, β) = (g1g2, α+ β + C(g1, g2)). (3.11)

Thus, for centrally extended groups the product of two group elements always carries an
additional phase factor C(g1, g2).

3.3 Geometric action for centrally extended groups

The Virasoro and Kac-Moody groups, which we considered in the context of complexity
in section 2.1, are centrally extended. Moreover, as mentioned in the introduction to
section 3, the complexity obtained form the complexity measure (2.6) is very similar to the
geometric action. In order to better understand this relation, we need to find a general
expression for geometric actions on coadjoint orbits for groups Ĝ centrally extended by the
circle. First, we summarize the results of [21–23, 34]. Geometric actions for the Virasoro
and Kac-Moody groups were considered in [21–23]. For a detailed discussion of geometric
actions in general, we refer to [34].

From (3.3) and the preceding discussion of central extensions, it is evident that in
order to find the centrally extended version of the geometric action (3.6), we need to find
the coadjoint action of Ĝ and the central extension of the Maurer-Cartan form.

Let (X,m) ∈ ĝ. Elements of the dual Lie algebra ĝ∗ are denoted by (v, c). The
definition (3.2) of the coadjoint representation still holds as the central element is invariant
under coadjoint transformations. Moreover, the definition of a coadjoint orbit Ov0 for
centrally extended groups is very similar to (3.3) since we simply replace the coadjoint
action of g ∈ G on v0 ∈ g∗ with the coadjoint action of (g, α) ∈ Ĝ on (v0, c) ∈ ĝ∗,

Ov0 =
{
v = Ad∗(g,α)(v0, c) | (g, α) ∈ Ĝ

}
. (3.12)

First, let us comment on the coadjoint action Ad∗(g,α) on v0. The central element α acts
trivially and thus Ad∗(g,α) reduces to Ad∗g. For centrally extended groups Ĝ, Ad∗gv0 consists
of two terms, one arising from the action of g ∈ G on v0, which we denote by Ãd

∗
g and

coincides with the definition of (3.3), the other is a consequence of the central extension
and is given by the product of the 1-cocycle γ(g) of the group G and the central element c,

Ad∗g(v0, c) = (Ãd
∗
g(v0) + cγ(g), c). (3.13)
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Next, we define the centrally extended Maurer-Cartan form. It is given by

(θ(g,α),mθ) = d

ds

∣∣∣∣
s=t

(
(g−1(t),−β(t)) · (g(s), β(s))

)
, (3.14)

where f(t) and β(t) are paths in the group manifold of G and the real numbers, respectively.
Note that the only difference to (3.4) is the additional path β(t). Using (3.11), (3.14) may
be written as

(θ(g,α),mθ) = d

ds

∣∣∣∣
s=t

(
g−1(t) ◦ g(s),−β(t) + β(s) + C(g−1(t), g(s))

)
. (3.15)

Then, the geometric action (3.6) on an orbit specified by v0 generalized to groups
centrally extended by S1 reads with (3.12), (3.13), and (3.15)

I = −
∫
g
〈v, (θ,mθ)〉 = −

∫
g

(
〈Ãd

∗
(v0), θg〉+ c〈γ(g), θg〉+ cmθ

)
. (3.16)

Compared to the geometric action (3.6) for non-centrally extended groups, here we have ad-
ditional terms c〈γ(g), θg〉 and cmθ. We will show in section 4 that the difference between the
geometric action and the complexity functional considered in section 2 is due to these terms.

3.4 Geometric actions for Virasoro and Kac-Moody groups

We now apply the result for the geometric action of centrally extended groups given
by (3.16) to the Virasoro and Kac-Moody groups based on [21–23]. Furthermore, the
geometric action of the Virasoro group has been considered in the context of Virasoro
Berry phases in [32], which also includes a review of Virasoro coadjoint orbits and its cocy-
cle. For a review of Kac-Moody geometric actions, see also e.g [24], from which we adopt
the notation.

The results of this section will enable us to spot the similarities between geometric
actions for these groups and the complexity functionals (2.11) and (2.20) in section 4.

3.4.1 Geometric action for the Virasoro group

Here, we apply the result (3.16) for the geometric action in the presence of a central term
as presented in section 3.3 to the Virasoro group.

From section 3.2, we know that the central term C(g1, g2) in (3.11) is nothing but
the 2-cocycle defining the central extension. It was first derived in [35] for the inverse
diffeomorphism F and reads

C(F1, F2) = − 1
48π

∫ 2π

0
dσ log

(
F ′1(F2(σ))

) F ′′2 (σ)
F ′2(σ) (3.17)

for F1, F2 ∈ Diff+(S1). To derive the geometric action (3.16), we need the coadjoint
action of group elements F and the Maurer-Cartan form. Note that we use the inverse
diffeomorphism F since the similarities with the complexity functional (2.11) are easier to
see this way. Let (b, c) = (b(σ)dσ2, c) ∈ ĝ∗, where ĝ∗ denotes the dual space of the Virasoro
algebra. Then, the coadjoint action of F on (b0, c) is given by

Ad∗F (b0, c) =
(
b0(F (σ))(∂σF (σ))2 − c

24π{F, σ}, c
)
. (3.18)
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By comparison of (3.18) with (3.13), the 1-cocycle of the Virasoro group may be identified
as γ(F ) = − 1

24π{F, σ}.
Moreover, the Maurer-Cartan form of the Virasoro group may be derived from (3.15)

and reads

(θ,mθ) =
(
Ḟ dt

F ′
∂

∂σ
,

1
48π

∫ 2π

0
dσ
Ḟdt

F ′

(
F ′′

F ′

)′)
. (3.19)

In particular, the central term mθ is obtained from the cocycle (3.17) according to (3.15).
To obtain the geometric action for the Virasoro group, we may then simply insert (3.18)
and (3.19) into (3.16) and obtain

I =
∫
dσdt

(
−b0(F )F ′Ḟ + c

48π
Ḟ

F ′

(
F ′′′

F ′
− 2(F ′′)2

(F ′)2

))
. (3.20)

This result is essential for showing the connection between geometric actions and complex-
ity functionals, as will be done in section 4.

3.4.2 Geometric action for the Kac-Moody group

We now turn to our second example of Kac-Moody groups and apply the result (3.16) of
section 3.3 above. According to section 3.2, the central term C(g1, g2) in (3.11) is given
by the 2-cocycle defining the central extension of the loop group and thus the Kac-Moody
group. It was first derived in [36] and reads

C(g1, g2) = 1
4π

∫
D

tr
[
g−1

1 d̄g1d̄g2g
−1
2

]
. (3.21)

Note that the last integral is over the disk D with boundary S1, parametrized by σ, and
r ∈ [0, 1]. d̄ denotes the exterior derivative with respect to these coordinates. Next, we
define the coadjoint action. Consider a pair (v, k) ∈ ĝ∗. Then, the coadjoint action of a
group element g on (v0, k) is given by

Ad∗g(v0, k) =
(
gv0g

−1 − k

2π∂σgg
−1, k

)
. (3.22)

By comparison of (3.22) with (3.13), it becomes evident that the 1-cocylce of the Kac-
Moody group is given by γ(g) = − 1

2π∂σgg
−1.

Similar to section 3.4.1, the Maurer-Cartan form for the Kac-Moody group may be
derived from (3.15). Since according to (3.15), the central extension of the Maurer-Cartan
form is defined in terms of the cocycle (3.21), it inherits the special feature (3.21) that
its central term lives on a disk with boundary S1 rather than S1 itself. As mentioned
in section 3.4.1 for the Virasoro group, the relation between the central extension of the
Maurer-Cartan form and the cocycle implies for the Kac-Moody group as well that the
central extension of the Maurer-Cartan form will be essential in obtaining computational
cost for the central term C(g1, g2) in (3.11).

Let M denote the manifold given by γ × D, where D is the disk with boundary S1

parametrized by σ and r ∈ [0, 1] as above, and γ is a curve parametrized by t. With the
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notation d = dt∂t, the left-invariant Maurer-Cartan form reads

(θg,mθ) =
(
g−1dg,

1
4π

[ ∫ 2π

0
dσ tr

[
g−1∂σgg

−1dg
]

+
∫
D

tr
[
g−1(d̄gg−1)2dg

] ])
. (3.23)

The geometric action is then simply obtained by inserting (3.22) and (3.23) into (3.16),

I =
∫
dσ tr

[
− v0dgg

−1 + k

4πdgg
−1∂σgg

−1
]
− k

4π

∫
M

tr
[
dgg−1

(
d̄gg−1

)2
]
. (3.24)

In the first two terms g ≡ g(σ, r = 1, t), implying the integral is over the boundary of the
manifold M , ∂M = γ × S1, whereas in the last term we integrate over M . Moreover, the
last term is the topological Wess-Zumino term. Note, in particular, that for v0 = 0, (3.24)
is just the chiral WZW action. This was observed in [21] in the context of geometric
quantization.

Both (3.20) and (3.24) play a central role when considering complexity for these groups
as we explain below.

4 From complexity to geometric actions

Based on the results presented in sections 2 and 3, here we propose a modified cost function
which yields the geometric action as a complexity functional. We begin in section 4.1 by
comparing contributions to the complexity functionals (2.11) and (2.20) to those occurring
in the geometric actions (3.20) and (3.24). We find that we may identify the velocities (2.8)
and (2.19) with the non-centrally extended Maurer-Cartan form (3.4). The transforma-
tions (2.9) and (2.17) acting on the symmetry currents T (σ), J(σ) are identified with the
coadjoint action of the according group. Then it becomes evident that the complexity
described in section 2 is not sensitive to contributions from the central extension, since
there is manifestly no contribution of the central extension to (2.6).

To obtain the full geometric action including the central extension term as our complex-
ity functional we introduce a generalized version of the gate equation (2.4) in section 4.2.
From this new gate equation, the centrally extended Maurer-Cartan form (3.14) is de-
rived, independently of the specific group. This allows us to derive in section 4.3 that the
new complexity expression obtained in this way is equal to the geometric action of the
corresponding group.

4.1 Relation between complexity and geometric action

Here we show that the geometric action is equal to the complexity (2.6) up to terms
arising from the central extension of the Maurer-Cartan form by identifying corresponding
elements in the geometric actions (3.20) and (3.24) with those in the complexities (2.11)
and (2.20).

The results (2.11) and (2.20) for the complexity may be summarized as follows. Given a
highest-weight reference state |ψ〉, a unitary representation Ug of a symmetry group G and
an operator J , corresponding to the conserved currents of the CFT under the symmetry
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transformations Ug, the complexity functional reads

C = 1
2π

∫ T

0
dt

∫ 2π

0
ε(t, σ)〈ψ|U †gJUg|ψ〉. (4.1)

For the Virasoro group, we identify g = f , for the Kac-Moody group g = Ω.
We now show that (4.1) is equal to the geometric action without contributions from

the central extension of the Maurer-Cartan form,

C != −
∫
〈Ad∗g(v0), θg〉. (4.2)

If this holds, we may identify the transformed current with the coadjoint action of group
elements on v0 ∈ g∗, where the orbit is specified by the expectation value of the conserved
currents J of the according group. Furthermore, the Mauer-Cartan form θg−1 in terms of
the inverse group element corresponds to the velocities ε.

The equality between (4.1) and (4.2) may be obtained directly from the gate equa-
tion (2.4). This is possible by rewriting (2.4) in terms of two different points t and s in
time that do not necessarily have to be close. Then, the symmetry transformation g(t) is
given by

g(t) = e
∫ t
s
ε(s′)ds′g(s). (4.3)

Upon multiplication by the inverse g−1(s) and performing a derivative with respect to s,
we obtain

d

ds

∣∣∣∣
s=t

(g(t)g−1(s)) = −ε(t). (4.4)

This is the expression for the non-centrally extended Maurer-Cartan form θg−1 given in (3.4)
in terms of g−1 rather than g. Hence it becomes clear that (4.1) and (4.2) are in fact equal
to each other. To see this more explicitly, we now proceed by identifying corresponding
contributions in both actions for the examples of the Kac-Moody and Virasoro groups,
making use of the results of the preceding sections.

Virasoro group. For the Virasoro group, the transformation of the energy-momentum
tensor under symmetry transformations Uf , expressed in terms of the inverse diffeomor-
phism F as given in (2.9), is directly equivalent to the coadjoint action (3.18) up to an
overall sign and a prefactor if we identify v0 = b0(F ) = − 1

2π 〈h|T (F )|h〉,

1
2π 〈h|(U

†
fT (σ)Uf )(F )|h〉 = −Ad∗F (b0). (4.5)

Moreover, the component of the Maurer-Cartan form (3.19) without central element is
equal up to a sign to the velocities ε computed in (2.8),

ε(t, σ) = −θF . (4.6)
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Kac-Moody group. Similarly, by comparison of (3.22) with (2.17), we find that upon
identifying g → Ω and v0 = − 1

2π 〈Φλ|J |Φλ〉 = − 1
2πCλ, the coadjoint action is just the

transformation property of the currents J under symmetry transformations,

1
2π 〈Φ|U

†J(σ)U |Φ〉 = −Ad∗g(v0). (4.7)

By comparing the velocity (2.19) with the Maurer-Cartan form (3.23), we identify the
Maurer-Cartan form of the inverse element g−1 with the velocity. Note that we have
already done the identification in terms of the inverse group element automatically in the
Virasoro case as the velocities are functions of the inverse diffeomorphism F . For the
Kac-Moody group, the replacement g → g−1 leads to an overall sign in θg in (3.23) since
θg−1 = g∂tg

−1dt = −∂tgg−1dt. Therefore, just as in the Virasoro case, the component of
the Maurer-Cartan form θg−1 without central term is equal up to a sign to the velocities
computed in (2.19),

ε(t, σ) = −θg−1 . (4.8)

Thus for both the Virasoro and Kac-Moody group, we see directly that the complexity
functional (4.1) is equal to the geometric action (4.2) without the central extension term.

Let us comment on why it is necessary to write the Maurer-Cartan form in terms of
the inverse group element g−1 (and similarly in terms of the inverse diffeomorphism F

in (4.6)). This is easily understood from the complexity point of view. By definition, the
Maurer-Cartan form relates a velocity at some point g(t) to that at the identity. However,
when computing the complexity, we start at the identity and aim at relating the velocity at
t = 0 to the velocity at some point close by. We are thus moving “forward” along the path,
whereas the Maurer-Cartan form by definition moves us “backward”. Consequently, the
Maurer-Cartan form in the complexity calculation must be written in terms of the inverse
transformation in order to move “forward”.

4.2 Recovering the central term

The question now arises if it is possible to adjust the cost function (2.5) to obtain the full
geometric actions (3.20) and (3.24) for the complexity functionals (2.11) and (2.20). To
this end, we have to find an expression for the velocities that is sensitive to contributions
from the central extension. This is accomplished by adding a new contribution to that of
the path through the symmetry transformations. The additional contribution is a path in
the real numbers that is entirely defined in terms of the chosen path through the symmetry
transformations.

The starting point is (4.3), which, as a reminder, is the generalized version of (2.4) for
two points t and s along the path that do not necessarily have to be close. Rather than
just considering a path through the transformations g, we also allow a path through the
real numbers α(t),

(g(t), α(t)) = e
∫ t
s
ds′(ε(s′),β(s′))(g(s), α(s)). (4.9)

To derive the corresponding velocities, we multiply by (g(s), α(s))−1 and take a derivative
with respect to s. This yields the central extension of the Maurer-Cartan form according
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to (3.14),

(θ,mθ)g−1 = −(ε(t), β(t)) = d

ds

∣∣∣∣
s=t

(
(g(t), α(t)) · (g−1(s), −α(s))

)
. (4.10)

With (3.11), (4.10) then becomes

(θ,mθ)g−1 = −(ε(t), β(t)) =
(
d

ds

∣∣∣∣
s=t

g(t) ◦ g−1(s), d
ds

∣∣∣∣
s=t

C(g(t)g−1(s))
)
. (4.11)

Then, the new cost function that we define for the velocities ε(t) and β(t) in the extended
group is given by a sum of two contributions,

F =
∫
dσε(t, σ)|〈ψR|U †(t)JU(t)|ψR〉|+ c0β(t), (4.12)

where J is the conserved current of the symmetry group in consideration. The first con-
tribution from ε(t) is just the cost function (2.5) used previously, which does not include
the central extension. The second contribution is given by β(t) times a constant c0. We
identify c0 with the Virasoro central charge c or the level k of the Kac-Moody group, re-
spectively, to achieve an equality of the resulting complexity functional with the geometric
actions for the corresponding symmetry groups (see (4.20) and (4.21) below).

Two comments are in order. First, we note that we have chosen the real number valued
part α of the group path to be a constant, α(t) = α(s) = const. This choice is necessary to
avoid those contributions that are solely determined by the path through the real numbers
and are thus independent of the transformation g applied. The cost, however, should always
depend on the symmetry transformation. Hence, the only contribution from the central
extension should arise from the cocycle C(g1, g2), which depends on the transformations g
alone, and not from derivatives of α, which are independent of g. Moreover, derivatives of
α would lead to additional contributions that do not occur in geometric actions. Since we
aim to show that we can find a cost function such that the complexity equals the geometric
action, we need to choose α = const.

Second, before we proceed we have to verify that the cost function (4.12) still assigns
zero cost to the identity. This is easily checked by considering (4.9) for identical points
along the path such that

(g(s), α(s)) = e
∫ s
s
ds′(ε(s′),β(s′))(g(s), α(s)), (4.13)

which implies that
∫ s
s ds

′(ε(s′), β(s′)) has to vanish. This is obviously satisfied since the
integration interval is of zero size. From a physical point of view, we may also argue that
for two identical points t = s, we expect the velocities (4.11) to vanish. This is satisfied
as a consequence of the properties of the Maurer-Cartan form (4.11): for the non-centrally
extendend component ε(t), we take the derivative of a constant since g(s)g−1(s) = 1. Thus,
ε(s) = θg−1 = 0. Similarly, for the central extension piece β(t) = mθ = 0 if C(g(s)g−1(s)) =
const. Since according to (3.9), the cocycle vanishes for the argument g(s)g−1(s), the new
cost function does indeed assign zero cost to the identity transformation. This further
justifies setting α = const, as otherwise we would have obtained an additional derivative.
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4.3 Complexity=geometric action

We now use the definitions of section 4.2 to determine the complexity resulting from the
new gate equation (4.9). We express the obtained complexity functionals entirely in terms
of the coadjoint action and the Maurer-Cartan form.

First, we compute the centrally-extended velocities and thus the Maurer-Cartan form
in terms of the inverse g−1 as given in (4.11). For the Virasoro group, the component
without central extension can be directly obtained from

θ = d

ds

∣∣∣∣
s=t

f(t) ◦ F (s). (4.14)

For the central extension, we use the 2-cocycle of the Virasoro group (3.17),

mθ = d

ds

∣∣∣∣
s=t

C(f(t), F (s)) = − 1
48π

∫ 2π

0

d

ds

∣∣∣∣
s=t

(
log

[
f ′(t, (F (s)))

] F ′′(t)
F ′(t)

)
. (4.15)

The result reads (see e.g. [32])

(θ,mθ) =
(
Ḟ

F ′
,

1
48π

∫ 2π

0
dσ

Ḟ

F ′

(
F ′′

F ′

)′)
. (4.16)

As expected, this coincides with (3.19),5 verifying that the modified gate equation (4.9)
yields the centrally extended Maurer-Cartan form.

For the Kac-Moody group, the Maurer-Cartan form without central extension reads

θg−1 = d

ds

∣∣∣∣
s=t

g(t)g−1(s) = −∂tg(t)g−1(t). (4.17)

The central extension can be computed from the 2-cocycle of the loop group (3.21),

mθ = d

ds

∣∣∣∣
s=t

C(g(t), g−1(s)) = 1
4π

∫
tr
[
g−1(t)d̄g(t) d

ds

∣∣∣∣
s=t

(d̄g−1(s)g(s))
]
. (4.18)

This gives

mθ = − 1
4π

∫
dσ tr

[
∂σgg

−1∂tgg
−1
]
− 1

4π

∫
tr
[
(d̄gg−1)2∂tgg

−1
]
. (4.19)

By comparison with (3.23), we find that (θg−1 ,mθg−1 ) = −(θg,mθg).
Based on this result, the centrally-extended Maurer-Cartan forms (4.16) and (4.19)

arising from the new gate equation (4.9) now enable us to obtain the full geometric action.
Let |ψ〉 be a highest-weight state. Then, with the coadjoint action (3.18) and the Maurer-
Cartan form (4.16), the complexity for the Virasoro group with contributions from the
central extension may be written as

C =
∫
dt

∫
dσ (ε(t), β(t))

( 1
2π 〈ψ|U

†
fTUf |ψ〉, c

)
= −

∫
dt (〈Ad∗F , θF 〉+ cmθF ) = I[F ],

(4.20)
5Strictly speaking, they differ by dt since from the gate equation (4.9), we just obtain the components of

the Maurer-Cartan form. The missing differential dt is absorbed in the integral of the computational cost
(see e.g. (2.6)).
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where I[F ] is the geometric action (3.20) for the Virasoro group. For the Kac-Moody
group, it is not necessary to express the action in terms of the inverse path g−1 due
to (θg−1 ,mθg−1 ) = −(θg,mθg). With the coadjoint action (3.22) and the Maurer-Cartan
form (3.23), we directly find

C =
∫
dt

∫
dσ (ε(t), β(t))

( 1
2π 〈ψ|U

†
gJUg|ψ〉, k

)
= −

∫
dt
(
〈Ad∗g(b0), θg〉+ kmθg

)
= I[g].
(4.21)

Here, I[g] is the geometric action (3.24) for the Kac-Moody group. In terms of group theory
language, the relations (4.20) and (4.21) may be summarized as follows. The complexity
for a CFT with symmetry group G and group elements denoted by g is given by

C = I[g] = −
∫
dt
(
〈Ad∗g(b0), θg〉+ kmθg

)
, (4.22)

where Ad∗g(b0) contains the information about the transformation of the conserved currents
under the according symmetry transformations. In particular, b0 labels the coadjoint orbit
and may be identified with the expectation value of the conserved current. The Maurer-
Cartan form (θg,mθg) corresponds to the velocity in terms of the path g. In summary,
the map between group theory quantities and complexity quantities that we established
implies the following: for the modified cost function (4.12), the complexity for a particular
centrally extended group coincides exactly with the on-shell value of the geometric action
of this group.

For the Virasoro group, the similarities between the coadjoint action and the complex-
ity are most obvious when the latter is written as a function of the inverse F . However,
the path (2.4) considered to find the complexity is a diffeomorphism f(t, σ). Therefore, in
order to perform explicit calculations of the complexity, it is more convenient to rewrite the
geometric action and hence the complexity in terms of f . This can be easily accomplished
by setting σ = f(t, σ̃), where σ̃ = F (t, σ). The result reads

C =
∫
dtdσ

ḟ

f ′

(
b0(f) + c

48π

(
f ′′

f ′

)′)
. (4.23)

Note that this is exactly the same result already anticipated in [17]. For Kac-Moody groups,
we simply set g → Ω, and thus,

C =
∫
dtdσ tr

[
− v0Ω̇Ω−1 + k

4π Ω̇Ω−1Ω′Ω−1
]
− k

4π

∫
M
dt tr

[
Ω̇Ω−1

(
d̄ΩΩ−1

)2
]
. (4.24)

Therefore, we have explicitely shown that the complexity functionals defined in this section
are equivalent to the geometric actions derived in section 3 for both the Virasoro and Kac-
Moody groups.

4.4 Gauge invariance

The fact that the phase of a quantum state is not measureable in general leads to an
important subtlety in the interpretation of geometric actions as complexity functionals
that we have not yet addressed. The issue is that symmetry transformations that only
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change the phase of the state, such as |h〉 → |ψT 〉 = eiaL0 |h〉, transform between physically
indistinguishable states, i.e. these unitary operators generate gauge transformations. Thus,
applying a certain symmetry transformation f onto the reference state should be equivalent
to applying the same f together with such a phase changing gauge transformation, since the
states Uf |h〉 and UfeiaL0 |h〉 obtained in this way are physically equivalent representations
of the target state in the Hilbert space.6 As it turns out, the on-shell value of the geometric
action is not invariant under such gauge transformations.

In the language of coadjoint orbits, the gauge transformations are represented by
transformations which leave the orbit invariant. The coadjoint orbits are isomorphic to
manifolds Ĝ/Hv0 , where Hv0 is the set of transformations that leave the reference state
invariant called the stabilizer of the orbit [34]. In terms of the coadjoint element v0 defining
the reference state,

Ad∗hv0 = v0 for h ∈ Hv0 . (4.25)

The coadjoint orbit action and with it the complexity should be invariant under trans-
formations h(t) from the stabilizer subgroup. As discussed in section 3.1, the geometric
actions are defined not on the full group manifold Ĝ, but only on the orbit Ĝ/Hv0 . In
particular, only the projection of the group path g(t) onto the coadjoint orbit is relevant
for the complexity. Consequently, paths that are non-trivial in Ĝ should result in vanish-
ing complexity if they are trivial projections on the coadjoint orbit. This includes paths
h(t) belonging to the stabilizer since these are projected onto points and thus always have
vanishing complexity.

It turns out that this gauge invariance property is indeed satisfied — up to the appear-
ance of a total derivative term in the action [34]. This term does not change the equations
of motion. However, for the on-shell value of the action, this total derivative term leads
to an additional contribution, such that the on-shell action is not gauge invariant. Our
complexity definition, however, is defined in terms of the on-shell action. As such, it is
assigned a role as a physically meaningful and in principle measureable object. Therefore
we cannot neglect the boundary terms in the complexity expression.

As an example, we consider the Virasoro group, for which the reference states fall into
two different classes, |0〉 and |h〉 with h > 0. While the first is invariant under SL(2,R)
transformations generated by L0,±1, the latter are invariant only under the U(1) subgroup
of the Virasoro group generated by L0. The corresponding orbits are Diff(S1)/SL(2,R)
and Diff(S1)/U(1), respectively.7

Now consider a gauge transformation given by an U(1) stabilizer parametrized by a(t),

f(t, σ)→ f(t, σ) + a(t). (4.26)
6Note that this issue is independent of the question whether to include the central extension in the

complexity functional. The gauge symmetry relevant here amounts to a total phase that relates the target
state to the reference state. On the other hand, the central extension term in the complexity functional
counts relative phase differences between two infinitesimally related states. Since these infinitesimally
related states are physically inequivalent, the relative phase between them is observable. In contrast, the
total phase between reference and target state is not observable in general, for example if reference and
target state coincide up to the phase difference.

7For a detailed discussion of Virasoro orbits, we refer to [20].

– 22 –



J
H
E
P
1
1
(
2
0
2
0
)
0
0
3

Since a(t) is independent of σ, it leads to an action of the L0 generator only. Inserting this
in the action (4.23), we obtain a change of

S → S + δS with δS =
∫
dtdσ

ȧ

f ′

(
b0 + c

48π

(
f ′′

f ′

)′)
. (4.27)

By expressing (4.27) in terms of the inverse diffeomorphism F , δS can be integrated in σ.
Since F (σ + 2π, t) = F (σ, t) + 2π, we only get a constant contribution from the integral
over σ. The remaining integral is over a constant times ȧ. Therefore, it is trivially solvable
to obtain

S → S + 2πb0(a(T )− a(0)). (4.28)

Thus, it is possible that symmetry transformations which are pure gauge and change only
the phase of the reference state lead to a non-vanishing complexity.8 In section 5, more
examples of transformations with the same property will be encountered.

A further important aspect related to the stabilizer group and boundary terms of the
action is the relation of the complexity to Berry phases on the Virasoro coadjoint orbits,
which have recently been studied in [32]. In particular, that the complexity is sensitive to
phase changes in the reference state may be deduced without any calculation from their
relation to Berry phases. We briefly review the results of [32] and highlight the relation to
the Virasoro complexities in appendix A.

5 Constructing optimal transformations and computing complexity

In this section, we will provide some intuition for the rather abstract complexity functionals
obtained in section 4.3 by calculating complexity and target states for examples of optimal
transformations. This is done for the Virasoro group in section 5.1 and for the Kac-Moody
group in section 5.2.

In order to identify optimal transformations for each of these groups, we determine
the equations of motion and their solutions for the Virasoro and Kac-Moody complexity
functionals (4.23) and (4.24), respectively. The solutions then provide the full set of optimal
transformations for the respective group.

Upon calculating the complexity from these solutions, for the Virasoro group we en-
counter several issues. Not only do we find a large class of optimal transformations for
which the Virasoro complexity counts only phase changes — we also find examples of
optimal transformations in which different costs are assigned to the same unitary transfor-
mation. These problems can be traced back to the fact that the gauge symmetry resulting
from changes in the phase of a quantum state is not taken into account in the complex-
ity proposal, as already mentioned in section 4.4. Upon adding suitable boundary terms,
gauge invariance is restored but the complexity vanishes.

Moreover, we consider examples of optimal transformations for different Kac-Moody
groups. Here, in contrast to the Virasoro case, the complexity functional assigns non-zero

8Note that this is independent of whether one takes into account the central extension in the cost
function. Eq. (2.14) suffers from the same problem.
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cost to non-trivial transformations at least in some cases, after ensuring gauge invariance by
suitable boundary terms. We provide examples of such non-trivial optimal transformations
and show that the cost and resulting target state are non-trivial as well.

5.1 Virasoro group

For the Virasoro group, in section 5.1.1 we first derive solutions to the equations of motion of
the complexity functional (4.23) to obtain the associated optimal transformations. We then
calculate the complexity associated to these transformations. For a non-vacuum reference
state invariant under the U(1) subgroup of the Virasoro algebra, this is done for general
optimal transformations in section 5.1.2, while for the vacuum state a particular example
of an optimal transformation is considered in section 5.1.3. Finally, in section 5.1.4, we
consider a non-optimal transformation in the SL(2,R)n subgroup of the Virasoro group. We
derive the associated complexity and compare the results with those obtained for optimal
SL(2,R) transformations.

5.1.1 General solution to the equations of motion

To derive the equations of motion of the complexity functional (4.23), we vary this func-
tional with respect to f . A straightforward but tedious calculation gives (see e.g. [37])

b0

(
ḟ

f ′

)′
− c

48π

(
ḟ

f ′

)′′′
= 0. (5.1)

Eq. (5.1) is simple enough to be solved in the general case. In fact, in terms of (ḟ/f ′)′ (5.1)
is just the equation of motion for a harmonic oscillator with frequency ωh =

√
1− 24h/c.

The solution is
ḟ

f ′
= A(t)σ +B(t)eiωhσ + C(t)e−iωhσ +D(t), (5.2)

where A,B,C,D are arbitrary functions of t satisfying B(t) = C∗(t). However, the re-
quirement that f be a diffeomorphism (at constant t) and hence that ḟ and f ′ be periodic
demands that A(t) = 0. For h > 0, ωh /∈ Z and thus in this case also B(t) = C(t) = 0.

We note that if f(t, σ) = f0(t, σ) is a solution of (5.2), then

f(t, σ) = g(f0(t, σ)) (5.3)

is another solution of (5.2) if g(σ) is a diffeomorphism, that is if g′ > 0, g(σ + 2π) =
g(σ) + 2π. Therefore, it is sufficient to first determine a simple solution f0(t, σ) of (5.2).
The general solution then follows by composition with an arbitrary g(σ).

Concentrate first on the case h > 0, where (5.2) reduces to

ḟ = D(t)f ′. (5.4)

It is simple to see that
f0(t, σ) = σ + δ(t) (5.5)
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provides a solution of this differential equation when D(t) = δ̇(t). Inserting the general
solution f(t, σ) = g(f0(t, σ)) into (4.23), we obtain that the complexity depends only on
the value of δ(t) at t = 0 and t = T ,

C =
∫
dσdt δ̇(t)

(
b0 + c

48π

(
f ′′

f ′

)′)
= 2πb0(δ(T )− δ(0)). (5.6)

For δ(T ) = δ(0), the complexity vanishes. As expected for a consistent interpretation,
in this case the unitary transformation Uf acting on the reference state is just the identity.
To see that, we note that F (t, σ) = G(σ) − δ(t) and thus ε(t, σ) = −Ḟ /F ′ = δ̇(t)/G′(σ),
where G(g(σ)) = σ. Therefore, the time integral of Uf = ~Pe

∫ ∫
dtdσ ε(t,σ)T (σ) is trivially

solvable and Uf is just an exponential of a sum over Ln symmetry generators with pref-
actor δ(T ) − δ(0). When δ(T ) = δ(0), this prefactor vanishes and the exponential yields
the identity.

For h = 0, one solution to (5.2) is given by9

f0(t, σ) = 2 arctan
(
a(t) tan(σ/2) + b(t)
c(t) tan(σ/2) + d(t)

)
, (5.7)

where ad− bc = 1, i.e. a, b, c, d together form a SL(2,R) element.10 The functions a, b, c, d
are related to B,C,D by

B = 1
2

[
ḃd− bḋ− ȧc+ aċ− i(ḃc− bċ+ ȧd− aḋ)

]
= C∗

D = ḃd− bḋ+ ȧc− aċ.
(5.8)

In this case, the complexity cannot be derived in closed form in general. Inserting the
general solution f(t, σ) = g(f0(t, σ)) into the complexity action functional (4.23) yields

C[f ] = C[f0] + c

48π

∫
dσdt

ḟ0
f ′0

(
g′′

g′

)′
=
∫
dtD2πb0 + c

48π

∫
dσdt (Beiσ + Ce−iσ)

(
f ′′0
f ′0

+ g′′

g′

)′
. (5.9)

How do we interpret the above solutions (5.5) and (5.7) from the perspective of com-
plexity? We note that the f0(t, σ) are in the stabilizer subgroup of the respective reference
state, i.e. Uf0(t) only generates a phase shift in |h〉. Moreover, g is independent of t. The
above solutions are given by a composition of g with f0(t), hence

Uf(t) = Ug·f0(t) ∼ UgUf0(t), (5.10)
9An equivalent representation of this solution of the form

f(t, σ) = 1
i
ln

[
α(t)eiσ + β(t)
β̄(t)eiσ + ᾱ(t)

]
was considered in [32].

10PSL(2,R) to be precise since a, b, c, d→ −a,−b,−c,−d gives the same f0.
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where ∼ denotes equality up to a phase eiα. Therefore, the state |ψ(t)〉 at computation
time t is reached by first applying a time-dependent phase shift Uf0(t) followed by a time
independent conformal transformation Ug. Thus, up to a phase, the target state is reached
instantaneously at time t = 0,11

|ψT 〉 ∼ Uf(0)|h〉 ∼ Ug|h〉. (5.11)

At later times t > 0, only this phase changes. What cost is associated with these two con-
tributions to Uf(t)? For h > 0, from (5.6), it is obvious that the complexity is independent
of g and counts only the phase change generated by Uf0(t). Thus, it follows that in this
case, the complexity definition given by the on-shell value of the geometric action (4.23)
counts only phase changes, while it assigns zero cost to the (most certainly more interest-
ing) contribution that actually produces a physically distinct state! For the special case
of h = 0, eq. (5.9) shows that the complexity is in general not independent of g. In this
case, Ug contributes to the cost of the total transformation Uf(t) as does the phase shift
generated by Uf0(t).

In the following, we derive the cost assigned to these phase shifts by considering so-
lutions to the equations of motion where g is the identity, i.e. solutions for which only
a phase change is generated. These transformations for these solutions are generated by
stabilizer subgroups U(1) and SL(2,R) of the Virasoro group. We show that the cost is
non-vanishing and proportional to the phase shift.12

5.1.2 Example: U(1) subgroup of the Virasoro group

For f(t, σ) = f0(t, σ) = σ + δ(t), only the L0 generator forming a U(1) subgroup of the
Virasoro group acts on the reference states,

ε(t, σ) = −Ḟ /F ′ ≡ ε(t) = δ̇(t). (5.12)

For a reference state |h〉 with well-defined scaling dimension h, the complexity then counts
only the change in phase as

|h〉 → ~P exp
(

2π
∫
dtε(t)(L0 − c/24)

)
|h〉. (5.13)

As we have already seen, the complexity is determined entirely by the boundary conditions
for δ(t) at t = 0 and t = T ,

C =
(
h− c

24

)
(δ(T )− δ(0)) . (5.14)

Thus, despite the fact that we have only changed the phase of the state, which is a gauge
symmetry, the complexity is still non-vanishing. As explained in section 5.1.1, we obtain
the same result for the complexity, eq. (5.14), also for a general optimal transformation
f(t, σ) = g(f0(t, σ)). Hence, for reference states with h > 0, eq. (5.14) is the general
expression valid for the complexity between |h〉 and any target state.

11If one additionally requires that Uf(0) = 1 as in [17], instantaneous transitions are forbidden. Then g
must be the identity and only phase shifts can be generated.

12Phase changes generated by conformal transformations, referred to as Virasoro Berry phases, were
recently considered in [32]. See appendix A for a discussion how these Berry phases are related to complexity.
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5.1.3 Example: SL(2,R) subgroup of the Virasoro group
As a further example for evaluating the Virasoro complexity, we now consider optimal
transformations belonging to the SL(2,R) subgroup of the Virasoro group. To this end,
consider f(t, σ) from (5.7). The inverse F (t, σ) has the same form with a, b, c, d replaced
by d,−b,−c, a, which are the elements of the inverse of the SL(2,R) element corresponding
to a, b, c, d. Thus, ε(t, σ) is given by

ε(t, σ) = B̃(t)eiσ + C̃(t)e−iσ + D̃(t), (5.15)

where B̃, C̃, D̃ are functions of t related to a, b, c, d by

B̃ = 1
2

[
−ḃa+ bȧ+ ḋc− dċ− i(ḃc− bċ+ ḋa− dȧ)

]
= C̃∗

D̃ = −ḃa+ bȧ− ḋc+ dċ.

(5.16)

Thus, only L0, L±1 forming a SL(2,R) subgroup of the Virasoro group act on the reference
state |0〉,

|ψT 〉=Uf(T,σ)|0〉= exp
(

2πi
∫ T

0
dt

(
B̃(t)L−1+C̃(t)L1+D̃(t)

(
L0−

c

24

)))
|0〉. (5.17)

Since |0〉 is SL(2,R) invariant, this gives only a phase change that arises from the zero mode
L0 − c/24. As for the U(1) case, the complexity for these phase changing transformations
does not vanish in general (see (5.9)).

Let us now consider a particular example of a SL(2,R) transformation for which the
complexity does vanish. We consider a diffeomorphism that was introduced in the context
of Virasoro Berry phases in [32]. There, f(t, σ) is chosen such that the corresponding bulk
diffeomorphism gives an AdS3 boost with rapidity λ,

f(t, σ) = 1
i
ln

cosh
(
λ
2

)
eiσ + sinh

(
λ
2

)
sinh

(
λ
2

)
eiσ + cosh

(
λ
2

)
+ ωt. (5.18)

The inverse transformation F (t, σ) is a function of σ − ωt, thus the only non-vanishing
mode of ε(t) is the zero mode

ε(t, σ) = ε0 = ω . (5.19)

The complexity follows from a straightforward calculation by inserting (5.18) into the
action (4.23),

C = CT = hTω cosh (λ) . (5.20)
For general h, this would imply that the cost induced by |h〉 → exp(i

∫
dt ε0(L0− c/24))|h〉

grows linearly with the angular velocity ω and computation time T . However, for the
vacuum we have h = 0 such that the complexity actually vanishes. This is certainly a
puzzling result in light of the fact that in section 5.1.2 we could have taken δ(t) = ωt and
derived a non-vanishing complexity (5.14) for exactly the same unitary (phase changing)
transformation (5.13) as we have used here! This discrepancy, which exists only for the
vacuum state due to the fact that it is the only SL(2,R) invariant state, shows again that it
is essential to take into account the gauge symmetry to obtain a consistent interpretation
of geometric actions as complexity.
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5.1.4 Example: SL(2,R)n subgroup of the Virasoro group

Here, we consider transformations arising from the SL(2,R)n subgroup of the Virasoro
group. Note that these do not solve the equations of motion (5.1) and are thus not optimal.
It is interesting to compare the cost and target state with the results for optimal SL(2,R)
transformations in section 5.1.3.

To give an example for a non-optimal transformation, we generalize (5.18) to

f(t, σ) = 1
in

ln
[
αeinσ + β

β̄einσ + ᾱ

]
+ ωt, (5.21)

where n ∈ N. Eq. (5.21) is not a solution to the equations of motion (5.1), due to the
fact that ḟ , f ′ contains terms proportional to e±inσ. The transformation arises from modes
L0, L±n forming a subgroup SL(2,R)n of the Virasoro group.13 SL(2,R)n is an n-fold cover
of SL(2,R). The associated cost is non-minimal and not a measure for complexity, as we
will show now.

Since the inverse transformation F (t, σ) is a function of σ−ωt, the only non-vanishing
mode for this transformation is again the zero mode

ε(t, σ) = ε0 = ω. (5.22)

Thus, the unitary operator Uf implementing the transformation f(t, σ) in the Hilbert space
generates the same state as the SL(2,R) transformation considered above. The cost of this
transformation is given by

C = hTωcosh(λ) + ωT
c

24
(
n2 − 1

)
cosh(λ). (5.23)

As expected, the complexity of non-optimal transformations in the n-fold cover is larger
than that of optimal SL(2,R)-transformations in eq. (5.20). However, the corresponding
unitary operator Uf acting on the Hilbert space still contains only the L0 generator and
is exactly equivalent to the one for the (optimal) SL(2,R) path of section 5.1.3. Thus we
see again that without taking the gauge invariance into account, the complexity definition
assigns different costs (5.23) and (5.20) to the same unitary transformation Uf .

5.2 Kac-Moody groups

We now discuss complexity for Kac-Moody groups for the examples of simple optimal
SU(2), SL(2,R), and SL(N,R) transformations. We begin by deriving the equation of
motion and determining a general solution in section 5.2.1. There, we also show that
the first term in the complexity (4.24) can never contribute when group elements are
represented by unit determinant matrices. We conclude section 5.2.1 by discussing relevant
aspects for the explicit computation of the topological WZW term.

13This is the stabilizer group of so-called exceptional coadjoint orbits of the Virasoro group. For n > 1,
these orbits are unphysical with energy unbounded from below [34], thus they are not considered in the
rest of this work.
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In section 5.2.2, we then proceed to compute the complexity of SU(2) symmetry trans-
formations. The optimal transformations we consider show that in contrast to the Vi-
rasoro case, the complexity measure (4.24) may assign non-vanishing cost to non-trivial
transformations, as expected for a viable complexity measure. Moreover, since we ar-
gued in section 4.4 that the complexity is gauge invariant only up to boundary terms,
we demonstrate for an example that similarly to the Virasoro case, the complexity pro-
posal considered assigns also a cost to gauge transformations, unless appropriate boundary
terms are added to the complexity functional (4.24). In section 5.2.3, we then provide a
further example of an optimal SL(2,R) transformation yielding non-vanishing complexity
for a non-trivial target state. Finally, in section 5.2.4 we study how the complexity cost
assigned to gauge transformations grows with the value of N for SL(N,R) for the example
of diagonal matrices.

5.2.1 Optimal circuits for Kac-Moody complexity

To derive the equations of motion of (4.24), we note that the variation of (4.24) coincides
with that of a WZW model (see e.g. [38]) since the term scaling with v0 in (4.24) does not
contribute. The equation of motion is then that of a WZW model,

0 = ∂t(∂σΩΩ−1). (5.24)

Here, Ω are matrices valued in the semisimple Lie group specifying the Kac-Moody group
as introduced in section 2.3. The relation of (5.24) to the equations of motion of the
WZW model becomes apparent if we identify t with a holomorphic coordinate, σ with an
antiholomorphic coordinate and set ∂σΩΩ−1 = Jσ. Then the equation of motion (5.24)
becomes equivalent to the conservation equation ∂zJz̄ = 0.

General solutions of (5.24) are given by solutions of the WZW model, which read [38]

Ω(t, σ) = Ω1(σ)Ω2(t). (5.25)

Next, let us comment on the special role of the orbit label v0 in the Kac-Moody case. Note
that the orbit v0 does not contribute to the equation of motion (5.24) for the Kac-Moody
complexity. This distinguishes the equation of motion from those obtained for the Virasoro
case (5.1). Moreover, the term scaling with v0 in (4.24) vanishes for any unit-determinant
matrix and thus does not contribute to the complexity at all for these. This may be shown
with Jacobi’s formula, which for an invertible matrix A reads

∂det[A] = det[A]tr[∂AA−1]. (5.26)

Setting det[A] = 1, we hence obtain

0 = tr[∂AA−1]. (5.27)

The right-hand side may now be identified with tr[Ω̇Ω−1] in (4.24) upon realizing that
v0 = − 1

2πCλ ∝ 1 in an irreducible representation according to Schur’s lemma. Conse-
quently, the complexity is independent of the expectation value of J and thus the Casimir
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element Cλ for all transformations that may be written as a matrix with unit determinant.
This implies that the complexity is independent of the specific coadjoint orbit, which is in
stark contrast to the Virasoro complexity (4.23), where even upon considering the simplest
transformations, terms scaling with the expectation value of the energy-momentum tensor
never vanish. Indeed, the only conceivable way to mimic this behavior in the Virasoro case
is to consider those diffeomorphisms that do not depend on time such that ḟ vanishes.
This, however, always leads to a vanishing complexity. We will further illustrate the con-
sequences of the vanishing term scaling with the Casimir element on the example of SU(2)
transformations in section 5.2.2.

Next, let us take a closer look at the topological WZW term, which is the last term
in (4.24). We briefly review aspects relevant for its explicit calculation for examples of
optimal transformations considered below. The 2d CFT WZW term is discussed in [38], a
more detailed discussion of its construction and properties may be found in [39].

Rewritten in a more intuitive notation, the topological WZW term introduced in (3.24)
reads

ΓWZW = − k

24π

∫ 1

0
dr

∫
Σ
d2x tr

[
εαβγ∂αΩ̃Ω̃−1∂βΩ̃Ω̃−1∂γΩ̃Ω̃−1

]
. (5.28)

As briefly mentioned in section 3.4.2, the integral is now over a three-dimensional manifold
M = [0, 1] × Σ, which is obtained by first compactifying the original two-dimensional
manifold spanned by t and σ and parametrizing the interior of this compactified space by
r ∈ [0, 1]. The three-dimensional manifold thus must be chosen such that its boundary is
the compactified version of the manifold spanned by t and σ, ∂M = Σ. The new coordinates
for the compactified space Σ are denoted by x in (5.28). Accordingly, the transformations
Ω(t, σ) have to be extended into the interior. The extended version is denoted by Ω̃
in (5.28). The existence of such extensions is guaranteed if the 2nd homotopy group of
the Lie group G vanishes, i.e. π2(G) = 0. However, the particular way in which the map
is extended is not unique. In order for Ω̃(r, x) : [0, 1] × Σ → G to be a homotopy, the
extension simply has to obey the boundary conditions14

Ω̃(r = 0, x) = 1 Ω̃(r = 1, x) = Ω(x). (5.29)

Note that the second condition is equivalent to requiring that we obtain the original trans-
formation at the boundary of the manifoldM . One possibility to extend the transformation
is15 [42]

Ω̃(x, r) = (Ω(x))r . (5.30)

This will be used to calculate the contribution of the topological WZW term (5.28) to
the Kac-Moody complexity for some examples of optimal transformations for the SU(2),
SL(2,R), and SL(N,R) Kac-Moody groups.

14To be precise, the extension simply has to satisfy the more general conditions Ω̃(r = 0, x) = Ω1(x)
and Ω̃(r = 1, x) = Ω2(x). The condition Ω̃(r = 0, x) = 1 is a more specific but convenient choice. For
a pedagogical introduction into homotopies, we refer to ch. 4 in [40], their relation to the WZW term in
discussed in [38, 39], as well as [41] ch. 4.10.

15The result does not depend on the particular choice of Ω̃.
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5.2.2 Example: SU(2) Kac-Moody group

We have observed in section 5.1 for the Virasoro case that the geometric action (4.23)
as complexity measure assigns vanishing cost to any non-trivial transformation for all
reference states except the vacuum. At the same time, it assigns a non-trivial cost to
gauge transformations that yield only phase changes on the reference state. We explained
in section 4.4 that the non-trivial results for gauge transformations are due to a lack of
gauge invariance of the geometric action that occurs when the geometric action is given in
terms of a group path rather than a path on the coadjoint orbit.

In the Kac-Moody case however, the situation is somewhat different. With the exam-
ples considered here, we aim at demonstrating two properties of the Kac-Moody complexity
measure (4.24): first, it counts the cost of non-trivial transformations that lead to target
states physically distinguishable from the reference state. This is an essential difference
to the Virasoro case examined in section 5.1. Secondly, since the Kac-Moody geometric
action, which is our complexity measure (4.24), is defined in terms of a group path in
the group manifold rather than on the coadjoint orbit, it also counts the cost of trivial
gauge transformations as in the Virasoro case. These may however be removed by ap-
propriate boundary terms. We also examine further general properties of the complexity
measure (4.24). To be specific, we choose optimal SU(2) transformations. However, the
general results apply to other groups as well.

We begin with an example for a transformation yielding a non-trivial target state. In
the fundamental representation, the generators of SU(2) are given in terms of the Pauli
matrices σ,

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (5.31)

A non-trivial transformation solving the equation of motion (5.25) is given by

Ω(t, σ) =
(

cos(σ) sin(σ)
−sin(σ) cos(σ)

)(
cos(t) sin(t)
−sin(t) cos(t)

)
, (5.32)

which is a sequence of rotations generated by σ2. To evaluate the topological term, we
apply the general extension (5.30) to the particular solution considered here. Inserting the
optimal transformation (5.32) into (4.24) yields

C = kT. (5.33)

As anticipated in section 5.2.1, the value of Cλ is irrelevant as the first term in (4.24), which
scales with v0 and thus Cλ, vanishes. In particular, Cj = 2j(j+1) in a spin-j representation
of SU(2). The result (5.33) then implies the complexity is independent of the spin for any
SU(2) transformation. Moreover, the topological term does not contribute. This is a
peculiarity of the generators involved in the transformation. The transformation (5.32)
may be written in terms of 1 and σ2, which commute. The fact that the integrand of the
topological term is antisymmetric requires certains terms to cancel in the complexity.
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In place of (5.32), we may also consider the more general non-trivial transformation

Ω =
(

cos(ασ + δ) sin(ασ + δ)
−sin(ασ + δ) cos(ασ + δ)

)(
cos(βt+ λ) sin(βt+ λ)
−sin(βt+ λ) cos(βt+ λ)

)
, (5.34)

where α, β, δ, λ ∈ R. With (4.24), we obtain

C = αβkT, (5.35)

where the only contribution again arises from the 2nd term in (4.24). Apparently, a scaling
of the coordinates by a real number leads to the same scaling of the complexity with α.
This behavior is caused by the derivatives in the 2nd term of the complexity. In contrast,
adding α to σ or t does not change the complexity. A simple consistency check consists of
setting α = β = 1 in (5.35), which yields (5.33).

We have thus demonstrated that the transformation (5.34) yields a non-vanishing com-
plexity (5.35). Since we aim to show that we obtain non-vanishing cost for non-trivial trans-
formations, we now determine the target state associated with the transformation (5.35).
As a reference state, we chose a highest weight state given by |h, jmax〉, where h denotes the
conformal weight and jmax denotes the maximum spin, i.e. the reference state is a highest
weight state of the zero-mode group SU(2) as well. To obtain the target state, we employ

|ψT 〉 = ~Pe
∫ T

0 dt
∫ 2π

0
dσ
2π tr[ε(t,σ)J(σ)]|h, jmax〉 = ~Pe

∫ T
0 dt tr[εan(t)Ja−n]|h, jmax〉. (5.36)

The index a runs over the three generators of the group SU(2) given in terms of the Pauli
matrices by Ja = σa√

2 , whereas n ∈ Z as for the Virasoro case. The velocity modes εa(t, σ)
are given by

εa(t, σ) = tr
[
ε(t, σ) σ

a

√
2

]
= tr

[
∂tΩ(t, σ)Ω−1(t, σ) σ

a

√
2

]
, (5.37)

where in the last step we used (2.19). Evaluating this yields ε2 =
√

2iβ with ε1 = ε3 = 0.
Since ε2 = const, only the zeroth Fourier mode is non-vanishing. Hence, ε20 =

√
2iβ with

all other modes vanishing. For the target state this implies

|ψT 〉 = ei
√

2βT J2
0 |h, jmax〉. (5.38)

To proceed, J2
0 can be expressed in terms of the ladder operators J±. The target state may

then be obtained by expanding the exponential and evaluating the action of the operators
J± on the reference state. Since the ladder operators change the value of jmax, the target
state is a sum of states with different values of jmax. They, however, do not change the
conformal dimension h. Hence, the target state is still a primary state. Nevertheless,
we see an important feature of the target state already at this point. It is non-trivial as
the different values of jmax make it distinguishable from the reference sate. Therefore,
in the Kac-Moody case, there exist optimal circuits with non-vanishing cost that lead to
physically distinguishable target states. Here, the non-trivial transformation (5.34) has
non-vanishing complexity (5.35) and yields a sum of conformal primary target state |h, j〉
with different values of j. This is an important difference to the Virasoro case, where for
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any reference state with h > 0, the complexity only counts the cost of phase changes as
discussed in section 5.1.

However, also in the Kac-Moody case, there are examples where the process described
counts the cost of gauge transformations. This is due to the fact that the geometric
action (4.24) is gauge invariant only up to boundary terms if it is defined in terms of a
group path. The coadjoint orbits for Kac-Moody groups L̂G are given by L̂G/Hv0 . As
discussed in section 4.4, Hv0 is the stabilizer subgroup that leaves elements on the orbit
invariant. For Kac-Moody groups based on compact subgroups, the stabilizer subgroup Hv0

is given by the maximal torus, i.e. the maximal compact Abelian subgroup [43]. Therefore,
to demonstrate that gauge transformations lead to non-vanishing cost even though the
target state differs only by a phase change from the reference state, we first pick an optimal
transformation from the orbit stabilizer and then compute the complexity and the target
state. For SU(2), an example of such a gauge transformation is given by

Ω =
(
eiσ 0
0 e−iσ

)(
ei2πt 0

0 e−i2πt

)
. (5.39)

Inserting the transformation into (4.24) yields

C = 2πkT, (5.40)

which is evidently non-vanishing, unlike what we expect for a gauge transformation since
the reference state only changes by a phase. Indeed, the associated target is given by

|ψT 〉 = e
i 4√

2
πT J3

0 |h, jmax〉 , (5.41)

as only the velocity mode ε30 is not equal to zero. With J3
0 related to the ladder operator

convention by Jz0 = 1√
2J

3
0 and Jz0 |h, jmax〉 = jmax

2 |h, jmax〉, we then obtain

|ψT 〉 = e2iπT jmax |h, jmax〉. (5.42)

This is the reference state up to a phase, but the complexity (5.40) is non-vanishing.
As discussed in section 5.1, we expect that (5.40) will be set to zero by appropriate

boundary terms, which we now derive. We may write a general transformation from the
orbit stabilizer as

Ω =
(
eiα(σ) 0

0 e−iα(σ)

)(
eiβ(t) 0

0 e−iβ(t)

)
. (5.43)

As discussed in section 5.2.1, the first term in (4.24) vanishes for all unit-determinant
groups. Moreover, the WZW term, which is the last term in (4.24), is antisymmetric and
thus vanishes for abelian subgroups. The boundary term cancelling the contribution (5.40)
must then arise from the second term in (4.24). Inserting (5.43) into (4.24) thus yields the
boundary term

Cboundary =− k

2π

∫ T

0
dt

∫ 2π

0
dσ∂tβ(t)∂σα(σ) =− k

2π (β(T )−β(0))(α(2π)−α(0)). (5.44)
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It is easy to check that (5.44) indeed cancels the complexity (5.40). For the transforma-
tion (5.39), α(σ) = σ and β(t) = 2πt. Inserting this into (5.44), we obtain

Cboundary = −k2πT. (5.45)

This exactly cancels the complexity (5.40) and shows that gauge invariance may again be
restored by an appropriate boundary term, which is given by (5.44) for group paths from
the maximal torus.

We have therefore demonstrated that the complexity measure (4.24) assigns non-
vanishing cost to both trivial and non-trivial transformations. The cost of trivial trans-
formations from the orbit stabilizer may however be cancelled by appropriate boundary
terms. Note that above we examined examples where the transformation is either trivial
or non-trivial, it is however also possible to obtain optimal transformations that contain
both a non-trivial and a trivial part. This is similar to the Virasoro case examined in
section 5.1. However, for the Virasoro group, this non-trivial part has zero cost for all
reference states except the vacuum. For the Kac-Moody case however, we found examples
for non-trivial transformations with non-zero cost, as is desidered for a meaningful com-
plexity definition. The reason for this is most easily understood by considering the target
state (5.36). The velocity modes εan determine which generators act on the reference state
and thus determine the target state. The velocity ε(t, σ) is in turn given by the optimal
transformation according to (2.19). We may distinguish several cases. For the examples
considered above, ε(t, σ) = const, which implies that only n = 0 modes do not vanish.
Therefore, only the SU(2) subgroup generators, i.e. the zero-mode generators of the Kac-
Moody group contribute in the exponent of (5.36). The general target state (5.36) for
ε(t, σ) = const then reads

|ψT 〉 = eiT
∑

a
εa0J

a
0 |h, jmax〉, (5.46)

where Ja0 are the SU(2) subalgebra generators. The modes εa0 that do not vanish determine
which of these generators act on the reference state. For instance, if ε1 and ε2 do not
vanish, the target state must be non-trivial since the SU(2) generators J1 and J2 may be
written in terms of ladder operators, which act non-trivially on the state. An example of
such a transformation is (5.34) with non-vanishing complexity (5.35). On the other hand, if
the mode ε3 is non-vanishing, the resulting target state will always contain a phase change
even if ε1 and ε2 are non-vanishing as well. The reason is simple: the reference state is
an eigenstate to the generator J3 that acts on the reference state if the associated mode
ε3 is non-vanishing. We may then substitute J3 in (5.46) with its eigenvalue. Then, ε3

is multiplied by the eigenvalue in (5.46), which is just a phase. An example of such a
transformation is (5.39). Note that while for (5.39) only ε3 is non-vanishing, it is in general
conceivable to find transformations where also ε1 and ε2 are non-vanishing. Then, ε3 will
still yield a phase since the reference state is an eigenstate to J3, while ε1 and ε2 and the
associated ladder operators transform the state in a non-trivial manner. Of course, there
also exits optimal transformations where not only the zero modes εa0 but other modes εan
contribute. This case can often be obtained by considering asymmetric transformations,
i.e. where the matrices Ω1(σ) and Ω2(t) in (5.25) are different matrices from the same
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group. In this case, the Kac-Moody generators Jn also transform the state non-trivially by
changing the conformal dimension h. Nevertheless, if the optimal transformation yields a
non-vanishing mode ε30, the target state will contain a phase change whose cost is cancelled
by appropriate boundary terms. In general, any complexity contribution associated to
transformations from the orbit stabilizer can be set to zero by boundary terms, as such
group paths are projected onto points on the orbit.

5.2.3 Example: SL(2,R) Kac-Moody group

To further demonstrate that the Kac-Moody complexity functional (4.24) assigns cost to
non-trivial transformations, we consider an optimal non-trivial SL(2,R) transformation. A
general SL(2,R) transformation may be written as

Ω =
(
a b

c d

)
, (5.47)

where ab− cb = 1 and a, b, c, d ∈ R. Here, a, b, c, d will be some functions of σ and t. The
generators can be expressed in terms of the Pauli matrices [44],

J0 = − i2σ2, J± = 1
2(σ3 ± iσ1). (5.48)

Now consider the non-trivial optimal transformation

Ω =
(

cosh(ασ + δ) sinh(ασ + δ)
sinh(ασ + δ) cosh(ασ + δ)

)(
cosh(βt+ λ) sinh(βt+ λ)
sinh(βt+ λ) cosh(αt+ λ)

)
. (5.49)

We now show that the associated target state and complexity are both non-trivial. We be-
gin with computing the complexity. Inserting the transformation (5.49) into the complexity
measure (4.24) yields

C = αβkT. (5.50)

Note that this result is identical to that of SU(2) in (5.35). In particular, the derivatives
in (4.24) lead to the same scaling behavior. Moreover, just as observed for SU(2), there is
no contribution from the topological term. This vanishes for similar reasons as discussed
in section 5.2.2, since the generators of SL(2,R) may be constructed from Pauli matrices
as given in (5.48).

Next, we show that similarly to the SU(2) case considered in section 5.2.2, the target
state of the SL(2,R) transformation (5.49) is non-trivial. An analogous calculation to that
in section 5.2.2 shows that the mode ε1 = β associated with the generator J1 = 1

2σ1 is
non-vanishing. Since according to (5.48), J1 = − i

2(J+ − J−), the target state is then
given by

|ψT 〉 = e−
i
2β(J+−J−)|ψR〉. (5.51)

The ladder operators act non-trivially on the reference state |ψR〉. Therefore, the resulting
target state is non-trivial. We hence observe that similarly to the optimal SU(2) trans-
formation (5.35), there exist optimal transformations that yield target states which are
physically distinguishable from the reference state. For SL(2,R), an example of such an

– 35 –



J
H
E
P
1
1
(
2
0
2
0
)
0
0
3

optimal transformation is given by (5.49). Most importantly, in contrast to the Virasoro
group, the complexity measure (4.24) assigns cost to these non-trivial transformations as
we obtain a non-vanishing complexity (5.50) for SL(2,R) and (5.35) for SU(2).

5.2.4 Example: diagonal matrices from the SL(N,R) Kac-Moody group

Another simple solution of (5.25) are diagonal matrices, which hold the advantage that
the computation can be easily extended to SL(N,R). Moreover, the topological WZW
term, which is the third term in the complexity functional (4.24), does not contribute since
diagonal matrices commute and thus all contributions cancel due to the antisymmetry
of the integrand. While these abelian matrices are gauge transformations yielding trivial
target states, the non-vanishing complexity we obtain gives us some insight into how the
complexity changes for a general SL(N,R) group.

Let us begin by considering diagonal SL(2,R) matrices. A general solution to the
equation of motion (5.25) is then given by

Ω(t, σ) =
( 1
a(σ) 0
0 a(σ)

)( 1
b(t) 0
0 b(t)

)
, (5.52)

with arbitrary but real-valued functions α(σ) and b(t). Inserting these solutions into (4.24)
again leads to a functional of the form

C = k

2π

∫ T

0

∫ 2π

0
dtdσ

a′(σ)ḃ(t)
a(σ)b(t) . (5.53)

Similarly, an according SL(3,R) matrix reads

Ω(t, σ) =

1/a2(σ) 0 0
0 a(σ) 0
0 0 a(σ)


1/b2(t) 0 0

0 b(t) 0
0 0 b(t)

 . (5.54)

From (4.24), we obtain

C = 3k
2π

∫ T

0

∫ 2π

0
dtdσ

a′(σ)ḃ(t)
a(σ)b(t) . (5.55)

A comparison with (5.53) leads to the conclusion that only prefactors change. This
allows us to deduce the complexity of a matrix n× n ∈ SL(N,R),

Ω(t, σ) =


1

an−1(σ) 0 · · · 0

0 a(σ) . . . ...
... . . . . . . 0
0 · · · 0 a(σ)




1

bn−1(t) 0 · · · 0

0 b(t) . . . ...
... . . . . . . 0
0 · · · 0 b(t)

 . (5.56)

Inserting this into (4.24) yields

C = n(n− 1)k
4π

∫ T

0

∫ 2π

0
dtdσ

a′(σ)ḃ(t)
a(σ)b(t) . (5.57)
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While these results seem promising that complexity may be obtained for arbitrary n × n
matrices, an important aspect to keep in mind is that both the complexity functionals (4.23)
and (4.24) count cost of trivial transformations such as gauge transformations. Note,
however, the important difference to the Virasoro case: the restrictions on the solutions
are far more general in the Kac-Moody case as any product of a t- and σ-dependent
symmetry transformation solves (5.24). Therefore, even upon subtracting appropriate
terms arising from the orbit stabilizer, there exist non-trivial solutions with non-vanishing
complexity that produce distinguishable target states. Two simple examples are given
by (5.34) and (5.49), leading to the non-trivial complexities (5.35) and (5.50), respectively.

6 Relation to gravitational actions and Liouville theory

We now proceed to explain the connection between these complexity functionals and Liou-
ville theory. The coadjoint orbit action of the Virasoro group also arises as an action for
the asymptotic degrees of freedom of gravity with asymptotically AdS3 boundary condi-
tions [24, 33, 45] (see [46–49] for earlier work in this direction). In the same vein, Liouville
theory has been derived as the combined action arising from the left and right moving
Virasoro symmetries of the asymptotic degrees of freedom of AdS3 spaces [50]. Moreover,
a direct connection between Liouville theory and the sum of coadjoint orbit actions for two
copies of the Virasoro group has been derived in [51]. Liouville theory has also appeared in
connection with the complexity proposal from path integral optimization of [25]. We will
now review the derivation of the above equivalence statements and provide details how the
path integral optimization approach of [25] is related to the complexity proposal of [17].

The starting point of the derivation of actions for the asymptotic degrees of freedom of
3 dimensional gravity theories is the Chern-Simons formulation in which the gravity action
takes the form

S = 1
64πGN

∫
(I[A]− I[Ā]) (6.1)

with
I[A] = Tr

(
A ∧ dA+ 2

3A ∧A ∧A
)
. (6.2)

For asymptotically AdS3 spaces, A is a SL(2,R) valued connection. We use the conventions

J0 = J̄0 = 1
2

(
0 −1
1 0

)
,

J1 = −J̄1 = 1
2

(
0 1
1 0

)
,

J2 = J̄2 = 1
2

(
1 0
0 −1

) (6.3)

for the SL(2,R) generators. To derive the action of the asymptotic dynamics from (6.1), one
imposes asymptotically AdS boundary conditions [52] which read in terms of the SL(2,R)
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connections [33, 50]

A =

 dr
2r +O

(
1
r2

)
O
(

1
r

)
rdσ+ +O

(
1
r

)
−dr

2r +O
(

1
r2

) ,
Ā =

−dr
2r +O

(
1
r2

)
−rdσ− +O

(
1
r

)
O
(

1
r

)
dr
2r +O

(
1
r2

)  ,
(6.4)

where r is the radial direction of the bulk and σ± = σ ± t with σ being the angular and
t the time direction. Moreover, the SL(2,R) connections decompose as A = g−1dg and
Ā = ḡ−1dḡ.

The first step of the derivation of both the Liouville and coadjoint orbit actions from
the Chern-Simons theory on AdS3 consists of showing that the Chern-Simons theory re-
duces to two copies of the chiral Wess-Zumino-Witten model. This follows from a straight-
forward calculation subject to imposing the boundary conditions A− ∼ Ā+ ∼ O(1/r)
from (6.4) [33, 50], which gives

S = S+[g] + S−[ḡ] (6.5)

with
S±[g] = k

2π

∫
∂M

dσdtTr((∂σg−1)(∂±g))∓ Γ[g] . (6.6)

Here,M is the bulk manifold in question and Γ[g] the topological term of the WZW model.
Note that in order to obtain a variational principle consistent with the AdS3 boundary
conditions, a boundary term

S → S − k

4π

∫
∂M

dσdt
(
Tr(A2

σ) + Tr(Ā2
σ)
)

(6.7)

has to be added to the action (6.1) [33, 50].
To obtain the Liouville action, in the second step the two chiral WZW models are

combined into a single non-chiral WZW model [50] with action

S = −k
π

∫
∂M

dσdtTr((∂+g̃
−1)(∂−g̃))− Γ[g̃], (6.8)

where g̃ = g−1ḡ. Then, g̃ is parametrized in a Gauss decomposition,

g̃ =
(

1 X
0 1

)(
eφ/2 0

0 e−φ/2

)(
1 0
Y 1

)
. (6.9)

Imposing the remaining boundary conditions (6.4) gives rise to the Liouville action16

S = c

24π

∫
∂M

dσdt

(1
2∂+φ∂−φ+ 2eφ

)
, (6.10)

where c = 6k = 3/2GN .
16Strictly speaking, the addition of a further boundary term is required to ensure a well-defined variational

principle [50]. However, upon imposing the AdS3 boundary conditions, this boundary term gives a vanishing
contribution to the on-shell value of the action, hence we can neglect it for the purpose of the following
discussion.
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The authors of [33], on the other hand, proceed differently by directly writing g and ḡ
in a different Gauss decomposition,

g =
(

1 0
G 1

)(
λ 0
0 1/λ

)(
1 ψ
0 1

)
,

ḡ =
(

1 −Ḡ
0 1

)(
1/λ̄ 0
0 λ̄

)(
1 0
ψ̄ 1

)
.

(6.11)

Imposing the remaining AdS boundary conditions of (6.4) gives

S+[F ] = − c

24π

∫
∂M

dσdt

(
(∂2
σF )(∂+∂σF )

(∂σF )2 − (∂σF )(∂+F )
)
, (6.12)

where G|∂M = tan(F/2). S−[ḡ] gives the same contribution up to interchanging F → F̄

and ∂+ → ∂−. If F, F̄ depend only on σ+, σ− respectively, then we can express the
partial derivatives ∂+, ∂− w.r.t. σ+, σ− through partial derivatives ∂t w.r.t. t. In doing so,
we identify (6.12) with the coadjoint action of the Virasoro group for the vacuum orbit
h = 0 (3.20).

The condition that G, Ḡ are functions of σ+, σ− resp. represents an additional con-
straint that cannot be derived from the equation of motion of G, Ḡ. Only for diffeomor-
phisms F, F̄ that satisfy this constraint, the coadjoint orbit actions from the gravity theory
and the coadjoint orbit actions as a complexity functional match.17 The constraint is also
necessary to derive the equivalence to the Liouville action, as we will see later on.

To derive the relation between F, F̄ of the coadjoint orbit action and φ from the
Liouville action, we simply insert the Gauss decompositions (6.9) and (6.11) into g̃ = g−1ḡ

to obtain
e−φ/2 = λλ̄(1 +GḠ). (6.13)

Using the fact that the AdS boundary conditions fix λ ∼ 1/
√
∂σG asymptotically, we obtain

φ ∼ log
(

(∂σG)(∂σḠ)
2(1 +GḠ)2

)
(6.14)

up to a constant that can be absorbed by a redefinition of φ. Following [25], we set this
constant to zero.18 If G, Ḡ depend only on σ+, σ−, then this is precisely the general form
of the solution of the Liouville equation of motion.

In the path integral optimization approach to complexity of [25], the functions G, Ḡ
determine the background metric for the path integration and thus are the degrees of
freedom which are minimized to obtain the complexity. Hence, the relation (6.14) yields a
direct mapping between the degrees of freedom that parametrize the complexity functionals
of [25] and [17]. There is a small subtlety in this mapping in that the authors of [25]
use coordinates (z, x) on the plane where x ∈ (−∞,∞), while [17, 33] work in cylindrical

17Note that this can be circumvented by neglecting the boundary term (6.7), in which case one directly
obtains (3.20) [33]. However, then the variational principle is no longer well-defined.

18A non-zero value of this constant is equivalent to considering a non-trivial prefactor µ 6= 1 of the eφ

term in the Liouville action.
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coordinates (t, σ) with a periodic coordinate σ ∈ [0, 2π). The transformation between these
coordinate systems is the same as the transformation between Poincaré patch coordinates
and global AdS coordinates near the AdS boundary,

z = sin t
cos t− cosσ , x = sin σ

cos t− cosσ . (6.15)

Using this we may find explicit expressions for the diffeomorphisms F, F̄ for the solutions of
the Liouville equation considered in [25]. The first such solution is given by Ḡ = −(x+ z),
G = 1/(x − z). In [25], the corresponding background metric of the path integral is a
time slice of pure AdS3 and the complexity is obtained as the volume of this time slice.
Using (6.15) and the definition G = tan(F/2), Ḡ = tan(F̄ /2), we obtain

F (σ, t) = σ + t , F̄ (σ, t) = σ − t+ π. (6.16)

As needed for a consistent diffeomorphism, F (σ+2π, t) = F (σ, t)+2π and the same for F̄ .
Furthermore, these diffeomorphisms are solutions of the equations of motion (5.1) thus they
indeed induce optimal transformations leading us from the target to the reference state.19

Inserting (6.16) into (6.12), only the second part −(∂σF )(∂+F ) contributes. Together
with the contribution from F̄ , we obtain a complexity of

C = S+[F ] + S−[F̄ ] = − c

24π

∫ T

0
dt

∫ 2π

0
dσ(−2) = c

6T. (6.17)

The complexity increases linearly in the time T for which the conformal transformation
arising from the diffeomorphism acts on the vacuum state. Identifying T with the inverse
UV cutoff (i.e. letting the conformal transformation act for an infinitely long time), the
complexity is proportional to the volume of a time slice of pure AdS3. Thus we reproduce
the result of [25]. Such an example for which the Schwarzian term in the coadjoint action
vanishes, was also considered in [17]. Here we arrived at it from a different angle by
mapping the optimal transformation from the path integral complexity proposal of [25]
into an optimal transformation for the complexity functional of [17].

Note, however, that the conformal transformation acting on the reference state is trivial
in the sense that it involves only the L0 generator of which the vacuum is an eigenstate.
Hence, the gate acts only by changing the phase of the vacuum state, i.e. it transforms

|0〉 → eicT/6|0〉. (6.18)

Since this phase change is a gauge symmetry of the problem, the complexity (6.17) derived
above is not a measureable quantity.

The same applies to a primary state with arbitrary weight h = h̄ < c/24 dual to a
conical defect in the bulk. In this case, the action on the corresponding Virasoro orbit

19Note that the diffeomorphisms (6.16) are not only solutions to the equations of motion of the complexity
functional (4.23) including the central extension contribution, but are also solutions to the equations of
motion of the functional (2.14) without this contribution. In fact, the on-shell value of both complexity
functionals is the same for these diffeomorphisms. Thus, in this case, these two complexity measures agree.
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takes the form [33]

S+[F ] = − c

24π

∫
∂M

dσdt

(
(∂2
σF )(∂+∂σF )

(∂σF )2 − a2(∂σF )(∂+F )
)
, (6.19)

where a2 = 1−24h/c. Again, for this example the diffeomorphisms F , F̄ which follow from
the solution of the Liouville equation considered in [25] are given by (6.16). Inserting this
into (6.19), we obtain a complexity C = ca2T/6. As before, the complexity only counts the
change of phase in the transformation |h, h̄〉 → eica

2T/6|h, h̄〉.

7 Complexity and the Euler-Arnold method

The results of section 5 and 6 show that the complexity functional for the Virasoro group
measures only phase changes for most cases (except when |h〉 = |0〉), calling into question
the viability of geometric actions as complexity measures. The basic problem is that the
optimal path in the group manifold with respect to the complexity functional (4.23) consists
of two parts: an instantaneous transition to the target state which comes for free, followed
by a phase change with cost proportional to the phase difference. This problem leads to
the conclusion that the cost function leading to (4.23) should be modified.

Here, we sketch an alternative proposal for a cost function, which was previously
alluded to in an appendix of [17]. This approach avoids the problem of measuring only phase
changes, since in the case the optimal paths are obtained by application of gates containing
all Ln modes. In contrast, for the geometric action, the optimal path consists of applications
of the L0 mode only, generating phase shifts (apart from the instantaneous jump).

The new approach naturally generalizes Nielsen’s method [13–15] to arbitrary gate sets
possessing a Lie group structure. The basic idea is to define some metric on the Lie group of
the gate set and use the Euler-Arnold method to derive geodesics with respect to this metric.
As summarized in appendix B, the Euler-Arnold method provides a simple way of deriving
the geodesic equations on a Lie group by replacing the minimization of the length between
two points on the group manifold by minimization of an energy functional via the associated
Hamilton equations. The length of these geodesics will then give a complexity definition
that naturally generalizes Nielsen’s approach. In fact, complexity definitions for Gaussian
states of free quantum field theories inspired by Nielsen’s proposal have already employed
geodesic distances on Lie groups (although not on the Virasoro group), see e.g. [8, 10]. Let
us elaborate on this construction for the Virasoro group in the following.

In general, a positive definite quadratic form on a Lie algebra defines an associated
metric on the corresponding Lie group [53]. The length of a vector in the Lie algebra
can then be defined as the cost of the associated infinitesimal symmetry transformation.
Integrating this cost over time gives the total cost for the unitary transformation from
reference to target state. Note that in contrast to the complexity measures of section 2
and 4, the cost at time t depends explicitly only on the infinitesimal transformation but not
on the state on which the transformation is applied to. The advantage of this method is that
the minimization of the total cost can be done by means of the Euler-Arnold method [53].
This gives a clear and well-understood method of performing the minimization of the
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total cost, for which a number of solutions are known. In fact, for the Virasoro case
several metrics on the Virasoro group have already been considered in the mathematical
literature [54–56]. We will focus on the simplest of these whose associated Euler-Arnold
equation is given by the Korteweg-de Vries (KdV) equation.

We will make use of a representation of the Virasoro algebra common in mathematical
physics, however perhaps unfamiliar to an audience used to CFT techniques within physics.
Instead of working with the generators Ln satisfying the algebra

[Ln, Lm] = (n−m)Ln+m + c

12n(n2 − 1)δn+m,0, (7.1)

we use general algebra elements given by linear combinations
∑
nXnL−n of the generators.

The Xn coefficients are packaged into a periodic function X(σ) =
∑
nXne

inσ. Moreover,
there is a number r originating from the central extension, so that in total Virasoro algebra
elements are represented by the pair (X(σ), r) ≡ (X, r). Writing the Virasoro algebra in
this form, the commutator of two of its elements is given by

[(X, r), (Y, s)] =
(
Y X ′ −XY ′,

∫
dσXY ′′′

)
(7.2)

To define geodesics, we need to define a metric, i.e. a quadratic form 〈·, ·〉g,20 quantifying
how large Virasoro algebra elements are. The simplest choice is to use the inner product

〈(X, r), (Y, s)〉g =
∫
dσXY + rs, (7.3)

which defines a right-invariant L2 metric on the Virasoro group.21 The length of (X, r) is
given by

√
〈(X, r), (X, r)〉g. For the application to complexity, X(t, σ) is identified with

the infinitesimal velocity ε(t, σ) = −Ḟ /F ′ (see eq. (2.8)). Then (7.3) determines how
expensive the infinitesimal conformal transformation induced by ε is, i.e. it defines the cost
function. In contrast to the cost function (2.5) used in section 2 and its modification of
section 4, this cost function is state independent. It is obtained by mapping the question
‘How expensive is the infinitesimal transformation induced by ε?’ to the question ‘How
long is the representation vector of the transformation in the Virasoro algebra?’.

To find the optimal transformation with respect to the metric (7.3), i.e. the one with
the lowest cost, we need to derive the geodesic equation on the group manifold. Using the
Euler-Arnold method [53, 57], the result is (see [54] or appendix B for a short review)

ε̇+ 3εε′ − rε′′′ = 0 , ṙ = 0 , (7.4)

with ε the velocity and r as introduced above (7.2). The first of these two equations is
known as the KdV equation. It describes shallow water waves and is well-known for being
an exactly solvable non-linear partial differential equation.

20The g subscript is not an index, but a reminder that the linear functional is associated to a metric.
21Technically speaking, the quadratic form on the Lie algebra g = TeM defines a metric only at the

identity element e of the group. But of course, elements of a generic tangent spaces TgM can be transported
to the identity tangent space by left/right translation. In this way, the inner product on the Lie algebra
extends to a metric on the full group manifold.
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To find the associated cost function in terms of the path in the group manifold F (t),
we insert the expression ε = −Ḟ /F ′ for the infinitesimal velocities ε in terms of the group
elements F into the metric (7.3). Moreover, we identify an r such that the variation of r2

with respect to F gives rε′′′. Then, the complexity functional is

C =
∫
dtF , (7.5)

where the cost function F in terms of Virasoro group elements F is given by

F2 =
∫
dσ

(
Ḟ

F ′

)2

+ 1
4

(∫
dσ

Ḟ

F ′

(
F ′′

F ′

)′)2

. (7.6)

Assuming that r = −1
2
∫
dσ Ḟ

F ′

(
F ′′

F ′

)′
and F are constant in t, we recover (7.4) as the

equation of motion for (7.5). These assumptions are necessary for the derivation of the
KdV equation from the Euler-Arnold method to hold (see appendix B for details). They are
equivalent to the requirement that the geodesic in the group manifold is traveled along at
constant speed. Of course, the length of the geodesic in independent of this choice, therefore
this assumption does not place any restrictions on the allowed target or reference states.

To see whether (7.5) defines a good complexity functional, we need to find infinitesimal
velocities ε that solve eq. (7.4) such as to follow a geodesic path. The simplest solutions
of (7.4) are given by ε(t, σ) = const. Correspondingly, F (t, σ) = G(σ − εt). We note that
this is the same kind of solutions as already encountered in section 5.1.1 for the equations
of motion (5.1) of the geometric action. In particular, since ε(t, σ) = const. only the L0
generator acts on the reference state, yielding nothing but a phase change.

However, unlike for the equations of motion (5.1) of the geometric action, there also
exist non-trivial solutions of (7.4), which in the context of complexity lead to non-trivial
unitary transformations Uf . These are termed cnoidal waves [58] and are of the form

ε(t, σ) = ε̃+A cn2
(
k
σ − Ct

2π 2K(m);m
)
, (7.7)

where ε̃, A, C, k,m are parameters of the solution, cn(x;m) is a Jacobi elliptic function and
K(m) is the complete elliptic integral of the first kind. In terms of physical parameters
of the wave ε̃ is the trough elevation, A the amplitude and C the phase speed, while m
controls the shape of the wave. For m → 0, the solution reduces to a sine wave and for
m → 1 it becomes solitonic in nature. The parameters are all dependent on each other,
thus together with the wavelength 2π/k the solution has only two free parameters in total.

Now the main question we are interested at this point is: does the cnoidal wave
solutions of the KdV equation suffer from the same problem as the ones for the geometric
action, i.e. does only a phase contribute to the complexity? To answer that question, we
need to determine which Ln modes act at each time step t, i.e. we need to evaluate the
Fourier coefficients of ε(t, σ). For a wave length λ = 2π (k = 1), these are straightforwardly
determined from the Lambert series of the Jacobi elliptic function,

cn
(

(x− Ct)K(m)
π

;m
)

= 2π
K(m)

√
m

∞∑
n=0

cos((n+ 1/2)(x− Ct))
2 cosh(π(n+ 1/2)K(1−m)/K(m)) , (7.8)
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to be

εn = ε̃δn,0+A π2e−inCt

4K2(m)m

∞∑
r=−∞

[
cosh

(
π

(
r+ 1

2

)
K(1−m)
K(m)

)
cosh

(
π

(
n−r− 1

2

)
K(1−m)
K(m)

)]−1
.

(7.9)
For other wavelengths λ = 2π/k with k 6= 1, εn/∈kZ = 0 while εn∈kZ is the same as for
k = 1. The coefficients quickly converge to zero for |n| → ∞. The speed of the convergence
is controlled by m; for m = 0 only ε0,±k are non-zero, while higher and higher Ln modes
contribute as m → 1. Thus, clearly more Virasoro generators than just L0 contribute to
Uf and the resulting non-trivial time dependent conformal transformation Uf does not just
generate a phase. Furthermore, we can control which Ln generators act on the reference
state by varying the m parameter of the solution.

Note that the two solutions (ε = const. and ε given by a cnoidal wave) of the KdV
equation (7.4) do not exhaust all possibilities. In particular, there exist solutions that are
superpositions of (interacting) cnoidal waves which form a kind of generalization of the
Fourier expansion in the solution space of the KdV equation [59]. These solutions can have
an arbitrary number of parameters, instead of essentially just one (the m parameter) for a
single cnoidal wave.

In conclusion, the possible unitary transformations Uf obtainable from solutions of the
KdV equation are much less constrained than for the equations of motion of the geometric
action. While for the geometric action we only had ḟ/f ′ = const. for h > 0, here we
find — for any reference state — an infinite set of solutions with different coefficients of
the Ln generators. To precisely determine which Uf are possible and thus to find the
complexity between given reference and target states, one needs to solve for the group
element F in the equation ε = −Ḟ /F ′ for ε given by (7.7). Finding solutions to this non-
linear partial differential equation is in general a difficult problem, which we leave for future
work. Nevertheless, it is clear from the above results that the complexity definition (7.5)
has a set of known optimal paths over which we have good control and that — more
importantly — are non-trivial in the sense that they do not instantaneously jump to the
target state.22

8 Discussion and conclusion

In this paper, we set out to increase our understanding of the notion of complexity for
conformal field theories proposed in [17], which proposes an equivalence between geometric
actions of the Virasoro group and 2d CFTs. Our work revolved around three main points,
each of which we now comment on separately.

Relation between complexity and geometric actions. First, we found that the same
relation between geometric actions and complexity functionals obtained by the means de-
scribed in [17] for the Virasoro group also exist for Kac-Moody groups: the geometric

22Note also that unitary transformations Uf giving only a phase change can still lead to a non-vanishing
complexity (7.5). Therefore, the addition of a boundary term to cancel the phase contribution is necessary
to get a well-defined complexity functional from (7.5).
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actions and complexity functionals match up to terms arising from the central extension
of the corresponding group. We then added terms involving the central extension to the
original proposal, such that complexity and geometric action agree exactly. This was ac-
complished by considering an additional path through the real numbers determined entirely
by the symmetry transformations applied. The additional path then gives an extra contri-
bution to the cost function that coincides with the central term appearing in the geometric
action. Therefore, with this generalized cost function, the complexity functionals for the
Kac-Moody and Virasoro group are given by their geometric orbit action. This implies
an inherent relation between geometric actions and CFT complexity. This connection can
be understood in the context of geometric quantization [19]. As discussed in section 4.4,
the geometric action is defined on orbits isomorphic to Ĝ/H, where Ĝ is the centrally
extended group and H the orbit stabilizer. For the Virasoro group, we have considered the
orbits Diff(S1)/SL(2,R) and Diff(S1)/S1. These orbits have a Kähler structure if holo-
morphic and antiholomorphic sectors are combined with the Kähler form corresponding
to a symplectic form with one holomorphic and one antiholomorphic index [20]. Orbits of
this type may be quantized. The Hilbert space then is the space of sections of holomorphic
Hermitian line bundles and furnishes a unitary representation of the corresponding group.
For instance, for the Virasoro orbit Diff(S1)/S1, the Hilbert space is formed by irreducible
unitary Verma modules, whereas from the orbit Diff(S1)/SL(2,R) we obtain degenerate
unitary representations.

On the other hand, for Kac-Moody groups L̂G based on compact semisimple Lie
groups, the orbits are isomorphic to L̂G/T , where T is from the maximal torus [43]. Similar
to the Virasoro case, unitary representations are obtained by means of geometric quanti-
zation [19].

These results may be interpreted as follows. The relation between geometric ac-
tions and unitary representations implies that after quantization, the complexity func-
tionals (4.23) and (4.24) yield a Hilbert space that contains the possible target states.
Equivalently, if we restrict the allowed gates to symmetry transformations, the possible
target states belong to the Hilbert space obtained by geometric quantization from the ge-
ometric action. Since the equivalence of the geometric action and the complexity is exact,
the complexity functional encodes the possible target states.

In general, it is an interesting question to understand how geometric actions are con-
nected to complexity for symmetry groups. To this end, in the AdS/CFT context it may be
useful to examine the simpler case of theories dual to two dimensional Jackiw-Teitelboim
gravity. In this system, the Schwarzian theory [60], based on coadjoint orbits of one copy of
the Virasoro group, appears at the boundary. A complexity definition for the Schwarzian
theory was recently given in [61],23 based on [62]. An important direction for further work
is to determine the relation between this complexity definition and the geometric action
on the coadjoint orbit on which the Schwarzian theory is defined.

Phase changes and gauge invariance. Our second point concerns the gauge invari-
ance of the geometric action under the stabilizer group. As discussed in section 4.4, the

23We would like to thank Pawel Caputa for pointing this out.
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geometric action is invariant only up to total derivatives. These, however, are essential
when computing the complexity, which we have identified with the on-shell value of the
geometric action. The complexity functionals obtained from generalizing the proposal [17]
yield geometric actions without any other contributions and are thus not invariant under
the stabilizer group. As we have demonstrated for some examples in section 5, this leads to
inconsistencies in the computed complexities, which manifest themselves in different cost
for identical transformations.

Furthermore, we obtain non-vanishing cost for target states that only differ by a phase
from their reference state. This is explained as follows. The optimal path for the cost
function considered consists of two parts. At computation time t = 0 the transformation
immediately jumps to the target state times a phase factor. At later times, only this phase
factor changes. For reference states |h〉 with h > 0 and any arbitrary target state, the
complexity measures only the phase difference between Uf(0)|h〉 and Uf(T )|h〉.

It is possible to cure this problem by adding suitable boundary terms to the complexity
action to cancel the contribution of the phase. In fact, such boundary terms arise naturally
in the context of Virasoro Berry phases (see appendix A). By adding such boundary terms,
the complexity between states differing by a phase can be made to vanish. Then, the
complexity measure reduces to a special case of a Berry phase in a coadjoint orbit of the
Virasoro group. However as we have seen in section 5, for most reference states (for those
with conformal weight greater than zero) the only contribution to the complexity comes
from the phase difference. Thus, the complexity always vanishes for these reference states
after the addition of boundary terms. Moreover, the equality between the complexity and
Liouville or gravity actions no longer holds exactly when adding a boundary term.

Furthermore, our results suggest that the geometric action distinguishes phases from
the orbit stabilizer from those of the central extension. Once the boundary terms are
added, any phase from the orbit stabilizer is assigned vanishing cost. For a generic optimal
transformation, however, the target state picks up an additional phase eic

∫
dtβ(t) from

the central extension with cost cβ(t). This central term generally cannot be cancelled by
boundary terms, with one exception. If the optimal transformation giving rise to the phase
from the central extension belongs to the stabilizer, the complexity vanishes if appropriate
boundary terms are added. This implies that in this case the central term cβ(t) becomes
a boundary term. Another hint that phases from the stabilizer are treated differently than
those from the central extension is provided by the equations of motion. The central term
modifies the equations of motion, thus leading to different optimal circuits, whereas the
contributions from the orbit stabilizer are boundary terms that do not change the equation
of motion. This also suggests that the optimal group transformations arising from the
geometric action with central extension are not equal to those of the same action without
central extension even when projected onto the coadjoint orbit.

In contrast to the Virasoro case, for Kac-Moody groups, optimal transformations are
given by the product of two matrices valued in the semisimple Lie group that specifies
the Kac-Moody group, where the first matrix only depends on the position on the unit
circle, while the latter only depends on the time it is applied. Therefore, there exist many
optimal transformations that do not belong to the orbit stabilizer and thus lead to a non-
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trivial target state and complexity. We hence conclude that geometric actions present much
better cost measures for Kac-Moody groups than for the Virasoro group. This suggests
that viable complexity measures may not be universal, even for similar theories such as the
CFTs considered here.

One-norm versus two-norm cost function. The fact that the complexity assigns zero
cost to the instantaneous jump relating states at a finite distance in the Hilbert space is sur-
prising also due to the fact that the geometric action is closely related to the canonical dis-
tance measure on the Hilbert space induced from the inner product. This distance measure
defines a two-norm cost function on the coadjoint orbit, F2 = 〈ψR|U †(t)Q(t)Q†(t)U(t)|ψR〉.
In [17] it was shown that the leading term of this cost function reduces to the one-norm
cost function (2.5) in the large c limit. Since the corresponding complexity functional is
equal to the geometric action up the addition of the central extension term, one would
expect the canonical Hilbert space distance measure between reference and target state to
give a lower bound for the complexity.24 However, we observe that the complexity vanishes
even for states which are a finite distance away from each other in the Hilbert space. This
clearly shows that the Virasoro geometric action is not a metric on the Virasoro group
manifold. There are several possible explanations for the vastly different behavior of the
one- and two-norm cost functions despite their relation in the large-c limit. One possibility
is that the central term contributes negatively to cancel out the contributions from the
Hilbert space distance. Alternatively, the neglected subleading terms of the two-norm cost
function must be taken into account. These subleading terms were recently studied as a
complexity measure in its own right in [63].

Relation to path integral complexity. Our final point concerns the relation between
the notion of complexity considered here and in the path integral approach [25]. We have
found that a complexity functional built out of two copies of the Virasoro geometric action
provides an interpretation of the path integral complexity proposal of [25] in terms of
a conventional notion of complexity based on unitary transformations from reference to
target state. In particular, we derived the mapping between the diffeomorphisms in the
geometric action and the solutions of the Liouville equation of motion occurring in the
path integral approach, allowing us to identify the unitary transformations and the target
and reference states that are dual to these solutions in our approach. We then examined
the examples of solutions that in [25] were argued to be associated to three-dimensional
pure AdS and conical defects. We found that the dual transformations for these examples
are trivial in the sense that they only change the reference state by a phase. Similar to the
geometric action complexity, the phase change produces non-vanishing cost. In conclusion,
the connection between the complexity (4.23) and the Liouville action found in section 6
maps the volume of a constant time slice of AdS3 to the phase of the vacuum state in the
boundary field theory.

While at first this may seem to indicate that the complexity functional of [25] cannot
be a physical quantity, such a conclusion is premature. In particular, there is no unique

24We would like to thank Javier Magán for a discussion about this issue.
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way to find a physical interpretation of the path integral optimization approach of [25] in
terms of gates acting on a reference state. By a different choice of gate set, reference state
and cost function it is still possible to arrive at the same Liouville action as complexity
functional, but with differing corresponding transformation from reference to target state.
In fact, such a differing interpretation was already proposed previously in [64]. As in our
complexity definition, the gate set proposed in [64] consists of exponentials of stress energy
tensor components. However, the authors of [64] also include non-unitary operators in
their gate set and choose a different, state independent cost function. Using non-unitary
gates naturally avoids the problems of having the complexity measure only a phase shift.
But, of course, it also means that the resulting complexity functional is quite different from
the customary definition. It would certainly be interesting to see if a modification of our
complexity functional by including non-unitary gates can solve the problems relating to
phase differences encountered in section 5 and 6. We leave this issue as well as a detailed
examination of the relation of our proposal to that of [64] to future work.

Conclusions about cost functions. As we discussed extensively in section 5, for the
Virasoro algebra the complexity counts only the trivial phase changing part of the unitary
transformation Uf . This leads to the conclusion that the cost function (4.12) should be
modified. Which other cost function should one choose?

One approach to answering this question is to compare the cost assigned to a confor-
mal transformation with the change of holographic complexity measures under the same
conformal transformation acting in the bulk. The results should agree if the cost func-
tion is compatible with holographic complexity. The corresponding gravity calculation was
performed in [65, 66], where the change in complexity under perturbatively small con-
formal transformations of pure AdS3 was derived for both the “complexity=volume” and
“complexity=action” proposal. Therefore, the cost of these small conformal transforma-
tions applied on the vacuum state is known and the corresponding change in complexity
should be reproduced by a cost function derived from field theory arguments. The results
of [65, 66] show that for a small conformal transformation applied on to the vacuum state
the change in complexity is non-vanishing, indicating that the cost function (4.12) cannot
reproduce the holographic results. It was shown in [67] that the holographic behavior may
be obtained from a notion of complexity defined on the space of Euclidean sources.

More generally, the mapping of the coadjoint orbits to the gravity side of the AdS/CFT
correspondence was derived in [68, 69]. For constant orbit representatives, i.e. highest
weight reference states |h〉, the orbits may be classified in three classes according to the
value of h. There is one exceptional orbit with h = 0 for which the dual geometry of
the hightest weight state |0〉 is pure AdS3. The highest weight states of elliptic orbits
with h − c/24 < 0 are dual to conical defects, while those of the hyperbolic orbits with
h−c/24 > 0 are dual to BTZ black holes. Generic orbit elements correspond to excitations
of these geometries created by the application of conformal transformations, with the same
causal and horizon structure.25 For example, a generic element of an elliptic orbit corre-
sponds to a particle in AdS3 created by the application of a descendent field to the vacuum

25Entanglement entropy in such geometries has been investigated in [70, 71].
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state. Thus, it is known how the bulk geometry changes under a general conformal trans-
formation acting on any reference state |h〉. A field theory cost function must reproduce
the corresponding change in the“complexity=volume” or “complexity=action” proposals
to match holographic complexity. Of course, to fully reproduce holographic complexity
proposals also the gate set has to be enlarged. Conformal transformations alone do not
form a set of universal gates since they only connect states in the same Verma module.
Nevertheless, in view of the AdS/CFT realization of complexity proposals, a promising new
starting point will be to combine the results of the present paper with the results of [68, 69].
A relation between Virasoro coadjoint orbits and 2d gravity has also been observed in [72].

A further approach is to develop criteria to be satisfied by cost functions if they are to
yield physically sensible complexity definitions. [29] examined one such criterion, namely
whether the given cost function provides a lower bound for the complexity associated to
a discrete gate set.26 Interestingly, it was argued that a good lower bound is achieved
by the cost function used by Caputa and Magán [17], given as eq. (2.5) in this paper.
Our results indicate that the criterion of [29] alone is not enough to find a viable cost
function. In particular, for any system possible gauge invariances need to be taken into
account when defining cost functions. The complexity should not assign any cost to gates
that give only a non-measureable phase change, a feature which as we have seen is not
automatically fulfilled for the cost function (2.5). Note, however, that we do not claim
that eq. (2.5) suffers from the main problem discovered for geometric actions as complexity
functionals — the fact that geometric actions count only phase changes in all cases but for
the vacuum state as reference state. The equation of motion following from the complexity
functional (2.14) corresponding to (2.5) takes on a rather complicated form,

2b
(
ḟ

f ′

)′
+ c

24

(
−2 ḟ

′′′

f ′
+ 4 ḟ

′f ′′′

f ′2
+ 6 ḟ

′′f ′′

f ′2
− 9 ḟ

′f ′′2

f ′3
+ ḟf ′′′′

f ′2
+ 6 ḟf

′′3

f ′4
− 6 ḟf

′′f ′′′

f ′3

)
= 0 ,

(8.1)
for which we did not find non-trivial solutions with ḟ , f ′ 6= const. It is thus conceivable
that more involved solutions to this equation lead to non-trivial results for complexity
proposals based on the cost function (2.5). However, the equality to geometric actions
on the gravity side and thus also to the Liouville action does not hold exactly for the
complexity measure (2.14) due to the additional term in the geometric action which we
have identified in section 4 as originating from the central extension.27

As explained in section 7, a further promising direction to explore makes use of the Lie
group structure of the gate set in consideration to generalize Nielsen’s approach [13–15] to

26Cost functions satisfying this criterion were termed G-bounding in [13].
27In [17], it was claimed that the complexity measure (2.14) should be equivalent to the geometric

action (4.23) due to an equality between the equations of motions of both actions. We cannot confirm
this claim. In particular, a standard derivation of the e.o.m. of (2.14) leads us to (8.1) which is manifestly
different from the e.o.m. (5.1) of the geometric action. Moreover, the publication [37], cited to support
the claim, only states that the

∫
dσdtḟ/f ′(f ′′/f ′)′ part of (4.23) gives the same equations of motion

as 2
∫
dsdtdσµ{f, σ}, when varied w.r.t. µ = ḟ/f ′. Note the variation with respect to µ(s, t, σ) under

boundary conditions µ(0, t, σ) = 0, µ(1, t, σ) = ḟ(t, σ)/f ′(t, σ) and the integral over an additional direction
parametrized by s, leading to a different contribution than the

∫
dtdσḟ/f ′{f, σ} part of (2.14).
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conformal symmetry transformations. In this case, the cost function is an arbitrary metric
on the Virasoro group. The minimization of the complexity functional can then be easily
done using the Euler-Arnold method. For the simplest possible choice of a right invariant
L2 metric on the Virasoro algebra, this yields the Korteweg-de Vries equation as the cor-
responding equation of motion, as already mentioned in [17]. This equation has a large
number of non-trivial exact solutions which makes analytic calculations possible. In par-
ticular, we may immediately identify non-phase changing unitary transformations among
these solutions, thus avoiding the main problem that makes geometric actions unsuitable
as complexity functionals. Other choices of metric lead to different equations of motion
well known in the mathematical physics literature, e.g. the Camassa-Holm or Hunter-Saxon
equations [56]. Therefore, this method will likely prove fruitful for exploring different cost
functions by explicit computations of the corresponding complexity, a task that we leave
for future work at this point.
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A Relation between complexities and Berry phases

Berry phases on orbits of the Virasoro group were considered recently in [32], building on
previous work [73, 74]. We give a short review and show that for the Virasoro group the
complexity obtained in this publication coincides with the Berry phase up to a boundary
term. For previous work relating the original complexity action of [17] without the central
extension piece to Virasoro Berry phases, see [30].

A Berry phase generally arises when a Hamiltonian that depends on an external pa-
rameter, for instance a magnetic field, is time-evolved. It is assumed that the parameter
adiabatically varies in time and traces out a closed path γ(t) in the parameter space. Let
En(γ(t)) denote an energy eigenvalue along the path. Note that due to the adiabatic vari-
ation of the parameter the level n does not change. An according eigenstate is given by
|ψn(γ(t))〉. However, the state

|ψ(t)〉 = eiBn(t)|ψn(γ(t))〉, (A.1)

is also an energy eigenstate. Here, Bn(t) denotes the Berry phase induced by the time
evolution. It is given by

Bn(T ) = −
∫ T

0
dtEn(γ(t)) + i

∫ T

0
dt 〈ψn(γ(t))|∂t|ψn(γ(t))〉. (A.2)

Whereas the 1st term is dynamical, the 2nd is purely geometric as it arises from the
dependence of |ψn(γ(t))〉 on a point in the parameter space. In particular, the latter may
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be rewritten in terms of the Berry connection An,

Bn, geo =
∫
γ
An. (A.3)

To see the relation to the complexity, we need to generalize the Berry phase to symmetry
groups, i.e. the parameter space must become a group manifold such that we consider paths
g(t) in the group manifold as we have done for the complexity. We now schematically
illustrate how this transition from parameter spaces to group manifolds is accomplished.

Let G be a connected Lie group with group elements g containing a one-parameter
subgroup, which we interpret as time translations in order to make the connection to
the “ordinary” Berry phases described above. To introduce a similar dependence of the
Hamiltonian on the parameter space, the Hamiltonian must now depend on group elements
g. This is most easily interpreted as choosing different reference frames, i.e. the Hamiltonian
Ĥ is equally suitable as the transformed one UgĤU

†
g . If the path is closed, implying

g(T ) = g(0), (A.2) yields the correct Berry phase on the group manifold. However, the
group paths considered in the complexity context are typically not closed. We may put a
milder restriction on the path by requiring g(0) and g(T ) belong to the same ray, i.e.

Ug(T )|ψ〉 = eiθUg(0)|ψ〉, (A.4)

where θ ∈ R. Here, an important aspect comes into play: it is actually not the path g(t)
itself that is relevant for the Berry phase, but its projection on the manifold G/H, where H
is a subgroup of G corresponding to the stabilizer of |ψ〉. If the expectation value in (A.2)
is then evaluated in a highest-weight representation, this manifold is a coadjoint orbit of
G. This is equivalent to what we have done for the complexity as discussed in the previous
subsection. We wrote the complexity functional in terms of a pre-symplectic form on G,
not on the coadjoint orbit itself. Similarly, the Berry curvature arising from the Berry
connection in (A.3) is not defined on the coadjoint orbit, but rather on G and is equivalent
to the pre-symplectic form (3.5). Just as discussed for the complexity, only the projected
path on the orbit is relevant. For the Berry phase, this implies only the path on the orbit
must be closed. This amounts to requiring that g−1(0)g(T ) ∈ H. Furthermore, to ensure
gauge invariance under H, a boundary term is introduced in (A.2). Generalized to group
manifolds, the Berry phase then reads

Bgeo =
∫
g
dt i〈ψ|U †gdUg|ψ〉 − ilog〈ψ|Ug−1(0)g(T )|ψ〉. (A.5)

The 1st term is just the Maurer-Cartan form in terms of G in a unitary representation and
may be generalized to centrally extended groups by including its central extension. Eval-
uating the Berry phase for the Virasoro group in terms of the group path f(t) then yields

Bgeo = − 1
2π

∫ T

0
dt

∫ 2π

0
dσ

ḟ

f ′

[
h− c

24 + c

24

(
f ′′

f ′

)′]
+
(
h− c

24

)
F (0, f(T, 0)), (A.6)

where F is the inverse of f and h > 0 is the conformal weight of the highest weight state
|ψ〉= |h〉 defining the coadjoint orbit. Apart from the boundary term (h−c/24)F (0, f(T, 0)),
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this is exactly equal to the complexity functional (2.11). The boundary term arises from
the logarithmic term in (A.5). It ensures that the Berry phase vanishes for transformations
f(t, σ) belonging solely to the stabilizer H of |ψ〉.

Furthermore, all solutions to the equations of motion (5.1) define closed paths in
coadjoint orbits, as we will show now. Remember that the general solution to (5.1) is
given by f(t, σ) = g(f0(t, σ)), where g is an arbitrary diffeomorphism and f0 is given
by (5.5) for h > 0 and by (5.7) for h = 0. The inverse of such a solution is given by
F (t, σ) = F0(t, G(σ)), where G,F0 are the inverses of g, f0 respectively. Then it follows that

F (0, f(T, σ)) = F0(0, f0(T, σ)) =


σ + θ , h > 0

2 arctan
(
A tan(σ/2) +B

C tan(σ/2) +D

)
, h = 0,

(A.7)

with AD − BC = 1. The quantity on the right hand side is the identity f(σ) = σ trans-
formed by some element of the stabilizer subgroup H of the orbit (U(1) for h > 0 and
SL(2,R) for h = 0). Eq. (A.7) is the explicit form of the condition g−1(0)g(T ) ∈ H encod-
ing the requirement that the path f(t, σ) is closed on the orbit. The important thing to
notice now is that the solutions of the equations of motion (5.5), (5.7) fulfill (A.7).

Therefore, we conclude that the complexity for all possible paths f(t, σ) in the Virasoro
group manifold is equivalent to a Berry phase up to a boundary term which for h > 0 is
given by (h−c/24)F (0, f(T, 0)). Note that the converse is not true, there exist Berry phases
that are not equivalent to a complexity. These are generated by closed paths f(t, σ) which
are non optimal, i.e. paths which do not solve the equations of motion of the geometric
action (4.23).

B Euler-Arnold method for the Virasoro group

The Euler-Arnold method [53, 57] provides a convenient way of deriving geodesic equations
on Lie groups. To make this publication self contained, we provide a short review of the
method in general and its application to the Virasoro group [54–56].

Take some curve X(t) on a Lie algebra and a linear functional 〈·, ·〉g defining a metric
on the corresponding Lie group. The length of the curve with respect to this metric is
given by

` =
∫ T

0
dt
√
〈X,X〉g. (B.1)

Geodesics are the curves with minimal length. The main simplification of the Euler-Arnold
method is due to replacing minimization of ` by minimization of the “energy”

E = 1
2

∫ T

0
dt〈X,X〉g. (B.2)

The two minimal curves obtained in this way coincide provided that the curve is traversed
at constant speed, i.e. 〈X,X〉g is constant in t. Due to the reparametrization invariance in
t enjoyed by the problem this is always a valid choice to make.

To derive the geodesic equation, it is useful to relate the metric 〈·, ·〉g to the pairing
〈·, ·〉 between elements of the Lie algebra g and its dual space g∗. This is achieved by
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defining the inertia operator A mapping the velocity X ∈ g to a corresponding element of
v ∈ g∗ known as the intrinsic momentum. The inertia operator is defined by

〈X,Y 〉g = 〈AX, Y 〉. (B.3)

It is common to write the Hamiltonian associated to the energy (B.2) in terms of the
intrinsic momentum,

H = 1
2〈AX,X〉 = 1

2〈v,A
−1v〉. (B.4)

Then one can show that the geodesic equation for (B.1) is equivalent to the Euler-
Arnold equation on g∗ [53, 57]28

v̇ = −ad∗A−1vv, (B.5)

where the coadjoint operator ad∗X is implicitly defined through the relation

〈ad∗Xv, Y 〉 = 〈v, [X,Y ]〉. (B.6)

To simplify the notation, we present the proof only for the case of matrix groups. Then X
is related to the group elements g specifying the path as X = ġg−1. Perturbing the path
g → g + δg gives a perturbation δX = δġg−1 − ġδg−1 and

δH = 〈AX, δX〉 = 〈v, δġg−1 − ġg−1δgg−1〉. (B.7)

Partially integrating the first term in t and applying the definition (B.6) of the coadjoint
operator gives

δH = −〈v̇, δgg−1〉+ 〈v, [δgg−1, X]〉 = −〈v̇ + ad∗A−1vv, δgg
−1〉. (B.8)

Demanding that δH = 0 vanishes for arbitrary perturbations leads to (B.5).
Now we specialize to the Virasoro group. In this case, X ≡ (X(σ)∂σ, r), where X(σ)

is a periodic function of σ and r is a constant belonging to the central extension. Elements
of the dual space are denoted by v ≡ (v(σ)dσ2, c) where again v(σ) is a periodic function
and c(t) a constant. The natural pairing between elements of g and g∗ is given by

〈(vdσ2, c), (X∂σ, r)〉 =
∫
dσvX + cr. (B.9)

Thus, for the choice of metric (7.3), A simply maps (X∂σ, r) ∈ g → (Xdσ2, r) ∈ g∗.
However, there are of course other possible choices of inertia operator leading to different
metrics. (For example, in [56] A : (X∂σ, r) → ((αX − βX ′′)dσ2, r) has been considered.
For α = β = 1 the resulting geodesic equation is the Camassa-Holm equation v̇ − v̇′′ +
3vv′ − 2v′v′′ − vv′′′ − cv′′′ = 0.) The coadjoint operator ad∗X for the Virasoro algebra is
given by [56]

ad∗(X∂σ ,r)(vdσ
2, c) = ((2vX ′ +Xv′ − cX ′′′)dσ2, 0). (B.10)

28The form of the Euler-Arnold equation (B.5) shown here is also known as Lax pair form or the Lie-
Poisson equation. The Euler-Arnold equation formulated on g instead of g∗ is also termed the Euler-Poincaré
equation.
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Inserting this in (B.5) and using the definition of A for the metric (7.3) yields the KdV
equation [56]

v̇ + 3vv′ − cv′′′ = 0 , ċ = 0. (B.11)

Identifying c = r and v with the infinitesimal velocity ε gives the desired result, eq. (7.4).
Further insight into the Euler-Arnold equation can be obtained by considering the

evolution of an arbitrary v under (B.5). One can show that orbits of the coadjoint rep-
resentation are invariant manifolds under this evolution, i.e. starting from a v(0) in some
coadjoint orbit, we will evolve to a v(t) in the same coadjoint orbit [53]. For the Vira-
soro case, this is just the familiar statement that acting with conformal transformations
on a state in some Verma module gives another state in the same Verma module. Thus,
the coadjoint orbit, which tells us which reference state we are considering, is implicitly
contained in the choice of boundary condition v(0) for the Euler-Arnold equation. Fur-
thermore, the energy H = 1/2〈v,A−1v〉 is a Hamiltonian function defined on a coadjoint
orbit [53]. The Euler-Arnold equations (B.5) are then nothing but the Hamilton equations
for this function.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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