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1 Introduction

An interesting arena for exploring the AdS/CFT correspondence, both from the geometric

and the field theory points of view, is the class of supersymmetric AdS3 × Y7 solutions of

type IIB supergravity of [1] and AdS2 × Y9 solutions of D = 11 supergravity of [2]. These

solutions are dual to d = 2 SCFTs preserving (0, 2) supersymmetry and an superconfor-

mal quantum mechanics preserving N = 2 supersymmetry, respectively, both of which

have an abelian R-symmetry. The internal spaces of these supergravity solutions are low-

dimensional examples of a novel kind of geometry, called “GK geometry”, which is defined

on odd-dimensional manifolds Y2n+1, n ≥ 3 [3]. GK geometry consists of a Riemannian

metric, a scalar function B and a closed two-form F which extremizes a particular action

and also admits a certain type of Killing spinor. Furthermore, motivated by the supergrav-

ity solutions, there is a natural flux quantization condition that can be imposed on cycles of

co-dimension two. The GK geometries have a canonical R-symmetry Killing vector which,

for the supergravity solutions, is precisely dual to the R-symmetry in the dual field theory.

It has been shown recently that the R-symmetry Killing vector in GK geometry can

be obtained via an interesting variational problem [4] that is analogous to the principle

of volume minimization in Sasaki-Einstein geometry [5, 6]. In the case of n = 3, i.e. Y7,

this variational problem is a geometric realisation of the c-extremization principle for the

dual (0, 2) d = 2 SCFTs proposed in [7] and allows one to obtain, for example, the central

charge of the dual field theory without knowing the explicit AdS3 × Y7 solution. For the

case of n = 4, i.e. Y9, there is, in general, no analogous extremization principle in field

theory that one can compare with. However, for special subclasses of Y9 it corresponds to

the I-extremization principle of [8], as shown in [9, 10]. Furthermore, when the AdS2 × Y9
solution arises as the near horizon limit of a black hole, the geometric variational problem

also allows one to calculate the entropy of the black hole, again without knowing the

explicit supergravity solution [4]. In particular, for the class of such black hole solutions that

asymptotically approach AdS4, the connection with I-extremization provides a microscopic

derivation of the black hole entropy, substantially extending [8] (for other related work see,

for example, [11–15]).

In previous work [9, 16], the variational problem of [4] was utilised to study specific

classes of Y7 and Y9 that arise as a fibration over a Riemann surface B2 = Σg with toric

fibres X5 and X7, respectively. By taking the R-symmetry Killing vector field to be tangent

to the fibres it was shown that the general formulae in [4] can be recast in terms of a

master volume formula for the toric fibres which is a function of the toric data, a choice

of R-symmetry vector and an arbitrary transverse Kähler class. It was shown that the

extremization problem can be implemented using the master volume formula combined

with a set of integers that determine the fibration of X5 or X7 over Σg, as well as a Kähler

class parameter for Σg.

In this paper we substantially generalize these results. We will study the extremal

problem for GK geometry on Y2n+1 that arise as fibrations of the formX2r+1 →֒ Y2r+2k+1 →
B2k, with r ≥ 1, k ≥ 1 and r + k = n ≥ 3. We will assume that the base manifold B2k

of the fibration is Kähler, while the fibre is again taken to be toric. Remarkably, we will
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show that the extremal problem of [4] can again be implemented using the master volume

formula for the toric fibres, as in the cases studied in [9, 16]. One new feature is that while

for k = 1 derivatives of the master volume with respect to the R-symmetry vector and

Kähler class parameters appear, for k > 1 we will also need to consider derivatives with

respect to the toric data. We will present explicit formulae for specific values of r, k that

are associated with interesting AdS3 and AdS2 solutions, but it is reasonably clear how

to extend to other values. A simple explicit expression for the master volume formula in

terms of the toric data was given for X5 and X7 in [9, 16], respectively. Here we will also

provide an analogous expression for the simpler case of X3.

For application to the AdS/CFT correspondence the main utility of our new results

is that one can calculate quantities of physical interest without knowing the explicit su-

pergravity solutions, just assuming that they exist. That being said, it is very satisfying

to be able to check the new formulae that we derive here against some explicitly known

solutions. We will carry out such checks for the class of AdS3 × Y7 solutions of type IIB

found in [17] with X3 →֒ Y7 → B4, i.e. r = 1, k = 2, with B4 having a Kähler-Einstein

metric. We will also carry out a similar check for a class of AdS2 × Y9 solutions of D = 11

supergravity with X3 →֒ Y9 → B6, i.e. r = 1, k = 3, with B6 having a Kähler-Einstein

metric. These latter solutions were constructed in [18] and here we complete the analysis

of flux quantization.

The plan of the rest of the paper is as follows. In section 2 we summarize general

aspects of GK geometry and the associated extremal problem. In section 3 we discuss the

toric fibres and their master volume. In section 4, which contains our main new results, we

present the formulae for implementing the extremal problem in the fibred GK geometries

for Kähler base manifolds of dimension k = 1, 2, 3. We illustrate the formulae considering

a variety of examples in section 5, focusing on the new cases of k = 2 and k = 3. In

addition to reproducing the results of some known explicit supergravity solutions, where

the bases B4 and B6 are Kähler-Einstein manifolds, we also work out examples where the

base manifold is Kähler, but not Einstein. In particular, we consider B4 = Σg1 × Σg2 ,

the product of two Riemann surfaces of genus g1 and g2, as well as B4 = Fn, the n-th

Hirzebruch surface. We conclude in section 6 with some discussion. The appendices A–D

contain the derivations of the various key identities involving the master volume, that we

use in the main part of the paper. We have also included an appendix E, which explains

how the formalism developed in [9, 16] and the present paper allows one to efficiently

compute the Sasakian volume function of [5, 6].

2 GK geometry and the extremal problem

We begin by briefly summarizing some aspects of GK geometry [3]. This is a geometry

defined on an odd-dimensional manifold, Y2n+1, with n ≥ 3, consisting of a metric, a scalar

function B and a closed two-form F , so that dF = 0.

The existence of “supersymmetry”, by which we mean the existence of certain Killing

spinors given in [3], implies that the metric on Y2n+1 has a unit norm Killing vector ξ,

called the R-symmetry vector field. Since ξ is nowhere vanishing it defines a foliation Fξ
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of Y2n+1. In local coordinates we may write

ξ =
1

c
∂z , η = c(dz + P ) , (2.1)

where c ≡ (n− 2)/2 and η is the Killing one-form dual to ξ. The metric on Y2n+1 then has

the form

ds22n+1 = η2 + eBds22n , (2.2)

where ds22n is a Kähler metric transverse to Fξ. This Kähler metric, with transverse Kähler

two-form J , Ricci two-form ρ = dP and Ricci scalar R, determines all of the remaining

fields. Specifically,

eB =
c2

2
R , F = −1

c
J + d

(

e−Bη
)

. (2.3)

In particular, notice that we require positive scalar curvature, R > 0. These off-shell

“supersymmetric geometries” become on-shell GK geometries, or “supersymmetric solu-

tions”, provided that the transverse Kähler metric satisfies the non-linear partial differential

equation

�R =
1

2
R2 −RijR

ij . (2.4)

For n = 3 and n = 4 these give rise to supersymmetric AdS3 × Y7 and AdS2 × Y9
solutions of type IIB and D = 11 supergravity, which we describe in more detail below.

For these cases we must impose a flux quantization condition for cycles of codimension

two, and this naturally generalizes to all n ≥ 3. Specifically, if ΣA are a basis for the free

part of H2n−1(Y2n+1,Z) we impose

∫

ΣA

[

η ∧ ρ ∧ 1

(n− 2)!
Jn−2 +

c

2
∗2n dR

]

= νnNA , (2.5)

where NA ∈ Z and the non-zero, real constant νn is explicitly fixed only for the cases of

n = 3 and n = 4, as given below.

We also recall that for an off-shell supersymmetric geometry (i.e. not imposing (2.4))

the real cone over Y2n+1, C(Y2n+1) ≡ R>0 × Y2n+1, equipped with the conical metric

ds22n+2 = d̺2 + ̺2ds22n+1 , (2.6)

has some important properties. The cone C(Y2n+1) has an integrable complex structure,

and there exists a nowhere vanishing holomorphic (n + 1, 0)-form Ψ, which, furthermore,

is closed dΨ = 0. It follows that C(Y2n+1) has vanishing first Chern class. Additionally,

the R-symmetry vector ξ is holomorphic, and moreover Ψ has a fixed charge with respect

to the R-symmetry vector:

LξΨ =
i

c
Ψ . (2.7)
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We can now summarize the extremal problem for the off-shell supersymmetric geometry

that was presented in [4]. We fix a complex cone C(Y2n+1) = R>0×Y2n+1 with holomorphic

volume form Ψ, and holomorphic U(1)s action. We then choose a fiducial holomorphic

R-symmetry vector ξ and demand that the holomorphic volume form has fixed charge

1/c, as in (2.7). This choice of ξ defines a foliation Fξ, and we then further choose a

transverse Kähler metric with basic cohomology class [J ] ∈ H1,1
B (Fξ). We do not impose

the condition (2.4), as this would immediately put us on-shell. However, in order to

impose the flux quantization condition (2.5) we impose that the integral of (2.4) is satisfied.

Specifically, we impose the topological constraint
∫

Y2n+1

η ∧ ρ2 ∧ 1

(n− 2)!
Jn−2 = 0 , (2.8)

and also impose the flux quantization conditions1

∫

ΣA

η ∧ ρ ∧ 1

(n− 2)!
Jn−2 = νnNA , (2.9)

with the basis of cycles {ΣA} all tangent to ξ. Finally, an on-shell geometry, with properly

quantized flux, extremizes the supersymmetric action

SSUSY =

∫

Y2n+1

η ∧ ρ ∧ 1

(n− 1)!
Jn−1 . (2.10)

For a given ξ, it is important to emphasize that the quantities (2.8), (2.9) and (2.10)

just depend on the basic cohomology class [J ] ∈ H1,1
B (Fξ), and not on J itself [4]. Thus,

for fixed [J ], we are extremizing over the space of R-symmetry vectors. A GK geometry

with quantized flux is necessarily an extremal point, although as discussed in [4, 16] for

a given extremal point there may be obstructions to the existence of a corresponding GK

supergravity solution, satisfying (2.4).

For the case of n = 3, i.e. Y7, the above extremal problem is associated to supersym-

metric solutions of type IIB supergravity of the form

ds210 = L2e−B/2
(

ds2(AdS3) + ds2(Y7)
)

,

F5 = −L4 (volAdS3 ∧ F + ∗7F ) , (2.11)

where ds2(AdS3) has unit radius, and L > 0 is a constant. The five-form F5 is properly

quantized provided that we choose the constant ν3 to be

ν3 =
2(2πℓs)

4gs
L4

, (2.12)

where ℓs is the string length, and gs is the constant string coupling. Furthermore, the value

of the on-shell action also determines the central charge, csugra, of the dual field theory.

Specifically, defining the “trial central charge”, Z , via

Z ≡ 3L8

(2π)6g2sℓ
8
s

SSUSY =
12(2π)2

ν23
SSUSY , (2.13)

1As discussed in [4], this is equivalent to the flux quantization condition if H2(Y2n+1,R) ∼= H2
B(Fξ)/[ρ],

which holds in the classes of examples studied in this paper.
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where SSUSY is the supersymmetric action (2.10) with n = 3, then we have

Z |on-shell = csugra . (2.14)

Similarly, when n = 4, i.e. Y9, the above extremal problem is associated to supersym-

metric solutions of D = 11 supergravity of the form

ds211 = L2e−2B/3
(

ds2(AdS2) + ds2(Y9)
)

,

G4 = L3volAdS2 ∧ F , (2.15)

where ds2(AdS2) has unit radius. The four-form G4 (or more precisely the Hodge dual

seven-form ∗11G4) is properly quantized provided that we choose the constant ν4 to be

ν4 =
(2πℓp)

6

L6
, (2.16)

where ℓp is the eleven-dimensional Planck length. For this case we can define a “trial

entropy”, S , via

S ≡ 4πL9

(2π)8ℓ9p
SSUSY , (2.17)

where SSUSY is the supersymmetric action (2.10) with n = 4. In the case that the D = 11

solution arises as the near-horizon limit of a supersymmetric black hole, it is expected

that S |on-shell is the entropy of the black hole [4]. More generally, it is expected that

S |on-shell is the logarithm of a supersymmetric partition function of the dual quantum

mechanical theory [4]. For the sub-class of solutions for which Y9 is the total space of

a fibration of X7 over a Riemann surface there is also an established connection with

I-extremization [9, 10], which provides a state counting interpretation of the entropy of

infinite classes of supersymmetric, asymptotically AdS4 black hole solutions.

In the remainder of the paper we will be interested in implementing the above extremal

problem for geometries in which Y2n+1 takes the fibred form

X2r+1 →֒ Y2r+2k+1 → B2k , (2.18)

where n = r + k and B2k is a Kähler manifold. We will further restrict to the case that

the fibre manifold X2r+1 is toric, so that the cone metric over X2r+1 is invariant under

a holomorphic U(1)r+1 isometry, and moreover we take the R-symmetry vector ξ to be

tangent to the toric fibre. We describe this geometry in more detail in the next section.

3 Geometry of the toric X2r+1 fibre

In this section we describe the geometry of the fibres X2r+1 in (2.18), in particular intro-

ducing the so-called master volume V . Our discussion here summarizes and generalizes

section 3 of [16] from dimension r = 2 to arbitrary dimension, and in addition we derive

some new identities satisfied by the master volume that will be important later in the

paper.
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3.1 Toric Kähler cones

We start by assuming that we have a toric Kähler cone, C(X2r+1), in real dimension

2(r + 1). By definition these are Kähler metrics of the conical form

ds2C(X2r+1)
= d̺2 + ̺2ds22r+1 , (3.1)

that admit a U(1)r+1 action. This action is taken to be generated by the holomorphic

Killing vectors ∂ϕi
, i = 1, . . . , r + 1, with each ϕi having period 2π. Moreover, we take

C(X2r+1) to be Gorenstein, meaning that it admits a global holomorphic (r + 1, 0)-form

Ψ(r+1,0). For convenience we choose a basis so that this holomorphic volume form has unit

charge under ∂ϕ1 and is uncharged under ∂ϕi
, i = 2, 3, . . . , r + 1.

The manifold X2r+1 is embedded at ̺ = 1. The complex structure of the cone pairs the

radial vector ̺∂̺ with the Killing vector field ξ tangent to X2r+1, which we may write as

ξ =
r+1
∑

i=1

bi∂ϕi
. (3.2)

The vector ~b = (b1, . . . , br+1) then parametrizes the choice of R-symmetry vector ξ. Notice

that we then have

LξΨ(r+1,0) = ib1Ψ(r+1,0) . (3.3)

The complex structure likewise pairs the one-form η dual to ξ with d̺/̺. In particular

for Kähler cones

dη = 2ωSasakian , (3.4)

where ωSasakian is the transverse Kähler form. Because dη is also a transverse symplectic

form in this case, by definition η is a contact one-form on X2r+1. The unique vector field

ξ satisfying ξyη = 1, ξydη = 0 is then also called the Reeb vector field. We may write the

(Sasakian) metric on X2r+1 as

ds22r+1 = η2 + ds22r(ω) , (3.5)

where ds22r(ω) is the transverse Kähler metric with Kähler form ω = ωSasakian. We note

that (3.3) implies that

[dη] =
1

b1
[ρ] ∈ H2

B(Fξ) , (3.6)

where Fξ is the foliation of X2r+1 induced by the choice of Reeb vector ξ, and ρ denotes

the Ricci two-form of the transverse Kähler metric ds22r(ω).

We may next define the moment map coordinates

yi ≡
1

2
̺2∂ϕi

yη , i = 1, . . . , r + 1 . (3.7)

– 7 –
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These span the so-called moment map polyhedral cone C ⊂ R
r+1, where the ~y = (y1, . . . ,

yr+1) are standard coordinates on R
r+1. The polyhedral cone C, which is convex, may be

written as

C = {~y ∈ R
r+1 | (~y,~va) ≥ 0 , a = 1, . . . , d} , (3.8)

where ~va ∈ Z
r+1 are the inward pointing primitive normals to the facets of the polyhedral

cone, and the index a = 1, . . . , d ≥ r + 1 labels the facets. Furthermore, va = (1, wa),

where wa ∈ Z
r, follows from the Gorenstein condition in the basis for U(1)r+1 described

above.

As shown in [5], for a Kähler cone metric on C(X2r+1) the R-symmetry vector ~b =

(b1, . . . , br+1) lies in the interior of the Reeb cone, ~b ∈ C∗
int. Here the Reeb cone C∗ is

defined to be the dual cone to C, with C∗
int being its open interior. Using ξyη = 1, together

with (3.2) and (3.7), the image of X2r+1 = {̺ = 1} under the moment map is then the

compact, convex r-dimensional polytope

P = P (~b ) = C ∩H(~b ) , (3.9)

where the Reeb hyperplane is by definition

H = H(~b ) ≡
{

~y ∈ R
r+1 | (~y, ~b ) = 1

2

}

. (3.10)

3.2 The master volume

Following [16], we first fix a choice of toric Kähler cone metric on the complex cone

C(X2r+1). As described in the previous subsection, this allows us to introduce the moment

map coordinates ~y in (3.7), together with the angular coordinates ϕi, i = 1, . . . , r + 1, as

coordinates on C(X2r+1). Geometrically, C(X2r+1) then fibres over the polyhedral cone

C: over the interior Cint of C this is a trivial U(1)r+1 fibration, with the normal vectors

~va ∈ Z
r+1 to each bounding facet {(~y,~va) = 0} ⊂ ∂C specifying which U(1) ⊂ U(1)r+1 col-

lapses along that facet. Each such facet is also the image under the moment map of a toric

divisor in C(X2r+1) — that is, a complex codimension one submanifold that is invariant

under the torus U(1)r+1. The index a = 1, . . . , d thus also labels the toric divisors.

For a fixed choice of such complex cone, with Reeb vector ξ given by (3.2), we would

then like to study a more general class of transversely Kähler metrics of the form (3.5). In

particular, we are interested in the “master volume” defined by

V ≡
∫

X2r+1

η ∧ 1

r!
ωr , (3.11)

as a function both of the vector ξ, and transverse Kähler class [ω] ∈ H2
B(Fξ). Follow-

ing [16], if we take ca to be basic representatives in H2
B(Fξ) that lift to integral classes in

H2(X2r+1,Z), which are Poincaré dual to the restriction of the toric divisors on C(X2r+1),

then we can write

[ω] = −2π
d

∑

a=1

λaca ∈ H2
B(Fξ) . (3.12)
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The ca are not all independent and [ω] in fact only depends on d − r of the d parameters

{λa}, as we shall see shortly. It will also be useful to note that the first Chern class of the

foliation can be written in terms of the ca as

[ρ] = 2π
d

∑

a=1

ca ∈ H2
B(Fξ) . (3.13)

In the special case in which

λa = − 1

2b1
, a = 1, . . . d , (3.14)

we recover the Sasakian Kähler class [ρ] = 2b1[ωSasakian] and the master volume (3.11)

reduces to the Sasakian volume.

Again following [16], the master volume (3.11) may be written as

V =
(2π)r+1

|~b|
vol(P) . (3.15)

Here the factor of (2π)r+1 arises by integrating over the torus U(1)r+1, while vol(P) is the

Euclidean volume of the compact, convex r-dimensional polytope

P = P(~b; {λa}) ≡ {~y ∈ H(~b ) | (~y − ~y (0), ~va) ≥ λa , a = 1, . . . , d} . (3.16)

Here

~y(0) ≡
(

1

2b1
, 0, . . . , 0

)

∈ H , (3.17)

which lies in the interior of P, while the {λa} parameters determine the transverse Kähler

class. We next introduce the new coordinates

xi ≡ yi − y
(0)
i . (3.18)

Notice that the inequalities defining the polytope P then become simply (~x,~va) ≥ λa,

a = 1, . . . , d, which is the usual way the moment polytope is presented in toric Kähler

geometry. In this case xi is the Hamiltonian function for the ith U(1) Killing vector ∂ϕi

with respect to the (transverse) Kähler form ω, i.e. dxi = −∂ϕi
yω. Using (3.18) we may

then also write the master volume (3.15) as an integral

V = V(~b; {λa}; {~va}) = (2π)r+1

∫

Rr+1

d
∏

a=1

θ((~x,~va)− λa)δ((~x, ~b )) , (3.19)

where the integration over R
r+1 uses the standard Euclidean measure dx1 ∧ · · · ∧ dxr+1.

Here we have emphasized in the notation that the master volume also depends on the

choice of polyhedral cone C, via its primitive normal vectors ~va ∈ Z
r+1, as well as the

choice of R-symmetry vector ~b and Kähler class parameters {λa}. Using (3.19) it is shown

in appendix A that V satisfies the identity

d
∑

a=1

(

~va −
~b

b1

)

∂V
∂λa

= 0 , (3.20)

– 9 –
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meaning that this equation holds for all ~b and {λa} (for fixed polyhedral cone and hence

fixed {~va}). It follows that the master volume is invariant under the “gauge” transforma-

tions

λa → λa +

r+1
∑

i=1

γi(v
i
ab1 − bi) , (3.21)

for arbitrary constants γi, generalizing a result of [19]. For X2r+1, noting that the trans-

formation parametrized by γ1 is trivial, this explicitly shows that the master volume only

depends on d− r of the d parameters {λa}.
The master volume V is homogeneous of degree r in the λa, and we have

V ≡
∫

X2r+1

η ∧ 1

r!
ωr = (−2π)r

d
∑

a1,...,ar=1

1

r!
Ia1...arλa1 . . . λar , (3.22)

where the “intersection numbers” Ia1...ar are defined as

Ia1...ar ≡
∫

Y2r+1

η ∧ ca1 ∧ · · · ∧ car =
1

(−2π)r
∂rV

∂λa1 . . . ∂λar

. (3.23)

We may then calculate

∫

X2r+1

η ∧ ρs ∧ 1

(r − s)!
ωr−s = (−1)s

d
∑

a1,...,as=1

∂sV
∂λa1 . . . ∂λas

. (3.24)

We also are interested in integrating over Sa, the (2r − 1)-cycle in X2r+1 associated with

a toric divisor on the cone and Poincaré dual to ca. We have
∫

Sa

η ∧ ρs ∧ 1

(r − s− 1)!
ωr−s−1 =

∫

Y2r+1

η ∧ ρs ∧ 1

(r − s− 1)!
ωr−s−1 ∧ ca

=
(−1)s+1

2π

d
∑

b1,...,bs=1

∂s+1V
∂λa∂λb1 . . . ∂λbs

. (3.25)

In appendix A we also show that the master volume V is homogeneous of degree −1 in

the bi.

It is possible to obtain very explicit formulas for the master volume in low dimensions.

In dimensions r = 2 and r = 3 the relevant formulae for X5 and X7 were derived in [16]

and [9], respectively. In the present paper we shall also be interested in the case r = 1,

with a three-dimensional toric fibre X3. In this case the toric data of a Gorenstein Kähler

cone of complex dimension r + 1 = 2 is given by the two inward pointing normal vectors

v1 = (1, 0), v2 = (1, p), where p ∈ N. This describes an Ap−1 singularity, C(X3) = C
2/Zp,

with the Zp action on C
2 given by (z1, z2) 7→ (ωpz1, ω

−1
p z2), where ωp is a primitive pth

root of unity. As shown in appendix B, the master volume of X3 in this case is simply

V(~b;λ1, λ2;~v1, ~v2) = (2π)2
2

∑

a=1

(−1)a
λa

[~va,~b ]
, (3.26)
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where here [~va, ~b ] denotes the determinant of the 2× 2 matrix, i.e. [~va, ~b ] ≡ εijv
i
ab

j . Later

in the paper we will also need the master volume in dimension r = 2. In this case the

master volume of X5 is [16]

V(~b; {λa}; {~va}) =
(2π)3

2

d
∑

a=1

λa
λa−1[~va, ~va+1, ~b ]− λa[~va−1, ~va+1, ~b ] + λa+1[~va−1, ~va, ~b ]

[~va−1, ~va, ~b ][~va, ~va+1, ~b ]
,

where [·, ·, ·] denotes a 3×3 determinant. Here the facets are ordered anti-clockwise around

the polyhedral cone, and we cyclically identify ~vd+1 ≡ ~v1, ~v0 ≡ ~vd, and similarly λd+1 ≡ λ1,

λ0 ≡ λd.

Finally, we note that the formulae in this section assume that the polyhedral cone C
is convex, since we started the section with a cone that admits a toric Kähler cone metric.

However, as discussed in [4, 16], this convexity condition is, in general, too restrictive for

applications to the classes of AdS2 and AdS3 solutions of interest. Indeed, many such

explicit supergravity solutions are associated with “non-convex toric cones”, as defined

in [4], which in particular have toric data which do not define a convex polyhedral cone.

As in the above papers and [9], we conjecture that the key formulae in this section are also

applicable to non-convex toric cones, and we will assume that this is the case in the sequel.

The consistent picture that emerges, combined with similar results in [4, 9, 16], strongly

supports the validity of this conjecture.

4 Fibred GK geometry

We would like to study GK geometries of the fibred form (2.18), where the fibres X2r+1

take the toric form described in section 3. In particular, we would like to evaluate the

constraint, flux quantization condition and supersymmetric action (2.8), (2.9), (2.10) for

these fibred geometries, respectively. In this section we follow a similar analysis to that in

section 4 of [16], which studied the case of X5 fibred over a Riemann surface Σg of genus

g. Extending this to X2r+1 fibred over a Kähler base B2k is relatively straightforward,

although for k > 1 various new features arise compared to the Riemann surface k = 1 case.

4.1 General set-up

The manifolds X2r+1 by definition admit an isometric U(1)r+1 action. We may use this

symmetry to fibre X2r+1 over the Kähler base B2k by picking r + 1 U(1) gauge fields Ai

on B2k, i = 1, . . . , r + 1, with curvatures Fi = dAi given by

Fi

2π
=

∑

α

nα
i c

(2)
α . (4.1)

Here c
(2)
α ∈ H2(B2k,R) are closed two-forms that generate the free part of H2(B2k,Z), and

nα
i ∈ Z. It will be convenient later to take the c

(2)
α ∈ H2(B2k,R) to be Poincaré duals

to a corresponding basis of (2p − 2)-cycles C
(2p−2)
α ∈ H2p−2(B2k,Z), which by definition

means that
∫

C
(2p−2)
α

Φ =

∫

B2k

Φ ∧ c(2)α (4.2)
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holds for all closed (2p− 2)-forms Φ on B2k. Having chosen the curvatures in (4.1), which

amounts to a choice of the integers nα
i , one then uses the corresponding U(1)r+1 transition

functions to fibre X2r+1 over B2k, using the toric action of U(1)r+1 on X2r+1.
2

More concretely, the above fibration amounts to a replacement

dϕi → dϕi +Ai i = 1, . . . , r + 1 , (4.3)

where recall that ϕi are the (2π)-periodic coordinates on the torus U(1)r+1. As in [16], it is

important here to emphasize that the quantities (2.8), (2.9), (2.10) of interest on the total

space of the fibration depend only on basic cohomology classes in H2
B(Fξ). This means

that we may use any convenient representative of the various differential forms that enter

these quantities — we must only ensure that the representative we use has the correct basic

cohomology class.

With these comments in mind, after the fibration the contact one-form η on the fibres

X2r+1 is effectively replaced by

η → ηtwisted ≡ 2
r+1
∑

i=1

wi(dϕi +Ai) , (4.4)

where we have defined

wi ≡ yi|̺=1 =
1

2
∂ϕi

yη . (4.5)

Recall here that the yi are the moment map coordinates (3.7) on C(X2r+1), and X2r+1 =

{̺ = 1} ⊂ C(X2r+1). We then have

dηtwisted = 2
r+1
∑

i=1

dwi ∧ (dϕi +Ai) + 2
r+1
∑

i=1

wiFi . (4.6)

For the transverse Kähler form J we may write

J = ωtwisted + JB2k
+ basic exact , (4.7)

up to an irrelevant basic exact form, where JB2k
is a Kähler form on the base B2k and

ωtwisted ≡
r+1
∑

i=1

dxi ∧ (dϕi +Ai) +

r+1
∑

i=1

xiFi . (4.8)

Here we have identified

dxi = −∂ϕi
yω , (4.9)

so that the xi are global Hamiltonian functions on the fibreX2r+1, invariant under the torus

action, cf. the discussion after equation (3.18), where the same functions xi appear. Notice

that these are a priori defined only up to an additive constant, but that via equation (4.7)

2Notice that a choice of nα
i ∈ Z only determines the principal U(1)r+1 bundle up to a torsion class in

H2(B2k,Z), although this torsion data will not enter the formulae that follow.
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such a constant shift may be absorbed into a redefinition of the Kähler form JB2k
. As

in (4.1) we may then similarly decompose this Kähler form on the base as

JB2k
=

∑

α

aαc(2)α , (4.10)

where aα ∈ R.

At the level of the formulae (2.8), (2.9), (2.10), which are expressed as integrals on the

total space of the fibration, we may then simply substitute

J → ω + xiFi + JB2k
,

η → η ,

dη → dη + 2wiFi , (4.11)

where on the right hand side, in a slight abuse of notation, ω, η and dη are quantities on

the fibre X2r+1, while the remaining terms are quantities on the base B2k.

The holomorphic (r+1, 0)-form Ψ(r+1,0) on the cone C(X2r+1) over the fibre has unit

charge under ∂ϕ1 , meaning there is an explicit eiϕ1 dependence, where recall that we have

chosen the basis for the torus action so that this is the case. On the other hand, the

holomorphic (n + 1, 0)-form Ψ on C(Y2n+1) is constructed by taking the wedge product

of the canonical holomorphic (k, 0)-form on the Kähler base B2k with the (r + 1, 0)-form

Ψ(r+1,0) on the fibre, twisting the latter using the r+1 line bundles over k with curvatures

Fi, i = 1, . . . , r + 1. The canonical (k, 0)-form on the Kähler base B2k is not globally

defined in general (unless the base is Calabi-Yau), being a section of the canonical line

bundle KB2k
. However, due to the twisting, eiϕ1 is precisely a section of the line bundle

over B2k with first Chern class [F1/2π] ∈ H2(B2k,Z). Neither section exists globally in

general, but the wedge product does have a global nowhere zero section, and hence gives

rise to a global (n+ 1, 0)-form Ψ on C(Y2n+1), precisely if

[

F1

2π

]

= −c1(KB2k
) = c1(B2k) . (4.12)

When this condition holds, the cone C(Y2n+1) has a global (n + 1, 0)-form. The condi-

tion (4.12) generalizes the twist condition over a Riemann surface (where k = 1) presented

in [9, 16].

Finally, recalling (3.3) and (2.7), for Y2r+2k+1 we need to take

b1 =
2

r + k − 2
. (4.13)

In the expressions given in the next subsections, it is important that this condition is only

imposed after taking any derivatives with respect to the bi.

In the remainder of this section we simply present the final formulae for various low-

dimensional cases of interest, referring to the appendices for further details of the calcula-

tions involved.
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4.2 X2r+1 →֒ Y2r+3 → B2

Here r = 2 and r = 3 are relevant for the type IIB case and the D = 11 case, respectively.

In fact these two cases were already treated in [16] and [9], respectively. Generalizing the

calculations to general r ≥ 2 is straightforward.

We begin by noting that the topological constraint (2.8) can be written in the form

d
∑

a,b=1

∂2V
∂λa∂λb

vol(B2) + b1

d
∑

a=1

r+1
∑

i=1

∂2V
∂λa∂bi

∫

B2

Fi −
d

∑

a=1

∂V
∂λa

∫

B2

F1 = 0 . (4.14)

Next we consider the flux quantization conditions given in (2.9). There are two classes of

(2r + 1)-cycles to consider. First, there is the distinguished (2r + 1)-cycle, Σ, obtained by

picking a point on the Kähler base B2. We find

−
d

∑

a=1

∂V
∂λa

= νr+1N , (4.15)

where we recall that νr+1 is a non-zero, real constant, fixed for the case of r = 2, 3 as

in (2.12), (2.16), respectively, and N ∈ Z. The second class of (2r + 1)-cycles are given by

the total spaces Σa of the fibrations

Sa →֒ Σa → B2 , (4.16)

where Sa is a (2r− 1)-cycle in X2r+1 associated with a toric divisor on the associated cone

C(X2r+1). For these cycles we have

1

2π

d
∑

b=1

∂2V
∂λa∂λb

vol(B2) +
b1
2π

r+1
∑

i=1

∂2V
∂λa∂bi

∫

B2

Fi = νr+1Ma , (4.17)

with Ma ∈ Z. The Sa are not linearly independent cycles in the fibre X2r+1, which leads

to the corresponding linear relations among the flux numbers [9, 16]:

d
∑

a=1

viaMa = −N

∫

B2

Fi

2π
, i = 1, . . . , r + 1 . (4.18)

In the above expressions, from (4.13), we should take

b1 =
2

r − 1
, (4.19)

after taking derivatives with respect to bi. Finally, the supersymmetric action, given

in (2.10), can be cast in the form

SSUSY = νr+1
2π

r

(

N

2π
vol(B2)−

d
∑

a=1

λaMa

)

. (4.20)
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4.3 X2r+1 →֒ Y2r+5 → B4

Now r = 1 is relevant for the type IIB case, while r = 2 is relevant for the D = 11 case.

The topological constraint condition (2.8) is given by

d
∑

a,b=1

∂2V
∂λa∂λb

vol(B4) + b1

r+1
∑

i=1

d
∑

a=1

∂2V
∂λa∂bi

∫

B4

Fi ∧ JB4 −
d

∑

a=1

∂V
∂λa

∫

B4

F1 ∧ JB4

+ b21

r+1
∑

i,j=1

∂2V
∂bi∂bj

∫

B4

1

2
Fi ∧ Fj = 0 . (4.21)

There are two types of flux integrals, corresponding to two types of (2r + 3)-cycles. The

first type of cycles have the fibred form

X2r+1 →֒ Σα → C(2)
α , (4.22)

with C
(2)
α ⊂ B4 a two-cycle. We find

−
d

∑

a=1

∂V
∂λa

∫

C
(2)
α

JB4 − b1

r+1
∑

i=1

∂V
∂bi

∫

C
(2)
α

Fi = νr+2Nα , (4.23)

where νr+2 is a non-zero, real constant, fixed for the case of r = 1, 2 as in (2.12), (2.16),

respectively, and Nα ∈ Z. The second set of (2r + 3)-cycles have the fibred form

Sa →֒ Σa → B4 , (4.24)

where Sa is a (2r− 1)-cycle in X2r+1 associated with a toric divisor on the associated cone

C(X2r+1). We find

1

2π

d
∑

b=1

∂2V
∂λa∂λb

vol(B4) +
b1
2π

r+1
∑

i=1

∂2V
∂λa∂bi

∫

B4

Fi ∧ JB4

− b1
2π

r+1
∑

i1,i2=1

∂2V
∂bi2∂v

i1
a

∫

B4

1

2
Fi1 ∧ Fi2 = νr+2Ma , (4.25)

with Ma ∈ Z. Again, the Sa are not linearly independent cycles in the fibre: multi-

plying (4.25) by via and summing over a = 1, . . . , d, and using (4.21), (4.23) and the

identity (3.20), one can show that

d
∑

a=1

viaMa = −
∑

α

Nαn
α
i , (4.26)

where the twisting parameters nα
i were introduced in (4.1). In the above expressions,

from (4.13), we should take

b1 =
2

r
, (4.27)
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after taking derivatives with respect to bi. Finally, the supersymmetric action (2.10) can

be written as

SSUSY = νr+2
2π

r + 1

(

1

2π
aαNα −

d
∑

a=1

λaMa

)

, (4.28)

where recall that the aα were introduced in (4.10) and parametrize the Kähler form, JB2k
,

on the base B4.

4.4 X2r+1 →֒ Y2r+7 → B6

Now r = 0 is relevant3 for the type IIB case while r = 1 is relevant for the D = 11 case.

The topological constraint condition (2.8) is given by

d
∑

a,b=1

∂2V
∂λa∂λb

vol(B6) + b1

r+1
∑

i=1

d
∑

a=1

∂2V
∂λa∂bi

∫

B6

Fi ∧
1

2
J2
B6

−
d

∑

a=1

∂V
∂λa

∫

B6

F1 ∧
1

2
J2
B6

+ b21

r+1
∑

i,j=1

∂2V
∂bi∂bj

∫

B6

1

2
Fi ∧ Fj ∧ JB6

− b21

r+1
∑

i1,i2,i3=1

∂2

∂bi2∂bi3

(

1

r + 1

d
∑

a=1

λa ∂V
∂vi1a

)

∫

B6

1

3!
Fi1 ∧ Fi2 ∧ Fi3 = 0 . (4.29)

There are two types of flux integrals, corresponding to two types of (2r + 5)-cycles. The

first type of cycles have the fibred form

X2r+1 →֒ Σα → C(4)
α , (4.30)

with C
(4)
α ⊂ B6 a four-cycle. We find

−
d

∑

a=1

∂V
∂λa

∫

C
(4)
α

1

2
J2
B6

− b1

r+1
∑

i=1

∂V
∂bi

∫

C
(4)
α

Fi ∧ JB6

+
b1

r + 1

d
∑

a=1

r+1
∑

i1,i2=1

λa ∂2V
∂bi2∂v

i1
a

∫

C
(4)
α

1

2
Fi1 ∧ Fi2 = νr+3Nα , (4.31)

where νr+3 is a non-zero, real constant, fixed for the case of r = 0, 1 as in (2.12), (2.16),

respectively, and Nα ∈ Z. The second set of (2r + 5)-cycles are given by

Sa →֒ Σa → B6 , (4.32)

3When r = 0 the fibre X1 is simply a circle: we have only one toric vector v1 = 1, no Kähler parameters

λa, and the master volume is simply V = 2π/b1. There is only one twisting U(1) bundle with curvature

F1, and moreover from (4.12) we have [F1] = [ρ]. In this case, the only terms which contribute are those

involving only derivatives of V with respect to b1. The formulae in this subsection then simply give rise to

the formulae (2.8)–(2.9) for the case of a regular U(1) fibration over B6 with η = 1
2
(dϕ1 + P ).
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where Sa is a (2r − 1)-cycle in X2r+1 associated with a divisor on the cone C(X2r+1).

We find

1

2π

d
∑

b=1

∂2V
∂λa∂λb

vol(B6) +
b1
2π

r+1
∑

i=1

∂2V
∂λa∂bi

∫

B6

Fi ∧
1

2
J2
B6

− b1
2π

r+1
∑

i1,i2=1

∂2V
∂bi2∂v

i1
a

∫

B6

1

2
Fi1 ∧ Fi2 ∧ JB6 (4.33)

+
b1
2π

r+1
∑

i1,i2,i3=1

∂

∂bi3





1

(r + 1)

d
∑

b1=1

λb1
∂2V

∂vi1b1∂v
i2
a





∫

B6

1

3!
Fi1 ∧ Fi2 ∧ Fi3 = νr+3Ma ,

with Ma ∈ Z. Again, the Sa are not linearly independent cycles in the fibre: multiply-

ing (4.25) by via and summing over a = 1, . . . , d, and using (4.29), (4.31) one can show that

d
∑

a=1

viaMa = −
∑

α

Nαn
α
i , (4.34)

where the nα
i were introduced in (4.1). In proving this, we have also used the identity (A.16)

in appendix A. In the above expressions, from (4.13), we should take

b1 =
2

r + 1
, (4.35)

after taking derivatives with respect to bi. Finally, the supersymmetric action (2.10) can

be written as

SSUSY = νr+3
2π

r + 2

(

1

2π
aαNα −

d
∑

a=1

λaMa

)

, (4.36)

where the aα were introduced in (4.10) and parametrize the Kähler form, JB6 , on the

base B6.

5 Examples

In this section we illustrate our general formalism and procedure in a variety of examples,

focusing on the cases where the base space B2k has complex dimension k = 2 and k =

3.4 In addition to reproducing the results of some known explicit supergravity solutions

summarized in appendix D, where the bases B4 and B6 are Kähler-Einstein manifolds, we

also work out examples where the base manifold is Kähler, but not Einstein. In particular,

we present the calculations for B4 = Σg1×Σg2 , namely the product of two Riemann surfaces

of genus g1 and g2, as well as for B4 = Fn, the nth Hirzebruch surface.

5.1 Type IIB

In this subsection we consider AdS3 × Y7 examples of the form X3 →֒ Y7 → B4, for a

variety of Kähler cases B4.

4The Riemann surface case k = 1 has already been treated extensively in [9, 10, 16, 19].
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5.1.1 B4 = dPk

We begin with the case that B4 = dPk, the kth del Pezzo surface.5 By definition this is

the complex projective space CP 2 blown up at k = 0, . . . , 8 generic points. We let

c1 = 3H −
k

∑

i=1

Ei (5.1)

denote the anti-canonical class, where H is the hyperplane class, and Ei denote the excep-

tional divisors in the blow-up. We denote M (k) ≡
∫

dPk
c1 ∧ c1 = 9− k.

For simplicity we will here only present the special case where the cohomology classes

of the Kähler form JB4 and curvatures of the fibration Fi in H2(dPk,R) are proportional

to the class c1. We thus write

[JB4 ] = A
c1
mk

,
1

2π
[Fi] = ni

c1
mk

, (5.2)

where i = 1, 2 and A ∈ R, ni ∈ Z. Here mk is the Fano index of dPk. By definition

this is the largest positive integer so that c1/mk ∈ H2(dPk,Z) is an integer class. This is

m0 = 3 for CP 2, but mk = 1 for the remaining del Pezzo surfaces dPk with k = 1, . . . , 8.

Furthermore, we note from (4.12) that we have n1 = mk. This case then has three flux

quantum numbers: N , Mi, for i = 1, 2. In particular the two-cycle C(2) for flux quantum

number N in (4.23) is taken to be the Poincaré dual to c1/mk.

We first solve the constraint equation (4.21) for A to obtain

A =
2π

(

n2
2λ1(2p− b2)

3 + b32λ2(mkp− n2)
2
)

b2p(2p− b2)(2n2(p− b2) +mkb2p)
, (5.3)

where here, as below, we have set b1 = 2 as required for an AdS3 solution after taking

derivatives with respect to the bi. We then solve the expression for the preferred flux, N ,

in (4.23) for one of the transverse Kähler class parameters λa, specifically λ1, to obtain

λ1 =
b2λ2

b2 − 2p
− m2

kb2[2n2(p− b2) +mkb2p]

16π3M (k)n2(mkp− n2)
ν3N . (5.4)

We then find that the two remaining fluxes can be expressed as

M1 =
(n2 −mkp)

p
N, M2 = −n2

p
N , (5.5)

while the off-shell trial central charge function, given by (2.13) and (4.28), takes the form

Z = −3m2
k

[

n2
2

(

4p2 − 6b2p+ 3b22
)

+mkb2n2p(2p− 3b2) +m2
kb

2
2p

2
]

M (k)n2p(mkp− n2)
N2 . (5.6)

5In the rest of the paper the base space has been denoted B2k, of complex dimension k. In this section

this k = 2, and in an abuse of notation instead in this subsection the integer k = 0, . . . , 8 will label the del

Pezzo surface dPk.
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Extremizing Z over b2 we find

b2 =
n2p(3n2 −mkp)

m2
kp

2 − 3mkn2p+ 3n2
2

, (5.7)

and hence csugra ≡ Z |on-shell is given by

csugra =
9m2

kn2p(n2 −mkp)

M (k)
(

m2
kp

2 − 3mkn2p+ 3n2
2

)N2 . (5.8)

We can now compare with the explicit AdS3×Y p,q(KE+
4 ) supergravity solutions of [17],

which are briefly summarized in appendix D.1. For each choice of KE+
4 these solutions are

specified by two positive, relatively prime integers p > 0, q > 0, as well as an overall flux

number n. We make the obvious identifications M = M (k) and m = mk, together with

p = −n2, q = p and n = (m2
kh/pM

(k))N , where h ≡ hcf(M (k)/m2
k, p). We then notice that

the flux quantum numbers can be written as

M1 = (n2 −mkp)
M (k)

hm2
k

n , M2 = −n2
M (k)

hm2
k

n , N =
M (k)

m2
k

p

h
n . (5.9)

Each term in the products is manifestly an integer, provided that n is an integer, ensuring

that M1,M2, N ∈ Z. Moreover, this ensures that all flux quantum numbers are integer.

To see this, recall from (5.2) that [JB4 ] and [Fi] are both proportional to the class c1.

From the general flux quantization condition (4.23), recalling that N is the flux through

the two-cycle Poincaré dual to c1/mk as well as the expression for N in (5.9), we may then

deduce that the flux associated to an arbitrary two-cycle C
(2)
α ⊂ dPk is

Nα =
p

h
n

∫

C
(2)
α

c1
mk

∈ Z . (5.10)

All flux quantum numbers are hence integer, provided that n is an (arbitrary) integer.

We find that the fluxes of the explicit supergravity solutions, summarized in (D.1), are

related to the Mi via N(D0) = M1 and N(D̃0) = −M2. Finally, the expression for the

central charge, given in (5.8) precisely agrees with the expression obtained from the explicit

supergravity solution (D.2). We shall return to comment on the formula (5.8) for k = 1, 2,

where no Kähler-Einstein metric exists, in subsection 5.1.3.

5.1.2 B4 = Σg1 × Σg2

We next examine the case when B4 = Σg1 × Σg2 is a product of two Riemann surfaces

of genus g1 and g2. We introduce the normalized volume form classes vol1, vol2 for each

Riemann surface, respectively, where
∫

Σg1
vol1 = 1 =

∫

Σg2
vol2. We may then write

[JB4 ] = A1vol1 +A2vol2 ,
1

2π
[Fi] = nivol1 + kivol2 , (5.11)

where A1, A2 ∈ R and ni, ki ∈ Z, i = 1, 2. We note from (4.12) that we have n1 = 2− 2g1,

k1 = 2− 2g2. This case then has four flux quantum numbers: Ni, Mi, for i = 1, 2.
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As in the previous subsection we first solve the constraint equation (4.21), where we

choose to eliminate the Kähler class parameter A1. We then solve the expression for the

fluxes Ni given by (4.23), where i = 1, 2 labels the Riemann surfaces, and eliminate A2

and λ1. We then find that two remaining fluxes can be expressed as

M1 =
[2(g1 − 1)p+ n2]N2 + [2(g2 − 1)p+ k2]N1

p
, M2 = −k2N1 + n2N2

p
, (5.12)

while the off-shell trial entral charge function, given by (2.13) and (4.28), may be computed

as a function of b2, and depends on the parameters p, g1, g2, n2, k2, N1, N2. This may then

be extremized over b2 and evaluated on-shell. Rather than give the general expressions,

which are rather unwieldy, we here present the special symmetric case where we choose

k2 = n2 ≡ k and N2 = N1 ≡ N . We then find that the extremal value of b2 is given by

b2 =
kp [p(g1 + g2 − 2) + 3k]

3kp(g1 + g2 − 2) + p2(g1 + g2 − 2)2 + 3k2
, (5.13)

while the central charge is

csugra =
18kp [p(g1 + g2 − 2) + k]

3kp(g1 + g2 − 2) + p2(g1 + g2 − 2)2 + 3k2
N2 . (5.14)

Setting g1 = g2 = 0, which corresponds to B4 = S2 × S2, we find that the central

charge (5.14) matches the explicit supergravity solution result in (D.2), where m = 2,

M = 8, and we identify parameters as p = −k, q = p and n = (h/p)N . In particular we

also then find that the fluxes of the explicit supergravity solutions, summarized in (D.1),

are related to the Mi via N(D0) = M1 and N(D̃0) = −M2.

5.1.3 B4 = FFFn

Finally, we examine the case when B4 = Fn is the nth Hirzebruch surface. This is the

complex surface defined as the total space of a CP 1 bundle over CP 1. There are various

equivalent ways to describe the fibration. For example, one can take the complex line bundle

O(−n) over CP 1, and add a point at infinity to each fibre to make the fibres Riemann

spheres C∪{∞} ∼= CP 1. Alternatively, one can take the projectivization P(O(0)⊕O(−n)).

In the first description, we shall refer to the origin of the complex line fibre as the south pole

of the Riemann sphere, and the point at infinity that we add as the north pole. These give

rise to sections S1, S2 of the CP 1 bundle over CP 1, respectively, which have intersection

numbers S1 · S1 = n, S2 · S2 = −n, S1 · S2 = 0. Another natural two-cycle is the class

F of the fibre, at a fixed point on the CP 1 base. This clearly has intersection numbers

F · S1 = 1 = F · S2, F ·F = 0. A convenient basis of two-cycles for H2(Fn,Z) ∼= Z
2 is then

{F, S1}. With respect to this basis, the above formulae imply that the intersection form is

I =

(

0 1

1 n

)

. (5.15)
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We denote the Poincaré dual two-form basis for {F, S1} as {e1 = F̂ , e2 = Ŝ1}. These form

a dual basis for the cohomology H2(Fn,Z) ∼= Z
2, where

∫

Fn

eα ∧ eβ = Iαβ , α, β = 1, 2 . (5.16)

With this notation in hand, we may then write the cohomology classes of the Kähler

form JB4 and curvature two-forms Fi in H2(Fn,R) as

[JB4 ] =
2

∑

α=1

Aαeα ,
1

2π
[Fi] = nie1 + mie2 , (5.17)

where Aα ∈ R, ni, mi ∈ Z and i = 1, 2, α = 1, 2. The anti-canonical class of Fn is given by

c1(Fn) = 2F̂ + Ŝ1 + Ŝ2 = (2− n)F̂ + 2Ŝ1 = (2− n)e1 + 2e2 , (5.18)

where in the second step we have used the fact that nF = S1 − S2, with the same linear

relation of course holding for the Poincaré duals. From equation (4.12) we thus deduce that

n1 = 2− n , m1 = 2 . (5.19)

As in the previous subsection we first solve the constraint equation (4.21), where we

choose to eliminate the Kähler class parameter A1. We then solve the expression for the

fluxes Nα given by (4.23), where α = 1, 2 labels the basis two-cycles in Fn, and eliminate

A2 and λ1. We then find that two remaining fluxes can be expressed as

M1 =
N1[(n− 2)p+ n2] +N2(m2 − 2p)

p
, M2 = −n2N1 + m2N2

p
. (5.20)

The off-shell trial entral charge function, given by (2.13) and (4.28), may be computed

as a function of b2, and depends on the parameters p, n, n2, m2, N1, N2. This may then be

extremized over b2 and evaluated on-shell, to obtain the central charge

csugra = 3N1p(nN1 − 2N2)
{

m2

[

n2N2
1 (p− m2) + 2nN1(N2(m2 − 3p) +N1p)

+ 4N2(N1p+ (2p− m2)N2)
]

− 2n2N1(m2nN1 + 2N2(m2 − p) + (n− 4)N1p)

− 4n22N
2
1

}/{

N2
1

[

m22n
2 − m2n(n+ 2)p+ 2m2nn2 + (n− 2)2p2 + 2(n− 4)n2p

+ 4n22

]

− 2N1N2(2p− m2)((n− 2)p− m2n) + 4n2N1N2(m2 − p)

+ 4N2
2 (p− m2)

2
}

. (5.21)

We may compare certain special cases of the rather unwieldy general result (5.21) with

our earlier results. First, taking n = 0 gives the product base B4 = CP 1×CP 1 = S2×S2,

which is the genus g1 = 0 = g2 case from subsection 5.1.2. Further specializing to the

symmetric case where we choose n2 = m2 ≡ k, N1 = N2 ≡ N , we find that (5.21) agrees

precisely with the product of Riemann surfaces central charge (5.14) with g1 = 0 = g2, as

it should do.
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Secondly, F1 = dP1. Comparing to the notation of subsection 5.1.1, the north and

south pole sections of F1 then have Poincaré duals Ŝ1 = H, Ŝ2 = E1, where recall that H

is the hyperplane class and E1 is the exceptional divisor class. The basis {e1 = F̂ , e2 = Ŝ1}
we have used in this subsection is hence {e1 = H − E1, e2 = H}. Moreover, the quantum

number N in subsection 5.1.1 is by definition the flux through the Poincaré dual of the

anti-canonical class 3H − E1 = e1 + 2e2, implying that N = N1 + 2N2. Moreover, since

in (5.2) both [JB4 ] and [Fi] are proportional to the same class c1 = 3H − E1 = e1 + 2e2,

from the expression (4.23) for the flux quantum numbers {N1, N2}, defined to be the flux

through the Poincaré duals to {e1, e2}, respectively, we deduce that
(

N1

N2

)

∝ I ·
(

1

2

)

=

(

2

3

)

. (5.22)

Thus N2 = 3N1/2. Combining this with N = N1 + 2N2 above we deduce that N1 =

N/4, N2 = 3N/8. Finally, the U(1) flavour twisting in (5.2) satisfies 1
2π [F2] = n2c1 and

comparing with (5.17), (5.19) we can identify

n2 = (2− n)n2 = n2 m2 = 2n2 , (5.23)

where we set n = 1 for the first Hirzebruch surface F1. Making these substitutions in (5.21)

one finds

csugra =
9n2p(n2 − p)

8
(

p2 − 3n2p+ 3n2
2

)N2 . (5.24)

This agrees with the central charge (5.8) for dP1 on setting m1 = 1, M (1) = 9− 1 = 8 for

the first del Pezzo surface. Of course, in this case dP1 does not admit a Kähler-Einstein

metric, and so we cannot compare with the explicit supergravity solution result (D.2).

However, it is natural to conjecture that a corresponding GK supergravity solution does

exist in this case, but simply outside the Kähler-Einstein ansatz utilized in [17]. Similar

remarks apply to the central charge (5.8) for second del Pezzo surface k = 2, which is

also not Kähler-Einstein. Whether GK supergravity solutions exist for general Hirzebruch

surfaces Fn, for which the central charge is then given by (5.21), is an interesting open

problem.

5.2 D = 11

In this subsection we consider an AdS2 × Y9 example of the form X3 →֒ Y9 → B6, where

we take the Kähler base to be B6 = CP 3

We let H generate the second cohomology H = 1 ∈ H2(CP 3,Z) ∼= Z of CP 3, which

satisfies
∫

CP 3 H
3 = 1. We may then write the cohomology classes of the Kähler form JB6

and curvature two-forms Fi in H2(CP 3,R) as

[JB6 ] = AH ,
1

2π
[Fi] = niH , (5.25)

where i = 1, 2 and A ∈ R, ni ∈ Z. Furthermore, from (4.12) we then have n1 = 4. This case

has three flux quantum numbers: N , Mi, for i = 1, 2. In carrying out our general procedure
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we will see that some ambiguities arise. We believe that it should be possible to fix these

ambiguities by imposing suitable positivity conditions on the Kähler class parameters A

and λa, but we leave a general discussion of this for future work. Here we are content to

show that there is a solution that gives precisely the same value for the entropy as that

obtained from the explicit supergravity solutions discussed in appendix D.2.

We first solve the constraint equation (4.29) for A, finding two solutions. In continuing

the procedure, we find that one of these solutions ultimately gives rise to an action function

that, after setting b1 = 1 as required for an AdS2 solution, only depends linearly on b2 and

hence we cannot solve for b2 after extremizing this action. We thus continue with the other

solution for A which, with b1 = 1, and n1 = 4, is given by

A =
2π(4b2 − n2)

[

b22λ2(4p− n2)− λ1n2(b2 − p)2
]

b2(p− b2)(−2b2n2 + 4b2p+ n2p)
. (5.26)

We next solve the expression for the preferred flux N , given in (4.31), for λ1, again

finding two solutions. These are rather lengthy and we do not record them here. For both

solutions the remaining two fluxes take the form

M1 =
(n2 − 4p)

p
N, M2 = −n2

p
N , (5.27)

which we note implies that N is divisible by p. Furthermore, the two solutions for λ1 just

give rise to a change in sign of the action. We find that one of these solutions, which we

now continue with, leads to precisely the entropy of the explicit solutions in appendix D.2.

We then obtain an expression for the off-shell entropy function, and may set b1 = 1. After

varying with respect to the remaining R-symmetry direction b2 we find that there are

two extremal values for b2, one of which connects with the explicit supergravity solutions.

Assuming p > 0 and n2 < 0, which we will see in a moment are conditions imposed from

the explicit solutions in appendix D.2, we find that this specific solution for b2 is given by

b2 =
n2

(

√

−4n2p+ n2
2 + 8p2 + n2 − 4p

)

4
√

−4n2p+ n2
2 + 8p2

. (5.28)

Furthermore, with this value of b2, the on-shell entropy S , given by (2.17) and (4.36),

takes the form

S =

√
2π

(

√

−4n2p+ n2
2 + 8p2 + n2 − 2p

)

√

n2(n2 − 4p)

3p3/2
N3/2 . (5.29)

Having obtained this result from our general procedure, we may now compare with

the explicit AdS2 × Y p,q(KE+
6 ) solutions of D = 11 supergravity that are discussed in

appendix D.2. These solutions are labelled by two relatively prime integers p, q > 0, as

well as an overall flux number n. The parameters are related by p = −n2, q = p and

n = N/p. Notice that these imply p > 0 and n2 < 0 which we used above, and also that

the identification on n is consistent with the fact that, as noted above, p divides N . We

then have that the fluxes of the D = 11 solution given in (D.19) are related to M1,M2 via

N(D0) = M1, N(D̃0) = −M2. Finally, one can also check that the on-shell entropy given

in (5.29) precisely agrees with that given in (D.21).
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6 Discussion

We have studied the geometric extremal problem, introduced in [3], for GK manifolds

Y2n+1, n ≥ 3, that are toric fibrations over a Kähler base manifold B2k. Our results extend

those of [9, 16], which studied the cases of Y7 and Y9 torically fibred over a Riemann surface

B2 = Σg, respectively. Similar to [9, 16], we have shown that the relevant flux quantization

conditions and the constraint condition, as well as the action function that determines

the supersymmetric R-symmetry Killing vector, may all be written in terms of the master

volume of the toric fibre, together with certain global data associated with the Kähler base.

We have also checked our new formulae using explicit classes of supergravity solutions of

the form AdS3 × Y7 and AdS2 × Y9, finding exact agreement.

When introducing the toric fibres our starting point was to consider them to be Sasaki.

Such fibres have toric data, specified by a set of inward pointing normal vectors ~va, that

are associated with convex polyhedral cones. However, we know from explicit examples

that this is too restrictive and we should also allow vectors ~va that are associated with

“non-convex” toric cones, as introduced in [16]. Further study of such novel toric geometry

is certainly warranted and this could also help to resolve the ambiguities in carrying out

the extremal problem that we saw in section 5.2 for certain examples. More generally, an

important outstanding topic is to determine the necessary and sufficient conditions for the

existence of the GK geometries, given the Kähler base and the toric fibre data.

A natural way in which the AdS3 × Y7 and AdS2 × Y9 supergravity solutions arise

is to consider wrapping a stack of D3-branes or membranes on a holomorphic curve in a

Calabi-Yau four-fold or five-fold, respectively, as clarified in [20, 21]. These configurations

give rise to supersymmetric field theories in the unwrapped directions of the branes, and

when these flow to a conformal fixed point, the supergravity dual develops an AdS3 or

AdS2 factor, respectively. This perspective should be helpful in further understanding the

geometries we have studied in this paper, as well as identifying the dual SCFTs.
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A Master volume identities

In this appendix we derive a number of identities satisfied by the master volume V , that
are used in the main text.
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As described in section 3.2, we begin by introducing the new coordinates xi ≡ yi−y
(0)
i ,

i = 1, . . . , r + 1, on R
r+1, so that we may write the master volume as

V = (2π)r+1

∫

Rr+1

d
∏

b=1

θ((~x,~vb)− λb)δ((~x, ~b )) . (A.1)

Here the integration uses the standard Euclidean measure dx1 ∧ · · · ∧dxr+1. Using Stokes’

theorem we have

∫

Rr+1

∇
[

f(~x)
d
∏

b=1

θ((~x,~vb)− λb)δ((~x, ~b ))

]

= 0 , (A.2)

where f(~x) is an arbitrary function. The boundary term at infinity here vanishes on

integrating by parts, because the term in square brackets is compactly supported (on a

compact polytope embedded in R
r+1). Taking f ≡ 1 to be constant, and then computing

the gradient, one obtains

d
∑

a=1

~va

∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ((~x, ~b ))

+~b

∫

Rr+1

d
∏

b=1

θ((~x,~vb)− λb)δ
′((~x, ~b )) = 0 . (A.3)

Note immediately that the integral on the first line is proportional to ∂V/∂λa. We next

need to deal with the derivative of the δ-function on the second line. Using the chain rule

∇ = ~b ∂s, where s ≡ (~x, ~b ) is the argument of the δ-function, and it follows that we may

write δ′(s) =
~b·∇

|~b|2
δ(s). We then integrate the second line of (A.3) by parts to obtain

d
∑

a=1

~va
∂V
∂λa

+ (2π)r+1~b
d

∑

a=1

~b · ~va
|~b|2

∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ((~x, ~b )) = 0 ,

which immediately gives

d
∑

a=1

(

~va −~b
~b · ~va
|~b|2

)

∂V
∂λa

= 0 . (A.4)

Notice this identity holds for arbitrary vectors {~va} and~b. When v1a = 1 for all a = 1, . . . , d,

which is true when C(X2r+1) is Gorenstein, one may take the i = 1 component of (A.4),

and substituting this back in one immediately derives

d
∑

a=1

(

~va −
~b

b1

)

∂V
∂λa

= 0 , (A.5)

which is equation (3.20) in the main text.
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We next compute, from (A.1), that

∂V
∂bi

= (2π)r+1

∫

Rr+1

d
∏

b=1

θ((~x,~vb)− λb)δ
′((~x, ~b ))xi . (A.6)

Integrating the δ-function by parts, as we did above, one finds

∂V
∂bi

=− (2π)r+1
d

∑

a=1

~b · ~va
|~b|2

∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ((~x, ~b ))x
i

− (2π)r+1 bi

|~b|2

∫

Rr+1

d
∏

b=1

θ((~x,~vb)− λb)δ((~x, ~b )) . (A.7)

But this simply reads

∂V
∂bi

= −
d

∑

a=1

~b · ~va
|~b|2

∂V
∂via

− bi

|~b|2
V . (A.8)

Note that we can immediately deduce that

~b · ∂V
∂~va

= 0 , a = 1, . . . , d , (A.9)

by computing the expression for ∂V/∂via. Dotting (A.8) with ~b then implies that V is

homogeneous degree −1 in bi.

Next taking f = xj in (A.2) and computing in a similar way, we derive

δijV +
d

∑

a=1

via
∂V
∂vja

− bi

d
∑

a=1

~b · ~va
|~b|2

∂V
∂vja

− bibj

|~b|2
V = 0 . (A.10)

Combining this with (A.8) then gives the remarkably simple identity

δijV + bi
∂V
∂bj

+
d

∑

a=1

via
∂V
∂vja

= 0 . (A.11)

Contracting indices implies that for X2r+1, where recall i, j = 1, . . . , r + 1, we have

d
∑

a=1

~va ·
∂V
∂~va

+ rV = 0 . (A.12)

Differentiating (A.11) with respect to bk then immediately gives

δij
∂V
∂bk

+ δik
∂V
∂bj

+ bi
∂2V

∂bj∂bk
+

d
∑

a=1

via
∂2V

∂vja∂bk
= 0 , (A.13)

or equivalently
[

∂V
∂bj

δki +
bi
2

∂2V
∂bj∂bk

+
1

2

d
∑

a=1

via
∂2V

∂vja∂bk

]

Sym(j,k)

= 0 , (A.14)
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where Sym(j, k) denotes that we should symmetrize over the j, k indices. Equation (A.14)

is another identity used in deriving results in the main text. Notice that we may compute

∂2V
∂vja∂bk

= (2π)r+1

∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ
′((~x, ~b ))xjxk , (A.15)

where the right hand side is manifestly symmetric in j and k. Finally, using (A.13) one

easily derives the identity

[

d
∑

b=1

λb ∂

∂vlb

(

1

2

∂V
∂bj

δki +
bi
3!

∂2V
∂bj∂bk

+
1

3!

d
∑

a=1

via
∂2V

∂vaj∂bk

)

− 1

3!

d
∑

b=1

λb ∂2V
∂vbj∂bk

δli

]

Sym(j,k,l)

= 0 , (A.16)

where Sym(j, k, l) denotes that we should symmetrize over the j, k, l indices. Again, this

is another identity needed to obtain results in the main text.

B Master volume for X3

In this appendix we derive the formula (3.26) for the master volume of X3.

As in section 3 we take the fibre X3 to be the link of a Gorenstein Kähler cone of

complex dimension r + 1 = 2. The toric data is then v1 = (1, 0), v2 = (1, p), p ∈ N, which

describes an Ap−1 singularity, C(X3) = C
2/Zp. Here the Zp action on C

2 is (z1, z2) 7→
(ωpz1, ω

−1
p z2), where ωp is a primitive pth root of unity. The outward pointing normals to

the edges at the apex are u1 = (0, 1), u2 = (p,−1). Recall also that the “origin” of the

polytope P is located at

~y (0) =

(

1

2b1
, 0

)

. (B.1)

Denoting by λ1, λ2 the Kähler parameters associated to the two facets, as in the main text,

then the two vertices ~ya, a = 1, 2, of the polytope P, which here is a line segment, satisfy

the equations

(~ya − ~y (0), ~b ) = 0 , (~ya − ~y (0), ~va) = λa, a = 1, 2 . (B.2)

These are easily solved to give

(

~ya − ~y(0)
)

i
=

λaεijb
j

εmnvma bn
. (B.3)

The master volume (3.15) is

V =
(2π)2

|~b|
vol(P) , (B.4)
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where here the “volume” of the polytope P is simply the length of the line segment between

the two vertices in (B.4). But this is

vol(P) =

(

− λ1εijb
j

εmnvm1 bn
+

λ2εijb
j

εmnvm2 bn

)

εikb
k

|~b|
. (B.5)

Here each of the two terms in the bracket is the vector from the origin to the corresponding

vertex. To compute the length we have then taken a two-dimensional cross product with

the unit normal ~b/|~b|. A short computation then gives the simple formula

V = (2π)2
2

∑

a=1

(−1)a
λa

[~va, ~b ]
= (2π)2

(

−λ1

b2
+

λ2

b2 − b1p

)

, (B.6)

where here [~va, ~b ] is the determinant of the 2× 2 matrix, i.e. [~va, ~b ] ≡ εmnv
m
a bn.

Notice that setting λa = − 1
2b1

for a = 1, 2, and then b1 = 2, the extremum of the

corresponding volume function V occurs at b2 = p, with extremal volume V = 2π2/p. This

is the correct volume of the Lens space L(1, p) = S3/Zp, equipped with its Sasaki-Einstein

metric.

C More on the master volume

In section 4 we presented formulae for the constraint (2.8), flux quantization conditions (2.9)

and supersymmetric action (2.10) for fibred GK geometries, where crucially the formulas

depend only on certain topological integrals over the Kähler base B2k, together with deriva-

tives of the master volume V of the fibres X2r+1. Here V = V(~b; {λa}; {~va}) is a function

of the R-symmetry vector ~b, Kähler class parameters {λa}, and the toric data {~va} of

the cone C(X2r+1). Derivatives of V with respect to all three appear. In section C.1 we

derive various formulae for these derivatives that we have used in deriving the results of

sections 4.2, 4.3 and 4.4. In section C.2 we explicitly explain how these have been used

to derive the expressions in section 4.3 — the results of sections 4.2 and 4.4 are obtained

similarly. As we have seen, there are various equivalent ways to write the master volume,

and some forms are more useful than others in deriving particular formulae. We have al-

ready presented a number of identities satisfied by the master volume and its derivatives

in appendix A.

C.1 Derivatives of the master volume

The master volume of the fibre X2r+1 can be written variously as

V =

∫

X2r+1

η ∧ 1

r!
ωr

=
(2π)r+1

|~b|
vol(P)

= (2π)r+1

∫

Rr+1

d
∏

a=1

θ((~x,~va)− λa)δ((~x, ~b )) . (C.1)
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The first equality is the original definition (3.11), while the second writes this in terms

of the Euclidean volume of the moment map polytope P, where the latter is defined in

equation (3.16), while the third equality writes this Euclidean volume in terms of step

functions and a δ-function integrated over R
r+1. Recall here that R

r+1 is parametrized

by the shifted moment map variables xi, i = 1, . . . , r + 1, defined in (3.18), where we

have suppressed the standard Euclidean measure dx1 ∧ · · · ∧dxr+1 in the notation, to keep

formulae uncluttered.

Using equation (3.25) with s = 0 we also have

− 1

2π

∂V
∂λa

=

∫

Sa

η ∧ 1

(r − 1)!
ωr−1

= (2π)r
∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ((~x, ~b )) . (C.2)

Recall here that Sa ⊂ X2r+1 is the (2r − 1)-submanifold in X2r+1 associated with the ath

toric divisor on the cone C(X2r+1), which moreover is Poincaré dual to ca. Here the second

line of (C.2) follows immediately by differentiating the expression in the third line of (C.1)

with respect to λa.

Starting with the third line of (C.1), we compute6

∂V
∂via

= (2π)r+1

∫

Rr+1

δ((~x,~va)− λa)
∏

b 6=a

θ((~x,~vb)− λb)δ((~x, ~b ))xi

= (2π)

∫

Sa

xiη ∧ 1

(r − 1)!
ωr−1 . (C.3)

In the second equality we have rewritten the expression as an integral over Sa, as in (C.2),

where in doing so notice that xi may be interpreted as a Hamiltonian function for the

transverse Kähler two-form ω, as introduced in (4.9). Using the first line of (C.3) we

also have

d
∑

a=1

λa ∂V
∂via

= −
d

∑

a=1

λa ∂

∂λa

[

(2π)r+1

∫

Rr+1

d
∏

b=1

θ((~x,~vb)− λb)δ((~x, ~b ))xi

]

= −(r + 1)

∫

X2r+1

xiη ∧ 1

r!
ωr , (C.4)

where the second equality comes from the fact that the quantity in square brackets is

homogeneous degree r + 1 in the λa. More generally, we may similarly deduce

d
∑

a1,...,as=1

λa1 . . . λas ∂sV
∂vi1a1 . . . ∂v

is
as

= (−1)s

[

s
∏

m=1

(r +m)

]

∫

X2r+1

xi1 . . . xisη ∧ 1

r!
ωr . (C.5)

6It is perhaps worth noting that one cannot use Poincaré duality to replace the integral over Sa in the

expression on the second line of (C.3) as an integral over X2r+1, simply because the integrand is not a

closed form.
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From this, and similarly to (C.3), we also deduce that

d
∑

a1,...,as=1

λa1 . . . λas ∂s+1V
∂vi1a1 . . . ∂v

is
as∂v

i
a

= (2π)(−1)s

[

s
∏

m=1

(r +m)

]

∫

Sa

xi1 . . . xisxiη ∧ 1

(r − 1)!
ωr−1 . (C.6)

Next we would like to obtain expressions for derivatives of V with respect to the R-

symmetry vector ~b. These are obtained somewhat differently from the method above. First

recall from section 4.1 that

∂ϕi
yη = 2wi , ∂ϕi

ydη = −2dwi , ∂ϕi
yω = −dxi . (C.7)

We may differentiate V , defined by the first equality in (C.1), with respect to the R-

symmetry vector by taking the derivative inside the integral, and computing the corre-

sponding first order variations of η and ω. Using the fact that the R-symmetry vector is

ξ =
r+1
∑

i=1

bi∂ϕi
, (C.8)

together with ξyη = 1, ξyω = 0 and (C.7), following section 4.2 of [16] one finds the first

order variations

δbjη = −2wjη + νTj ,

δbjω = η ∧ dxj − xjdη + dγTj , (C.9)

where νTj and γTj are basic forms for the foliation Fξ. Here in the variation of ω we hold

the transverse Kähler class fixed, as in section 4.2 of [16]. In computing second derivatives

of V we will also need the first order variations of xi and wi. From (C.7) and (C.9) we may

immediately deduce

δbjwi = −2wiwj +
1

2
∂ϕi

yνTj . (C.10)

Using the fact that the Lie derivatives of xj and γj with respect to ∂ϕi
vanish, we simi-

larly find

δbjxi = −2wixj + ∂ϕi
yγTj . (C.11)

With these results to hand, using the first definition of V in (C.1) it is straightforward

to compute

∂V
∂bi

= −
∫

X2r+1

η ∧
[

2wi
ωr

r!
+ xi

ωr−1

(r − 1)!
∧ dη

]

, (C.12)

∂2V
∂bi∂bj

=

∫

X2r+1

η ∧
[

8wiwj
ωr

r!
+ 8w(ixj)

ωr−1

(r − 1)!
∧ dη + xixj

ωr−2

(r − 2)!
∧ (dη)2

]

.
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We may similarly take the derivative of the expression for
∑d

a=1 ∂V/∂λa given by (3.24)

(with s = 1) to obtain

d
∑

a=1

∂2V
∂λa∂bi

= b1

∫

X2r+1

η ∧
[

4wi
ωr−1

(r − 1)!
∧ dη + xi

ωr−2

(r − 2)!
∧ (dη)2

]

+ δi1
1

b1

d
∑

a=1

∂V
∂λa

, (C.13)

where we have used [ρ] = b1[dη] ∈ H2
B(Fξ) from (3.6). We shall also need

− ∂

∂bj

∫

X2r+1

η ∧ 1

r!
ωrxi =

∫

X2r+1

η ∧
[

4x(iwj)
1

r!
ωr + xixj

1

(r − 1)!
ωr−1 ∧ dη

]

, (C.14)

and taking another derivative

∂2

∂bj∂bk

∫

X2r+1

η ∧ 1

r!
ωrxi =

∫

X2r+1

η ∧
[

24w(iwjxk)
1

r!
ωr + 12w(ixjxk)

1

(r − 1)!
ωr−1 ∧ dη

+xixjxk
1

(r − 2)!
ωr−2 ∧ (dη)2

]

. (C.15)

Finally, we also have

− ∂

∂bk

∫

X2r+1

η ∧ 1

r!
ωrxixj =

∫

Y2r+1

η ∧
[

6w(ixjxk)
1

r!
ωr

+xixjxk
1

(r − 1)!
ωr−1 ∧ dη

]

. (C.16)

Turning now to integrals over the toric codimension two submanifolds Sa ⊂ X2r+1,

taking the derivative of the expression given in (3.25) we find

(−1)s

2π

d
∑

b1,...,bs=1

∂s+2V
∂bi∂λa∂λb1 . . . ∂λbs

=

∫

Sa

η ∧ ρs ∧
[

2(1 + s)wi
1

(r − s− 1)!
ωr−s−1

+xidη ∧ 1

(r − s− 2)!
ωr−s−2

]

. (C.17)

In particular for s = 0 we have

1

2π

∂2V
∂bi∂λa

=

∫

Sa

η ∧
[

2wi
1

(r − 1)!
ωr−1 + xidη ∧ 1

(r − 2)!
ωr−2

]

. (C.18)

We similarly have

− ∂

∂bj

∫

Sa

η ∧ 1

(r − 1)!
ωr−1xi =

∫

Sa

η ∧
[

4w(ixj)
1

(r − 1)!
ωr−1

+xixjdη ∧ 1

(r − 2)!
ωr−2

]

, (C.19)
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as well as

− ∂

∂bk

∫

Sa

η ∧ 1

(r − 1)!
ωr−1xixj =

∫

Sa

η ∧
[

6w(ixjxk)
1

(r − 1)!
ωr−1

+xixjxkdη ∧ 1

(r − 2)!
ωr−2

]

. (C.20)

C.2 Formulae for X2r+1 →֒ Y2r+5 → B4

In this subsection we explain how to derive the formulae presented in section 4.3, starting

from the general expressions for the constraint (2.8), flux quantization conditions (2.9) and

supersymmetric action (2.10).

Starting with the supersymmetric action (2.10), making the substitutions in (4.11) and

recalling (3.6) immediately gives

SSUSY =

∫

Y2n+1

η ∧ b1 (dη + 2wiFi) ∧
1

(n− 1)!
(ω + xjFj + JB4)

n−1

=

∫

Y2n+1

η ∧ b1dη ∧ 1

(n− 3)!
ωn−3 ∧ 1

2
JB4 ∧ JB4

+ b1

∫

Y2n+1

η ∧
[

2wi
1

(n− 2)!
ωn−2 + xidη ∧ 1

(n− 3)!
ωn−3

]

∧ Fi ∧ JB4

+ b1

∫

Y2n+1

η ∧
[

4w(ixj)
1

(n− 2)!
ωn−2 + xixjdη ∧ 1

(n− 3)!
ωn−3

]

∧ 1

2
Fi ∧ Fj .

(C.21)

Here in the second equality we have simply collected terms together and written them as a

(2r+1)-form on the fibre X2r+1 wedged with a four-form on the base B4, where n = r+2.

This then leads to the elegant expression

SSUSY = −
d

∑

a=1

∂V
∂λa

vol(B4)− b1

r+1
∑

i=1

∂V
∂bi

∫

B4

Fi ∧ JB4

+
b1

r + 1

d
∑

a=1

r+1
∑

i,j=1

λa
∂2V

∂bj∂via

∫

B4

1

2
Fi ∧ Fj , (C.22)

where vol(B4) =
∫

B4

1
2JB4 ∧ JB4 . Here we have used equation (3.24) (with s = 1) for the

first term, equation (C.12) for the second term, and equation (C.14) for the third term.

The final form of the third term presented in (C.22) then further uses the expression (C.4)

for the left hand side of (C.14).

Next we turn to the constraint equation (2.8). Using (4.11) and (3.6) this similarly

expands as

0 =

∫

Y2n+1

η ∧ b1 (dη + 2wiFi) ∧ b1 (dη + 2wjFj) ∧
1

(n− 2)!
(ω + xkFk + JB4)

n−2

=

∫

Y2n+1

η ∧ ρ2 ∧ 1

(n− 4)!
ωn−4 ∧ 1

2
JB4 ∧ JB4

+ b21

∫

Y2n+1

η ∧
[

xi(dη)
2 ∧ 1

(n− 4)!
ωn−4 + 4widη ∧ 1

(n− 3)!
ωn−3

]

∧ Fi ∧ JB4
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+ b21

∫

Y2n+1

η ∧
[

8wiwj
1

(n− 2)!
ωn−2 + 8w(ixj)dη ∧ 1

(n− 3)!
ωn−3

+xixj(dη)
2 ∧ 1

(n− 4)!
ωn−4

]

∧ 1

2
Fi ∧ Fj , (C.23)

where again n = r + 2. We may then use equation (3.24) (with s = 2) for the first

term, equation (C.13) for the second term, and equation (C.12) for the third term. This

immediately gives

d
∑

a,b=1

∂2V
∂λa∂λb

vol(B4) + b1

r+1
∑

i=1

d
∑

a=1

∂2V
∂λa∂bi

∫

B4

Fi ∧ JB4 −
d

∑

a=1

∂V
∂λa

∫

B4

F1 ∧ JB4

+ b21

r+1
∑

i,j=1

∂2V
∂bi∂bj

∫

B4

1

2
Fi ∧ Fj = 0 , (C.24)

which is the constraint equation (4.21) presented in the main text.

For the flux quantization condition there are two types of cycle. The first type has

the fibred form X2r+1 →֒ Σα → C
(2)
α , where C

(2)
α ⊂ B4 is a two-cycle. In this case the flux

quantization condition (2.9) reads

νnNα =

∫

Σα

η ∧ b1(dη + 2wiFi) ∧
1

(n− 2)!
(ω + xjFj + JB4)

n−2

=

∫

Σα

η ∧ b1dη ∧ 1

(n− 3)!
ωn−3 ∧ JB4

+ b1

∫

Σα

η ∧
[

2wi
1

(n− 2)!
ωn−2xidη ∧ 1

(n− 3)!
ωn−3

]

∧ Fi . (C.25)

Using equation (3.24) (with s = 1) for the first term, and equation (C.12) for the second

term then leads to

νnNα = −
d

∑

a=1

∂V
∂λa

∫

C
(2)
α

JB4 − b1

r+1
∑

i=1

∂V
∂bi

∫

C
(2)
α

Fi , (C.26)

which is equation (4.23) in the main text. The second set of cycles have the fibred form

Sa →֒ Σa → B4, where Sa ⊂ X2r+1 is a toric codimension two submanifold in the fibre. In

this case the flux quantization condition (2.9) reads

νnMa =

∫

Σa

η ∧ b1(dη + 2wiFi) ∧
1

(n− 2)!
(ω + xjFj + JB4)

n−2

= b1

∫

Σa

η ∧ dη ∧ 1

(n− 4)!
ωn−4 ∧ 1

2
JB4 ∧ JB4

+ b1

∫

Σa

η ∧
[

xidη ∧ 1

(n− 4)!
ωn−4 + 2wi

1

(n− 3)!
ωn−3

]

∧ Fi ∧ JB4

+ b1

∫

Σa

η ∧
[

xixjdη ∧ 1

(n− 4)!
ωn−4 + 4w(ixj)

1

(n− 3)!
ωn−3

]

∧ 1

2
Fi ∧ Fj , (C.27)
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where the flux quantum number is denoted Ma ∈ Z. Using equation (3.25) (with s = 1)

for the first term, equation (C.18) for the second term, and combining equations (C.3)

and (C.19) for the third term then leads to

νnMa =
1

2π

d
∑

b=1

∂2V
∂λa∂λb

vol(B4) +
b1
2π

r+1
∑

i=1

∂2V
∂λa∂bi

∫

B4

Fi ∧ JB4

− b1
2π

r+1
∑

i,j=1

∂2V
∂bj∂via

∫

B4

1

2
Fi ∧ Fj , (C.28)

which is equation (4.25) in the main text.

Finally, the form of the supersymmetric action presented in (4.28) may be obtained

from (C.22) by first summing (C.28) over a = 1, . . . , d, and then using (C.26) together

with the fact that the master volume V is homogeneous degree r in the λa. The formulae

presented in sections 4.2 and 4.4 are obtained in an entirely analogous manner, in particular

using the equations we have so far not used in appendix C.1.

D Explicit solutions with Kähler-Einstein factors

In this appendix we present some explicit solutions of type IIB and D = 11 supergravity

where the Kähler base B2k is Kähler-Einstein with positive curvature. The results from

this section are compared with some of the results obtained using our general formalism in

section 5.

D.1 Type IIB: Y p,q(KE+
4 )

We first recall the class of explicit AdS3 × Y7 solutions of type IIB supergravity of the

form (2.11) that were constructed in [17]. The solutions, which we label Y7 = Y p,q(KE+
4 ),

are constructed using an arbitrary Kähler-Einstein manifold with positive curvature, KE+
4 ,

and are specified by two positive, relatively prime7 integers, p, q > 0. As explained in detail

in [18], Y p,q(KE+
4 ) can be constructed as a circle fibration over a regular six-dimensional

manifold, which itself is obtained by constructing an S2 bundle over KE+
4 . Equivalently,

Y p,q(KE+
4 ) can also be viewed as the total space of a Lens space L(q, 1) = S3/Zq fibred

over KE+
4 .

The analysis of the regularity of the solutions, flux quantization, and calculation of the

central charge was carried out in detail in [17]. In the notation of [17] the flux integrals

are given by

N(D0) = − M

hm2
(p+mq)n ,

N(D̃0) = − M

hm2
pn ,

N(Da) =
q

h
nan , (D.1)

7This ensures Y7 is simply connected.
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while the central charge is given by

c =
9pq3(p+mq)

3p2 + 3mpq+m2q2
M

m2h2
n2 , (D.2)

where n is an arbitrary integer. In addition, the integers m and M depend on the specific

choice of KE+
4 . If K is the canonical line bundle of the KE+

4 then the Fano index m is

the largest positive integer m for which there is a line bundle N with K = Nm. If ρKE is

the Ricci-form of the KE+
4 then M =

∫

KE+
4
( 1
2πρKE)

2 =
∫

KE+
4
c21. For S

2 × S2 we then have

m = 2, M = 8; for CP 2 we have m = 3, M = 9; and for the del Pezzo surfaces dPk, we

have m = 1, M = 9− k, where k = 3, . . . , 8. Finally, h = hcf(M/m2, q).

D.2 D = 11: Y p,q(KE+
6 )

We next discuss a class of explicit AdS2 × Y9 solutions of D = 11 supergravity of the

form (2.15), with Y9 = Y p,q(KE+
6 ). These solutions were first discussed in section 3.2

of [18], including determining the conditions required to obtain regular solutions, which

are labelled by two positive, relatively prime integers, p, q > 0. Here we will carry out

flux quantization and obtain an explicit expression for the entropy. This will enable us to

compare, successfully, with the general formalism of this paper in section 5.2.

The metric takes the form

ds2(Y9) =
y3 − 3y + 2a

y3
Dz2 +

4dy2

q(y)
+

q(y)(Dψ)2

y3(y3 − 3y + 2a)
+

16

y2
ds2(KE+

6 ) , (D.3)

where ds2(KE+
6 ) is an arbitrary six-dimensional Kähler-Einstein metric, normalized so that

ρKE = 8JKE. Moreover, we have introduced the functions

q(y) = y4 − 4y2 + 4ay − a2 , g(y) =
a− y

y3 − 3y + 2a
, (D.4)

and covariant derivatives

Dz ≡ dz − g(y)Dψ , Dψ ≡ dψ + 4B , (D.5)

where 4B is the natural connection on the canonical line bundle of KE+
6 (i.e. dB = 2JKE).

The constant a, explicitly given in terms of p, q below, lies in the range 0 < a < 1. The

quartic q(y) then has four distinct roots, y1 < y2 < y3 < y4, and we choose the range of y

to be y2 ≤ y ≤ y3 where

y2 = −1 +
√
1 + a , y3 = 1−

√
1− a . (D.6)

Potential conical singularities at y = y2, y3 are avoided by taking ψ to be a periodic

coordinate with period 2π. Finally, as explained in [18], the coordinate z is periodic with

period 2πl, with

g(y3)− g(y2) = lq, g(y2) = lp/m , (D.7)
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where p, q > 0 are relatively prime8 integers and the integer m is the Fano index of KE+
6 .

These conditions are satisfied provided that

a =
mq(2p+mq)

2p2 + 2mpq+m2q2
,

l =
m[p2 +mpq+ (m2/2)q2]1/2

p(p+mq)
. (D.8)

We now turn to flux quantization. We begin by noting that the two-form F , entering

into the expression for the four-form G in (2.15), is given by

F =
23/2

33/2
(

3y2dy ∧ dz − 8aJKE

)

. (D.9)

After taking the D = 11 Hodge dual of G we obtain the seven-form given by

L−6 ∗11 G =
214

32
q(y)

y(y3 − 3y + 2a)

1

3!
J3
KE ∧Dψ +

214

32
y − a

y

1

3!
J3
KE ∧Dz

+
a

y2
211

33
1

2!
J2
KE ∧ dy ∧Dψ ∧Dz . (D.10)

Flux quantization requires that

1

(2πℓp)6

∫

ΣA

∗11G = NA ∈ Z , (D.11)

over all seven-cycles ΣA ⊂ Y9, where A = 1, . . . , rankH7(Y9,Z) runs over an integral basis

for the free part of H7(Y9,Z), and ℓp denotes the eleven-dimensional Planck length.

To proceed further we need a basis for the free part of H7(Y9,Z). Recall that Y9 is the

total space of U(1) fibration, with fibre coordinate z, over an eight-dimensional manifold,

B8, the latter being the total space of an S2 bundle over KE+
6 . A basis for the free part of

H6(B8,Z) is given by a section of the S2 bundle over KE+
6 , say at y2 or y3, together with

the total spaces of the S2 fibrations over each basis four-cycle Σa ∈ H4(KE+
6 ,Z). It will be

useful in a moment to write the Poincaré dual of the first Chern class of the mth root of

the canonical line bundle of KE+
6 , denoted c1(N ), as [c1(N )] = saΣa, where sa are a set of

co-prime integers.

Now, since the U(1) bundle over B8 is non-trivial, all non-trivial seven-cycles come from

the total space of the U(1) fibration over a six-cycle in B8. Let us label these as follows:

D0 denotes the seven-cycle arising from the section y = y2, D̃0 is the cycle corresponding

to y = y3, and Da the cycle arising from Σa. Note that these cycles are not independent.

From the S2 fibration structure of B8 we have

D0 = D̃0 −msaDa , (D.12)

while the U(1) fibration is such that

0 = qD̃0 + psaDa . (D.13)

8This condition ensures that Y9 is simply connected.
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The flux integrals are then explicitly given by

N(D0) = − 22

33π2

(

L

ℓp

)6 mM

p
,

N(D̃0) = − 22

33π2

(

L

ℓp

)6 mM

p+mq
,

N(Da) =
22

33π2

(

L

ℓp

)6 m4q

p(p+mq)
na , (D.14)

where

M ≡
∫

KE+
6

(ρKE

2π

)3
=

∫

KE+
6

c31 , (D.15)

and we have also used
∫

Σa

(ρKE

2π

)2
= m2na , (D.16)

for some co-prime integers na ≡
∫

Σa
c1(N )2, which follows from

ρKE

2π
= c1 = mc1(N ) , (D.17)

with m3sana = M . Thus we should choose
(

L

ℓp

)6

=
33π2

22
p(p+mq)n

hm4
, (D.18)

where h = hcf(M/m3, q) and n is an integer, so that

N(D0) = − M

hm3
(p+mq)n ,

N(D̃0) = − M

hm3
pn ,

N(Da) =
q

h
nan , (D.19)

are all integers. Notice these are consistent with the homology relations (D.12) and (D.13).

With these ingredients to hand, and using [18]

eB =
R

2
=

(

3

2

)3/2 1

y3
, (D.20)

where R is the Ricci scalar of the eight-dimensional transverse Kähler metric, we may now

compute the “entropy” given by (2.17) (see equation (2.20) of [4])

S =
1

26π7

(

L

ℓp

)9 ∫

Y9

e−3Bvol9 ,

=
21/2

31/2
26

35π2

(

L

ℓp

)9

(y3 − y2)lM ,

=
27/2πM

√

p(mq+ p)
[

√

(mq+ 2p)2 +m2q2 − (mq+ 2p)
]

3m5h3/2
n3/2 . (D.21)
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E Sasakian volume function

As originally pointed out in [3], GK geometry shares many similarities with Sasakian

geometry. In this appendix we point out that the formalism developed in [9, 16] and the

present paper allows one to efficiently compute the Sasakian volume function of [5, 6] in

many interesting cases.

Recall that a Sasakian manifold (Y2n+1, ds
2
2n+1) of real dimension 2n+ 1 with n ≥ 1,

may be defined as a Riemannian manifold whose metric cone (2.6) is Kähler. Precisely

as for GK geometry in section 2, there is unit norm Killing vector ξ on Y2n+1 with dual

one-form η, so that the Sasakian metric may be written as

ds22n+1 = η2 + ds22n , (E.1)

where ds22n is a Kähler metric transverse to the foliation Fξ generated by ξ, cf. (2.2) for

GK geometry. In Sasakian geometry η is a contact one-form, satisfying dη = 2J , where J

is the transverse Kähler form.

If one is interested in Sasaki-Einstein metrics, where the metric cone (2.6) is Ricci-flat

Kähler, then there is necessarily a nowhere zero holomorphic (n+1, 0)-form Ψ on the cone

satisfying

LξΨ = i(n+ 1)Ψ . (E.2)

Suppose that (E.2) holds on the Kähler cone. As in section 3.1 we may write the Reeb

vector as

ξ =
r+1
∑

i=1

bi∂ϕi
(E.3)

where by definition Ψ has unit charge under ∂ϕ1 , and is uncharged under ∂ϕi
, i = 2, 3, . . . ,

r + 1 ≥ 1. The condition (E.2) then implies that

[dη] =
1

b1
[ρ] ∈ H2

B(Fξ) , (E.4)

precisely as in (3.6), except that for Sasakian geometry we should then set b1 = n + 1 so

that (E.2) holds.

If we now define the Sasakian volume

Vol(Y2n+1) ≡
∫

Y2n+1

η ∧ Jn

n!
, (E.5)

where dη = 2J and (E.4) holds, then the above comments imply that

Vol(Y2+1) =
1

2nb1
SSUSY

(

ξ, [J ] =
1

2b1
[ρ]

)

, (E.6)

where SSUSY is the supersymmetric action (2.10), and one should set b1 = n+ 1.

With the general formula (E.6) in hand, we may now compute the Sasakian volume

function in the case that Y2n+1 is the total space of a toric X2r+1 fibration over a Kähler
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base B2k, where n = r + k, and with the Reeb vector ξ tangent to the fibres. We present

formulae for k = 1 and k = 2 below, together with some illustrative examples. We also

note that the formulae are valid for Sasakian geometry on Y2n+1 with n ≥ 1 (even though

the analysis in the bulk of the paper was for GK geometry with n ≥ 3).

Base B2. Taking k = 1, the base B2 is a Riemann surface. However, in Sasakian

geometry where (E.2) holds the Kähler class is a positive multiple of the anti-canonical

class, which implies that B2 = S2 necessarily has genus zero. In this case the formalism in

section 4.2 (generalizing [9, 16]) gives the general formula

Vol(Y2n+1) = − 1

2nb1

[

1

b1

d
∑

a=1

∂V
∂λa

+ 2πb1

r+1
∑

i=1

ni
∂V
∂bi

]∣

∣

∣

∣

∣

λa=− 1
2b1

, b1=n+1

, (E.7)

where n = r + 1. Here as usual V denotes the master volume of the X2r+1 fibres, and we

have defined

ni ≡
1

2π

∫

S2

Fi , (E.8)

which describes the twisting of the fibres over the base B2 = S2. As for GK geometry, the

existence of a holomorphic (n + 1, 0)-form Ψ on the metric cone over Y2n+1 implies that

n1 = 2, which is the anti-canonical class of S2 in Z ∼= H2(S2,Z). On the right hand side

of (E.7) one should set all λa = − 1
2b1

, a = 1, . . . , d, after taking derivatives with respect

to the λa, and also b1 = n+ 1, after taking derivatives with respect to the bi. The former

condition ensures that the Kähler class of the fibres satisfies [ω] = 1
2b1

[ρ], as in (3.14).

To illustrate (E.7), let us consider the case of three-dimensional fibres, with r = 1.

In this case Y5 is the total space of a Lens space X3
∼= S3/Zp fibration over S2, where

the master volume V of the fibres is given by (B.6). Using (E.7) we easily compute the

Sasakian volume

Vol(Y5) =
p[2b2(p− n2) + 3pn2]

b22(b2 − 3p)2
π3 . (E.9)

Setting the twisting variable n2 = p + q, with9 p > q > 0, extremizing (E.9) over b2 one

finds that the unique critical point inside the Reeb cone is

b2 =
p
(

2p+ 3q −
√

4p2 − 3q2
)

2q
. (E.10)

9The inequality comes from requiring the metric cone over Y5 to be an affine variety. This is perhaps

easiest to see using toric geometry, since Y5 is here toric. In terms of the fibration picture described in

the present paper, recall that X3
∼= S3/Zp is the link of the Ap−1 singularity C(X3) = C

2/Zp. The

corresponding Ap−1 fibration over S2 is then a partial resolution of the affine cone C(Y5). The two divisors

z1 = 0 and z2 = 0 in the fibre C2/Zp give rise to C/Zp fibrations over S2, with Chern numbers−n2 = −(p+q)

and −2p + n2 = −(p − q). Both should be negative, in order that the total spaces are holomorphically

convex. For more general examples there will be similar convexity conditions on the twisting parameters

that need to be imposed.
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The on-shell volume is then

Vol(Y5) =
q2

(

2p+
√

4p2 − 3q2
)

3p2
(

−2p2 + 3q2 + p
√

4p2 − 3q2
)π3 , (E.11)

which agrees with the volume of the Y p,q Sasaki-Einstein manifolds [22], as expected.

Base B4. Taking k = 2, the base B4 is now a Kähler surface. Again, this should be

Fano, having positive anti-canonical class. In this case we find

Vol(Y2n+1) = − 1

2nb1





π2

2b21

d
∑

a=1

∂V
∂λa

∫

B4

c21 + π
r+1
∑

i=1

∂V
∂bi

∫

B4

Fi ∧ c1

− b1
r + 1

d
∑

a=1

r+1
∑

i,j=1

λa
∂2V

∂bj∂via

∫

B4

1

2
Fi ∧ Fj





∣

∣

∣

∣

∣

∣

λa=− 1
2b1

, b1=n+1

, (E.12)

where now n = r + 2. As in GK geometry we have [F1] = 2πc1 ∈ H2(B4,R), where

c1 = c1(B4) is the anti-canonical class of the base B4.

Again, we illustrate (E.12) by taking three-dimensional fibres, with r = 1, and choose

the base to be B4 = CP 2. In this case there is a single generator of the cohomology

H = 1 ∈ Z ∼= H2(CP 2,Z), given by the hyperplane class, with
∫

CP 2 H
2 = 1. Writing

[F2] = 2πκH with κ ∈ Z, and using c1 = 3H, we compute

Vol(Y7) =
p
[

κ2
(

16p2 − 12b2p+ 3b22
)

+ 3b2κp(4p− 3b2) + 9p2b22
]

3b32(4p− b2)3
π4 . (E.13)

Extremizing over b2, we find that the on-shell volume agrees with the Y p,κ(CP 2) Sasaki-

Einstein manifolds of [23],10 as expected.
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