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1 Introduction

There has been a lot of recent work exploring the effect topological boundaries have on

the entanglement entropy of topological phases of matter [1–7]. In our last paper [5] we

computed topological entanglement entropies of 2+1 dimensional topological order using

Ishibashi states at the entanglement cut. This paper is a companion paper where we inspect
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the situation where the entanglement cut touches the topological boundaries. This case has

been inspected in our previous studies based on lattice models [3], based on recent lattice

contructions of topological boundaries [8–12]. It is noticed then that there are non-universal

contribution to the topological entanglement at the junction between the entanglement cut

and the gapped boundary. Moreover, the basis states naturally selected in the lattice

model construction is naturally different from the Ishibashi state construction. In this

paper, we argue that based on general considerations of bulk-boundary correspondence,

the twisted characters and its modular properties studied also in the CFT literature [13]

should control the topological entanglement entropy. The modular transformation of these

twisted characters are determined by what we now understand to be the “half-linking”

numbers γxc. Half-linking numbers are shown to diagonalize the fusion rules of defects [14].

Here, we argue that the topological entanglement entropy is dictated by these γxc when the

entanglement cut touches a boundary, in analogy to the role of the modular S matrix in

the absence of boundaries [15–17]. We will illustrate these ideas in explicit models based

on Abelian Chern-Simons theories. One very important observation, is that the precise

treatment at the junction does affect the value of the topological entanglement entropy, as

mentioned above. Particularly, we found that there are classes of definition of the twisted

characters where the overall normalization of the half-linking number could be altered,

giving up unitarity of the matrix. However, there are natural boundary conditions that

recover the unitarity of the half-linking matrix.

Our paper is organized as follows. In section 2, we will give general arguments that

show how twisted character should feature in the computation of the entanglement entropy

of a strip parallel to the axis of a cylinder with two gapped boundaries. We construct

the appropriate “Cardy-like — closed string states” that recover the twisted character

obtained from edge modes having open-boundaries. In section 3 we illustrate these ideas

by computing the entanglement entropy in the case of Abelian Chern-Simons theories.

This is computed by quantizing edge modes along the entanglement cut. With appropriate

boundary conditions, they recover the twisted character.

We will briefly conclude in section 4. Some details about Abelian Chern-Simons theo-

ries are relegated to the appendix A. For a review of useful facts about gapped boundaries

and anyon condensation relevant for the current paper, we refer readers to part I of our

paper [5].

2 Entanglement cut across a gapped boundary and twisted character

In this section, we would like to consider entangling surfaces that touch or cut through

physical boundaries and interfaces. The latter can be obtained from the former via the

folding trick. We will therefore focus on the first case. To be concrete, we will consider the

entanglement entropy of a strip connecting the top and bottom boundary of a cylinder in

Abelian CS theories.

Gapped boundaries are characterized by a Lagrangian algebra A of a modular tensor

category C that describes the bulk topological order in 2+1 dimensions. In physical terms,

the Lagrangian algebra A corresponds to a set of anyons that condense at the boundary
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(a) Shared condensed anyon basis. (b) Confined anyon basis.

Figure 1. Ground state basis states on a cylinder.

— they are not conserved across the boundary. This is reviewed in detail in section 2 of

our companion paper [5]. We pick up only the issue of ground state basis construction

on a cylinder. Consider a cylinder with two boundaries each characterized by an anyon

condensate. It generically admits non-trivial ground state degeneracy. There are two ways

to construct ground state basis states. One could either consider shared condensed anyon

lines connecting the two condensates at the two boundaries. An orthogonal basis carries

anyon line that is confined w.r.t. to both condensates that winds the non-contractible cycle

of the cylinder. This is illustrated in figure 1.

2.1 Twisted character in the “open string” frame

Now consider an entanglement cut that touches the gapped boundary. One could compute

the entanglement entropy by taking the entanglement cut as a physical boundary, and

determine the Hilbert space on the two sides of the cut. Then we glue the cut back

together by constructing an Ishibashi state, corresponding to the fact that the cut is fake

and the theory is topological, so that the cut can be arbitrarily deformed. This is the

strategy advocated in [17] and adopted also in our previous paper.

In the current situation, the added complication is the physical boundaries that the

entanglement cut ends on. There is some appropriate boundary condition at each end, and

they are precisely conformal boundary conditions [5]. Now for a given pair of boundary

condition {x, y}, it determines the Hilbert space Hxy. Like usual open CFT, the Hilbert

space Hxy admits a decomposition

Hxy = ⊕znzxyHz, (2.1)

where Hz corresponds to (left-right) Virasoro representations labeled by z. We will see

that indeed it gives the set of basis states on a cylinder corresponding to confined anyons

winding the non-contractible cycle.

Then the appropriate Ishibashi state that glues the entanglement cut back together

should take the form

|Ψ(z)〉〉 =
√
N
∑
kL,kR

exp

(
−2πε

l
H

)
|z, kL, kR〉1 ⊗ |z, kL, kR〉2, (2.2)
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where H is the Hamiltonian, and ε → 0 is a regularization parameter, and the product

of states is taken between edge states on either side of the entanglement cut. There is a

choice of z following from the fact that there is ground state degeneracies on the cylinder.

The trace of the n-th-power of the reduced density matrix ρ after tracing out say edge

modes labeled 2, is then given by

trρn = N nχz(q, q̄), q = exp(iτ), τ =
i2πε

l
. (2.3)

Recall that a Lagrangian algebra A is in one-to-one correspondence with modular invari-

ants. Each condensed sector ci ∈ A labels a pair of left-right Virasoro representation that

features in the modular invariant. i.e.

ci ≡ {hLi , hRi}, exp(iθci) = exp(2πi(hL − hR)), (2.4)

where {hLi , hRi} are the conformal dimensions of the primary operator corresponding to

the condensed sector and θci is the topological spin of the sector.

The crucial observation here is that these x, y, z are all labels of line operators in the

modular invariant CFT defined by the Lagrangian algebra A when the two boundaries

share the same A. From the perspective of the topological order, these line operators

are the confined sectors in the boundary condensate A. The χz are twisted characters

corresponding to the insertion of these line operators. Some special cases of these line

operators and the corresponding twisted characters have been discussed in the CFT liter-

ature [13]. Therefore the state (2.2) is the appropriate state describing the confined anyon

line z crossing the entanglement cut.

2.2 Line operators and twisted character in the “closed string” frame

The twisted character χz satisfies∑
z

nzxyχz(q̃, ˜̄q) = trx|y(XxXyq
−L0 q̄−L̄0), q̃ ≡ q−1/τ , (2.5)

where Xx,y are line operators, and

χz(q̃, ˜̄q) =
∑
i

γzciχci(q, q̄), (2.6)

where γzci coincides with the half-linking matrix discussed in [14] and reviewed in the

appendix.

The line operators can be written explicitly in the following form

Xx =
∑
ci∈A

γxci√
γ0ci

∑
kL,kR

|ci, kL, kR〉〈ci, kL, kR|, (2.7)

where |ci, kL, kR〉 are generic descendants at level {kL, kR} of the left-right primary ci
inside the Hilbert space defined by the modular invariant characterized by the Lagrangian

algebra A. These are analogues of boundary states satisfying the Cardy conditions. Their
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construction in the case of diagonal RCFTs was discussed in [13]. Here, we give a general

form using data of the bulk topological order and the half linking matrix γ.

These line operators Xx can in fact be re-arranged into a pair of conformal boundary

states via the folding trick, by reversing the bra 〈ci, kL, kR| into a ket and turning a left

moving mode into a right moving mode and vice versa. i.e.∑
kL,kR

|ci, kL, kR〉〈ci, kL, kR| →
∑
kL

|ci, kL〉|ci, k′R = kL〉⊗
∑
kR

|ci, kR〉|ci, k′L = kR〉 = |ci〉〉L⊗|ci〉〉R,

(2.8)

where |ci〉〉 is a conformal boundary state. These conformal boundary states are precisely

those basis conformal boundary states that we constructed to describe a condensed anyon

ending at the gapped boundary. (See equation (2.15) in the Abelian case and (2.49) for

non Abelian ones in part I of our paper [5].) i.e. We can define in place of Xx,

|Bx〉 =
∑
ci∈A

γxci√
γ0ci

|ci〉〉L ⊗ |ci〉〉R. (2.9)

Then, equation (2.5) can be re-arranged as overlaps of boundary states |Bx〉. Their overlaps

recover the twisted characters considered above using the analogue of the Cardy condition:

〈Bz| e−H/δ |By〉 =
∑
c∈C

γ†czγyc
γ0c

χc(q̃)

=
∑
c,x

γ†czγycγ
†
cx

γ0c
χx(q)

=
∑
x

nyxzχx(q) (2.10)

where nyxz is the fusion coefficient of the confined sectors — or equivalently, the line oper-

ators of the CFT. We have made use of the defect version of the Verlinde formula found

in [14]. We use little n to distinguish the fusion of confined sectors from that of the bulk

anyons N c
ab.

Note that when the two edges of the cylinder are characterized by different anyon

condensates, then these line operators Xa are interface operators between two different

modular invariant CFT’s, each determined by the Lagrangian algebra at each end of the

cylinder. These twisted characters then transform under modular transformation generi-

cally as

χz(q̃) =
∑

ci∈Aµ∩Aν

γ(µ|ν)
zci χci(q). (2.11)
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2.3 Entanglement entropy from twisted characters

The computation of the entanglement entropy of this ground state eigen-basis is thus

given by

S
(µ|ν)
EE (N strips on a cylinder) = 2N

 lim
n→1
ε→0

1

n− 1
ln
χx(exp(−nε/l))
χx(exp(−ε/l))n

 (2.12)

≈ N

 lim
n→1
ε→0

1

n− 1

(
ln
χcmin(exp(−l/(nε)))
χncmin

(exp(−l/ε))

)
− ln γ(µ|ν)

xcmin


(2.13)

where χx are the characters of the Virasoro representation x.

The labels cmin denotes the primary corresponding to the shared condensed sectors

between boundary µ and ν, whose conformal dimension is the smallest.

We will illustrate the above in Abelian Chern-Simons theory in the next section. We

note that in the case corresponding to ZN gauge theories, where the electric condensate

resides at one boundary and the magnetic condensate the other, we found that the ex-

pansion of the character χcmin led to a factor of
√

2 following from a non-trivial choice of

normalization that records the majorana zero mode, even though γ
(E|M)
xc = 1 there [14].

In the simpler case where both boundaries the entanglement cut touches carry the

same set of condensed anyons, cmin = 0 i.e. χcmin is the vacuum Virasoro character, and

the above expression reduces to

Ssame bc
EE (N strips on a cylinder) = 2N

(
cl

12ε
− ln γx0

)
. (2.14)

The area term follows from expanding the vacuum character in the ε → 0 limit, and the

topological entanglement entropy is given simply by ln γx0, which plays the same role as

the modular matrix S in the absence of boundaries.

Consider a bulk phase B = C � C̄, where C̄ denotes the time-reversal of C, and that

the boundaries are characterized by a “diagonal” Lagrangian algebra composed of anyons

{σ � σ̄} for all σ ∈ C. In this case, the cylinder can be unfolded into a torus made of C.

The entanglement cut can be unfolded into a circle. In this case the confined anyons and

condensed anyons can both be labelled by objects in C, and it is found that γxc = SCxc [14].

Our result then reduces to the entanglement entropy of C on a closed surface, as expected.

Generic linear combinations of the x eigen-basis leads to a reduced density matrix with

superselection sectors labelled by x’s. The probability px of each sector thus generate an

extra classical piece in the entanglement entropy ∆SEE =
∑

x−px ln px.

3 Examples in Abelian Chern-Simons theories

We consider the case in which a cylinder with gapped boundaries is bi-partitioned into

strip regions R and R̄. The bulk theory considered here is again the ZN toric code with

action (A.4) and K matrix (A.8). The entanglement entropy between region R and R̄

– 6 –
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is calculated for various boundary conditions in the following. To make things explicit,

we will in particular consider the top and bottom physical boundaries B1,2 to take the

electric/magnetic boundary conditions in turn. Along each of the entanglement cut, we

will again recover a pair of edge CFT. For reasons that will become clear later on, we will

denote the edge modes on the entanglement cut by φ
l1,2,r1,2
I∈{1,2}. The superscripts l1,2, r1,2 refer

to the modes on the pair of vertical entanglement cut b1,2. Specifically, li are the degrees

of freedom on the left edge of the cut, while ri dofs on the right edge of the cut.

The vertical cut is of length l. We will for now work with dimensionless coordinates,

and scale it to π. We will restore dimensions at the end. The physical boundaries B1,2 are

now located at x = 0, π respectively. The condensate dictates specific boundary condition

that we should impose on the modes φli,riI at these end points.

In equations (A.23) and (A.24) we presented the conformal boundary conditions that

should be satisfied by the edge modes located at the physical boundary, appropriate for

the electric and magnetic boundary condensate respectively. In the current situation, these

physical boundaries are the end points of the entanglement cut. Therefore the appropriate

boundary condition should be replaced by∑
J

le,mJ ∂tφ
li,ri
J |x=0 =

1

2π
∂tφ

li,ri
I |x=0 = 0, (3.1)

where le,m are the charge vectors of the condensed anyon characterizing the boundary as

reviewed in section A.1. Specifically, here we have I = 1 for an electric boundary condition

and I = 2 for a magnetic boundary condition. These conditions are satisfied by both the

modes on the left/right of the entanglement cut. Similarly boundary condition has to be

imposed at x = π. The problem thus reduces to one of quantizing an “open-string” with

specific boundary conditions at the end points (see figure 2a). We will consider combina-

tions of these boundary conditions in turn. From this discussion, it should be clear that

the modes that we obtained by quantizing the scalar field with boundary conditions (3.1)

correspond to “boundary-changing operator” (bco) that connects the boundaries at the

two ends. The topological entanglement entropy then follows from the modular properties

of the characters of these bcos.

3.1 electric + magnetic b.c

Consider the case where the entanglement cut ends on two different boundaries. We will

illustrate this case in detail. In this case the upper S1 edge (x = π) is electric while the

lower S1 edge (x = 0) is magnetic. From the discussion in [9], we recall that the ground

state here is unique. The boundary conditions on the edge modes are{
∂tφ

l1,2,r1,2
2 |x=0 = 0

∂tφ
l1,2,r1,2
1 |x=π = 0 .

(3.2)

In terms of the left and right moving chiral fields as in (A.9), we have{
∂tφ

l1,2,r1,2
L |x=0 − ∂tφ

l1,2,r1,2
R |x=0 = 0

∂tφ
l1,2,r1,2
L |x=π + ∂tφ

l1,2,r1,2
R |x=π = 0 .

(3.3)
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(a) Folded picture. (b) Unfolded picture.

Figure 2. “Open string” modes in the folded picture and “closed string” modes in the unfolded

picture.

Since φR(x) lives in the interval (0, π) and φR(−x) lives in the interval (−π, 0), we

can then simplify notations by combining φ
l1,2,r1,2
L,R into “closed-string” fields defined on

(−π, 0) ∪ (0, π) (see figure 2b). This gives{
Φ1,2
L (x) = φ

l1,2
L (x)⊕ φl1,2R (−x)

Φ1,2
R (x) = φ

r1,2
L (x)⊕ φr1,2R (−x) .

(3.4)

The boundary conditions above translate into continuity and anti-periodicity relations

of ΦL {
Φ1,2
L (x = 0−) = Φ1,2

L (x = 0+)

Φ1,2
L (x = −π) = −Φ1,2

L (x = π).
(3.5)

Applying the anti-periodicity condition to a general expansion of the chiral mode we

obtain

Φ1,2
L = Φ1,2

0L + 2πP 1,2
L x+ i

∑
n 6=0

α1,2
L,n

n
e−inx, (3.6)

one sees that

Φ1,2
0L = 0, P 1,2

L = 0. (3.7)

This corresponds to the fact that we are working with an eigenstate with trivial flux

crossing the entanglement cut. This is the only shared confined sector between an electric

condensate and a magnetic one.

Also n is a half-integer rather than an integer. Finally the mode expansion becomes

Φ1,2
L = i

∑
n∈ 1

2
+Z

α1,2
L,n

n
e−inx. (3.8)

The field Φ1,2
R satisfies exactly the same set of equations, except where we have to take

x→ −x and replace αL by αR.

– 8 –
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Each entanglement cut then corresponds to a generalized Ishibashi state matching Φi
L

and Φi
R, in a way completely analogous to the boundary Ishibashi state in [5] except that

we have now only half the number of modes. The normalized Ishibashi state at each cut

becomes

|0〉〉bi = e−
2π
2l
εHi exp

 ∑
m∈ 1

2
+N

1

m
αi−mᾱ

i
−m

 |0〉bi , (3.9)

where the Hamiltonian Hi = (Li0 + L̄i0− 1/12), i again denoting the i-th entanglement cut.

The Hamiltonian is inserted as a UV regularization [17], with the UV cutoff scale given by

ε. Note that we have restored the dimensionful parameter l, the length of the cut, in the

expression. There is an extra factor of 2 in 2l since the length of a closed string on the

circle doubles that of an open string on the vertical cut.

The normalization constant N0 can be determined by 〈〈0|0〉〉 = 1,

N0 = 〈0| exp

 ∑
n∈ 1

2
+N

1

n
α−nᾱ−n

 e−
4πεH

2l exp

 ∑
m∈ 1

2
+N

1

m
α−mᾱ−m

 |0〉
= q−

1
24

∑
m∈ 1

2
N

qmp̄(m)

= q−
1
24

∏
r∈ 1

2
+N

1

1− qr

= q−
1
16

√
η(q)

θ4(q)
(3.10)

where q = e
−8πε

2l and the generating function for degeneracy p̄(m) is given by:

∑
m∈N

2

p̄(m)xm =
∏

r∈ 1
2

+Z

1

1− xr
(3.11)

For the trivial topological sector, the lowest eigenstates of L0 are listed below

level m degeneracy p̄(m) states

0 1 |0〉
1
2 1 α− 1

2
|0〉

1 1 α2
− 1

2

|0〉

3
2 2 α3

− 1
2

|0〉, α− 3
2
|0〉

– 9 –
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Now putting together the two entanglement cuts, the state may be written as a direct

product of the two boundaries.

|0〉〉 = |0〉〉b1 ⊗ |0〉〉b2

= e−
2πεH1

2l exp

 ∑
m∈ 1

2
+N

1

m
α1
−mᾱ

1
−m

 |0〉b1 ⊗ e− 2πεH2
2l exp

 ∑
n∈ 1

2
+N

1

n
α2
−nᾱ

2
−n

 |0〉b2 .
The reduced density matrix ρL is obtained by tracing out the anti-chiral part of the

full density matrix ρ = N−2
0 |0〉〉 〈〈0| . We therefore have

TrLρ
n
L =

(
N0(qn)

N0(q)n

)(a)(N0(qn)

N0(q)n

)(b)

=

((√
θ4(q)

η(q)

)n√
η(qn)

θ4(qn)

)2

=

((√
θ2(q̃)

η(q̃)

)n√
η(q̃1/n)

θ2(q̃1/n)

)2

l/ε→∞−→ 2n−1q̃
1
12(n− 1

n) (3.12)

where in the last step the thermodynamic limit (l/ε→∞) is taken, and the entanglement

entropy is

S = lim
n→1

1

n
log TrLρ

n
L = 2

(
πl

12ε
− log

√
2

)
. (3.13)

We make it explicit with the overall factor of 2, that the two entanglement cuts of the

strip contribute equally to the entanglement entropy. We comment here that the non-

trivial topological entanglement entropy − log
√

2 comes from the two ground states of the

orbifold. This is in fact the Majorana mode supposedly trapped at the junction between

the electric and magnetic boundaries [9, 14, 18, 19].

3.2 electric + electric b.c

In this case the boundary condition becomes{
∂tφ

l1,2,r1,2
1 |x=0 = 0

∂tφ
l1,2,r1,2
1 |x=π = 0 .

(3.14)

The analysis is very similar to the previous case, and we will only outline the procedure.

The allowed set of zero modes here is given by

P 1 = 0, P 2 = Na+ b, (3.15)

for all a ∈ Z, and each b satisfying 0 ≤ b ≤ N − 1 parametrizes an independent sector. For

each fixed b, this is an eigenstate of definite flux crossing the entanglement cut. In particu-

lar, we note that these are distinct confined sectors relative to the electric condensate at the

– 10 –
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boundaries — i.e. they are the magnetic charges. Ishibashi states can be constructed for

each fixed b that entangles the l, r modes at each cut exactly as in the previous subsection,

except that the oscillatory modes αn now take integer values of moding n. We note that

the sum over zero modes contain only a sum over a. Alternatively, from the perspective of

a combined mode ΦL,R constructed as in (3.4), it is describable by an effective action char-

acterized by 1 × 1 K-matrix Keff = (N), since the number of edge modes is halved in the

presence of boundaries. Then the effective quantum dimension at each entanglement cut is

given by Deff =
√
N =

√
D, and each entanglement cut contributes − lnDeff = −1/2 lnN

to the entanglement entropy. (Compare with [5] where each bulk cut contributes − lnN .)

Combining the contribution of the two cuts we recover the results in [3].

3.3 magnetic + magnetic b.c

The appropriate boundary conditions in this case are given by{
∂tφ

l1,2,r1,2
2 |x=0 = 0

∂tφ
l1,2,r1,2
2 |x=π = 0 .

(3.16)

This leads to the following allowed set of zero modes

P 2 = 0, P 1 = Na+ b. (3.17)

This analysis of this case is equivalent to the electric + electric case. The result of the

entanglement entropy is identical. We emphasize again that a natural basis Ishibashi state

parametrized by a fixed b corresponds to distinct confined sectors relative to the boundary

condensates.

3.4 The “closed-string” frame

Written explicitly, the “closed string” electric and magnetic Ishibashi states are respectively

given by

|a〉〉E =
∑
b∈Z

exp

(
−
∞∑
l=1

1

l
α−lᾱ−l

)∣∣∣∣PL = PR =
a+ bN√

N

〉
(3.18)

|a〉〉M =
∑
b∈Z

exp

( ∞∑
l=1

1

l
α−lᾱ−l

)∣∣∣∣PL = −PR =
a+ bN√

N

〉
(3.19)

where the primary states are orthonormal 〈PL, PR|P ′L, P ′R〉 = δPLP ′LδPRP
′
R

.

In Abelian Chern-Simons theory for example it satisfies

lI∂xφI |c〉〉 = 0, l ∈ L, (3.20)

where L is the set of charge vectors characterizing the gapped boundary condensate as

reviewed in (A.16). The subscript x of γxc (as opposed to the spatial coordinate x appearing

in ∂x in equation (3.20)) denotes a confined anyon. As demonstrated in the examples

above in sections 3.1, 3.2 and 3.3, it is natural to construct eigenbasis so that there is
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definite anyon flux crossing the entanglement cut. The distinct states are thus labeled by

sectors confined w.r.t. both condensates at the boundaries of the cylinder. The boundary

states in the “closed string” channel are therefore naturally labelled by the same basis.

The corresponding “closed-string” boundary states that recover the “open-string” picture

satisfying (3.20) is natural in the sense that to convert between the annulus and the cylinder,

it is as if we are exchanging x and t, and thus replacing the boundary condition (3.1)

by (3.20). We note that in the current example,

γxc =
1√
N

exp

(
−2πicx

N

)
=

Sxc√
S0c

. (3.21)

In e+m case GSD = 1, no topological sectors remain confined relative to both bound-

aries, which means every non-contractible Wilson loop can be freely absorbed into

the boundaries. Therefore, the only “confined” sector is trivial, x = 0. So we can

omit the confined index x in this case. The overlap of electric and magnetic boundary

states projects to the trivial sector:

E 〈B| e−H/δ |B〉M =
1√
N

E〈〈0| e−H/δ |0〉〉M

=
1√
N
〈0| exp

(
−
∞∑
l=1

1

l
α−lᾱ−l

)
e−H/δ exp

( ∞∑
l=1

1

l
α−lᾱ−l

)
|0〉

=
e
π
6δ

√
N

∞∏
k=1

1

1 + e−4πk/δ

=

√
2√
N

√
η(q̃)

θ2(q̃)
(3.22)

where |0〉 denotes the lowest-energy ground state |PL = 0, PR = 0〉 and q̃ = e−4π/δ.

Note that the definition of the boundary state |B〉E (resp. |B〉M ) involves the half-

linking matrix γ(E|E) (resp. γ(M |M)). The factor
√

2
N here is due to normalization of

Ishibashi states [20]. Then the modular transformation of η and θ2 function (see ap-

pendix D) recovers the open string character (3.10) under the identification δ = 2ε/l.

In e+e/m+m case GSD = N, labeled by the electric Wilson lines connecting physical

boundaries (condensed sector c), or altenatively labeled by incontractible magnetic

Wilson loops (confined sector x). The transformation matrix relating the two bases

is γ that will appear below. The open string quantization (3.15) gives the following

character

χx(q) =
∑

b1,b2∈Z

〈
x+b1N√

N

∣∣∣∣ exp

(
±
∞∑
l=1

1

l
α−lᾱ−l

)
e

−2επ
l H exp

(
±
∞∑
l=1

1

l
α−lᾱ−l

)∣∣∣∣x+b2N√
N

〉

=
∑
b∈Z

exp
(
−πδ (x+bN)2

2N

)
η(q)

=
1√

Nη(q̃)

∑
k∈Z

exp

(
− 2π

Nδ
k2−2πix

N
k

)
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=
1√

Nη(q̃)

∑
n∈Z

N−1∑
c=0

exp

(
− 2π

Nδ
(nN+c)2−2πicx

N

)

=

N−1∑
c=0

γxcχc(q̃) (3.23)

where q = e−2πε/l = e−πδ and q̃ = e−4π/δ under the identification δ = 2ε/l. Poisson

resummation is performed in the second line. In the third line we rewrite k = nN+m

and split the sum
∑

k∈Z into a double sum
∑

n∈Z
∑N−1

c=0 . As before, c labels different

topological sectors condensed at the boundaries, while n labels the primary states

corresponding to the same topological sector.

We focus on e+e case in the following, since m+m case is analyzed in a sim-

ilar manner. Note that the building block of boundary state overlap, 〈〈c| e−H/δ |c〉〉,
can be considered as the amplitude of a closed string propagating 1/δ along the Eu-

clidean time direction, and hence as an open string amplitude via open-closed duality.

Explicitly, the building block can be expressed as

〈〈c| e−H/δ |c〉〉

=
∑

n1,n2∈Z

〈
c+n1N√

N

∣∣∣∣ exp

(
±
∞∑
l=1

1

l
α−lᾱ−l

)
e−H/δ exp

(
±
∞∑
l=1

1

l
α−lᾱ−l

)∣∣∣∣c+n2N√
N

〉

=
1

η(q̃)

∑
n∈Z

exp

(
−4π

δ

(c+nN)2

2N

)
= χc(q̃) . (3.24)

With the building block at our disposal, the overlap between boundary Cardy

states (2.7) is easily identified with open string amplitude (3.23):

〈Bz| e−H/δ |By〉 =
∑
c∈C

γ†czγcy
γ0c

〈〈c| e−H/δ |c〉〉

=
∑
c∈C

γ†czγcy
γ0c

χc(q̃). (3.25)

More generically, the γ matrix for the bulk topological order (A.8) is given by

γxc =
Sxc√
S0c

=
1√
N

exp(2πilTxK
−1lc) (3.26)

where we assign to the condensed sector c a charge vector lc ∈ L, and assign to the

confined sectors charge vectors ly,z. The designation is not unique since any charge

vector l′ = l + KΛ with Λ an integer vector corresponds to the same topological

sector. Here, we have lTc = (c, 0), whereas lTy = (0, y) and lTz = (0, z). If we choose

z − y ≡ x mod N , then γ†zcγyc/γ0c = γxc and (3.25) is exactly equal to (3.23).
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3.5 Generic 2–2 K matrix theories, and a condensed-confined duality

Consider Abelian topological order given by K matrix, in order that the bulk can support

gapped boundary, a necessary but not sufficient condition is that the quadratic form must

have total signature 0, namely there exists a matrix A such that the K matrix can be

diagonalized as follows:

ATKA =

(
1 0

0 −1

)
. (3.27)

In Abelian topological order, the gapped boundary is described by a Lagrangian sub-

group M . M is an integer matrix whose column vectors are the condensed anyons, and the

group structure is provided by anyon fusion. For convenience we call the set of condensed

anyons the condensate, and the set of confined anyons the confinate. The condensate M

satisfies self-null and mutual-null condition MTK−1M = 0. So

M = {m ∈ Z2|MTK−1m = 0} = ker(MTK−1) ∩ Z2 = K ker(MT ) ∩ Z2 . (3.28)

Given a boundary condensate M , the open string touching this boundary has to sat-

isfy the boundary condition (3.1), which is equivalent to MTAATN = 0 where N is the

confinate1 corresponding to the condensate M . So

N = {n ∈ Z2|MTAATn = 0} = ker(MTAAT ) ∩ Z2 = (AAT )−1 ker(MT ) ∩ Z2 . (3.29)

For a cylinder topology with two physical boundaries Mµ and Mν , the set of shared

condensed anyons is

Mµ ∩Mν = {m ∈ Z2| MT
µK

−1m = 0, MT
ν K

−1m = 0}
= K ker(MT

µ ) ∩K ker(MT
ν ) ∩ Z2

= K
(
ker(MT

µ ) ∩ ker(MT
ν )
)
∩ Z2

= K ker
(
Mµ Mν

)T
∩ Z2

≡ KΩµν ∩ Z2 (3.30)

where we define a line Ωµν ⊂ R2 as Ωµν = ker
(
Mµ Mν

)T
for convenience.2

The cylinder confinate is determined by two sets of boundary conditions (3.1) corre-

sponding to the top (Mµ) and bottom (Mν) boundaries. So the cylinder confinate is

Nµ ∩Nν = {n ∈ Z2| MT
µ AA

Tn = 0, MT
ν AA

Tn = 0}
= (AAT )−1 ker(MT

µ ) ∩ (AAT )−1 ker(MT
ν ) ∩ Z2

= (AAT )−1
(
ker(MT

µ ) ∩ ker(MT
ν )
)
∩ Z2

= (AAT )−1 ker
(
Mµ Mν

)T
∩ Z2

= (AAT )−1Ωµν ∩ Z2 . (3.31)

1Here and in the following we assume that the confined sectors have bulk representatives, and we take

these bulk representatives as elements of the confinate N .
2The case dim Ωµν = 0 is impossible under the assumption that bulk representatives of the confined

sectors exist.
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On the other hand, by definition the cylinder confinate is composed of the anyons

that cannot escape from either boundary. In this sense it is generated by the orthogonal

complement of all possible fusion results of the condensed anyons, i.e., (Im(Mµ)∪Im(Mν))⊥.

There’s a general relation between the kernel and image of a linear operator, kerPT =

(ImP)⊥, from which the above expression can be simplified:

Nµ ∩Nν = (Im(Mµ) ∪ Im(Mν))⊥ ∩ Z2

= Im
(
Mµ Mν

)⊥
∩ Z2

= ker
(
Mµ Mν

)T
∩ Z2

= Ωµν ∩ Z2 . (3.32)

Comparing (3.31) with (3.32) we find that the line Ωµν is an invariant subspace of AAT :

AATΩµν = Ωµν . (3.33)

The self and mutual null conditions of the condensate impose a constraint on the

confinfed subspace Ωµν :

ΩT
µνKΩµν = (KΩµν)TK−1(KΩµν) = 0 . (3.34)

From (3.27), (3.33) and (3.34) we can also derive

ΩT
µνK

−1Ωµν = 0 . (3.35)

It is easily observed here that the “confined direction” Ωµν indeed satisfies the equation for

“condensed direction” (3.35). For a fixed bulk topological order, the condensate M and

confinate N for some boundary (given by boundary condensate M) become the confinate

and condensate respectively for another boundary (given by boundary condensate N), and

vice versa. The roles played by the condensate and the confinate can be swapped. Given

an unordered condensate-confinate pair (M , N), it is impossible to distinguish which is

which without other information. We call this duality the condensed-confined duality. it

is a duality between the condensate and the confinate, or equivalently, between direction

KΩµν and Ωµν .

According to this duality, the relations appeared above (3.33), (3.34), (3.35) still hold

under the swapping Ωµν ↔ KΩµν . In particular, AATKΩµν = KΩµν and therefore

K2Ωµν = Ωµν .

The condensed-confined duality also appears in the non-Abelian D(S3) example, we

refer the readers to appendix C for a detailed discussion.

Now we turn to several important 1D lattices appearing in the calculation of open

string characters. We define (see figure 4)

Γ := Ωµν ∩KZ2, Γ̃ := KΩµν ∩KZ2, (3.36)

their dual lattices are respectively given by

Γ? = Ωµν ∩K−1Z2, Γ̃? = KΩµν ∩K−1Z2, (3.37)
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Figure 3. KΩµν and Ωµν are invariant subspaces of AAT .

Figure 4. 1D sublattices of the charge lattice Z2.

and satisfying

KΓ? = KΩµν ∩ Z2, KΓ̃? = Ωµν ∩ Z2, (3.38)

we have (see appendix E)∑
m∈x+Γ

exp(−πmTAATm) =
1

µ(Γ)
√
p(A)

∑
m∈Γ?

exp(−πmT (AAT )−1m+2πixTm)

=
1

µ(Γ)
√
p(A)

∑
n∈KΓ?

exp(−πnTK−1(AAT )−1K−1n+2πixTK−1n)

=
1

µ(Γ)
√
p(A)

∑
c∈C

∑
n∈c+Γ̃

exp(−πnTAATn+2πixTK−1c)

=
1

µ(Γ)
√
p(A)

∑
c∈C

exp(2πixTK−1c)
∑

n∈c+Γ̃

exp(−πnTAATn) (3.39)

where C = Mµ ∩ Mν , and p(A) is the scaling factor (eigenvalue) of the invariant sub-

space Ωµν :

∀m ∈ Ωµν , AATm = p(A)m, (3.40)

according to the condensed-confined duality, this factor p(A) is also the scaling factor of

the invariant subspace KΩµν (see figure 3):

∀n ∈ KΩµν , AATn = p(A)n, (3.41)

and the lattice spacing of Γ is equal to the lattice spacing of Γ̃:

µ(Γ) = µ(Γ̃) (3.42)
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so we also have∑
n∈c+Γ̃

exp(−πnTAATn) =
1

µ(Γ̃)
√
p(A)

∑
n∈Γ̃?

exp(−πnT (AAT )−1n+2πicTn)

=
1

µ(Γ̃)
√
p(A)

∑
m∈KΓ̃?

exp(−πmTK−1(AAT )−1K−1m+2πicTK−1m)

=
1

µ(Γ̃)
√
p(A)

∑
x∈X

∑
m∈x+Γ

exp(−πmTAATm+2πicTK−1x)

=
1

µ(Γ̃)
√
p(A)

∑
x∈X

exp(2πicTK−1x)
∑

m∈x+Γ

exp(−πmTAATm) (3.43)

where X = Nµ ∩Nν .

(3.39) and (3.43) give rise to the following transformation rules of the open/closed

string characters:

χ
(open)
x =

∑
c∈C

σxcχ
(closed)
c , χ

(closed)
c =

∑
x∈X

σxcχ
(open)
x (3.44)

where

σxc =
1

µ(Γ̃)
√
p(A)

exp(2πicTK−1x). (3.45)

This non-degenerate square matrix σ is unitary (from (3.44)) and satisfies

σxc
σ0c

=
Sxc
S0c

. (3.46)

So it is identified with the γ matrix:3

σxc = γxc . (3.47)

This result guarantees that the topological entanglement entropy where the entangle-

ment cut is cutting across the gapped boundaries characterized by (3.28), (3.29) is given

again by (2.12).

3.6 A note on the unitarity of γ and more general gapped boundaries

In the previous discussions, we demonstrated the explicit construction of boundaries corre-

sponding to different anyon condensation, and how the quantization of the edge modes at

the entanglement cut leads to a reduced density matrix whose trace produces the twisted

characters. The modular transformation of these twisted characters are determined by a

set of half-linking matrix γ. If one assumes that γ is unitary, then it is uniquely deter-

mined. In the previous sub-sections, we have presented explicit computations that recover

a set of unitary half-linking matrix. We note that there are several choices we have made

in our computation, that on hind-sight was responsible for the unitarity of the γ matrix.

3The γ matrix for Abelian Chern-Simons theory is explicitly given in [14], from which this relation is

easily proved.
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Other choices could alter the overall normalization of the gamma matrices, thus shifting

the topological entanglement by some non-universal factors.

Specifically, the choice that we have made in the previous calculation is the value of

the parameter r that features in the effective action reviewed in equation (A.8). We have

chosen r = 1 in our computation and we note that this is a symmetric point that preserves

the symmetry between φ1 and φ2 — which is an electric-magnetic symmetry. While r is

canceled out in the computation of the topological entanglement entropy in the absence of

boundaries, here it would change the overall normalization of the γ matrix and shift the

topological entanglement by

γxc →
γxc√
r̃
, ∆SEE = −N ln r̃, (3.48)

where N is the number of entanglement cuts, and r̃ is the least positive number which

makes rr̃ a perfect square.

As a generalization of 3.1, we consider a cylinder with the bulk given by Zpq gauge

theories and the top and bottom boundaries characterized by subgroups Zp and Zq respec-

tively, where p and q are relatively prime and both are greater than 2 [8]. These subgroups

specify the subset of magnetic anyons in a Lagrangian algebra, which already uniquely

specifies the condensates. The top boundary corresponds to the Lagrangian subgroup

Lp =
〈
( p0 ) ,

(
0
q

)〉
, while the bottom boundary corresponds to Lq =

〈
( q0 ) ,

(
0
p

)〉
. This is a

direct generalization of the electric/magnetic boundary conditions considered above. Note

that the condensed set Lp (or Lq) does not satisfy the mutual null condition — a condition

necessary for defining a topological boundary condition for the Chern-Simons theory [21].

To cure the problem, we extend the 2 × 2 K matrix to a 4 × 4 symmetric integral matrix

K̃ by adding 2 one-dimensional edge channels to the boundary [18, 22].

K̃ = K ⊕ T =


0 pq 0 0

pq 0 0 0

0 0 0 1

0 0 1 0

 . (3.49)

Adding T = ( 0 1
1 0 ) does not introduce any new quasiparticles, so K and K̃ describe the

same topological order. The Lagrangian subgroups

Lp =

〈 p

0

0

1

 ,


0

q

−1

0


〉
, Lq =

〈 q

0

1

0

 ,


0

p

0

−1


〉

(3.50)

are now generated by 4-dimensional charge vectors, satisfying the mutual null condition.

For simplicity, we focus on the left side of one particular entanglement cut (superscript li)

and supress this superscript hereafter. The boundary condition (A.22) becomes
(p∂tφ1 + ∂tφ4)|x=π = 0

(q∂tφ2 − ∂tφ3)|x=π = 0

(q∂tφ1 + ∂tφ3)|x=0 = 0

(p∂tφ2 − ∂tφ4)|x=0 = 0 .

(3.51)
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We now introduce the 4 left/right moving modes according to decomposition K̃ = K ⊕ T

φ1 =

√
rK

2pq
(φKL + φKR ), φ2 =

1√
2pqrK

(φKL − φKR ),

φ3 =

√
rT

2
(φTL + φTR), φ4 =

1√
2rT

(φTL − φTR). (3.52)

To recover the conformal boundary condition at physical boundaries x = 0 and x = π, we

demand that (3.51) relates left-moving modes only to right-moving modes. This can only

be achieved by tuning parameters to rK = 1, rT = q
p . Then the boundary condition (3.51)

reduces to conformal boundary conditions:
(∂tφ

K
L − ∂tφTR)|x=π = 0

(∂tφ
K
R + ∂tφ

T
L)|x=π = 0

(∂tφ
K
L + ∂tφ

T
R)|x=0 = 0

(∂tφ
K
R + ∂tφ

T
L)|x=0 = 0.

(3.53)

This conformal boundary condition admits only one solution out of all possible values of

the zero modes, namely P1 = a, P2 = −a, P3 = −qa, P4 = −pa, or equivalently PKL =

P TR = 0, PKR = −P TL =
√

2pqa where a is an arbitrary integer. The mode expansion (A.6)

together with the conformal boundary condition (3.53) put the following constraint on the

excitations: 
1 0 0 −λ
0 λ 1 0

1 0 0 1

0 1 1 0



an
bn
cn
dn

 =


0

0

0

0

 (3.54)

where λ = e2πin and an, bn, cn, dn are excitations of φKL , φ
K
R , φ

T
L, φ

T
R respectively. The

determinant of coefficients must vanish in order to have non-trivial excitations, so (λ +

1)(λ− 1) = 0, or n ∈ Z ∪
{

1
2 + Z

}
. (Compare with e+m case where n is half-integer, and

with e+e/m+m case where n is integer.)

Following a similar procedure presented in 3.1 we calculate the entanglement entropy

between the strip regions R and R̄:

S = 2

(
πl

12ε
− log

√
2− log

√
2pq

)
. (3.55)

The extension of K matrix and the precise choice of boundary conditions we have chosen

in (3.53) introduces a trapped Majorana mode, explaining the term −2 log
√

2. We see

that rT = q
p is a deviation from the symmetric point, leading to a shift − log

√
pq in the

entanglement entropy. In other words, the half-linking matrix obtained here has a different

normalization compared to the unitary one defined in [14].

Finally, one notices that there is one extra −2 log
√

2 attached alongside −2 log
√
pq.

Physically, this had followed from the fact that we added an extra layer of “topologically
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trivial” material touching the Zpq through a topological interface described by our boundary

conditions (3.51). The interface induces topological symmetry enhancement in the trivial

material, so that various trivial sectors in the “trivial material” becomes distinguishable

through their connection with the non-trivial anyons. We have discussed this phenomenon

already in [5]. The topological entanglement gets contribution from both the Zpq and Z1

layers, leading to a factor of 2 in front of pq.

4 Conclusion

In this paper, we demonstrate that the topological entanglement entropy is controlled by the

“half-linking” number γxc when the entanglement cut touches the gapped boundaries which

are characterized by anyon condensation. We note that when the two gapped boundaries

at the end of the entanglement cut correspond to two different anyon condensates, there

could potentially be extra contribution to the topological entanglement — as illustrated

by the case where the two ends of the entanglement cut touch the electric and magnetic

condensates. There is a non-trivial Majorana zero mode that contributes to a factor of
√

2.

One could consider more generic entanglement cuts that cut through gapped interfaces

rather than boundaries. However, they could be understood in terms of gapped boundaries

using the folding trick.

Our computation was based on an “open-string” quantization at the entanglement cut.

We supplement the open-string picture with a “closed-string” picture, by constructing a

set of Cardy states suitable also for non-diagonal RCFT’s. They are constructed using the

half-linking numbers and reproduce the results based on the “open-string” computation.

We also prove, at least in the case of Abelian Chern-Simons theories describable by 2–2

K-matrices, that there is a generalized notion of electric-magnetic duality. Namely there is

a 1-1 correspondence between condensed and confined anyons and their charge vectors are

related by a linear transformation. There is an analogous notion in non-Abelian theories

with examples discussed in the appendix, although we could only hope for a precise proof

in the future.

We note however, that the normalization of the half-linking matrix can be altered by

some subtle change in the edge theory. We show that there is a class of choices which natu-

rally preserve the unitarity of the half-linking matrix. This choice preserves the symmetry

between electric and magnetic charges. We also look into other choices of boundaries in

which the half-linking matrix has a different overall normalization which departs from the

unitary point. They lead to shifts in the normalization which enters into the topological

entanglement.

One interesting direction we are currently pursuing is to generalize our work further

to cases where the boundary remains gapless. Given the holographic/bulk-boundary cor-

respondence properties found in topological orders which shares many similarities with

the AdS/CFT correspondence, the computation should shed some further insight on the

Ryu-Takayanagi formula.
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A Setting the notations of Abelian Chern-Simons theories

The class of Abelian Chern-Simons theories that we are going to consider in the following

takes the following form:

SCS =
1

4π

∫
M
KIJAI ∧ FJ , FJ = dAJ . (A.1)

Where M is a 3d manifold. Here KIJ is a symmetric integral matrix and I = 1, . . . , N .

Quantization would involve gauge fixing (such as taking the temporal gauge AIt = 0)

and solving for the constraints following from the gauge choice. A review of its detailed

procedure can be found for example in [23]. Upon gauge fixing, the action becomes a total

derivative. In the temporal gauge for example, the constraint equation would amount to

the flat condition

FI xy = 0. (A.2)

Setting

AI x,y = ∂x,yφI (A.3)

for some scalar function φ and substituting these expressions into the bulk action, we

recover a total derivative term. For M an open manifold with a 2d boundary ∂M , the

total derivative gives rise to the following boundary action

S∂M =
1

4π

∫
∂M

dtdx (KIJ∂tφI∂xφJ − V IJ∂xφI∂xφJ). (A.4)

There is an extra term involving an integral symmetric matrix V IJ of rank m. As discussed

in [24], it is not determined by the bulk CS action. They can be viewed as physical

parameters that depend on the actual material supporting these gapless edge modes. We

note that m being even is a necessary (although not sufficient) condition for the edge

modes to be “gappable” by relevant perturbation. The boundary action can be quantized

canonically. This gives, at constant time t,

[φI(x),ΠJ(y)] = iδJI δ(x− y), ΠI(x) =
1

2π
KIJ∂xφJ . (A.5)

Assuming that x is compact and that x ∼ x + l i.e. the boundary at constant time t is a

ring of length l. The mode expansion of ΦI at t = 0 is given by

φI(x) = φ0I +K−1
IJ P

J 2π

l
x+ i

∑
n 6=0

1

n
aI,ne

−inx 2π
l . (A.6)

These modes therefore satisfy

[αI,n, αJ,m] = nK−1
IJ δn,−m, (A.7)

and for zero modes we have: [φ0I , P
J ] = iδJI .

We will focus on the Chern-Simons equivalence of the D(ZN ) models in the following.

The corresponding K matrix is given by

K =

(
0 N

N 0

)
. (A.8)
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The matrix has a pair of eigenvalues with opposite sign, signifying that it has exactly one

pair of left and right moving modes, and as such, is a non-chiral theory. The scalars φI are

related to the left and right moving fields by

φ1 =

√
r

2N
(φL + φR), φ2 =

√
1

2Nr
(φL − φR) . (A.9)

Here r2 = V 22/V 11. The left and right moving modes can also be expressed in a mode

expansion:

φL(R)(x) = φ0L(R) + PL(R)
2π

l
x+ i

∑
n 6=0

1

n
αL(R),ne

−inx 2π
l . (A.10)

To avoid clutter, we will take r = 1 in the following. We note that r does not play any

role in the topological entanglement of a single non-chiral phase. One can show that it

is canceled out in the computation of the topological entanglement. It does play a non-

trivial role in the discussion of generic interfaces between different D(ZN ) theories. We

will re-introduce them where necessary. We also note that when discussing topological

entanglement in a chiral phase, one needs particular care in the choice of r. A detailed

discussion will be taken up in the accompany paper. In that case, the entanglement cut

crosses the physical interfaces, and extra care is needed. Using the commutation relations

of φI , we recover

[αL(R),n, αL(R),m] = nδn,−m, (A.11)

and

PL,R =
1√
2N

(±P 1 + P 2). (A.12)

The U(1)’s gauge groups are taken to be compact. Therefore the scalars are also compact,

satisfying

φI ∼ φI + 2π. (A.13)

The conjugate momenta to the zero modes therefore are quantized, satisfying

P I ∈ Z. (A.14)

We note that these PφI parametrizes a set of highest weight states. One can identify these

highest weight states/operators with distinct anyons of the quantum double D(ZN ). The

identification with anyons is many-to-one: P I and P I + N describe the same topological

sector. One can take P 1 mod N to parametrize the electric charge w.r.t. to the ZN gauge

group in D(ZN ) models, and P 2 the magnetic charges. A detailed review can be found

in [23]. We only record the basic set of facts needed in the current paper. The Hamiltonian

is given by

H =
1

4π

∫ l

0
dx(∂xφL∂xφL + ∂xφR∂xφR) =

P 2
L + P 2

R

2
+
∑
n>0

(αL,−nαL,n + αR,−nαR,n)− 1

12
.

(A.15)

– 22 –



J
H
E
P
1
1
(
2
0
1
9
)
1
6
8

A.1 Review of gapped boundaries in ZZZN theory

We briefly review gapped boundary and boundary conditions following [5]. Recall that a

gapped boundary is characterized by anyon condensation that takes the topological order

A to the trivial phase. The set of condensed anyons would form a so called Lagrangian

algebra. This has been discussed in general in [18, 21–23, 25–33] and in the special case of

Abelian CS theories, in [21, 22]. In a D(ZN ) quantum double, all such Lagrangian algebras

are known. We can take the set L of condensed anyons as

L = {(P 1, P 2)}, (A.16)

where (P 1, P 2) is the pair of quantized quantum numbers (see equation (A.9), (A.12)) of

the condensed sector.

Among them there are two sets of gapped boundaries that are shared by all D(ZN )

theories and we will take them as examples for illustration purpose. These boundaries are

called “electric” and “magnetic” boundaries respectively. Physically, the former correspond

to the condensation of all electric charges and magnetic charges respectively i.e.

LE = {(Nn+ a, 0)}, n ∈ Z, 0 ≤ a ≤ N − 1, (A.17)

and similarly

LM = {(0, Nm+ b)}, m ∈ Z, 0 ≤ b ≤ N − 1. (A.18)

We note that these vectors that are collected into the condensed set L are more selective

than picking all charge vectors corresponding to the condensed topological sector. In

particular, they are “self-null” and “mutually-null” vectors satisfying

P IliK
−1
IJ P

J
lj

= 0, ∀(P 1
li
, P 2

li
) ∈ Lc, (A.19)

where Lc denotes a generic collection of vectors of condensates in a Lagrangian algebra.

This has been discussed at length in [22, 23], particularly how they are related to existence

of corresponding relevant operators that could gap these edge modes.

Alternatively, one can think of these Lagrangian algebra as characterizing conformal

boundary conditions [34, 35]. We note that the boundary theory has a set of U(1) global

symmetries extended to a U(1) Kac-Moody algebra. The conserved currents are given by

JIx =
KIJ

2π
∂xφJ . (A.20)

This implies that the zero mode of the current is given by

JIx,0 ≡
∫ l

0
dx JIx = P I . (A.21)

The Lagrangian algebra defines a boundary condition, or alternatively a boundary state

|ψ〉〉 that preserves the following symmetries

P IliK
−1
IJ J

J
x |ψ〉〉 = 0. (A.22)
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Using (A.21), this implies that the boundary condition is allowing the state to carry non-

trivial expectation values of PIi simultaneously if they are mutually null, as described

in (A.19). Indeed we only need a minimal set of vectors (P 1
li
, P 2

li
) that are linearly inde-

pendent to generate the entire Lc. In the case of the electric boundary, we need only the

null vector (1, 0). i.e.

K−1
12 J

2
x |ψ〉〉E ≡

1

2π
∂xφ1|ψ〉〉E = 0. (A.23)

Similarly a magnetic boundary would amount to taking the condensate vector (0, 1), lead-

ing to
1

2π
∂xφ2|ψ〉〉M = 0. (A.24)

Now in terms of the right and left moving fields, the above conditions on the boundary

state can be re-written as

(JL ± JR)|ψ〉〉E/M = 0, JL,R =
1

2π
∂xφL,R, (A.25)

where φL,R are related to φ1,2 by (A.9). We immediately note that the above equations im-

plies that the states |ψ〉〉E/M are indeed conformal boundary states satisfying the conformal

boundary condition,

(Ln − L̄−n)|ψ〉〉E/M = 0, (A.26)

where Ln are the Virasoro generators of the left-moving modes and L̄m the corresponding

generators of the right-moving modes. This follows from the fact that the stress tensor can

be expressed as

T = πJLJL, T̄ = πJRJR (A.27)

by the Sugawara construction. We note that the Hamiltonian H in (A.15) is indeed given by

H = L0 + L̄0 −
c

12
, where c = 1. (A.28)

In terms of the mode expansion,

(αL,n ± αR,−n)|ψ〉〉E/M = 0 . (A.29)

The corresponding boundary Ishibashi state has the following form:

|ψ〉〉E/M = exp

(
−2πε

l
H

)
exp

(
∓
∞∑
n=1

1

n
αL,−nαR,−n

)
|PL, PR〉〉E/M , (A.30)

where

PL = ∓PR, (A.31)

for electric and magnetic boundaries respectively. The boundary state is not normalizable,

and so exp
(
−2πε

l H
)

serves as a regularization, with ε infinitesimal. The parameter l is the

length of the circle. The norm of this state is then given by

〈〈ψ|ψ〉〉 =
q
P2
L
2

η(q)
, q = e

−8πε
l . (A.32)

This has been discussed for example in [16], although we would like to make the

connection to anyon condensation more transparent in the current discussion.
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B Some useful details of the D(S3) model

We would like to review here some basic data of the D(S3) model. The anyons are labeled

by (C, ραC ), where C is a conjugacy class of the group G = S3, and αC an irrep of the

centralizer of C. A summary of all the anyons are listed below

A B C D E F G H

conjugacy class W {e} {y, xy, x2y} {x, x2}
centralizer ∼= S3 Z2 Z3

irrep ρ of centralizer 1 sign π 1 −1 1 ω ω∗

dim(ρ) 1 1 2 1 1 1 1 1

quantum dimension d = |W |× dim(ρ) 1 1 2 3 3 2 2 2

twist θ 1 1 1 1 -1 1 e2πi/3 e−2πi/3

Their fusion rules are given by

⊗ A B C D E F G H

A A B C D E F G H

B B A C E D F G H

C C C A⊕B ⊕ C D ⊕ E D ⊕ E G⊕H F ⊕H F ⊕G
D D E D ⊕ E A⊕ C ⊕ F ⊕G⊕H B ⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E
E E D D ⊕ E B ⊕ C ⊕ F ⊕G⊕H A⊕ C ⊕ F ⊕G⊕H D ⊕ E D ⊕ E D ⊕ E
F F F G⊕H D ⊕ E D ⊕ E A⊕B ⊕ F C ⊕H C ⊕G
G G G F ⊕H D ⊕ E D ⊕ E C ⊕H A⊕B ⊕G C ⊕ F
H H H F ⊕G D ⊕ E D ⊕ E C ⊕G C ⊕ F A⊕B ⊕H

The S-matrix is given by

S =
1

6



1 1 2 3 3 2 2 2

1 1 2 −3 −3 2 2 2

2 2 4 0 0 −2 −2 −2

3 −3 0 3 −3 0 0 0

3 −3 0 −3 3 0 0 0

2 2 −2 0 0 4 −2 −2

2 2 −2 0 0 −2 −2 4

2 2 −2 0 0 −2 4 −2


. (B.1)

C Condensed-confined duality of D(S3)

There’re 4 distinct gapped boundaries for a bulk theory D(S3), labeled by the 4 different

subgroups of S3. The condensed anyons corresponding to each subgroup are listed in

table 1.

The condensates are not independent. What is previously known is the C ↔ F duality:

a new condensate can be obtained by swapping C and F in a given condensate. We

observe here that there’s another relation among the condensates. For the gapped boundary
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subgroup K condensate

1 A⊕B ⊕ 2C

Z2 A⊕ C ⊕D
Z3 A⊕B ⊕ 2F

S3 A⊕D ⊕ F

Table 1. Condensed anyons corresponding to boundary subgroup K.

Figure 5. The 4 boundary condensates of D(S3) Dijkgraaf-Witten model, related by the C ↔ F

duality and the condensed-confined duality.

A4 = A ⊕D ⊕ F , the confined sectors are labeled by A, B and C, which are exactly the

condensed anyons for the gapped boundary A1 = A ⊕ B ⊕ 2C. The situation is more

complicated in the inverse direction: for the gapped boundary A1 = A ⊕ B ⊕ 2C, the

confined sectors are labeled by A, D and F with appropriate idempotent splitting [9].

D η and θ functions

We list here the definitions and basic properties of Dedekind η-function and Jacobi θ-

function.

η(τ) = q
1
24

∞∏
n=1

(1− qn), (D.1)

θ2(τ) =
∑
n∈Z

q
1
2(n+ 1

2)
2

= 2η(τ)q
1
12

∞∏
r=1

(1 + qr)2,

θ3(τ) =
∑
n∈Z

q
n2

2 = η(τ)q−
1
24

∞∏
r=0

(
1 + qr+

1
2

)2
,

θ4(τ) =
∑
n∈Z

(−1)nq
n2

2 = η(τ)q−
1
24

∞∏
r=0

(
1− qr+

1
2

)2
(D.2)

where τ is the modular parameter and q = e2πiτ .
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These functions are related by modular T transformation (τ → τ + 1) and S transfor-

mation (τ → − 1
τ ):

η(τ + 1) = e
πi
12 η(τ), η

(
−1

τ

)
=
√
−iτη(τ)

θ2(τ + 1) = e
πi
4 θ2(τ), θ2

(
−1

τ

)
=
√
−iτθ4(τ),

θ3(τ + 1) = θ4(τ), θ3

(
−1

τ

)
=
√
−iτθ3(τ),

θ4(τ + 1) = θ3(τ), θ4

(
−1

τ

)
=
√
−iτθ2(τ). (D.3)

In the main text q̃ is defined as the S transformation of corresponding q, for any complex

number X

q = eX
S−→ q̃ = e

4π2

X . (D.4)

E Poisson resummation

The Poisson resummation formula is a beautiful relation between a function f(x) and its

Fourier transform f̂(y) =
∫
e2πi〈x,y〉f(x)dx, stating that the following infinite sums are

equal: ∑
n∈Γ

f(n) =
1

µ(Γ)

∑
n∈Γ?

f̂(n) (E.1)

where Γ is an 1D lattice (a free Z-module) and µ(Γ) its lattice spacing (measure of unit

cell). Γ? is the dual lattice of Γ, defined as

Γ? = {n ∈ R|〈m,n〉 ∈ Z, ∀m ∈ Γ}. (E.2)

In 1D the inner product 〈·, ·〉 is reduced to multiplication in R. In particular the following

special case is the most frequently invoked in physics literature:

∑
n∈Z

exp
(
−πan2 + bn

)
=

1√
a

∑
k∈Z

exp

(
−π
a

(
k +

b

2πi

)2
)

(E.3)

and its inverse ∑
k∈Z

exp(−πa(k + b)2) =
1√
a

∑
n∈Z

exp
(
−π
a
n2 + 2πibn

)
. (E.4)

The generalization of (E.1) to higher dimension is obvious [36].

F Half-linking γ matrix

We briefly review γ matrix following [14]. For a topological order on a cylinder with

gapped boundaries µ and ν, there are naturally two sets of basis to describe the ground
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state subspace, namely the Wilson loop basis

∣∣∣∣ x

〉
labeled by the confined sector x, and

the Wilson line basis
∣∣∣ c

〉
labeled by the condensed sector c shared by the top and bottom

physical boundaries. We label by C the set of shared condensed sectors.

The γ matrix is the transformation matrix between the two sets of basis.∣∣∣∣ x

〉
=
∑
c∈C

γxc

∣∣∣ c

〉
. (F.1)

The unitarity of γ matrix comes from the orthonormality of the Wilson line basis and

the Wilson loop basis:

δxy =

〈
x

∣∣∣∣ y

〉
=
∑
c,d

〈
d

∣∣∣ γ†dyγxc ∣∣∣ c

〉
=
∑
c,d

γ†dyγxcδcd =
∑
c

γ†cyγxc.

From the unitarity we can obtain the inverse transformation:∣∣∣ c

〉
=
∑
x

γ†cx

∣∣∣∣ x

〉
=
∑
x

γxc

∣∣∣∣ x

〉
.

F.1 B = Z(C)

If the bulk theory B = Z(C) can be factorized B = C � C̄ where C is also a modular tensor

category with modular matrix SC , then γxc = SCx,c =
SB
x0̄,cc̄√
SB

00̄,cc̄

.

We can perform the folding/unfolding trick if B can be factorized. Unfolding the

cylinder to a torus, the doubled theory B splits into C and C̄. The Wilson loop
x

unfolds to
x

and
0̄

, while the Wilson line c unfolds to c and c̄ .

The SB for the doubled theory is the tensor product SB = SC ⊗ SC̄ , so

SBij̄,kl̄ = SCikS
C̄
j̄ l̄ = SCikS

C
jl.

The last step comes from the fact SC̄
j̄ l̄

= SCjl. Hence we have

SB
x0̄,cc̄√
SB

00̄,cc̄

= SCx,c . (F.2)

The γ matrix can be identified with the SC matrix in this case. Because the cylinder

basis transformation

∣∣∣∣ x

〉
↔
∣∣∣ c

〉
, if viewed in the unfolded picture, is exactly the basis

transformation

∣∣∣∣ x

〉
↔
∣∣∣ c

〉
on a torus, which is dictated by SC matrix.
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F.2 Abelian Chern-Simons

If the bulk theory is Abelian Chern-Simons theory given by the K matrix, and both

boundaries of the cylinder are described by condensate C, then γxc = Sxc√
S0c

.∣∣∣∣ 0

〉
=

1√
D

∑
c∈C

∣∣∣ c

〉
(F.3)

where the normalization constant 1√
D

comes from |C| = D. Applying Wilson loop operators

to this state ∣∣∣∣ x

〉
= ̂

x

∣∣∣∣ 0

〉
=

1√
D

∑
c∈C

̂
x

∣∣∣ c

〉
=

1√
D

∑
c∈C

Sxc
S0c

∣∣∣ c

〉
=

Sxc√
S0c

∣∣∣ c

〉
(F.4)

in the last line we’ve used S0a = da
D = 1

D for abelian Chern-Simons theory.

G TQFT S matrix = CFT S matrix

For Abelian Chern-Simons theory on a torus, the TQFT S matrix from anyon braiding is

identified with CFT S matrix from modular transformation of characters.

If an Abelian Chern-Simons theory supports gapped edge, then its bulk K matrix must

have total signature 0, and hence congruent to
(
1 0
0 −1

)
. Suppose

ATKA =

(
1 0

0 −1

)
, (G.1)

taking the determinant of both sides gives detA = 1√
| detK|

= 1
D , where D is the total

quantum dimension. In abelian Chern-Simons theory, each anyon has quantum dimension

1, so D2 = #(anyon types) = | detK|. The quantized conjugate momentum is:4(
P1

P2

)
= K−1m, (G.2)

where m = (P 1, P 2)T is an integer vector. Transforming to the left/right-moving frame,(
PL
PR

)
= A−1

(
P1

P2

)
= (KA)−1m . (G.3)

4For simplicity and without loss of generality, we will assume K to be a 2× 2 matrix, the generalization

is obvious.
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Whenever we want to calculate the character of a CFT living on an entanglement cut, the

pattern
∑
e−2πH always appear. If we analyze the Hamiltonian closely,

H =
P 2
L + P 2

R

2
+
∑
n>0

(αL,−nαL,n + αR,−nαR,n)− 1

12
(G.4)

the first part
P 2
L+P 2

R
2 is responsible for Poisson resummation and yields Jacobi θ function,

while the second part
∑

n>0(αL,−nαL,n+αR,−nαR,n)− 1
12 always gives Dedekind η function.

The summation in
∑
e−2πH is performed over all primaries inside a superselection sector,

which is reduced to summation over some integer lattice sites equivalent under K. Denote

this lattice by Γ, it is a sublattice of Z2, and satisfies

∀x,y ∈ Γ, ∃n ∈ Z2 such that x− y = Kn . (G.5)

The first part of the Hamiltonian (G.4) can be written as

1

2
(P 2

L + P 2
R) =

1

2

(
PL PR

)( 1 0

0 1

)(
PL
PR

)

=
1

2
mT ((KA)−1)T

(
1 0

0 1

)
(KA)−1m

=
1

2
mTAATm. (G.6)

The 1D Poisson resummation formula∑
n∈Z

exp(−πan2 + bn) =
1√
a

∑
k∈Z

exp

(
−π
a

(
k +

b

2πi

)2
)

can be easily generalized to 2D:

∑
n∈Z2

exp(−πnTAn + bTn) =
1√

detA

∑
k∈Z2

exp

(
−π
(

k +
b

2πi

)T
A−1

(
k +

b

2πi

))
.

Consider Γa = KZ2 + a, let’s focus on the Poisson resummation part of exp(−2πH)∑
m∈Γa

exp(−πmTAATm)

=
∑
n∈Z2

exp(−π(Kn + a)TAAT (Kn + a))

=
∑
n∈Z2

exp(−πnTA−TA−1n− 2πaTAATKn− πaTAATa)

=
1√

det(A−TA−1)

∑
k∈Z2

exp(−π(k + iKAATa)TAAT (k + iKAATa)− πaTAATa)

= det(A)
∑
k∈Z2

exp(−πkTAATk− 2πiaTAATKAATk) (G.7)
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where in the second line we rewrite m = Kn+a and transform the sum over m to the sum

over n. As demonstrated above, the next key step is to split the sum
∑

k∈Z2 to a double

sum. To this end, we rewrite k = Kp + b. In order to recover the Z2 lattice over which k

is summed, b must run through all possible anyon types, namely
∑

k∈Z2 =
∑

p∈Z2

∑
b∈L.

Furthermore AATKAATK = 1 by the definition of A.∑
m∈Γa

exp(−πmTAATm)

= det(A)
∑
b∈L

exp(−2πiaTK−1b)
∑
p∈Z2

exp(−π(Kp + b)TAAT (Kp + b))

=
∑
b∈L

1

D
exp(−2πiaTK−1b)

∑
m∈Γb

exp(−πmTAATm)

=
∑
b∈L

Sab
∑

m∈Γb

exp(−πmTAATm), (G.8)

where Sab = 1
D exp(−2πiaTK−1b) is the TQFT S matrix defined as the Hopf link with

the two cycles labeled by a and b respectively. Restore the full character by completing

the η function part and the appropriate modular parameter we get

χa(q) =
∑
b∈L

Sabχb(q̃) . (G.9)

Thus we have shown explicitly that the modular transformation of characters is effected

by the TQFT S matrix in Abelian Chern-Simons theory.
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