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1 Introduction

Higher derivative interactions for gravity theories have been an interesting playground in

various studies in cosmology, black hole physics and AdS/CFT duality. However, models

whose equations of motion contain more than two derivatives are usually plagued with

ghosts since a new massive mode arises which is tachyonic. In three dimensions (3D) one

may play with the sign in front of the action by arguing that the massless mode does not

propagate but this would spoil unitarity in the dual CFT picture as charges of the theory

are calculated at infinity and contributed by the massless sector. This is usually referred

as the bulk-boundary unitarity clash in 3D gravities [2].

Constructing gravity models with any number of derivatives in 3D is very systematic

in the first order formalism where the Lorentz and the diffeomorphism invariances are

manifest. The Lagrangian is a 3-form and should be written in a gauge invariant manner

based on the Lorentz gauge group SO(1,2) with respect to the spin connection ω [1]. These

models fit into the family of the ‘Chern-Simons-like’ theories [3, 4]. Here, in addition to

the dreibein and the spin connection, we may also allow a number of auxiliary form fields

if we want a gravity model with higher number of derivatives in the metric formulation.

Provided that one can solve for these auxiliary fields algebraically in terms of the dreibein

and its derivatives (eµ
a, ∂eµ

a, · · · , ∂neµ
a), one can insert them back into the action or field

equations and obtain their metric form. So, we can associate a weight n to each of these

fields. We denote those with even weights (n = 2I) as fI and those with odd weights

(n = 2I + 1) as hI . The dreibein e and the spin connection ω correspond to I = 0, see

table 1. All fields are Lorentz vector 1-forms

e = eaJa , ω = ωaJa , fI = fa
I Ja , hI = haIJa , (1.1)
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Fields e ω f1 h1 f2 h2 · · ·

Weight 0 1 2 3 4 5 · · ·

Table 1. Form fields and their weights.

with Xa = Xa
µ dx

µ being a generic one-form and Ja being the generator of the 3D gauge

Lorentz algebra, [Ja, Jb] = ǫabcJ
c. This formulation by construction avoids scalar ghosts

and leads to the right number of degrees of freedom for the (massive) graviton.

There are two gauge invariant sectors namely, parity even theories with 2N +2 deriva-

tives and parity odd theories with 2N + 3 derivatives (where N ≥ 0) whose actions are

denoted as S2N and S2N+1 respectively, see table 2. The systematic construction of these

models was considered in [1]. Kinetic and potential terms in these actions with a definite

parity are given as follows:

• Parity even terms:

〈fI ∧ DhJ〉 , 〈fI ∧ fJ ∧ fK〉 , 〈fI ∧ hJ ∧ hK〉 . (1.2)

The total weight in each of these terms should not exceed the number of derivatives

which is 2N +2 here. The cases of N = 0 and N = 1 correspond to Einstein-Hilbert

gravity S0 and new massive gravity (NMG) S2 [5, 6] respectively.

• Parity odd terms:

〈hI ∧ DhJ〉 , 〈fI ∧ DfJ〉 , 〈hI ∧ hJ ∧ hK〉 , 〈fI ∧ fJ ∧ hK〉 . (1.3)

The total weight in each of the above terms should not exceed the number of deriva-

tives which is 2N+3. The N = 0 case S1, corresponds to 3D conformal gravity [7–10].

Here, D is the exterior covariant derivative with respect to the 3-dimensional Lorentz group

which has weight one and 〈 〉 indicates the appropriate contraction of Lorentz indices such

that by dropping the wedge symbol we have; 〈A ∧B〉 = A·B and 〈A ∧B ∧ C〉 = 1
2A·[B,C].

As stated above, the guiding principle in this construction is simply to respect the

weight in each term according to the number of derivatives in the model.1 As was shown

in [1], both sectors of these models have a metric formulation at the level of their action.

Once we exhaust all possible gauge invariant 3-form terms (including the kinetic and the

potential ones) at a given weight, this has the following consequences:

1. The torsion remains zero by which one can solve the spin connection as usual.

2. The Bianchi identity is guaranteed to hold off-shell.

3. All auxiliary fields are solved algebraically since they appear linearly.

4. The field equation and the action has the same parity.

1The spin connection ω ≡ h0 obviously can only appear in Kinetic terms via the covariant derivative D

and the Ricci 2-form R and in potential terms as the Chern-Simons combination.
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S2N S̃2N S2N+1

parity even odd odd

# deriv. 2N + 2 2N + 2 2N + 3

# d.o.f. 2N 2N 2N + 1

Table 2. Parity preserving models, their number of derivatives and local degrees of freedom, N ≥ 0.

S1 is special and does not obey the rule in number of degrees of freedom as it enjoys one extra

conformal gauge symmetry and consequently has zero d.o.f.

The second item above essentially implies that the theory will have an action in the metric

formulation. Parity violating models can be constructed by combining these parity even

and odd models, e.g. topologically massive gravity (TMG) [7] as S0 + S1, general massive

gravity (GMG) [5, 6] as S1 + S2 and so on.

There exists a modification of this first order construction of higher derivative gravity

models such that among the four properties listed above, the first and the third property

are retained while the second property holds only on-shell and the fourth one is relaxed.

In this modification the assumption of preserving the weight in each potential/kinetic term

of (1.2) and (1.3) is relaxed in such a way that the third property above still holds, the

first property can be restored by a linear shift in the spin connection while the second

property only holds on-shell. As a consequence there is no action in the metric formulation

and the 4th property does not necessarily hold any more. This is referred to as the third

way consistency. The first example of such a model was found in [11] and was called

minimal massive gravity (MMG). It attracted a lot of attention since it offered a possible

resolution to the bulk-boundary clash [12–14]. Another example was found in [15] and was

called exotic massive gravity (EMG) which has a parity odd first order action but parity

even field equations. They were obtained by deforming the S1 and S2 actions respectively.

Our goal in this paper is to show that exotic models, which we denote as S̃2N , can be

constructed via truncation of parity odd actions

S2N+1 → S̃2N , (1.4)

in which the highest weight field fN+1 in S2N+1 is identified with a linear combination

of lower weight ones fN , fN−1, · · · in a parity preserving manner. One also needs to add

irrelevant, i.e. weight violating, potential terms including h3N in the action such that after

a shift in the spin-connection by hN (and possibly also with lower weight hi’s), the theory

is third way consistent.2 In this top-down approach no guess work is involved for the

dynamical terms in S̃2N and the necessary potential terms are not difficult to figure out

by requiring the system to be third-way solvable. Hence, it is more systematic than the

bottom-up approach employed earlier [11, 15], which is hard to generalize if one wants

models with even higher order derivatives. These exotic models have the same number of

derivatives and degrees of freedom as in S2N , see table 2.

2See [16] for construction of such models directly in the metric formulation.
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The structure of this paper is as follows. In section 2 we explain how to check Bianchi

identities using the first order formulation which is easier than doing this at the metric

level. In section 3 we re-derive known examples of exotic massive gravity models, that is

S̃0 [17] and S̃2 [15], using our truncation idea. In section 4 we apply our approach to the

S5 action to construct the next order example of exotic massive gravity namely S̃4. We

show that it is third way consistent and give its metric field equation (4.19) which is of

order six. We conclude in section 5 by indicating some future directions. In appendix A we

show that MMG [11] can be obtained from EMG [15] using a parity violating truncation.

2 Bianchi identities in the first order formulation

For higher derivative gravity theories checking the Bianchi identity becomes quite com-

plicated as number of derivatives increase. However, when a first order formulation is

available, this computation is rather straightforward which we would like to illustrate in

this section.

In the models constructed in [1], field equations in the first order formulation can be

ordered from that of the lowest degree field, i.e. dreibein, to the highest degree (auxiliary)

field such that at level n, the degree n field appears linearly as the unknown. Assuming

invertibility of the dreibein, these equations can be solved one-by-one algebraically (with

finite number of terms) until the last which becomes the metric field equation of the model.3

Checking the Bianchi identity in this formalism amounts to checking whether the covariant

derivative of the 2-form appearing on the left hand side of the last equation is zero. In doing

that, one is allowed to use all previous equations and their covariant derivatives which give

several constraints. These intermediate constraints are however trivially satisfied in the

2nd order formulation of the theory. If the Bianchi identity is satisfied only after using the

last equation itself, then we have a third way consistent model. Note that this means that

the model does not have a covariant metric formulation as the Bianchi identity is just a

consequence of the diffeomorphism invariance. A clear sign of such a model is to have a

square of the highest degree form field appearing in the last first order equation.

(Exotic) Einstein gravity. To construct a gravity model in three dimensions in the first

order formulation obviously we at least need the dreibein and the spin-connection. The

number of degrees of freedom for this minimal set of fields is zero which is due to the fact

that the number of dynamical spatial components eai and ωa
i is 12 and there are six diagonal

gauge symmetries and six temporal components ea0 and ωa
0 as Lagrange multipliers.

Einstein field equations in the presence of a cosmological constant is:

Gµν + Λ0gµν = 0 , (2.1)

3Here, we only consider a frame formalism which leads to finite number of terms in the metric formulation.

There are examples such as the multiple interacting frame fields [18, 19] and the Born-infeld gravity [20] in its

frame form — see the discussion session of [1] — whose metric formulation leads to infinite number of terms.
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which in 3-dimensions can be derived from the following first order field equations on the

dreibein e = (eµ
a dxµ)Ja and the spin-connection ω = (ωµ

a dxµ)Ja:

De = 0 , (2.2a)

R−
1

2
Λ0[e, e] = 0 . (2.2b)

Here De = de+[ω, e] ≡ T and R ≡ dω+ 1
2 [ω, ω] with D ≡ d+[ω, ] being the exterior covari-

ant derivative with respect to the SO(1,2) gauge field ω. Interestingly, field equations (2.2)

can be integrated to the level of first order actions in two different ways;

S0[e, ω] = −
1

κ2

∫

〈e ∧R−
Λ0

3
e ∧ e ∧ e〉 , (2.3)

S̃0[e, ω] =
1

2κ2µ

(

SLCS − Λ0

∫

〈e ∧ De〉

)

, (2.4)

where µ is an arbitrary mass scale and the Lorentz Chern-Simons action is given as;

SLCS[ω] =

∫

〈ω ∧ dω +
2

3
ω ∧ ω ∧ ω〉 . (2.5)

The action (2.3) describes the ordinary Einstein gravity whereas the gravity theory obtained

from (2.4) is called as exotic 3D gravity. One should note that in this model the cosmological

constant Λ0 can not be set to zero as it guarantees the torsion constraint (2.2a). The S0 and

S̃0 both have Chern-Simons formulations based on the so(2, 2) algebra which can be written

as the difference and the sum of two sl(2, R) Chern-Simons theories, respectively [17, 21].

This is the consequence of the fact that the so(2, 2) algebra admits two non-degenerate

bilinear forms [17, 22].

To check the Bianchi identity, we apply the covariant exterior derivative on the first

equation (2.2a) and get the constraint

0 = DDe = [R, e] , (2.6)

which is satisfied in the second order formulation of the theory where the spin-connection

is solved in terms of the dreibein from the torsion-zero constraint (2.2a). Now applying

the covariant exterior derivative on the left hand side of the field equation (2.2b) and again

using the equation (2.2a), we get

D

(

R−
1

2
Λ0[e, e]

)

= DR , (2.7)

which is identically zero. Note that in getting to this result we have not used the field

equation (2.2b) itself. This is of course not surprising as we know that the Einstein equa-

tion (2.1) can be obtained from the Einstein-Hilbert action.

Conformal Chern-Simons gravity (CSG). In the next level we can add a new Lie

algebra valued 1-form field f1 =
(

f1
a
µ dx

µ
)

Ja whose weight is 2 and write the following

parity odd gauge invariant action,

SCSG = S1[e, ω, f1] =
1

2κ2µ

(

SLCS + 2

∫

〈f1 ∧ De〉

)

, (2.8)
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which is the first order formulation of conformal gravity in three dimensions which leads

to a model that is third order in derivative in the metric formulation [8–10]. The field

equations of (2.8) are

δf1 De = 0 , (2.9a)

δω R+ [e, f1] = 0 , (2.9b)

δe Df1 = 0 . (2.9c)

Equation (2.9a) implies that there is no torsion and the field f1 appears linearly in (2.9b)

which can be solved easily as

fa
1 = −Sabeb , (2.10)

where Sµν = Rµν − 1
4Rgµν is the Schouten tensor. Now using this in (2.9c) we get the

metric field equation of the model as

Cµν = 0 , (2.11)

where Cµν = e−1ǫ(µ|
αβ∇αSβ|ν) is the Cotton tensor which is symmetric, traceless and

divergence free. The last property simply means that Bianchi identity is satisfied off-shell

which is a consequence of the fact that the field equation (2.11) can be derived from the

gravitational Chern-Simons action:

S =
k

4π

∫

d3xǫλµνΓσ
λρ

(

∂µΓ
ρ
νσ +

2

3
Γρ
µτΓ

τ
νσ

)

. (2.12)

Now, we would like to show that the Bianchi identity of this model is satisfied off-shell using

its first order formulation (2.8). Applying the covariant derivative on the equation (2.9a)

and using (2.9b) we get the constraint

0 = DDe = [R, e] = −[[e, f1], e] = e · f1e , (2.13)

where the dot · in the last item indicates contraction of the Lorentz indices. Note that this

constraint is satisfied in the metric formulation where f1 is given by (2.10). Now applying

the covariant derivative on the field equation (2.9c) we get

DDf1 = [R, f1] = −[[e, f1], f1] = e · f1f1 , (2.14)

which vanishes due to (2.13).

Topologically massive gravity (TMG). A natural diffeomorphism invariant theory

in this series is the topologically massive gravity (TMG) [7] which is the sum of S0 (2.3)

and S1 (2.8) and as a consequence, parity violating:

STMG = S0 + S1 . (2.15)

Field equations are obtained as

δf1 De = 0 , (2.16a)

δω R+ [e, f1] = 0 , (2.16b)

δe
1

µ
Df1 −R+

1

2
Λ0[e, e] = 0 . (2.16c)
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Since equations (2.16a)–(2.16b) are identical with (2.9a)–(2.9b) the constraint (2.13) is also

valid in this model which immediately implies that the Bianchi identity is satisfied off-shell

as expected.

Minimal massive gravity (MMG). Until now we have considered terms which have

dimensions up to 3 in the action and observed that in all these models Bianchi identity is

satisfied off-shell. Since we have a new field f1 with mass dimension 2 in the game, we may

try to deform the TMG action (2.15) by an irrelevant dimension-4 term as follows:

SMMG = STMG +
α1

κ2µ2

∫

〈e ∧ f1 ∧ f1〉 , (2.17)

where α1 is a dimensionless parameter. This is a minimal extension of our third order-in-

derivative TMG model and is not going to affect the number of local degrees of freedom.

This model is called as minimal massive gravity (MMG) [11] with the following field equa-

tions;

δf De+
α1

µ
[e, f1] = 0 , (2.18a)

δω
1

µ
(R+ [e, f1])−De = 0 , (2.18b)

δe
1

µ
Df1 +

α1

2µ2
[f1, f1]−R+

1

2
Λ0[e, e] = 0 . (2.18c)

The theory is not torsion free but we can make it so by making a parity violating

shift:4

ω → ω −
α1

µ
f1 , (2.19)

which leads to;

De → De−
α1

µ
[e, f1] , (2.20)

Df1 → Df1 −
α1

µ
[f1, f1] , (2.21)

R → R−
α1

µ
Df1 +

α2
1

2µ2
[f1, f1] . (2.22)

Consequently, field equations (2.18a)–(2.18c) transform as;

De = 0 , (2.23a)

R+ (1 + α1)
2[e, f1] +

α1

2
Λ0[e, e] = 0 , (2.23b)

1 + α1

µ
Df1 −

α1(1 + α1)

2µ2
[f1, f1]−R+

1

2
Λ0[e, e] = 0 . (2.23c)

Note that, in comparison to TMG equations (2.16) here we have the f2
1 term in (2.23c)

as a new ingredient which will spoil the Bianchi identity as we will show now. The con-

straint (2.13) is still valid for this model. Now, taking the covariant derivative on the left

4This is legitimate as TMG itself is parity violating.
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hand side of the field equation (2.23c) we find that it is proportional to

f1Df1 (2.24)

which is not identically zero but it vanishes if we replace Df1 from the field equation (2.23c):

f1Df1 = [f1,Df1] ≈
α1

2µ
[f1, [f1, f1]] = 0 . (2.25)

where we used the constraint (2.13) again and the symbol ≈ means on-shell. Therefore,

MMG is a third way consistent theory.

3 Exotic 3D massive gravities from truncation

In this section we explain how exotic gravity models S̃0 (2.3) and S̃2 [15] can be obtained

starting from parity odd actions S1 (2.8) and S3 found in [1] respectively, by truncating

the highest degree auxiliary field in a parity preserving manner.

Conformal to exotic gravity. Here we make a simple but important observation which

is going to be the basis of our construction of exotic models. The exotic action S̃0 in (2.4)

can be obtained from conformal gravity action S1 in (2.8) through a truncation of the extra

field f1 as follows;

S̃0[e, ω] = S1

[

e, ω, f1 → −
Λ0

2
e

]

. (3.1)

This truncation obviously preserves the parity as it identifies an even form field f1 (with

weight 2) with the Dreibein e (with weight 0).

Exotic massive gravity (EMG). In order to construct S̃2, i.e. EMG [15], we need the

parity odd action S3 that was first introduced in [1]:

S3[e, ω, f1, h1, f2] =
1

κ2µ3

∫

〈

eDf2 + h1 (R+ ef1) +
α

2
f1Df1

〉

+ S1 . (3.2)

Here α is a free parameter and from now on we will not put ∧ between forms for simplicity.

It is also possible to extend this 5th order action by adding S0 (2.3) and S2 in a parity

violating manner. This model, which has three degrees of freedom, has a metric formulation

and the Bianchi identity is satisfied off-shell as a consequence — see appendix B in [1].

Having introduced S3, which is the next to leading parity odd action with metric

formulation, we may now ask if there exists a 4th order-in-derivative parity odd model S̃2

which has parity even field equations as in NMG [5]. To construct this model we start with

S3 given in (3.2) and truncate a single degree of freedom by identifying the highest weight

1-form f2 with lower even weight ones as f2 = µ2
(

f1 −
Λ0
2 e

)

where µ and Λ0 are some mass

parameter constants. It turns out that in order to be able to solve for the spin connection

ω and auxiliary fields f1 and h1 one after the other, we should further set α = 0 and also

minimally deform the theory by the irrelevant h31 term so that at the end the theory is

– 8 –
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third way consistent. So, we get

S̃2[e, ω, f1, h1] = S3[f2 → µ2

(

f1 −
Λ0

2
e

)

, α = 0] +
2ζ

κ2µ7

∫

〈

h31
〉

(3.3)

=
1

κ2µ3

∫
〈

µ2

(

f1 −
Λ0

2
e

)

De+ h1(R+ ef1 + ζ µ−4h21)

〉

,

where we omitted SLCS given in (2.5) since it will not affect the following discussion. The

field equations are given as;

δf1 De+
1

µ2
[e, h1] = 0 , (3.4a)

δh1 R+ [e, f1] +
3ζ

µ4
[h1, h1] = 0 , (3.4b)

δe Df1 +
1

µ2
[h1, f1] +

Λ0

µ2
[e, h1] = 0 , (3.4c)

δω
1

µ2
Dh1 −

Λ0

2
[e, e] = 0 . (3.4d)

After doing the shift ω → ω− 1
µ2h1 so that the theory is torsion free, we see that choosing

ζ = 1
6 we get

δf1 De = 0 , (3.5a)

δh1 R+ [e, f1]−
Λ0

2
[e, e] = 0 , (3.5b)

δe Df1 +
Λ0

µ2
[e, h1] = 0 , (3.5c)

δω
1

µ2

(

Dh1 −
1

µ2
[h1, h1]

)

−
Λ0

2
[e, e] = 0 . (3.5d)

In the last equation the presence of the h21 term signals that Bianchi identity is not satisfied

off-shell and indeed the system is third way consistent. To see this, note that in addition

to the constraint (2.13), here from (3.5b) and (3.5c) we also have

e · h1 e = 0 , (3.6)

which is trivially satisfied in the 2nd order formulation where h1 is solved from (3.5c) as

ha1 = Cabeb . (3.7)

Now applying the covariant derivative to the left hand side of (3.5d) we see that it is zero

only if we use the equation (3.5d):

h1Dh1 = [h1,Dh1] ≈
1

µ2
[h1, [h1, h1]] = 0 . (3.8)

The full exotic massive gravity theory is obtained after adding SLCS (2.5) to S̃2 (3.3) which

brings the term R in (3.5d). Finally, one finds the metric field equation of EMG as [15]:

Λgµν +Gµν −
1

m2
Hµν +

1

m4
Lµν = 0 , (3.9)

– 9 –
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where (m, Λ) are constants proportional to (µ, Λ0) and

Lµν ≡
1

2
e−1ǫµ

ρσǫν
λτCρλCστ , (3.10)

Hµν ≡ e−1ǫ(µ|
αβ∇αCβ|ν) . (3.11)

4 Extended exotic massive gravity

We can continue the game above and construct higher order exotic massive gravity theories.

The rules of the game is to start from parity odd models, do the appropriate truncations

and perhaps add some potential terms to make the final model third way consistent:

S2N+1[fN+1 → (fN , · · · , e)] −→ S̃2N . (4.1)

After showing how this construction works for the N = 0 and N = 1 cases, now we apply

our method to the N = 2 level. To do this, we start from S5 constructed out of (1.3) in [1]

S5 =
1

κ2µ5

∫

〈

eDf3 + f1Df2 + α2h2 (R+ ef1) + h1
(

α1Dh1 + f2
1 + ef2

)〉

+ S3 , (4.2)

where we used the rescaling freedoms to set some coefficients to unity. Starting from the S5

action and making a general parity preserving truncation f3 → (f2, f1, e), we may generate

some terms which are already present in the S3 (3.2) and S1 (2.8) actions. Here, it turns out

that only the f3 → e truncation gives rise to a new term. We want to get a well-defined set

of equations after shifting the connection with the remaining highest degree field, namely

h2. Therefore, we also deform this action by adding appropriate potential terms and start

with the following:

S̃4 = S′
3 +

1

2µκ2

∫
〈

2

µ4
(α1h1Dh1 + α2h2R)− Λ0eDe

〉

(4.3)

+
1

κ2µ7

∫
〈

b1ef2h2 + b2f
2
1h2 + b3h

3
1 +

1

µ2
b4h

2
1h2 +

1

µ4
b5h

2
2h1 +

1

µ6
b6h

3
2

〉

where we relaxed the coefficients in (3.2) as

S′
3 =

1

κ2µ3

∫

(

a1eDf2 + a2h1R+ a3eh1f1 +
α0

2
f1Df1

)

. (4.4)

One can also add the S1 action (2.8) to (4.3) but as we will see it is not needed to get a

third-way consistent model. In (4.3) we have also ignored f2Df1 term coming from (4.2)

for the same reason.5

After we make the shift ω → ω − b1
a1µ4h2 and by choosing

α1 = −
b1a

2
2

4α2a1
, b2 =

α0b1
2a1

, b3 =
b21a

3
2

12α2
2a

2
1

, b4 =
b21a

2
2

4α2a21
, b5 =

b21a
2
2

2a21
, b6 =

α2b
2
1

6a21
,

(4.5)

5To be able to keep this term we need to add more potential terms to (4.3) and perform a double shift

ω → ω − c1h2 − c2h1.

– 10 –



J
H
E
P
1
1
(
2
0
1
9
)
1
4
5

we get the follwoing third-way consistent system:

δf2 De = 0 , (4.6a)

δh2 R+ 2a3 [e, f1]−
Λ0

2
[e, e] = 0 , (4.6b)

δf1 Df1 + a3 [e, h1] = 0 , (4.6c)

δh1 Dh1 + 2[e, f2] + [f1, f1] +
a3µ

2

2
[e, f1] = 0 , (4.6d)

δe Df2 +
Λ0

µ2
[e, h2] + a3 [f1, h1] = 0 , (4.6e)

δω
1

µ4
Dh2 −

1

µ8
[h2, h2]−

1

µ6
[h2, h1]−

1

4µ4
[h1, h1]

−
1

2µ2
[f1, f1]−

1

µ2
[e, f2] + 2a3[e, f1]−

Λ0

2
[e, e] = 0 , (4.6f)

where we used rescaling freedoms of the form fields to normalize non-zero free parameters

(a1, a2, α0, α2, b1) to unity. Above D denotes the covariant derivative with respect to the

shifted connection. Note that the cosmological constant Λ0 and a3 cannot be set to zero as

they are essential for solving the system consistently for f1, h1 and h2. The full equation

system (4.6) resembles that of the extended NMG [1] deformed in the last equation with

h22 and h1h2 terms. But f1f2 term is missing since we did not include f2Df1 term in our

action — see the footnote 5. As noted above, we checked that adding S1 action (2.8)

to (4.3) is possible which does not change the general structure of the equations above but

just modifies coefficients (4.5).

To see the third-way consistency note that applying covariant derivative to equa-

tions (4.6a)–(4.6e) and assuming invertibility of the dreibein, we get constraints of the

following sort

e · f1 = e · h1 = e · f2 = e · h2 = 0 . (4.7)

Now taking the covariant derivative of the 2-form on the left hand side of the equation (4.6f)

and using these constraints we see that it vanishes only after we use the equation it-

self (4.6f):

−
2

µ8
[Dh2, h2]−

1

µ6
[Dh2, h1] ≈ 0 , (4.8)

which shows that the model is third way consistent.

4.1 Metric field equation

To find the metric form of the equation system (4.6a)–(4.6f) we first do the following shifts:

f1 → f̂1 +
Λ0

4a3
e , f2 → f̂2 −

[

Λ2
0

32a23
+

µ2Λ0

16

]

e . (4.9)
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After these we get (we drop hats):

δf2 De=0 , (4.10a)

δh2 R+2a3 [e,f1] = 0 , (4.10b)

δf1 Df1+a3 [e,h1] = 0 , (4.10c)

δh1 Dh1+2[e,f2]+[f1,f1]+

[

Λ0

2a3
+
a3µ

2

2

]

[e,f1] = 0 , (4.10d)

δe Df2+
Λ0

µ2
[e,h2]+a3 [f1,h1]+

Λ0

4
[e,h1] = 0 , (4.10e)

δω
1

µ4
Dh2−

1

µ8
[h2,h2]−

1

µ6
[h2,h1]−

1

4µ4
[h1,h1]+

1

2µ2
Dh1−

9

8
R+

Λ0

16
[e,e] = 0 . (4.10f)

The auxiliary fields can be solved as [1]:

(f1)µν = −
1

2a3
Sµν , (4.11)

(h1)µν =
1

2a23
Cµν , (4.12)

(f2)µν = −
1

4a23
Hµν +

1

4a23

(

Pµν −
1

4
Pgµν

)

+

[

Λ0

8a23
+

µ2

8

]

Sµν , (4.13)

(h2)µν = −
µ2

Λ0
Eµν −

µ2

2Λ0a23

(

Qµν −
1

4
Qgµν

)

+
µ2

4Λ0a23
SCµν −

µ2

8a23
Cµν , (4.14)

where the tensor H is defined in (3.11) and E,P and Q tensors are given as

Pµν ≡ Gµ
ρSνρ , Eµν ≡ e−1ǫ(µ|

αβ∇αf2β|ν) , Qµν ≡ C(µ
ρSν)ρ . (4.15)

Here Gµν is the Einstein, Sµν is the Schouten (2.10) and Cµν is the Cotton tensor (2.11).

We also define

Xµν ≡ e−1ǫ(µ|
αβ∇αh2β|ν) , (4.16)

Yµν ≡
1

2
e−1ǫµ

ρσǫν
λτh2ρλh2στ , (4.17)

Zµν ≡ (h2)(µ|ρ|(h1)ν)
ρ . (4.18)

Now, from (4.10f) one gets the following metric field equation of extended EMG as:

1

µ4
Xµν −

1

µ8
Yµν −

1

µ6
Zµν −

1

16a43µ
4
Lµν +

1

4a23µ
2
Hµν −

9

8
Gµν +

Λ0

8
gµν = 0 , (4.19)

where Lµν is given in (3.10). Note that AdS is a solution if we identify −Λ0/9 as the

cosmological constant. Although, it seems that it would be possible to set Λ0 = 0 at this

level, recall that this is not allowed in the first order formulation. Also notice that, the

field equation (4.19) is 6th order in derivatives which can be viewed as a deformation of

the EMG equation (3.9) with {X,Y, Z} tensors and has one extra free parameter. Finally,

one can also add the Cotton tensor ßCµν (2.11) to the field equation (4.19), with a free

coefficient by including the S1 action (2.8) in (4.3).
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5 Conclusion

In this paper we showed how one may truncate a single degree of freedom of the parity odd

models S3 and S5 found in [1] to obtain exotic models S̃2 and S̃4 who have the same number

of d.o.f. as their parity-even cousins S2 and S4. In these truncations we first replaced

the highest weight form fields in S3 and S5 with a linear combination of lower even-weight

forms. We then added sufficient extra potential terms, which violate the weight structure

associated to the number of derivatives in the model, to make eventual models third way

consistent. In the case of S̃2, this extra term is given in (3.3) as h31, and in the latter case

S̃4, these extra weight-violating interaction terms are given in (4.3) and can be generated

from (ef2 + f2
1 )h2 and (h1 +

1
µ2h2)

3 generating functions. Models S̃2 and S̃4 are third way

consistent after shifting the spin-connection ω with h1 and h2 respectively.6 In general, for

constructing exotic models S̃2N our method has three main steps;

1. The field fN+1 in S2N+1 which has the highest even-weight 2N + 2 is identified with

a linear combination of fN , fN−1, · · · which fixes dynamical terms in S̃2N .

2. Having fixed the dynamical terms, necessary potential terms are easy to figure out

by requiring the equation system to be third-way solvable. In particular, h3N should

be present.

3. The spin connection is shifted ω → ω+hN +(hN−1+ · · · ) so that there is no torsion

w.r.t. the new connection.

By restricting both dynamical and potential terms, our method provides a systematic

way of constructing infinitely many exotic third way consistent models. This approach

may also be helpful in obtaining supersymmetric versions of these models which has not

been achieved until now.

In [19] it is shown that there exists a scaling limit, or a flow, from certain interact-

ing multi-gravity theories; S0[e0, ω0] + · · · + S0[eN , ωN ] + (appropriate interaction terms)

to S2N models. Here we expect a same pattern with S̃0[e0, ω0] + · · · + S̃0[eN , ωN ] +

(appropriate interaction terms) to hold for S̃2N as well. This has been shown to work

for the N = 1 case, i.e. EMG [15], already in [23].

It is desirable to study the physical properties of the extended EMG model (4.19) that

we constructed in this paper further. For instance, it would be interesting to study its

matter couplings [15, 24] as well as its unitary extensions [23], which is hard to achieve in

such models [25]. For the EMG [15], the existence of asymptotically AdS solutions obeying

different boundary conditions was found in [26, 27]. Investigating this problem for our

model (4.19) would be important for understanding effects of higher derivative terms on

energy [28] and causality [29].

A generic feature in these models is that field equations in the metric form have opposite

parity compared to the (first order) action. This is a crucial point that should be taken into

account for computing charges. Obviously this leads to different conclusions depending on

6The case of S1 → S̃0 is special as the number of degrees of freedom do not change and we do not add

any new term to the Lagrangian. This is because L1 has an extra conformal gauge symmetry [9].
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whether one uses on-shell approaches like ADT [28] or off-shell ones for this computation,

see [30]) for a review and references. Such a discrepancy is generic for third way consistent

models [31, 32]. In exotic models, for the BTZ black hole solution, one expects the role of

mass and angular momentum to be exchanged in these two approaches:7

Mon-shell = Joff-shell , Jon-shell = Moff-shell . (5.1)

Moreover, in the off-shell approach the left and right central charges have opposite signs

while in the on-shell calculation they have the same sign. Their absolute values obtained in

both approaches are of course the same. This exchange between charges and their signs has

been studied in detail for the 3D Einstein gravity S0 (2.3) and 3D exotic gravity S̃0 (2.4)

in [9, 22], see also [34]. We expect this to be a general feature of charges of higher exotic

models S̃2N compared to S2N .

A natural question to ask is what happens if we continue truncating further after

getting an exotic model. In appendix A we show that truncating the highest degree field

in EMG [15] in a parity violating way one obtains MMG [11]. We expect this to hold for

higher order exotic models as well:

S(N)
EMG −→ S(N)

MMG . (5.2)

For example truncating the h2 field in our extended EMG model (4.19) as h2 → (c1f2 +

c2f1 + c3e) we anticipate to obtain extended MMG with 5th order derivatives. Another

interesting open problem is to see whether the third way consistent models obtained in [35,

36] can fit into this scheme. Finally, finding applications of such models in condensed matter

physics [37] would be nice. We leave investigation of these connections to a future work.
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A MMG from EMG by truncation

Minimal massive gravity (2.17) has 3 dynamical fields (e, ω, f1). Here we ask if we can

obtain it as a truncation from a four field model. At level 4 there are two available models

namely NMG [5, 6] and EMG [15]. It is easy to see that it is not possible to get MMG from

7This claim was later proved in [33].
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NMG via truncation. If instead we start with EMG (3.2) and make the parity violating

truncation h1 → (c4f1 + c5e) we get the following generic action;

S = SLCS +

∫

〈

c0f1De+ c1eDe+ c2ef
2
1 + c3f

3
1 + c4Rf1 + c5eR+ c6e

2f1 + c7e
3
〉

. (A.1)

Here we should treat all constants independent since some coefficients in the initial ac-

tion (3.2) are set to one by re-scaling fields which may be spoiled now. Field equations

are

δf1 c0De+ 2c2[e, f1] + 3c3[f1, f1] + c4R+ c6[e, e] = 0 , (A.2)

δω R+ c0[e, f1] + c1[e, e] + c4Df1 + c5De = 0 , (A.3)

δe c0Df1 + 2c1De+ c2[f1, f1] + c5R+ 2c6[e, f1] + 3c7[e, e] = 0 . (A.4)

If we now demand that the field equations after the shift ω → ω − αf1 take the form of

MMG1

De = 0 , (A.5)

R+m[e, f1] + k[e, e] = 0 , (A.6)

Df1 + n[f1, f1] + p[e, f1] + q[e, e] = 0 , (A.7)

one gets an under-determined system. If c4 = 0, this implies c3 = c6 = 0 and the non-zero

coefficients are found to be:

c2/c
2
0 = −n ≡

α

2
, c7 =

q + c5c1
3

, k = 2(c1 + αq) , m = 2(1− c5α)
2 , p = c25α− c5 . (A.8)

When c1 = 0, these are exactly the coefficients of MMG [11] with c5 = −σ and c7 = Λ0/6.

If c4 6= 0, then one can shift fields to obtain the same model.
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