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1 Introduction

Our understanding of asymptotically AdS4 black holes has recently undergone a revolu-

tionary transformation. Via the AdS/CFT correspondence the macroscopic entropy of a

large class of asymptotically AdS4 black holes has been given a microscopic explanation in

terms of states in the dual 3d N = 2 supersymmetric field theories. Namely, it has been

shown that the topologically twisted index in field theory accounts for the macroscopic

entropy of magnetically charged asymptotically AdS4 black holes [1, 2]. The original ob-

servation has been generalized to include various situations: black holes with hyperbolic

horizons [3], black holes in massive type IIA supergravity [4, 5], black holes in universal
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sectors of gauged supergravities related to M2 branes [6] and to M5 branes [7] (for reviews

with complete lists of references, see [8, 9]).1

This remarkable progress points to an interesting gap — there seem to be a number

of black hole solutions missing. Namely, there are various field theory results for which

the dual black holes are not yet known; this is a welcome challenge for the supergravity

community. For example, the topologically twisted index can be computed for a fairly

generic class of 3d N = 2 supersymmetric field theories, many of which have known gravity

duals [12, 13]. In particular, there are results for field theory duals to AdS4× SE7 when

SE7 = {S7, Q1,1,1,M1,1,1, V 5,2, N0,1,0}. The first entry in this list is well understood on the

black hole side [1, 2], thanks to known solutions in gauged supergravity [14] and their eleven-

dimensional uplift [15], which includes the vector multiplets associated to the isometry of S7

and therefore the mesonic charges in the field theory side. For the other entries, the eleven-

dimensional uplifts with the corresponding vector and hyper mutiplets are also known [16].

In these cases, however, the vector multiplets are associated to the non-trivial two cycles

of the internal manifolds and not to isometries of the space. This implies that the eleven-

dimensional uplift with the internal manifolds Q1,1,1,M1,1,1, V 5,2, N0,1,0 allows only for the

AdS4 black holes whose U(1) charges are baryonic in the field theory side, which has been

studied in [17, 18]: the AdS4 black hole solutions with mesonic twists are still missing in

this case. Considering that the dual topologically twisted indices with mesonic charges

have been already computed in many examples [12, 13], finding such black holes is an

interesting and important problem which might generalize the match found in [1, 2] to

general SE7 internal manifolds.

In this manuscript we do not directly tackle the construction of such missing black

holes, rather, we focus on a more modest problem. We focus on understanding the near

horizon geometry of those extremal black holes. Such solution must contain an AdS2

region and, in all the known cases, it turns out that the near horizon region is by itself a

solution of the supergravity equations of motion. Thus, the classification of solutions with

an AdS2 factor although motivated by understanding extremal black holes in AdS4 is a

well-defined problem in supergravity. In this manuscript we take some steps into the full

systematic classification. We will, however, be guided by a particularly interesting class

of solutions — AdS4× SE7 — whose relation to the black hole is presaged by various field

theory computations.

There have been various explicit efforts towards constructing solutions with AdS2

factors, for example, [19–22]. There are other approaches more focused on constructing

new solutions and downplaying a classificatory goal such as in [6]. One of our goals in

this manuscript is to take one systematic step towards a complete classification within a

well-defined class. Another important goal of this paper is to present explicit solutions

capable of elucidating some of the current puzzles marring the gravitational understanding

of some of the topologically twisted indices on the dual field theory.

1Very recently, a microscopic foundation for the entropy of certain rotating, electrically charged, asymp-

totically AdS4 black holes has been provided via the superconformal index in [10] and using supersymmetric

localization in [11].
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The rest of the manuscript is organized as follows. In section 2 we discuss general

conditions for the existence of supersymmetric AdS2 solution in M-theory supporting an

SU(4)-structure. We pay particular attention to differences between N = (1, 0) and N =

(2, 0). Section 3 starts by briefly describing a number of puzzling situations regarding

the entropy of asymptotically AdS4 solutions from the AdS/CFT point of view. We then

proceed to cast a number of known solutions within our classificatory scheme and also

present the details and motivation for the construction of new solutions with baryonic and

mesonic charges turned on. In appendix A we demonstrate the absence of AdS2 solutions in

M-theory with Spin(7)-structure, while in appendix B show that no AdS3 solutions follow

from SU(4) structure. We also present some explicit details of the Killing spinor equations

in appendix C to aid readers who prefer a more classic approach to solution building.

2 AdS2 solutions with SU(4)-structure

In this section we will derive sufficient geometric conditions for a certain class of minimally

supersymmetic AdS2 solutions in M-theory to exist. The class in question consists of

internal spaces that support an SU(4)-structure. From these conditions we also derive

necessary conditions for N = (2, 0) with SU(4)-structure, which turn out to coincide with

those presented in [21].

2.1 Supersymmetric AdS2

The most general form of a solution to 11 dimensional supergravity that respects the

isometries of AdS2 can take a metric and flux that can be decomposed as

ds2 = e2Ads2(AdS2) + ds2(M9), F = e2Avol(AdS2) ∧G2 +G4, (2.1)

where e2A depends on directions on M9 only, and likewise the 2 and 4 forms G2, G4. We will

allow for non trivial G4, so we have both electric and magnetic flux components turned on

in general, which should be contrasted with [19] that only considered the former. In terms

of (2.1) the Bianchi identity of the flux, away from possible localised sources, becomes

d(e2AG2) = 0, dG4 = 0, (2.2)

while its equation of motion is implied by

d(e2A ?9 G4) + e2AG2 ∧G4 = 0, (2.3a)

d ?9 G2 −
1

2
G4 ∧G4 = 0. (2.3b)

Of course, for a solution to exist one also needs to solve Einstein’s equation, however, as we

shall establish later, for the class of supersymmetric solution we are interested in it turns

out that these are implied by (2.2) and (2.3b).

When supersymmetric, an M-theory solution supports an associated 11 dimensional

Killing spinor ε that obeys

∇N ε+
1

4!

(
3FΓN − ΓNF

)
ε = 0, (2.4)
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where in this expression F should be understood as acting under the Clifford map F →
1
4!FMNPQΓNMPQ. For AdS2 solutions we may decompose ε in general as

ε = ζ+ ⊗ χ1 + ζ− ⊗ χ2, (2.5)

where χ1,2 are two Majorana spinors on M9 and ζ± are Majorana Killing spinors on unit

AdS2 of ± chirality, and so obey

∇aζ± =
1

2
γaζ∓. (2.6)

Upon plugging (2.5) into (2.4) it is then a rather simple matter to show that

|χ|2 = eA, χ =
1√
2

(χ1 + iχ2), (2.7)

where in the first equality we fix an arbitrary constant without loss of generality. One

could proceed in kind, using the Killing spinor equations to construct spinor bi-linears and

the set of necessary and sufficient geometric conditions they must obey for supersymmetry

to be satisfied. However, a more efficient approach is build on an existing geometric clas-

sification, namely that of the geometry following from a single arbitrary Killing spinor in

11 dimensions [23, 24]. This derivation is similar to those in [25, 26], which look at related

problems from the same geometric starting point.

2.2 Review of the Geometry of 11 dimensional Killing spinors

In [23, 24] the geometry that follows from a single Majorana Killing spinor ε in M-theory

is classified. The fundamental objects of this construction are the 1,2 and 5-forms with

components defined in terms on ε as

KM = εΓM ε, (2.8)

ΞMN = εΓMN ε, (2.9)

ΣMNOPQ = εΓMNOPQε, (2.10)

respectively, which obey the following algebraic relations

ιKΞ = 0, ιKΣ =
1

2
Ξ ∧ Ξ, (2.11)

among others. Using only the Killing spinor equation (2.4), the authors of [23] were able

to establish the following necessary and sufficient geometric conditions for supersymmetry

dΞ = ιKF, (2.12)

dΣ = ιK ? F − Ξ ∧ F, (2.13)

dK =
2

3
ιΞF +

1

3
ιΣ ? F, (2.14)

and that K is a nowhere vanishing Killing vector of both the metric and 4-form flux that

can be either time-like or null. The time-like case was considered in [23] where (2.12)–

(2.14) were shown to be sufficient conditions for supersymmetry with the specific analysis
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performed with respect to an SU(5)-structure (see for instance [27] for a review of SU(N)

structures) supported by the internal space orthogonal to K. In [24] the null case was

studied, where (2.12)–(2.14) were once more found to be sufficient for supersymmetry giving

rise to a (spin(7) n R8)× R-structure. In the time-like case supersymmetry together with

the the Bianchi identity and equation of motion of the flux implies Einstein’s equations,

while in the null case one needs to still solve one component of Einstein’s equations.

In what follows we will be interested in AdS2 solutions that support an SU(4)-structure

on their internal space (we also rule out the possibility of Spin(7)-structure in appendix A),

as we shall see, for these K is necessarily time-like. In principle one could work with the

SU(5)-structure conditions presented in [23], however we find it easier to work directly

with (2.12)–(2.14). Before moving on, let us stress that this class of solutions is by no

means exhaustive - indeed all AdS3 solutions admit a parametrisation in terms of an AdS2

factor, and we prove in appendix B that no such solutions lie in this class.

2.3 N = (1, 0) AdS2 solutions with symplectic SU(4)-structure

Our task in this section is to derive K,Ξ,Σ under the assumption that a solution decom-

poses as a warped product of AdS2×M9, with M9 supporting an SU(4)-structure. Then we

derive sufficient conditions for a supersymmetric solution in terms of geometric conditions

on the SU(4)-strucutre. To this end we need to know the form the bi-linears take on AdS2

and for an SU(4)-structure in 9 dimensions.

2.3.1 Bi-linears in 11d in terms of those on AdS2 and M9

The bi-linears for AdS2 can be derived in general from the Killing spinor equation (2.6),

indeed this was already done in [28] so we will be brief and refer the reader to that reference

for further details. We parametrise warped AdS2 as the Poincare patch

e2Ads2(AdS2) = −(e0)2 + (er)2, e0 = eArdt, er = eA
dr

r
, (2.15)

with ds2(AdS2) of unit radius, and take the real basis of flat space gamma matrices σµ for

µ = 0, 1 with σi the Pauli matrices and where σ0 = iσ2. A consequence of this is that σ3 is

the chirality matrix and so the space-time solutions to (2.6) (those giving rise to space-time

supercharges rather than conformal ones) can without loss of generality be taken to be

ζ+ =

(√
r

0

)
, ζ− =

(
0√
r

)
, (2.16)

which are real and so Majorana in these conventions. We can then easily derive the following

0–2 forms

ζ±ζ± = 0, ζ±ζ∓ = ±r2, (2.17a)

ζ±σµζ±dx
µ = r(e0 ± er), ζ±σµζ∓dx

µ = 0, (2.17b)

1

2
ζ±σµσνζ±dx

µ ∧ dxν = 0,
1

2
ζ±σµσνζ∓dx

µ ∧ dxν = re0 ∧ er, (2.17c)

where ζ = (σ0ζ)†.
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We assume that the internal 9-manifold supports an SU(4)-structure, this means that

the 9 dimensional internal spinors χi that appear in (2.5) should be independent, non zero,

and have the same chirality when viewed as spinors in 8 dimensions. An SU(4)-structure

has canonical dimension 8, as such the internal 9-manifold decomposes as

ds2(M9) = V 2 + ds2(M8) (2.18)

where V is a real 1-form and where M8 supports the SU(4)-structure with associated (1, 1)

and (4, 0) forms J and Ω which obey

1

4!
J4 =

1

24
Ω ∧ Ω = Vol(M8), J ∧ Ω = 0. (2.19)

The 1-form V lies strictly orthogonal to the SU(4)-structure forms and so

ιV J = ιV Ω = 0, Vol(M9) = V ∧Vol(M8). (2.20)

We need one more piece of information about the forms (V, J,Ω), exactly how they follow

from χi. This is given for instance in [29], specifically one has

eAVa = χ†γaχ, eAJa1a2 = −iχ†γa1a2χ, eAΩa1a2a3a4 = χc†γa1a2a3a4χ, (2.21)

where χ is defined in terms of χi as in (2.7), γa are 9 dimensional gamma matrices and the

superscript c denotes Majorana conjugation (ie χc = 1√
2
(χ1 − iχ2) as χi are Majorana).

There exists a canonical frame where χi obey the projections

γ1234χi = γ5678χi = γ1256χi = −χi (2.22)

and

γ1357χ1 = +χ1, γ1357χ2 = −χ2. (2.23)

The forms are then also canonical, namely

V = e9, (2.24)

J = e1 ∧ e2 + e3 ∧ e4 + e5 ∧ e6 + e7 ∧ e8, (2.25)

Ω = (e1 + ie2) ∧ (e3 + ie4) ∧ (e5 + ie6) ∧ (e7 + ie8), (2.26)

with e1, . . . , e9 a privileged vielbein spanning M9 associated to the canonical frame.

Finally, before we can put this all together and construct the 11 dimensional forms

of (2.8) we need to choose a basis of gamma matrices in 11 dimensions consistent with a

2 + 9 split and our real gamma matrices on AdS2 - a natural choice is

Γµ = σµ ⊗ I, Γa = σ3 ⊗ γa, (2.27)

with 9 dimensional intertwiner B such that χc = Bχ∗, BB∗ = 1 and B−1γaB = γ∗a. One

can then simply insert our spinor (2.5) and the above gamma matrices into (2.8) and using

– 6 –
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the bilinear expressions (2.17) and (2.21) establish that

K = −eAre0, (2.28a)

Ξ = eAr(er ∧ V − J), (2.28b)

Σ = eAr

(
− e0 ∧ er ∧ V ∧ J +

1

2
e0 ∧ J ∧ J + er ∧ ReΩ + V ∧ ImΩ

)
. (2.28c)

As K is parallel to e0 we clearly have that ||K||2 = −e2Ar2, confirming our earlier claim

that SU(4)-structure implies a time-like Killing vector in 11 dimensions.

In the next section we present sufficient conditions the SU(4)-structure forms must

obey for supersymmetry to hold, and the additional conditions one must satisfy to have a

solution.

2.3.2 N = (1, 0) and symplectic SU(4)-structure conditions

Given (2.28a)–(2.28c), and the fact that the solutions we seek respect the isometries of

AdS2, it is possible to derive a set of sufficient conditions on (eA, V, J,Ω) only that imply

the 11 dimensional conditions (2.12)–(2.14). Upon plugging the former into the later2 one

finds the following differential conditions

d(eAJ) = 0, (2.29a)

d(e2AV ) + eAJ + e2AG2 = 0, (2.29b)

d(eAV ∧ ImΩ)− eAJ ∧G4 = 0, (2.29c)

?9

(
2V ∧ ?9G2 + ReΩ ∧G4

)
+ 6dA = 0, (2.29d)

d(e2AReΩ)− eAV ∧ ImΩ + e2A(?9G4 − V ∧G4) = 0, (2.29e)

and the algebraic constraints

J ∧ J ∧G4 = 0, (2.30a)

V ∧ (ImΩ ∧G2 + J ∧G4) = 0, (2.30b)

eA
(
2J ∧ ?9G2 − V ∧ ImΩ ∧G4

)
= 6Vol9, (2.30c)

where we have simplified expressions wherever possible and omitted conditions that are

obviously implied by others. It seem likely that these are necessary and sufficient conditions

for supersymmetry - sufficiency is guaranteed as (2.12)–(2.14) are themselves necessary and

sufficient but we have not totally ruled out the possibility of some redundancy in (2.29a)–

(2.30c). At any rate this does not overly concern us as solving all of the above guarantees

supersymmetry, be there redundancies or not.

Let us now study these conditions and see what we can learn: from (2.29a) we see that

e−Ads2(M8) in general supports a symplectic SU(4)-structure [27]. The electric component

of the flux G2, is defined by (2.29b) and automatically solves it’s Bianchi identity (2.2)

due to (2.29a). If one assumes the Bianchi identity of G4 it is possible to also derive the

2We make use of the fact that ιΞF = − ? (Ξ ∧ ?F ) and ιΣ ? F = ?(Σ ∧ F ).
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equation of motion for G2 (2.3a) by substituting (2.29b) and (2.29c) into d(2.29e). As such,

solving (2.29a)–(2.30c) is sufficient for supersymmetry and by the integrablity argument

of [23], one need only additionally impose

0 = dG4, (2.31a)

0 = d(e2A ?9 G4) + e2AG2 ∧G4, (2.31b)

in the absence of localised sources to have a solution.3

Additionally we note that if we further decompose

G4 = V ∧G3 + Ĝ4 (2.32)

then (2.29e) completely determines G3 but does not uniquely fix Ĝ4, indeed it only fixes

Ĝ4 − ?8Ĝ4 and in particular yields no information about the self dual components of Ĝ4,

which are only constrained by the remaining conditions. Lastly, we can exploit (2.29d) to

derive another condition, namely

LVA = −1

6
ReΩyĜ4 (2.33)

which implies that V is a Killing vector with respect to A iff the r.h.s. is zero, but is not so

in general. Indeed by studying the 9 dimensional bi-spinor relations that follow from (2.4)

and (2.5) directly one can show that V is not in general a Killing vector of the internal metric

either. This should be contrasted with [19] which found that AdS2 solutions with only non

trivial electric flux turned on always come with a U(1) Killing vector dual to V . They

further establish that regularity for such solutions is only possible when the internal space

supports an SU(4)-structure, which in the end is refined to a Kahler-structure. Although

it is not stressed in [19], the U(1) in this case is actually an R-symmetry indicating an

enhancement of supersymmetry to N = (2, 0), a fact we will confirm in the next section.

However in the presence of magentic flux, this U(1) is not generically present, so there is no

enhancement of supersymmetry. Further the generic structure is symplectic, not Kahler.

In the next section we will derive the sufficient conditions for enhancement to N =

(2, 0) supersymetry, as we shall see, this requires G4 to be highly constrained, but does not

require it to vanish.

2.4 N = (2, 0) and Kahler-structure conditions

For N = (2, 0) supersymmety we must modify the spinor ansatz of (2.5) as

ε =
2∑

a=1

(
ζa+ ⊗ χa1 + ζa− ⊗ χa2

)
, (2.34)

with ζa± doublets of independent real spinors on AdS2 of ± chirality. The 2d N = (2, 0)

superconformal algebra contains a SO(2) R-symmetry under which the internal spinor χa1
3In the presence of sources the Bianchi identity of G4 will be modified by a localised source term,

schematically dG4 = δ. The existence of a supersymmetric solution will then also require that the source

is calibrated.
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and χa2 should be charged - this can be phrased in terms of the spinoral Lie derivative

which acts on a spinor χ along a Killing vector k as

Lkχ = ka∇aχ+
1

4
∇akbγabχ. (2.35)

The condition that the spinors are charged is then equivalent to imposing that

LṼ χ
a
1,2 = −n

2
εab χ

b
1,2. (2.36)

where Ṽ is an SO(2) Killing vector and n is a non zero integer. One can introduce a local

coordinate ψ such that Ṽ = ∂ψ and work in a frame in which the vielbein depends on ψ

only in the combination

Ṽ = eC(dψ + ρ), (2.37)

with LṼ ρ = 0 making M9 a U(1) fibration over an 8d base that is independent of ψ. In

such a frame (2.35) becomes LṼ χ = ∂ψχ, making (2.36) relatively easy to solve - namely

one should parametrise

χa1 =

(
cos(nψ2 )χ0

1 − sin(nψ2 )χ0
2

sin(nψ2 )χ0
1 + cos(nψ2 )χ0

2

)a
, χa2 =

(
sin(nψ2 )χ0

1 + cos(nψ2 )χ0
2

− cos(nψ2 )χ0
1 + sin(nψ2 )χ0

2

)a
, (2.38)

where χ0
1,2 are orthogonal, independent of ψ, and define an SU(4)-structure as before.

Notice that (2.34) is the sum of two independent N = 1 sub-sectors parameterised by the

spinors that involve ζ1
± and ζ2

± respectively. The form of (2.38) then ensures that one

sub-sector is mapped into the other by sending ψ → ψ + π and as such, whenever the

physical fields of a solution respect the SO(2) isometry, it is sufficient to solve for one of

these N = 1 sub-sectors as the other follows automatically enhancing supersymmetry to

N = (2, 0). We take

χ1 = cos

(
nψ

2

)
χ0

1 − sin

(
nψ

2

)
χ0

2, χ2 = sin

(
nψ

2

)
χ0

1 + cos

(
nψ

2

)
χ0

2, (2.39)

to be this sub-sector, and construct

χ = χ1 + iχ2 = e
in
2
ψ(χ0

1 + iχ0
2). (2.40)

It should then be clear from (2.21) that the only place ψ enters will be in Ω and V in

the form

Ω = einψΩ0, Ṽ = V = eC(dψ + ρ), (2.41)

with Ω0 defined as in (2.21) but for χ0 = χ0
1 + iχ0

2, leaving (2.29a)–(2.30c) otherwise

unchanged. Generally one might wonder if the isometry direction could lie partially along

V and partially along a 1-form in M8, but the 1-form dual to the Killing vector can only

be a linear combination of the 1-form bi-linears we can construct from {χ1
1 , χ

2
1, χ

1
2, χ

2
2}

which all yield either 0 or something parallel to V - as such we can safely take V as the

1-form dual to ∂ψ.
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We have at this stage imposed that we have an SU(4)-structure containing a U(1)

R-symmetry, but to ensure that this is an isometry of the full solution we need to further

impose that

LVA = 0, LVG4 = 0, (2.42)

we also require LVG2 = 0, but this follows automatically. Imposing these conditions

significantly refines (2.29a)–(2.30c), for instance given (2.41) the latter means that the

parts of (2.29e) that involve G4 must vanish by themselves, making G4 self dual on M8.

To proceed it is useful to decompose the exterior derivative as

d = dψ∂ψ + d8, (2.43)

After some massaging it is then possible to show that supersymmmetry is implied by the

following conditions

d8(eAJ) = 0, (2.44a)

eC + neA = 0, (2.44b)

d8(e2AΩ)− ine2Aρ ∧ Ω = 0, (2.44c)

eA+CJ ∧ ?8d8ρ+ Vol8 = 0, (2.44d)

ιVG4 = G4 ∧ J = G4 ∧ Ω = G4 − ?8G4 = 0, (2.44e)

e2AG2 + e2A+Cd8ρ+ eAJ − e−CV ∧ d8(e2A+C) = 0, (2.44f)

with all else that follows from (2.29a)–(2.30c) implied - one still needs to impose (2.31a)–

(2.31b), to have a solution. Together (2.44a) and (2.44c) define a warped Kahler-structure

with e−Ads2(M8) a Kahler manifold, so we have reproduced the result of [21]. The condi-

tion (2.44e) highly constrains G4, but does not fix it completely. The first condition tells us

that G4 is defined on M8 only, then of the 70 functions an arbitary 4-form in 8 dimensions

can contain, only 20 are independent once the rest of (2.44e) is imposed. From a practical

perspective though, the symmetries of a given solution will fix many more of these terms

— in fact in the cannonical frame of (2.24) all solutions we are aware of have magnetic

flux of the form

G4 = f1(e1234 + e5678) + f2(e1256 + e3478) + f3(e1278 + e3456), f1 + f2 + f3 = 0, (2.45)

with fi functions with support on M8 only.

3 Toward AdS2×Σg×Q1,1,1 solutions with baryonic and mesonic charges

In this section we construct explicit solutions with various properties and explain their

connection with known solutions in the literature. Before diving into such technical con-

structions we briefly review the status of such solutions in the context of the AdS/CFT

correspondence.
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3.1 Preamble from AdS/CFT

Following the seminal work of ABJM [30] in establishing the now prototypical dual pair of

AdS4×S7/Zk/CFT3, a plethora of examples was given. The gravity side of some of the well

established cases are Freund-Rubin type solutions of the form AdS4× SE7 for a certain list

of seven-dimensional Sasaki-Einstein spaces, SE7. Some prominent cases in the list include

SE7 = {S7, Q1,1,1,M1,1,1, V 5,2, N0,1,0}. For example, for M1,1,1 which is geometrically a

U(1) bundle over CP2 × S2 , the dual quiver Chern-Simons matter theory was discussed

in [31, 32]; for Q1,1,1 which is geometrically a U(1) bundle over S2 × S2 × S2, the dual

theory is an N = 2 supersymmetric Chern-Simons quiver gauge theory with Chern-Simons

levels (k, k,−k,−k), see [33–35]. The non-toric case in the list AdS4 × V 5,2 was addressed

in [35, 36]. For all these dual pairs the free energy of the field theory on S3 was shown

to agree with the regularized on-shell action on the gravity side largely using techniques

presented in [37] (see also [38] for recent applications). More recently, the topologically

twisted index of a number of these field theories has been computed [12, 13, 39, 40]. Given

the impressive match of the free energy on S3, it is natural to expect that the topologically

twisted index in these cases would be related to the entropy of the dual magnetically

charged asymptotically AdS4 black holes.

A rigorous way to relate the topologically twisted index to the dual magnetically

charged AdS4 black holes has been developed recently: the entropy of a class of magnetically

charged asymptotically AdS4 black holes can be obtained by extremizing the topologically

twisted index with respect to the chemical potentials associated to flavor symmetries in the

dual 3d N = 2 Chern-Simons matter theory (I-extremization) [1–7]. Various groups have

recently considered the dual to I-extremization by studying a class of theories obtained by

a twisted compactification of M2-branes living at the tip of a Calabi-Yau fourfold [41–43].

There are, however, a number of puzzling facts regarding the allowed space of charges. For

example, Hosseini and Zaffaroni showed that the two extremization principles are equivalent

for theories without baryonic symmetries [42], while Kim and Kim [43] considered cases

with either only baryonic or only mesonic fluxes turned on. Recall that according to the

AdS/CFT dictionary mesonic flavor symmetries manifest themselves as isometries in the

gravity solution while baryonic symmetries manifest themselves as cohomology cycles on

which one can basically wrap M2 or M5 branes.

The duality between asymptotically AdS4 black holes with general SE7 internal mani-

folds and their corresponding 3d N = 2 supersymmetric field theories, however, has not yet

been understood well enough in cases when the gravity solutions is equipped with general

charges dual, to generic flavor charges in the field theory - including mesonic and baryonic

charge. For mesonic symmetries, this is mainly due to the lack of explicit AdS4 black hole

solutions and their AdS2 near horizon geometries as we mentioned in the introduction. For

baryonic symmetries, the AdS2 near horizon solution has been obtained in certain cases

already in [6, 21] but the issue is that the entropy computed from the near horizon solution

does not match the index of the purported dual field theory [6]. Summarizing, the com-

parison between the black hole entropy based on explicit AdS2 near horizon solutions and

the supersymmetric topologically twisted index of the dual field theory has not yet been

successful for generic SE7 internal manifolds and generic flavor symmetries.
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Constructing solutions with baryonic and mesonic charges for an abstract form of

seven-dimensional Sasaki-Einstein manifolds is quite involved and we defer such a treatment

for future work. In this section, we focus on Q1,1,1 which naturally allows for baryonic

charges by virtue of its second Betti number being, b2(Q1,1,1) = 2 [44]. This specifies our

goal as to find a N = (2, 0) AdS2 solution, which corresponds to the near horizon geometry

of an AdS4 black hole with the 7-dimensional internal manifold Q1,1,1 that is holographically

dual to the 3d N = 2 flavored ABJM theory. In particular, we are interested in the case

with non-trivial mesonic charges, since the solution with purely baryonic charges have been

already studied in the literature, see [6, 17, 21] for examples. As we will see below, the

road to this solution is winding and we might, on occasions, find branches that take us off

the main pathway.

Before getting into technical details, let us first make a few general remarks regarding

the general class of black holes in AdS4×SE7 and its near horizon geometry AdS2 region.

Given the near horizon AdS2 solution, for example, we can compute important physical

quantities of the corresponding AdS4 black hole such as its Bekenstein-Hawking entropy.

Then the black hole entropy can be related to the supersymmetric index of the dual N = 2

supersymmetric field theory. For example, an AdS2 × Σ2 × SE7 solution equipped with a

universal twist is already known, and the black hole entropy computed from the solution

matches the supersymmetric index of the dual N = 2 supersymmetric field theory. In fact,

the corresponding full AdS4 black hole solution has been already found and related to the

corresponding dual field theories in this case [6, 13]. One goal of the explicit construction

we present in this section is to go beyond the universal twist by involving extra flavor

symmetries, in particular the mesonic ones.

3.2 General Ansatz

Following the general results in the previous section, we consider the following metric

Ansatz for a N = (2, 0) supersymmetric AdS2 background of our interest:

ds2 =e2A(x1)

(
−r2dt2+

dr2

r2

)
+e2C(x1) (dψ+ρ)2+e−A(x1)

(
f(x1)

(
dx2

1− kx2
+(1−kx2)dφ2

)
+ f1

(
dx2

1

U(x1)
+U(x1)(dφ1+n1xdφ)2

)
+Σ3

i=2fi

(
dx2

i

1− x2
i

+(1− x2
i )dφ

2
i

))
, (3.1)

where ρ is defined as

ρ = nxdφ+ g1(x1)(dφ1 + n1xdφ) + g2x2dφ2 + g3x3dφ3, (3.2)

and k = 1, 0,−1 for the Riemann surface with real coordinates (x, φ) being S2, T 2, H2

respectively. We define the natural co-frame as

e1 = eA(x1)rdt, e2 = eA(x1)dr

r
, e3 = eC(x1)(dψ + ρ), (3.3)

e4 = e−A(x1)/2
√
f(x1)

dx√
1− kx2

, e5 = e−A(x1)/2
√
f(x1)

√
1− kx2dφ,

e6 = e−A(x1)/2
√
f1

dx1√
U(x1)

, e7 = e−A(x1)/2
√
f1

√
U(x1)(dφ1 + n1xdφ),

e2i+4 = e−A(x1)/2
√
fi

dx1√
1− x2

i

, e2i+5 = e−A(x1)/2
√
fi

√
1− x2

i dφi. (i = 2, 3)
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In terms of this co-frame, the 4-form Ansatz given in equation (2.1) takes the form:

F = e1 ∧ e2 ∧G2 +G4, (3.4a)

G4 = e4 ∧ e5 ∧ (Σ3
i=1Lie

2i+4 ∧ e2i+5) +
1

2
Σ3
i 6=jMije

2i+4 ∧ e2i+5 ∧ e2j+4 ∧ e2j+5, (3.4b)

where Mij is symmetric on ij.

Before solving the N = (2, 0) supersymmetric conditions (2.44), the 4-form Bianchi

identity (2.31a), and the 4-form equation of motion (2.31b) for the above Ansatz (3.1)–

(3.4), let us explain the geometric meaning of various parameters and functions introduced

in the above Ansatz. First, the free parameters f1, f2, f3 and Li,Mij yield non-trivial

dyonic charges associated to the two Betti multiplets dual to the charges under the baryonic

symmetries in the field theory side [6, 21]. Recall that there are exactly two Betti multiplets

in this case since Q1,1,1 has two non-trivial 2-cycles. Second, a parameter n1 added along

one of the U(1) isometries of Q1,1,1 as dφ1 → dφ1 + n1xdφ is expected to be dual to a

mesonic charge in the field theory side. The functions A(x1), f(x1), U(x1) are introduced

to allow for the deformation of the Ansatz by this parameter n1. Note that a similar

deformation was attempted in [6] although without any success for non-vanishing n1.

Now we return to solving (2.44), (2.31a), and (2.31b) with the above Ansatz (3.1)–(3.4).

Let us first identify the differential forms defining the SU(4)-structure and the orthogonal

one-form V :

V = e3, (3.5a)

J =

3∑
i=0

e2i+4 ∧ e2i+5, (3.5b)

Ω = eimψ(e4 + ie5) ∧ (e6 + ie7) ∧ (e8 + ie9) ∧ (e10 + ie11). (3.5c)

Under the above identification (3.5), the 2-form G2 is determined by one of the super-

symmetry conditions, namely, (2.44f). Then the remaining N = (2, 0) supersymmetry

conditions in (2.44) yield

eC(x1) = −meA(x1), (3.6a)

m = k/n = 1/g2 = 1/g3, (3.6b)

f(x1) = f0 + f1n1x1, (3.6c)

g1(x1) = −f1n1U(x1) + f(x1)U ′(x1)

2mf(x1)
, (3.6d)

e3A(x1) =
2f1f2f3f(x1)

2f1f2f3(k − n1U ′(x1)) + f(x1)(2f1(f2 + f3)− f2f3U ′′(x1))
, (3.6e)

ΣiLi = 0, (3.6f)

Mij = |εijk|Lk. (3.6g)

Next, the 4-form Bianchi identity (2.31a) yields

L1 = c1e
2A(x1), (3.7a)

L2 =

(
− c1

2
+

c2

f(x1)2

)
e2A(x1), (3.7b)
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where c1 and c2 are arbitrary constants. Finally, the 4-form equation of motion (2.31b)

reduces to the following 4-th order non-linear ordinary differential equation (ODE) for

U(x1):

0 = f2
1 f2f3(4c2

2 + f2
1n

4
1U(x1)2)− 2f(x1)f3

1 f2f3n
3
1

(
U(x1)U ′(x1)

)
+ f(x1)2f2

1 f2f3n
2
1

(
U ′(x1)2 + U(x1)U ′′(x1)

)
+ f(x1)3f1

(
4f1(f2 + f3)(−k + n1U

′(x1)) + f2f3(2kU ′′(x1)− 3n1(U(x1)U ′′(x1))′)
)

+ f(x1)4
(
−4f2

1 + 3f2
1 f2f3c

2
1 + 2f1(f2 + f3)U ′′(x1)− f2f3(U(x1)U ′′′(x1))′

)
. (3.8)

We have not been able to find the most general solution to this ODE. In the following

subsections, we focus on some particular solutions for U(x1). We will first recast some

solutions already known in the literature into our framework and then discuss some new

solutions with various level of interests from the dual field theory point of view.

Based on the above general Ansatz, we now reproduce previously known solutions with

n1 = 0 in section 3.3. We search for new solutions of interest with n1 6= 0 in section 3.4.

It is worth emphasizing that in both analytic and numerical approaches looking for AdS2

solutions with mesonic charges (n1 6= 0), the resulting solutions we find are equipped

with non-trivial baryonic charges. These baryonic charges cannot be arbitrarily turned off,

since they are required for the solutions to be globally well-defined. The following table

summarizes what we have briefly discussed here and we will discuss further details below.

Known Without mesonic charges Without baryonic charges (section 3.3.1)

solutions (n1 = 0, section 3.3) With baryonic charges (section 3.3.2)

New With mesonic charges Analytic approach (section 3.4.1)

solutions (n1 6= 0, section 3.4) Numerical approach (section 3.4.2)

3.3 Previously known solutions

3.3.1 The universal twist solution: AdS2 × Σ2 ×Q1,1,1

First, we consider a special solution U(x1) = 1− x2
1 to equation (3.8), corresponding to

n1 = 0, f1 = f2 = f3, c1 = c2, . (3.9)

In this case equations (3.6), (3.7), and (3.8) are simplified as

eC(x1) = −meA(x1), (3.10a)

m = k/n = 1/g2 = 1/g3, (3.10b)

f(x1) = f0 = −kf1, (3.10c)

g1(x1) = x1/m, (3.10d)

e3A(x1) = f1/2, (3.10e)

Li = Mij = 0, (3.10f)

Note that the condition f0 = −kf1 comes from the 4-form equation of motion (3.8). Since

f(x1) = f0 and f1 must have the same sign for the metric (3.1) to be positive definite,
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k must be chosen as k = −1. That is, the solution exists only for a negatively curved

Riemann surface Σg with g ≥ 2.

Under the coordinate transformation z = 1/r and the following identifications,

f1 →
L3

32
, m→ 4, kxdφ→ A,

1

4

3∑
i=1

xidφi → σ, (3.11)

the solution (3.1, 3.4) with (3.10) can be rewritten as

ds2 =
L2

4
ds2

4 + L2

((
dψ + σ +

1

4
A

)2

+
1

8

3∑
i=1

(
dx2

i

1− x2
i

+ (1− x2
i )dφ

2
i

))
, (3.12a)

ds2
4 =

1

4

(
−dt2 + dz2

z2

)
+

1

2

(
dx2

1 + x2
+ (1 + x2)dφ2

)
, (3.12b)

F = L3

(
3

8
vol4 −

1

8
(∗4dA) ∧ dσ

)
, (3.12c)

which is equivalent to the AdS2 × Σ2 × Q1,1,1 solution with a universal twist recently

discussed in [6]. More precisely, note the presence of the graviphoton in the U(1) fiber as

defined with the co-frame dψ + σ + 1
4A above in equation (3.12a).

There is a very natural way to interpret this solution geometrically. Given the form of

the U(1) fiber in eq. (3.12a) we can interpret the would be magnetic charge as describing a

U(1) bundle over an eight-dimensional space which is Kahler-Einstein, in other words, the

metric part of this solution can be interpreted as AdS2× SE9. With such a metric Ansatz,

there is no natural 4-form as would have been the case for the original Freund-Rubin

AdS4 × Q1,1,1. Therefore, one considers roughly vol(AdS2)∧ vol(Σg) which is inherited

from the vol(AdS4) part and adds vol(AdS2)∧JKahler which is the other natural 4-form

given the symmetries; note that this JKahler is still the one in the base of the SE7.

3.3.2 Deformed AdS2 × Σg ×Q1,1,1 solution with Betti multiplets

In this subsection we discuss solutions with only the Betti multiplets turned on. They

correspond, on the field theory to field theory configurations with baryonic charges turned

on. We will start with the general situation and consider its simplification later.

Two Betti multiplets. Here we consider the same solution U(x1) = 1−x2
1 to (3.8) under

n1 = 0 but without any constraint on f1, f2, f3 and c1, c2. In this case (3.6) and (3.7) are

simplified to

eC(x1) = −meA(x1), (3.13a)

m = k/n = 1/g2 = 1/g3, (3.13b)

f(x1) = f0, (3.13c)

g1(x1) = x1/m, (3.13d)

e−3A(x1) =
k

f0
+

3∑
i=1

1

fi
, (3.13e)
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Σ3
i=1Li = 0, (3.13f)

Mij = |εijk|Lk, (3.13g)

The 4-form equation of motion (3.8) reduces to the following algebraic constraint

0 = e4A(k(f1f2 + f2f3 + f3f1) + f0(f1 + f2 + f3))− f0f1f2f3(L2
1 + L2

2 + L1L2). (3.14)

Under the coordinate transformation (x, x1, x2, x3)→ (x1, x2, x3, x4) and the following

identifications,

m→ 1, (3.15a)

k → 1, (3.15b)

(1/f0, 1/f1, 1/f2, 1/f3)→ (l1, l2, l3, l4), (3.15c)

(L1, L2, L3)→ (2m12e
2A, 2m13e

2A, 2m14e
2A), (3.15d)

Σ4
i=1xidφi → P, (3.15e)

dxi ∧ dφi → −liJi, (3.15f)

the solution (3.1, 3.4) with (3.13) can be rewritten as (m12 = m34, m13 = m24, m14 = m23)

ds2 = e2A

(
−r2dt2 +

dr2

r2
+ (dψ + P )2

)
+ e−A

4∑
i=1

1

li

(
dx2

i

1− x2
i

+ (1− x2
i )dφ

2
i

)
, (3.16a)

F4 = dt ∧ dr ∧ (l2 + l3 + l4)J1 + (l1 + l3 + l4)J2 + (l1 + l2 + l4)J3 + (l1 + l2 + l3)J4

l1 + l2 + l3 + l4

+ Σ4
i,j=1mijJ

i ∧ J j , (3.16b)

and the constraint (3.14) is also rewritten as

l1l2 + l1l3 + l1l4 + l2l3 + l2l4 + l3l4 = 2((m12)2 + (m13)2 + (m2
14)). (3.17)

This solution (3.16) with the constraint (3.17) is equivalent to the deformed AdS2 × Σ2 ×
Q1,1,1 solution with two Betti multiplets in section 3.2 of [21].4

Let us pause to understand the geometrical basis for the existence of this solution.

Given that b2(Q1,1,1) = 2, that is, the second Betti number is two, we can explicitly

construct two linearly independent harmonic 2-forms. Those forms were used in the Ansatz

of F4. We can made this point more explicitly by computing a few physical quantities of

this AdS2 solution: the dyonic charges associated to Betti multiplets and the entropy

of an AdS4 black hole whose near horizon geometry corresponds to this AdS2 solution.

For the definitions of dyonic charges associated to the Betti multiplets, we follow the

conventions of [6].

We define electric charges associated to the Betti multiplets as

Qi ≡
∫
Ci

∗11F +
1

2
A ∧ F, Ci ≡ vol[Σ2] ∧ ∗7(vol[S2

i ]− vol[S2
i+1]), (3.18)

4In fact, we need a slight modification: F2 → 2F2 in (3.21) of [21] for a perfect match.
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for i = 1, 2, where the 7-dimensional Hodge star is defined within the 7-dimensional man-

ifold equipped with the coordinates {ψ, xi, φi}. Here we choose A such that dA = F and

ιVA = 0 and therefore the 2nd term in the integrand does not contribute. These electric

charges are given explicitly as

Qi = −64|g− 1|π3∆mf0f1f2f3

(
1

fi
− 1

fi+1

)(
e−3A − 1

fi
− 1

fi+1

)
(3.19)

for the solution (3.16), where we have used Vol[Σ2] = 4π|g − 1| and set the period of ψ

coordinate as ∆. Note that we have used ‘vol’ for the volume form and ‘Vol’ for the actual

volume of a manifold.

We define magnetic charges associated to the Betti multiplets as

Pi ≡
∫
hi

F, hi ≡ vol[Σ2] ∧ (vol[S2
i ]− vol[S2

i+1]), (3.20)

for i = 1, 2, which are given explicitly as

Pi = 16|g− 1|π2e−2Af0(fiLi − fi+1Li+1) (3.21)

for the solution (3.16). These charges would correspond, on the field theory side, to baryonic

charges as they are related to the topology of Q1,1,1.

Finally, considering the solution (3.16) as a near horizon geometry of an AdS4 black

hole, we can compute the Bekenstein-Hawking entropy as

S ≡ Vol[M9]

4G11
=

4(kf1f2f3 + f0(f1f2 + f2f3 + f3f1))|g− 1|π
3
2 |N |

3
2

(f1f2 + f2f3 + f3f1)
3
2 ∆

1
2 |m|

1
2

, (3.22)

where the 11-dimensional Newton’s constant G11 and the flux quantization N are given as

G11 =
(2π)8(L(11)

p )9

16π
, (3.23a)

N =
1

2π(L(11)
p )6

∫
Y7

∗11F +
1

2
A ∧ F = −m∆(f1f2 + f2f3 + f3f1)

π3(L(11)
p )6

, (3.23b)

in terms of the 11-dimensional Planck length L(11)
p . Here we follow the same convention for

A that we have used computing electric charges associated to the Betti multiplets.

One Betti multiplet. The solution (3.1, 3.4) with (3.13) and (3.14) has been studied

in different conventions for f2 = f3 and L2 = L3, which turns off the charges Q2 and

P2 defined in (3.19) and (3.21) and therefore removes the second Betti multiplet. To be

specific, under the coordinate transformation z = 1/r and the following identifications,

m→ 1, eA → L, xdφ→ A, x2dφ2 + x3dφ3 → AB, (3.24a)

e−3Af0 → u, e−3Af1 → v, −1

2
e−2Af2L1 → w, (3.24b)
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the resulting solution can be rewritten as (with q = 1/2)

ds2 = L2

(
−dt2 + dz2

z2
+ u

(
dx2

1− kx2
+ (1− kx2)dφ2

)
+ v

(
dx2

1

1− x2
1

+ (1− x2
1)dφ2

1

)
+

4quv

−u+ v(u− k)

3∑
i=2

(
dx2

i

1− x2
i

+ (1− x2
i )dφ

2
i

)
+ (dψ + 2qAB + kA+ x1dφ1)2

)
,

(3.25a)

F = L3 dt ∧ dz
z2

∧
(

(u− k)dx ∧ dφ+ (v − 1)dx1 ∧ dφ1 − 2q
u+ v(u+ k)

u− v(u− k)
dAB

)
+ wuL3dx ∧ dφ ∧

(
u− v(u− k)

u
dx1 ∧ dφ1 + dAB

)
+ wvL3dAB ∧

(
dx1 ∧ dφ1 +

2u

u− v(u− k)
dAB

)
, (3.25b)

which is equivalent to the solution (4.22) in [6] with some modifications on the last two

lines in the 4-form. The constraint on u, v, w in (4.23) of [6] should also be slightly modified

to (just a sign flip for 3w2(u− v(u− k))2 in the numerator)

4q2(−3k2v2 + 2ku(v − 1)v + u2(v − 1)(v + 3))− 3w2(u− v(u− k))2 = 0, (3.26)

which is from the 4-form equation of motion (3.14) with q = 1/2.

Here we compute the physical quantities defined above for general cases with two Betti

multiplets to compare the results with [6].

We start with the case where the additional constraint L1 = 0 is imposed, which

yields a purely electric Betti multiplet with P1 = 0. In this case, the 4-form equation of

motion (3.14) yields

f1 = −f2(2f0 + kf2)

f0 + 2kf2
. (3.27)

This implies, for k = 0, 1, f1 must have the opposite sign of f2 if f0 and f2 have the same

sign. The positive definite metric (3.1) requires, however, all f0, f1, f2, f3 to have the same

sign. Therefore, only k = −1 yields a solution with positive definite metric. Then the only

non-vanishing Betti charge Q1 is given as

Q1 = 64|g− 1|π3∆L6uv(u(v − 1)− v)(u(v − 3) + v)

(u(v − 1) + v)2
, (3.28)

under the map (3.24). This is the same as (4.28) of [6] up to sign.

Next, we consider the cases where the additional constraints are given as f0 = f2 for

k = −1 and f1 = f2 for k = 1, both of which yield a purely magnetic Betti multiplet with

Q1 = 0. In these cases, the only non-vanishing Betti charge P1 is given as

P1 =


−48|g− 1|π2L3w(3w2 + 2)(w2 + 1)

3w2 + 1
(k = −1),

−48π2L3w(w2 + 2)

w2 − 1
(k = 1),

(3.29)

under the map (3.24). The charge for k = −1 does not match (4.30) of [6] but the one for

k = 1 matches (4.33). This mismatch is in fact expected from the mismatch in the metric

and the 4-form between (3.16) above and (4.22) of [6].
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3.4 New solutions: baryonic and mesonic charges

In the previous subsections we have considered solutions with n1 = 0 which have been

already reported in the literature. These solutions with n1 = 0 are naturally dual to field

theoretic configurations with baryonic charges. We now turn n1 on, which is designed to

match a mesonic charge on the dual field theory. Since this makes the 4-form equation

of motion (3.8) quite involved, however, it is difficult to find a general, analytic solution

to (3.8) with a mesonic twist. We therefore take two different approaches: first we focus on

the most general polynomial solution to (3.8) with n1 6= 0; then we construct a numerical

solution to the same equation of motion.

3.4.1 A new regular solution in a disconnected branch

Here we focus on the most general solution to (3.8) in the polynomial class.

Assume that U(x1) is an arbitrary p-th (p > 2) degree polynomial function of x1 then

we may write U(x1) explicitly as

U(x1) =

p∑
i=0

aix
i
1. (3.30)

Substituting (3.30) into (3.8) then simplifies the 4-form equations of motion to

0 = −a2
p(p− 1)2(p+ 1)(2p− 1)f4

1 f2f3n
4
1x

2p
1 +O(x2p−1

1 ), (3.31)

which cannot be satisfied unless ap = 0. Therefore the most general polynomial solution

to the 4-form equation of motion (3.8) is at most quadratic since we have demonstrated

that ap = 0 for p > 3.

One can check that the most general polynomial solution to (3.8) with real coefficients

is obtained only when c2 = 0, and given explicitly as

U(x1) =
1

f1n2
1

(
kf(x1) +

2(f2 + f3)±
√

4(f2 + f3)2 + 3f2
2 f

2
3 (c2

1 − 4/3f2f3)

3f2f3
f(x1)2

)
,

(3.32)

where f(x1) = f0 + f1 n1 x1 is linear in x1. Note that this solution is ill-defined for n1 = 0.

Implying, therefore, that the solution we have found lives in a different branch that cannot

be smoothly connected to the various solutions we described for n1 → 0.

To the best of our knowledge, the solution (3.32) and the corresponding metric and

4-form (3.1, 3.4) have not been reported in the literature. We are interested in a compact

and regular solution, however, and therefore we still need to investigate if (3.32) truly yields

a globally well-defined solution. To be more precise, we want a solution with a positive

definite metric, finite volume (compact) and which is also singularity-free (regular). Positive

definiteness of the metric (3.1) requires

e−A(x1)f(x1), e−A(x1)f1U(x1), e−A(x1)fi (i = 2, 3), (3.33)

to be positive. The finite volume condition requires the range of x1 to be bounded. Lastly,

the singularity-free condition requires that any possible conical singularities should be re-

moved and the final solution without conical singularities must also not have curvature sin-

gularities.
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First, substituting (3.32) into (3.6e) gives

e−A(x1)fi = fi

(
− f2f3

f2 + f3 ±
√

4(f2 + f3)2 + f2
2 f

2
3 (3c2

1 − 4/f2f3)

)− 1
3

, (i = 2, 3) (3.34)

which has to be positive for a positive definite metric. This requires f2 and f3 to have the

same sign. For positive (negative) f2 and f3, e−A(x1) should also be positive (negative) and

therefore we need negative[positive] sign in (3.34). Since the signs in (3.34) are correlated

with those in (3.32), this means that we must choose negative[positive] sign in (3.32) for

positive (negative) f2, f3, and e−A(x1). From here on, we choose positive e−A(x1) without

loss of generality and therefore go with the negative sign in (3.32).

Second, we require f1U(x1) > 0 for a positive definite metric, which yields
x ∈ (x−, x+) c2

1 >
4

3f2f3
,

x ∈ (−∞, x−) ∪ (x+,∞) c2
1 <

4
3f2f3

,

kf(x1) > 0 c2
1 = 4

3f2f3
,

(3.35)

where x± are the zeros of U(x1). Note that the solution has a finite volume only when

c2
1 >

4
3f2f3

, so we assume this to be the case.

Third, we need f(x1) > 0 where x1 ∈ (x−, x+) for a positive definite metric since we

have chosen e−A(x1) > 0. It is equivalent to f(x±) ≥ 0 because f(x1) is a linear function

of x1. Under the constraint c2
1 >

4
3f2f3

, this leads to k > 0 and therefore we must impose

k = 1.

Finally, we set the period of a coordinate φ1 to remove possible conical singularities at

x1 = x±. Substituting x1 = x± ∓ r2 with a small local coordinate r, we have

dx2
1

U(x1)
+ U(x1)Dφ2

1 ∼
4

U ′(x±)

(
dr2 +

U ′(x±)2 r2

4
Dφ2

1

)
, (3.36)

where Dφ1 = dφ1 + n1xdφ, which determines the period of φ1 as 4π/|U ′(x±)| = 4π|n1|.
It is worth mentioning that the solution is also free of curvature singularities. We

have computed various curvature invariants including, R,RabRab, R
abcdRabcd , for particular

values of external parameters (m = f1 = f2 = f3 = 1 and c1 = 2) and have found that all

are bounded constants.

Now, the solution (3.1) and (3.4) satisfying all the conditions discussed above can be

rewritten as

ds2 = e2A

(
−r2dt2 +

dr2

r2
+ (mdψ + xdφ+ g̃1(x̃1)Dφ̃1 + x2dφ2 + x3dφ3)2

)
+ e−A

(
f̃(x̃1)

(
dx2

1− kx2
+ (1− kx2)dφ2

)
+ f̃1

(
dx̃2

1

1− x̃2
1

+ (1− x̃2
1)Dφ̃2

1

)
+Σ3

i=2fi

(
dx2

i

1− x2
i

+ (1− x2
i )dφ

2
i

))
, (3.37a)
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F = dt ∧ dr ∧

(
3e3A − 2f̃1

2f̃1

(f̃(x̃1)dx ∧ dφ+ f̃1dx̃1 ∧Dφ̃1) + Σ3
i=2(e3A − fi)dxi ∧ dφi

)

+ dx ∧ dφ ∧ c1f̃(x̃1)

(
f̃1dx̃1 ∧Dφ̃1 −

1

2
Σ3
i=2fidxi ∧ dφi

)
− 1

2
c1f̃1dx̃1 ∧Dφ̃1 ∧ (Σ3

i=2fidxi ∧ dφi) + c1f2f3dx2 ∧ dφ2 ∧ dx3 ∧ dφ3, (3.37b)

in terms of the new coordinates (x̃1, φ̃1) introduced as

x1 =
f̃(x1)− f0

f1n1
, φ1 = 2n1φ̃1, (3.38)

and the following definitions:

Dφ̃1 = dφ̃1 +
1

2
xdφ, f̃(x̃1) =

f̃1

2
(1 + x̃1), g̃1(x̃1) = −1

2
(1− 3x̃1), (3.39a)

f̃1 =
3f2f3

−2f2 − 2f3 +
√

4(f2 + f3)2 + f2
2 f

2
3 (3c2

1 − 4/f2f3)
, (3.39b)

e3A =
f2f3

−f2 − f3 +
√

4(f2 + f3)2 + f2
2 f

2
3 (3c2

1 − 4/f2f3)
. (3.39c)

Note that the above solution is in fact independent of n1, but still distinguished from the

known solutions we have seen in the previous subsections 3.3.1 and 3.3.2. Here the ranges

of x, x̃1, x2, and x3 coordinates are (−1, 1) and the ranges of φ, φ̃1, φ2, and φ3 coordinates

are (0, 2π). We set the range of ψ coordinate to be (0,∆). This form of the solution is

similar to the expression for the universal twist in which the charge is no longer a free

parameter but rather takes a particular value dictated by a general constraint.

Considering the above solution as a near horizon geometry of an AdS4 black hole, we

can compute the Bekenstein-Hawking entropy as

S ≡ Vol[M9]

4G11
=

4
√

2f̃2
1π

3
2 |N |

3
2

(f2f3∆|m|)
1
2 (2f̃1e−A − 3e2A)

3
2

, (3.40)

where the 11-dimensional Newton’s constant G11 and flux quantization N are given as

G11 =
(2π)8(L(11)

p )9

16π
, (3.41a)

N =
1

2π(L(11)
p )6

∫
M7

?11F +
1

2
A ∧ F = −mf2f3∆(2f̃1e

−3A − 3)

π3(L(11)
p )6

, (3.41b)

in terms of the 11-dimensional Planck length L(11)
p . Here M7 denotes the 7-dimensional

manifold with the coordinates {ψ, x̃1, φ̃1, x2, φ2, x3, φ3} and we choose A such that dA = F

and ιVA = 0. So the 2nd term in the integrand does not contribute.

3.4.2 A numerical solution with baryonic and mesonic charges

The polynomial solution in the previous section 3.4.1 is not valid for n1 = 0 and does not

have a smooth limit as n1 → 0. This obstruction to turning off the would-be mesonic
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charge n1 indicates that such solution may not represent the solution with a mesonic twist

we actually seek.5 Propelled by this observation, we construct a numerical solution to

the 4-form equation of motion (3.8) which allows one to smoothly turn off the would-be

mesonic charge n1.

Recall that the 4-form equation of motion (3.8) is a 4th order non-linear ODE for

U(x1) with the parameters f0, f1, f2, f3, c1, c2, n1, k which we will refer to as external, where

we have substituted f(x1) = f0 + f1n1x1 (3.6c) into (3.8). Hence, for given external

parameters, we need four initial conditions for U(x1) to solve (3.8) numerically. At this

point, the physical constraints for regularity and smoothness considered in the previous

subsection 3.4.1 turn out to be useful in determining those initial conditions.

We start with the two physical constraints: positive definiteness of the metric (3.1)

and compactness of the global solution. First, the positive definiteness of the metric (3.1)

requires that all of the quantities given in (3.33), namely, e−A(x1)f(x1), e−A(x1)f1U(x1),

and e−A(x1)fi (i = 2, 3), to be positive definite. Then compactness requires that the domain

of the coordinate x1 where these quantities are positive must be bounded. If we set e−A(x1)

and f1 to be positive, this implies that we should look for a numerical solution U(x1)

to the ODE (3.8) defined on a bounded interval x1 ∈ [xL, xR], which is positive within

x1 ∈ (xL, xR) and vanishes at the boundary points x1 = xL, xR. Note that f1 can be

chosen to be positive since it is an external parameter but we have to check if e−A(x1) is

truly positive afterwards.

Now we make the following Ansatz Us(x1) around the left boundary point x1 = xL,

Us(x1) =

Jmax∑
J=1

uJ
J !

(x1 − xL)J , (3.42)

to solve the ODE (3.8) perturbatively with respect to x1 − xL. Determining the coeffi-

cients uJ ’s in terms of the external parameters listed above by substituting (3.42) into the

ODE (3.8), we can decide the initial conditions for actual numerical solutions U(x1) to the

ODE, namely U(xL) = 0, U ′(xL) = u1, U ′′(xL) = u2, and U ′′′(xL) = u3. As mentioned

above, the corresponding numerical solution U(x1) will yield a physical solution only if it

vanishes at some finite distance x1 = xR > xL as U(xR) = 0 and satisfies U(x1) > 0 over

the domain x1 ∈ (xL, xR).

Even if we find such a numerical solution, however, it still has to satisfy one more

constraint to be a physical solution: it must be singularity-free. Hence the apparent

singularity at the boundary point x1 = xL, xR where U(xL) = U(xR) = 0 must be a

coordinate singularities. This can be achieved if |U ′(xL)| = |U ′(xR)|. To be specific,

consider the following series expansion of the 2D metric around the boundary points

dx2
1

U(x1)
+ U(x1)Dφ2

1 ∼
4α

U ′(xb)

(
dr2 +

1

4
U ′(xb)

2r2Dφ2
1

)
, (3.43)

5Furthermore, even for n1 6= 0 cases, the corresponding solution (3.37) is in fact independent of the

parameter n1, together with the obstruction to turning off n1 which strongly implies that (3.37) is not the

solution with a mesonic twist.
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Figure 1. (f0, f1, f2, f3, c1, c2, k) = (2, 1, 1, 2, 4, 1, 1) and u1 = 2.

where x1 − xb = αr2 is small and xb stands for xL, xR. This expansion shows that the

apparent singularities both at x1 = xL and x1 = xR, or equivalently at r = 0, become

coordinate singularities and it is possible to avoid conical singularities by choosing the

period of a coordinate φ is chosen as 4π/|U ′(xb)|.
From here on, we set U ′(xL) = u1 = 2 as one of the initial conditions for a numerical

solution and then the corresponding period of a coordinate φ would be 2π. One remaining

condition for a numerical solution U(x1) over the domain [xL, xR] to be physical is then

U ′(xR) = −2. Note that we can exclude U ′(xR) = +2 since U(x1) is positive within

(xL, xR). In order to satisfy such a condition, we want to leave at least one tunable

parameter in solving the ODE (3.8) numerically. Since u1 is fixed to u1 = 2, we choose

u2 as our tunable parameter then the higher order coefficients uJ (J ≥ 3) in the series

Ansatz (3.42) satisfying the ODE (3.8) perturbatively with respect to x1 − xL would be

fixed in terms of u2 and the external parameters.

Example 1. Based on the above setup, we find numerical solutions. Figure 1 shows

one example with the external parameters (f0, f1, f2, f3, c1, c2, k) = (2, 1, 1, 2, 4, 1, 1) and

u1 = 2 for three different integers n1 = 0, 1, 2, 3, where we choose the left boundary point

as xL = 0 for convenience. We will now show that the solutions satisfy all the physical

constraints we have imposed.

First, e−A(x1) is positive definite within the domain x1 ∈ (xL = 0, xR) for each case

as can be seen in figure 2. Since the numerical solution U(x1), the linear function f(x1),

and f1, f2 and f3 are also all positive definite within the same domain, all the quantities

in (3.33) are positive definite and therefore we have a positive-definite metric (3.1). Second,

the domain of the x1 coordinate is bounded so the corresponding global solution is compact.

Third, U ′(xR) = −2 is satisfied for each n1 with the chosen tunable parameters listed in
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Figure 2. (f0, f1, f2, f3, c1, c2, k) = (2, 1, 1, 2, 4, 1, 1) and u1 = 2: note that, in the upper-left panel

for n1 = 0, the numerical plot (blue) matches the constant value of eA(x1) from the exact quadratic

polynomial solution U(x1) = − 173
32 x1(x1 − xR) (red, dashed).

figure 1 and therefore we have |U ′(xL)| = |U ′(xR)| = 2. This guarantees that the conical

singularities at x1 = xL, xR can be removed provided that the period of the coordinate φ1

is chosen as 2π.

Furthermore, these numerical solutions are continuously deformed under n1 → 0 as

demonstrated in the figure 1. Such a smooth behavior makes these numerical solutions

perfect candidates for mesonic twisted solutions compared to the polynomial solutions

studied in section 3.4.1.

Example 2. We find another numerical solution with different external parameters

(f0, f1, f2, f3, c1, c2, k) = (3
2 , 2, 3, 1, 3, 0, 1), u1 = 2, and n1 = 2. The tunable parameter

is chosen as u2 = −21.32431 for U ′(xR) = −2 as in Example 1 and the corresponding

numerical solution is plotted in the left hand side of figure 3. This set of external pa-

rameters satisfies the constraints for a quadratic polynomial solution studied in 3.4.1 to

exist, namely c2 = 0, c2
1 >

4
3f2f3

, and k = 1. We have plotted the corresponding poly-

nomial solution (3.32) with the negative sign in the right hand side of figure 3. Figure 3

makes it explicit that the numerical solution obtained in this section are different from the

polynomial solutions in a disconnected branch construction in section 3.4.1.

4 Conclusions

In this manuscript we have conducted a partial classification of AdS2 solutions in 11d

supergravity. In the case where the M9 manifold admits an SU(4)-structure the differential

and algebraic conditions that the background needs to satisfy are given in (2.29a)–(2.30c).
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Figure 3. (f0, f1, f2, f3, c1, c2, k) = ( 3
2 , 2, 3, 1, 3, 0, 1) and u2 = −21.32431: the numerical solution

(l.h.s.) is distinguished from the polynomial solution (r.h.s.).

Let us briefly summarize the situation. Since an SU(4)-structure is canonically eight-

dimensional, we find that the relevant data consists of a real 1-form V strictly orthogonal

to the SU(4)-structure in a way that generates M9 metrically (see (2.18)). The SU(4)-

structure itself is given by a (1, 1) form J and a (4, 0) form Ω. The 4-form flux of 11d

supergravity is parametrixed in terms of a 2-form and a 4-form (G2, G4), see (2.1). Thus,

the necessary and sufficient conditions (2.29a)–(2.30c) are given in terms of (V, J,Ω) and

the fluxes (G2, G4).

From the classification point of view the truly new results in this manuscript pertain to

the necessary and sufficient conditions for N = (1, 0) supersymmetry (2.29a)–(2.30c). Our

result refines the case of N = (2, 0) susersymmetry which has been discussed previously

in the literature albeit in a peculiar way through transgression [21]. Roughly, descending

to the N = (2, 0) case is equivalent to assuming that M9 is a U(1) fibration over the M8

base that is independent of U(1) coordinate, that is, the one-form V in the general case

becomes the one-form dual to the U(1) direction ∂ψ.

It is worth pointing out that our approach, given its direct connection to [23], provides

an embedding of a class of black-hole near horizons into a context general enough to

describe the entire black-hole. Finding the full, interpolating, black holes remains an open

problem but our work could easily become a first step in that direction. Having such full

interpolating solutions from the near horizon to the asymptotically AdS4 region would help

clarify various aspects. For example, by evaluating its on-shell action one could potentially

clarify the I-extremizaiton procedure [41–43] in terms of an attractor mechanism in the

bulk extending on previous related work along the lines of [45–47].

When specialized to the case of Q1,1,1 our discussion provides a conceptual home for

various solutions known in the literature and it allows us to present new solutions. We

considered a series of generalizations culminating in a numerical analysis providing evidence

for the existence of a solution with nontrivial baryonic as well as mesonic charges. We also

found a peculiar solution which is disconnected from the n1 = 0 branch, it would be

opportune to track all the potential branches in the future.

It would be quite interesting to extend the classification of supersymmetric AdS2 spaces

allowing for more general M9 spaces, that is, beyond the SU(4)-structure case. More phys-

ically, in this manuscript we elucidated the situations when the background can ultimately
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be understood as deformations of AdS4×SE7, that is, as backgrounds ultimately originat-

ing from M2 branes which naturally admit SU(4)-structure as we have discussed. It is quite

relevant to extend our analysis in more detail to the class of supersymmetric solutions with

AdS2 factors pertaining to those arising from wrapped M5 branes. A prototypical class

pertains to solutions where the M5 branes wrap a hyperbolic 3-manifold for which the dual

field theory solution is well known (see, for example [7, 48, 49]). In the asymptotic AdS4

regions the seven dimensional manifold is no longer a U(1) bundle over a Kahler-Einstein

6d manifold as in the case of M2 branes, rather it is a S4 fibration over a hyperbolic 3-

manifold [48, 50]. It is reasonable to expect that the AdS2 classification of such solutions

goes beyond the SU(4)-structure case treated here. Finally, let us point out another class

that does not fit in our SU(4)-structure classificatory approach and that would be interest-

ing to tackle - AdS3 solutions in M-theory. Recall that AdS3 can always be written as an

AdS2 foliation, therefore, a complete classification of AdS2 solutions must include all AdS3

solutions. However, in appendix B we proved the absence of AdS3 solutions within the

SU(4)-structure implying that to capture bubbling solutions [51–53] we need to generalize

our work. We hope to return to these topics in the future.
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A There are no AdS2 solutions with Spin(7)-structure

In this appendix we prove that there are no AdS2 solutions in M-theory with internal space

supporting a Spin(7)-structure globally.

Similar to an SU(4)-structure, a Spin(7)-structure in 9 dimensions can be defined in

terms of two spinors, that are chiral when viewed in 8 dimensions. This time however these

spinors should be equal.6 The canonical dimension of a Spin(7)-structure is 8, so M9 will

decompose as

ds2(M9) = ds2(M8) + U2, (A.1)

with M8 the manifold supporting the Spin(7)-structure and with U a real 1-form that sits

orthogonal to it.

6Strictly speaking they need only be parallel. However the condition that χ = χ1 + iχ2 should be unit

norm means that χ = eiαχ0, for α a phase. This phase can then be set to zero with a frame rotation, so

we loose no generality by assuming χ1 = χ2.
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We begin with spinor Ansatz

ε = (ζ+ + ζ−)⊗ χ, (A.2)

for ζ± and χ Majorana spinors on AdS2 and M9 respectively - ± labels 2d chirality as else-

where. Let us without loss of generality fix the 8 dimensional chirality via the projections

γ1...8χ = χ. (A.3)

A Spin(7) structure in 9 dimensions is defined in terms of the 1-form U and a real 4-form

Ψ with components given by

Ua = χ†γaχ, Ψa1...a4 = χ†γa1...a4χ (A.4)

where ?9Ψ = U ∧Ψ. Using these definitions it is a simple matter to establish that the 11

dimensional supersymetric forms are given by

K = −reA(e0 − er), (A.5a)

Ω = K ∧ U, (A.5b)

Σ = K ∧Ψ. (A.5c)

Where e0, er are the vielbein on warped AdS2 given in (2.15). As such we now have

||K||2 = 0, so the Killing vector is null rather than time-like. However if we now attempt

to solve the supersymmetry conditions (K,Ω,Σ) should obey, we find that we cannot.

Specifically consider (2.13), this gives rise to

(r2dt− dr) ∧ (e2AG2 + d(e2AU)) + 2re2AU ∧ dt ∧ dr = 0, (A.6)

but the terms in this sum must vanish by themselves, and the second cannot be solved for

a non zero spinor - hence there are no such solutions.

B No AdS3 solutions within SU(4)-structure AdS2 class

In this section we shall demonstrate that the class of AdS2 solutions in section 2.3.2 is not

exhaustive. We shall do so by proving that it contains no AdS3 solutions which are known

to exist in M-theory [54].

AdS3 can be expressed as a foliation of AdS2 over an interval as

ds2(AdS3) = cosh2 xds2(AdS2) + dx2. (B.1)

As such a complete classification of AdS2 solutions should contain all AdS3 solutions as

well. To find such solutions within section 2.3.2 , we must decompose the metric such that

e2Ads2(AdS2) + ds2(M8) + V 2 = e2A3

[
cosh2 xds2(AdS2) + dx2

]
+ ds2(M̃8), (B.2)

and similarly for the fluxes. To achieve this we must clearly fix

e2A = e2A3 cosh2 x. (B.3)
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In general the foliation direction dx can lie partially along V and partially along M8, which

supports the SU(4)-structure, as such we should decompose

V = cos ζ eA3dx+ sin ζ k1, (B.4)

J = (cos ζ k1 − sin ζ eA3dx) ∧ k2 + J3, (B.5)

Ω = (cos ζ k1 − sin ζ eA3dx+ ik2) ∧ Ω3, (B.6)

where J3,Ω3 are the (1,1) and (3,0) forms defining an SU(3) structure in 6 dimensions,

and k1, k2 are two real 1-forms that together with the other six dimensions span M̃8. The

angle ζ is point dependent on M̃8 and defines the alignment of dx. The above relations

are analogous to a set introduced in [55] while discussing supersymmetric AdS5 solutions

in M-theory.

The decomposition (B.3)–(B.4) is sufficient to ensure an AdS3 factor without loss of

generality, provided the flux also respects the AdS3 isometries. Unfortunately though, the

possibility of AdS3 dies as soon as one considers the supersymmety constraint (2.29a),

which decomposes as

d(eAJ) = coshxd
(
eA3(J3 + cos ζk1 ∧ k2)

)
+ coshxdx ∧ d(e2A3 sin ζk2)

+ eA3 sinhxdx ∧ (J3 + cos ζk1 ∧ k2).

The issue is the final term in this expression which requires that J3 +cos ζk1∧k2 = 0, since

J3, k1, k2 are by definition non zero and mutually orthogonal there is no way to solve this.

We have thus shown that there are no AdS3 solutions contained in the class of sec-

tion 2.3.2, and as such this class is clearly not the whole story for N = 1 AdS2 in

M-theory. Recall that there is a well-understood set of bubbling solutions of the form

AdS3×S3×S3×Σg [51–53] that plays an important role in the AdS/CFT correspondence.

There is also AdS2 bubbling [56, 57].

Let us conclude this appendix by recalling that in [19] a solution containing AdS2 was

found exploiting a foliation of AdS4 in the standard Freund-Rubin AdS4×SE7 solution.

Note that realizing AdS4 from AdS2 requires one to allow J3 and Ω to depend on x above.

We assume they do not since we are interested in AdS3 with compact internal space, that

is, AdS3 that is not part of AdS4 or some higher AdS factor.

C Killing spinor approach

The metric ansatz and the corresponding coframe are the same as (3.1) and (3.3). The

4-form ansatz is also the same as (3.4) with G2 chosen explicitly as

G2 = H(x1)e4 ∧ e5 + Σ3
i=1Ji(x1)e2i+4 ∧ e2i+5 +K1(x1)e3 ∧ e6. (C.1)

Now we solve the Killing spinor equations, the 4-form Bianchi identity, and the 4-form

equations of motion following the conventions of [23] (Einstein equations will automati-

cally follows):

0 = ∇µε+
1

288
(Γµ

ν1ν2ν3ν4 − 8δµ
ν1Γν2ν3ν4)Fν1ν2ν3ν4ε, (C.2)

0 = dF, (C.3)
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0 = d ∗ F +
1

2
F ∧ F, (C.4)

0 = Rµν −
1

12

(
Fµν1ν2ν3Fν

ν1ν2ν3 − 1

12
gµνF

2

)
. (C.5)

First, to solve the Killing spinor equations, we choose the following projections,

Γ1ε = αε, Γ23ε = βε, Γ45ε = γε, Γ2i+4,2i+5 = δiε (i = 1, 2, 3), (C.6)

where α, β, γ, δi ∈ {±i}. Note that the above projections are given with respect to the

coframe index. Under these projections, the Killing spinor equations (C.2) yield the differ-

ential conditions,

0 = ∂rε−
1

2r
ε, (C.7a)

0 = (n∂ψ + n1∂φ1)ε− 1

2
kγε, (C.7b)

0 = ∂x1ε−
1

2
A′(x1)ε, (C.7c)

0 = ∂ψε−
δ2

2g2
ε = ∂ψε−

δ3

2g3
ε, (C.7d)

where ∂µε = 0 for µ = t, θ, φ, xi, φi (i = 2, 3). We can also derive the algebraic conditions,

eC(x1) = −meA(x1), (C.8a)

mβ = δ2/g2 = δ3/g3, (C.8b)

H(x1) = −αβγ e2A(x1)m

(
δ1
g′(x1)

f1
+ δ2

g2

f2
+ δ3

g3

f3

)
, (C.8c)

J1(x1) = α

(
−β e2A(x1)m

g′(x1)

f1
+ δ1e

−A(x1)

)
, (C.8d)

Ji(x1) = α

(
−β e2A(x1)m

gi
fi

+ δi e
−A(x1)

)
(i = 2, 3), (C.8e)

K1(x1) = −3αβ eA(x1)/2
√
U(x1)A′(x1), (C.8f)

f(x1) = f0 − n1γδ1x1, (C.8g)

e3A(x1) =
2f1f2f3f(x1)

2f1f2f3(k + γδ1n1U ′(x1)) + f(x1)(2f1(f2 + f3)− f2f3U ′′(x1))
, (C.8h)

g1(x1) = − k

mn1
βγ − n

n1
+

1

2m
β

(
n1U(x1)

f(x1)
γ + U ′(x1)δ1

)
, (C.8i)

Mij(x1) = γδiδjδk|εijk|Lk(x1), (C.8j)

0 = Σ3
i=1δiLi(x1). (C.8k)

where m is a constant.
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Provided that the Killing spinor equations (C.7) and (C.8) are satisfied, the 4-form

Bianchi identity (C.3) yields

L1(x1) = c1e
2A(x1), (C.9a)

L2(x1) =

(
−δ1c1

2δ2
+

c2

f(x1)2

)
e2A(x1). (C.9b)

Finally, the 4-form equations of motion (C.4) yields a constraint on the projections

and the 4th order ODE for U(x1),

α = βγδ1δ2δ3, (C.10)

0 = f2
1 f2f3(4c2

2 + f2
1n

4
1U(x1)2) + 2γδ1f(x1)f3

1 f2f3n
3
1

(
U(x1)U ′(x1)

)
+ f(x1)2f2

1 f2f3n
2
1

(
U ′(x1)2 + U(x1)U ′′(x1)

)
+ f(x1)3f1

(
− 4f1(f2 + f3)(k + γδ1n1U

′(x1))

+ f2f3(2kU ′′(x1) + 3γδ1n1(U(x1)U ′′(x1))′)
)

+ f(x1)4
(
−4f2

1 + 3f2
1 f2f3c

2
1 + 2f1(f2 + f3)U ′′(x1)− f2f3(U(x1)U ′′′(x1))′

)
. (C.11)

This expression coincides, of course, with (3.8) obtained in the main text using the

geometric SU(4) structure conditions and the 4-form equation of motion.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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