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1 Introduction

It is well known that four dimensional, perturbative Yang-Mills theory with maximal su-

persymmetry (SYM) has a worldsheet description in terms of the superconformal sigma

model (SCFT) of type II superstring theory on a D3 brane. Furthermore, pointlike in-

stantons have an equivalent description as bound states of D(−1) branes localized inside

this D3 brane [1–4]. Consequently, these configurations, in spite of being non-perturbative

from the four-dimensional, or D3 brane, point of view, have a simple description in terms
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of a worldsheet SCFT with mixed Neumann and Dirichlet boundary conditions [5]. In

particular, the SCFT on the D(−1) brane reproduces the ADHM constraints for zero size

instantons [6–9].

In Yang-Mills theory the size of the instanton is a modulus that is protected, at quan-

tum level, thanks to supersymmetry (SUSY). A natural question is then whether there is a

corresponding deformation of the worldsheet theory that describes D(−1) branes of finite

size. To lowest, non-linear order in the deformation, the answer is affirmative: there is

a marginal deformation of the SCFT obtained when certain massless fields in the Hilbert

space of strings stretched between the D(−1) and the D3 branes take a non-vanishing

expectation value. Furthermore, evaluating the gluon vertex in the perturbed SCFT to

second order in the shifted background reproduces the asymptotic form of the instanton

profile in the singular gauge [4].1

At next to leading order (third order in size), in addition to the usual subtleties of

conformal perturbation theory (e.g. [10]), one encounters subtleties in the integration of

odd moduli in supermoduli space (e.g. [11]). In the textbook treatment of scattering

amplitudes in the worldsheet approach the integration over odd moduli is implemented by

using a variety of pictures for the external states. While standard arguments imply that

on-shell amplitudes computed in this way generally do not depend on how the picture is

distributed (e.g. [12]), this is not necessarily so when some internal states go on-shell and

furthermore, one is not guaranteed that any choice of pictures gives the correct result.

The problem at hand is precisely a case where this situation arises and where the usual

worldsheet approach is incomplete.

In order to decide whether blowing up of the D(−1) brane is an exact modulus of

string theory we then refer to super string field theory (SFT). Luckily for the open string

a consistent classical SFT exists [13–15]. Any consistent SFT can be taken to address

this problem; here we will work with the A∞-SFT [14], since it is formulated on the small

Hilbert space, but other choices are possible (see [16]). Concretely, we will analyze the

string field theory equation of motion derived form the A∞-SFT action to third order in the

perturbation to determine if the linearized solution, or marginal deformation, corresponding

to the blow up mode can be integrated. We show that there is no obstruction at second

order in the size ρ√
α′ even without imposing the ADHM constraints, at this order. We

then calculate the instanton profile to this order as a closed function in x
α′ . At very large

distance form the location of the D(−1) it converges to the on-shell calculation of [4]. At

third order in the size ρ√
α′ we find that the size modulus is obstructed due to a contact

term that arises from an integral over an odd modulus in supermoduli space. However,

this obstruction can be removed by an appropriate zero-momentum gluon background as

previously suggested in [16] in the case of Berkovits’ superstring field theory.2 Consequently,

the corrected instanton profile receives a constant contribution proportional to the size ρ

of the instanton.

1Strictly speaking, since this an off-shell problem, this calculation has to be performed in string field

theory, but at leading order in the large distance asymptotic expansion the profile of the on-shell world-sheet

prediction is correct.
2See also [17, 18] for a recent derivation in the A∞ theory.
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One may wonder how the situation compares to the bosonic string. In this case stan-

dard world-sheet approach is applicable but the modulus is obstructed as shown in [19]

because the marginal operator that implements the blow up fails to be exactly marginal,

at least if the compactification radius is a multiple of the self-dual radius.

The rest of the paper is organized as follows. In section 2, in order to be self-contained,

we briefly review the maximally supersymmetric Yang-Mills theory in four euclidean dimen-

sions, with a particular focus on instanton solutions, both in regular and singular gauge.

In section 3 we review the D(−1)-D3 brane SCFT with focus on the massless excitations

and their field theory limit. In section 4 we describe the marginal operators generating

a blow up of the size of a D(−1) brane bound to D3 branes. In section 5 we first re-

view some aspects of the A∞-SFT required to analyze exact marginality of the blow-up

mode and then establish marginality at second order. In section 6 we then compute the

first order contribution to the amplitude for the emission of a gluon from the D(−1)-D3

worldsheet and relate it to the instanton profile in N = 4 SYM theory. In section 7 we

discuss the marginality of the blow-up modulus at third order in the size by analyzing the

SFT-equations of motion to this order. Finally we present our conclusions. Appendix A

is devoted to notations and conventions, while appendix B treats the property of opera-

tors used in this paper. In appendix C the detailed calculation of the instanton profile is

analyzed and in appendix D the detailed derivation of the contact terms relevant for sec-

tion 7 is outlined. In appendix E we discuss anomalous contributions due to the presence

of non-primary operators.

2 N=4 super Yang-Mills theory and instantons

In this section we briefly review the N = 4 SYM theory with special focus on instanton

solutions. The action of this theory can be obtained, for example, through dimensional

reduction of N=1 SYM theory in ten dimensions, which is fairly simple. The resulting

effective action is [20, 21]

SSYM =
1

g2
YM

∫
d4x Tr

{
1

2
F 2
µν − 2Λ̄α̇A /̄D

α̇β
Λ A
β + (Dµϕa)

2 − 1

2
[ϕa, ϕb]

2

− i(Σa)ABΛ̄α̇A[ϕa, Λ̄
α̇
B]− i(Σ̄a)ABΛαA[ϕa,Λ

B
α ]

}
.

(2.1)

The indices µ, ν = 1, . . . , 4 are spacetime indices, while α, α̇ = 1, 2 are chiral and anti-chiral

spinor indices. The index a runs from 1 to 6, while the indices A,B are spinor indices in

6 dimensions (corresponding to the six compactified directions). Details on the gamma

matrices used to define /D can be found in appendix A. Σa and Σ̄a are matrices that realize

the six-dimensional Clifford algebra. The fields described by this action are a gauge field

Aµ, with field strength Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], 4 pairs of Weil spinors (gauginos)

ΛαA and Λ̄α̇A, respectively right- and left-handed and 6 scalars ϕa.

Instantons in N=4 SYM theory. When the gauginos and the scalars are not present

the equations of motion simplify to

DνFνµ = 0 , (2.2)
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which are the same ones characterizing a pure Yang-Mills theory. In Euclidean signature,

solutions of these equations are given by instanton, characterized by a self-dual or anti-

self-dual field strength

Fµν = ±1

2
εµνρσF

ρσ = ±F̃µν (2.3)

and by the winding number (or Pontryagin class) k. In the following we focus on the

simplest non-abelian gauge group, SU(2). In the case of a higher rank gauge group, like

SU(N), instantons can be obtained by embedding the SU(2) solutions. All the fields, in

particular the gauge field, belong here to the adjoint representation of SU(2), thus they

carry an index c = 1, 2, 3, i.e.

Aµ = AcµT
c , (2.4)

where T c are the generators of the su(2) algebra; we will use also T c = τc

2i , where τ c are

the usual Pauli matrices. Instanton solutions are abundantly considered in the literature

(see for example [22] or [21]), and we will simply give the explicit solutions (for winding

number k = 1) here. For SU(2) the solution is usually given in two different gauges. In the

regular gauge we have

Acµ(x;x0, ρ) = 2
ηcµν(x− x0)ν

(x− x0)2 + ρ2
,

Aµ(x;x0, ρ) = − σµν(x− x0)ν

(x− x0)2 + ρ2
.

(2.5)

The solution depends on five parameters (moduli): the position xµ0 and the size of the

instanton ρ. Here, ηcµν are the ’t Hooft symbols defined in appendix A. The corresponding

field strength is given by

F cµν = −4ηcµν
ρ2

[(x− x0)2 + ρ2]2
; (2.6)

from this expression one can immediately see that the field strength is self-dual and that

the winding number is k = 1. The anti-instanton solution can be found replacing ηcµν with

η̄cµν ; in that case one has k = −1. In the singular gauge we have instead

Acµ(x;x0, ρ) = 2η̄cµν
ρ2(x− x0)ν

(x− x0)2[(x− x0)2 + ρ2]
. (2.7)

Despite the presence of the anti-self-dual symbol η̄cµν , this solution has a self-dual field

strength and k = 1. This expression is singular at the point x0. Since the singular gauge is

better suited for comparison with string theory, we will consider this gauge in what follows.

3 The D3-D(−1) brane system

In this section we review the string theory setup we will use in order to describe instantons

in N = 4 SYM theory in 4 dimensions. Such a setup consists of a bound state of N D3

branes and k D(−1) branes [1, 2] (equivalent descriptions involve bound states of Dp and

D(p+ 4) branes). This configuration can describe instantons with winding number k in a

theory with gauge group SU(N). The bosonic coordinates XM and ψM (M = 0, . . . , 9) obey
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different boundary conditions depending on the type of boundary: on the D(−1) branes

all the coordinates satisfy Dirichlet boundary conditions, while on the D3 branes the first

coordinates Xµ and ψµ (µ = 0, . . . , 3) satisfy Neumann conditions and the remaining Xa

and ψa (a = 4, . . . , 9) satisfy Dirichlet conditions.

3.1 Vertex operators

In the system we are considering, there are four types of open strings: those stretching be-

tween two D3 branes (3/3 strings), those stretching between two D(−1) branes ((−1)/(−1)

strings) and finally those with one endpoint on a D3 brane and the other one on a D(−1)

brane (3/(−1) and (−1)/3 strings). We have to consider each type of string separately, as

each one has its own spectrum and properties. Let us consider first of all the 3/3 strings.

In the following we focus only on Neveu-Schwarz (NS) states. The massless NS states can

be divided in a four-vector Aµ and six scalars ϕa; the corresponding (unintegrated and

with a c-ghost) vertex operators in the canonical picture are:

VA(z; k) = Aµc(z)ψµ(z)e−φ(z)eik·X(z) ,

Vϕ(z; k) = ϕac(z)ψa(z)e−φ(z)eik·X(z) ,
(3.1)

where the momentum kµ is ingoing and flows only along the D3 brane; the polarization

satisfies the trasversality condition Aµk
µ = 0. These states (together with their partners

in the Ramond sector) reproduce exactly the fields of N=4 SYM in four dimensions. If N

is greater than 1, these vertex operators must be multiplied by a N×N Chan-Paton factor

(T c)uv, in order to take into account all the possible D3 branes on which the endpoints

of the strings can lie. Here c is a SU(N) colour index; therefore all the polarizations

will transform in the adjoint representation of SU(N), as expected. In what follows we

will assign Chan-Paton indices directly to the polarizations if needed (for example we will

write Auvµ ).

Let us now consider (−1)/(−1) strings; the situation is different from the 3/3 case,

because now there are no longitudinal Neumann direction. Therefore, the corresponding

states do not carry momentum, and have to be considered as moduli rather than dynam-

ical fields. Among the 10 scalars of the NS sector, it is convenient to divide the ones

corresponding to the longitudinal directions of the D3 branes from the others; their vertex

operators are:

Va(z) = aµc(z)ψµ(z)e−φ(z) ,

Vχ(z) = χac(z)ψa(z)e−φ(z) .
(3.2)

Again, we have not written explicitly the indices labelling between which of the k D(−1)

branes the string is stretching; we should add to all the vertex operators a k×k Chan-Paton

matrix (tU )ij with indices i, j = 1, . . . , k. Here U is a SU(k) colour index.

Finally we consider 3/(−1) and (−1)/3 strings. In this case the four directions µ =

0, . . . , 4 are characterized by mixed boundary conditions. This means that the fields corre-

sponding to these strings do not carry momentum; furthermore the fields ψµ have integer-

moded expansion in the NS sector, and not in the R sector as for the 3/3 or (−1)/(−1)
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strings. A closer analysis of these strings (see e.g. [23]) shows that in the NS sector one

has two bosonic Weyl spinors of SO(4), w and w̄, with vertex operators given by

Vw(z) = wα̇c(z)∆(z)Sα̇(z)e−φ(z) ,

Vw̄(z) = w̄α̇c(z)Sα̇(z)∆̄(z)e−φ(z) .
(3.3)

Notice that only the anti-chiral spin fields Sα̇ appear in these vertex operators, the chirality

being fixed by the GSO projection. It is also possible to choose the opposite chirality;

this would correspond to studying the anti-self-dual instantonic solutions, instead of the

self-dual one. ∆ and ∆̄ are the bosonic twist and anti-twist fields; they have conformal

dimension 1/4, and they change the boundary conditions of the four Xµ coordinates. One

can express the twist field ∆ as product of four twist fields σ corresponding to each direction

longitudinal to the D3 branes:

∆(z) = σ0(z)σ1(z)σ2(z)σ3(z) . (3.4)

Other details on these fields can be found in the literature, for example in [23, 24] and [19].

We also have to add to all the vertex operators in (3.3) a matrix ζui (or ζ̄iu) with N × k
(or k ×N) entries, corresponding to all the possible pairs of D3 and D(−1) branes.

In order to give to all these vertex operators their canonical dimension, one should

multiply them by a suitable prefactor containing the right power of α′. All NS states

should have dimension (length)−1, therefore one should consider prefactors proportional to√
α′ [4, 25].

3.2 Tree-level amplitudes, effective actions and ADHM constraints

From the setup consisting of N D3 branes and k D(−1) branes it is possible to derive the

corresponding effective action in the following way. One should first compute all string

scattering amplitudes involving massless string states, using the vertex operators defined

above. One should then find an effective Lagrangian able to reproduce these amplitudes.

Since the string tension α′ is the only dimensionful constant, an expansion of the action

in number of derivatives corresponds to an expansion in powers of
√
α′. The low-energy

effective action is the one resulting from the field theory limit α′ → 0.

When dealing with string scattering amplitudes in the presence of two different sets of

D-branes, it is important to specify what kind of correlation function one is considering.

For example, a scattering amplitude involving only 3/3 strings must be normalized with

the disk amplitude with the boundary conditions of a D3 brane (see [19, 26] for related

discussions). For example, the scattering amplitude of a gauge vector and two gauginos is

given by (see [4])

〈〈VΛ̄VAVΛ〉〉D3 = C4〈VΛ̄VAVΛ〉 , (3.5)

where 〈VΛ̄VAVΛ〉 is the pure CFT correlation function and C4 = 〈〈1〉〉D3. Correlation

functions of (−1)/(−1) strings, on the other hand, must be normalized with the prefactor

C0 = 〈〈1〉〉D(−1). The values of C4 and C0 can be computed using unitarity methods, the

results being (see e.g. [25])

C4 ∝
1

g2
YMα

′2
, C0 ∝

1

g2
YM

, (3.6)

– 6 –
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where gYM is the (adimensional) gauge coupling constant of the four-dimensional euclidean

theory. In fact, the full low-energy effective field theory corresponding to the massless 3/3

interactions is

SSYM =
1

g2
YM

∫
d4x Tr

{
1

2
F 2
µν − 2Λ̄α̇A /̄D

α̇β
Λ A
β + (Dµϕa)

2 − 1

2
[ϕa, ϕb]

2

− i(Σa)ABΛ̄α̇A[ϕa, Λ̄
α̇
B]− i(Σ̄a)ABΛαA[ϕa,Λ

B
α ]

}
,

(3.7)

which is exactly the action of the four-dimensional N = 4 SYM theory (2.1), with Fµν =

∂µAν−∂νAµ+[Aµ, Aν ]. An alternative choice is to rescale all the vertex operators by gYM;

the corresponding effective action would be the same as (2.1), but without the prefactor

g−2
YM, and with Fµν = ∂µAν−∂νAµ+gYM[Aµ, Aν ]. The same procedure can be repeated for

the (−1)/(−1) strings and the mixed strings. Since the normalization of the corresponding

amplitudes is C0, the resulting effective action will be of the form

Smoduli =
1

g2
0

tr

{
− 1

4
[aµ, aν ]2 + . . .

}
, (3.8)

where we have written explicitly only one term, and the trace is over SU(k) and not SU(N)

as before. We have highlighted one particular term of the action, in order to discuss the role

of the prefactor g−2
0 , where g0 is the coupling of a zero-dimensional SYM theory. Unlike

the gauge coupling gYM, however, g0 is a dimensionful constant, that can be expressed as

g0 ∝ gYM/α
′. Therefore the field theory limit α′ → 0 is problematic. The solution to this

issue is to rescale some of the moduli with a prefactor g0, as explained in [4], in order to

obtain a well defined low-energy action for the moduli. For the mixed string, for example,

the vertex operators one should use are

Va ∼ g0

√
α′aµcψ

µe−φ ∼ gYM√
α′
aµcψ

µe−φ ,

Vw ∼ g0

√
α′wα̇c∆S

α̇e−φ ∼ gYM√
α′
wα̇c∆S

α̇e−φ ,

Vw̄ ∼ g0

√
α′w̄α̇cS

α̇∆̄e−φ ∼ gYM√
α′
w̄α̇c∆̄S

α̇e−φ .

(3.9)

Since the vertex operators for the moduli should be dimensionless, this means that the

polarizations of the vertex operators are dimensionful. In this case a, w and w̄ have

dimension (length)1, and are associated to the position and size of the instanton. After

this rescaling, the limit α′ → 0 (with gYM held fixed) is well defined. This also means that

we are considering the limit α′ → 0 with the size of the instanton kept constant. The final

result for the moduli action is given in [4], in terms of some auxiliary fields. The equations

of motion of these auxiliary fields give rise to some constraints on the moduli. In particular

we have

η̄µνc

(
[aµ, aν ] +

1

2
w̄α̇(σ̄µν)α̇β̇wβ̇

)
= 0 , (3.10)

which is the bosonic ADHM constraint [8]. Let us restrict to the case N = 2 and k = 1

for simplicity. Since k = 1, aµ are just numbers, therefore [aµ, aν ] = 0 and the constraint

– 7 –
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becomes w̄α̇(σ̄µν)α̇β̇wβ̇ = 0. The matrix (σ̄µν)α̇β̇ is symmetric, hence we can parametrize a

generic solution as w̄α̇wβ̇ = ρ2εα̇β̇ , where ρ has dimension (length)1, and corresponds to the

size of the instanton, as we will see later. For SU(2) an explicit solution to the constraint

is given by

w̄1̇ = (ρ, 0) , w̄2̇ = (0, ρ) , w1̇ =

(
0

−ρ

)
, w2̇ =

(
ρ

0

)
. (3.11)

4 Marginal vertex operators

Out of all the vertex operators introduced in the previous section, we can identify some

which are marginal, i.e. vertex operators of conformal dimension 0 (or 1 if the c-ghost is

not taken into account). In the NS sector they correspond to the moduli w, w̄, a and χ,

and to the zero-momentum A and φ. We will focus on the four mixed directions, thus

neglecting φ and χ. We can join the remaining vertex operators into a matrix, taking into

account all possible strings. This matrix has (N + k)× (N + k) entries, and is of the form

(eventually rescaling the polarizations)

V (z) = c(z)

(
VA Vw
Vw̄ Va

)
(z) =

gYM√
α′
c(z)

(
Auvµ ψ

µ wujα̇ ∆Sα̇

w̄ivα̇ S
α̇∆̄ aijµ ψµ

)
(z)e−φ(z) , (4.1)

where we have explicitly written the Chan-Paton indices. This vertex operator can be

expressed in the canonical picture -1, as in (4.1), or in picture 0. In order to change the

picture of this vertex operator we notice that it has the form V = cV1/2e
−φ, where V1/2

is a Grassmann-odd superconformal matter primary of weight 1/2. Changing the picture

on such a vertex operator is simple, and was discussed in [16]. Here we choose a slightly

different notation: we call X the picture changing operator, and we express it in terms of

the BRST charge and the ξ ghost as

X = {Q, ξ} . (4.2)

The BRST charge, in turn, is given explicitly by Q = Q0 +Q1 +Q2 with (see [27])

Q0 =

∮
dz

2πi

(
cTX,ψ,β,γ + c(∂c)b

)
(z) ,

Q1 = −
∮

dz

2πi
γTF (z) ,

Q2 = −1

4

∮
dz

2πi
bγ2(z) ,

(4.3)

where TF is the matter supercurrent TF (z) = i√
2α′ψµ∂X

µ. We then have

X V = −cV1 +
1

4
γV1/2 , (4.4)

where V1 is a Grassmann-even superconformal primary of weight one defined by

TF (z)V1/2(0) =
V1(0)

z
+ regular . (4.5)

– 8 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
8

The explicit calculation for the vertex operator (4.1) gives

XV (z) = − gYM√
α′
c


i√
2α′

Auvµ ∂X
µ − 1

2
√

2
wujα̇ τµ(σ̄µ)α̇βS

β

− 1

2
√

2
w̄ivα̇ (σ̄µ)α̇βS

β τ̄µ
i√
2α′

aijµ ∂Xµ

 (z)

+
1

4

gYM√
α′
γ

(
Auvµ ψ

µ wujα̇ ∆Sα̇

w̄ivα̇ S
α̇∆̄ aijµ ψµ

)
(z) ,

(4.6)

where τµ (and analogously τ̄µ) is a combination of an excited twist field along the µ direction

and three normal twist fields along the other directions [19].

5 Second order deformation

In this section we start analyzing exact marginality of the blow up of the size of a D(−1)

brane in a D3 background. We will do this in the framework of super string field theory

(SFT); this is necessary for two reasons: as we shall see shortly, we will encounter am-

plitudes with on-shell internal states as well as off-shell external states. The Yang-Mills

action (2.1) arises, in the limit α′ → 0, from open superstring field theory after integrating

out massive and auxiliary fields [16, 28]. We will not need all of the technical material

that goes into its construction. Let us instead begin by reviewing some details relevant for

this paper.

5.1 Open superstring field theory

The NS sector of open superstring field theory (OSFT) is defined perturbatively on the

space of states H of the worldsheet SCFT of (−1)/(−1), (−1)/3, 3/(−1) and 3/3 strings

with a non-degenerate BPZ inner product

(Ψ1,Ψ2) = lim
z→0

Tr 〈(I∗OΨ1)(z)OΨ2(z)〉H , (5.1)

where the trace is over NN and DD boundary conditions, 〈. . . 〉H is the correlator on the

upper half plane and I(z) = −1/z while I∗O denotes the conformal transformation of O
with respect to I. The BPZ inner product is graded symmetric due to the 3 ghost insertions

originating from the SL(2,R) isometry group of the disk. With this, the kinetic term is

given by
1

2
(Ψ, QΨ) , (5.2)

where Q is the open string BRST charge of ghost number one and Ψ is an arbitrary state

in in the state space of the matter plus ghost SCFT.

In addition to the quadratic term, OSFT has an infinite number of higher order inter-

action terms:

S(Ψ) =
1

2
(Ψ, QΨ) +

1

3
(Ψ,M2(Ψ,Ψ)) +

1

4
(Ψ,M3(Ψ,Ψ,Ψ)) + · · · (5.3)

All of these vertices are contact terms, meaning that they do not involve integrals over

even directions in moduli space. However, they do involve integrals over the odd directions,
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which are implemented by the insertion of a BPZ-even picture changing operator X [14].

Let us focus on M2 at present. Ignoring picture changing for the moment, M2 reduces to

an associative product

m2 : H×H → H , (5.4)

which can be described by the three-point correlator

(Ψ1,m2(Ψ2,Ψ3)) := Tr 〈(f∗∞OΨ1)(0)(f∗1OΨ2)(0)(f∗0OΨ3)(0)〉 , (5.5)

where fw(z) is a family of conformal maps from the half disk to the upper half plane such

that fw(0) = w. For now we will not need any further information on fw(z) since we will

consider only conformal scalars fields, i.e. on-shell (except in section 6). Equivalently, m2

is defined in terms of the operator product expansion (OPE) of conformal fields. This will

sometimes be more convenient for our use below.

In order to implement the integration over the odd moduli we define the picture chang-

ing operators [14]

X =
1

2πi

∮
dx

z
X(z) , ξ =

1

2πi

∮
dx

z
ξ(z) (5.6)

around each puncture, with X(z) = {Q, ξ(z)} where ξ(z) is defined in (B.11). The product

M2 can then be expressed as

M2(A,B) =
1

3

(
Xm2(A,B) +m2(XA,B) +m2(A,XB)

)
, (5.7)

where Xm2(A,B) can be evaluated with the help of the BPZ inner product, using

(C,Xm2(A,B)) = (XC,m2(A,B)) . (5.8)

Note that M2 so defined is associative only up to homotopy, that is a Q-exact term, due

to the fact that X does not commute with the m2 operation.3 Consequently the algebraic

structure of OSFT is that of a homotopy associative (or A∞) algebra. This structure then

uniquely determines the higher order products, up to field redefinitions. This is how the

A∞-OSFT of [14] is constructed. However, we will not need any details of this construction

other than the fact that M3 cancels the non-associativity of M2 and that M2 itself is exact

in the large Hilbert space, that is,

M2 = {Q,µ2} , µ2(A,B) =
1

3

(
ξm2(A,B) +m2(ξA,B) + (−1)|A|m2(A, ξB)

)
. (5.9)

5.2 Second order deformation

A marginal deformation in the worldsheet CFT is exactly marginal if the corresponding

solution of the linearized equation of motion of OSFT can be integrated to a solution to

the nonlinear equation of motion. So let us start by writing down the equation of motion

following from (5.3)

QΨ +M2(Ψ,Ψ) +M3(Ψ,Ψ,Ψ) + · · · = 0 . (5.10)

3Note, that in contrast to [14], here we do not work with the shifted (suspended) Hilbert space. Conse-

quently some extra minus signs appear relative to [14] (see also appendix D).
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We then expand the field in a perturbation series with parameter ρ√
α′ :

Ψ =
ρ√
α′

Ψ0 +

(
ρ√
α′

)2

Ψ1 +

(
ρ√
α′

)3

Ψ2 + . . . , (5.11)

where
ρ√
α′

Ψ0 = V , (5.12)

with V as in (4.1), with moduli w, w̄ and a in ψ0 satisfying the ADHM constraints. This is

a solution of the linearized equation of motion QV = 0 that describes an infinitesimal blow-

up of the D(−1) brane, and ( ρ√
α′ )

2Ψ1 + . . . are the higher order corrections to ( ρ√
α′ )Ψ0.

To first order in the non-linearity (second order in ρ/
√
α′) we then have

QΨ1 +M2(Ψ0,Ψ0) = 0 , (5.13)

which is solved by

Ψ1 = −Q−1M2(Ψ0,Ψ0) + ψ1 , (5.14)

with ψ1 a solution to the homogeneous equation, Qψ1 = 0. Equation (5.14) is well defined

provided that Q has an inverse. For this we need to choose a gauge fixing. Here we will

work in Siegel gauge, b0Ψ = 0, with Q−1 = b0
L0

. Then

QQ−1 +Q−1Q = 1− P0 , (5.15)

where P0 is the projector on the cohomology H(Q) ⊂ ker(L0), satisfying

QP0 = P0Q = 0 . (5.16)

To see if Ψ1 in (5.14) is well defined we then compute

QΨ1 = −QQ−1M2(Ψ0,Ψ0) = (Q−1Q+ P0 − 1)M2(Ψ0,Ψ0) . (5.17)

The first term on the r.h.s. vanishes using [Q,M2] = 0 (which, in turn, follows from the fact

that [Q,X] = 0) and that Q is a derivation of the star product m2 defined through (5.5).

Thus (5.14) is meaningful provided that

P0M2(Ψ0,Ψ0) = 0. (5.18)

To prove that (5.18) holds we show that P0M2(V, V ) = 0 for a vertex operator of the

form V (z) = cV1/2 e
−φ(z), where V1/2 is a matter vertex operator of conformal dimension

1/2; this is the prototype of vertex operator we are interested in (cfr. (4.1)). Let us first

consider the contribution P0[m2(V,XV )+m2(XV, V )] in (5.7). Since all operators involved

have total conformal weight zero we can evaluate this expression using the OPE. That is,

using (4.4),

P0[m2(V,XV ) +m2(XV, V )] = lim
z→0

P0 [V (z)XV (0) +XV (0)V (z)]

= lim
z→0

P0

[
cV1/2e

−φ(z)

(
−cV1(0) +

1

4
γV1/2(0)

)
+

(
−cV1(z) +

1

4
γV1/2(z)

)
cV1/2e

−φ(0)

]
,

(5.19)
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where V1 is the matter operator of conformal dimension 1 defined in (4.5). Since the

OPE V1/2(z)V1/2(0) contains a single pole, while the OPE V1/2(z)V1(0) does not, we

conclude that4

P0[m2(V,XV ) +m2(XV, V )] = lim
z→0

P0

[
1

4
z cη(0)

(
V1/2(z)V1/2(0)− V1/2(z)V1/2(0)

)]
= 0 , (5.20)

where we used the fact that V1/2 and c are fermionic operators. Let us then consider the

remaining term P0[Xm2(V, V )] = XP0[m2(V, V )] in (5.7). Recalling (5.15) we restrict the

OPE to the kernel of L0,

m2(V, V )|ker(L0) = lim
z→0

(cV1/2 e
−φ)(z)(cV1/2 e

−φ)(0) = ∂(c∂ce−2φV′0) + c∂cV′1e−2φ , (5.21)

where V′0 and V′1 are matter vertex operators of conformal weight 0 (thus proportional

to the identity) and 1 respectively. It is not hard to see that the first term in (5.21) is

Q-exact, i.e.

∂(c∂ce−2φV′0) = Q
(
∂ce−2φV′0

)
, (5.22)

and therefore it is annihilated by P0, since P0Q = 0, leaving

P0m2(V, V ) = c∂cV′1e−2φ . (5.23)

For the second term in (5.21) we proceed using the identity X = {Q, ξ} in the large Hilbert

space. Since V is on-shell,

P0M2(V, V ) = Q
(
ξc∂cV′1e−2φ

)
= (Q0 +Q1 +Q2)

(
ξc∂cV′1e−2φ

)
, (5.24)

where we used the explicit definition (4.3). Bosonizing the ghosts as in appendix B we can

compute each term in (5.24). The first and last term clearly vanish, while the second term

extracts the double pole of the OPE

TF (z)V′1(0) . (5.25)

In our case, however, the operator V′1 is proportional to ψµν , as we will see in section 7.

The OPE with the supercurrent is then given by

TF (z)ψµν(0) ∼ 1

z
(∂Xµψν − ∂Xνψµ) (0) + . . . (5.26)

Therefore we conclude that (5.24) vanishes, thus establishing that P0M2(V, V ) = 0. Hence,

the first order correction Ψ1 in (5.14) is well defined, even without specifying the ADHM

constraints.

4We would like to thank C. Maccaferri for helpful comments on this point.
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w̄

w

u

v

k c

µ

Figure 1. First order contribution to the instanton profile. The solid line represents the D3 branes,

while the dashed one represents the D(−1) brane; the indices u, v = 1, 2 label the particular D3

branes. The vector Acµ (with outgoing momentum kν) comes from a 3/3 string, and the correspond-

ing vertex operator has to be inserted in the middle of the solid line. The curly line represents the

presence of a gluon propagator.

6 Instanton profile

As an application we compute the first order contribution to the instanton profile, that is

the projection of Ψ1 to a gluon state. This should correspond to computing the instanton

profile at second order in ρ/
√
α′, valid for ρ2 � α′. For simplicity we set aµ = 0; a

different value for aµ would correspond to moving the position of the instanton. Concretely

we consider

Ac(1)
µ =

(
ρ√
α′

)2

(VAcµ ,Ψ1) = −
(

ρ√
α′

)2

(VAcµ , Q
−1M2(Ψ0,Ψ0)) . (6.1)

Since VAcµ is a vertex operator in the 3/3 sector, this matrix element projects the 3/3

component of M2(Ψ0,Ψ0). Thus

Ac(1)
µ = −(VAcµ , Q

−1M2(Vw, Vw̄)) , (6.2)

where we used the same symbol M2 for the matrix components of M2. The latter involves

picture changing operators on the inputs as well as on the output of the product. How-

ever, since X is a conformal scalar we can pull it through the propagator Q−1 onto VAcµ .

Furthermore since none of the the vertex operators involve the η ghost, we can move X

from either input to VAcµ in spite of VAcµ being off-shell. Consequently we can take VAcµ in

picture zero while the boundary changing vertex operators are in picture -1.

The calculation of this quantity can be done in two steps. Using the definition (5.5),

we first need to compute the correlator

Tr〈〈(f∗∞V
(−1)
w̄ )(0)(f∗1V

(0)
Acµ

)(0;−k)(f∗0V
(−1)
w )(0)〉〉D(−1) , (6.3)

where Vw̄ and Vw are boundary changing operators, and VAcµ is the gluon vertex operator

with outgoing momentum, with a free Lorentz and color index. Notice that the topological

normalization is the one of the lowest brane [4]. Then we act with Q−1, which, in Siegel

gauge, results in multiplication by 1/k2. The calculation of (6.1) is sketched in figure 1.

– 13 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
8

Explicitly, the boundary changing operators (in picture -1) in (6.3) are the ones given

in (3.3) with the rescaling (3.9), while VAµ is given (in picture -1) by

V(−1)uv
Acµ

(z;−k) =

√
α′

2

(τ c)uv

2
c(z)ψµ(z)e−φ(z)e−ik·X(z) , (6.4)

where we have used the Chan-Paton factor (T c)uv = (τ c)uv/2i. Applying the picture

changing operator to (6.4) we get

V(0)uv
Acµ

(z;−k) =
(τ c)vu

2
(i∂Xµ −

α′

2
k · ψψµ)e−ik·X(z) . (6.5)

In contrast to (4.6), there is an extra contribution due to the non-vanishing momentum kµ.

Furthermore, only the term with a c-ghost (and not the one with a γ-ghost) can contribute

to the correlation function (6.3). We note here that the action of the maps fz reduces for

primary operator A(w) to

f∗zA(w) = f ′z(w)hA(fz(w)) , (6.6)

where h is the conformal dimension. In our case, since two operators are on-shell, we need

only one map f1, for the gauge vector. Therefore the correlation function reduces to

Ac(1)
µ (k) = C0f

′
1(0)α

′k2/2〈V (−1)u
w̄ (∞)V(0)uv

Aµ
(1; k)V (−1)v

w (0)〉 , (6.7)

where we made the SU(2) indices explicit. The detailed calculation is done in appendix C.

Here we state the final result in momentum space, assuming the ADHM constraints, that is

Ac(1)
µ (k) =

(
f ′1(0)

4

)α′k2/2

iρ2kν η̄cνµe
−ik·x0 , (6.8)

where the factor (1/4)α
′k2/2 takes into account the proper normal ordering on a twisted

background [29, 30].5 Notice that this result depends on α′ and on the choice of the map

f1 (different maps correspond to different field redefinitions); (6.8) differs from the result

in [4], where the off-shell amplitude (6.3) was computed within the on-shell formalism.

Let us now perform a Fourier transform, in order to have a result in configuration space;

as explained above, the propagator in Siegel gauge has to be added. The result is (see

appendix C for the detailed calculation)

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4

[
1 + e(x−x0)2/(2α′L1)

(
1− (x− x0)2

2α′L1

)]
, (6.9)

where L1 = log(f ′1(0)/4) < 0 since f ′1(0) < 1. In the field theory limit α′k2 � 1 the

dependence on f ′1(0) drops out. Since we also assumed from the beginning that ρ2 � α′,

the field theory limit will also correspond to a large distance (compared to the size ρ) limit.

In this limit the profile in position space is (see appendix C)

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4
, (6.10)

5We would like to thank Igor Pesando for clarifying comments on this point.
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which is exactly the leading term in a large distance expansion (ρ2 � (x−x0)2) of the full

SU(2) instanton solution (2.7), as previously found in [4].

In closing this section we note that a zero momentum gluon, appearing in vertex

operator in (4.1), does not source a non-linear correction to (6.9). This is because the

correction would be proportional to the three point function

〈V (−1)
A (∞; 0)V(0)

A (1; k)V
(−1)
A (0; 0)〉 , (6.11)

which vanishes, since two of the vertex operators have vanishing momentum. Thus, the

complete profile up to order ρ2 is given by

Acµ(x) = Ac (0)
µ +Ac (1)

µ (x) , (6.12)

where A
c (0)
µ is constant in position space and A

c (1)
µ (x) given by (6.9). For the same rea-

son this zero momentum gluon does not source a deformation in the 3/(−1), (−1)/3 or

(−1)/(−1) sectors.

7 Third order deformation

At second order in the deformation (third order in ρ/
√
α′) the equation of motion (5.10)

reads

QΨ2−M2(Q−1M2(Ψ0,Ψ0)−ψ1,Ψ0)−M2(Ψ0, Q
−1M2(Ψ0,Ψ0)−ψ1)+M3(Ψ0,Ψ0,Ψ0) = 0 ,

(7.1)

where we used the solution for Ψ1 given in (5.14). The obstruction to inverting Q is given by

(Q−1Q+ P0)
[
M2(Q−1M2(Ψ0,Ψ0)− ψ1,Ψ0)+

+M2(Ψ0, Q
−1M2(Ψ0,Ψ0)− ψ1)−M3(Ψ0,Ψ0,Ψ0)

]
.

(7.2)

Let us first consider the terms involving Q−1Q. They add up to (using also Qψ1 = 0)

Q−1 [M2(M2(Ψ0,Ψ0),Ψ0)−M2(Ψ0,M2(Ψ0,Ψ0))−QM3(Ψ0,Ψ0,Ψ0)] , (7.3)

which vanishes by the A∞ relations (see e.g [14, 31]). The remaining obstruction is then

P0

[
M2(Q−1M2(Ψ0,Ψ0)− ψ1,Ψ0) +M2(Ψ0, Q

−1M2(Ψ0,Ψ0)− ψ1)−M3(Ψ0,Ψ0,Ψ0)
]
.

(7.4)

We note, in passing, that (7.4) is just the minimal model map to fourth order of the un-

derlying A∞ algebra which extracts the S-matrix elements of string field theory. This does

not come as a surprise, since S-matrix elements are known to be given by the obstructions

of a linearized solution to give rise to a non-linear solution (e.g. [32]).

In order to analyze this obstruction we first note that P0M2(ψ1,Ψ0) and P0M2(Ψ0, ψ1)

vanish. The proof of this is completely analogous to that given above for P0M2(Ψ0,Ψ0).

Next, we consider P0M2(Q−1M2(Ψ0,Ψ0),Ψ0), which we write as∑
i

ei〈ei,M2(Q−1M2(Ψ0,Ψ0),Ψ0)〉 , (7.5)
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where ei (ei) is a basis (and its dual) of the image of P0 with 〈ei, ej〉 = δij . To continue we

use (5.9) to write

〈ei,M2(Q−1M2(Ψ0,Ψ0),Ψ0)〉 = − 1

2
〈ei, ξ M2(Q−1{Q,µ2}(Ψ0,Ψ0),Ψ0)〉L

− 1

2
〈ei, ξ {Q,µ2}(Q−1M2(Ψ0,Ψ0),Ψ0)〉L ,

(7.6)

where, since (5.9) holds only in the large Hilbert space HL, we now use the BPZ inner

product in HL with an extra insertion of ξ to saturate the extra zero mode in HL. The

second term in (7.4) is treated analogously. Next we commute Q−1 across Q and use the

fact that Q commutes with M2 and annihilates Ψ0. In doing so we pick up the contributions

1

2
〈ei, ξ M2(P0µ2(Ψ0,Ψ0),Ψ0)〉L +

1

2
〈ei, X M2(Q−1µ2(Ψ0,Ψ0),Ψ0)〉L

− 1

2
〈ei, X µ2(Q−1M2(Ψ0,Ψ0),Ψ0)〉L −

1

2
〈ei, ξ µ2(P0M2(Ψ0,Ψ0),Ψ0)〉L .

(7.7)

The last term above vanishes for the same reason as in subsection 5.2. In the two terms

above involving X, the ξ zero-mode must be provided by µ2, so that, for instance,

− 1

2
〈ei, X µ2(Q−1M2(Ψ0,Ψ0),Ψ0)〉L = −1

2
〈ei, Xξ m2(Q−1M2(Ψ0,Ψ0),Ψ0)〉L (7.8)

and similarly for the second term in (7.7). In what follows, we will neglect the terms that

originate from the identity in (5.15) since, as shown in [14], these cancel against M3 in (7.4).

Applying (5.9) to (7.8) we get

− 1

2
〈ei, X µ2(Q−1M2(Ψ0,Ψ0),Ψ0)〉L = −1

2
〈ei, Xξ m2(Q−1{Q,µ2}(Ψ0,Ψ0),Ψ0)〉L . (7.9)

We then commute Q−1 across Q and use again that Q annihilates Ψ0. Therefore (7.9)

gives a contribution

1

2
〈ei, Xξ m2(P0 µ2(Ψ0,Ψ0),Ψ0)〉L −

1

2
〈ei, X2m2(Q−1 µ2(Ψ0,Ψ0),Ψ0)〉L . (7.10)

The objective of deriving the expressions (7.7) and (7.10) was to isolate the contact terms

that originate in the integration over odd moduli in the super moduli space (encoded in the

super string products M2 and M3). This procedure can be applied in complete analogy to

the remaining terms in (7.4). More details on this derivation can be found in appendix D.

The result is a sum of two contributions, one involving the projector P0 and the other

involving the propagator Q−1. The first contribution reads6

A = − 1

3
〈P0µ2(Ψ0,Ψ0), 4m2(Ψ0, ξXei)− 4m2(ξXei,Ψ0)

+m2(XΨ0, ξei)−m2(ξei, XΨ0)〉L

− 1

3
〈P0m2(Ψ0,Ψ0), ξm2(Ψ0, ξXei)− ξm2(ξXei,Ψ0)

+m2(ξΨ0, ξXei)−m2(ξXei, ξΨ0)〉L

− 1

3
〈XP0µ2(Ψ0,Ψ0),m2(Ψ0, ξei)−m2(ξei,Ψ0)〉L , (7.11)

6We would like to thank Jakub Vošmera four pointing out a sign mistake in this equation.
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where we used the cyclic properties of the string products m2 and µ2 (see appendix D) as

well as XξΨ0 = ξXΨ0 (and similarly for ei). The second term, involving the propagator

is given by

B = −2〈X ◦X ei,m2(Q−1m2(Ψ0,Ψ0),Ψ0) +m2(Ψ0, Q
−1m2(Ψ0,Ψ0)〉 . (7.12)

In the next two subsections we will evaluate these two terms separately.

7.1 Evaluation of A

To continue we evaluate the terms appearing in (7.11). In principle there are anomalous

contributions due to the fact that ξXei contains the operator : ξη : which is not primary;

we are going to discuss this problem in appendix E, where we show that all anomalous

contributions cancel. For the moment we proceed as we would do if all the vertex oper-

ators were primaries; let us start with P0m2(Ψ0,Ψ0). Using the OPE relations given in

appendix B with ρ√
α′ Ψ0 = V , we find (for a single D(−1) brane, i.e. k = 1 and assuming

aµ = 0 for simplicity)(
ρ√
α′

)2

P0m2(Ψ0,Ψ0) = P0m2(V, V ) =
1

2

g2
YM

α′
c∂ce−2φψµνMµν , (7.13)

with

Mµν =

(
[Aµ, Aν ] + 1

2wα̇(σ̄µν)α̇β̇w̄β̇ 0

0 1
2 w̄α̇(σ̄µν)α̇β̇wβ̇

)
, (7.14)

where we have projected out the Q-exact piece, in analogy to the one in (5.21). On the

other hand, P0µ2(V, V ) is given by(
ρ√
α′

)2

P0µ2(Ψ0,Ψ0) = P0µ2(V, V ) =
1

2

g2
YM

α′
ξc∂ce−2φψµνMµν +

g2
YM

3α′
∂ξc∂ce−2φU ,

(7.15)

where the last term is proportional to the identity in the matter sector and

U =

(
AµAνδ

µν + wα̇ε
α̇β̇w̄β̇ 0

0 w̄α̇ε
α̇β̇wβ̇

)
. (7.16)

To continue we note that, without restricting the generality, we may parametrize a generic

zero-momentum Siegel gauge state ei in physical subspace Hphys by

ei(z) =
gYM√
α′
c(z)

(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
(z)e−φ(z) , (7.17)

which is basically the same as (4.1), but with a different generic polarizations Bµ, vα̇, v̄α̇
and bµ. In order to evaluate A We need the explicit expressions of ξei and ξXei, given by

ξei =
gYM√
α′
ξc

(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
e−φ , ξXei =

gYM

4
√
α′

: ξη : eφ

(
Bµψ

µ vα̇∆Sα̇

v̄α̇S
α̇∆̄ bµψ

µ

)
,

(7.18)
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where we used (5.6) and for Xei we kept only the term with the γ-ghost in (4.4). This

is because all the terms involving ξXei in (7.11) already have three c-ghost insertions,

therefore only the term with a γ ghost in ξXei can contribute to the correlation functions.

Using the OPE’s in appendix B we can check that

P0[m2(V, ξXei)−m2(ξXei, V )] = P0[V, ξXei]m2 =
g2

YM

4α′
c : ξη : W , (7.19)

with

W =

(
AµBνδ

µν + wα̇ε
α̇β̇ v̄β̇ 0

0 w̄α̇ε
α̇β̇vβ̇ ,

)
−

(
BµAνδ

µν + vα̇ε
α̇β̇w̄β̇ 0

0 v̄α̇ε
α̇β̇wβ̇ ,

)
≡W ′ −W ′′

(7.20)

while

P0ξm2(V, ξXei) = P0ξm2(ξXei, V ) = 0 . (7.21)

The terms in (7.19), when coupled to (7.13), cannot contribute to (7.11), since they produce

the one-point function 〈ψµν〉 in the matter sector, which vanishes. However, we get a non-

vanishing contribution from the remaining terms in (7.11). In particular, we can compute

P0[XV, ξei]m2 =
g2

YM

4α′
cψρσNρσ −

g2
YM

4α′
c : ξη : W +

g2
YM

4α′
c∂φW +

g2
YM

4α′
∂cW ′′ ,

P0[ξV, ξXei]m2 = −
g2

YM

4α′
ξ0cψ

ρσNρσ +
g2

YM

4α′
ξ0c∂φW −

g2
YM

4α′
ξ0∂cW

′ −
g2

YM

4α′
∂ξcW ′′ ,

P0[V, ξei]m2 = −
g2

YM

α′
ξ0c∂ce

−2φψρσNρσ −
g2

YM

α′
∂ξc∂ce−2φW ′′ ,

(7.22)

where [ ·, · ]m2 denotes the graded commutator with respect to Witten’s star product m2,

Nρσ =

[Aρ, Bσ] + 1
4

(
wγ̇(σ̄ρσ)γ̇δ̇ v̄δ̇ + vγ̇(σ̄ρσ)γ̇δ̇w̄δ̇

)
0

0 1
4

(
v̄γ̇(σ̄ρσ)γ̇δ̇wδ̇ + vγ̇(σ̄ρσ)γ̇δ̇w̄δ̇

) ,

(7.23)

and W , W ′ and W ′′ were defined above. Here ξ0 is the zero mode of ξ. In the last line

of (7.22) we furthermore used that the combination

g2
YM

α′
ξce−2φ

(
∂c∂φ− 1

2
∂2c

)
(W ′ +W ′′) (7.24)

contributing to [V, ξei]m2 is Q-exact and thus annihilated by the projector P0. Indeed,

Q(∂ce−2φ) = c∂2ce−2φ − 2∂φc∂ce−2φ. Again, only the term with a γ ghost in XV can

contribute to (7.11), because it is inserted inside correlation functions with already three c-

ghost insertions. Let us now contract the terms in (7.22) with (7.13) and (7.15) respectively.

Focussing first on the terms containing the matter operator ψµν , and using the known

correlation functions

〈ξc∂ce−2φ(z)c(w)〉L = −(z − w)2 ,

〈ψµν(z)ψρσ(w)〉L =
−δµρδνσ + δµσδνρ

(z − w)2
,

(7.25)
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we conclude that the first two lines of (7.11) exactly cancel for the state ei. First, there is

a precise cancellation of the terms proportional to ψµν in (7.22). The terms proportional

to the identity, on the other hand, give rise to a contribution proportional to

Tr [AµAµ(AνBν −BνAν)] . (7.26)

While this is in general non-zero, it vanishes for the SU(2) gauge group.7

Concerning the last line of (7.11), the first term in (7.15) can be treated in the large

Hilbert space,

P0Xξm2(V, V ) = P0ξQξm2(V, V ) = ξP0Xm2(V, V ) = 0 , (7.27)

where we have used the fact that V is on-shell and the last step was proven in subsection 5.2.

The second term in (7.15), on the other hand, does not contain any zero mode of ξ. This

means that the zero mode has to come from the first term in P0[m2(V, ξei) −m2(ξei, V )]

(see the third line of (7.22)); however, this would give rise, in the matter sector, to the

one-point function 〈ψρσ〉, which is zero. Therefore the last line in (7.11) vanishes as well;

this concludes the proof that A = 0.

7.2 Evaluation of B

Let us now analyze the terms involving the propagator Q−1, that is

B = −2〈X ◦X ei,m2(Q−1m2(Ψ0,Ψ0),Ψ0) +m2(Ψ0, Q
−1m2(Ψ0,Ψ0)〉 . (7.28)

The field ei is of the form ei = cṼ1/2e
−φ, where Ṽ1/2 is a matter primary operator of

conformal dimension 1/2; using the picture changing we get

Xei = −cṼ1 +
1

4
γṼ1/2 ; (7.29)

we now apply another picture changing operator. We consider only terms with a c-ghost

in the final result, since they are the only ones contributing to correlation functions. For

the first term in (7.29) only Q1(−ξcṼ1) maintains the c-ghost; for the second term we get

a contribution from Q0(: ξη : eφṼ1/2), due to the fact that : ξη : is not a primary field

(see appendix B for details). We thus have, up to terms that do not contribute to the

correlators,

X ◦Xei = Q1(−ξcṼ1) +Q0(: ξη : eφṼ1/2) + . . .

=

∮
dz

2πi
(ηeφTF )(z)(ξcṼ1)(0) +

∮
dz

2πi
(cT )(z)

(
1

4
: ξη : eφṼ1/2

)
(0) + . . .

(7.30)

For the explicit calculation we notice that the supercurrent satisfies

TF (z)Ṽ1/2(0) =
1

z
Ṽ1(0) + . . . ,

TF (z)Ṽ1(0) =
1

4z2
Ṽ1/2(z) +O(z0) .

(7.31)

7More generally, these terms are absent if one uses a symmetric OPE as in [18]. These two prescriptions

are related by a field redefinition.
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The OPE relations (7.31) imply that the supercurrent can always be written as normal

ordered product of the spacetime fermion and boson appearing in Ṽ1/2 and Ṽ1 respectively.

In particular this is obvious for the gluon vertex operator, for which the spacetime fermion

and boson are proportional to ψµ and i∂Xµ, but it is also true in the case of boundary

changing operators, since we can write

TF ∝ ψµ∂Xµ =
1√
2

: ∆Sα̇(σ̄µ)α̇βS
βτµ :=

1√
2

: ∆̄Sα̇(σ̄µ)α̇βS
β τ̄µ : . (7.32)

Therefore (7.30) becomes

X ◦Xei = c(0)

∮
dz

2πi
eφ(z)Ṽ1/2(z)

(
1

z
+ : ηξ : +z : ∂η ξ : + . . .

)(
1

4z2
+ : Ṽ1Ṽ1 : + . . .

)
+

∮
dz

2πi

1

4
c(z)

(
−
eφṼ1/2

z3
+
∂(: ξη : eφṼ1/2)

z

)
+ · · · =

=
1

8
c∂2

(
eφṼ1/2

)
− 1

8
(∂2c)eφṼ1/2 + ceφṼ1/2 : Ṽ1Ṽ1 : +

1

4
c : ∂ξ η : eφṼ1/2 + . . . ,

(7.33)

where the 1/z3 term comes from the anomalous OPE (B.15) between the energy momentum

tensor and : ξη : and . . . indicates terms without a c-ghost. We notice that ceφṼ1/2 :

Ṽ1Ṽ1 : and c : ∂ξ η : eφṼ1/2 are not primary, since the OPE with the energy-momentum

tensor gives

T (z) ceφṼ1/2 : Ṽ1Ṽ1 : (0) =
1

4z4
ceφṼ1/2 + . . .

T (z) c : ∂ξ η : eφṼ1/2(0) = − 1

z4
ceφṼ1/2 + . . .

(7.34)

From these equations, however, we can see that the combination

ceφṼ1/2 : Ṽ1Ṽ1 : +
1

4
c : ∂ξ η : eφṼ1/2 (7.35)

is a primary field, and thus behaves regularly inside the BPZ product (7.28).

In the absence of twist field insertions these two terms will not contribute, since they

give rise to one-point functions of normal ordered products. In particular, the term pro-

portional to : Ṽ1Ṽ1 : contributes, in the matter sector, a correlator of the form

〈Ṽ1/2 : Ṽ1Ṽ1 : (z1)V1/2(z2)V1/2(z3)V1/2(z4)〉

= 〈: Ṽ1Ṽ1 : (z1)〉〈Ṽ1/2(z1)V1/2(z2)V1/2(z3)V1/2(z4)〉 = 0 ,
(7.36)

where the first factor is evaluated in the un-twisted vacuum.

We then rewrite the two remaining terms in (7.33) as

X ◦X ei =
1

8
c∂2

(
eφṼ1/2

)
− 1

8
∂2c(eφṼ1/2) + · · · = 1

8
Q
(
∂(eφṼ1/2)

)
=: QΦ + . . . , (7.37)

up to terms that do not not contribute to the correlation function. Since this is a Q-exact

quantity we can compute the propagator term (7.28), which becomes

B =− 2〈QΦ,m2(Q−1m2(Ψ0,Ψ0),Ψ0) +m2(Ψ0, Q
−1m2(Ψ0,Ψ0)〉

=− 2〈Φ,m2((1− P0)m2(Ψ0,Ψ0),Ψ0)−m2(Ψ0, (1− P0)m2(Ψ0,Ψ0)〉
=2〈Φ,m2(P0m2(Ψ0,Ψ0),Ψ0)−m2(Ψ0, P0m2(Ψ0,Ψ0)〉 ,

(7.38)
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where the terms with the identity cancel, due to the associativity of the m2 product. This

can be written as

B = 2〈P0m2(Ψ0,Ψ0),m2(Ψ0,Φ)−m2(Φ,Ψ0)〉

=
1

4
〈P0m2(Ψ0,Ψ0),m2(Ψ0, ∂(eφṼ1/2))−m2(∂(eφṼ1/2),Ψ0)〉 .

(7.39)

The operator ∂(eφṼ1/2) is not primary, therefore there are anomalous contributions anal-

ogous to the ones appearing in (7.11). We refer to appendix E for the proof that all

anomalies cancel. In the meantime we proceed as if all vertex operators were primaries,

so that the product m2 can be evaluated simply as the OPE. We have already computed

P0m2(Ψ0,Ψ0); in fact (7.13) gives(
ρ√
α′

)2

P0m2(Ψ0,Ψ0) = P0m2(V, V ) =
1

2

g2
YM

α′
c∂ce−2φψµνMµν , (7.40)

with Mµν given in (7.14). On the other hand we have

P0

[
m2(V, ∂(eφṼ1/2))−m2(∂(eφṼ1/2), V )

]
= P0

[
V, ∂(eφṼ1/2)

]
m2

= lim
z→w

(
∂w[cV1/2e

−φ(z)eφṼ1/2(w)]− ∂z[eφṼ1/2(z)cV1/2e
−φ(w)]

)
= −

g2
YM

α′
cψρσNρσ ,

(7.41)

with Nρσ as in (7.23). Putting all together we get(
ρ√
α′

)3

B =
1

4
Tr [MµνN

µν ] , (7.42)

or, explicitly, assuming the ADHM constraints,

g4
YM

8α′2
Tr

[(
[Aµ, Aν ] +

1

2
wα̇(σ̄µν)α̇β̇w̄β̇

)(
[Aµ, Bν ] +

1

4
wγ̇(σ̄µν)γ̇δ̇ v̄δ̇ +

1

4
vγ̇(σ̄µν)γ̇δ̇w̄δ̇

)]
.

(7.43)

In the absence of twist fields (wα̇ = 0) this gives the correct equation of motion for a

zero-momentum gluon field, in agreement with the 4-gluon vertex in Yang-Mills theory.

For non-vanishing wα̇, while there is a choice, as we will see later, of a zero-momentum

gluon such that the anti-self-dual part of the commutator [Aµ, Aν ] cancels the combination
1
2wα̇(σ̄µν)α̇β̇w̄β̇ , that still leaves us with the self-dual part of [Aµ, Aν ] so that full matrix

[Aµ, Aν ] +
1

2
wα̇(σ̄µν)α̇β̇w̄β̇ (7.44)

does not vanish all together, indicating an obstruction to the blow-up mode at this order.

The loop-hole in this argument8 is that the first term in (7.35), being normal ordered w.r.t.

8This was pointed out to us by Jakub Vosmera.
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the untwisted vacuum, may still be give a non-vanishing contribution in the twisted vacuum.

It turns out that the contribution form this term is rather cumbersome to evaluate explicitly

due to the presence of branch-cuts in the integrand. This difficulty can be circumvented by

evaluating (7.28) in a different manner, making use of the fact that the world-sheet CFT

has an SO(4)-invariance acting exclusively on the world-sheet fermions ψµ, µ = 1, · · · , 4
(e.g. [33]) and on the spin fields. As advocated in [16, 17], but with a slight difference due

to the opposite choice of chirality for the twisted vertex operators, a convenient basis is

ψ±1 =
1√
2

(
ψ1 ± iψ2

)
, ψ±2 =

1√
2

(
ψ4 ± iψ3

)
(7.45)

in which only a U(2) invariance is manifest. As a consequence of the SO(4)-invariance just

described the U(1)-charge

J = − 1

2πi

∮ 2∑
i=1

: ψ+
i ψ
−
i : dz =

i

2πi

∮ (
ψ12 − ψ34

)
dz (7.46)

is conserved, with

[J, ψ+
i ] = ψ+

i and [J, ψ−i ] = −ψ−i (i = 1, 2) , (7.47)

while the spin fields have U(1)-charge

[J, S 1̇] = S1̇, [J, S 2̇] = −S2̇ and [J, Sα] = 0. (7.48)

With our choice of chirality for the vertex operators only the spin fields with non-vanishing

U(1)-eigenvalues will enter in the fields Ψ0 and ei. Consequently, Ψ0 decomposes into

eigenstates of the U(1)-charge, i.e. Ψ0 7→ Ψ+
0 + Ψ−0 , in particular

ρ√
α′

Ψ0 = V = V + + V − = cV+
1/2e

−φ + cV−1/2e
−φ . (7.49)

An analogous decomposition holds for ei, while

ρ√
α′
XΨ0 = XV = −cV1 +

1

4
γV+

1/2 +
1

4
γV−1/2 ; (7.50)

(and analogously for Xei), where V1 is uncharged ([J,V1] = 0), both for the twisted and

untwisted sector. Upon substitution of this decomposition into (7.28) we get

〈X ◦X ei,m2(Q−1m2(Ψ0,Ψ0), ξ0Ψ0)〉 = + 〈X ◦X ei,m2(Q−1m2(Ψ+
0 ,Ψ

+
0 ), ξ0Ψ−0 )〉L

+ 〈X ◦X ei,m2(Q−1m2(Ψ−0 ,Ψ
−
0 ), ξ0Ψ+

0 )〉L
− 〈X ◦X ei,m2(Q−1m2(Ψ+

0 , ξ0Ψ−0 ),Ψ+
0 )〉L

+ 〈X ◦X ei,m2(Q−1m2(ξ0Ψ+
0 ,Ψ

−
0 ),Ψ−0 )〉L

+ 〈X ◦X ei,m2(Q−1m2(ξ0Ψ−0 ,Ψ
+
0 ),Ψ+

0 )〉L
− 〈X ◦X ei,m2(Q−1m2(Ψ−0 , ξ0Ψ+

0 ),Ψ−0 )〉L
(7.51)
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and analogously for the second term in (7.28). Here we have used the conservation of

J and that, while the J-charge of X ◦ X ei can take all values form -3 to 3, in order to

saturate the ghost zero-modes only the he J-charge ±1 part of X ◦ X ei can contribute

to the correlator. In addition the r.h.s. of (7.51) is expressed in the large Hilbert space.

The position of the ξ-zero mode is correlated with relative sign of each term. Next we

write X ◦X ei = Qξ ◦X ei and bring the BRST charge Q to the other side through BPZ-

conjugation. The only contribution comes from the commutator {Q,Q−1} since, whenever

Q hits a ξ, the J-charge does not add up to zero or the ghost zero-modes are not saturated.

Adding in the second term on the r.h.s. of (7.28) we are left with

−1

2
B = 〈ξ ◦X ei,m2(P0m2(Ψ+

0 ,Ψ
+
0 ), ξΨ−0 )−m2(Ψ+

0 , P0m2(Ψ+
0 , ξΨ

−
0 )〉L

+ 〈ξ ◦X ei,m2(P0m2(Ψ−0 ,Ψ
−
0 ), ξΨ+

0 )−m2(Ψ−0 , P0m2(Ψ−0 , ξΨ
+
0 )〉L

− 〈ξ ◦X ei,m2(P0m2(Ψ+
0 , ξΨ

−
0 ),Ψ+

0 ) +m2(Ψ+
0 , P0m2(ξΨ−0 ,Ψ

+
0 )〉L

+ 〈ξ ◦X ei,m2(P0m2(ξΨ+
0 ,Ψ

−
0 ),Ψ−0 )−m2(ξΨ+

0 , P0m2(Ψ−0 ,Ψ
−
0 )〉L

+ 〈ξ ◦X ei,m2(P0m2(ξΨ−0 ,Ψ
+
0 ),Ψ+

0 )−m2(ξΨ−0 , P0m2(Ψ+
0 ,Ψ

+
0 )〉L

− 〈ξ ◦X ei,m2(P0m2(Ψ−0 , ξΨ
+
0 ),Ψ−0 ) +m2(Ψ−0 , P0m2(ξΨ+

0 ,Ψ
−
0 )〉L ,

(7.52)

where we have used the associativity of m2. With the help of the cyclic property (D.11) of

m2 this can be recast into

−1

2
B = 〈P0m2(Ψ+

0 ,Ψ
+
0 ), [ξΨ−0 , ξXei]m2〉L + 〈P0m2(Ψ−0 ,Ψ

−
0 ), [ξΨ+

0 , ξXei]m2〉L

− 〈P0[Ψ+
0 , ξΨ

−
0 ]m2 , [Ψ

+
0 , ξXei]m2〉L + 〈P0[ξΨ+

0 ,Ψ
−
0 ]m2 , [Ψ

−
0 , ξXei]m2〉L . (7.53)

The four contributions to the r.h.s. of (7.53) can be read-off from eqs. (7.13)–(7.23). Ex-

plicitly we have

(
ρ√
α′

)2

P0m2(Ψ±0 ,Ψ
±
0 ) = P0m2(V ±, V ±) = −1

4

g2
YM

α′
c∂ce−2φη̄µν∓ Mµνψ

±±
12 ,(

ρ√
α′

)
P0[ξΨ±0 , ξXe

±
i ]m2 = P0[ξV ±, ξXe±i ]m2 =

1

8

g2
YM

α′
ξ0cη̄

ρσ
∓ Nρσψ

±±
12 + . . . ,(

ρ√
α′

)2

P0[Ψ±0 , ξΨ
∓
0 ]m2 = P0[V ±, ξV ∓]m2 = ± i

4

g2
YM

α′
∂ξc∂ce−2φη̄µν3 Mµν + . . . ,(

ρ√
α′

)
P0[Ψ±0 , ξXe

∓
i ]m2 = P0[V ±, ξXe∓i ]m2 = ∓ i

8
c : ξη : η̄ρσ3 Mρσ ,

(7.54)

where η̄µν± = η̄µν1 ± iη̄
µν
2 are defined in terms of the ’t Hooft symbols, and Mµν and Nρσ

are matrices defined above. The . . . denote terms that vanish upon insertion in the inner

product in (7.53). Putting all together we end up with

(
ρ√
α′

)3

B =
1

8
Tr [MaNa] , (7.55)
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where the matrices Ma and Na are as

Ma = η̄aµν

(
[Aµ, Aν ] +

1

2
wα̇(σ̄µν)α̇β̇w̄β̇

)
,

Na = η̄aµν

(
[Aµ, Bν ] +

1

4
wγ̇(σ̄µν)γ̇δ̇ v̄δ̇ +

1

4
vγ̇(σ̄µν)γ̇δ̇w̄δ̇

)
.

(7.56)

Notice that this reproduces (7.42), however, with the important difference that

Tr (2MµνN
µν) is replaced by Tr (MaNa). This can be seen clearly if we rewrite, as-

suming the ADHM constraints,

Tr(MµνN
µν) =

1

2
Tr (MaNa)− Tr

[
[Aµ, Aν ]

(
1

4
wγ̇(σ̄µν)γ̇δ̇ v̄δ̇ +

1

4
vγ̇(σ̄µν)γ̇δ̇w̄δ̇

)]
− Tr

(
[Aµ, Bν ]

1

2
wα̇(σ̄µν)α̇β̇w̄β̇

)
.

(7.57)

This means that the contributions coming from (7.36) in the twisted sector have the effect

of exactly cancelling all the terms in Tr[MµνN
µν ] that are not anti-self-dual,9 leaving only

terms proportional to Tr (MaNa). It is then possible, in agreement with [17, 18], to set

Ma to zero assuming the ADHM constraints (3.10)

η̄µνa

(
[aµ, aν ] +

1

2
w̄α̇(σ̄µν)α̇β̇wβ̇

)
= 0 , (7.58)

and with a suitable choice of the matrices Aµ, that is

Aµ =
ρ√
2
σµ =

ρ√
2

(1,−i~τ) . (7.59)

As discussed in section 6, this zero momentum gluon contributes to the instanton profile

at order ρ (see (6.12)) but not at order ρ2. Furthermore, it is in principle possible to

compute all contributions to the instanton profile at order O(ρ3), inverting (7.1). The

explicit calculation is, however, quite involved.

8 Conclusions

The motivation for this work was to better understand bound states of D-branes in su-

perstring theory. In particular, we focused on the D(−1)-D3 brane system, since the

corresponding field theory in four dimensions is the well-known N = 4 SYM theory which

admits pointlike instantons as singular, non-perturbative configurations, which are recov-

ered from the D(−1)-D3 brane bound state in the field theory limit. In this paper we

studied the possibility to extend this connection to finite size (not pointlike) D(−1) branes

inside a D3 background, constructing them as marginal deformation of the worldsheet

theory of pointlike D(−1) branes.

The standard worldsheet approach can not be applied here for two reasons. First, the

computation of the instanton profile is a off-shell problem in string theory; second, there

9In the first version of this paper this difference was missed because (7.36) was assumed to hold also in

the presence of twist fields.
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are subtleties with the integration over odd moduli in super moduli space which are not

captured by the worldsheet description. In the present paper we deal with this problem by

working with the A∞ SFT.

After reviewing the derivation of the instanton profile in the small size (ρ/
√
α′ � 1) and

far distance (
√
α′/|x−x0| � 1) limit, we extended this result to all orders in

√
α′/|x−x0|.

We also studied the deformation corresponding to the blow up mode of the size of a D(−1)

brane inside a D3 background. This deformation was found to be marginal at second order

in size, insensitive of the ADHM constraints, while at third order in addition to the ADHM

constraints an addition zero-momentum gluon is required for marginality.

An interesting question to explore is whether it is possible to find more generic hermi-

tian string fields that are solutions to the equations of motion not satisfying the ADHM

constraints. We were not able to find any such solutions but cannot exclude them on

general grounds at this point.

While we considered the specific case of the D(−1)-D3 brane bound state in this paper,

our approach applies equally well to generic Dp-D(p + 4) brane bound states. Another

interesting extension concerns the blow up of orbifold singularities in closed super string

field theory [34–37]. We hope to come back to this question in the near future.
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Sebastian Konopka, Alberto Merlano and Tomáš Procházka for inspiring discussions. We

thank the Galileo Galilei Institute for Theoretical Physics and INFN for hospitality and

partial support during the workshop “String Theory from a worldsheet perspective”. This

work has been supported by the Excellence Cluster “Origins: From the Origin of the

Universe to the First Building Blocks of Life”.

A Notation and conventions

Notation for indices. In this work we use many indices with different meanings. The

most used ones are the following:

• d = 4 vector indices: µ, ν = 0, . . . , 3;

• d = 6 vector indices: a, b = 4, . . . , 9;

• Chiral and anti-chiral spinor indices in d = 4: α and α̇;

• Spinor indices in d = 6: A and A in the fundamental and anti-fundamental of SU(4) '
SO(6);

• D3 indices: u, v = 1, . . . , N ;

• D(−1) indices: i, j = 1, . . . , k;

• SU(2) colour indices: c, d = 1, 2, 3.
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d = 4 Clifford algebra and spinors. In d = 4 we can either deal with the Eu-

clidean (SO(4)) or Minkowskian (SO(1,3)) Lorentz group; its Clifford algebra is defined by

{γµ, γν} = 2ηµν1, where the metric η has signature (+,+,+,+) or (−,+,+,+) respec-

tively. Let us consider the Pauli matrices τ c

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
. (A.1)

Gamma matrices in four dimensions can be expressed in terms of the matrices (σµ)αβ̇ and

(σ̄µ)α̇β in the following way:

γµ =

(
0 σµ

σ̄µ 0

)
, (A.2)

where σµ and σ̄µ are defined in terms of the Pauli matrices, but in a different way for

Euclidean and Minkowski space:

σµ = (1,−i~τ) and σ̄µ = (1, i~τ) (Euclidean)

σµ = (1, ~τ) and σ̄µ = (−1, ~τ) (Minkowski)
(A.3)

They satisfy the appropriate Clifford algebra σµσ̄ν + σν σ̄µ = 2ηµν1.

It is convenient to divide every Dirac spinor into its two Weyl components as follows:

ψ =

(
ψα
ψα̇

)
. (A.4)

We raise and lower spinor indices contracting always with the second index of the antisym-

metric ε tensor:

ψα = εαβψβ , ψα̇ = εα̇β̇ψ
β̇ , (A.5)

with ε12 = ε12 = −ε1̇2̇ = −ε1̇2̇ = 1. Therefore, we have also

ψα = ψβεβα , ψα̇ = ψβ̇ε
β̇α̇ . (A.6)

Depending on the metric η, the σ matrices behave differently under complex conjugation.

In Euclidean space one has

(σµ)∗
αβ̇

= −(σµ)αβ̇ and (σ̄µ)α̇β∗ = −(σ̄µ)α̇β , (A.7)

while in Minkowski space one type of index gets changed into the other:

(σµ)∗
αβ̇

= (σµ)βα̇ . (A.8)

Both in Minkowskian and in Euclidean case we have the following important relation:

(σµ)αβ̇ = (σ̄µ)β̇α . (A.9)
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Euclidean d = 4 Clifford algebra and ’t Hooft symbols. In the following we focus

only on the Euclidean case, because it is the one we are interested in when dealing with

instantons. The SO(4) generators are defined in terms of σ matrices in the following way:

σµν =
1

2
(σµσ̄ν − σν σ̄µ) , σ̄µν =

1

2
(σ̄µσν − σ̄νσµ) ; (A.10)

These matrices satisfy self-duality or anti-self-duality conditions respectively, in particular:

σµν =
1

2
εµνρσσρσ , σ̄µν = −1

2
εµνρσσ̄ρσ . (A.11)

The mapping between a self-dual (or anti-self-dual) SO(4) tensor into the corresponding

adjoint representation of SU(2) is given in terms of the ’t Hooft symbols as follows:

(σµν) β
α = iηcµν(τ c) β

α , (σ̄µν)α̇
β̇

= iη̄cµν(τ c)α̇
β̇
. (A.12)

An explicit representations of these symbols is given by:

ηcµν = η̄cµν = εcµν , µ, ν ∈ {1, 2, 3}
ηc0ν = −η̄c0ν = δcν ,

ηcµν = −ηcνµ ,
η̄cµν = −η̄cνµ .

(A.13)

Many properties of these symbols can be found in the literature. In particular the symbols

ηcµν and η̄cµν are self-dual and anti-self-dual respectively.

B Relevant operators and their OPE’s

In the calculation of amplitudes in a conformal field theory it is important to know the

operator product expansion (OPE) of primary fields O(z1)O(z2). First of all, let us consider

the primary fields ∂Xµ(z), with conformal weight 1. The OPE of two of them is

∂Xµ(z)∂Xν(w) = −α
′

2

δµν

(z − w)2
+ . . . , (B.1)

where . . . indicate regular terms. For the spinors ψµ the OPE is given by

ψµ(z)ψν(w) =
δµν

z − w
+ ψµν + . . . . (B.2)

The presence of D3 branes breaks SO(10) to SO(4)×SO(6) (we consider the euclidean

theory); therefore the ten dimensional spin fields SA and SȦ can be expressed in terms of

the spin fields in 4 and 6 dimensions as follows:

SA −→ (SαS
A, Sα̇SA) ,

SȦ −→ (SαSA, S
α̇SA) ,

(B.3)
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where Sα and Sα̇ are SO(4) spin fields of even and odd chirality respectively, and SA and

SA are SO(6) spin fields of even and odd chirality respectively. Spin fields in d = 4 can be

bosonized with exponents:

λα =

(
1

2
,

1

2

)
or

(
−1

2
,−1

2

)
,

λα̇ =

(
1

2
,−1

2

)
or

(
−1

2
,

1

2

)
.

(B.4)

Their OPE contains branch cuts; explicitly we have

Sα̇(z)Sβ(w) =
1√
2

(σ̄µ)α̇βψµ(w) + . . . ,

Sα̇(z)Sβ̇(w) = − εα̇β̇

(z − w)1/2
+

1

4
(z − w)1/2(σ̄µν)α̇β̇ψµν + . . . ,

Sα(z)Sβ(w) =
εαβ

(z − w)1/2
− 1

4
(z − w)1/2(σµν)αβψ

µν + . . . .

(B.5)

All these expressions can be derived using the bosonization of the spin fields; furthermore,

one can also derive the following OPE involving spinors and spin fields:

ψµ(z)Sα̇(w) =
1√
2

(σ̄µ)α̇βSβ(w)

(z − w)1/2
+ . . . ,

ψµν(z)Sα̇(w) = −1

2

(σ̄µν)α̇
β̇
Sβ̇(w)

z − w
+ . . . .

(B.6)

From these OPE one can easily compute some three-point functions, for example:

〈Sα̇(z1)ψµ(z2)Sβ(z3)〉 =
1√
2

(σ̄µ)α̇β

z
1/2
12 z

1/2
23

,

〈Sα̇(z1)ψµν(z2)Sβ̇(z3)〉 = −1

2
(σ̄µν)α̇β̇

z
1/2
13

z12z23
,

(B.7)

where we have introduced the notation zij = zi − zj . Other details on the spin fields and

their bosonization can be found in [38, 39].

Regarding the twist operators, we have to deal with non trivial OPE with the fields

∂Xµ and eik·X . Remembering that the field ∆(z) is made of four twist operators (∆(z) =

σ0σ1σ2σ3(z)), it is sufficient to know the behavior of one field σµ(z), which has conformal

dimension 1/16. We have the following relevant OPE, involving also the so-called excited

twist field σ′µ(z), with conformal dimension 9/16 [19]:

σµ(z)σ̄ν(w) =
δµν

(z − w)1/8
+ . . . ,√

2

α′
i∂Xµ(z)σν(w) =

δµνσ′ν(w)

(z − w)1/2
+ . . . ,√

2

α′
i∂Xµ(z)σ′ν(w) =

1

2

δµνσν(w)

(z − w)3/2
+

2δµν∂σν(w)

(z − w)1/2
+ . . . ,

(B.8)
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where we do not sum over equal indices. From these OPE one can derive the three-point

function

〈∆̄(z1)e−ik·X(z2)∆(z3)〉 =
e−ik·x0

(z13)1/2−α′k2/2(4z12z23)α′k2/2
, (B.9)

where xµ0 is the zero-mode of the field Xµ(z). More properties of these twist operators can

be found for example in [19, 24].

In superstring theory one has also to deal with ghosts and superghosts, which are

characterized by the OPE relations

b(z)c(w) = c(z)b(w) ∼ 1

z − w
+ . . . ,

c(z)c(w) = −(z − w)c∂c(w)− 1

2
(z − w)2c∂2c(w) + . . . ,

β(z)γ(w) ∼ −γ(z)β(w) = − 1

z − w
+ . . . .

(B.10)

These ghosts can be bosonized in the following way

b = e−σ , c = eσ ,

β = e−φ∂ξ = e−φeχ∂χ , γ = ηeφ = e−χeφ ,
(B.11)

with the following OPE relations

σ(z)σ(w) = log(z − w) + . . . ,

φ(z)φ(w) = − log(z − w) + . . . ,

χ(z)χ(w) = log(z − w) + . . . ,

ξ(z)η(w) = η(z)ξ(w) ∼ 1

z − w
+ . . . ,

e−φ(z)eφ(w) ∼ eφ(z)e−φ(w) = (z − w) + . . . ,

e−φ(z)e−φ(w) =
1

z − w
e−2φ(w)− ∂φe−2φ(w) + . . . .

(B.12)

The relevant two- and three-point functions used in this work are the following ones:

〈c(z1)c(z2)c(z3)〉 = z12z23z13 ,

〈e−φ(z1)e−φ(z2)〉 =
1

z12
,

〈c∂ce−2φ(z)c(w)〉 = −(z − w)2 .

(B.13)

Non-primary operators. In this paper we have to deal with some operators that are

not primary. In particular we encounter : ξη : eφṼ1/2 and ∂(eφṼ1/2). The normal ordered

product is defined in terms of the OPE as

: ξη : (w) =

∮
dx

2πi

ξ(x)η(w)

x− w
; (B.14)
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ξ and η are primaries, thus we can compute

T (z) : ξη : (0) = T (z)

∮
dx

2πi

ξ(x)η(0)

x
= − 1

z3
+

: ξη : (0)

z2
+
∂ : ξη : (0)

z
+ . . . (B.15)

The presence of a cubic pole shows that : ξη : is not a primary operator; from this we derive

T (z) : ξη : eφṼ1/2(0) = T (z)

∮
dx

2πi

ξ(x)η(0)

x
= −

eφṼ1/2(0)

z3
+
∂(: ξη : eφṼ1/2)(0)

z
+ . . .

(B.16)

Similarly, for ∂(eφṼ1/2) we get

T (z)∂(eφṼ1/2)(0) = −2
eφṼ1/2(0)

z3
+
∂2(eφṼ1/2)(0)

z
+ . . . (B.17)

C Details on the calculation of the instanton profile

In this appendix we discuss in detail the calculation of the instanton profile sketched in

section 6. We start from

Ac(1)
µ (k) = C0f

′
1(0)α

′k2/2〈V (−1)u
w̄ (∞)V(0)uv

Aµ
(1;−k)V (−1)v

w (0)〉 . (C.1)

The boundary changing operators (in picture -1) are the ones given in (3.3) with the

rescaling (3.9), while VAµ is given (in picture 0) by (6.5). We also compute the correlation

function at generic positions z1, z2 and z3, and then consider the particular case z1 →∞,

z2 = 1 and z3 = 0. We can split the amplitude (C.1) in four sub-amplitudes, which are

independent from each other because they contain fields belonging to different CFT’s:

Ac(1)
µ (k) ∼ w̄uα̇(τ c)vuwv

β̇
kν〈c(z1)c(z2)c(z3)〉〈e−φ(z1)e−φ(z3)〉·

· 〈∆̄(z1)e−ik·X(z2)∆(z3)〉〈Sα̇(z1)ψνψµ(z2)Sβ̇(z3)〉 .
(C.2)

The first term in (6.5) has not been taken into account: its contribution would be pro-

portional to kµ; anyway, the polarization Aµ of the vector is subjected to the constraint

A · k = 0. Notice that all factors of α′ (except the exponent of f ′1(0)) and gYM disappear,

thanks to the rescaling (3.9). All the correlation functions appearing in (C.2) are well

known (see appendix B); we can thus write

Ac(1)
µ (k) ∼ f ′1(0)α

′k2/2w̄uα̇(τ c)vuwv
β̇
kν (z12z23z13)

(
1

z13

)
·

·

(
e−ik·x0

z
(1−α′k2)/2
13 (4z12z23)α′k2/2

) (
−1

2
(σ̄νµ)α̇β̇

z
1/2
13

z12z23

)
,

(C.3)

where the 4-vector xµ0 denotes the position of the D(−1) brane inside the D3 brane. Sim-

plifying the result we are left with

Ac(1)
µ (k) ∼

(
f ′1(0)z13

4z12z23

)α′k2/2 1

2
w̄uα̇(σ̄νµ)α̇

β̇
wvβ̇(τ c)vukν e−ik·x0 . (C.4)
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It is convenient now to use the ’t Hooft symbols (see (A.12)); we then obtain

Ac(1)
µ (k) ∼

(
f ′1(0)z13

4z12z23

)α′k2/2 i

2
η̄dνµ

(
w̄uα̇(τd)α̇

β̇
wvβ̇

)
(τ c)vukν e−ik·x0 . (C.5)

Using the solution to the ADHM constraint

wvβ̇w̄vα̇ = ρ2δβ̇α̇ , (C.6)

we can see that the N ×N matrices

(td)uv =
1

ρ2

(
w̄uα̇(τd)α̇

β̇
wvβ̇

)
(C.7)

satisfy the relation [td, te] = 2iεdef tf . If the solution (3.11) is considered, we can identify

them with the Pauli matrices (td)uv = (τd)uv. We can then conclude that (rescaling the

size ρ if necessary, and setting the three points to ∞, 1 and 0 respectively)

Ac(1)
µ (k) =

(
f ′1(0)

4

)α′k2/2 iρ2

2
kν η̄dνµe

−ik·x0Tr(τdτ c) = f ′1(0)α
′k2/2iρ2kν η̄cνµe

−ik·x0 . (C.8)

As discussed in section 6, we now insert the gluon propagator and perform a Fourier

transform, in order to obtain the result in position space. First of all we do it in the field

theory limit α′k2 → 0. In this case we have

Ac (1)
µ (x;α′k2 → 0) =

∫
d4k

(2π)2
Ac (1)
µ (k;α′k2 → 0)

1

k2
eik·x = ρ2η̄cνµ

∫
d4k

(2π)2

ikν

k2
eik·(x−x0) .

(C.9)

We remember that the scalar massless propagator in configuration space is

G(x− x0) =

∫
d4k

(2π)2

1

k2
eik·(x−x0) =

1

(x− x0)2
. (C.10)

Deriving it with respect to xν we have

∂νG(x− x0) =

∫
d4k

(2π)2

ikν

k2
eik·(x−x0) = −2

(x− x0)ν

(x− x0)4
; (C.11)

going back to (C.9) we can conclude that

Ac (1)
µ (x;α′k2 → 0) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4
, (C.12)

which is exactly the leading term of the full instanton solution (with size ρ) in an SU(2)

gauge theory (2.7). It is also possible to compute α′-correction to the profile (still in the

limit ρ �
√
α′): it is sufficient to perform the Fourier transform of (C.8), adding a the

propagator in Siegel gauge. Therefore

Ac (1)
µ (x) =

∫
d4k

(2π)2
Ac (1)
µ (k)

1

k2
eik·x = ρ2η̄cνµ

∫
d4k

(2π)2

ikν

k2
eik·(x−x0)eαk

2/2 , (C.13)
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where α = α′L1 = α′ log(f ′1(0)/4). It can be checked that the quantity α is always negative,

since f ′1(0) < 1 (see below). We have

d

dα
Ac (1)
µ (x) =

1

2
∂ν
[
ρ2η̄cµν

∫
d4k

(2π)2
eik·(x−x0)eαk

2/2

]
. (C.14)

The gaussian integral is easily computed, and we are left with

d

dα
Ac (1)
µ (x) =

1

2
ρ2η̄cµν∂

ν

[
e(x−x0)2/(2α′L1)

(α′L1)2

]
, (C.15)

which integrates to

Ac (1)
µ (x) = Ac (1)

µ (x;α′k2 → 0) +
1

2
ρ2η̄cµν∂

ν

[
−2

e(x−x0)2/(2α′L1)

(x− x0)2

]
, (C.16)

where the integration constant is given by the result in the field theory limit (C.12). Alto-

gether the final result is

Ac (1)
µ (x) = 2ρ2η̄cµν

(x− x0)ν

(x− x0)4

[
1 + e(x−x0)2/(2α′L1)

(
1− (x− x0)2

2α′L1

)]
. (C.17)

Notice that, as expected, the correction to (C.12) disappears in the limit α′/(x−x0)2 → 0.

Conformal map. The function f1 defined above can be obtained in two steps. First

of all the unit semicircle around the origin can be mapped to a third of a disk with unit

radius, with the origin mapped to the point 1. This corresponds to the map g1 of figure 2,

which is given by

g1(z) =

(
i− z
i+ z

)2/3

. (C.18)

The second step is to map this unit disk to the upper half plane. We choose a conformal map

such that the insertion points e−2πi/3, 1 and e2πi/3 are mapped to 0, 1 and ∞ respectively.

Such a map is given by

G(w) =

(
1− e2πi/3

) (
w − e−2πi/3

)(
1− e−2πi/3

) (
w − e2πi/3

) . (C.19)

The map f1 is then given by the composition f1(z) = G(g1(z)), and its derivative at the

origin is f ′1(0) = 4
3
√

3
< 1.

It would also be possible to choose three different points z1, z2 and z3 in (C.4); in that

case the map G(w) would have to be a different SL(2,C) function, such that G(e−2πi/3) =

z1, G(1) = z2 and G(e2πi/3) = z3. In this way the derivative f ′(0) can change its value,

but it turns out that the combination f ′1(0)z13/(z12z23) appearing in the prefactor of (C.4)

has always norm equal to 4
3
√

3
< 1, independently on the particular choice of z1, z2 and z3.
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g1 G

0

1

e2πi/3

e−2πi/3

0 1 ∞

f1 = G ◦ g1

Figure 2. Conformal map from the disk around the origin, to a disk divided in three sectors, and

back to the upper half plane.

D Derivation of the contact terms

In order to keep track of all the signs that arise in the graded algebra of the compositions

of string vertices it is convenient to work with a shifted vector space (or a suspension).

That is, we define the degree of x as deg(x) = |x| − 1, where |x| is the ghost number of x.

We denote the shifted vector space by A[1] and a shift operator s as A[1] = sA, or

(sA)i = Ai−1. (D.1)

where the subscript denotes the degree. With this convention, Q, ξ and the products

m̂2 := s ◦m2 ◦ (s−1 ⊗ s−1) ,

M̂2 := s ◦M2 ◦ (s−1 ⊗ s−1) ,

M̂3 := s ◦M3 ◦ (s−1 ⊗ s−1 ⊗ s−1)

(D.2)

all have degree one while X and Ψ0 have degree zero. In addition we define

Q ◦ m̂2 := Qm̂2 and m̂2 ◦Q := m̂2 ◦ (Q⊗ 1) + m̂2 ◦ (1⊗Q) (D.3)

and similarly for M̂2, M̂3, µ̂2 etc. Then (5.7) and (5.9) become simply

M̂2 =
1

3
{X, m̂2}◦ = [Q, µ̂2]◦ , with µ̂2 =

1

3
{ξ, m̂2}◦ . (D.4)

We are now ready to extract the contact terms in (7.4) which, when expressed in terms of

the maps on the shifted vector space, take the simple form

Eq. (7.4) = P0

[
M̂2 ◦Q−1 ◦ M̂2 − M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)

=
∑
i

sei〈sei,
[
ξ ◦ M̂2 ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L .

(D.5)
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Then, using (D.4) we have

〈sei,
[
ξ ◦ M̂2 ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

=
1

2
〈sei,

[
ξ ◦ M̂2 ◦Q−1 ◦ [Q, µ̂2]◦ − ξ ◦ M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

+
1

2
〈sei,

[
ξ ◦ [Q, µ̂2]◦ ◦Q−1 ◦ M̂2 − ξ ◦ M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

=
1

2
〈sei,

[
ξ ◦ M̂2 ◦Q−1 ◦Q ◦ µ̂2 − ξ ◦ µ̂2 ◦Q ◦Q−1 ◦ M̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

+
1

2
〈sei,

[
X ◦ µ̂2 ◦Q−1 ◦ M̂2 − 2ξ ◦ M̂3

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L , (D.6)

where we used {Q, ξ}◦ = X and Qei = 0 in the last identity. So far this calculation is

identical to the calculation of the four-point scattering amplitude in [14]. To continue

we commute Q−1 through Q using (5.15). This is again identical to [14] apart form the

presence of P0 in (5.15).10 This leaves us with

〈sei,
[
−ξ ◦ M̂2 ◦ P0 ◦ µ̂2 + ξ ◦ µ̂2 ◦ P0 ◦ M̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

+ 〈sei,
[
X ◦ ξ ◦ M̂2 ◦Q−1 ◦ m̂2 +X ◦ ξ ◦ m̂2 ◦Q−1 ◦ M̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L ,

(D.7)

where we used {Q, ξ}◦ = X and Qei = 0 one more time and furthermore, that in the

second line, the ξ zero-mode has to be provided by µ̂2. Applying (5.9) once more to the

second line of (D.7) we are left with

〈sei,
[
−ξ ◦ M̂2 ◦ P0 ◦ µ̂2 + ξ ◦ µ̂2 ◦ P0 ◦ M̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

+ 〈sei,
[
X ◦ ξ ◦ µ̂2 ◦ P0 ◦ m̂2 −X ◦ ξ ◦ m̂2 ◦ P0 ◦ µ̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L

+ 〈sei,
[
X ◦X ◦ µ̂2 ◦Q−1 ◦ m̂2 +X ◦X ◦ m̂2 ◦Q−1 ◦ µ̂2

]
(sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L .

(D.8)

Before continuing, we note that the second term in the first line vanishes since in section 5.2

we showed that P0M2(Ψ0,Ψ0) = 0.

To express the contribution containing P0 in terms of elementary operator products

we undo the shift (D.2) and use (5.7) as well as (5.9). This gives, for example,

3·〈sei, ξ ◦ M̂2 ◦ P0 ◦ µ̂2 (sΨ0 ⊗ sΨ0 ⊗ sΨ0)〉L
= 〈Xξei,m2(P0µ2(Ψ0,Ψ0),Ψ0)〉L + 〈ξei,m2(XP0µ2(Ψ0,Ψ0),Ψ0)〉L

+ 〈ξei,m2(P0µ2(Ψ0,Ψ0), XΨ0)〉L + 〈Xξei,m2(Ψ0, P0µ2(Ψ0,Ψ0))〉L
+ 〈ξei,m2(XΨ0, P0µ2(Ψ0,Ψ0))〉L + 〈ξei,m2(Ψ0, XP0µ2(Ψ0,Ψ0))〉L ,

(D.9)

where we used the fact that ξ and X are both BPZ even. The remaining terms in the

second line of (D.8) give in turn

− 〈Xξei,m2(P0µ2(Ψ0,Ψ0),Ψ0) +m2(Ψ0, P0µ2(Ψ0,Ψ0))〉L
− 〈Xξei, µ2(P0m2(Ψ0,Ψ0),Ψ0)− µ2(Ψ0, P0m2(Ψ0,Ψ0))〉L .

(D.10)

10In [14] P0 did not contribute due to kinematics for scattering states with finite momentum.
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Making use of the cyclic properties of m2 and µ2 (e.g. [31])

〈a,m2(b, c)〉 = (−1)|a|(|b|+|c|)〈b,m2(c, a)〉 ,

〈a, µ2(b, c)〉 = (−1)|a|+|b|+|a|(|b|+|c|)〈b, µ2(c, a)〉
(D.11)

we can recast (D.9) and (D.10) into

− 1

3
〈P0µ2(Ψ0,Ψ0), 4m2(Ψ0, ξXei)− 4m2(ξXei,Ψ0)

+m2(XΨ0, ξei)−m2(ξei, XΨ0)〉L

− 1

3
〈XP0µ2(Ψ0,Ψ0),m2(Ψ0, ξei)−m2(ξei,Ψ0)〉L

− 〈P0m2(Ψ0,Ψ0), µ2(Ψ0, ξXei)− µ2(ξXei,Ψ0)〉L ,

(D.12)

where we have furthermore used that XξA = ξXA for A = V, ei. Finally, we can use the

definition of the product µ2 in the last line, and arrive at the result that we quote in (7.11).

This leaves us with the terms containing the propagator Q−1 (D.8). Here, the ξ zero-

mode has to be provided by µ2. Thus, the last line in (D.8) can be written in the small

Hilbert space as

−2〈X ◦X ei,m2(Q−1m2(Ψ0,Ψ0),Ψ0) +m2(Ψ0, Q
−1m2(Ψ0,Ψ0)〉 . (D.13)

E Anomalous contributions due to non-primary fields

The explicit calculation of the product m2 and of the BPZ inner product requires a set

of conformal transformation that map each vertex operator to the upper half plane. In

this way the product m2 can be expressed in terms of the operator product expansion

of operators in CFT, and the BPZ inner product is equivalent to a correlation function

on the upper half plane. If all the vertex operators are primaries of conformal dimension

0 this does not pose any problem. In this paper, however, we are dealing with some

non-primaries operators, hence we should consider anomalous contributions due to these

conformal transformations. Let us consider an operator W of scaling dimension h = 0, but

with anomalous OPE with the energy-momentum tensor given by

T (z)W (0) =
α

z3
+
∂W (0)

z
+ . . . (E.1)

Considering now an infinitesimal transformation z → z + ε(z), the operator W transforms

according to

δεW (w) =
1

2πi

∮
dz[T (z)ε(z),W (w)] = α∂2ε(w)W (w) + ε(w)∂W (w) . (E.2)

The last term in (E.2) would be present even if the operator W was primary, while the

first term ε′′(z)W (z) is an anomalous contribution.

In the bulk of the paper we have encountered two non-primary operators, namely
1
4 : ξη : eφṼ1/2 and ∂(eφṼ1/2) (see appendix B). The first one appearns in ξXei and

– 35 –



J
H
E
P
1
1
(
2
0
1
9
)
1
1
8

gives anomalous contributions to (7.11). This anomalous contribution will thus be equal,

using (B.15), to

− 6

3

1

4
(∂2ε3(0)− ∂2ε4(0))〈ξP0m2(Ψ0,Ψ0),m2(Ψ0, e

φṼ1/2)−m2(eφṼ1/2,Ψ0)〉L , (E.3)

where ε3,4 represent the infinitesimal part of the two conformal transformation that have

to be done in order map the BPZ product to a correlation function on the upper half plane.

On the other hand, ∂(eφṼ1/2) gives anomalous contributions to (7.39). Using (B.17) we

find that the anomaly is given by

1

4
(2∂2ε3(0)− 2∂2ε4(0))〈P0m2(Ψ0,Ψ0),m2(Ψ0, e

φṼ1/2)−m2(eφṼ1/2,Ψ0)〉 , (E.4)

which exactly cancels the other anomalous contribution (E.3).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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