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Abstract: We present a general procedure for constructing tensor networks that accu-

rately reproduce holographic states in conformal field theories (CFTs). Given a state in

a large-N CFT with a static, semiclassical gravitational dual, we build a tensor network

by an iterative series of approximations that eliminate redundant degrees of freedom and

minimize the bond dimensions of the resulting network. We argue that the bond dimen-

sions of the tensor network will match the areas of the corresponding bulk surfaces. For

“tree” tensor networks (i.e., those that are constructed by discretizing spacetime with non-

intersecting Ryu-Takayanagi surfaces), our arguments can be made rigorous using a version

of one-shot entanglement distillation in the CFT. Using the known quantum error correct-

ing properties of AdS/CFT, we show that bulk legs can be added to the tensor networks

to create holographic quantum error correcting codes. These codes behave similarly to

previous holographic tensor network toy models, but describe actual bulk excitations in

continuum AdS/CFT.

By assuming some natural generalizations of the “holographic entanglement of pu-

rification” conjecture, we are able to construct tensor networks for more general bulk

discretizations, leading to finer-grained networks that partition the information content of

a Ryu-Takayanagi surface into tensor-factorized subregions. While the granularity of such

a tensor network must be set larger than the string/Planck scales, we expect that it can

be chosen to lie well below the AdS scale. However, we also prove a no-go theorem which

shows that the bulk-to-boundary maps cannot all be isometries in a tensor network with

intersecting Ryu-Takayanagi surfaces.
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1 Introduction

Among the most striking predictions of the AdS/CFT correspondence [1] is that the entan-

glement structure of a holographic CFT state is encoded in the geometry of its semiclassical

gravitational dual. This conjectured correspondence is made precise for static spacetimes

by the Ryu-Takayanagi (RT) formula [2, 3], and for dynamical spacetimes by the Hubeny-

Rangamani-Takayanagi (HRT) formula [4]. These formulas relate the entanglement entropy

of a CFT subregion to the area of an extremal surface in the bulk whose boundary coincides

with that of the subregion, and were derived by path integral arguments in [5, 6].

This apparent holographic relationship between geometry and entanglement led to the

proposal that tensor networks, which were originally developed as tools for the numerical

analysis of condensed matter systems with restricted entanglement structure, might be

a good toy model for the AdS/CFT correspondence [7, 8]. Tensor networks represent a

quantum state on a D-dimensional lattice as a contraction of tensors lying on a D + 1-

dimensional graph with the lattice as its boundary, naturally disentangling the boundary

state into a geometric “bulk” representation.

Since entanglement in the boundary state of a tensor network is related to the ge-

ometry of its bulk graph, tensor networks display holographic properties that are at least

superficially similar to those of AdS/CFT. For example, all tensor networks follow a version

of the Ryu-Takayanagi formula, in the sense that the entanglement entropy of a boundary

subregion is bounded above by the “minimal area” bulk graph cut sharing a boundary

with that subregion [7]. For a large class of tensor networks, this “Swingle bound” is ex-

actly or approximately saturated [9, 10]. Many tensor networks also display features of

quantum error correction [9, 11, 12], which are expected to appear in the AdS/CFT cor-

respondence [13]. On the other hand, these models typically feature a flat (or almost flat)

entanglement spectrum, which is at odds with known entanglement features of AdS/CFT

(for more discussion on this point, see [10]).

In much of the existing literature, the idea that AdS/CFT can be explained in terms

of tensor networks is taken “seriously, but not literally.” Holographic tensor networks

are generally regarded as toy models for AdS/CFT that provide some intuition for how

the geometric structure of a spacetime is encoded in the entanglement of its boundary

dual. Even when a tensor network is interpreted literally as an approximate holographic

description of a CFT state, it is often assumed that each tensor in the network must

represent a volume of space that is at least of order ℓd−1
AdS (where ℓAdS is the characteristic

scale of the semiclassical bulk spacetime, and d is its spacetime dimension).1

This conclusion, however, is fundamentally at odds with the notion that tensor net-

works can be used to understand the Ryu-Takayanagi formula. Since the Ryu-Takayanagi

formula is believed to hold exactly up to quantum and stringy corrections, it cannot be

described adequately by a model that displays only AdS-scale locality. Any true tensor-

network explanation of the Ryu-Takayanagi formula must therefore involve tensor network

models that describe spacetime accurately at sub-AdS scales (so long as those scales remain

above the string and Planck scales).

1For a previous effort to construct tensor networks below the AdS scale, see [14].
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The Ryu-Takayanagi formula is not the only geometric formula for an information-

theoretic quantity that is claimed to hold below AdS scales. Progress in understanding

the holographic properties of tensor networks has been accompanied in recent years by a

series of increasingly bold conjectures regarding the formal relationship between entangle-

ment and geometry in AdS/CFT (e.g., the holographic entanglement of purification conjec-

ture [15, 16], which will play a central role in this paper). While many of these conjectures

are partially inspired by tensor network models, they too are supposed to hold up to quan-

tum (and stringy) corrections — well below the scale of existing tensor network models.

In this paper, we take literally the idea that there exists an approximate tensor network

description for any holographic state, for essentially any discretization of the bulk, so long

as the Planck and string scales are small compared to the discretization scale. As opposed

to previous tensor network constructions, where a tensor network toy model is first defined

and then shown to have properties similar to AdS/CFT, here we start with a holographic

state in full AdS/CFT and construct a tensor network that describes it with high accuracy.

Given a holographic CFT state with a static semiclassical dual, and assuming certain

conjectures that naturally extend the holographic entanglement of purification conjecture,

we provide an explicit procedure to construct a network that is “geometrically appropriate”

for the holographic state in the following sense:

(i) it approximately reproduces the original CFT state on its boundary, and

(ii) it has the same geometric features as the bulk dual to leading order in N .

Our networks include subleading fluctuations around a flat entanglement spectrum, which

we interpret as corresponding to fluctuations of the areas of extremal surfaces in full

AdS/CFT. As a result, our constructions do not suffer from the usual issue of a flat,

non-physical entanglement spectrum.2

If our assumptions hold up to quantum and stringy corrections (as is commonly as-

sumed for the Ryu-Takayanagi formula and the holographic entanglement of purification

conjecture), then essentially any discretization of a bulk geometry gives a corresponding

tensor network description of the boundary state at sufficiently large N (and strong cou-

pling). The tensor network description of the AdS/CFT correspondence would therefore

be valid even at sub-AdS scales, and could be interpreted not as a “toy model” but as a

genuine description of the quantum gravitational theory.

When the chosen discretization of the bulk geometry is constructed using only non-

intersecting minimal surfaces, we are able to prove the existence of a corresponding tensor

network, whose graph will always form a tree, without resorting to the holographic entan-

glement of purification. The construction relies only on the Ryu-Takayanagi formula for

the von Neumann entropy and its extension to more general formulas for holographic Rényi

entropies in [17]; it is only when we extend our construction to finer-grained discretizations

(and hence tensor networks with loops) that we require the use of entropies of purifica-

tion. Regardless of the particular discretization in question, all of our procedures involve

2Our tensor networks will not have the same Rényi entropies as the AdS/CFT states from which they

are constructed, nor do they need to in order for condition (i) to be satisfied. As mentioned in section 3.1,

the Rényi entropies are very sensitive to small changes in a state that do not alter its physical properties.
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a process of disentangling and removing as many boundary degrees of freedom as possible

to simplify the entanglement structure of a holographic state without altering its physical

properties. In this sense, our constructions form a systematic approach for building tensor

networks that describe their corresponding holographic states with maximal efficiency.

In section 2, we review the fundamental principles of tensor networks, introduce the

abstract index notation that will be used in the remainder of the paper, and explain the

basics of entanglement distillation from the tensor network perspective. We also sketch

an important, but unpublished, result due to Hayden, Swingle, and Walter [18] on one-

shot holographic entropies that allows us to apply the general entanglement distillation

procedure in the holographic context. In section 3, we then identify a large class of tensor

networks, which we call “tree tensor networks,” that can be constructed rigorously from

holographic CFT states using one-shot entanglement distillation. In section 4, we show

how these constructions can be adapted to produce holographic quantum error correcting

codes. In section 5, we review the holographic entanglement of purification conjecture,

and show that it can be used to improve the granularity of our networks by localizing the

information contained within a single Ryu-Takayanagi surface. In section 6, we explain

how natural generalizations of the holographic entanglement of purification conjecture can

be used to extend this procedure to produce even finer-grained tensor networks, where

the discretization scale of the network may lie well below the AdS scale so long as it

exceeds the string and Planck lengths. In section 7, we discuss quantum fluctuations of

the spacetime geometry and propose an interpretation in terms of quantum superpositions

of tensor networks, which require significantly fewer degrees of freedom to describe than

a full, “fluctuating” geometry. We identify an uncertainty relationship between the areas

of intersecting Ryu-Takayanagi surfaces, and prove a related no-go theorem that limits

the kinds of bulk-to-boundary isometries that can be obtained in a tensor network that

accurately reproduces the geometry of AdS/CFT. Finally, in section 8, we summarize our

essential results and present several potential avenues for future work.

2 Tensor networks, entanglement distillation, and one-shot quantum in-

formation

2.1 Tensor networks

A pure state |ψ〉 on a multipartite Hilbert space H = HA1 ⊗ · · · ⊗HAn may be thought of

as a tensor with n (abstract) up-indices, each one corresponding to a tensor factor of H.

In the tensor interpretation, we write such a state as

|ψ〉 ↔ ψA1...An . (2.1)

Such a tensor can generally be written as an outer product and contraction of other tensors,

each of which acts only on some subset of the tensor factors A1 through An. For n = 2, for

example, a state might be written as

ψA1A2 = PA1B
CQ

A2C
B, (2.2)

– 4 –
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P QA1 A2

B

C

Figure 1. A simple network for the state given in equation (2.2). Outward-pointing arrows de-

note up-indices, inward-pointing arrow denote down-indices, and arrows connecting tensors denote

contractions.

where the indices B and C correspond to some auxiliary Hilbert spaces HB and HC (and

their dual spaces H∗
B and H∗

C), defined solely for the purpose of constructing tensors P

and Q. Note that up-indices always refer to vector spaces, while down-indices refer to their

corresponding dual spaces.

While it is always possible to find some outer product representation of any given ten-

sor, there are significant computational advantages to finding one in which the contracted

Hilbert spaces have small dimension compared to the physical Hilbert space factors. (These

contracted Hilbert spaces are often referred to as “bonds,” with their dimensions referred

to as the “bond dimensions” of the network.) Even in cases where the bond dimension is

chosen to be of the same order as the physical Hilbert space dimension, many physically in-

teresting states have outer product representations with some particular restricted structure

that allows them to be simulated efficiently on a classical computer (see, e.g., [19] and [20]).

From the perspective of holography, one advantage of such an outer product repre-

sentation of a quantum many-body state is that it has a natural geometric interpretation

that shares features with holographic spacetimes. This geometric interpretation is called

a tensor network. A tensor network is constructed from an outer product representation

of a quantum state by drawing a vertex for each tensor, with one edge for each of its

indices. In our convention, edges corresponding to up-indices will be labeled with arrows

that point away from the vertex, while edges corresponding to down-indices will be labeled

with arrows that point toward the vertex. Contractions are denoted by connecting the

corresponding edges. As a simple example, the tensor network corresponding to the state

in equation (2.2) is given in figure 1.

An important connection between tensor networks and quantum information theory

arises from the fact that each bond in a tensor network can be thought of as a projection

onto a maximally entangled state in the bond Hilbert space. For concreteness, consider

the tensor network representation

ψAB = PAγQB
γ (2.3)

of a state on the bipartite Hilbert space HA ⊗HB. The tensor network is constructed by

contraction over some bond Hilbert spaceHγ . The inner product on this bond Hilbert space

selects a preferred maximally entangled state |φ〉 on the product space Hγ ⊗ Hγ , where

– 5 –
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Hγ is the complex conjugate vector space to Hγ .
3 Since the state is maximally entangled,

tracing out either of its tensor factors yields the identity operator on the remaining tensor

factor (up to a normalization factor). In index notation, this statement is simply

φγγφ∗
γ′γ =

1

d
δγγ′ , (2.4)

φγγφ∗
γγ′ =

1

d
δγγ′ , (2.5)

where φ∗ denotes the tensor corresponding to the dual state 〈φ|. Equations (2.4) and (2.5)

imply that φ and φ∗ can be used to raise and lower indices between Hγ and Hγ . Since φ∗

can be obtained from φ by lowering its indices, we will generally drop the asterisk and refer

to the tensors as φγγ and φγγ , respectively.

Using φ to raise and lower indices, the state in equation (2.3) can be rewritten as

ψAB = PAγQBγφγγ , (2.6)

which is a slightly different tensor network representation of the same state. In the familiar

bra-ket notation, this corresponds to projecting a state |P 〉 ∈ HA ⊗Hγ and a state |Q〉 ∈
HB ⊗Hγ onto a maximally entangled state |φ〉 ∈ Hγ ⊗Hγ , i.e.,

|ψ〉 = 〈φ|(|P 〉 ⊗ |Q〉). (2.7)

A tensor network in which every bond takes this form is sometimes referred to as a

projected entangled-pair state (PEPS) network (see, e.g., [10]), though the term PEPS is

more commonly used to refer to a more highly-restricted class of tensor networks on a

(usually square) lattice where each tensor has a single uncontracted physical index [21]. To

avoid confusion, we refer to a tensor network with bonds of the form (2.7) as a projection

of entangled pairs (PEP). Note that any tensor network can be rewritten in this form by

raising and lowering indices with the appropriate maximally entangled state on each bond.

The original tensor network given by equation (2.3) is drawn in figure 2a, and its

equivalent PEP network in figure 2b. Since PEP networks manifestly represent bonds as

maximally entangled states, it is generally useful to consider them when drawing connec-

tions between tensor networks and AdS/CFT, where geometric features of a semiclassical

spacetime correspond directly to entanglement features of its boundary dual.

Particular classes of tensor networks are known to reproduce various features of

AdS/CFT [9, 10], such as a version of the Ryu-Takayanagi formula and holographic quan-

tum error correction. In this paper, we work backwards, beginning with these known

features of AdS/CFT and using them to produce tensor networks with corresponding prop-

erties. Much of our protocol is reliant on the procedure of entanglement distillation, which

shows how the entanglement between subregions of some physical state can be distilled out

of the state in the form of a large number of EPR pairs (which will, ultimately, become

the maximally entangled bonds of a PEP-style network). This procedure is the subject of

the following subsection.

3Formally, the inner product on Hγ is a bilinear map L : Hγ ×Hγ → C, or, equivalently, a tensor in the

space H∗
γ ⊗H∗

γ . Since the inner product is nondegenerate by assumption, it has an inverse tensor L−1 on

Hγ ⊗Hγ , which can be shown to be a maximally entangled state on the tensor product Hilbert space.

– 6 –
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P Q

A B

γ

(a)

P

φ

Q

A Bγ

γ

(b)

Figure 2. Tensor networks for equations (2.3) and (2.6). (a) A tensor network on a bipartite

system with a single contraction. (b) A PEP network for the same state created by replacing the

contraction with a maximally entangled state.

2.2 Entanglement distillation

Consider a state |ψ〉 in a CFT with large central charge that is known to have a static,

semiclassical gravitational dual.4 If the domain of the CFT is partitioned into connected

regions A and Ac, then the Ryu-Takayanagi formula states that the entanglement entropy

of |ψ〉 between A and Ac is given to leading order in the gravitational constant GN by the

area of the minimal codimension-2 bulk surface anchored on ∂A and homologous to A, i.e.,

S(ψ(A)) = S(ψ(Ac)) = min
γ,∂γ=∂A

area(γ)

4GN
+O (1) . (2.8)

Implicit in this statement is a simultaneous regularization procedure where an ultraviolet

cutoff is chosen in the CFT alongside a matching radial cutoff in the bulk spacetime [2].5

The Ryu-Takayanagi formula encourages us to think of the information encoded in

the entanglement spectrum of A and Ac as lying physically on the extremal surface in the

bulk that partitions A and Ac. For example, the Ryu-Takayanagi formula is sometimes

interpreted as counting the number of “bit-threads” of entanglement, each of which occupy

a Planckian area 1/4GN of the extremal surface [24]. One way to more concretely justify

this intuition comes from entanglement distillation, which makes precise the statement

that entanglement entropy measures the number of qubits (or, more precisely, “ebits”) of

entanglement shared between a region and its complement.

Entanglement distillation is the procedure by which a large number m of copies of some

bipartite quantum state |ψ〉 ∈ HA ⊗ HAc can be converted into a large number n of Bell

4In fact, it suffices to consider states whose semiclassical gravitational duals contain a moment of time re-

flection symmetry around the Cauchy slice being considered. This assumption is crucial to our construction,

however, in section 8, we discuss the possibility of lifting this restriction in future work.
5That the subleading corrections to the Ryu-Takayanagi formula are O(1) in GN was established in [22]

and [23].
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pairs with some fixed asymptotic ratio n/m ≈ S(A)/ ln (2).6 For our purposes, the most

useful formulation of this principle is that for large m, the state |ψ〉⊗m can be expressed

with high fidelity as

|ψ〉⊗m ≈ (V ⊗W )


 1√

D

eS(A)m−O(
√
m)∑

i=0

|ii〉 ⊗
eO(

√
m)∑

j=0

√
pj |jj〉


 , (2.9)

where V andW are isometries7 that embed Hilbert spaces of size eS(A)m−O(
√
m) and eO(

√
m),

along with their complex conjugate Hilbert spaces, back into the physical space HA⊗HAc .8

(See, e.g., [25] for further details.)

The first factor of the tensor product in equation (2.9) is just a maximally entan-

gled Bell state on O(n) qubits, while the second term lives in a Hilbert space of subleading

dimension in the asymptotic entanglement entropy n ln (2) = mS(A). The fact that asymp-

totically many copies of |ψ〉 can be approximately represented as a number of Bell pairs

determined by the entanglement entropy gives partial justification for thinking of S(A) as

a measure of the number of degrees of freedom entangled between A and Ac, which in turn

encourages us to think of all the information in the entanglement spectrum of a subregion

of a holographic state as living physically on its Ryu-Takayanagi surface.

Using the notation of section 2.1, equation (2.9) is a tensor network of the form

ψ
A(1)A

c
(1)
...A(m)A

c
(m) ≈ V A(1)...A(m)

γfW
Ac

(1)
...Ac

(m)
γfφ

γγσff , (2.10)

where φγγ is the maximally entangled state on O(n) qubits and σff is the leftover state

on a Hilbert space of subleading dimension.

We see from equation (2.10) that entanglement distillation can be used to construct

a simple tensor network that reproduces |ψ〉⊗m with high fidelity for large m and any

given quantum state |ψ〉. We could easily apply this procedure to a holographic CFT state

(or, indeed, a non-holographic CFT state) and obtain a tensor network for the product

state |ψCFT〉⊗m. In the holographic case, this tensor network will respect the geometry of

AdS/CFT in the sense that its internal bond dimensions are inherited from the areas of

the Ryu-Takayanagi surfaces.

Of course, in quantum gravity, people do not generally consider a large number of copies

of a single holographic state. Any hope of understanding the entanglement structure of a

single holographic state using the tools of quantum information theory is inhibited by the

fact that almost all operational interpretations of a state’s von Neumann entropy involve

an asymptotic number of copies of the state in question. For our purposes, therefore, it

6In most of the original literature, “entanglement distillation” is used to refer to the general case of a

mixed state ρ ∈ S(HA ⊗ HAc), while “entanglement concentration” is used in the special case where ρ is

pure. Here, we use the terms interchangeably.
7In the literature, the word “isometry” is commonly used to refer to a Hilbert space map V satisfying

V †V = 1. These maps are not generally isomorphisms in the mathematical sense, i.e., they are not invertible,

unless the domain and target spaces have the same dimension.
8This expression follows from a procedure of smoothing and binning the entanglement spectrum of |ψ〉⊗m

in a way that is analogous to the procedure for a holographic state detailed in section 3.
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is instead useful to consider “one-shot” or “smooth” entropies, which determine how well

procedures like entanglement distillation can be carried out using only a single copy of a

state. Luckily, the one-shot entropies of holographic states are highly constrained by the

large central charge of the CFT, which is the focus of the following section.

2.3 Holographic one-shot entropies

If the von Neumann entropy only has a physically meaningful interpretation in the limit

of asymptotically many copies of a state, then it might seem peculiar that the holographic

dictionary relates the von Neumann entropy of a single reduced state to the (physically

significant) area of a corresponding Ryu-Takayanagi surface. The resolution to this puzzle is

quite simple: as we shall see, the semiclassical limit of large N (or, equivalently, GN → 0)

in a holographic state fulfills the same information-theoretic purpose as the asymptotic

limit of a large number of identical states in non-holographic quantum information theory.

Two important entropy measures for a quantum state ρ are the max-entropy

Smax = log (rank(ρ)) (2.11)

and the min-entropy

Smin = log(λ−1
max(ρ)), (2.12)

where λmax(ρ) is the largest eigenvalue of ρ. These quantities agree with the von Neumann

entropy for a state with a flat probability spectrum, but generically differ for arbitrary

density matrices while satisfying Smax ≥ S ≥ Smin. The max- and min-entropies can be

interpreted as Rényi entropies

Sα =
1

1− α
log Tr(ρα) (2.13)

in the limits α → 0 and α → ∞ respectively. (Note that the von Neumann entropy S is

given by the Rényi entropy in the limit α → 1.)

Since we are only interested in constructing tensor network states to within some small

tolerance ε, it is more natural for our purposes (and in many similar situations) to consider

the smooth max-entropy

Sεmax = min
‖ρ−σ‖1<ε

log (rank(σ)) (2.14)

and the smooth min-entropy

Sεmin = max
‖ρ−σ‖1<ε

log(λ−1
max(σ)). (2.15)

In other words, we consider the minimum max-entropy (respectively the maximum min-

entropy) of any state σ lying within a ball of radius ε around the state ρ, where we have used

the trace norm ‖ρ−σ‖1 = Tr
√

(ρ− σ)†(ρ− σ) as a metric on the space of density matrices.

For holographic theories, the smooth min- and max-entropies are expected to agree

with the von Neumann entropy to leading order in 1/GN . This was shown in [26] for single

intervals in ground and thermal states of 1 + 1-dimensional holographic CFTs (where the

density of states of the modular Hamiltonian may be computed explicitly), and in [18] for

– 9 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

arbitrary regions in holographic theories of arbitrary dimension.9 Somewhat counterintu-

itively, this generic behavior of the smooth min- and max-entropies follows from the fact

that in holographic theories, the Rényi entropies are given to leading order by

Sα =
sα
GN

, (2.16)

where sα is independent of GN but depends non-trivially on α and is related to the areas of

surfaces in particular backreacted geometries [17, 28]. Since [18] remains unpublished, we

include here a simplified version of the derivation of the smooth min- and max-entropies

for holographic states, which follows on very general grounds from (2.16).10

Let K = − log(ρ) be the modular Hamiltonian corresponding to ρ. Let {Ei} be the

eigenvalues of K, with density of states defined by

D(E) ≡
∑

i

δ(E − Ei). (2.17)

Then the partition function

Z(α) =

∫ ∞

0
dED(E) e−αE (2.18)

is related to the Rényi entropies by

e(1−α)Sα = Tr (ρα) = Z(α). (2.19)

Hence e(1−α)Sα is the Laplace transform of D(E) and thus the density of states is given by

D(E) = IL(e(1−α)Sα)(E) =

∫

C
dα eαEe(1−α)Sα , (2.20)

where IL(e(1−α)Sα) is the inverse Laplace transform of e(1−α)Sα and C is a contour parallel

to the imaginary axis with sufficiently large positive real part.11 If Sα has the form given

in (2.16), then D(E) can be evaluated by a saddle point approximation for sufficiently

small GN . To leading order, we must therefore find

D(E) = ef(GNE)/GN+o(1/GN ) (2.21)

for some function f(GNE) that can be found by evaluating the exponent in (2.20) at

the saddle point. If we substitute this expression for the density of states back into the

expression given in equation (2.18), and substitute E′ = EGN , we find that the trace of ρ

can be written as

Z(1) =

∫
dED(E)e−E =

∫
dE′ e(f(E

′)−E′)/GN )+o(1/GN ). (2.22)

9For discussion of smooth max-entropies in general quantum field theories, see [27].
10While this article was in preparation, a pair of articles [29, 30] appeared with a similar analysis of the

Rényi entropy spectrum; we will discuss their proposal that tensor networks correspond to area-eigenstates

in more detail in section 7.1.
11In this case, it suffices to take real part greater than or equal to one, and probably greater than or

equal to zero. (Assuming the modular Hamiltonian has no maximum temperature state.)
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Note that the coefficient of GN that would appear from substituting E′ for E in the measure

of the integral has been absorbed into the subleading corrections of order eo(1/GN ).

By the same argument given above for the density of states, we find that the integral

for Z(1) will be dominated at small GN by the leading saddle point E′
0. We can therefore

approximate the integral to within any arbitrarily small precision ε by integrating over a re-

stricted range of eigenvalues of the modular Hamiltonian, constraining E to lie in the range

E′
0/GN −O(

√
log (1/ε)/GN ) < E < E′

0/GN +O(
√
log (1/ε)/GN ). (2.23)

Since E′
0 is the solution to the saddle point equation f ′(E′) = 1, it is independent of GN .

The error in approximating this integral controls the error induced by shaving off the

largest and smallest eigenvalues of ρ. More precisely, if we define a “smoothed state”

σ = PρP/Tr(PρP ), where P is the projector onto the eigenspaces of K = − log(ρ) with

eigenvalues in the range given in (2.23), then it is clear that (i) σ lies within an O(ε)-ball

of ρ, and (ii) it has maximal and minimal eigenvalues given by

λmax(σ) = e−E
′
0/GN+O(1/

√
GN ), (2.24)

λmin(σ) = e−E
′
0/GN−O(1/

√
GN ). (2.25)

It follows immediately from the definitions given in equations (2.14) and (2.15) that the

smooth min- and max-entropies of ρ agree with one another to leading order in GN , since

we have

rank(σ)λmin(σ) ≤ Tr(σ) ≤ rank(σ)λmax(σ). (2.26)

More precisely, since σ is normalized with Tr (σ) = 1, equations (2.24) and (2.25) imply

Smax(σ) = log(rank(σ)) ≤ log

(
1

λmin(σ)

)
=

E′
0

GN
+O

(
1√
GN

)
(2.27)

and

Smin(σ) = log(λ−1
max(σ)) =

E′
0

GN
−O

(
1√
GN

)
. (2.28)

Since Smax(σ) must be greater than Smin(σ), equations (2.27) and (2.28) together imply

that the min and max entropies of σ agree with one another to leading order in GN . Since

σ is within an O(ε)-ball of ρ, the same statement holds true for the smooth min and max

entropies of ρ, as we previously claimed.

The only remaining question is to find the saddle point value E′
0. The von Neumann

entropy of ρ is given by

S(ρ) =

∫
dED(E)E e−E =

E′
0

GN
+O(1), (2.29)

where we have used the form of D(E) given in (2.17). It follows from the Ryu-Takayanagi

formula that the saddle point value E′
0 is given by A/4, where A is the area of the cor-

responding RT surface. The smooth min- and max-entropies are therefore equal to the

von Neumann entropy up to O(1/
√
GN ) corrections for any fixed nonzero ε. Since the

von Neumann entropy S is of order O(1/GN ), the corrections grow as the square root of
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the entropy (for fixed values of the UV cutoff). It follows that for holographic states, the

smooth min and max entropies satisfy

Smin = S −O(
√
S), (2.30)

Smax = S +O(
√
S). (2.31)

This is exactly the same scaling that is seen when we take the asymptotic limit of a large

number of copies of a state.12 The semiclassical holographic limit of large central charge

is therefore replicating, at least partially, the effects of the asymptotic i.i.d. limit of a

large number of identical copies of a single, non-holographic state. When we construct

holographic tensor networks in the following section, we will see that these subleading

corrections to the smooth min- and max-entropies can be related to known subleading

contributions to holographic entanglement in AdS/CFT.

3 Tree tensor networks from holographic entanglement distillation

In order to construct a meaningful tensor network for a state in the AdS/CFT correspon-

dence, it is necessary to produce a network that (i) reproduces the correct boundary state

with high fidelity, and (ii) has a bulk geometry that matches the bulk spacetime. Since

tensor networks have discrete geometries, property (ii) must be interpreted in terms of

some discretization of the bulk spacetime. In this section, we consider tree networks —

those constructed by discretizing the bulk with non-intersecting Ryu-Takayanagi surfaces.

Given such a discretization, the underlying graph of the corresponding tensor network is

taken to be the dual graph of the set of Ryu-Takayanagi surfaces and their corresponding

boundary regions. A sample discretization of vacuum AdS3, along with the corresponding

dual graph, is shown in figure 3.

Once a network is constructed on this graph, it is straightforward to quantify how well

the resulting state satisfies property (i) by looking at the inner product between the state

constructed by the tensor network and the target state. We will say that the network satis-

fies property (ii) if the bond dimension of each edge in the network matches the area of the

Ryu-Takayanagi surface through which it passes. More precisely, we will require that each

bond γ in the network satisfies dim(Hγ) = eAγ/4GN+o(1/GN ), where Aγ is the area of the

corresponding RT surface.13 Since the dimension of any bond Hilbert space could be made

arbitrarily large without altering the state by adding zero probability states, we also require

that each contraction is full rank in the bond space in the sense that it contains no trivial

12Until now, we have assumed that ε is some fixed small number that is independent of GN . However,

the range of integration required to approximate (2.22) depends only weakly on the allowed error ε as
√

log(1/ε). Hence we can make the error ε non-perturbatively small with respect to GN , at the small cost

of allowing the smooth min- and max-entropies be separated by O(
√

Sf(S)) for some super-logarithmic

function f(S). (We can then obtain ε = e−f(S), which is non-perturbatively small.) A natural choice might

be f(S) = Sδ for some small δ, or maybe f(S) = (log(S))2. Regardless of the specific function chosen, it is

easy to ensure that O(
√

Sf(S)) is subleading compared to the entropy S.
13Both sides of this equality are infinite. As usual, equations involving the entanglement entropy or the

area of extremal surfaces should be interpreted in the context of a regularization scheme in which the CFT

state is regulated on a lattice with finite spacing and the bulk spacetime is regulated with a radial cutoff.
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Figure 3. A bulk discretization of vacuum AdS3 by non-intersecting RT surfaces. Blue curves

represent extremal surfaces in the bulk, red lines are edges in the dual graph, and black dots are

vertices in the dual graph. In the resulting tensor network, the dangling edges passing through the

boundary of the spacetime will correspond to uncontracted (physical) Hilbert space indices.

contractions.14 In fact, this condition is not quite strong enough, as the dimension of Hγ

could still be made arbitrarily large by the addition of states with arbitrarily small proba-

bility — in our construction, this possibility is avoided by ensuring that the eigenvalues of

each bond are bounded below by a nontrivial function of the bond entropy (cf. the smooth-

ing process of section 2.3, where each “smoothed state” has bounded minimal eigenvalue).

3.1 Bipartite tensor networks

To explain the procedure of constructing tree networks via one-shot entanglement dis-

tillation, we restrict temporarily to the case where the bulk is discretized by a single

Ryu-Takayanagi surface. For such a discretization, the boundary is partitioned into two

connected regions A and Ac. The generic procedure for arbitrary non-intersecting bulk

partitions is detailed in section 3.2.

As discussed in section 2.3, the smooth min- and max-entropies of a holographic state

agree with the von Neumann entropy to leading order in GN . It follows that for the reduced

CFT density matrix ψ(A) of a holographic CFT state |ψ〉, there exists a normalized state

ψε(A) within ε trace distance of ψ(A) satisfying

rank
(
ψε(A)

)
= eS(A)+O(

√
S), (3.1)

λmax

(
ψε(A)

)
= e−S(A)+O(

√
S), (3.2)

where λmax

(
ψε(A)

)
is the largest eigenvalue of ψε(A).

14Formally, for a bond of the form PAγQB
γ , we require that there is no nonzero vector vγ in Hγ or dual

vector ωγ in H∗
γ such that PAγωγ or QB

γv
γ identically vanishes.
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Given the full, pure CFT state |ψ〉 ∈ HA ⊗HAc ,15 one can write the Schmidt decom-

position

|ψ〉 =
∑

n

√
λn|n〉A|n〉Ac , (3.3)

where {λn} are the eigenvalues of the reduced states ψ(A) and ψ(Ac). If {λ̃n} are the

eigenvalues of the smoothed state ψε(A), then it is easy to verify that the state

|ψε〉 =
∑

n

√
λ̃n|n〉A|n〉Ac (3.4)

approximates the original state |ψ〉 with very high fidelity. In particular, we have

∣∣〈ψε
∣∣ψ

〉∣∣2 = F (ψ(A), ψ
ε
(A)) ≥

(
1− 1

2
‖ψ(A) − ψε(A)‖1

)2

≥ 1− ε, (3.5)

where F (ρ, σ) =
[
Tr

√√
ρσ

√
ρ
]2

is the fidelity of two quantum states. The first equality

in (3.5) follows from the definition of fidelity and the form of the states (3.3) and (3.4),

while the subsequent inequality is one of the Fuchs-van de Graaf inequalities [31].

If we re-order the probability spectrum λ̃n such that it is monotonically decreasing, i.e.

λ̃n+1 ≤ λ̃n, and break the resulting sum into blocks of size ∆, then we may rewrite (3.4) as

|ψε〉 =
rank[ψε

(A)
]/∆−1∑

n=0

∆−1∑

m=0

√
λ̃n∆+m|n∆+m〉A|n∆+m〉Ac (3.6)

Now, suppose we discard the m-dependence of the eigenvalues λ̃n∆+m and replace all of

the eigenvalues in each block with the average value of that block, λ̃avg
n∆ . The resulting

state (which is still correctly normalized) is

|Ψε〉 =
rank[ψε

(A)
]/∆−1∑

n=0

∆−1∑

m=0

√
λ̃avg
n∆ |n∆+m〉A|n∆+m〉Ac , (3.7)

and satisfies

‖Ψε − ψε(A)‖1 ≤ λmax[ψ
ε
(A)] ·∆ ≡ δ. (3.8)

By the same arguments as in (3.5), the overlap between |Ψε〉 and the original CFT state

|ψ〉 is bounded below by
∣∣〈ψ

∣∣Ψε
〉∣∣2 ≥

∣∣〈ψ
∣∣ψε

〉∣∣2 ∣∣〈ψε
∣∣Ψε

〉∣∣2 ≥ 1− ε− δ. (3.9)

If we choose ∆ = eS−O(
√
S), with the O(

√
S) dependence chosen to approximately cancel

the O(
√
S) dependence of λmax[ψ

ε
(A)] given in equation (3.2), then we can ensure that δ

remains small, while the state becomes

|Ψε〉 =
eO(

√
S)∑

n=0

eS−O(
√
S)∑

m=0

√
λ̃avg
n∆ |n∆+m〉A|n∆+m〉Ac , . (3.10)

15In reality, the Hilbert space of the actual CFT will not factorize in this way, due to ultraviolet issues.

However, since we have already regularized the theory, there is no problem splitting the Hilbert space into

tensor factors.
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To properly distill the EPR pairs out of this state, we define auxiliary Hilbert spaces

Hγ and Hf with dimensions given by

dimHf = eO(
√
S), (3.11)

dimHγ = eS−O(
√
S), (3.12)

where the precise values are chosen to match the range of the sums in equation (3.10). We

define the isometries Hf ⊗Hγ →֒ HA and Hf ⊗Hγ →֒ HAc by

V |n〉f |m〉γ = |n∆+m〉A, (3.13)

W |n〉f |m〉γ = |n∆+m〉Ac (3.14)

for some arbitrarily chosen bases of the auxiliary Hilbert spaces and the corresponding

bases in their complex conjugate Hilbert spaces. We may then rewrite the state |Ψε〉 as

|Ψε〉 = (V ⊗W )



eO(

√
S)∑

n=0

√
λ̃avg
n∆ |nn〉ff


⊗



eS−O(

√
S)∑

m=0

|mm〉γγ


 . (3.15)

This expression is essentially identical to (2.9), except that it approximates a single copy

of the original CFT state |ψ〉.
Approximate states such as those given in equation (3.15) are considerably more com-

mon in the quantum information literature than in discussions of quantum gravity, so we

pause briefly to discuss their physical relevance. The first and most important point to

note is that expectation value of any bounded operator Ô on the Hilbert space of |ψ〉 is

well approximated by its expectation value in the approximate state. In particular, since

the overlap between the original CFT state |ψ〉 and the new state |Ψε〉 takes the form given

in (3.9), we can guarantee that the expectation values of bounded operators between the

two states differ at most by

∣∣∣
〈
ψ
∣∣Ô|ψ

〉
−
〈
Ψε

∣∣Ô|Ψε
〉∣∣∣ ≤ 2

√
ε+ δ ‖Ô‖. (3.16)

If both ε and δ can be made sufficiently small, then this bound is quite narrow. Since the

time evolution operator eiHt is bounded above by ‖eiHt‖ ≤ 1 for any t that is either real or

in the upper half-plane, a similar bound holds for correlation functions at arbitrary times.

In particular, correlation functions of bounded operators satisfy

∣∣∣
〈
ψ
∣∣Ô1(t1) . . . Ôn(tn)|ψ

〉
−
〈
Ψε

∣∣Ô1(t1) . . . Ôn(tn)|Ψε
〉∣∣∣ ≤ 2

√
ε+ δ ‖Ô1‖ . . . ‖Ôn‖. (3.17)

The states |ψ〉 and |Ψε〉 therefore generally produce approximately the same values for any

Euclidean or Lorentzian correlation function with arbitrarily large time gaps, including

out-of-time order Lorentzian correlation functions.

There are a few scenarios in which |ψ〉 and |Ψε〉 can display qualitatively different

behavior; we argue that none of these scenarios are actually physically important. If〈
ψ
∣∣Ô|ψ

〉
is itself very small compared to ‖Ô‖, then there may O(1) differences in the
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relative size of
〈
ψ
∣∣Ô|ψ

〉
and

〈
Ψε

∣∣Ô|Ψε
〉
. However, in this case, since ε can be arbitrarily

small, both the expectation values would have to be zero at leading order; they would still

agree up to O(ε) corrections.

Secondly, non-observable quantities such as Rényi entropies for α 6= 1 may (and will)

look very different for |ψ〉 and |Ψε〉.16 This is unsurprising, as the Rényi entropies are very

sensitive to small and (physically) insignificant perturbations, and can vary drastically

without significantly altering the expectation values of bounded operators.

Finally, we are often interested in unbounded operators. In this case we do not have

any bound on the error in expectation values for the approximate state. However, in such

circumstances we can generally replace an unbounded self-adjoint operator Ô by some

bounded function f(Ô) of the operator without affecting the important physics. We will

then obtain a tight bound on the error of the expectation value 〈f(Ô)〉 when approximating

it in the distilled state |Ψε〉.
So long as we originally chose ε small and chose ∆ correctly to ensure that δ is small,

then (3.9) ensures that the distilled state |Ψε〉 is a good approximation of the original CFT

state |ψ〉. As discussed above, this implies that the physics of the two states should be the

same up to non-perturbatively small corrections. Moreover, the expression given in (3.15)

is a tensor network with a geometry matching the semiclassical dual of |ψ〉. In the abstract

index notation of section 2.1, the state in (3.15) is written as

ΨAAc
= V A

fγW
Ac

fγφ
γγσff , (3.18)

where

|φ〉 =

eS−O(
√
S)∑

m=0

|mm〉γγ , (3.19)

|σ〉 =
eO(

√
S)∑

n=0

√
λ̃avg
n∆ |nn〉ff . (3.20)

The network corresponding to (3.18) is sketched in figure 4, superposed over the correspond-

ing discretization of vacuum AdS3. The tensors V and W correspond to the entanglement

wedges of regions A and Ac, respectively, as isometries that embed the states φ and σ into

the boundary. Since φ is a maximally entangled state on a Hilbert space of dimension

eO(S(A)), it has the right entanglement to reproduce the Ryu-Takayanagi surface that sep-

arates A from Ac. Because the bond dimension of the legs of the state |σ〉 is very small

compared to the large bond dimensions of the φ-legs, we can think of the σ-legs as thin

“cobwebs”, attached to the thick “girders” of the φ-legs.

It is important to be clear about our motivation in including a second approximation

step, where we average λ̃i within each block and hence extract the dependence of λ̃i on i

into the state |σ〉 in the (relatively) small auxiliary Hilbert space Hf ⊗Hf . After all, we

16Here, we mean that the Rényi entropies are non-observable when provided with only a single copy of

the state — they can be computed from matrix moments of a state, which are observable given multiple

replicas of the state in question.
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V W

φ

σ

A Ac
γ

γ

f

f

Figure 4. A tensor network for a bipartite discretization of AdS3 by a single Ryu-Takayanagi

surface. φγγ is a maximally entangled state on a Hilbert space of dimension eO(S(A)), while σff is a

(generally not maximally entangled) state on a Hilbert space of dimension e
O
(√

S(A)
)

. The tensors

V and W embed these states isometrically into the boundary.

could already have constructed a tensor network with the correct discretized geometry by

using the smoothed, but unflattened state

∑

i

√
λ̃i|i〉γ |i〉γ . (3.21)

Our purpose in flattening the λ̃i spectrum is not to claim that the state produced is in any

sense “better” or “more holographic” than the smooth state that was constructed prior

to this flattening procedure. In fact, the degrees of freedom extracted into |σ〉 are highly

non-unique, as they depend a great deal on the exact block size ∆ chosen while flattening

the spectrum. However, by showing that the original state |ψ〉 can be approximated in this

way, we are showing explicitly that the entanglement spectrum is so flat (up to smooth-

ing) that the effective number of degrees of freedom in |ψ〉 that describe the gradient of

the entanglement spectrum is subleading compared to the effective number of degrees of

freedom that are simply maximally entangled between the two sides.

Note that to obtain a tensor network description with the correct leading order bond

dimensions, we only needed the smooth max-entropy to be sufficiently small. The addi-

tional requirement that the smooth min-entropy agree with smooth max-entropy to leading

order was imposed to ensure that the auxiliary Hilbert space Hf on which the state is not

maximally entangled has subleading dimension eO(
√
S).

Before moving on to more general tree tensor networks, we pause to consider the role

of the “cobweb” state |σ〉. This state does not have an immediate interpretation in the

usual Ryu-Takayanagi picture of bulk entanglement, at least at leading order in GN . Since

the state |σ〉 is of subleading size in the entanglement entropy and hence in the central

charge, the most natural interpretation is that it arises from quantum fluctuations in the

bulk geometry (e.g., graviton fluctuations) that alter the areas of Ryu-Takayanagi surfaces
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at subleading order in GN .
17 Generally, such fluctuations are expected to be suppressed

by a factor of O(
√
GN ), meaning that the resulting fluctuations in the entropy are also of

order O(1/
√
GN ).

18 Since this matches the rank of |σ〉, it seems natural to associate the

subleading state with these geometric fluctuations. We discuss this proposal in more detail

in section 7.1.

It is worth commenting that we are also at liberty to absorb the state |σ〉 into one of

(or a combination of) the isometries V and W . This simplifies the picture of the tensor

network, but comes at the cost of at least one of the operators V and W no longer being an

isometry. In fact, they will not even be approximate isometries, although they will remain

isometries if interpreted as operators V : Hγ →֒ Hf ⊗ HA and W : Hγ →֒ Hf ⊗ HAc .

The question of whether tensors in the network are (at least approximate) isometries is

important for various reasons, both in ensuring that the boundary state of the network

correctly approximates the original CFT state and in understanding the error correcting

properties of the network. As such we shall always keep the state |σ〉, and its generalizations

in more complicated networks, explicit.

3.2 General tree networks

The argument given above can be extended to construct a tree tensor network for an

arbitrary discretization of the bulk by (non-intersecting) Ryu-Takayanagi surfaces. This

generalization works roughly as one would expect: one simply localizes degrees of freedom

to each RT surface in turn, each time creating an additional link and tensor in the network.

However, some important subtleties arise during this process. It is easy to construct a

superficially-reasonable procedure that will not actually approximate the original state

with high fidelity. We will therefore describe the procedure for constructing generic tree

networks in some detail.19

Our argument is inductive: we assume that we have successfully constructed a tree

tensor network for a simpler discretization with one fewer RT surface, and then show that

we can always add an additional RT surface while (approximately) preserving the bulk

bond dimensions and the boundary CFT state. After arbitrarily many inductive steps,

the final network will still approximate the original “target” CFT state on its boundary.

However, to obtain rigorous bounds on our final error in approximating the original CFT

state, we must be somewhat careful in the order in which we choose to add RT surfaces.

17An alternative approach [32, 33] describes the fluctuations of the areas of extremal surfaces as “edge

modes,” i.e. superselection sectors that commute with the algebra of observables on both sides of the surface.

In our approach, however, these fluctuations are described explicitly by the states of the |σ〉 tensor that lies
on the Ryu-Takayanagi surface.

18To see that this is the correct scaling of metric fluctuations, note that a one graviton state with order-

unity frequency has an O(1/GN ) energy, but the energy is the square of the amplitude of the metric strain.

Note however that in contexts where we are only interested in the average area, the O(1/
√
GN ) term does

not appear because, for linearized gravitons, positive fluctuations are just as likely as negative fluctuations.

That is why the quantum corrections in the holographic von Neumann entropy (2.8), which traces over the

whole probability distribution, are merely O(1). In our tensor network contexts, however, we need to keep

track of the Hilbert space dimensions, which do not average out.
19For similar work in other contexts, see [34] and [35].
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Figure 5. The bulk discretization of vacuum AdS3 that was originally sketched in figure 3 has

here been given a root-leaf orientation on its dual graph by choosing an arbitrary boundary edge

as the “root” (represented here by a white circle).

Specifically, there must exist some choice of boundary node, which we shall label the “root”

node, such that each “parent” tensor was added after all of its “children.” (In practice, it

seems likely that one will obtain a correct approximation of the original state even when

the RT surfaces are added in an arbitrary order. Without adding them according to a

particularly nice orientation, however, it is hard to guarantee that one couldn’t obtain a

large boundary error by sheer bad luck.)

We begin by choosing a “target” discretization of the bulk by non-intersecting RT

surfaces, such as the one sketched above in figure 3. This will be the graph of our final tree

tensor network. Designating one of its nodes as a root picks out a preferred orientation for

the tree by flowing away from the root, as sketched in figure 5. In general, we will choose

the root node to lie on the boundary, although our construction works even if the root is

chosen to lie in the bulk. All boundary nodes that are not the root are now leaves of this

oriented graph. Note that this orientation is defined only for the purpose of ordering the

RT surfaces that make up the discretization, and is independent of the orientation imposed

on the tensor network to denote up- and down-indices (cf. section 2.1).

To construct a tree tensor network for this graph, edges will be added to the network

inductively from leaves up to the root. To preserve the isometry properties of the tensor

network, no RT surface can be added to the network before all of its children have been

added (according to the orientation induced by choosing a boundary root). Different choices

of root node on the boundary, and even different orderings of RT surfaces that are consistent

with a single root-leaf orientation, will in general produce different tree tensor networks.

However, all such networks are geometrically appropriate for the AdS/CFT correspondence

in the sense that they have bond dimensions that match the holographic geometry and

boundary states that approximately reproduce the original CFT state.

To define the isometry properties of a tree tensor network precisely, we first define the

state associated to any bulk region bounded by a mixture of Ryu-Takayanagi surfaces and
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Figure 6. (a) The bulk discretization of vacuum AdS3 shown in figure 5 can be divided into bulk

states by selecting regions of the bulk that are bounded by Ryu-Takayanagi surfaces and boundary

subregions. Such a region is shaded here. (b) The bulk state obtained from truncating a tree tensor

network to the shaded region. Each edge of the tree tensor network is composed of a maximally

entangled state |φ〉 and a subleading state |σ〉, just as in the bipartite construction of section 3.1.

The bulk state on the shaded region is defined by removing all tensors outside of the shaded region

while keeping the edge states |φ〉 and |σ〉 that define the edges at the boundary of the shaded

region. The result is a truncated state on the tensor product Hilbert space of the edges that cross

the boundary of the shaded region.

subregions of the boundary to be the state produced by a truncation of the tree tensor

network to that region. This is sketched in figure 6 for a subregion of the tree tensor

network that was introduced in figures 3 and 5. Importantly, the edge states |φ〉 and |σ〉
associated to each RT surface are included in the state assigned to the region. There is

a natural map from the state associated to a bulk region to the state associated to any

larger region which contains the smaller region. This is essentially the “inclusion” map

of the tensor network, which consists of all tensors that are included in the state of the

larger region but not included in the smaller one; we call this the extension map. The

extension map does not include the edge states associated to its “input” RT surfaces, as

those are already included in the state of the smaller subregion; however, it will include the

edge states associated to any “output” RT surfaces that bound the larger bulk subregion.

This convention is chosen so that an extension map “beginning” on a given RT surface can

always be composed with an extension map that “ends” on the same surface.

In the bipartite construction of section 3.1, the bulk tensors V and W each served

as the extension map from the state in the complementary bulk region out to the global

boundary. In this construction, the maps V and W were exact isometries. For a tree

network constructed from a boundary root orientation (as sketched in figure 5), we will

show inductively that extension maps flowing entirely along the direction of the orientation

are always exact isometries. An extension map which flows partially against the orientation
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of the graph will not in general be an exact isometry; however, it will be an approximate

isometry with respect to a particular state-dependent metric. (For example, in figure 6a,

the extension map from the shaded region through the network out to the “right half”

of the boundary is an exact isometry, as it flows along the orientation of the graph. The

extension map from the shaded region out to the global boundary, however, is only an

approximate isometry, as it must flow against the orientation of the graph to reach the

root node at the boundary.)

We now present the inductive argument for constructing a tree tensor network for

an arbitrary (non-intersecting) bulk discretization. For clarity, this whole procedure is

sketched in figure 7 for the final step of the oriented discretization sketched in figure 5.

After a boundary edge has been designated as the root and a root-leaf orientation has

been imposed on the dual graph, we pick one of the “uppermost” Ryu-Takayanagi surfaces

(i.e., one of the surfaces that neighbors the root node) to be the last surface added to

the network, and assume that we have already constructed a tree tensor network for the

discretization that includes all but this final surface.20 To make an inductive argument, we

assume that the tensor network for the “all-but-one” discretization has been constructed

so that it:

(a) approximately reproduces the original “target” CFT state on the boundary,

(b) has internal bond dimensions that match the areas of the discretization surfaces, and

(c) has the isometry properties detailed above (i.e., extension maps that follow the flow of

the root-leaf orientation are exact isometries).

We now consider the smallest bulk subregion a containing the new RT surface in its

interior (cf. figure 7a, where the bulk subregion a is shaded). In the tensor network for

the reduced discretization, the state associated to this region is formed by a single tensor

together with |φ〉 and |σ〉 states on each already-constructed RT surface on the boundary

of a. Because we chose the RT surface to neighbor the root node, the extension map from

this state to entire boundary state flows entirely along the orientation of the tree and so is

an exact isometry by assumption. Furthermore, we have assumed that the entire boundary

state is approximately equal to the target CFT state.

Since the smooth min- and max-entropies of the target state depend only weakly on

the error ε, and since the extension map from a to the global boundary is an isometry, the

smooth min- and max-entropies of the subregion state on a will agree with those of the

target state to leading order. We can therefore apply the exact same bipartite distillation

procedure to the subregion state on a that we used to construct the global bipartite tensor

network in section 3.1. This will produce a bipartite tensor network (V ⊗W )|φ〉|σ〉 of the
form given in (3.15) that approximates the state of the subregion a. We label our isometries

so that W is the “upwards” isometry that includes the root node in its image, while V is

20The choice of “uppermost” RT surface is in general non-unique, and adding surfaces to the network

in different orders will produce different tensor networks that all approximate the original CFT state with

high fidelity.
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the “downwards” isometry that maps away from the root node of the discretization (cf.

figure 7c).

This newly-distilled state approximately reproduces the subregion state on a, and

could be substituted directly into the network as in figure 7c. Doing so, however,

would require erasing all of the |φ〉 and |σ〉 states associated to each of the neighboring,

previously-added RT surfaces, replacing them with the outward-pointing legs of V . In-

stead, we wish only to replace the central tensor associated to a. Fortunately, as discussed

in section 2.1, there is a canonical isomorphism between the states |φ〉 ∈ Hγ ⊗ Hγ and

|σ〉 ∈ Hf ⊗ Hf and operators φ : Hγ → Hγ and σ : Hf → Hf . Since |φ〉 and |σ〉 are

full-rank, these operators are invertible. We can therefore simply replace the central

tensor in the subregion by V ′W |φ〉|σ〉, where

V ′ =

(
∏

i

σ−1
i φ−1

i

)
V (3.22)

and the product is taken over all RT surfaces on the boundary of a. In the case where

there is a unique “uppermost” RT surface for our discretization, the isometry W will map

directly to the boundary and will not require modification. In the case of a discretization

where two or more RT surfaces both neighbor the root node, the isometry W will need to

be modified on any of its outgoing legs that pass through already-constructed RT surfaces,

as in equation (3.22).

By construction, the new state associated to the bulk subregion will approximate the

old state, and since by assumption the rest of the tensor network forms an isometry from

V ′W |φ〉|σ〉 (or V ′W ′|φ〉|σ〉 in the case of multiple “uppermost” RT surfaces) to the global

boundary, the new state constructed by the entire network will continue to approximate

the target CFT state. The map V , which maps the new bulk subregion across the new

RT surface into the rest of the network, is an exact isometry even though V ′ is not.

This validates our assumption that extension maps that follow the root-leaf orientation

of the network should always be isometries. By induction, we can therefore construct a

tensor network state whose geometry agrees with an arbitrary tree discretization and which

approximately reproduces the original CFT state.

The only claim that we have made but are yet to prove is that extension maps which

flow partially against the root-leaf orientation of the underlying graph are still approximate,

if not exact, isometries. This claim was not required as part of our inductive procedure for

constructing tree networks, but will be useful for constructing more general networks in

following sections. Consider an arbitrary RT surface in some tree network discretization.

We have two extension maps, one in each direction, that map the edge state |φ〉|σ〉 associ-
ated with this surface to the entire boundary. One map V : Hγ ⊗Hf →֒ HAc flows entirely

with the orientation of the graph and so is an exact isometry. When the RT surface was

first added to the network, the other extension map W : Hγ ⊗Hf →֒ HA was also an exact

isometry for exactly the same reasons. However, because this extension map flows par-

tially against the root-leaf orientation of the graph, it will continue to change as additional

surfaces are added to the network. This is in contrast to the “downwards” isometry V ,

which remains unaltered because of the order in which we chose to add the RT surfaces.
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(a)
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σ φ

σ

(b)

V

W

φ
σ

(c)

V ′

W

φ

σ

φ

σ φ

σ

(d)

Figure 7. The final step of a tree tensor network construction for the bulk discretization of vacuum

AdS3 with orientation given in figure 5. (a) It is assumed that a tree network has been constructed

for the discretization that consists of all but the final (dashed) RT surface. The bulk subregion a,

shaded in gray, is the smallest bulk subregion containing this surface in its interior. (b) The state

of the network on a is sketched explicitly. Since the final RT surface has not yet been added to the

network, the bulk subregion a contains only one tensor. As all extension maps away from a follow

the root-leaf orientation of the network, they are all exact isometries. (c) The subregion state on a

is distilled across the new RT surface into a bipartite tensor network such as the one given in (3.15).

(d) To preserve the structure of the states |φi〉 and |σi〉 on the already-constructed RT surfaces, the

bipartite isometry V is replaced by the map V ′ given in equation (3.22). Note that all extension

maps that begin on the new smallest bulk subregion (shaded here) are still exact isometries.
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In the final network, once all RT surfaces have been added, we call the extension map that

flows partially against the root-leaf orientation X : Hγ ⊗Hf → HA. This map will general

not be an exact isometry; we will show that it is still an approximately isometry in an

appropriate sense.

Because our construction is designed so that the tensor network approximately repro-

duces the boundary state at every stage in its construction, we find

V ⊗W |φ〉|σ〉 ≈ V ⊗X|φ〉|σ〉. (3.23)

The left-hand side of (3.23) describes the state produced by the entire tensor network when

the RT surface is first added to the network, while the right-hand side is the state of the

final tensor network. Since |φ〉|σ〉 is fully entangled (i.e., its reduced density matrices on

either side of the RT surface are full-rank), exactness of (3.23) would imply that X = W

and so the extension map that flows partially against the network orientation would have

to remain an exact isometry. As such, we can interpret (3.23) as showing that X is an

approximate isometry with respect to a particular metric that is adapted to the state |φ〉|σ〉.
It can be equivalently written as

‖(X −W )φ⊗ σ‖2 = ‖(X −W )ρ
1/2
φ ρ1/2σ ‖2 ≤ ε, (3.24)

where ‖A‖2 ≡
√
Tr(A†A) is the Hilbert-Schmidt norm, ρφρσ = φ2σ2 is the reduced density

matrix of |φ〉|σ〉, and ε > 0 is small. This removes the isometry V from (3.23), and so gives

a distance that depends only on X, W and the reduced density matrix ρφρσ.

Finally, we can look at the partial trace of (3.23) over Hf⊗Hγ . Using the fact that the

trace norm ‖ρ‖1 = Tr
√
ρ†ρ is monotonically decreasing under the partial trace, it follows

from (3.23) that

∥∥∥Trfγ
(
X|φ〉|σ〉〈φ|〈σ|X†

)
− ρφρσ

∥∥∥
1
=

∥∥∥ρ1/2φ ρ1/2σ (X†X − 1)ρ
1/2
φ ρ1/2σ

∥∥∥
1
≤ ε (3.25)

This is a strictly weaker condition than (3.23) and (3.24): inefficiencies in the Fuchs-van

de Graaf inequalities [31] mean that we cannot recover (3.23) and (3.24) without some loss

of precision. However, it is perhaps the easiest condition to interpret.

Let {xi} be the eigenvalues of X†X. If |σ〉 were maximally mixed, we could

rewrite (3.25) as
1

d

∑

i

|xi − 1| ≤ ε. (3.26)

In other words, we would understand (3.25) as saying that on average the eigenvalues of

X†X is close to one. Hence X†X ≃ 1 and X is an approximate isometry. Since |σ〉 is full
rank but is not maximally mixed, we should instead think of (3.25) as a weighted average

of |xi − 1|. Of course, since in general X†X and ρσ will not commute, this interpretation

is not quite literal. It does, however, provide the correct intuition.

Thus far, we have only considered the approximate isometry condition for extension

maps that go from an RT surface all the way to the boundary. What about an extension

map X ′ that flows only partially through the network, whose image lies on RT surfaces in
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addition to, or instead of, the boundary? In this case, the “output” RT surfaces may not

have been added to the network when the “input” RT surface was added, so it may not

necessarily be possible to compare the final extension map X ′ to some intermediary exten-

sion map W ′ as we did in equation (3.23). However, it will always be possible to compose

X ′ with some exact isometry W ′ so that the resulting operator W ′X ′ is an extension map

from the “input” RT surfaces of X ′ out to the global boundary.21

Since W ′ is an exact isometry, applying (3.25) to the map W ′X ′ yields the following

inequality:
∥∥∥ρ1/2φ ρ1/2σ (X ′†X ′ − 1)ρ

1/2
φ ρ1/2σ

∥∥∥
1
=

∥∥∥ρ1/2φ ρ1/2σ (X ′†W ′†W ′X ′ − 1)ρ
1/2
φ ρ1/2σ

∥∥∥
1
≤ ε (3.27)

We conclude that extension maps that do not flow all the way to the boundary, such as X ′,
satisfy the same approximate isometry condition given in (3.25) for extension maps that

do flow all the way to the boundary.

Unfortunately, the approximate isometry conditions (3.23), (3.24), (3.25), and (3.27)

are not quite as powerful as one might want. They tell us that X and X ′ are close to isome-

tries “on average”, but, because of the large dimensions of the Hilbert spaces involved, they

do not say much about the “worst-case” error. For example, a single eigenvalue xi of X
†X

can be very far from one without making a large contribution to the averaged error (3.26).

More formally, to bound the “worst-case” error, we would want to bound the operator

norm

‖X −W‖∞ = sup
|ψ〉

‖(X −W )|ψ〉‖
‖|ψ〉‖ . (3.28)

However, the tightest bound that we can place on this norm is

‖X −W‖∞ ≤ ‖(X −Wφ⊗ σ)‖∞‖φ−1 ⊗ σ−1‖∞ ≤ ε‖φ−1 ⊗ σ−1‖∞, (3.29)

where the first inequality follows from the submultiplicativity of the operator norm and the

second follows from the monotonicity of the Schatten norms and (3.24). Since the operator

norm of φ−1 ⊗ σ−1 is quite large, näıvely satisfying

‖φ−1 ⊗ σ−1‖∞ = eO(S), (3.30)

we cannot make ε small enough to make this a tight bound.

If the RT surfaces of a tree tensor network are added in an arbitrary order, rather

than adding child surfaces before parent surfaces, then the potentially large error in (3.29)

prevents us from guaranteeing that the final network correctly approximates the original

boundary state. In this section, we avoided this possibility by imposing a root-leaf orien-

tation on our construction; however, when constructing more complicated sub-AdS scale

tensor networks in section 6, the issue of errors in our approximate isometries will arise

once again without the guarantee of a root-leaf orientation to stop them from blowing up.

21In the final network, in general, the extension map W ′ from the output surfaces of X ′ to the global

boundary will not be an exact isometry. However, it will always be possible to find some intermediary net-

work, constructed as part of the inductive procedure, where W ′ is exact. Since both final and intermediary

networks reproduce the boundary state to within tolerance ε, either can be used to prove equation (3.27).
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However, in practice, (3.23) and (3.25) should ensure that “generic” small perturba-

tions in the subregion states of our network that occur during an unoriented induction

should only lead to a small error in the final state. Large errors would only occur if these

perturbations were somehow finely tuned to blow up when mapped out to the boundary

via extension maps. We therefore think it very likely that our distillation procedure will

produce tensor networks that approximate the original holographic state correctly regard-

less of the order in which Ryu-Takayanagi surfaces are added to the network, and more

generally will produce accurate sub-AdS scale tensor networks even when we no longer

have the luxury of a root-leaf orientation to constrain accumulated errors precisely.

4 Bulk legs and holographic quantum error correction

Thus far, we have focused on constructing a tensor network for a single, arbitrary holo-

graphic CFT state. In the literature, however, it is common to consider tensor networks

that describe not only a single holographic state, but an entire code subspace of holographic

states. These tensor networks have some dangling bulk legs that turn the entire tensor net-

work into a bulk-to-boundary map that encodes bulk excitations into a subspace of the

boundary (see, e.g., [9] and [10]). Ideally, the map from the bulk to the boundary will have

some appropriate error correcting properties that allow bulk operator reconstruction to be

interpreted in the language of quantum error correction.

We discuss here, briefly, how our construction can be extended to create such code

spaces. We shall focus on a code space that consists of a single bulk qubit, localized within a

single bulk region a of the tree network discretization shown in figure 8a. The generalization

to more complicated bulk code spaces in tree tensor networks is straightforward, and we

would optimistically expect similar results to hold for the more general constructions of

sections 5 and 6.

In much of the existing literature on holographic quantum error correcting codes (see,

e.g., [9] and [10]), one begins with a particular tensor network construction and then shows

that it has quantum error correcting properties analogous to those of AdS/CFT. As in the

rest of this paper, we reverse this script. We begin with the known quantum error correcting

properties of AdS/CFT [13], and especially entanglement wedge reconstruction [36–39],

and show that they imply the existence of tensor network constructions for code spaces of

actual holographic states, which behave in exactly the same way as the toy models that

have previously appeared in the literature. We emphasize that this should not be taken

as an independent proof of entanglement wedge reconstruction. Instead it demonstrates

that the error-correction properties of AdS/CFT itself and of holographic tensor networks

toy models are not merely analogous to one another, but are in fact different examples of

exactly the same phenomenon.

Consider, for example, a 2-dimensional “code subspace” of states in AdS/CFT that

can be built from a single starting state by applying low-energy unitary bulk operators

in only a single bulk region a of some tree network discretization.22 Any Ryu-Takayanagi

22If the energy of the bulk matter excitations is O(1) in a GN expansion, then the backreaction on

the geometry is O(GN ), resulting in an O(1) change in the Bekenstein-Hawking entropy of the surfaces

bounding the region a. This is smaller than the O(G
−1/2
N ) fluctuations already present in our network, and

can therefore be neglected without changing our error estimates on the bond dimensions of the network.
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surface neighboring the bulk region a splits the boundary into two regions: region A, the

entanglement wedge of which contains the bulk region a, and its complement Ac. This is

sketched for a particular choice of bulk region and Ryu-Takayanagi surface in figure 8b.

Because of the usual error correcting properties of AdS/CFT [13, 33, 36, 37], the reduced

density matrix on Ac is approximately the same for every state in the code space. Moreover,

any two orthogonal states in the code space will have reduced density matrices on A that

are approximately orthogonal; the trace distance between them will be close to maximal.

This is in fact equivalent to the fact that the reduced density matrix on Ac is the same

for every state, including superpositions, in the code space (see, e.g., the weak decoupling

duality described in [40, 41]).

Let us suppose we have successfully constructed a tree tensor network for a single

state |ψ〉 in the code space using the techniques of section 3. Because the reduced density

matrices on Ac are the same for every RT surface bounding a and every state in the code

space, any state in the code subspace can be represented by a tensor network that is

identical to the one constructed for |ψ〉 except that it differs in the tensor associated to the

bulk subregion a. It follows by linearity that we can describe the entire two-dimensional

code space adding a two-dimensional bulk leg to the tensor in region a (cf. figure 8c). The

resulting tensor network can be interpreted as a map T : Hbulk →֒ HCFT from the bulk to

the boundary. Furthermore, by using our freedom to choose an inner product on Hbulk, we

can ensure that T is an exact isometry.

Showing that our tensor networks are quantum error correcting in the sense of [9]

requires showing that for any choice of RT surface bounding a and corresponding bound-

ary subregion A, any bulk operator on Hbulk has an equivalent boundary operator whose

support lies only on A. By “equivalent,” we mean that acting with one of these boundary

operators on any state in the code subspace produces approximately the same state that

one would obtain by acting with the original, bulk operator on Hbulk. Such boundary

representations of bulk operators are obtained in [9] by using the tensor network to “push

the bulk operator through the network” and into the boundary.

To be precise, the map that will be used to push bulk operators to the boundary region

A is the “controlled extension map” X : Hf ⊗Hγ ⊗Hbulk → A, sketched in figure 8c. We

call this a controlled extension map because once a state |ψ〉 is fixed on the bulk leg Hbulk,

the resulting map X|ψ〉 is an extension map in the corresponding tensor network in the

sense of section 3.2. We will show first that X is an approximate isometry in the sense of

equation (3.25), and second that this condition allows us to use X to push bulk operators

to equivalent operators on the boundary.

Let |0〉, |1〉 form a basis for Hbulk. The controlled extension map X can then be

represented in this basis as

X = X0〈0|+X1〈1|, (4.1)

where X0 and X1 are the extension maps from the RT surface to A for the tree tensor

networks defined by specifying bulk leg states |0〉 and |1〉 respectively. We showed in

section 3.2 that extension maps in tree tensor networks are approximate isometries, and so
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(a)

A

A
c

a

(b)

a

φ

σ
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Figure 8. (a) A tree tensor network for a particular discretization of vacuum AdS3. A bulk subre-

gion a of the discretization (shaded here) has been chosen to create a code subspace of excitations

around the vacuum generated by operators whose support lies entirely within a. Note that the |φ〉
and |σ〉 edge states have been suppressed in this sketch for the sake of visual clarity. (b) Choos-

ing a particular RT surface that bounds a, denoted here with a dashed line, partitions the global

boundary into two regions: A, which contains a in its entanglement wedge, and its complement Ac.

(c) As explained in the text, a code subspace of excitations localized in a can be represented by

adding a single bulk leg to the tensor in region a. For a particular choice of RT surface bounding

a, the “controlled extension map”, which maps the bulk leg in a plus the edge states on the chosen

RT surface into the boundary region A, is sketched with red arrows. In order to clarify where the

extension map begins, the edge states |φ〉 and |σ〉 are shown explicitly on the chosen RT surface,

and suppressed on all other RT surfaces in the diagram.
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X0 and X1 satisfy

X†
0X0 ≃ X†

1X1 ≃ 1 (4.2)

in the sense of equation (3.25). Because orthogonal bulk states are almost orthogonal in

region A, these extension maps satisfy

X†
1X0 ≃ X†

0X1 ≃ 0 (4.3)

in the same sense. It follows immediately that X†X ≃ 1 and so X is an approximate

isometry in the sense of (3.25). By the same arguments as in section 3.2, we can also show

that controlled extension maps that end on RT surfaces are also approximate isometries.

Given an operator Ôb acting on Hbulk, we wish to use the fact that X is an approximate

isometry to produce a boundary operator ÔA supported on A whose action on the code

subspace is approximately the same as Ôb. More precisely, for a state |ψ〉 ∈ Hbulk, we wish

to show

ÔAT |ψ〉 ≈ TÔb|ψ〉. (4.4)

This is exactly the same sense of bulk reconstruction through quantum error correction

that was developed for exact tensor network toy models in [9]. In terms of the controlled

extension map X and the bulk tensor network state |TAc〉 associated to the entanglement

wedge of Ac, the tensor network map T can be decomposed as

T |ψ〉 = X|TAc〉|ψ〉. (4.5)

Equation (4.4) therefore becomes

ÔAX|TAc〉|ψ〉 ≈ XÔb|TAc〉|ψ〉. (4.6)

As in [9], we can find a boundary representation of a bulk operator by simply conju-

gating with X, i.e.,

ÔA ≡ XÔbX
†. (4.7)

Using the approximate isometry condition that X†X acts approximately as the identity

on |TAc〉|ψ〉 for any bulk state |ψ〉, we see that ÔA satisfies equation (4.4). If X were an

exact isometry, as in [9], the map from bulk operators to boundary operators given in (4.7)

would be unital on the image of X (i.e., it maps the identity on Hbulk to the boundary

projector onto the image ofX). This condition is desirable from the perspective of quantum

information theory, as it ensures that the map given in (4.7) is a quantum channel in the

Heisenberg picture.

In order to ensure that this condition holds for our approximate isometries, thus making

the bulk-to-boundary operator map into a genuine quantum channel, we instead define the

boundary representation of a bulk operator as

ÔA ≡ X(X†X)−1/2Ôb(X
†X)−1/2X†. (4.8)

From the isometry condition (3.25), we see that ÔA still satisfies equation (4.4), and thus

this an approximate boundary representation of the bulk operator Ôb. We can also see
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plainly that the bulk-to-boundary operator map given by equation (4.8) maps the identity

on Hbulk to the identity on the image of X, and is thus a quantum channel on operators

in the code subspace (i.e., a completely positive, unital map on operators). We conclude

that every bulk operator Ôb has an equivalent boundary operator representation ÔA whose

support lies only on A and whose action on the code subspace is approximately the same

as the action of Ôb, as desired.

The boundary operator obtained via the quantum channel given in equation (4.8)

may be very different from the boundary operator on the same region obtained through

the extrapolate dictionary and the HKLL reconstruction procedure [42]; however, these

operators will agree on the boundary code subspace obtained by taking the image of Hbulk

under the map defined by the tensor network. Our tensor network description of a state

in the AdS/CFT correspondence therefore displays exactly the same bulk-to-boundary

operator mapping properties of the celebrated HaPPY class of holographic codes [9]. We

conclude that tensor networks models of bulk operator reconstruction may be taken quite

literally. They are not just toy models!

5 Loop tensor networks from holographic entanglement of purification

The tree networks constructed in section 3 already constitute a large class of tensor networks

for the AdS/CFT correspondence, but we might still hope for a more general construction.

A single bond in a tree tensor network corresponds to a complete Ryu-Takayanagi surface in

the bulk spacetime from which the network was constructed, so the information contained

in that bond is a priori distributed nonlocally across the entire corresponding surface.

In order to localize degrees of freedom at sub-AdS scales within the bulk geometry, we

must therefore find a way to divide each bond geometrically along its corresponding Ryu-

Takayanagi surface. In the bulk discretization picture of section 3, this corresponds to

constructing a holographic tensor network with loops.

To construct such a tensor network, we will need to understand the holographic en-

tanglement of purification [15, 16], a geometric quantity in the bulk spacetime that is

conjectured to correspond to an information-theoretic quantity involving a tensor factor-

ization of the information on an RT surface. In this section, we will assume the holographic

entanglement of purification conjecture, and then use it to construct a geometrically accu-

rate tensor network with a single loop for an arbitrary holographic CFT state. With some

further assumptions introduced in section 6, we will then be able to extend this procedure

to construct tensor networks with arbitrarily many loops, and therefore to localize infor-

mation in the bulk arbitrarily well within the regime of validity of the Ryu-Takayanagi

formula (i.e., above the string/Planck length scales).

5.1 Holographic entanglement of purification

For a quantum state ρ(AB) on a bipartite Hilbert space HA ⊗ HB, the entanglement of

purification [43] between subsystems A and B is defined as

EP (A : B) = inf
|Ψ〉AA′BB′

S(AA′), (5.1)
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where |Ψ〉AA′BB′ ∈ HA ⊗ HA′ ⊗ HB ⊗ HB′ is a purification of ρ(AB). The infimum in

equation (5.1) is taken over all possible purifications of ρ(AB) in all possible auxiliary

Hilbert spaces HA′ and HB′ .

If ρ(AB) is a mixed state, then the von Neumann entropy S(A) no longer measures the

entanglement (or even the correlation) between A and B in any meaningful sense, since

some portion of S(A) is inherited from the nonzero von Neumann entropy of ρ(AB). The

von Neumann entropy S(A) may be non-zero for a product state ρ(A)⊗ ρ(B), which has no

correlation between the two subsystems. The entanglement of purification EP is a some-

what better measure of the degree to which A and B are entangled (or at least correlated),

as it measures the minimal entanglement between AA′ and BB′ for any purification. As a

result, the entanglement of purification is zero for product states, and is non-increasing un-

der local operations. It is not a true entanglement monotone in the sense of [44], however,

since it may be non-zero even for separable states (which only have classical correlation),

and it may be increased by classical communication.

As with other information-theoretic quantities, one might hope that the entanglement

of purification has a geometric dual in the context of AdS/CFT. For two subregions A1

and A2 of a holographic CFT state, it has recently been conjectured in [15, 16] that

EP (A1 : A2) is given to leading order in GN by the area of the entanglement wedge cross-

section, EW (A1 : A2). Formally, EW (A1 : A2) is defined as

EW (A1 : A2) =
area(ΣA1:A2)

4GN
, (5.2)

where ΣA1:A2 is the minimal surface anchored to the Ryu-Takayanagi surface of A1 ∪ A2

that partitions the entanglement wedge into a portion whose boundary contains all of A1

and a disjoint portion whose boundary contains all of A2. This surface is sketched in figure 9

in vacuum AdS3 for two different typical configurations of boundary regions A1 and A2.

If A1 and A2 are connected subregions of some larger connected region A = A1 ∪
A2 (i.e., if A1 and A2 form a connected partition of A as in figure 9a, then we call the

state |Ψ〉A1A′
1A2A′

2
that saturates the infimum in equation (5.1) the minimally entangled

purification (MEP) of the partition A1 : A2.
23,24

The holographic entanglement of purification conjecture has been generalized to mul-

tipartite and conditional entropies (and their geometric duals) in [46–49]. For the moment,

however, we will concern ourselves only with the minimally entangled purification of a

connected partition A1 : A2, and the associated entanglement of purification EP (A1 : A2).

23Of course, since (5.1) contains an infimum rather than a minimum, it is not necessarily saturated by

any state |Ψ〉A1A
′

1
A2A

′

2
. In this case, we take the MEP to be a fixed state that saturates the infimum to

within tolerance ε. Since one might expect that the infimum in (5.1) could be saturated arbitrarily well

by taking the purifying spaces A′
1 and A′

2 to be arbitrarily large, allowing this finite tolerance in the MEP

prevents the dimensions of A′
1 and A′

2 from blowing up.
24A similar object, defined by a procedure in which one is also permitted to minimize over all possible

partitions A1 : A2, has previously been studied in [45].
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c
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1 A′

2
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A
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1

A′
1

A′
2

A′
2

(b)

Figure 9. The entanglement wedge cross-section for two different configurations of boundary

subregions A1 and A2 in vacuum AdS3. In both (a) and (b), the entanglement wedge cross-section

divides the entanglement wedge (the bulk region bounded by A1, A2, and RT surface of A1 ∪ A2)

into two disjoint regions, each of which contains only one of either A1 or A2 in its boundary. The

subregions of each RT surface inherited from this partition have been instructively labeled A′

1 and

A′

2 for reasons explained in section 5.2.

5.2 Tensor networks from minimally entangled purifications

Consider a holographic CFT state |ψ〉 with some subregion A that is further divided into

a connected partition A1 : A2, as sketched in figure 9a. The reduced state ρ(A1A2) has

a minimally entangled purification |Ψ〉A1A′
1A2A′

2
chosen so that S(A1A

′
1) = EP (A1 : A2).

According to the holographic entanglement of purification conjecture, this implies

S(A1A
′
1) = EW (A1 : A2) =

area(ΣA1:A2)

4GN
. (5.3)

Examining figure 9a, it is easy to see that ΣA1:A2 is the minimal bulk surface anchored

to the boundary region A1 and a subregion of the Ryu-Takayanagi surface of A1 ∪ A2,

which we have instructively labeled A′
1. Equation (5.3) looks just like the Ryu-Takayanagi

formula (2.8) if one supposes that |Ψ〉A1A′
1A2A′

2
is a holographic state in some boundary

theory with a domain corresponding to the codimension-2 bulk surface made up of A1 and

A2 along with the Ryu-Takayanagi surface of their union.

Indeed, as explained in [15, 16], it makes sense to interpret the MEP |Ψ〉A1A′
1A2A′

2
as

a geometric state on some subregion of the bulk, where the auxiliary Hilbert spaces HA′
1

and HA′
2
are identified with the bulk surfaces A′

1 and A′
2, respectively. The conjectured

surface-state correspondence [50] of holographic CFTs suggests that any codimension-2

surface in a holographic spacetime corresponds to some state in a boundary theory that

encodes the physics in the entanglement wedge of that surface.25 If this is to believed, then

25The “entanglement wedge” of a codimension-2 bulk surface Σ is defined in analogy with the entangle-

ment wedge of a boundary interval as the subregion of the bulk bounded by Σ and by the minimal surface

homologous to Σ that shares its boundary.
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it is natural to assume that the MEP of the partition A1 : A2 corresponds to a state on

the codimension-2 bulk surface ΣA1A′
1A2A′

2
= A1 ∪A2 ∪A′

1 ∪A′
2.

To make this proposal precise, we assume that the entanglement entropies of subsys-

tems of the MEP are given at leading order by the Ryu-Takayanagi formula applied to

the codimension-2 surface ΣA1A′
1A2A′

2
. In particular, since A′

1 and A′
2 are subregions of a

minimal surface and hence minimal themselves, this assumption tells us that A′
1 and A′

2

are themselves the Ryu-Takayanagi surfaces for the Hilbert Space factors HA′
1
and HA′

2
.

In other words, their von Neumann entropies satisfy:

S(A′
1) =

area(A′
1)

4GN
+ o

(
1

GN

)
, (5.4)

S(A′
2) =

area(A′
2)

4GN
+ o

(
1

GN

)
. (5.5)

We require one more assumption to build a tensor network using the holographic entangle-

ment of purification, which is that the MEP has the same smooth min- and max-entropy

properties (2.30) and (2.31) as holographic CFT states. In section 2.3, we argued that this

will be true for any state with von Neumann entropies given by equations of the form (5.4)

and (5.5), and with extensive Rényi entropies that take the geometrical form given in equa-

tion (2.16). If the MEP is indeed a holographic state for the portion of the bulk bounded

by ΣA1A′
1A2A′

2
, then it should satisfy both of these properties.

If the MEP has entropies given to leading order by the Ryu-Takayanagi formula on

subregions of ΣA1A′
1A2A′

2
, and if the smooth min- and max-entropies of those subregions

are also given by (2.30) and (2.31), then the MEP satisfies all the conditions required to

build a tree tensor network (cf. section 3).26 This means that we can build a tree network

for the MEP that matches the bulk geometry contained within ΣA1A′
1A2A′

2
. Specifically,

there exists some state |Ψ(ε)〉A1A′
1A2A′

2
that approximates the MEP with high fidelity with

a tensor network representation

Ψ
A1A′

1A2A′
2

(ε) = TA
′
1γ1f1U

A1
γ1f1γ2f2

V A2
γ2f2γ3f3

WA′
2
γ3f3

×φ
γ1γ1
(1) φ

γ2γ2
(2) φ

γ3γ3
(3) σ

f1f1
(1) σ

f2f2
(2) σ

f3f3
(3) (5.6)

with bond dimensions given by:

dimHγ1 = eS(A
′
1)−O(

√
S(A′

1)), (5.7)

dimHf1 = eO(
√
S(A′

1)), (5.8)

dimHγ2 = eS(A1A′
1)−O(

√
S(A1A′

1)), (5.9)

dimHf2 = eO(
√
S(A1A′

1)), (5.10)

dimHγ3 = eS(A
′
2)−O(

√
S(A′

2)), (5.11)

dimHf3 = eO(
√
S(A′

2)). (5.12)

26As in section 3.2, one must choose a root-leaf orientation for the MEP network in order to determine the

order in which its subregions should be distilled. The choice of ordering will not matter for our purposes,

though as usual it will determine which isometries are exact and which are only approximate.
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A
c

φ σ

φ

σ
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XTW
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Figure 10. (a) A tensor network for the minimally entangled purification of two neighboring

boundary regions in vacuum AdS3, as given in equation (5.6). (b) The one-loop tensor network for

the full boundary state given by equation (5.16), obtained by embedding the MEP isometrically

into the global boundary. Note that in both figures, subscripts on the φ(i) and σ(i) edge states have

been suppressed.

The outer product expression given in (5.6) is not particularly illuminating on its own,

but has a natural interpretation in the geometric picture of tensor networks. In figure 10a,

this tensor network is shown superposed over the geometric picture of the minimally entan-

gled purification, with each network bond passing through its corresponding bulk surface.

Equations (5.3), (5.4), and (5.5) imply that the bond dimensions of this tensor network

match the areas of the surfaces A′
1, A

′
2, and ΣA1:A2 in figure 9a, justifying our interpre-

tation of expression (5.6) as an approximate tensor network for the minimally entangled

purification that matches the geometric properties of its holographic dual.

The tree network for the minimally entangled purification constitutes a tensor network

for the “top half” of the bulk discretization shown in figures 9a and figure 10a. To find a

geometric tensor network for the full boundary state, we need to find a tensor corresponding

to the bulk region that lies between A′
1 ∪A′

2 and the complementary boundary region Ac.

Since the MEP |Ψ〉A1A′
1A2A′

2
and the original global boundary state |ψ〉A1A2Ac are both

purifications of the reduced boundary state ρ(A1A2), they are related by an isometry on the

purifying space. That is, there exists an isometry27

X : HA′
1
⊗HA′

2
→֒ HAc (5.13)

such that

|ψ〉A1A2Ac = (IA1A2 ⊗X)|Ψ〉A1A′
1A2A′

2
. (5.14)

27Formally, this isometry only exists if dim(HAc) ≥ dim(HA′

1
⊗HA′

2
). Since the dimension of the latter

space is given to leading order by eS(Ac), and S(Ac) is much smaller than log dim(HAc), this bound is

satisfied here and the isometry exists.
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In tensor notation, this is

ψA1A2Ac
= XAc

A′
1A

′
2
ΨA1A′

1A2A′
2 . (5.15)

Since X is an isometry, the minimally entangled purification |Ψ〉A1A′
1A2A′

2
can be re-

placed with the nearby state |Ψ(ε)〉A1A′
1A2A′

2
without any additional loss of precision. That

is, the state

ψA1A2Ac

(ε) = XAc

A′
1A

′
2
Ψ
A1A′

1A2A′
2

(ε) . (5.16)

approximates ψ as well as Ψ(ε) approximates Ψ. Plugging the tensor network expression

for Ψ(ε) from equation (5.6) into equation (5.16) (and contracting the tensors X, T , and

W into a single bulk tensor XTW ) yields a tensor network description for the full (ap-

proximate) boundary state ψ(ε) with bond dimensions matching the areas of the surfaces

A′
1, A

′
2, and ΣA1:A2 . This complete tensor network is sketched in figure 10b. By using

the natural properties of the minimally entangled purification arising from the holographic

entanglement of purification conjecture, we have managed to localize degrees of freedom

within the Ryu-Takayanagi surface and hence to construct a non-tree tensor network for a

generic holographic state with extremely high fidelity.

With this tensor network now fully constructed, we must now ask an important ques-

tion about its extension maps: in what sense can they be shown to be isometries? Are

they exact isometries, as in section 3.1? Are they merely approximate isometries in the

sense of section 3.2? Or are they in fact neither of these things? Because the answer to

this question will prove important both in constructing sub-AdS scale networks in section 6

and in formulating the no-go theorem that we prove in section 7.3, we shall answer this

question systematically for each extension map of the network shown in figure 10b.

Most of the extension maps in figure 10b (e.g. the maps outwards from ΣA1:A2 to A1∪A′
1

and A2∪A′
2 and the maps upwards from A′

1 to A1∪ΣA1:A2 and from A′
2 to A1∪ΣA1:A2) were

also extension maps in the tree tensor network for the minimally entangled purification.

As such, they are all at least approximate isometries in the sense of section 3.2; depending

on the order in which RT surfaces were added to the tree network for the MEP, several

of them will be exact isometries. The extension map XTW flowing downwards from the

horizontal RT surface A′
1∪A′

2 is not an extension map from the tree tensor network for the

MEP; however, since it is a composition of an exact isometry X with two MEP extension

maps T and W , and since T and W are exact isometries regardless of the order in which

the edges in the tree tensor network for the MEP were distilled, XTW is still an exact

isometry in the final network.

There is one remaining extension map that one might also hope would be an isometry:

the map upwards from A′
1 ∪A′

2 to A1 ∪A2. In this case, we have no good argument that it

should be an exact, or even an approximate, isometry. In particular, the |φ〉 and |σ〉 edge
states on A′

1 and A′
2 were constructed to approximate the reduced density matrices of the

MEP on HA′
1
and HA′

2
individually. The upwards extension map will be an approximate

isometry if (and more importantly only if) the product of these reduced density matrices

approximates the reduced density matrix of the entire MEP on HA′
1
⊗HA′

2
. Unfortunately,

the assumptions we have made about the MEP thus far are only sufficient to show that

the mutual information I(A′
1 : A′

2) is subleading in GN ; they do not imply that it is

– 35 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

zero. We have no solid reason to believe that the reduced density matrix on HA′
1
⊗HA′

2
is

actually close to a product state with respect to the trace norm. Furthermore, we will see

in section 7.3 that there is good reason to think that this cannot be the case.28

Henceforth, we shall refer to an extension map of this kind as a “moral” isometry.

In using this terminology, we mean that — even though the extension map from A′
1 ∪ A′

2

to A1 ∪ A2 in figure 10b is unlikely to be an exact or even approximate isometry — we

expect that small errors introduced in the “bottom-half” tensor XTW will not blow up

dramatically when mapped through the moral isometry to alter the “top-half” boundary

state on A1∪A2. Since the moral isometry preserves the normalization of the full-rank state

|φ(1)〉|σ(1)〉|φ(2)〉|σ(2)〉, and also preserves the entanglement entropy of this state to leading

order, it is tempting to think of the moral isometry as a combination of an exact isometry

and some other, non-isometric operator that acts only on a subleading number of degrees

of freedom. We will revisit the issue of moral isometries in section 6, where we invoke the

moral isometry condition to argue that distilling the bottom-half tensor XTW into a tree

tensor network of its own will result in a global tensor network that still approximately

reproduces the original boundary state of the CFT.

5.3 Multiple loops

Of course, nothing in our construction thus far has limited us to considering the case of a bi-

partite boundary partition A1 : A2. One might equally well wish to consider a more general

multipartite partition, where a boundary region A is partitioned into n connected subre-

gions as A1 : A2 : · · · : An. For simplicity, we assume that each subregion Ai only shares a

boundary with at most two neighbors, Ai−1 and Ai+1. In 2 + 1 spacetime dimensions, any

connected partition can be ordered such that this is true. By analogy with the holographic

entanglement of purification conjecture, one would expect that minimizing the quantity

S(A1A
′
1) + S(A1A

′
1A2A

′
2) + · · ·+ S(A1A

′
1 . . . An−1A

′
n−1) (5.17)

over all possible purifications into spaces A′
1⊗· · ·⊗A′

n would correspond to minimizing the

areas of surfaces that partition the entanglement wedge of A = A1∪· · ·∪An into n distinct

subregions.29 Each term in (5.17) should correspond to the area of one entanglement

wedge cross-section, and since minimal surfaces cannot cross one another, the minimization

of each area in the bulk can be performed independently up to subleading corrections. If

our extended conjecture is correct, this implies that each term in the entropy sum (5.17)

can also be minimized independently, at leading order.

28The fact that this map is not even an approximate isometry is somewhat problematic for interpreting the

bottom-half state of the tensor network in figure 10b in terms of the surface-state correspondence. It implies

that the bottom half state is not an approximate purification of the reduced density matrix of the original

holographic state on HAc . However, we still hope that the relevant smooth entropies will behave correctly.
29In [47], a slightly different notion of multipartite entanglement of purification was shown to satisfy

constraining inequalities involving linear combinations of entanglement entropies, which are also satisfied

by the corresponding geometric quantity. Similar proof techniques, both holographic and information

theoretic, should suffice to place analogous constraints on the quantity given in equation (5.17). Since the

holographic entanglement of purification conjecture was originally motivated in [15] by showing that the

geometric bulk quantities and the information-theoretic boundary quantities satisfy the same constraints,

our construction is equally well-motivated.
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Figure 11. A rough sketch of the procedure for constructing a “3-to-one” network for a holographic

CFT state. The boundary subregion A is given a connected partition A1 : A2 : A3, and a minimally

entangled purification for this partition is found by minimizing the sum S(A1A
′

1) + S(A1A
′

1A2A
′

2).

In (a), this partition is shown along with the surfaces ΣA1:A2
and ΣA2:A3

whose minimal areas

should correspond to the minimization of this sum. If the MEP has entropies corresponding to

areas of surfaces in the entanglement wedge of A1 ∪A2 ∪A3, then a “top-half” tree tensor network

can be constructed as in (b), which can then be completed by an isometry on the purifying space

to obtain a tensor network for the global CFT state.

In the special case of two subregions (i.e., n = 2), the quantity given in (5.17) reduces

to the one minimized in defining the entanglement of purification (5.1). If the MEP of

this partition has entropies given by the areas of extremal surfaces contained within the

entanglement wedge, then one can readily construct an “n-to-one” network for the CFT

state |ψ〉 by repeating the procedure detailed above. This is sketched for n = 3 in figure 11.

Note that for n ≥ 3, the n-to-one network contains bonds that correspond to extremal

surface subregions with areas that remain finite even when the ultraviolet CFT regulator

and corresponding bulk radius regulator are removed. If the holographic entanglement of

purification conjecture and its extensions hold down to the string and Planck scales, as

assumed, then the areas of these subregions can be chosen to be arbitrarily small relative

to the AdS scale by choosing suitably small boundary subregions (so long as we remain

above the string and Planck scales).30 The tensor network would therefore be capturing

the bulk geometry at sub-AdS scales.

30One important exception occurs when two neighboring entanglement wedge cross-sections ΣA1:A2
and

ΣA2:A3
undergo a “phase transition” in the sense that they “jump” discontinuously across the RT surface

even when the middle boundary region A2 is made arbitrarily small. In this case, the region of the RT

surface that is “skipped over” by this phase transition cannot be directly probed by a single application

of the holographic entanglement of purification, and may in fact have an area well above the AdS scale.

Nevertheless, techniques in section 6 should still allow us to construct a sub-AdS tensor network within such

a region by using multiple, iterated applications of the holographic entanglement of purification conjecture.

(This complication does not arise for bulk geometries that are close enough to a 2+1 AdS vacuum.)
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Thus far, we have implicitly assumed that we are working in 2+1 spacetime dimensions.

While the construction detailed above will certainly work in higher-dimensional spacetimes,

it would no longer be completely accurate to claim that the n-to-one network captures the

geometry at sub-AdS scales; while RT surface subregions can be chosen with finite, sub-

AdS width, they also have at least one transverse direction that extends all the way to the

boundary of the spacetime. Localizing the information on a single Ryu-Takayanagi surface

to bounded, sub-AdS bulk regions in higher-dimensional spacetimes is a subtle procedure,

and requires techniques from section 6. We will therefore comment on this generalization

briefly in section 6.2.

6 Iteration and sub-AdS locality

In section 3, we showed that the Ryu-Takayanagi formula, together with constraints on

the smooth min- and max-entropies that follow from the extensive growth of the ordinary

Rényi entropies, is sufficient to construct geometrically appropriate tensor networks corre-

sponding to an arbitrary discretization of the bulk by non-intersecting extremal surfaces.

The resulting tensor networks are always tree tensor networks, where each bond of the

network is associated to an entire extremal surface. In tree tensor networks, information

is never localized within a single Ryu-Takayanagi surface.

In section 5, however, we were able to show that the holographic entanglement of

purification conjecture can be used to associate network bonds to subregions of a single

Ryu-Takayanagi surface. By assuming a natural extension of the holographic entanglement

of purification conjecture to multipartite partitions of the boundary, these subregions could

be made to have finite size even when the CFT and bulk regulators are removed. If the holo-

graphic entanglement of purification conjecture for multipartite boundary partitions holds

up to stringy and quantum corrections, then these extremal surface subregions can be made

arbitrarily small compared to the AdS scale in the semiclassical limitGN → 0 and λ → ∞.31

We would like to go further by achieving some form of sub-AdS locality not only in

the sense of dividing bonds along a single Ryu-Takayanagi surface, but in the general

granularity of the network. More precisely, we would like to construct tensor networks

where each tensor is associated to a bulk subregion that occupies a volume well below

ℓd−1
AdS. We approach this problem by proposing a procedure to construct a tensor network

for discretizations of the bulk whose discretization scale lies well below ℓAdS.

6.1 The four-tensor network

We begin by considering the simplest tensor network that our prior techniques were unable

to address, namely the four-tensor square network shown in figure 12a that corresponds to

a discretization of the bulk by two complete, intersecting extremal surfaces. One way to

construct such a network involves a process of iteration: begin by constructing a one-loop

network like the one shown in figure 10b, where the “bottom half” of the discretization

in 12a is represented by a single tensor, then divide this tensor into two tensors that

31Note that since the bond dimension of the corresponding network edge goes like earea /4GN , the bond

dimension will still diverge in the semiclassical limit.
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A1 A2
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W

(b)

A1 A2

A3A4

φσ

φ

σ

φ σ

φ

σ

V1 V2

V3V4

(c)

Figure 12. Constructing a tensor network for the four-tensor discretization by an iterative pro-

cedure. (a) A discretization of the bulk into four regions by two intersecting Ryu-Takayanagi

surfaces, along with the corresponding dual graph. (b) The one-loop network for the boundary

partition A1 : A2 obtained from the minimally entangled purification of this partition. (c) The full

four-tensor network, obtained from (b) by distilling entanglement out of the bottom tensor W .

represent the bulk subregions in the discretization. We reproduce the one-loop network

in figure 12b with a relabeling of the tensors that is slightly more convenient for our

current purposes. This process of iteration is functionally almost identical to the inductive

procedure for constructing tree networks detailed in section 3.2.

The bulk state assigned to the “bottom half” of the one-loop network in figure 12b,

as defined in section 3, is the state comprised of the bulk tensor W along with the edge

states φ and σ that correspond to neighboring extremal surfaces. As in 3, this state can be

approximated by a tree tensor network in which the tensor W is replaced by an expression

of the form

WA3A4
A′

1A
′
2
≈ V A3

3 A′
2γf

V A4
4 A′

1γf
φγγσff , (6.1)

where φ is a maximally entangled state on a space of dimension eS
ε
max(A

′
1A4), and

Sεmax(A
′
1A4) is the smooth max-entropy of the bottom-half bulk state in the subregion

A′
1A4. The operators V3 and V4 are not themselves isometries. However, when combined

with the edge state φ and σ operators on the horizontal edges of the network, they become

exact isometries flowing outwards from the newly created vertical edge.

Such a network can always be constructed for any state by entanglement distillation;

however, the resulting network is only geometrically appropriate for the discretization given

in figure 12a if the smooth min- and max-entropies satisfy

Sεmax(A
′
1A4) =

Area(ΣA3:A4)

4GN
+O

(
1√
GN

)

and Sεmin(A
′
1A4) =

Area(ΣA3:A4)

4GN
+O

(
1√
GN

)
. (6.2)

Arguments given in section 2.3 would imply equations (6.2) if the tensor network state

for the bulk subregion represented by W has entropies given by the areas of extremal
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surfaces in the entanglement wedge of A3 ∪ A4. However, unlike the minimally entangled

purification, this state has not previously been conjectured to have this property. Neverthe-

less, such a conjecture is closely analogous to the conjectures used in section 5, and follows

intuitively from the surface-state conjecture [50]. The state defined by W and its neigh-

boring edge states is naturally associated to the “bottom half” bulk subregion, and so the

area of the extremal surface dividing A3 and A4 is unquestionably the “natural” geometric

quantity that would be associated to the smooth min- and max-entropies of this state.

If this is indeed the case, and the bulk tensor W can be distilled into a tree network

for the bottom half of the four-tensor discretization from figure 12a, then the resulting

expression is a tensor network for the four-tensor discretization whose bond dimensions

match the areas of extremal surfaces in the bulk. This completed network is sketched

in figure 12c. The only remaining question to ask is whether the boundary state of this

network accurately reproduces the original “target” CFT state.

Arguments given in section 5 imply that the one-loop network of figure 12b well ap-

proximates the original CFT state. Since the tree network for the bottom half state well

approximates the original bottom half state in the one-loop network of figure 12b, the

final network should still well approximate the boundary CFT state, so long as the er-

ror induced in the bottom half state from its approximation as a tree network doesn’t

dramatically increase in size when the rest of the network is added.

Of course, here we run into something of a problem. The extension map upwards from

the bottom half state is not an exact isometry. Indeed, as we discussed in section 5.2, it is

not even an approximate isometry in the sense of section 3.2; instead we proposed that it

should be called a “moral” isometry. We therefore will not have good control over the total

accumulated error between the state produced by the four-tensor network and the target

state. This is in contrast to the networks in section 3 (and section 5), where we could

precisely control the total error that could be accumulated, so long as the RT surfaces were

added in an appropriate order.

On the other hand, the edge states on the horizontal RT surface and the top half state

are both normalized quantum states. This means that the upwards flowing map preserves

the norm of the edge states on the horizontal RT surface, which are fully entangled. Hence

we can be relatively hopeful that a generic perturbation to the bottom half state will not

be dramatically blown up in size by the upwards flowing map, and the final state produced

by the network in figure 12c should approximately reproduce the original CFT state.

Another way of seeing that the four-tensor network should approximately reproduce

the correct boundary state is to compare the exact isometry W in figure 12b to the final

downwards-flowing extension map made up of tensors V3 and V4 and bottom-half edge

states |φ〉 and |σ〉 in figure 12c. For the sake of this argument, let the full downwards-

flowing extension map be denoted by B. Since the network in figure 12c was obtained from

the network in figure 12b by tree network distillation, B and W must have approximately

the same action on the reduced density matrices of the |φ〉 and |σ〉 states on the horizontal

RT surface, i.e.,

‖(B −W )φ1σ1φ2σ2‖2 ≪ 1. (6.3)
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The condition for the four-tensor network to approximately reproduce the original holo-

graphic state is for B and W to approximately agree on the full state for the top half of

the four-tensor network, i.e.,

‖(B −W )ρ
1/2
T ‖2 ≪ 1, (6.4)

where ρT is the truncated tensor network state for the top half of figures 12b and 12c.

These conditions are inequivalent, as we do not expect ρ
1/2
T to be a product state across

the two halves of the horizontal RT surface, because the upwards-flowing extension map is

only a moral isometry. However, our version of the holographic entanglement of purification

conjecture implies that the correlations between these two halves are subleading in GN in

the sense of the mutual information. Equation (6.3) can be interpreted as taking a weighted

average of (B−W ) over the product of the marginal distributions on each half of ρT , while

equation (6.4) can be interpreted as taking a weighted average over the joint distribution.

We expect that, barring unlikely disasters, equation (6.3), which follows from conjectures

given in section 5, should imply equation (6.4).

We will revisit the question of exact, approximate, and moral isometries in section 7.3,

where it is shown that any geometrically appropriate tensor network of the form shown in

figure 12c must have some moral isometries, as constructing such a tensor network with

stronger bulk-to-boundary isometry conditions is inconsistent with the dynamics of the

original CFT state on the boundary.

6.2 Arbitrarily fine discretizations

It is fairly easy to extend this construction to tensor networks on arbitrarily fine grid

discretizations of the bulk. To iterate the one-loop (now n-loop) network, a grid is chosen

like the one in figure 13, where the horizontal surfaces are extremal surfaces, and each

vertical segment is an extremal surface linking the horizontal RT surfaces on either of its

endpoints. The vertical surfaces are chosen via a “top-to-bottom” inductive procedure,

where the top point of each segment is fixed at the bottom of the previous segment, while

the bottom point is chosen to minimize the total area of the surface. In other words, each

vertical segment is the minimal surface connecting neighboring horizontal RT surfaces

subject to the constraint that it must continue the vertical segment above it.

To extend the one-loop iteration procedure to this discretization, we begin by con-

structing an n-to-one network for the top “row” of the grid, the bottom tensor of which is

then distilled into a grid network for the remainder of the bulk by induction. By assuming

that the bulk state represented by the bottom tensor satisfies the surface-state correspon-

dence, and hence the holographic entanglement of purification conjecture, this top-row

distillation procedure can be repeated until a network is produced for the entire grid. Note

that because the bulk spacetime is curved, the grid on which we discretize cannot have right

angles everywhere: in a negatively-curved spacetime, there cannot exist a quadrilateral,

bounded by geodesics, with each corner having an angle of π/2. The iterative procedure

for constructing a tensor network on this grid will generally produce vertical surfaces that

have kinks as they pass through each horizontal RT surface.
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(a) (b)

Figure 13. (a) A grid discretization for vacuum AdS3, for which one can find a tensor network by

iterating an “n-to-one” loop network from the top to the bottom of the grid. As explained in the

text, not all surfaces in this discretization will meet at right angles. If the network is constructed

“top-to-bottom”, then the bottom of each vertical segment will meet the corresponding horizontal

RT surface at a right angle. (b) The dual graph of this discretization, which forms the underlying

geometry for a holographic tensor network.

It is worth noting that this procedure can be used to generalize the n-to-one networks

of section 5 to higher-dimensional spacetimes. In section 5, the holographic entanglement

of purification conjecture was used to construct a tree tensor network for the entanglement

wedge of a boundary region that was partitioned as A1 : · · · : An. This tree tensor network

was then extended to the global spacetime by an isometry on the purifying space. Gen-

eralizing this procedure to higher dimensions requires constructing a tensor network for a

boundary partition that is a grid, not simply a one-dimensional chain. Such a partition can-

not be represented by a tree tensor network, and will generally require a grid network that

looks more like the one sketched in figure 13. Since we now know how to construct grid net-

works in 2+1 dimensions by iteration, however, we are able to construct n-to-one networks

in higher-dimensional spacetimes; one simply constructs the minimally entangled purifica-

tion for a “chain” partition A1 : · · · : An, then distills the other grid directions using the

iterative techniques explained above. By repeating this procedure inductively, it is possible

to construct a tensor network for a grid discretization in spacetimes of arbitrary dimension.

All our constructions in this section, as well as those in section 5, are built on the

holographic entanglement of purification conjecture, which itself has yet to be proven and

may not be exactly true as stated. Moreover, even if the holographic entanglement of

purification conjecture is itself valid, the various generalizations of it that we used in

this section could be one step too far. However, we believe that the second possibility

is considerably less likely than the first. All of our constructions follow from the same

basic guiding principle as the holographic entanglement of purification conjecture itself:

that there should exist a state associated to any convex bulk surface (the “surface-state

correspondence” [50]) and that by minimizing an entropy or a sum of entropies over all
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possible purifications of a reduced density matrix, we can obtain something close to the

state associated to the surface that minimizes the corresponding area or sum of areas.

Having completed our description of the details of our general construction, we offer two

final motivations for believing that it is the most natural way to construct a geometrically

appropriate tensor network, assuming one exists. The first is that radial flow in AdS/CFT

has long been understood to be a form of renormalization group flow for the boundary CFT

state. Since renormalization of a state is best understood as a process of disentangling and

removing redundant degrees of freedom [7, 8, 19], the radial flow of a boundary subregion

to a Ryu-Takayanagi surface should correspond to performing some position-dependent RG

flow on the boundary. Our procedure for constructing holographic tensor networks consists

of disentangling and discarding as many degrees of freedom as possible on a boundary

subregion without changing the reduced density matrix on the complementary subregion

of the boundary. If renormalization group flow is a philosophically correct approach to

describing the bulk in AdS/CFT, then our constructions should also be valid, with the

additional benefit that they have the potential to work at sub-AdS scales.

A second supporting motivation for our construction is that when we construct tensor

networks through entanglement minimization and distillation, the resulting networks have

bulk legs that are “as small as possible” while still approximately preserving the boundary

state. The usual Ryu-Takayanagi inequalities for tensor networks [7] imply that the bond

dimensions of a tensor network have lower bounds that are determined by the bulk geom-

etry. If any geometrically accurate tensor network exists for a given CFT boundary state,

then it should be found by a maximally efficient minimization procedure; we believe that

our minimization procedure is the most obvious one to consider.

7 Quantum geometry

In this section we consider the effects of quantum fluctuations of the spacetime geometry,

which we mentioned briefly in section 3.1 when discussing subleading entanglement in our

tensor networks. We first argue that these fluctuations are best understood as quantum su-

perpositions of tensor networks. We then point out the existence of a quantum uncertainty

relation between the areas of intersecting holographic entropy surfaces, whereby a very

precise measurement of the area of one such surface causes the area of the other surface to

grow dramatically in size. This poses some issues for the interpretation of tensor networks

whose underlying bulk discretizations contain intersecting Ryu-Takayanagi surfaces, such

as those constructed in section 6. We close the section by formalizing these issues in the

form of a no-go theorem that limits the isometry conditions that can be imposed on the

bulk-to-boundary maps of such networks.

7.1 Superpositions of tensor networks: sweeping away the “cobwebs”

In this paper, we have generally aimed to describe a holographic boundary state with a

single tensor network that was expected to capture the bulk geometry. In a full theory of

quantum gravity, however, the bulk geometry itself is expected to be quantum mechanical,

and therefore subject to quantum fluctuations around some semiclassical background. In
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section 3.1, we proposed that the necessity of including in our networks some subleading

edge states |σ〉, which are not maximally entangled, is intimately related to the existence

of these fluctuations. Specifically, we argued that the O(1/
√
GN ) log rank of these states

suggests that they correspond to fluctuations in the areas of extremal surfaces in AdS/CFT.

Another approach would be to have a single tensor network encode a single, non-

fluctuating bulk geometry. In this interpretation, a holographic boundary state should be

described not as a single tensor network that encodes the quantum fluctuations in the geom-

etry, but as a weighted quantum superposition of networks, each of which describes a (very

slightly different) non-fluctuating bulk geometry. The idea that fluctuations over different

geometries correspond to taking a quantum superposition of different tensor networks has

been previously discussed in [29, 30, 51, 52].

We can replace our single network with a superposition of tensor networks by reinter-

preting its subleading tensors. In section 3.1, we suggested that because of their relatively

small dimension, the σ-legs could be thought of as thin “cobwebs” adhering to the thick

“girders” of the main network of φ-legs.32 Instead of thinking of the cobwebs as part of

the tensor network, however, we can choose to interpret them as determining the weights

with which the many different “girder-only” networks are superposed against one another.

In doing so, one would eliminate the cobwebs associated with geometric fluctuations in

any single network, instead using them to weight a superposition of “fixed” geometries.

One major advantage of this approach, as we will see, is that the holographic state can be

described, with high accuracy, by a superposition of only O(1/
√
GN ) fixed-geometry tensor

networks; this is a huge improvement over the eO(1/
√
GN )-rank Hilbert space of fluctuations

that was necessary in section 3.1.

To be more precise, consider an edge state |σ〉 in a holographic tensor network. By

measuring this state in its Schmidt basis, we obtain a tensor network with no cobwebs

on the corresponding edge. If we measure all cobwebs in the network according to this

procedure, then the resulting network for any measurement outcome has no cobwebs on

any edge. To write the original holographic state in terms of these measured networks, we

need to use a superposition of the networks associated with every possible measurement

outcome, with each network weighted by the corresponding Schmidt coefficient in each

measured cobweb state |σ〉. Given the absence of the cobwebs that we associated with

fluctuations in geometry, one might reasonably suggest that each of these tensor network

corresponds to a fixed, non-fluctuating geometry. The original, holographic state can then

be written as a superposition of appropriately weighted geometries.

So far, this “superpositions” framework is merely a different way of interpreting the

tensor networks we already constructed in section 3. However, interpreting the full, semi-

classical tensor network as an ensemble of “girder-only” networks with slightly different

geometries suggests that we should allow the dimensions of the girders to vary for differ-

ent networks in the superposition. This can be accomplished with a slight adjustment to

the block-averaging procedure from section 3.1, in which we allow different blocks to have

32In such an approach it would be natural to represent long range entanglement of geometry fluctuations

using cobwebs that have legs extending nonlocally to many different girders.
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different widths. In fact, we will now show that for any fixed error ε, the “target” holo-

graphic state can be approximated to within tolerance ε by choosing the block widths to

be proportional to εeEO(
√
GN ), where E is the block-averaged eigenvalue of the modular

Hamiltonian K = − log ρ. This makes the total number of blocks, and hence the total

number of girder-only networks in the superposition, order O(1/
√
GN ).

To define a general block-averaging prescription, let n be an index that labels the

eigenvalues of K as in section 3.1, and let wn be the width of the block containing the nth

eigenvalue. If pn = e−E are the eigenvalues of the density matrix ρ, then the one-norm

error induced by replacing each pn with the average eigenvalue within its block is given by

ε =

∫
|pn − pεn| dn ≈ −1

4

∫
dpn
dn

wn dn, (7.1)

where we have approximated pn as being roughly linear within each block and approximated

the index n by a smooth function. To find the optimal block-averaging procedure for

representing ρ, we want to minimize the number of blocks — and hence the total number

of tensor networks that must be superposed to describe ρ — subject to the constraint of a

fixed error ε. The total number of blocks is given by

Nblocks =

∫
1

wn
dn, (7.2)

and so the function wn that minimizes the total number of blocks subject to the constraint

given by (7.1) satisfies
1

w2
n

=
λ

4

dpn
dn

, (7.3)

where λ is a Lagrange multiplier that does not depend on n. We may solve for the value

of λ by plugging this expression back into (7.1), yielding

√
−λ =

1

2ε

∫ √
−dpn

dn
dn. (7.4)

With respect to the smooth index n, the density of states is given by

D(E) =
dn

dE
, (7.5)

and so the eigenvalues pn = −e−E of the density matrix satisfy

dpn
dn

= − e−E

D(E)
. (7.6)

It follows from (7.4), then, that the Lagrange multiplier λ is given by

√
−λ =

1

2ε

∫ √
D(E)e−E dE. (7.7)

Using expression (7.3) for the optimal block widths wn, we find that the optimal number

of blocks is given by

Nblocks =

∫
1

wn
dn =

1

4ε

[∫ √
D(E)e−E dE

]2
. (7.8)
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In section 2.3, we argued that the spectrum of K is tightly constrained around the

leading saddle point in D(E)e−E . Near this saddle point, the function can be approximated

by a normalized Gaussian of width O(1/
√
GN ), i.e.,

D(E)e−E = O(
√
GN )e

−O(GN )(E−S)2 . (7.9)

The optimal number of blocks (7.8) may therefore be computed as

Nblocks =
1

ε

1

O(
√
GN )

, (7.10)

as we claimed above. The optimal block widths, wn, satisfy

wn =
2√
−λ

√
− dn

dpn
= εO(G

1/4
N )

√
D(E)eE . (7.11)

Near the saddle point, the variation in the right hand side of (7.9) is subleading and so we

have

D(E) ≈ O(
√
GN )e

E . (7.12)

It follows that the block widths in the optimal block-averaging procedure are proportional

to eE . Assuming that the modular energy E has a holographic interpretation as A/4GN ,

where A is the area of the minimal surface, this is the right size for the tensor network

geometry to match the semiclassical geometry of the holographic state.

Unlike our construction in section 3, however, the optimal block-averaging procedure

represents the semiclassical holographic geometry as a superposition of O(1/
√
GN ) rather

than eO(1/
√
GN ) “fixed-geometry” networks. We take this as a suggestion that the super-

position framework, in which one allows the different tensor networks in the ensemble to

have slightly different “fixed” geometries, is a more efficient and informative description of

the holographic state.

In this superposition framework, it is natural to interpret a single tensor network

in the superposition as corresponding to an (approximate) eigenstate of the bulk area

operator [29, 30, 53, 54]. If the usual bulk state generated by a path integral corresponds

to a canonical ensemble of the area operator, then the state of a single tensor network

corresponds to a microcanonical ensemble which takes values over a tiny range of areas.33

This interpretation is compelling because it makes the flat entanglement spectrum of many

tensor network models (in which all Rényi entropies are equal) into a feature rather than

a bug. In a single tensor network, the Rényi entropy is flat; to get a state with a non-flat

spectrum, one must take superpositions of different geometries.

7.2 Uncertainty relations for intersecting Ryu-Takayanagi surfaces

Having said all this, we will now identify a serious issue with the approach of [29, 30].

Namely, area-eigenvalue states with a flat or nearly-flat entanglement spectrum do not

33We do not expect that the area spectrum will contain large exact degeneracies, but because of the ǫ-

smoothing, we can approximate an area spectrum with exponentially small gaps with a degenerate spectrum.
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correspond to a bulk geometry that is similar to the original state. As a result, it is not

possible to construct geometrically appropriate tensor networks that are in a microcanonical

area ensemble for multiple directions simultaneously.

The problem is that in general relativity, the area and boost angle are canonically

conjugate quantities obeying a Heisenberg uncertainty relation [55, 56]:

∆E∆t ≥ 1

2
, (7.13)

where the modular Hamiltonian is E = area/4GN + O(1) [57] and the conjugate time t

is the boost angle (in hyperbolic radians). Obtaining a flat entanglement spectrum in a

holographic state requires constraining ∆E to a small, O(1) number, and hence measuring

the area of the corresponding surface to within a tolerance of O(GN ).

Since a single bin in our construction measures E to an accuracy of O(ǫ), (7.13) implies

that the uncertainty in the corresponding boost angle is O(1/ǫ). This is quite large, and in

fact it is large enough to take us out of the validity of the static slice regime. In particular,

introducing a large crease of extrinsic curvature at the horizontal Ryu-Takayanagi surface

of figure 12c will make it so that the area of the vertical HRT surface (which follows a

spacetime geodesic and therefore no longer lies on the creased slice) will have a significantly

greater area than the minimal surface on the original static slice, as shown in figure 14.34

Since this is true for either sign of the boost angle, the expectation value of the area given

an uncertain boost is also larger.

This uncertainty principle implies that if we start by distilling information on the

horizontal surface, consider just one term of the resulting superposition, and then attempt

a “vertical” distillation, then the leading O(1/GN ) part of the vertical entropies will be

larger than on the original static slice. In other words, it will not be possible to construct

a geometrically appropriate tensor network for a single term of the superposition.35 This

problem is related to the issues for dynamical tensor networks that we discuss in section 8.4.

7.3 A no-go theorem for the four-tensor network

The uncertainty relationship discussed in the previous section shows that we cannot simul-

taneously measure the areas of horizontal and vertical Ryu-Takayanagi surfaces with high

accuracy. This might make one wonder whether it is really possible, in a single tensor net-

work, to localize information on both the vertical and horizontal Ryu-Takayanagi surfaces

simultaneously, as required for our iterative constructions in 6 to be geometrically accurate.

In this section, we will prove that there is indeed such an obstruction preventing

the construction of certain kinds of geometrically accurate tensor networks with crossing

Ryu-Takayanagi surfaces, even in the simplest case of a four-tensor network (section 6.1).

However, our no-go theorem is only valid for tensor networks having approximate isometry

34In evaluating the entropy of the HRT surface, it is helpful to use a boost-invariant UV cutoff surface,

so that the area of surfaces on the slice is independent of the boost angle.
35In the exact AdS/CFT bulk state, this spuriously large entropy must disappear when we take all terms

in the superposition, due to destructive interference. However, it can be difficult to keep approximations

under control when there is destructive interference among a large number of terms, since small errors can

accumulate and leave a substantial remainder.

– 47 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

Figure 14. A spacelike slice of vacuum AdS3 formed by boosting one half of the t = 0 static

slice. This boost introduces a nontrivial extrinsic curvature at the dashed line in the surface. The

original RT surface for a particular boundary region on the t = 0 slice, sketched by a purple line, is

no longer the entangling surface for the corresponding boundary region in the half-boosted state.

Instead, one must consider the HRT surface, sketched in blue, which has strictly larger area.

properties that are stronger than those of our actual network. Thus, we can optimistically

hope that our tensor network constructions are still valid.36

When constructing sub-AdS scale tensor networks in sections 5 and 6, we found that the

bulk-to-boundary “extension maps” associated with a particular network were not generally

exact isometries. In the n-to-one loop networks of section 5, at least the “downward-

flowing” map could be shown to be an exact isometry — or, depending on the order in which

the “top-half” RT surfaces were distilled in constructing a tree network for the MEP, at

least an approximate isometry in the sense of equation (3.25). In the full sub-AdS network

of section 6, however, we found that the bulk-to-boundary maps in our network could not

generally be proven to be exact or approximate isometries, and were in fact only “morally”

isometric in the sense that they preserved the normalization of the state and preserved the

entanglement entropy to leading order. The non-exactness of these isometries stands in

contrast to the holographic tensor network toy models of AdS/CFT introduced in [9].

In this section, we prove that geometrically appropriate tensor networks for generic

bulk discretizations of static states in AdS/CFT cannot, in fact, have bulk-to-boundary

extension maps which are all exact or even approximate isometries. We formalize this for

the four-tensor network for vacuum AdS3 of section 6 in the following theorem:

36If not, then we believe the construction in 5, where we localize information on a single Ryu-Takayanagi

surface, will still be valid.
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Theorem 1. No four-tensor network of the form shown in figure 12c can simultaneously

satisfy the following four properties:

(i) Each leading edge state |φ〉 is maximally entangled on a Hilbert space of dimension

eS±o(S), where S is proportional to the area of the corresponding bulk surface, satis-

fying

S =
area

4GN
+ o

(
1

GN

)
. (7.14)

(ii) Each subleading edge state |σ〉 is submaximally entangled on a Hilbert space of di-

mension eo(S).

(iii) The four extension maps that map either side of either RT surface to the boundary

are all approximate isometries in the sense that

V †V ≈ 1 (7.15)

for any such map V , where this approximation means that V †V is close to the identity

in the operator norm.

(iv) The boundary state of the tensor network approximately reproduces the boundary state

of the AdS3 vacuum with high fidelity.

Suppose that the four-tensor network shown in figure 12c does satisfy all conditions

given in Theorem 1. We denote the “upwards-pointing” extension map from the horizontal

RT surface as T , and the “downwards-pointing” map as B. In other words, if we were to

collapse all the tensors in the top and bottom halves of figure 12c, excluding the tensors

on the horizontal RT surface itself, then the resulting tensor network would have only T

as its top-half tensor and B as its bottom-half tensor (sketched in figure 15a). We denote

the actual CFT state as |ψCFT〉, and the tensor network state as |ψTN〉. Assumption (iv)

of Theorem 1 ensures

|ψCFT〉 ≈ |ψTN〉. (7.16)

From the form of the tensor network shown in figure 15a, we see that |ψTN〉 has the form

|ψTN〉 = (T ⊗B)|φσ〉, (7.17)

where |φσ〉 represents the combined pure state of all edge states |φ〉 and |σ〉 on the horizontal

RT surface.

Let KCFT
B be the modular Hamiltonian of the bottom-half boundary state ψCFT

A3A4
, and

eiK
CFT
B the corresponding boost operator. Since this operator is unitary, we have

eiK
CFT
B |ψCFT〉 ≈ eiK

CFT
B |ψTN〉. (7.18)

Since the reduced state of the tensor network on A3A4 approximately reproduces the

reduced state of the CFT on the same region, their modular Hamiltonians approximately
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A1 A2

A3A4

φ σ φσ

T

B

(a)

A1 A2

A3A4

φ σ

φ

σ

φσ

φ

σ

V1 V2

V3V4

eiKσ

ζ

(b)

Figure 15. Figures to accompany the no-go theorem for the four-tensor network. (a) The extension

maps for the top and bottom halves of the horizontal RT surfaces are drawn explicitly as tensors

T and B. (b) The boost operator on the “bottom half” of the boundary, A3A4, can be represented

on the tensor network by a unitary operator eiKσ that acts only on the subleading edge states |σ〉.
The graph cut ζ, sketched here, has dimension given to leading order by the combined size of the

|φ〉 Hilbert spaces on the vertical RT surface.

agree.37 It follows that the action of the modular Hamiltonian on the CFT state can be

represented in the tensor network as

eiK
CFT
B |ψCFT〉 ≈ eiK

TN
B |ψTN〉, (7.19)

where KTN
B is the modular Hamiltonian of the bottom-half boundary state ψCFT

A3A4
in the

tensor network.

We see immediately from the form of the tensor network state given in equation (7.17)

that this modular Hamiltonian takes the explicit form

KTN
B = − logψTN

A3A4
= − log TrA1A2(TBφσB†T †). (7.20)

Condition (iii) of Theorem 1 ensures that T †T is close to the identity, ensuring that the

partial trace over A1A2 in the above expression can be replaced by a partial trace over

the domain of T , which we call Hf ⊗ Hγ . Here, as in section 3, Hf corresponds to the

subleading states |σ〉 while Hγ corresponds to the maximally entangled states |φ〉. The
modular Hamiltonian of the reduced tensor network state on A3A4 therefore satisfies

KTN
B ≈ −B(log Trfγ φσ)B

†. (7.21)

37The modular Hamiltonians may not actually be close in the sense of the operator norm; however, their

action on the global states |ψTN〉 and |ψCFT〉 are approximately the same.
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In other words, the modular Hamiltonian of the tensor network on the bottom-half bound-

ary region A3A4 can be approximately represented by

KTN
B ≈ BKφσB

†, (7.22)

where Kφσ is the modular Hamiltonian of the reduced RT surface-state Trfγ φσ.

Since the edge states |φ〉 are maximally entangled, their modular Hamiltonian when

restricted to either side of the RT surface is simply a multiple of the identity. This con-

tributes only a normalization factor to the overall network. We therefore write the modular

Hamiltonian of the tensor network on A3A4 as

KTN
B ≈ BKσB

†, (7.23)

up to an additive constant coming from the normalization, which we ignore. Here Kσ is an

operator that acts only on the subleading boundary states |σ〉, and only acts on one side

of the RT surface (in this case, the bottom half).

Returning to the tensor network expression for the modular flow of the CFT given in

equation (7.19), we see that the boost operator on the bottom half of the boundary CFT

state can be represented on the tensor network as

eiK
CFT
B |ψCFT〉 ≈ BeiKσB†|ψTN〉. (7.24)

From the expression for the tensor network state given in (7.17), we may rewrite this

expression as

eiK
CFT
B |ψCFT〉 ≈ (T ⊗B)eiKσ |φσ〉, (7.25)

where we have used condition (iii) of Theorem 1 to ensure that B†B is close to the identity.

This final tensor network representation for the boosted CFT state is sketched in figure 15b.

Equation (7.25) essentially tells us that the modular flow of the CFT on the boundary

region A3A4 can be represented by a unitary operator that acts only on the subleading

states |σ〉 on the horizontal RT surface. This conclusion, however, contradicts assumptions

(i) and (ii) of Theorem 1, which restrict the bond dimensions of the network. To see this

contradiction, consider the entanglement entropy of the boundary region A2A3 in the CFT

state eiK
CFT
B |ψCFT〉. In the bulk, this operator acts as a boost on the entanglement wedge

of A2A3. In vacuum AdS3, it is easy to show that the entangling surface of A2A3 in the

boosted state has greater area in the boosted state than in the unboosted state. By the

HRT formula [4], it follows that the entanglement entropy of A2A3 in the boosted state

must be greater than the corresponding entropy in the unboosted state at leading order,

i.e., S(A2A3) > area(vert)/4GN , where area(vert) represents the area of the vertical RT

surface (see figure 14).

However, this is in direct contradiction a bound derived by Swingle in [7]! There it was

shown that the entanglement entropy of a boundary subregion A in any tensor network is

bounded above by log dim ζ for any graph cut ζ that partitions A from its complement.

From the tensor network representation of the boosted state given in equation (7.25) and
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A1 A2

A3A4

φ σ

φ

φ

φ

T1 T2

B2B1

Figure 16. A four-tensor network with explicit entanglement between the right and left sides of

the horizontal RT surface, where all four tensors share a common cobweb state. Adding subleading

entanglement like this cannot be used to subvert our no-go theorem.

the graph cut sketched in figure 15b, conditions (i) and (ii) of Theorem 1 imply that the

entanglement entropy of A2A3 in the boosted state satisfies

S(A2A3) ≤
area(vert)

4GN
(7.26)

to leading order in GN . The bound given in (7.26) clearly contradicts the HRT formula for

the boosted state.

We conclude that no geometrically appropriate four-tensor network can be constructed

for the AdS3 vacuum with approximate isometries from each RT surface to the boundary.

This provides partial justification for our relatively weak isometry conditions: both the

state-dependent approximate isometry condition of section 3 and, in particular, the “moral”

isometries of sections 5 and 6. While one might initially think that stronger isometry

conditions should be possible in a tensor network construction of a holographic state, it

turns out that such conditions are incompatible with the dynamics of AdS/CFT. The

geometrically appropriate four-tensor network constructed in section 6 avoids our no-go

theorem precisely because some of its extension maps are only moral isometries.38

Note that while our proof of the no-go theorem required the existence of a subleading

state on the horizontal RT surface to absorb the action of the modular Hamiltonian, it did

not necessarily require that the subleading states take the exact form shown in figure 12c.

In fact, the same proof would apply for many different kinds of cobweb entanglement (using

the terminology of section 7.1, where we referred to maximally entangled states as “girders”

and subleading states as “cobwebs”), so long as the cobweb states are able to absorb the

modular Hamiltonian on the horizontal RT surface and do not interfere with the size of

the girders. In particular, one could consider a four-tensor network with a generic cobweb

state that is entangled among all four quadrants of the network, sketched in figure 16.

Such a tensor network still satisfies all the necessary conditions of our no-go theorem, and

38A more pessimistic interpretation would be that either the entropy of purification conjecture, or one of

the additional conjectures that we made in section 6, fails to hold in the form necessary for the constructions

in section 6 to go through.
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so cannot have approximate bulk-to-boundary isometries while accurately reproducing the

dynamics of the boundary CFT state.

8 Discussion

In this article, we have given a constructive procedure for distilling the spatial geometry of a

static spacetime from the quantum entanglement of a boundary CFT, including structure

at sub-AdS scales. We described a general procedure for constructing large-scale “tree

tensor networks” (section 3), explained how the holographic entanglement of purification

conjecture could be used to partition the information on a single Ryu-Takayanagi surface

below the AdS scale (section 5), and proposed an iterative approach for constructing a

sub-AdS tensor network by distilling the geometry incrementally (section 6). We showed

that tree tensor networks are always quantum error correcting in the appropriate sense

(section 4), and suggested that our more general, sub-AdS constructions should have similar

properties. We also proved an important no-go theorem (section 7) showing that the bulk-

to-boundary maps of any geometrically appropriate tensor network for AdS/CFT cannot

be exact or approximate isometries in the usual sense.

While our constructive procedures can always be performed so long as the smooth min-

and max-entropies of various surface subregions agree at leading order, our holographic con-

jectures ensure that the resulting tensor network geometry also matches the geometry of

the corresponding AdS/CFT state in the sense that the Hilbert space dimensions of its

legs match the areas of corresponding spacetime surfaces. This constitutes significant data

about the spacetime geometry, in the sense that a sufficiently large set of bulk area observ-

ables can be used to reconstruct the metric, as has been shown explicitly in four spacetime

dimensions [58] and likely holds more generally. Furthermore, our holographic conjectures

ensure that any two choices of iterative construction for a single bulk discretization should

produce tensor networks that differ only at subleading orders in 1/GN ; in the limit as the

discretization scale is taken arbitrarily small, any two tensor networks corresponding to dif-

ferent discretization schemes should converge up to subleading corrections. So if our conjec-

tures hold, then for the first time we have used tensor networks to obtain the “it” of continu-

ous spatial geometry from the “qubit” of quantum entanglement for states in full AdS/CFT.

In fact, our dictionary for constructing a tensor network uses only quantum infor-

mation properties of the boundary state. This implies that, if we regulate the CFT on

a lattice, acting on any lattice points with local unitaries does not change the resulting

bulk geometry. This raises some philosophical puzzles given that entanglement is not a

linear quantum observable and therefore cannot be measured by a normal quantum ob-

servation [59]. These puzzles may be related to the AMPS firewalls paradox [60–63] and

claims that the construction of geometry is necessarily state-dependent [64, 65], but in this

article we make no claims about which geometrical features are truly measurable.

8.1 Entanglement shadows

In describing our constructions, we usually had in mind either the vacuum state or small

perturbations around it. As a result, we have mostly ignored some subtleties than can
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appear in more complicated states. However, we anticipate that our results can be extended

to essentially arbitrary spacetimes. In particular, it should be possible to use our results

to probe the geometry of the so-called “entanglement shadow,” i.e., a bulk region that

cannot be probed by normal Ryu-Takayanagi surfaces [66–69]. Such entanglement shadow

regions appear, for example, in the region surrounding a massive star or black hole. We can

probe such regions using our iterative construction in section 6, beginning by dividing RT

surfaces that pass just outside the entanglement shadow into pieces using the holographic

entanglement of purification. By iteratively constructing new surfaces anchored to these

RT surfaces, it is clear that we can get farther into the bulk than we could get by starting

on the boundary.39

This raises the question of how deep into a general bulk we can probe. It is particularly

interesting to ask this question in the context of wormholes extended between multiple

asymptotic CFT regions [49, 71–73]. Because our construction relies on taking consecutive

bipartite divisions of the system, our construction always requires starting with the full

entangled state of all the asymptotic CFT regions. We can then easily construct a Hilbert

space representing the compact RT surface of an entire connected boundary component.

It is not clear, however, that there will always be nontrivial entanglement wedge cross-

sections extending to the global RT surface, because it may be the case that the minimal

cross-section of the entanglement wedge will close off on the boundary rather than traveling

down the wormhole throat.

In light of the above reflections, we believe that the only possible obstruction to con-

tinuing deeper into the bulk using our iterative procedure would be a locally minimal area

surface Σ for an entire connected component of the boundary with the property that for

any bipartite division of Σ = Σ1 ∪ Σ2, the minimal area surface separating Σ1 and Σ2 is

always whichever of Σ1 or Σ2 has the least area. Such a surface Σ would be analogous to

a Haar-random pure state, for which the entanglement entropy of any bipartite division

scales as the volume of the smaller subsystem. Even in these cases, however, one might

sometimes be able to go deeper if there exists a nontrivial entanglement wedge cross-section

from Σ to the true global minimum. It would be interesting to confirm this intuition using

geometrical proofs similar to [68].

8.2 Bit threads

Another potential avenue for future work is the apparent connection between our construc-

tion and the bit-thread formalism for holographic entanglement [24]. Bit threads describe

boundary entanglement in terms of smooth flows on the bulk geometry, with intuition

inherited from the machinery of maximal flows on discrete graphs. In some sense, then,

the bit thread formalism is inspired by the notion of discretizing the bulk geometry of a

holographic state; discretizing the bulk geometry of a holographic state while preserving its

entanglement structure is exactly what we have done in this paper by constructing tensor

networks for AdS/CFT. Since our construction is largely based on the Ryu-Takayanagi for-

39For a similar discussion of how entanglement shadows can be probed by extremal surfaces anchored to

points in the bulk, see [70].
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mula and its generalizations, and bit threads interpretations of holographic entanglement

are formally equivalent to RT, our work could be reframed in the language of bit threads.

The bit threads formalism suffers from the fact that known holographic entropy in-

equalities [74, 75] seem generally more difficult to prove in the language of bit threads than

in the usual Ryu-Takayanagi picture [76, 77]. It is possible, however, that the bit thread

formalism is more useful than the Ryu-Takayanagi formula for describing localization of

boundary entanglement to small “cells” of the bulk. Many times in this work, especially in

section 3.2, we have appealed to notions of “information flow” toward or away from bulk

subregions to describe our construction intuitively. This notion is best expressed in the

language of bit threads, and one might expect that reframing our work in the bit thread

formalism could yield new insight into the information content of bulk subregions in tensor

networks with sub-AdS locality. In particular, one might ask the following: what happens

when one tries to define a spacetime flow that maximizes the flow through a single bulk

subregion in our tensor network construction, or a combination of bulk subregions? Does

this maximal bulk flow have a natural interpretation in terms of boundary information?

Flows of this type were recently discussed in [78]. We leave further analysis of this question

for future work.

8.3 Fiber directions

An important aspect of the holographic bulk that cannot be decomposed in our construction

is the geometry of the Kaluza-Klein fiber directions. For example, the ABJMmodel vacuum

is dual to AdS4×S7 [79], while theN = 4 Super Yang-Mills vacuum is dual to AdS5×S5 [1].

In such states, we cannot possibly use entropy of purification to subdivide the Sn factor

into smaller pieces, because spherical symmetry implies that all entanglement cross-sections

will be symmetrical.40 In our construction, these fiber directions simply go along for the

ride, without being subdivided, even though their radius of curvature is of the same order

as that of the AdS factor, which we do subdivide.41

Note that, as in all theories with large extra dimensions, the 10 or 11 dimensional

Planck length will be parametrically larger than the effective Planck scale of the Kaluza-

Klein reduced theory on AdS. This raises the question of whether ignoring the fiber direc-

tions might actually allow us to subdivide the AdS factor at a finer scale than we could

if we were also subdividing the sphere. After all, our construction depends on the Hilbert

space dimension being large, and including all the modes of the sphere makes the Hilbert

space larger than it would be otherwise. It seems likely that higher-curvature/stringy cor-

rections to the Ryu-Takayanagi formula would prevent this from working, but this subject

bears further investigation.

40Interestingly, it might be possible to do better in excited geometries which are not spherically symmetric.
41See [80, 81] for a possible idea for how to understand the fiber directions in terms of entanglement

between different field degrees of freedom. If this idea is correct it would be interesting to combine it with

our construction to obtain a discretization of the full space.
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8.4 Dynamics

Another important unanswered question is how to extend our construction to dynamical

settings. The main inhibition to extending the construction to holographic states with

dynamical bulk spacetimes is that while boundary entropies are still given by the areas of

extremal surfaces in the bulk, those extremal surfaces can generally not all be chosen to lie

in a single spacelike bulk slice [4]. In a static spacetime with Killing time parameter t, by

contrast, all Ryu-Takayanagi surfaces of the t = 0 boundary slice can be made to lie in the

t = 0 slice of the bulk. Such a proposal would presumably require either (i) discretizing time

to produce a d-dimensional tensor network for a d-dimensional spacetime [52, 82], or else (ii)

constructing different tensor networks for different Cauchy slices of the bulk [83], which nev-

ertheless give rise to the same boundary state. In the latter case, it is tempting to identify

the gauge equivalence of tensor networks with the Hamiltonian constraint of the continuum

bulk general relativity, since both involve an equivalence of states at different times.

Unfortunately, it is impossible for tensor networks on dynamical Cauchy slices to be

geometrically appropriate in the same sense as on static slices. Let us consider any bound-

ary region R, and attempt to construct a tensor network on a Cauchy slice Σ which

does not include the HRT surface XR. By the maximin construction [84], the mini-

mal area cut γ always has less area than the HRT surface: area(γ) < area(XR) (for

an example, see figure 14). On the other hand, the Swingle bound [7] requires that

area(γR) ≥ S(R) = area(XR). This is a contradiction, unless we allow the log of the

bond dimension to exceed the area even at leading order.

Perhaps, then, dynamical tensor networks are described by tensor networks that in-

clude long, nonlocal links connecting different parts of the network, which carry O(1/GN )

amounts of information. Presumably we could still construct a tensor network by our

minimization procedures. But for a general boundary slice, only a single family of non-

intersecting HRT surfaces could be simultaneously placed on the same Cauchy slice and

represented by edges with geometrically appropriate bond dimensions. The other directions

would have to have information flow exceeding their area.

It may still be possible to construct such tensor networks in a compelling way by using

the modular flow techniques of [85, 86]. In this picture, when two flat slices meet at an HRT

surface with a nonzero boost angle, there is a nonlocal exchange of information along the

RT surface due to the modular flow associated with the boost. (Otherwise, the maximin

principle would be violated.) This clarifies that, although our construction localizes the

information of the RT surface at sub-AdS scales, this localization must be understood as

only being valid in a particular Lorentz frame of reference.

On the other hand, since the modular flow relates the dynamical and static cases, the

dynamical problems posed by the Swingle bound are to some degree already present in the

static case. This observation led to our no-go theorem in section 7.3, which shows that

geometrically appropriate tensor networks for the AdS/CFT correspondence cannot gener-

ally be expected to have approximate bulk-to-boundary isometries when Ryu-Takayanagi

surfaces intersect in the bulk.

– 56 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

8.5 Geometry from entanglement

The fact that our distillation procedure depends only on the entanglement structure of the

state suggests that it may be more broadly applicable to other kinds of entangled states,

perhaps e.g. those that are hypothesized to live on so-called holographic screens [87, 88] in

cosmology. Given a quantum state on a lattice, one need only check that its smooth min-

and max-entropies of purification have favorable properties; if so, it will project a holo-

graphic state onto its interior. The surface-state conjecture implies that the quadrilaterals

of our tensor network grid (see e.g. figure 13a) have suitable holographic states living on

their boundaries. In principle, we could use our construction to determine these boundary

states explicitly.

We do not expect our quadrilaterals to be associated with “perfect tensors” [9], since

cutting a quadrilateral along the diagonal results in a surface with less area than the two

other sides of the triangle, allowing a nontrivial distillation to be performed along the

diagonal. But we do expect that there will be an approximate isometry (in the sense of

section 3.2) mapping any one of the edges to the other three edges. In general, it will be

important to prove as many isometry-like relations as possible (subject to the constraints

of our no-go theorem), both for the purposes of quantum error correction and to determine

how sensitive the tensor network is to the precise order in which distillations are performed.

This article goes in the direction of starting with a boundary state and analyzing what

the holographic tensor network must be. A complementary approach would be to start

with the tensors associated with different kinds of geometries, and then synthesize them

back together into an arbitrary geometry. In doing so it would be important to check that

all expected isometries continue to hold. It would also be critical to show that, to high

accuracy, the tensor network associated with a geometrical region does not significantly

depend on either its external spatial context, or the methodology used to construct it.

If this can be done, then the holographic principle would finally be freed from the

straitjacket of asymptotically AdS boundary conditions. It could be applied equally well

to universes with other asymptotic structures, or even to closed cosmologies! In the latter

case, the tensor network could be evaluated to give some complex number for each possible

choice of spatial geometry. Such a “tensor network partition function” would in effect

define a special cosmological state over the space of 3-metrics. It would be interesting to

determine what relationship this special state might have to other proposals for special

initial conditions, e.g. the Hartle-Hawking state.
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Institute of Technology, and the Kavli Institute for Theoretical Physics (supported in part

by NSF grant PHY-1748958) for hospitality at key stages of this project. NB is supported

by the National Science Foundation under grant number 82248-13067-44-PHPXH and by

the Department of Energy under grant number DE-SC0019380. He would also like to thank

the SITP for hospitality while part of this work was completed. The opinions expressed

are those of the authors and do not necessarily reflect the views of funding agencies.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[2] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[3] S. Ryu and T. Takayanagi, Aspects of holographic entanglement entropy,

JHEP 08 (2006) 045 [hep-th/0605073] [INSPIRE].

[4] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[5] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[6] X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement,

JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].

[7] B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007

[arXiv:0905.1317] [INSPIRE].

[8] B. Swingle, Constructing holographic spacetimes using entanglement renormalization,

arXiv:1209.3304 [INSPIRE].

[9] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting

codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149

[arXiv:1503.06237] [INSPIRE].

[10] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality

from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].

[11] A.J. Ferris and D. Poulin, Tensor networks and quantum error correction,

Phys. Rev. Lett. 113 (2014) 030501 [arXiv:1312.4578].

[12] T. Kohler and T. Cubitt, Toy models of holographic duality between local Hamiltonians,

JHEP 08 (2019) 017 [arXiv:1810.08992] [INSPIRE].

[13] A. Almheiri, X. Dong and D. Harlow, Bulk locality and quantum error correction in

AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].

– 58 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
https://doi.org/10.1088/1126-6708/2006/08/045
https://arxiv.org/abs/hep-th/0605073
https://inspirehep.net/search?p=find+EPRINT+hep-th/0605073
https://doi.org/10.1088/1126-6708/2007/07/062
https://arxiv.org/abs/0705.0016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
https://doi.org/10.1007/JHEP08(2013)090
https://arxiv.org/abs/1304.4926
https://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
https://doi.org/10.1007/JHEP11(2016)028
https://arxiv.org/abs/1607.07506
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.07506
https://doi.org/10.1103/PhysRevD.86.065007
https://arxiv.org/abs/0905.1317
https://inspirehep.net/search?p=find+EPRINT+arXiv:0905.1317
https://arxiv.org/abs/1209.3304
https://inspirehep.net/search?p=find+EPRINT+arXiv:1209.3304
https://doi.org/10.1007/JHEP06(2015)149
https://arxiv.org/abs/1503.06237
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.06237
https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01694
https://doi.org/10.1103/physrevlett.113.030501
https://arxiv.org/abs/1312.4578
https://doi.org/10.1007/JHEP08(2019)017
https://arxiv.org/abs/1810.08992
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.08992
https://doi.org/10.1007/JHEP04(2015)163
https://arxiv.org/abs/1411.7041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7041


J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

[14] Z. Yang, P. Hayden and X.-L. Qi, Bidirectional holographic codes and sub-AdS locality,

JHEP 01 (2016) 175 [arXiv:1510.03784] [INSPIRE].

[15] T. Takayanagi and K. Umemoto, Entanglement of purification through holographic duality,

Nature Phys. 14 (2018) 573 [arXiv:1708.09393] [INSPIRE].

[16] P. Nguyen, T. Devakul, M.G. Halbasch, M.P. Zaletel and B. Swingle, Entanglement of

purification: from spin chains to holography, JHEP 01 (2018) 098 [arXiv:1709.07424]

[INSPIRE].
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[29] C. Akers and P. Rath, Holographic Rényi entropy from quantum error correction,

JHEP 05 (2019) 052 [arXiv:1811.05171] [INSPIRE].

[30] X. Dong, D. Harlow and D. Marolf, Flat entanglement spectra in fixed-area states of quantum

gravity, JHEP 10 (2019) 240 [arXiv:1811.05382] [INSPIRE].

[31] C. Fuchs and J. van de Graaf, Cryptographic distinguishability measures for

quantum-mechanical states, IEEE Trans. Inform. Theory 45 (1999) 1216

[quant-ph/9712042].

[32] G.C. Dorsch, S.J. Huber, T. Konstandin and J.M. No, A second Higgs doublet in the early

universe: baryogenesis and gravitational waves, JCAP 05 (2017) 052 [arXiv:1611.05874]

[INSPIRE].

– 59 –

https://doi.org/10.1007/JHEP01(2016)175
https://arxiv.org/abs/1510.03784
https://inspirehep.net/search?p=find+EPRINT+arXiv:1510.03784
https://doi.org/10.1038/s41567-018-0075-2
https://arxiv.org/abs/1708.09393
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.09393
https://doi.org/10.1007/JHEP01(2018)098
https://arxiv.org/abs/1709.07424
https://inspirehep.net/search?p=find+EPRINT+arXiv:1709.07424
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.06788
https://doi.org/10.1103/PhysRevLett.99.220405
https://arxiv.org/abs/cond-mat/0512165
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,99,220405%22
https://doi.org/10.1080/14789940801912366
https://arxiv.org/abs/0907.2796
https://arxiv.org/abs/cond-mat/0407066
https://doi.org/10.1007/JHEP11(2013)074
https://arxiv.org/abs/1307.2892
https://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2892
https://doi.org/10.1007/JHEP01(2015)073
https://arxiv.org/abs/1408.3203
https://inspirehep.net/search?p=find+EPRINT+arXiv:1408.3203
https://doi.org/10.1007/s00220-016-2796-3
https://arxiv.org/abs/1604.00354
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.00354
https://doi.org/10.1103/physreva.67.012326
https://arxiv.org/abs/quant-ph/0204092
https://doi.org/10.1007/JHEP06(2015)157
https://arxiv.org/abs/1410.1540
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.1540
https://doi.org/10.1103/PhysRevLett.122.190501
https://arxiv.org/abs/1809.10156
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.10156
https://doi.org/10.1103/PhysRevD.82.126010
https://arxiv.org/abs/1006.0047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
https://doi.org/10.1007/JHEP05(2019)052
https://arxiv.org/abs/1811.05171
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05171
https://doi.org/10.1007/JHEP10(2019)240
https://arxiv.org/abs/1811.05382
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.05382
https://doi.org/10.1109/18.761271
https://arxiv.org/abs/quant-ph/9712042
https://doi.org/10.1088/1475-7516/2017/05/052
https://arxiv.org/abs/1611.05874
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.05874


J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

[33] D. Harlow, The Ryu-Takayanagi formula from quantum error correction,

Commun. Math. Phys. 354 (2017) 865 [arXiv:1607.03901] [INSPIRE].

[34] Y.Y. Shi, L.M. Duan and G. Vidal, Classical simulation of quantum many-body systems with

a tree tensor network, Phys. Rev. A 74 (2006) 022320 [quant-ph/0511070] [INSPIRE].

[35] L. Drescher and O. Fawzi, On simultaneous min-entropy smoothing, Proc. ISIT (2013) 161

[arXiv:1312.7642].

[36] X. Dong, D. Harlow and A.C. Wall, Reconstruction of bulk operators within the entanglement

wedge in gauge-gravity duality, Phys. Rev. Lett. 117 (2016) 021601 [arXiv:1601.05416]

[INSPIRE].

[37] J. Cotler, P. Hayden, G. Penington, G. Salton, B. Swingle and M. Walter, Entanglement

wedge reconstruction via universal recovery channels, Phys. Rev. X 9 (2019) 031011

[arXiv:1704.05839] [INSPIRE].

[38] P. Hayden and G. Penington, Learning the alpha-bits of black holes, arXiv:1807.06041

[INSPIRE].

[39] T. Faulkner and A. Lewkowycz, Bulk locality from modular flow, JHEP 07 (2017) 151

[arXiv:1704.05464] [INSPIRE].

[40] P. Hayden and A. Winter, Weak decoupling duality and quantum identification,

IEEE Trans. Inform. Theory 58 (2012) 4914 [arXiv:1003.4994].

[41] P. Hayden and G. Penington, Approximate quantum error correction revisited: introducing

the alpha-bit, arXiv:1706.09434.

[42] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local

bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[43] B.M. Terhal, M. Horodecki, D.W. Leung and D.P. Di Vincenzo, The entanglement of

purification, J. Math. Phys. 43 (2002) 4286 [quant-ph/0202044].

[44] G. Vidal, On the characterization of entanglement, J. Mod. Opt. 47 (2000) 355

[quant-ph/9807077] [INSPIRE].

[45] N. Bao, Minimal purifications, wormhole geometries and the complexity=action proposal,

arXiv:1811.03113 [INSPIRE].

[46] N. Bao and I.F. Halpern, Holographic inequalities and entanglement of purification,

JHEP 03 (2018) 006 [arXiv:1710.07643] [INSPIRE].

[47] N. Bao and I.F. Halpern, Conditional and multipartite entanglements of purification and

holography, Phys. Rev. D 99 (2019) 046010 [arXiv:1805.00476] [INSPIRE].

[48] K. Umemoto and Y. Zhou, Entanglement of purification for multipartite states and its

holographic dual, JHEP 10 (2018) 152 [arXiv:1805.02625] [INSPIRE].

[49] N. Bao, A. Chatwin-Davies and G.N. Remmen, Entanglement of purification and

multiboundary wormhole geometries, JHEP 02 (2019) 110 [arXiv:1811.01983] [INSPIRE].

[50] M. Miyaji and T. Takayanagi, Surface/state correspondence as a generalized holography,

PTEP 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].

[51] X.-L. Qi, Z. Yang and Y.-Z. You, Holographic coherent states from random tensor networks,

JHEP 08 (2017) 060 [arXiv:1703.06533] [INSPIRE].

– 60 –

https://doi.org/10.1007/s00220-017-2904-z
https://arxiv.org/abs/1607.03901
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03901
https://doi.org/10.1103/PhysRevA.74.022320
https://arxiv.org/abs/quant-ph/0511070
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,A74,022320%22
https://doi.org/10.1109/isit.2013.6620208
https://arxiv.org/abs/1312.7642
https://doi.org/10.1103/PhysRevLett.117.021601
https://arxiv.org/abs/1601.05416
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.05416
https://doi.org/10.1103/PhysRevX.9.031011
https://arxiv.org/abs/1704.05839
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05839
https://arxiv.org/abs/1807.06041
https://inspirehep.net/search?p=find+EPRINT+arXiv:1807.06041
https://doi.org/10.1007/JHEP07(2017)151
https://arxiv.org/abs/1704.05464
https://inspirehep.net/search?p=find+EPRINT+arXiv:1704.05464
https://doi.org/10.1109/tit.2012.2191695
https://arxiv.org/abs/1003.4994
https://arxiv.org/abs/1706.09434
https://doi.org/10.1103/PhysRevD.74.066009
https://arxiv.org/abs/hep-th/0606141
https://inspirehep.net/search?p=find+EPRINT+hep-th/0606141
https://doi.org/10.1063/1.1498001
https://arxiv.org/abs/quant-ph/0202044
https://doi.org/10.1080/09500340008244048
https://arxiv.org/abs/quant-ph/9807077
https://inspirehep.net/search?p=find+J+%22J.Mod.Opt.,47,355%22
https://arxiv.org/abs/1811.03113
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.03113
https://doi.org/10.1007/JHEP03(2018)006
https://arxiv.org/abs/1710.07643
https://inspirehep.net/search?p=find+EPRINT+arXiv:1710.07643
https://doi.org/10.1103/PhysRevD.99.046010
https://arxiv.org/abs/1805.00476
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.00476
https://doi.org/10.1007/JHEP10(2018)152
https://arxiv.org/abs/1805.02625
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.02625
https://doi.org/10.1007/JHEP02(2019)110
https://arxiv.org/abs/1811.01983
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.01983
https://doi.org/10.1093/ptep/ptv089
https://arxiv.org/abs/1503.03542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.03542
https://doi.org/10.1007/JHEP08(2017)060
https://arxiv.org/abs/1703.06533
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.06533


J
H
E
P
1
1
(
2
0
1
9
)
0
6
9

[52] M. Han and S. Huang, Discrete gravity on random tensor network and holographic Rényi
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