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strong evidence that any gravitational effective action involving higher-curvature correc-
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this claim to be true as long as (at least) one non-trivial GQTG invariant exists at each

order in curvature — and extremely conclusive evidence suggests this is the case in general

dimensions. When covariant derivatives of the Riemann tensor are included, the evidence

provided is not as definitive, but we still prove the claim explicitly for all theories including

up to eight derivatives of the metric as well as for terms involving arbitrary contractions of

two covariant derivatives of the Riemann tensor and any number of Riemann tensors. Our

results suggest that the physics of generic higher-curvature gravity black holes is captured

by their GQTG counterparts, dramatically easier to characterize and universal. As an

example, we map the gravity sector of the Type-IIB string theory effective action in AdS5
at order O(α′3) to a GQTG and show that the thermodynamic properties of black holes

in both frames match.
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1 Introduction

The gravitational effective action is expected to incorporate an infinite tower of higher-

derivative corrections to the usual Einstein-Hilbert term. In particular, specific higher-

curvature terms weighted by powers of α′ or ℓPlanck appear — coupled to the rest of

fundamental fields — as stringy corrections in the different versions of String Theory [1–7].

Higher-curvature corrections are also naturally generated in the gravitational action when

renormalizing quantum fields in curved spacetime — see e.g., [8] — including the gravi-

ton itself [9–13]. From an Effective Field Theory (EFT) point of view, one can think

of higher-derivative gravity as an effective description of some putative underlying UV-

complete theory. This approach requires the introduction of all possible terms compatible

with the symmetries of the theory [14]. In the case of gravity, this means including all

diffeomorphism-invariant higher-derivative operators available at each curvature order.

From a different perspective, particular classes of higher-derivative gravities presenting

special properties have been often considered in various contexts. Sometimes, such theories
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can be used to test the genericness of Einstein’s gravity predictions. For instance, Lovelock

gravities [15, 16] provide natural generalizations of Einstein gravity in D ≥ 5 whose second-

order dynamics makes them particularly suitable for such comparisons. The construction of

higher-curvature theories which mimic and/or improve certain aspects of Einstein gravity

has also been often explored — e.g., [17–29]. In some areas, like cosmology, the appearance

of particular higher-derivative theories such as f(R) gravities has become ubiquitous [30].

Special mention deserves the role played by this class of theories within the holographic

context [31, 32]. Higher-curvature gravities define toy models of strongly coupled CFTs

inequivalent to Einstein gravity — see e.g., [33–47] and references therein — and they have

been crucial in the discovery of certain universal results valid for general CFTs [48–52] —

or to raise doubts on the possible universality of others [53–58].

From an EFT point of view, there is an obvious issue with the classes of theories

considered in the previous paragraph, namely, they involve specific combinations of higher-

curvature invariants. On the other hand, in that context, one needs to take into account the

possibility of performing field redefinitions — we can redefine the metric tensor as gab →
gab+Kab for some symmetric tensor Kab. Classically, the transformed field will, in general,

have different properties from the original one. But from a more fundamental perspective,

both fields should provide equivalent effective descriptions of the same underlying theory.

Performing a field redefinition is equivalent to a change of variables, and this should leave

the path integral, as well as scattering amplitudes and other observables, unaffected. Thus,

even though the classical fields will be different, relevant physical properties are expected

to be invariant under such redefinitions. In the gravitational context, this is the case of

black hole’s thermodynamic properties, such as temperature or entropy, which are invariant

under field redefinitions of the metric [59] — up to some subtleties we discuss below. Thus,

if our aim is to study black hole thermodynamics, we may work equivalently with the

original theory or with the one resulting from a metric redefinition.

A natural question one is led to ask is whether certain higher-curvature gravities pos-

sessing particularly interesting properties — and which one would have naively considered

“fine-tuned” from an EFT perspective — may in fact be general enough so as to capture

all terms appearing in the most general higher-derivative expansion once field-redefinitions

are included in the game. In this paper we provide conclusive evidence that this is the case.

In particular, we argue that any higher-curvature gravitational effective action constructed

from arbitrary contractions of the metric and the Riemann tensor — including the gravita-

tional sector of any String Theory effective action — can be mapped, via field redefinitions,

to a theory of the so-called Generalized quasi-topological class [25, 60–65]. While we do

not present a rigorous proof of this claim, we believe the evidence we provide is extremely

compelling. In the case of terms involving covariant derivatives of the Riemann tensor,

we are not able to provide the same degree of evidence, but we do prove the claim to be

true for all effective actions of quartic order or lower as well as for terms consisting of two

covariant derivatives of the Riemann tensor contracted in a generic way with an arbitrary

number of Riemann tensors.

As we review in detail in section 2, Generalized quasi-topological gravities possess a

number of remarkable properties such as the absence of additional modes besides the usual

– 2 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
2

graviton propagating on maximally symmetric background, as well as the existence of non-

hairy generalizations of the Schwarzschild-(AdS) black hole characterized by a single metric

function f(r) and whose thermodynamic properties can be easily accessed. Besides, the

equation which determines such function is highly constrained and takes a universal form

at each order in curvature: in D = 4 all GQTG representatives contribute in exactly the

same way to the equation — see e.g., (2.5) below — whereas in D ≥ 5 there are two classes

of contributions — the first involving only powers of f(r) and the second involving up to

two derivatives of f(r).

On the one hand, our results suggest a somewhat canonical way of writing a grav-

itational effective action, namely, as a series of non-trivial GQTG densities — besides

providing an additional motivation for the study of such class of theories. On the other,

they suggest that the physics of black hole solutions to generic higher-curvature gravi-

ties which in principle appears to be very complicated — e.g., constructing the solutions

themselves involves solving a different set of coupled differential equations (for the two

functions appearing in the metric ansatz) for each possible theory considered — can be

actually mapped in all cases to the one of GQTG black holes, much more universal and

easier to characterize.

A summary of our findings can be found next.

1.1 Summary of results

⋄ Section 2 contains a detailed review of GQTGs. This includes an account of their

defining and most important features and explicit expressions for general GQTGs up

to cubic order in arbitrary dimensions. Special emphasis is put on the high degree

of simplicity and universality associated to the characterization of their static black

hole solutions.

⋄ Section 3 starts with an explanation of the invariance of black hole thermodynamics

under field redefinitions. Then, we explain how field redefinitions generically affect

higher-derivative Lagrangians. In particular, we show that invariants involving Ricci

curvatures — or, more generally, those becoming a total derivative when evaluated

on Ricci-flat backgrounds — can always be removed from the action.

⋄ In section 4 we provide the explicit field redefinition which maps the most general

quadratic and cubic gravities to GQTGs.

⋄ In section 5 we reduce the problem of proving that any L(gab, Rabcd) gravity can

be mapped to a GQTG to showing that at least one non-trivial GQTG exists at

each order in curvature. Since extremely compelling evidence suggests that non-

trivial GQTGs exist for any D and at arbitrarily high orders in curvature, our result

virtually proves that any higher-derivative effective action constructed from arbitrary

contractions of the metric and the Riemann tensor can be mapped to a GQTG.

⋄ In section 6 we turn to the more general case of higher-curvature densities involving

covariant derivatives of the Riemann tensor. We show that all quartic gravities as
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well as densities constructed from an arbitrary number of Riemann tensors and two

covariant derivatives can be mapped to GQTGs. In all cases, the resulting GQTGs

become equivalent to other GQTGs which do not involve any covariant derivative as

long as static and spherically symmetric solutions are concerned.

⋄ In section 7 we use a field redefinition to map the gravity sector of the effective action

of Type-IIB string theory truncated at (sub)leading order on AdS5×S
5 to a GQTG.

We compare the black hole solutions at leading order in the higher-curvature coupling

in both frames and show that their thermodynamic properties match, as expected

from our general analysis.

⋄ We conclude in section 8 with some additional discussion and further reasonable

conjectures.

2 Generalized quasi-topological gravities (GQTGs)

In recent years, an interesting new family of higher-curvature theories of gravity has been

identified [25, 60–65]. The action of these so-called Generalized quasi-topological gravities

(GQTGs) [62] can be written schematically as

S =
1

16πG

∫

dDx
√

|g|
[

−2Λ +R+
∑

n=2

∑

in

ℓ2(n−1)µ
(n)
in

R(n)
in

]

, (2.1)

where ℓ is some length scale, µ
(n)
in

are dimensionless couplings, andR(n)
in

are particular linear

combinations of densities constructed in each case from contractions of n Riemann tensors

and the metric. The subindex in refers to the number of independent GQTG invariants at

each order n.

The technical requirement which makes a generic L(gab, Rabcd,∇aRbcde, . . . ) theory

belong to the GQTG class is the following. Consider a general static and spherically

symmetric ansatz (SSS),

ds2SSS = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΩ2

(D−2) , (2.2)

and let LN,f be the effective Lagrangian which results from evaluating
√

|g|L in (2.2),

namely

LN,f (r, f(r), N(r), f ′(r), N ′(r), . . . ) = N(r)rD−2L|SSS , (2.3)

(up to an irrelevant angular contribution). Also, let Lf = L1,f , i.e., the expression resulting

from imposing N = 1 in LN,f .

Definition 1 We say that L(gab, Rabcd,∇aRbcde, . . . ) belongs to the GQTG family if the

Euler-Lagrange equation of Lf vanishes identically, i.e., if

∂Lf

∂f
− d

dr

∂Lf

∂f ′
+

d2

dr2
∂Lf

∂f ′′
− · · · = 0 , ∀ f(r) . (2.4)
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The consequences of imposing (2.4) have been explored quite extensively by now, and they

can be summarized as follows.

1. When linearized around any maximally symmetric background, the equations of mo-

tion of GQTGs become second-order i.e., they only propagate the usual massless and

traceless graviton characteristic of Einstein gravity on such backgrounds [25, 60–65].1

2. They have a continuous and well-defined Einstein gravity limit, which corresponds

to setting µ
(n)
in

→ 0 for all n and in.

3. They admit generalizations of the (asymptotically flat, de Sitter or Anti-de Sitter)

Schwarzschild black hole — i.e., solutions which reduce to it in the Einstein gravity

limit — characterized by a single function f(r) [60–65]. For them, N(r) = 1 (or some

other constant) in (2.2) and gttgrr = −1.

4. The metric function f(r) is determined from a differential equation of order ≤ 2 —

which can be obtained from the Euler-Lagrange equation of N(r) associated to the

effective Lagrangian LN,f defined in (2.3)2 —when the action does not include covari-

ant derivatives of the Riemann tensor.3 Schematically, E [r, f(r), f ′(r), f ′′(r);µ
(n)
in

] =

0. In that case, there are typically three situations:

• The corresponding density does not contribute at all to the equation and then

we call it “trivial”.

• The density contributes to the equation with an algebraic dependence on f(r)

— namely, with terms involving powers of f(r). This is the case of Quasi-

topological [24, 41, 64, 74, 75] and Lovelock [15, 16] terms. This kind of contri-

butions only exist for D ≥ 5.

• The density contributes to the equation with terms containing up to two

derivatives of f(r). This is the case e.g., of Einsteinian cubic gravity in

D = 4 [25, 60, 61].

There is strong evidence that non-trivial GQTGs exist in any number of dimensions,

including D = 4, and for arbitrarily high orders of curvature. This evidence also

suggests that the equation that determines f(r) can only be modified in a single

way at each order in curvature in D = 4 and in two ways in D ≥ 5. Namely,

given a curvature order n, in D = 4 there is a linear combination of parameters

µ(n) =
∑

in
cinµ

(n)
in

such that the contribution to the equation of f(r) will only depend

on µ(n): as long as the equation of f(r) is concerned, we can turn on and off as many

densities as we want, provided at least one of them (corresponding to a nontrivial

1Note that higher-curvature gravities satisfying property “1.” — and not necessarily the rest of properties

appearing in the list, nor condition (2.4) — have been studied in several other papers, e.g. [20, 27, 28, 66–73].
2Namely, the equation reads

δLN,f

δN

∣

∣

N=1
= 0, and it can be proven that it takes the form of a total

derivative for any theory satisfying (2.4).
3When it does, the differential equation would be of order ≤ 2m+2, where m is the number of covariant

derivatives of the term with the greatest number of them.
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density) is nonzero at each order in curvature [65]. The explicit form of the equation

reads [65]4

(1− f)− 2GM

r
− Λr2

3
−
∑

n

µ(n)ℓ2(n−1) f
′(n−3)

rn−2

[

f ′3

n
+

(n− 3)f + 2

(n− 1)r
f ′2 (2.5)

− 2

r2
f(f − 1)f ′ − 1

r
ff ′′

(

f ′r − 2(f − 1)
)

]

= 0 ,

where M stands for the ADM mass of the solution [76–78].

In D ≥ 5 we can split the couplings in two sums of couplings. The first group

of densities, belonging to the Quasi-topological subset, will modify the equation of

f(r) algebraically, whereas the second group will introduce derivatives of f(r). The

equation of f(r) will only depend on a particular combination of couplings of each

one of these groups [62, 64]. Schematically we have

EE[r, f(r)] +
∑

n

[

µ
(n)
QT EQT

n [r, f(r)n] + µ
(n)
GQT EGQT

n [r, f(r), f ′(r), f ′′(r)]
]

= 0 , (2.6)

where EE[r, f(r)] is the Einstein gravity contribution

EE[r, f(r)] = (1− f)− 16πGM

(D − 2)Ω(D−2)rD−3
− 2Λr2

(D − 1)(D − 2)
, (2.7)

where Ω(D−2) = 2π(D−1)/2/Γ[(D− 2)/2] and µ
(n)
QT and µ

(n)
GQT stand for the sums of all

couplings corresponding to densities contributing algebraically and with derivatives

of f(r) to the equation respectively. For planar and hyperbolic horizons, exactly

the same story holds with small modifications in the corresponding equations for the

metric function.

5. Both when the equation is algebraic and when it is differential of order 2, given a fixed

set of µ
(n)
in

, the equation admits a single black-hole solution representing a smooth

deformation of Schwarzschild’s one, which is completely characterized by its ADM

energy. For spherically symmetric configurations, the corresponding metric describes

the exterior field of matter distributions [63].

6. The thermodynamic properties of black holes can be computed analytically by solving

a system of algebraic equations without free parameters. At least in D = 4, black

holes typically become stable below certain mass, which substantially modifies their

evaporation process [65].

4In [65], examples of n = 3, 4, 5 GQTG densities were constructed and used to guess the pattern for

general n in (2.5). Then, it was verified that the n = 6, 7, 8, 9, 10 cases indeed agree with such pattern.

Observe that the dependence on the curvature order is very simple, which strongly supports the claim

that (2.5) is valid for general n ≥ 11 as well. In all cases, it was also verified that the ones appearing

in (2.5) are the only possible functional contributions from GQTGs to the equation of f at each order n:

the only effect of turning on an additional density at order n is to shift the value of µ(n).
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7. A certain subset of GQTGs admit additional solutions of the Taub-NUT/Bolt class in

even dimensions [79]. Similarly to black holes, these are also characterized by a single

metric function and their thermodynamic properties can be computed analytically.

8. A (generally) different subset of four-dimensional GQTGs also gives rise to second-

order equations for the scale factor when evaluated on a Friedmann-Lemâıtre-

Robertson-Walker ansatz, giving rise to a well-posed cosmological evolution [80–82].

Remarkably, an inflationary period smoothly connected with late-time standard Λ-

CDM evolution is naturally generated by the higher-curvature terms.

In addition to this more or less structural properties, GQTGs have been considered in

various contexts, and many interesting additional properties and applications explored —

see e.g., [47, 83–93].

At cubic order in curvature, the most general (nontrivial) GQTG can be written as

S =

∫

dDx
√

|g|
16πG

[

−2Λ +R+ ℓ2µ
(2)
1 X4 + ℓ4

(

µ
(3)
1 X6 + µ

(3)
2 ZD + µ

(3)
3 SD

)]

, (2.8)

where we used the notation of (2.1) to denote the couplings. Here, X4 and X6 stand for the

dimensionally-extended Euler quadratic and cubic densities, also known as Gauss-Bonnet

and cubic Lovelock terms, respectively,

X4 =+R2 − 4RabR
ab +RabcdR

abcd , (2.9)

X6 =− 8R c d
a b R e f

c d R a b
e f + 4R cd

ab R ef
cd R ab

ef − 24RabcdR
abc

eR
de

+ 3RabcdR
abcdR+ 24RabcdR

acRbd + 16Rb
aR

c
bR

a
c − 12RabR

abR+R3 . (2.10)

X4 is topological in D = 4 and trivial for D ≤ 3, while X6 is topological in D = 6 and trivial

for D ≤ 5. On the other hand, ZD is the so-called Quasi-topological gravity density [24, 41]

ZD =+Ra
b
c
dRb

e
d
fRe

a
f
c +

1

(2D − 3)(D − 4)

[

3(3D − 8)

8
RabcdR

abcdR

−3(3D − 4)

2
Ra

cRc
aR− 3(D − 2)RacbdR

acb
eR

de + 3DRacbdR
abRcd (2.11)

+6(D − 2)Ra
cRc

bRb
a +

3D

8
R3

]

.

Note that when only the above three terms are included in addition to the usual Einstein-

Hibert action, the equation satisfied by the metric function f(r) is algebraic — which

partially explains why they were identified before the last term, SD. We also stress that

for D ≥ 6, ZD affects the equation of f(r) in the same way as X6 does. For D = 5,

X6 is trivial, and the effect of Z5 is nontrivial — from this perspective, we could have

just omitted X6 from (2.8). These observations are in agreement with our comments in

“4.” above regarding the fact that at each order and for each D there is a single way of

modifying the equation of f(r) algebraically (and another single way involving derivatives

of f(r) — see below).
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When SD is included, the equation becomes differential of order 2. The explicitly form

of this density can be chosen to be [62]

SD =+ 14R c d
a b R e f

c d R a b
e f + 2RabcdR

abc
eR

de − (38− 29D + 4D2)

4(D − 2)(2D − 1)
RabcdR

abcdR

− 2(−30 + 9D + 4D2)

(D − 2)(2D − 1)
RabcdR

acRbd − 4(66− 35D + 2D2))

3(D − 2)(2D − 1)
Rb

aR
c
bR

a
c

+
(34− 21D + 4D2)

(D − 2)(2D − 1)
RabR

abR− (30− 13D + 4D2)

12(D − 2)(2D − 1)
R3 .

(2.12)

The explicit form of the equation of f(r) corresponding to (2.8) can be found e.g., in [62]. In

D = 4, S4 is usually rewritten in terms of the so-called Einsteinian cubic gravity density,5

defined as [25]

P = 12R c d
a b R

e f
c d R a b

e f +Rcd
abR

ef
cdR

ab
ef − 12RabcdR

acRbd + 8Rb
aR

c
bR

a
c , (2.13)

which was in fact the first GQTG identified beyond the Lovelock and Quasi-topological

ones [60, 61]. Both densities are connected through [62]

S4 −
1

4
X6 + 4C = P , (2.14)

where C is an example of a trivial GQTG, in the sense that it has no effect on the equation

of f(r), as its contribution to it vanishes identically. It is given by

C =
1

2
Rb

aR
a
bR− 2RacRbdRabcd −

1

4
RRabcdR

abcd +RdeRabcdR
abc

e . (2.15)

Although in this paper we will not be particularly interested in trivial GQTGs, we empha-

size that those terms are only trivial for SSS metrics, but they can — and they do [80–82]

— play an important role when other kinds of metrics are considered.

As we mention later on, the structure of GQTGs above described seems to extend to

general dimensions and arbitrary orders in curvature. So far, examples of GQTGs including

covariant derivatives of the Riemann tensor have not appeared in the literature, but we

are confident that they do exist as well — see sections 6 and 8 for discussions on the role

played by invariants containing covariant derivatives of the Riemann tensor in our setup.

3 Field redefinitions in higher-curvature gravities

In this section we explore some of the effects resulting from redefining the metric tensor on

higher-curvature gravities. In subsection 3.1, we make some technical comments regarding

metric redefinitions involving derivatives of the metric itself and explain how on-shell ac-

tions evaluated on solutions related by metric redefinitions agree with each other. Then,

5The original construction of Einsteinian cubic gravity in [25] was based on the fact that it satisfies

properties “1.” and “2.” for general dimensions, and it does so in a way such that the relative coefficients

appearing in its definition in (2.13) are the same for general D — just like for Lovelock theories. It was

later realized that the four-dimensional version of the theory satisfies the rest of properties listed.
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in subsection 3.2, we explain how higher-curvature densities involving Ricci curvatures —

or, more generally, densities which become a total derivative when evaluated on Ricci-flat

metrics — can be removed from the gravitational effective action by convenient metric

redefinitions.

3.1 On-shell action invariance

Let us consider the most general metric-covariant theory of gravity6

S[gab] =

∫

dDx
√

|g|L
(

gab, Rabcd,∇eRabcd,∇e∇fRabcd, . . .
)

. (3.1)

We are interested in determining how (3.1) transforms under a redefinition of the metric

tensor gab of the form

gab = g̃ab + Q̃ab , (3.2)

where Q̃ab is a symmetric tensor constructed from the new metric g̃ab. Ideally, we would like

the field redefinition to be algebraic, so that the relation between gab and g̃ab is functional.

However, the most general tensor we can build using the metric without introducing higher

derivatives is proportional to the metric itself. Hence, Q̃ab generically involves curvature

tensors, and (3.2) is a differential relation. The action S̃ for the new metric g̃ab is simply

obtained by substituting (3.2) in the original action, namely

S̃[g̃ab] = S[g̃ab + Q̃ab] . (3.3)

Observe that since (3.2) involves derivatives of the metric, extremizing the action with

respect to g̃ab is, in general, inequivalent from extremizing it with respect to gab. Whenever

gsolab is a solution of the original theory, the relation (3.2) always produces a solution g̃solab of

the transformed theory when we invert it. However, the converse is not true: there exist

solutions of the equations of motion obtained from the variation with respect to g̃ab which

do not produce a solution of the original theory when we apply the map (3.2). The reason

behind this is the presence of extra derivatives in the field redefinition. This increases the

number of derivatives in the equations of motion derived from S̃, which introduces spurious

solutions that need be discarded. This issue is further discussed in appendix A. Provided

it is taken into account, both theories, S and S̃, are equivalent.

Note that when we keep only the meaningful solutions — i.e., those which are related

by (3.2) — the corresponding on-shell actions match,

S̃
[

g̃solab

]

= S
[

gsolab

]

. (3.4)

Since, e.g., black hole thermodynamics can be determined — in the Euclidean path-integral

approach [94] — by evaluating the on-shell action, this simple observation proves that black

hole thermodynamics can be equivalently computed in both frames. The same conclusion

6We also assume that parity is preserved so that we do not have to include terms containing the Levi-

Civita symbol. Nevertheless, all results in this section also apply when those terms are included.
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can be reached [59] using Wald’s formula [95] — see [96–100] for additional discussions

regarding this issue.7

Of particular interest for us will be situations in which both gsolab and g̃solab represent

static and spherically symmetric black holes. As argued in [59], field redefinitions of the

form (3.2) preserve both the asymptotic and horizon structures of gsolab , so they map black

holes into black holes. Particularizing even more, from the following subsection on, we will

consider higher-derivative theories controlled by small parameters and perturbative field

redefinitions weighted by them. Ultimately, one of the reasons for considering redefinitions

mapping generic higher-derivative theories to GQTGs is the fact that the equations of mo-

tion of the latter on static and spherically symmetric configurations become particularly

simple and universal. In this particular setup, (3.4) will relate the on-shell action corre-

sponding to a certain generalization of the Schwarzschild-(A)dS black hole (continuously

connected to it) for a given higher-derivative theory at leading order in the corresponding

coupling to the on-shell action of the black hole solution corresponding to the transformed

GQTG. We will provide an explicit example of this match between on-shell actions in

section 7.

3.2 Ricci curvatures and reducible densities

Let us now determine how the redefinition (3.2) changes the action (3.1). For that, we

assume the redefinition to be perturbative, i.e., we treat Q̃ab as a perturbation and we

work at linear order. This is enough for our purposes, since, following the EFT approach,

we will also expand the action in a perturbative series of higher-derivative terms. Observe

that in this case the relation (3.2) can be inverted as

g̃ab = gab −Qab +O(Q2) , (3.5)

where Qab has the same expression as Q̃ab but replacing g̃ab → gab. Let us introduce the

equations of motion of the original theory as

Eab =
1

√

|g|
δS

δgab
. (3.6)

Then, at linear order in Q̃ab, the transformed action S̃ reads

S̃ =

∫

dDx
√

|g̃|
[

L̃ − ẼabQ̃ab +O(Q2)
]

. (3.7)

where the tildes denote evaluation on g̃ab. Thus, the redefinition introduces a term in

the action proportional to the equations of motion of the original theory. Let us be more

explicit about the form of the Lagrangian by expanding it as a sum over all possible higher-

derivative terms

S =
1

16πG

∫

dDx
√

|g|
[

R+
∞
∑

n=2

ℓ2(n−1)L(n)

]

, (3.8)

7In order to prove this statement rigorously, it is necessary to assume some mild conditions on Q̃ab,

namely, its fall-off at infinity should be fast enough. All redefinitions we will consider are well-behaved in

this sense.
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where ℓ is a length scale and L(n) represents the most general Lagrangian involving 2n

derivatives of the metric. The explicit form of the invariants at orders n = 2 and n = 3 can

be found below in (4.2) and (4.3) respectively. The number of terms grows very rapidly,

and the n = 4 Lagrangian already contains 92 terms [101].8

Let Q̃
(k)
ab be a symmetric tensor containing 2k derivatives of the metric. Then, we

perform the following field redefinition

gab = g̃ab + ℓ2kQ̃
(k)
ab . (3.9)

Then, the transformed action (3.7) reads

S̃ =

∫

dDx
√

|g̃|
16πG

[

R̃+

k
∑

n=2

ℓ2(n−1)L̃(n) + ℓ2k
(

L̃(k+1) − R̃abQ̂
(k)
ab

)

+

∞
∑

n=k+2

ℓ2(n−1)L̃′(n)

]

,

(3.10)

where all quantities are evaluated on g̃ab, and
9

Q̂
(k)
ab = Q̃

(k)
ab − 1

2
g̃abQ̃

(k) , Q̃(k) = g̃abQ̃
(k)
ab . (3.11)

Hence, all terms containing up to 2k derivatives of the metric remain unaffected, while

those with 2(k+1) derivatives receive a correction of the form −R̃abQ̂
(k)
ab . The higher-order

terms also get corrections which depend in a more complicated way on Q̃
(k)
ab . If the starting

action already contained all possible terms, the net effect of these corrections is just to

change the couplings in the Lagrangian. We denote these modified terms as L̃′(n).

From this, it is clear that performing this type of field redefinitions order by order,

starting at k = 1, we can remove all terms in the action which involve contractions of the

Ricci tensor — except, of course, the Einstein-Hilbert term. At each order, it suffices to

choose Q̃
(k)
ab in (3.9) such that Q̂

(k)
ab equals the tensorial structure which appears contracted

with Rab in the corresponding density. In other words, any term containing Ricci curvatures

is meaningless from the EFT point of view, and we are free to add or remove terms of that

type. From a different perspective, it has been argued — e.g., in [103] — that if some higher-

curvature correction controlled by ℓ2k involves operators which vanish on the equations of

motion produced by the lower-order action, the relevant physics is not affected at O(ℓ2k),

and we can just ignore it. For the gravitational effective action, this is equivalent to the

possibility of removing all terms involving Ricci curvatures.

8Ref. [101] provides the number of linearly independent invariants, but many of them differ by total

derivative terms, which are irrelevant for the action. The number of relevant terms is, in general, much

smaller — yet quite large. For instance, besides the 3 quadratic densities and the 10 cubic densities

which we include in (4.2) and (4.3), [101] adds ∇a∇
aR to the former list, and 7 more terms of the form:

∇a∇
a∇b∇

bR, R∇a∇
aR, ∇a∇bRRab, Rab∇c∇

cRab, ∇a∇bRcdRcadb, ∇aRbc∇cRba, ∇aRbcde∇aRbcde to

the latter. All these terms are either total derivatives or can be written in terms of the others plus total

derivatives, so they can be discarded — see e.g., [41, 102].
9We have EabQ̃

(k)
ab = (Rab − 1

2
gabR)Q̃

(k)
ab = RabQ̂

(k)
ab .
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Observe that in (3.8) we (intentionally) did not include a cosmological constant. When

we add it, the effect of the redefinition (3.9) is

S̃ =

∫

dDx
√

|g̃|
16πG

[

−2Λ + R̃+
k−1
∑

n=2

ℓ2(n−1)L̃(n) + ℓ2(k−1)

(

L̃(k) +
2(Λℓ2)

(D − 2)
Q̂(k)

)

+ℓ2k
(

L̃(k+1) − R̃abQ̂
(k)
ab

)

+
∞
∑

n=k+2

ℓ2nL̃′(n)

]

.

(3.12)

Namely, not only the terms involving 2(k+1) derivatives of the metric get modified, those

involving 2k derivatives also receive a correction. This is a complication with respect to

the case without cosmological constant. If we remove terms involving Ricci curvatures at

a given order, the field redefinition of the following order will introduce a correction of

the form 2(Λℓ2)
(D−2)Q̂

(k) which will generically include again terms involving Ricci curvatures.

Hence, the process cannot be carried out order-by-order because all steps are coupled. If

one wants to remove all the terms with Ricci curvature up to order 2k, it is necessary to

consider the most general field redefinition up to that order, i.e., including all the terms

Q̃
(m)
ab of order m ≤ k at the same time. Nevertheless, we stress that this is just a technical

complication: finding the precise field redefinition that removes the corresponding Ricci

curvature terms is more involved, but it can certainly be done.

Motivated by the above analysis, let us close this section with a definition which will

be useful in the remainder of the paper.

Definition 2 A curvature invariant is said to be “reducible” if it is a total derivative when

evaluated on any Ricci-flat metric. The rest of them are said to be “irreducible”.

Note that this trivially contains the case in which the invariant vanishes on Ricci-flat met-

rics. Intuitively, the irreducible terms correspond to those formed purely from contractions

of the Riemann tensor, without explicit factors of Ricci curvature. As we have explained,

all reducible terms can be removed or introduced by using field redefinitions, whereas the

irreducible ones cannot. Therefore, the most general higher-derivative gravitational effec-

tive action is obtained by including all possible irreducible terms. Then, we are free to

add as many reducible terms as we wish: these would simply correspond to different frame

choices.

4 All quadratic and cubic gravities as GQTGs

In the absence of cosmological constant, the gravitational effective action can be written

as a series of operators with an increasing number of derivatives of the metric:

S =
1

16πG

∫

dDx
√

|g|R+
∞
∑

n=2

ℓ2n−2

16πG
S(2n) . (4.1)
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Again, ℓ is some length scale, and S(2n) is the most general action involving curvature

invariants of order n. Ignoring total derivatives, the four- and six-derivative actions read

S(4) =

∫

dDx
√

|g|
[

α1R
2 + α2RabR

ab + α3RabcdR
abcd

]

, (4.2)

S(6) =

∫

dDx
√

|g|
[

β1R
c d

a b R e f
c d R a b

e f + β2R
cd

ab R ef
cd R ab

ef + β3RabcdR
abc

eR
de (4.3)

+β4RabcdR
abcdR+ β5RabcdR

acRbd + β6R
b
a R c

b R a
c + β7RabR

abR

+β8R
3 + β9∇dRab∇dRab + β10∇aR∇aR

]

.

In the case of the four-derivative action, the Riemann-squared term can be traded by the

Gauss-Bonnet density (2.9), so that the most general action reads10

S(4) =

∫

dDx
√

|g|
[

α1R
2 + α2RabR

ab + α3X4

]

. (4.4)

Similarly to the quadratic case, we can trade two of the cubic invariants involving contrac-

tions of the Riemann tensor alone by the cubic Lovelock density X6, defined in (2.10), and

one of the cubic Generalized Quasi-topological densities, SD, defined in (2.12). Therefore,

S(6) can be alternatively written as

S(6) =

∫

dDx
√

|g|
[

β1X6 + β2SD + β3RabcdR
abc

eR
de + β4RabcdR

abcdR+ β5RabcdR
acRbd

+β6R
b
a R c

b R a
c + β7RabR

abR+ β8R
3 + β9∇dRab∇dRab + β10∇aR∇aR

]

. (4.5)

Note that in D ≥ 5, we can alternatively replace either SD or X6 by the cubic Quasi-

topological term ZD defined in (2.11). Also, in D = 4 we can replace S4 by the Einsteinian

cubic gravity density (2.13) using (2.14). Regardless of these choices, we observe that in

addition to the first two terms, belonging to the GQTG family, we are left with a series

of reducible terms which, as we have argued in the previous section, can be removed by

convenient field redefinitions of the metric.

The explicit redefinition which removes all terms but X4, X6 and SD goes as follows.

First, in order to remove the R2 and RabR
ab terms, we perform

gab = g̃ab + α2ℓ
2R̃ab −

ℓ2R̃

D − 2
g̃ab(2α1 + α2) . (4.6)

Then:

S(4) → S̃(4) =

∫

dDx
√

|g̃|α3X̃4 . (4.7)

Now, this redefinition also affects the higher-order terms, but since we are starting from the

most general theory, the only effect is to change the coefficients of these terms. In particular,

for the six-derivative ones: βi → β̃i. Then, the following redefinition of the metric

g̃ab = ˜̃gab + ℓ4
[

β̃3
˜̃Raecd

˜̃R ecd
b + β̃5

˜̃Ref ˜̃Raebf + β̃6
˜̃R e
a

˜̃Rbe + β̃7
˜̃R ˜̃Rab − β̃9

˜̃∇2 ˜̃Rab (4.8)

−
˜̃gab

D−2

(

˜̃Refcd
˜̃Refcd(β̃3+2β̃4) +

˜̃Ref
˜̃Ref (β̃5+β̃6) +

˜̃R2(β̃7+2β̃8)− ˜̃∇2 ˜̃R(β̃9−2β̃10)
)

]

,

10The coefficients αi are not the same as in the previous action, but we prefer not to introduce additional

unnecessary notation whenever possible.
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leaves the four-derivative terms unaffected, while cancelling all six-derivative terms that

contain Ricci curvatures,

S̃(6) → ˜̃S(6) =

∫

dDx

√

|˜̃g|
[

β̃1
˜̃X6 + β̃2

˜̃SD

]

. (4.9)

Hence, the most general action can be written, after all, as

˜̃S =
1

16πG

∫

dDx

√

|˜̃g|
[

˜̃R+ ℓ2α3
˜̃X4 + ℓ4

(

β̃1
˜̃X6 + β̃2

˜̃SD

)

+O(ℓ6)
]

, (4.10)

which only contains GQTG terms, as anticipated — compare with (2.8). In D = 4, the

cubic Lovelock density vanishes identically and the Gauss-Bonnet term is topological, which

leaves us with

S =
1

16πG

∫

d4x
√

|g|
[

R+ βℓ4P +O(ℓ6)
]

, (4.11)

where we traded S4 by the ECG density P using (2.14) and we renamed the gravitational

coupling. Hence, Einsteinian cubic gravity [25] is (up to field redefinitions) the most general

four-dimensional gravitational effective action we can write including up to six derivatives

of the metric.11

5 All L(gab, Rabcd) gravities as GQTGs

Let us now move on to a more general case, namely, general higher-curvature gravities

constructed from arbitrary contractions of the metric and the Riemann tensor. In addition

to the notion of “reducible” densities introduced in section 3, it is convenient to define here

another concept:

Definition 3 We say that a curvature invariant L is “completable to a Generalized quasi-

topological density” (or just “completable” for short), if there exists a GQTG density Q
such that L −Q is reducible.

In other words, L is completable if by adding reducible terms to it, we are able to obtain a

GQTG term. Note that reducible terms are trivially completable to 0. Then, the question

whether any higher-derivative gravity can be expressed as a sum of GQTG terms is equiv-

alent to the following question: Are all irreducible densities completable to a GQTG? We

have just found that the answer is positive at least up to six-derivative terms. The reason is

that there exist more independent GQTG densities than irreducible terms, which allowed

us to “complete” all of them. In the case of the four-derivative terms, the only irreducible

density is the Riemann-squared term, and this can be completed to the Gauss-Bonnet

density. For the six-derivative terms, we saw that all terms containing derivatives of the

Riemann tensor are reducible, and that the only irreducible terms are the two Riemann-

cube contributions respectively controlled by β1 and β2 in (4.3). In general dimensions

D there are 3 GQTGs involving different combinations of these cubic terms, so they can

always be completed.

11This is consistent with the result in [103], where P appears traded by the density ∼ Rcd
abR

ab
efR

ef
cd . That is

also the kind of term which appears in the two-loop effective action of perturbative quantum gravity [11, 12].
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Observe that the problem of completing irreducible invariants depends on the number

of spacetime dimensions. In lower dimensions, many of the densities are not linearly inde-

pendent, so the number of irreducible densities is significantly smaller, and this simplifies

the problem of completing them to GQTGs. As a consequence, on general grounds we

expect that if all irreducible invariants are completable for high enough D, they will also

be completable for smaller D. For instance, going back to the six-derivative example, we

find that the two cubic densities are independent when D ≥ 6. In D = 4, 5 only one of

them is linearly independent, and in D < 4 there is only Ricci curvature so all theories

are reducible to Einstein gravity. On the other hand, the number of independent GQTGs

in D = 4 is four, whereas in D > 4 there are only three of them. Therefore, in lower

dimensions there are less irreducible terms and more ways to complete them to a GQTG

theory. The lower the dimension, the easier the task.

As we will see in a moment, the problem of completing all invariants constructed from

an arbitrary contraction of metrics and n Riemann tensors — a number which grows very

rapidly with n — can be drastically simplified. In order to formulate this result, we will

need the following somewhat surprising result:

Theorem 1 (Deser, Ryzhov, 2005 [104]) When evaluated on a general static and

spherically symmetric ansatz (2.2), all possible contractions of n Weyl tensors12 are pro-

portional to each other. More precisely, let (Wn)i be one of the possible independent ways

of contracting n Weyl tensors, then for all i

(Wn)i|SSS = F (r)nci , (5.2)

where ci is some constant which depends on the particular contraction, and F (r) is an i-

independent function of r given in terms of the functions appearing in the SSS ansatz (2.2).

In other words, the ratio [(Wn)1/(W
n)2]|SSS for any pair of contractions of n Weyl tensors

is a constant which does not depend on the radial coordinate r.

Proof. When evaluated on (2.2) the Weyl tensor (with two covariant and two contravariant

indices) takes the form

W ab
cd

∣

∣

∣

SSS
= −2χ(r)

(D − 3)

(D − 1)
wab

cd , (5.3)

where

χ(r) =
(−2 + 2f − 2rf ′ + r2f ′′)

2r2
+

N ′

2rN
(−2f + 3rf ′) +

fN ′′

N
(5.4)

is a function which contains the full dependence on the radial coordinate. On the other

hand, wab
cd is a r-independent tensorial structure which can be written as [104]

wab
cd = 2τ

[a
[c ρ

b]
d] −

2

(D − 2)

(

τ
[a
[c σ

b]
d] + ρ

[a
[cσ

b]
d]

)

+
2

(D − 2)(D − 3)
σ
[a
[cσ

b]
d] , (5.5)

12Recall that the Weyl tensor is defined as

Wabcd = Rabcd −
2

(D − 2)

(

ga[cRd]b − gb[cRd]a

)

+
2

(D − 2)(D − 1)
Rga[cgd]b . (5.1)
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where τ , ρ and σ are orthogonal projectors defined as13

τ ba = δ0aδ
b
0 , ρba = δ1aδ

b
1 , σb

a =
D
∑

m=2

δma δbm . (5.6)

The precise form of the projectors is not particularly relevant for our purposes. The

important point is that any possible invariant (Wn)i constructed from the contraction of

n Weyl tensors will be given by

(Wn)i|SSS =

(

−2χ(r)
(D − 3)

(D − 1)

)n

(wn)i , (5.7)

where (wn)i stands for the constant resulting from the contraction induced on the w tensors,

which we can identify with ci in (5.2). Therefore, (Wn)i|SSS takes the form (5.2) with F (r)

given by the function between brackets. �

Now, we are ready to formulate one of the main results of the paper:

Theorem 2 Let us consider the set of all irreducible curvature invariants of a given order

which do not involve covariant derivatives of the curvature. If one of these invariants is

completable to a GQTG and it does not vanish when evaluated on a static and spherically

symmetric ansatz (2.2), then all the invariants are completable.

Proof. Let the order of these invariants be 2n in derivatives of the metric, i.e., n in curva-

ture. Since they are irreducible and they do not contain derivatives of the curvature, they

are formed from contractions of a product of n Riemann tensors. We can write schemat-

ically Li = (Riemn)i, where the subscript i denotes again a specific way of contracting

the indices. We can consider an alternative basis by replacing the Riemann tensor by

the Weyl tensor in the expressions of these densities. Both ways of expressing these in-

variants are equivalent since they differ by terms containing Ricci curvatures, which are

reducible. We denote the densities resulting from replacing Rabcd → Wabcd everywhere in

the Li by L̃i = (Wn)i. Next, let us use the hypothesis of Theorem 2, which consists in

assuming that one of the densities, which we denote L̃i0 , is completable to a GQTG. As

we explained in section 2, the condition that determines if a given density belongs to the

GQTG class exclusively depends on the evaluation of the density on the general static and

spherically symmetric (SSS) metric ansatz (2.2), i.e., on the way the corresponding density

depends on the radial coordinate r. But from Theorem 1 we know that all order-n invari-

ants constructed from contractions of the Weyl tensor are proportional to each other when

evaluated on (2.2), in the sense that the dependence on the radial coordinate is identical

for all i, and given by a fixed function — which we called F (r)n in (5.2). Then, since by

assumption L̃i0

∣

∣

SSS
6= 0, all invariants L̃i are proportional to L̃i0 when evaluated on SSS

metrics. As a consequence, the fact that L̃i0

∣

∣

SSS
is completable implies that all the rest of

densities of order n are, which concludes the proof. �

The result can be reformulated as follows:

13Namely, they satisfy ττ = τ , ρρ = ρ, σσ = σ, τρ = τσ = ρσ = 0. Also, their traces read Trτ = Trρ = 1,

Trσ = D − 2.
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Corollary 1 Let us consider the curvature invariants of a given order which do not involve

derivatives of the curvature and let us assume that there exists one irreducible and non-

trivial GQTG density formed from these invariants. Then, all invariants are completable

to GQTG densities.

Recall that “irreducible” means that the density does not vanish on Ricci-flat metrics up

to total derivatives whereas “non-trivial” means that it does not vanish for SSS metrics.

We have compelling evidence that this type of GQTG theories exist at every order n in

curvature and for all D — and there are actually many of them, the number increasing

rapidly with n. For instance, in D = 4 examples of GQTG have been constructed explicitly

up to n = 10 in [65, 82], where the general form of the equation satisfied by the metric

function f(r) in the SSS ansatz (2.2) was shown to have a simple dependence on the

curvature order n— see (2.5) above. Besides, in that case, the n > 3 terms were constructed

from products of a few n = 2 and n = 3 densities, and they already sufficed to produce

examples of GQTG densities. Many more GQTGs could have been constructed had we not

restricted the analysis to those building blocks (or even with different combinations of the

same densities). Additional examples of GQTGs in D > 4 and various curvature orders

have also appeared in various papers [62, 64, 74, 75] — e.g., cubic and quartic densities up

to D = 19 have been explicitly verified to exist in [62] and [64]. For D → ∞, the hypothesis

of Corollary 1 is guaranteed to be true for arbitrary n, since all Lovelock densities X2n are

irreducible and non-trivial in that case — naturally, for finite D the Lovelock family does

not suffice, since all densities X2n with n ≥ ⌈D/2⌉ are either topological or trivial.

In sum, since: a) at a given order in curvature, we only need a single irreducible

and non-trivial GQTG to exist in order for all invariants to be rewritable as GQTGs; b)

numerous evidence strongly suggests that the number of independent irreducible and non-

trivial GQTGs actually grows rapidly with the curvature order, we are extremely confident

to claim that, in any higher-curvature gravity, the terms which do not involve covariant

derivatives of the curvature can always be written as a sum of GQTG densities by means

of field redefinitions.

Let us also note that the result above shows the existence of a field redefinition that

takes the Lagrangian L(gab, Rabcd) to a sum of GQTGs, but it does not guarantee unic-

ity. Indeed, if at a given order one has several types of non-trivial GQTGs — namely,

Quasi-topological and proper GQTG — it is possible to map the Lagrangian to a sum

of terms whose equations for SSS metrics match the ones of the chosen theory (again,

Quasi-topological or proper GQTG). More generally, the Lagrangian can be mapped to a

combination of those terms. Note that this implies that Quasi-topological gravities and

GQTGs are related by field redefinitions.14

14Imagine, for instance, that we start with a Quasi-topological density Z and a GQTG density S of

certain order. Replacing all Riemann tensors by Weyl tensors gives rise to new densities Z̃ = Z+RCZ and

S̃ = S+RCS where RCS,Z are certain reducible densities involving Ricci curvatures. Now, from Theorem 1

we know that Z̃|SSS = cS̃|SSS, for some constant c. Then, it follows that Z = c(S + RCS) − RCZ + T ,

where T is a trivial GQTG density, i.e., one such that T |SSS = 0. Naturally, S ′ ≡ cS+T is another GQTG

density. It follows that Quasi-topological densities can be mapped to GQTG densities of the same order —

and viceversa — via field redefinitions, the mapping generically involving trivial GQTG densities (which

play no role as far as the equations of SSS metrics are concerned).
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Before closing this section, let us mention that our conclusions also hold if one includes

parity-breaking terms in the effective action, i.e., those that involve the Levi-Civita symbol

ǫa1...aD . In fact, all such terms vanish for spherically symmetric configurations, hence all

of them trivially belong to the GQTG family.

6 Terms involving covariant derivatives of the Riemann tensor

In the previous section, we provided a strong argument in favor of the possibility that all

L(gab, Rabcd) gravities can be either removed from the action or written as GQTGs using

field redefinitions. Let us now see what happens with higher-curvature terms involving

covariant derivatives of the Riemann tensor. The role of these terms is less clear. In

particular, they have not been used to construct GQTGs so far — although, for what we

know, this type of theories should exist as well. On the other hand, as we saw in section 4,

up to six-order in derivatives all these terms are actually reducible. This is no longer the

case at quartic order in curvature.

In order to gain some insight about the general behavior of this kind of terms, let us

consider what happens at that order. There exist 26 independent quartic invariants which

do not involve covariant derivatives of the Riemann tensor, namely — see e.g., [28, 64, 101],

S(8) =

∫

dDx
√

|g|
[

γ1R
abcdR e f

a c R g h
e b Rfgdh + γ2R

abcdR e f
a c R g h

e f Rbgch (6.1)

+ γ3R
abcdR ef

ab R g h
c e Rdgfh + γ4R

abcdR ef
ab R gh

ce Rdfgh + γ5R
abcdR ef

ab R gh
ef Rcdgh

+ γ6R
abcdR e

abc RfghdR
fgh

e + γ7(RabcdR
abcd)2 + γ8R

abRcdefR g
c eaRdgfb

+ γ9R
abRcdefR g

cd aRefgb + γ10R
abR c d

a b RefgcR
efg

d + γ11RR c d
a b R e f

c d R a b
e f

+ γ12RRcd
abR

ef
cdR

ab
ef + γ13R

abRcdRe f
a cRebfd + γ14R

abRcdRe f
a bRecfd

+ γ15R
abRcdRef

acRefbd + γ16R
abRc

bR
def

aRdefc + γ17RefR
efRabcdR

abcd

+ γ18RRabcdR
abc

eR
de + γ19R

2RabcdR
abcd + γ20R

abRacbdR
ecRd

e

+ γ21RRabcdR
acRbd + γ22R

b
aR

c
bR

d
cR

a
d + γ23

(

RabR
ab
)2

+ γ24RRb
aR

c
bR

a
c

+γ25R
2RabR

ab + γ26R
4
]

.

Of these, at most the first 7 are irreducible — this happens for D > 7. Now, in [64]

several non-trivial and irreducible GQTG theories were constructed using those invariants.

Since by virtue of Corollary 1 we only need one, this immediately implies that the 26

invariants can always be written as a sum of GQTGs using field redefinitions. Hence, just

like in the quadratic and cubic cases, all quartic gravities of the form L(gab, Rabcd) can be

written as GQTGs.

What about terms with covariant derivatives of the Riemann tensor? Looking at [101],

we find five apparently irreducible terms of that kind, namely

L1 = Rabcd∇bR
efg

a∇dRefgc , (6.2)

L2 = Rabcd∇cR
efg

a∇dRefgb , (6.3)
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L3 = Rabcd∇gRe f
a c∇gRebfd , (6.4)

L4 = RabcdR efg
a ∇d∇gRbecf , (6.5)

L5 = ∇e∇fRabcd∇e∇fRabcd . (6.6)

However, a careful analysis — using commutation of covariant derivatives, the symme-

tries of the Riemann tensor and the Bianchi identities15 — reveals that all of them can

be decomposed as a sum of total derivative terms plus quartic curvature terms (without

covariant derivatives) plus terms with Ricci curvature (hence reducible). This is, they can

be expressed (for each i) as

Li = ∇aJ
a
(i) +Q(i) +RabF

ab
(i) , (6.7)

for certain tensors Ja
(i) and F ab

(i) and some quartic density Q(i). In order to illustrate this,

let us show how L1 is reduced to an expression of the form (6.7). First, we have

L1 = Rabcd∇bR
efg

a∇dRefgc =
1

4
Rabcd∇gRef

ab∇gRefcd (6.8)

=
1

4
∇g

(

Rabcd∇gRef
abRefcd

)

− 1

4
Rabcd∇2Ref

abRefcd −
1

4
∇gR

abcd∇gRef
abRefcd ,

where in the first equality we applied the differential Bianchi identity twice, and in the

second we “integrated by parts”. Now we note that the last term in the second line is

actually −L1, so we get

L1 =
1

8
∇g

(

Rabcd∇gRef
abRefcd

)

− 1

8
Rabcd∇g∇gR

ef
abRefcd . (6.9)

Then we are done, because the Laplacian of the Riemann tensor decomposes, using a

schematic notation, as ∇2Riem = ∇∇Ricci + Riem2,16 so we can indeed express L1 as

in (6.7). Proceeding similarly with the rest of terms we arrive at the same conclusion.

Since total derivatives are irrelevant for the action, and since we can remove all terms

containing Ricci curvatures by means of field redefinitions, the terms with covariant deriva-

tives of the Riemann tensor only change the coefficients of the quartic terms, which are

already present in the action. Hence, from the point of view of effective field theory, these

densities are meaningless and can be removed. In addition, we conclude that all eight-

derivative terms can be recast as a sum of GQTGs by implementing field redefinitions.

Let us now turn to a more general case. Any higher-derivative gravity can be written

as the span of all monomials formed from contractions of ∇a, Wabcd and Rab. Such a set

can be written schematically as A = ∪q,n,r∈NAq,n,r where Aq,n,r = {∇q ×Wn×Ricr}. Out

15Recall that these read: Rabcd +Racdb +Radbc = 0 and ∇eRabcd +∇cRabde +∇dRabec = 0 respectively.
16Explicitly, one has [105]

∇e∇eRabcd =+ 2∇[a|∇cR|b]d + 2∇[b|∇dR|a]c − 4
[

R
p q
a bRp[c|q|d] +R

p q

a [c|Rpbq|d]

]

(6.10)

+ g
pq [RqbcdRpa +RaqcdRpb] .
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of these subsets, the only ones susceptible of containing irreducible terms are Aq,n,0, so the

ultimate goal would be to prove that all elements in

Iq =
⋃

n∈N

Aq,n,0 (6.11)

are completable to a GQTG. First, let us note that these sets can be split according to the

partitions of the number of covariant derivatives, q,

Iq =
p(q)
⋃

k=1

IPk(q)
q , (6.12)

where p(q) is the the number of partitions of q and Pk(q) denotes the k-th partition of q

(we assume partitions to be ordered in some way). For instance, the first few cases are: I0,
which is the set of monomials formed from general contractions of Weyl tensors; I2, which is

the set of monomials formed from Weyl tensors and two covariant derivatives — this can be

in turn split as the union of I{1,1}
2 and I{2}

2 : in the former set the two covariant derivatives

act on two different Weyl tensors, while in the second the two derivatives act on the same

Weyl; I4, which contains terms with four covariant derivatives and an arbitrary number of

Weyl tensors — this can be decomposed as I4 = I{1,1,1,1}
2 ∪ I{2,1,1}

2 ∪ I{2,2}
2 ∪ I{3,1}

2 ∪ I{4}
2 .

Observe that not all subsets are independent. For example, we see that any term belonging

to I{2}
2 can be written as a sum of terms in I{1,1}

2 upon integration by parts. For the same

reason, for q = 4 it is enough to keep the subsets I{1,1,1,1}
2 , I{2,1,1}

2 and I{2,2}
2 .

We know that all terms in I0 can be completed to GQTGs, and the purpose of the

remainder of this section is to show explicitly that all terms in I2 satisfy the same property.

We expect the trend to go on for all sets Iq but a general proof seems quite challenging —

not so much a case-by-case partial proof for the following Iq≥4.

As we have said, the only subset of I2 which needs to be considered is I{1,1}
2 . Any

term belonging to this subset can be written schematically as

I{1,1}
2 ∋ R{1,1}

2 = Wn∇W∇W , (6.13)

for some value of n. We saw in (5.3) that, when evaluated on a SSS metric the Weyl tensor

has a very simple structure so that any scalar formed from it is proportional to the same

quantity. In appendix B we show that any term of the form (6.13) can be written in turn as

R{1,1}
2

∣

∣

∣

SSS
= f(r)χn

(

c1(χ
′)2 + c2

χχ′

r
+ c3

χ2

r2

)

, (6.14)

where χ′ = dχ(r)/dr and c1,2,3 are constants. Thus, there are at most three linearly

independent terms in I{1,1}
2 when one considers SSS metrics. Hence, if we are able to find

three independent terms in I{1,1}
2 which are completable to a GQTG, that will imply that

all densities in I{1,1}
2 are completable. Three possible terms of that type are

W{1,1}
1 =

n
∑

k=0

∇bW
a3a4

a1a2 (Wn−k) a5a6
a3a4 ∇bW a7a8

a5a6 (Wn) a1a2
a7a8 , (6.15)

W{1,1}
2 =∇bW

bcd
a1 ∇cW

a3a4
da2

W a5a6
a3a4 . . .W a1a2

a2n+1a2n+2
, (6.16)

W{1,1}
3 =∇bW

bcde∇fW
f
cdeW

a3a4
a1a2 . . .W a1a2

a2n−1a2n , (6.17)
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where (Wn) df
bc denotes a n-Weyl product of the form W a1a2

bc W a3a4
a1a2 . . .W df

a2na2n+1 .

We can check that when evaluated on a SSS metric the previous terms are linearly inde-

pendent. For instance, in D = 4 we obtain the expressions

W{1,1}
1 =

3−n−24
(

(−1)n + 2n+1
)

f(r)(−χ)n
(

(n+ 1)r2 (χ′)2 + 6χ2
)

r2
, (6.18)

W{1,1}
2 = 3−n−1 (2n − (−1)n) f(r)(−χ)n

(

χ′χ

r
+ 3

χ2

r2

)

, (6.19)

W{1,1}
3 = f(r)

(

χ′ + 3
χ

r

)2
(−χ)n

(2− (−1)n−122−n)

3
, (6.20)

which are linearly independent for any integer value of n. Hence, any term of the form (6.14)

can be expressed a sum of these three combinations (the same conclusion holds for arbitrary

D). Therefore all invariants in I{1,1}
2 can be expressed as a linear combination of these

terms when evaluated on SSS metrics. This can be alternatively written as

R{1,1}
2 = C1W{1,1}

1 + C2W{1,1}
2 + C3W{1,1}

3 + . . . , (6.21)

where the ellipsis denote terms that vanish on SSS metrics — which are trivially com-

pletable to a GQTG. Now, it is easy to check that, by means of field redefinitions, the

densities W{1,1}
1,2,3 are completable. Actually, both W{1,1}

2 and W{1,1}
3 are reducible because

they are proportional to the divergence of Weyl tensor, which depends only on Ricci cur-

vatures

∇cW
c
abd =

2(D − 3)

D − 2

[

∇[bRd]a −
1

2(D − 1)
ga[d∇b]R

]

. (6.22)

On the other hand, W{1,1}
1 can be written as

W{1,1}
1 =∇b

(

∇bW a3a4
a1a2 W a5a6

a3a4 W a7a8
a5a6 . . .W a1a2

a2n+3a2n+4

)

−∇2W a3a4
a1a2 W a5a6

a3a4 W a7a8
a5a6 . . .W a1a2

a2n+3a2n+4
.

(6.23)

Since the Laplacian of the Weyl tensor can be expressed as ∇2Weyl = ∇∇Ricci + Riem2,

we conclude that, by means of field redefinitions, W{1,1}
1 can be reduced to a sum of terms

without covariant derivatives. We know that those terms are completable, so the densities

W{1,1}
1,2,3 and any other R{1,1}

2 are also completable. The result is actually stronger than that:

since the densities W{1,1}
1,2,3 can be completed to a GQTG without covariant derivatives of

the Riemann tensor, this implies that any other R{1,1}
2 can be completed to a GQTG which,

when evaluated on a SSS metric, is equivalent to a GQTG without covariant derivatives.

In sum, we have shown that, at least for densities including eight (or less) derivatives

of the metric as well as for densities constructed from an arbitrary number of Riemann

tensors and two covariant derivatives, all densities can be mapped to GQTGs. In all cases,

those GQTGs become equivalent to GQTGs which do not involve covariant derivatives

when evaluated on SSS metrics. We postpone a discussion on the role of this kind of terms

in ever more general situations to section 8. Before doing so, we wish to illustrate, for a

particularly charismatic higher-derivative gravity action, how the mapping to a GQTG is

done and how this preserves the thermodynamic properties of black hole solutions.
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7 Type-IIB effective action at O(α′3) as a GQTG

In this section we show how the gravitational sector of the Type-IIB String Theory effective

action on AdS5×S
5 truncated at (sub)leading order in α′ can be mapped to a generic quartic

GQTG. Then we show that, in spite of the very different appearance of the equations of

motion evaluated on a SSS ansatz in both frames — and therefore of the corresponding

black hole metrics — their thermodynamic properties exactly match, as expected.

The usual ten-dimensional Type-IIB supergravity action receives stringy corrections

weighted by powers of α′. The first correction appears at α′3 order [2, 4], so schematically

we have

SIIB = S
(0)
IIB + α′3S

(1)
IIB + . . . , (7.1)

where S
(0)
IIB is the usual two-derivative supergravity action [106], and the dots stand for

subleading corrections in α′. When the theory is considered in A5 × S
5 where A5 is a

negatively curved Einstein manifold, it is consistent to truncate all fields except the metric

and it is possible to write an effective action for the five-dimensional metric [56, 107, 108].

This is given by [53, 109]

SIIBA5×S5
[gab] =

1

16πG

∫

d5x
√

|g|
[

R+
12

ℓ2
+

ζ(3)

8
α′3W 4

]

, (7.2)

where W 4 is a particular combination of contractions of four Weyl tensors given by

W 4 =

(

WabcdW
ebcf +

1

2
WadbcW

efbc

)

W ag
heW

hd
fg . (7.3)

As we mentioned in section 6, at quartic order in curvature, there are 26 invariants

involving contractions of the Riemann tensor of the metric — see (6.1). The last 19 densities

involve explicit Ricci tensors, so they are reducible and we can use them to complete the

Type-IIB effective action in (7.2) to GQTGs by means of field redefinitions. The structure

of quartic GQTGs was completely characterized in [64]. As usual in D ≥ 5, there exist

three kinds of terms: those which belong to the Quasi-topological class (including the

one previously constructed in [74] and the quartic Lovelock density X8) — namely, their

contribution to the equation which determines the metric function f(r) when the SSS

ansatz (2.2) is considered is algebraic; those which contribute with up to two derivatives

to the equation of f(r); those which do not contribute to the equation of f(r) at all. As

explained in section 2, in spite of the degeneracy of GQTG densities, there are only two

functional modifications of the equation of f(r) at each curvature order, so when the full

set of n = 4 GQTG invariants is introduced, the different couplings only appear summed

to each other in two groups in front of each kind of contribution to the equation as in (2.6).

Let us now consider the following metric redefinition

gab → gab −
ζ(3)

8
α′3

(

Ĉab −
1

3
Ĉgab

)

, (7.4)

where Ĉab is some cubic-curvature rank-2 symmetric tensor and Ĉ = Ĉabg
ab. The original

action (7.2) is transformed to

S̃ =
1

16πG

∫

d5x
√

|g|
[

12

ℓ2
+R+

ζ(3)α′3

2ℓ2
Ĉ +

ζ(3)

8
α′3

(

W 4 +RabĈab

)

]

, (7.5)
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up to subleading terms in α′. Observe that the presence of the cosmological constant gives

rise to the appearance of a cubic contribution. The most general Ĉab we can write is17

Ĉab = a8R
cdefR g

c eaRdgfb + a9R
cdefR g

cd aRefgb + a10R
c d

a b RefgcR
efg

d (7.6)

+ a11gabR
c d

g h R e f
c d R g h

e f + a12gabR
cd

gh R ef
cd R gh

ef + a13R
cdRe f

a cRebfd

+ a14R
cdRe f

a bRecfd + a15R
cdRef

acRefbd + a16R
c
bR

def
aRdefc + a17RabRcdefR

cdef

+ a18gabRghcdR
ghc

eR
de + b18RRghcaR

ghc
b + a19RabRRghcdR

ghcd + a20RacbdR
ecRd

e

+ b20R
ghRgahdR

d
b + a21gabRghcdR

gcRhd + b21RRgacbR
gc + a22R

c
a Rbc

+ a23RabRefR
ef + a24gabR

d
c R e

d R c
e + b24RR c

a Rbc + a25gabRRefR
ef

+ b25R
2Rab + a26gabR

3 .

Then we have

RabĈab = a8R
abRcdefR g

c eaRdgfb + a9R
abRcdefR g

cd aRefgb + a10R
abR c d

a b RefgcR
efg

d (7.7)

+ a11RR c d
a b R e f

c d R a b
e f + a12RR cd

ab R ef
cd R ab

ef + a13R
abRcdRe f

a cRebfd

+ a14R
abRcdRe f

a bRecfd + a15R
abRcdRef

acRefbd + a16R
abRc

bR
def

aRdefc

+ a17RefR
efRabcdR

abcd + (a18 + b18)RRabcdR
abc

eR
de + a19R

2RabcdR
abcd

+ (a20 + b20)R
abRacbdR

ecRd
e + (a21 + b21)RRabcdR

acRbd + a22R
b
aR

c
bR

d
cR

a
d

+ a23

(

RabR
ab
)2

+ (a24 + b24)RRb
aR

c
bR

a
c + (a25 + b25)R

2RabR
ab + a26R

4 ,

as well as

Ĉ = (a8 + 5a11)R
c d

a b R e f
c d R a b

e f + (a9 + 5a12)R
cd

ab R ef
cd R ab

ef (7.8)

+ (a10 + a13 + a15 + a16 + 5a18)RabcdR
abc

eR
de + (a17 + b18 + 5a19)RabcdR

abcdR

+ (a14 + b20 + 5a21)RabcdR
acRbd + (a20 + a22 + 5a24)R

b
a R c

b R a
c

+ (b21 + a23 + b24 + 5a25)RabR
abR+ (b25 + 5a26)R

3 .

Imposing the terms Ĉ and W 4 + RabĈab to be of the GQTG type independently, we find

the following constraints

a10 =− 43

32
− 13σ

32
− a8

10
− 6a9

5
, (7.9)

a12 =
1

16
+

σ

16
− a8

10
− a9

5
− a11

2
, (7.10)

a17 =
3451

2880
+

1241σ

2880
+

3a8
100

+
3a9
50

− 7a13
40

− 25a14
72

− 19a15
180

− 11a16
45

, (7.11)

a18 =− 113

640
− 233σ

640
+

31a8
50

+
6a9
25

+ 3a11 −
a13
5

− a15
5

− a16
5

, (7.12)

b18 =− 43

640
− 13σ

640
+

7a8
100

− 9a9
25

− a13
5

− a15
5

− a16
5

, (7.13)

17We denote the different coefficients by ai and bi. The ai correspond to terms which, when contracted

with Rab, produce a scalar numbered as in (6.1); the bi are used in cases in which there is a second term

which produces the same scalar.
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a19 =− 449

2880
− 17σ

1440
− 19a8

200
+

3a9
50

− 3a11
8

+
3a13
40

+
5a14
72

+
11a15
180

+
4a16
45

, (7.14)

b20 =− 439

144
− 83σ

48
+

3a8
5

− 24a9
5

− 2a13 +
4a14
3

− 8a15
3

− 4a16
3

− a20 , (7.15)

a21 =
1553

1440
+

391σ

480
− 18a8

25
+

24a9
25

− 3a11 +
2a13
5

− 7a14
15

+
8a15
15

+
4a16
15

+
a20
5

, (7.16)

b21 =
253

288
+

41σ

96
− a8

5
+

6a9
5

+
3a13
10

− 11a14
30

+
a15
3

+
4a16
15

− a20
5

, (7.17)

a23 =− 539

810
− 11σ

90
− 4a8

25
+

56a9
75

+
a13
3

+
a14
90

+
17a15
45

+
13a16
45

− 7a22
30

, (7.18)

a24 =
27

64
+

27σ

64
− 2a8

5
− 2a11 −

a20
5

− a22
5

, (7.19)

b24 =
439

960
+

83σ

320
− 7a8

50
+

18a9
25

+
a13
5

− a14
5

+
2a15
5

+
a20
5

− 3a22
5

, (7.20)

a25 =− 599

1296
− 127σ

288
+

2a8
5

− 8a9
15

+
3a11
2

− a13
6

+
a14
9

− 2a15
9

− a16
9

+
a22
6

, (7.21)

b25 =− 317

5184
− 11σ

192
+

a8
20

− 7a9
30

− a13
24

+
a14
24

− a15
12

+
a22
6

, (7.22)

a26 =
1127

25920
+

41σ

960
− 7a8

200
+

7a9
150

− a11
8

+
a13
120

− a14
120

+
a15
60

− a22
30

. (7.23)

We have 10 free parameters, which can be chosen to be a8, a9, a10, a11, a13, a14, a15, a16,

a20, a22. However, we rewrote one of them, a10, in terms of another constant that we called

σ — this is convenient when studying black hole solutions as we show below.

7.1 Black hole solutions in the original frame

Let us first study the black hole solutions of the Type-IIB action in the original frame (7.2).

We extend the spherical symmetry of (2.2) to planar and hyperbolic geometries as well, so

that we search for solutions of the form

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+

r2

ℓ2
dΣ2

k , dΣ2
k =















ℓ2dΩ2
3 , for k = 1 ,

d~x23 , for k = 0 ,

ℓ2dΞ2
3 , for k = −1 .

(7.24)

The simplest way of computing the equations of motion is to use the reduced action method

— see e.g., [61, 63, 110, 111]. After plugging the metric ansatz (7.24) into (7.2) and taking

the corresponding functional derivatives with respect to N(r) and f(r), we proceed to solve

the subsequent equations of motion perturbatively in α′. Keeping only the leading (α′)3

correction, we find the following expressions for N(r) and f(r):18

f(r) = k +
r2

ℓ2

[

1− ω4

r4
+ γ

(

360ω12

r12
+

320ω12kℓ2

r14
− 285ω16

r16

)]

,

N(r) = Nk

(

1− γ
120ω12

r12

)

,

(7.25)

18Note that for general values of γ, the equations of motion of (7.2) evaluated on the (7.24) ansatz become

two fourth-order coupled differential equations for N(r) and f(r). This is in contrast with the GQTG frame,

in which the corresponding equations of motion reduce to a single second-order equation for a single metric

function — see (7.33) below — for general γ.
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where we introduced γ = ζ(3)α′3/(8ℓ6) and where Nk and ω4 are integration constants.

In particular, ω4 defined in this way is proportional to the total energy of the solutions.

In the k = −1 case, the expressions in (7.25) can be seen to agree with those appearing

in [108], but one should take into account that the integration constants have been chosen

differently. Now, the temperature T of any black hole solution of the type considered is

given by

T =
N(rh)f

′(rh)

4π
, (7.26)

where rh ≡ max{ri|f(ri) = 0} is the value of the radial coordinate at which the event

horizon is located. As a function of rh, the temperature and the parameter ω4 read

T =
Nk

4π

[

2k

rh
+

4rh
ℓ2

+ γ

(

60rh
ℓ2

− 20k4ℓ6

r7h
+

120k2ℓ2

r3h
+

160k

rh

)]

, (7.27)

ω4 = r4h + kℓ2r2h + 5γ
(

r2h + kℓ2
)3

(

15

r2h
+

7kℓ2

r4h

)

, (7.28)

where again we are working perturbatively in γ. Let us now compute the on-shell action of

these solutions in order to determine their free energy, from which we can obtain the rest of

relevant thermodynamic quantities. In order to do this, we need to include an appropriate

generalized Gibbons-Hawking-York term [94] as well as counterterms for the action (7.2).

To the best of our knowledge, specific boundary terms have not been constructed for

this theory. However, we can use the effective boundary terms introduced in [47]. In

that reference, it was argued that for theories with second-order linearized equations of

motion around maximally symmetric backgrounds, one can write an effective boundary

term that works for asymptotically AdS solutions. The prescription is that the same GHY

term and counterterms that appear for Einstein gravity must be multiplied by an overall

constant, which in the holographic context is identified with the universal contribution to

the entanglement entropy across a spherical region, a∗ — see e.g., [48, 112]. In the case of

the theory (7.2), the condition of second-order linearized equations is satisfied — in fact,

the Weyl4 term does not contribute to the linearized equations at all — and the charge a∗

coincides with the Einstein gravity one. Therefore, we can use directly the same boundary

terms and counterterms as for Einstein gravity [113–115], and the Euclidean action reads

SE
IIBA5×S5

= −
∫

M

d5x
√

|g|
16πG

[

R+
12

ℓ2
+ γℓ6W 4

]

−
∫

∂M

d4x
√
h

8πG

[

K − 3

ℓ
− ℓ

4
R
]

. (7.29)

The computation is more or less straightforward, and we get the result

SE
IIBA5×S5

=
βNkVk

16πGℓ5

[

3k2ℓ4

4
+ kℓ2r2h − r4h +

5γ

r4h

(

kℓ2 − 15r2h
) (

kℓ2 + r2h
)3
]

, (7.30)

where Vk is the dimensionful volume of the transverse space (for instance, V1 = 2π2ℓ3) and

β is the inverse temperature, corresponding to the Euclidean time periodicity. When we
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express this result in terms of the black hole temperature we get

SE
IIBA5×S5

=
Vk

32G

[

3kx− x3 ∓
(

x2 − 2k
)3/2

− 15

2
γ

(

k2

x
− 28kx+ 34x3 ± (6k − 30x2)

√

x2 − 2k

)]

,

(7.31)

where we have introduced the notation x = πℓT/Nk.

7.2 Black hole solutions in the GQTG frame

Let us now compare this result with the one corresponding to the transformed GQTG

frame (7.5). This theory possesses black hole solutions characterized by a single function,

namely, of the form

ds2 = −N2
kf(r)dt

2 +
dr2

f(r)
+

r2

ℓ2
dΣ2

k , dΣ2
k =















ℓ2dΩ2
3 , for k = 1 ,

d~x23 , for k = 0 ,

ℓ2dΞ2
3 , for k = −1 ,

(7.32)

where Nk is now a constant. It is convenient to write f = k+g(r)r2/ℓ2. Then, the equation

which determines the metric function reads

g −
(

1− ω4

r4

)

=− 5ζ(3)α′3

2048ℓ6
g′
[

− 8
(

2r3(1 + σ) + 3gr3(1 + 2σ) + 2kℓ2r(3 + 5σ)
)

g′2

+ 3r4(1 + 2σ)g′3 − 48(−1 + g)r
(

kℓ2 + gr2
)

(1 + σ)g′′

− 12g′
(

10g2r2(1 + σ) + kℓ2
(

−14(1 + σ) + r2(1 + 2σ)g′′
)

(7.33)

+ g
(

2
(

7kℓ2 − 5r2
)

(1 + σ) + r4(1 + 2σ)g′′
) )

]

,

where again ω4 is an integration constant related to the ADM energy of the solution.

Observe that, while there are a lot of independent free couplings, they all affect the equation

of g(r) in a very universal way controlled by the combination of coefficients given by σ.

Solving perturbatively the above equation one is left with

f(r) = k +
r2

ℓ2

[

1− ω4

r4
+ γ

(

5(5− 13σ)ω12

2r12
+

5kℓ2(3− 11σ)ω12

2r14
+

15(−1 + 3σ)ω16

2r16

)]

.

(7.34)

Besides, it is not difficult to solve exactly the equation above using numerical methods.

However, the most interesting aspect about GQTGs is that the thermodynamic proper-

ties of black holes can be determined exactly — namely, nonperturbatively in γ — and

analytically. First, expanding f(r) near the horizon, according to

f(r) =
4πT

Nk
(r − rh) +O

(

(r − rh)
2
)

, (7.35)
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and plugging this in (7.33), we get two equations that relate ω4, T and rh:

ω4 = kℓ2r2h + r4h −
5ℓ3γ

16r4h
(kℓ+ 2xrh)

2
[

k2ℓ3(3 + 2σ) (7.36)

+4kℓrh (−ℓx(3 + 2σ) + (1 + σ)rh) + 4xr2h (3ℓx(1 + 2σ)− 4(1 + σ)rh)
]

,

0 = 2rh
(

kL2 + 2rh (−ℓx+ rh)
)

+
5ℓ3γ

4r5h
(kℓ+ 2xrh)

2
(

k2ℓ3(3 + 2σ) (7.37)

+2kℓrh (−ℓxσ + rh + σrh)− 2x(1 + σ)r3h
)

,

where we defined again x = πℓT/Nk. These equations are analogous to the ones in (7.27),

but now they are exact for the theory (7.5). However, we only expect the thermodynamic

relations to match in both frames at first order in γ. At that order, one finds

T =
Nk

4π

[

2k

rh
+

4rh
ℓ2

+ γ
5
(

r2h + kℓ2
)

3
(

kℓ2(σ + 3)− 2(σ + 1)r2h
)

4πℓ2r7h

]

, (7.38)

ω4 = r4h + kℓ2r2h −
5γ

r4h

(

kL2 + r2h
)3 (

kL2σ + r2h(2σ − 1)
)

. (7.39)

These are different from the ones in (7.27). However, note that the relations T (rh) or ω(rh)

are not really physically meaningful. T (ω) is though, since ω4 is defined in both frames as

(proportional to) the total energy. One can check that, at leading order in γ this relation

has the same form in both frames. Finally, we compute the Euclidean action, for which

the same boundary terms as before are valid, namely

S̃E =− 1

16πG

∫

M
d5x

√

|g|
[

12

ℓ2
+R+

ζ(3)α′3

2ℓ2
Ĉ +

ζ(3)

8
α′3

(

W 4 +RabĈab

)

]

(7.40)

− 1

8πG

∫

∂M
d4x

√
h

[

K − 3

ℓ
− ℓ

4
R
]

.

Due to the properties of the GQTG theory, the action can be computed exactly: the

Lagrangian is a total derivative and the integration only requires knowing the solution

near the horizon (7.35) and asymptotically — see [47] for a similar explicit computation.

Since in both limits we know the exact form of f(r), we obtain the following exact result

S̃E =
Vk

16Gℓ4x

[

3

4
k2ℓ4 + 3kℓ2r2h + r3h (3rh − 4ℓx) (7.41)

−15ℓ3γ

16r4h
(kℓ+ 2xrh)

3
(

kℓ2(3 + 2σ)− 2ℓx(1 + 2σ)rh + 4(1 + σ)r2h
)

]

.

The last step is to use relation (7.37) to express S̃E as a function of the temperature. We

see that in general the action depends on σ. However, when we expand it at leading order

in γ the dependence on σ disappears and we get exactly the same result as in the original

frame given in (7.31).
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8 Discussion

A summary of our findings can be found in section 1.1. We close the paper with some

additional comments and conjectures. Firstly, based on the evidence presented here we

state the following:

Conjecture 1 Any higher-derivative gravity Lagrangian can be mapped, order by order,

to a sum of GQTG terms by implementing redefinitions of the metric of the form (3.2).

We know there are many theories satisfying the GQTG condition (2.4), and the amount

of terms we can modify in the action with field redefinitions is also very large. All in all,

there is so much freedom that field redefinitions seem to be able to bring the most general

action (3.8) into a sum of GQTG terms, order by order in the curvature.

Our main result is Theorem 2, which essentially tells us that if for a given order in

curvature there exists one GQTG of the form L(gab, Rabcd), then all densities of that type

and order are completable to a GQTG. Since we know by experience that those terms

exist for very high orders in curvature and general dimensions, this result virtually proves

that all L(Riemann) terms can be mapped to a GQTG. We would have to provide an

explicit construction of these terms in order to complete a formal proof. Such systematic

construction must be possible, but has not been carried out yet.

On the other hand we have seen that, interestingly, densities containing explicit co-

variant derivatives of the Riemann tensor do not seem to play any role. In fact, we have

checked that, up to eighth order, all terms involving derivatives of the Riemann tensor are

irrelevant — they can always be mapped to other terms which already appear in the action.

More generally, we have been able to prove that any term with two covariant derivatives

can be completed to a GQTG which is equivalent to a GQTG of the form L(gab, Rabcd)

when evaluated on a SSS metric. Note that the last claim is slightly different from stating

that the original term can be completed to a GQTG of the form L(gab, Rabcd). It means

that the GQTG to which the original density is completed may, in principle, contain co-

variant derivatives of the curvature, but it is guaranteed that those terms vanish for a SSS

metric. We argued that the previous conclusion may, very likely, extend to densities with

an arbitrary number of covariant derivatives, which suggests a stronger conjecture:

Conjecture 2 Any higher-derivative gravity Lagrangian can be mapped, order by order, to

a sum of GQTG terms which, when evaluated on a SSS metric, are equivalent to GQTGs

of the L(gab, Rabcd) type.

If true, the second statement in this conjecture implies that we can study the spher-

ically symmetric black holes of the most general higher-derivative gravity effective action

by analyzing only the solutions of the GQTGs of the form L(gab, Rabcd) — like in the ex-

ample of section 7. While, in general, the profile of the solutions will be different in every

frame, recall that black hole thermodynamics is invariant under the change of frame. That

kind of analysis was already performed in D = 4 for a general GQTG involving arbitrarily

high curvature terms [65]. It revealed a high degree of universality for the thermodynamic
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behavior of the Schwarzschild black hole generalizations, including asymptotically flat sta-

ble small black holes and infinite evaporation times. Our findings here suggest that those

results may actually extend to arbitrary higher-derivative theories.

The conclusion is that theories of the GQTG class are not just toy models with inter-

esting properties. According to our results, they capture, at the very least, a very large

part of all possible effective theories of gravity, and very likely — if Conjecture 2 is true —

they capture all of them. From this point of view, we could think of GQTGs as the most

general EFT expressed in a frame in which the study of spherically symmetric black holes

is particularly simple and universal.

As mentioned in section 2, a certain subset of four-dimensional GQTGs possess second-

order equations for the scale factor when evaluated on a Friedmann-Lemâıtre-Robertson-

Walker ansatz, which gives rise to a well-posed cosmological evolution [80–82]. The possi-

bility that in fact all D = 4 higher-derivative effective actions can be mapped to GQTGs

belonging to this particular subset does not sound unreasonable to us and deserves further

exploration. More generally, assuming Conjecture 2 and/or Conjecture 1 hold, one could

try to impose further constraints on the GQTG family of theories targeted by the field

redefinitions and then provide refinements of those conjectures.

Note added. Recently, the existence of Quasi-topological and GQTG densities of arbi-

trary orders and in general dimensions was proven in [116]. This elevates the status of

Conjecture 1 to that of a Theorem for L(gab, Rabcd) gravities, and also for the classes of

terms involving covariant derivatives of the Riemann tensor described above.
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A Redefining the metric

Implementing a differential change of variables directly in the action can be problematic

if one is not careful enough. In order to see this, let us consider the equations of motion

of g̃ab — defined so that gab = g̃ab +Kab — by computing the variation of the new action
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S̃[g̃ab] = S[gab]:
19

δS̃

δg̃ab
=

δS

δgab
+

δS

δgef

δKef

δg̃ab

∣

∣

∣

∣

∣

gab=g̃ab+Kab

. (A.2)

Now, it is clear that we can always solve these equations if

δS

δgab

∣

∣

∣

∣

∣

gab=g̃ab+Kab

= 0 . (A.3)

In other words, implementing the change of variables directly in the equations of the

original theory produces an equation that solves the equations of S̃. However, the equations

of S̃ contain more solutions. These additional solutions are spurious and appear as a

consequence of increasing the number of derivatives in the action, so they should not be

considered. A possible way to formalize this intuitive argument consists in introducing

auxiliary field so that the redefinition of the metric becomes algebraic. Let us consider the

following action

Sχ =
1

16πG

∫

dD
√

|g|
[

− 2Λ +R+ f
(

gab, χabcd, χe1,abcd, χe1e2,abcd, . . .
)

(A.4)

+
∂f

∂χabcd
(Rabcd − χabcd) +

∂f

∂χe1,abcd
(∇e1Rabcd − χe1,abcd)

+
∂f

∂χe1e2,abcd
(∇e1∇e2Rabcd − χe1e2,abcd) + . . .

]

,

where we have introduced some auxiliary fields χabcd, χe1,abcd, . . .χe1...en,abcd. Let us con-

vince ourselves that this action is equivalent to (3.1). When we take the variation with

respect to χe1...ei,abcd, we get

∑

j=0

∂2f

∂χe1...ei,abcd∂χa1...aj ,ghmn

(

∇a1 . . .∇ajRghmn − χa1...aj ,ghmn

)

= 0 . (A.5)

In this way, we get a system of algebraic equations for the variables χe1...ei,abcd that always

has the following solution

χabcd = Rabcd , (A.6)

χe1,abcd = ∇e1Rabcd , (A.7)

χe1e2,abcd = ∇e1∇e2Rabcd , (A.8)

. . . (A.9)

This is the unique solution if the matrix of the system is invertible, and this is the expected

case if f is general. When we plug this solution back in the action we recover (3.1) (with

19Note that in the second term we used the chain law for the functional derivative, which is in general

given by
δS

δφ

δφ

δψ
=

δS

δφ

∂φ

∂ψ
− ∂a

(

δS

δφ

∂φ

∂aψ

)

+ . . . (A.1)

– 30 –



J
H
E
P
1
1
(
2
0
1
9
)
0
6
2

explicit Einstein-Hilbert and cosmological constant terms), so that both formulations are

equivalent.

Now let us perform the following redefinition of the metric in Sχ:

gab = g̃ab + αKab , where Kab = Kab

(

g̃ef , χefcd, χa1,efcd, . . .
)

, (A.10)

this is, Kab is a symmetric tensor formed from contractions of the χ variables and the

metric, but it contains no derivatives of any field. In this way, the change of variables is

algebraic and can be directly implemented in the action. We therefore get

S̃χ [g̃ab, χ] = Sχ [g̃ab + αKab, χ] , (A.11)

where, for simplicity, we are collectively denoting all auxiliary variables by χ. Now, both

actions are equivalent and so are the field equations:

δS̃χ

δg̃ab
=

δSχ

δgab

∣

∣

∣

∣

gab=g̃ab+αKab

, (A.12)

δS̃χ

δχ
=

δSχ

δχ
+ α

δSχ

δgab

δKab

δχ

∣

∣

∣

∣

gab=g̃ab+αKab

. (A.13)

Using the first equation into the second one, we see that the equations for the auxiliary

variables become δSχ/δχ = 0, which of course have the same solution as before (A.6).

When we take that into account, Kab becomes a tensor constructed from the curvature of

the original metric gab, so that we get

gab = g̃ab + αKab

(

g̃ef , Refcd,∇α1Refcd, . . .
)

. (A.14)

Then, according to eq. (A.12), the equation for the metric g̃ab is simply obtained from the

equation of gab by substituting the change of variables:

δSχ

δgab

∣

∣

∣

∣

gab=g̃ab+Kab

= 0 . (A.15)

However, note that this is not the same as substituting (A.6) in the action and taking the

variation. This would yield instead

δS̃χ [g̃ab, χ(g̃ab)]

δg̃ab
=

δS̃χ

δg̃ab
+

δS̃χ

δχ

δχ

δg̃ab
=

δSχ

δgab

∣

∣

∣

∣

gab=g̃ab+αKab

− α
δSχ

δgef

δKef

δχ

δχ

δg̃ab

∣

∣

∣

∣

gab=g̃ab+αKab

.

(A.16)

This equation is formally different to (A.12) due to the second term, and it is equivalent

to (A.2). The second term appears because the auxiliary variables χ(g̃µν) do not solve

the equation δS̃χ/δχ = 0, but δSχ/δχ = 0. However, we must solve δS̃χ/δχ = 0 in

order to get a solution of S̃χ [g̃ab, χ], and according to (A.13) this would only happen if

(δSχ/δgab)(∂Kab/∂χ) = 0, so that the only consistent solutions of (A.16) are those which

satisfy (A.15). This explains why the only solutions of (A.2) we should consider are the

ones satisfying (A.3).
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B W n∇W∇W terms on SSS backgrounds

In this appendix we show that (6.14) holds. In order to do that, it is convenient to carry

out the following change of radial coordinate in the SSS ansatz (2.2):

dr̃2 =
dr2

r2f(r)
. (B.1)

In these coordinates, the SSS metric reads

ds2 = r(r̃)2
[

− Ñ(r̃)2f̃(r̃)dt2 + dr̃2 + dΩ2
(D−2)

]

, (B.2)

where we denoted Ñ(r̃) = N(r(r̃)) and f̃(r̃) = f(r(r̃)).

We use a tilde to denote tensor components in the new coordinates. Direct computation

shows that the components of the Weyl tensor in these new coordinates have formally the

same expression as in the original ones, namely,

W̃ ab
cd = −2χ̃(r̃)

(D − 3)

(D − 1)
w̃ab

cd , (B.3)

where the tensorial structure w̃ab
cd is given by

w̃ab
cd = 2τ̃

[a
[c ρ̃

b]
d] −

2

(D − 2)

(

τ̃
[a
[c σ̃

b]
d] + ρ̃

[a
[c σ̃

b]
d]

)

+
2

(D − 2)(D − 3)
σ̃
[a
[c σ̃

b]
d] , (B.4)

and where ρ̃ba denotes the projection onto our new radial coordinate r̃. If we define H̃b
a =

τ̃ ba + ρ̃ba, we may express w̃ab
cd as

w̃ab
cd = H̃

[a
[c H̃

b]
d] −

2

(D − 2)
H̃

[a
[c σ̃

b]
d] +

2

(D − 2)(D − 3)
σ̃
[a
[c σ̃

b]
d] . (B.5)

Consequently, the covariant derivative of the Weyl tensor turns out to be

∇eW̃
ab
cd

∣

∣

∣

SSS
= −2

(D − 3)

(D − 1)

[

dχ̃

dr̃
δ1e w̃

ab
cd + χ̃(r̃) ∇ew̃

ab
cd

∣

∣

∣

SSS

]

, (B.6)

where we are denoting the components of the covariant derivative of any tensor T in our

new coordinates as ∇eT̃
cd...
ab... . Hence we just need to work out ∇ew̃

ab
cd

∣

∣

SSS
. Using (B.5),

we find

∇ew̃
ab
cd = 2∇eH̃

[a
[c H̃

b]
d] −

2

(D − 2)
∇eH̃

[a
[c σ̃

b]
d]

− 2

(D − 2)
∇eσ̃

[a
[c H̃

b]
d] +

4

(D − 2)(D − 3)
∇eσ̃

[a
[c σ̃

b]
d] .

(B.7)

Since ∇eH̃
b
a + ∇eσ̃

b
a = 0, we just need to compute ∇eH̃

b
a. A straightforward calculation

produces

∇eH̃
b
a =

1

(r(r̃))3
dr

dr̃
g̃egσ̃

f
aδ

b
1 +

1

r(r̃)

dr

dr̃
(D − 2)σ̃b

eδ
1
a . (B.8)
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Using this, the covariant derivative of the Weyl tensor gives

∇eW̃
ab
cd

∣

∣

∣

SSS
=− 2

(D − 3)

(D − 1)

dχ̃

dr̃
δ1e w̃

ab
cd − 2

(D − 3)

(D − 1)
χ̃(r̃)

dr

dr̃

[

2

(r(r̃))3
g̃ef σ̃

f
[c|δ

[a
1 H̃

b]
|d] (B.9)

+
2(D − 2)

r(r̃)
σ̃[a|
e δ1[cH̃

|b]
d] −

2

(D − 2)(r(r̃))3
g̃ef σ̃

f
[c|δ

[a
1 σ̃

b]
|d]

− 2

r(r̃)
σ̃[a|
e δ1[cσ̃

|b]
d] +

2

(D − 2)(r(r̃))3
g̃ef σ̃

f
[c|δ

[a
1 H̃

b]
|d] +

2

r(r̃)
σ̃[a|
e δ1[cH̃

|b]
d]

− 4

(D − 2)(D − 3)(r(r̃))3
g̃ef σ̃

f
[c|δ

[a
1 σ̃

b]
|d] −

4

(D − 3)r(r̃)
σ̃[a|
e δ1[cσ̃

|b]
d]

]

.

Equipped with (B.9), we may infer the general form of any invariant R{1,1}
2

∣

∣

∣

SSS
as defined

in (6.13). Since the R{1,1}
2

∣

∣

∣

SSS
are scalars, we can obtain them expressed in the origi-

nal coordinates by performing all calculations in the new ones and then substituting any

dependence on r̃ by the initial radial coordinate r.

We notice the following facts: a) any R{1,1}
2

∣

∣

∣

SSS
will have three types of terms: those

carrying a factor χ̃n (dχ̃/dr̃)2, those involving a factor χ̃n+1(dχ̃/dr̃)(dr/dr̃) and a third type

of terms with the common factor χ̃n+2(dr/dr̃)2; b) since r̃ is dimensionless, we infer that

the first type of terms is not weighted by any power of r, the second type is accompanied

by r−1 and the third type, by r−2. An additional overall factor of r−2 is required by

dimensional analysis. Using these observations, it follows that

R{1,1}
2

∣

∣

∣

SSS
=

χ̃n(r̃)

r(r̃)2

[

c1

(

dχ̃

dr̃

)2

+ c2
dχ̃

dr̃

dr

dr̃

χ̃(r̃)

r(r̃)
+ c3

(

χ̃(r̃)

r(r̃)

)2(dr

dr̃

)2 ]

, (B.10)

for some constants c1, c2, c3 which will depend on the specific term. Taking into account

that dr̃/dr = 1/(r
√

f(r)) we finally find

R{1,1}
2

∣

∣

∣

SSS
= χnf(r)

(

c1(χ
′)2 + c2

χχ′

r
+ c3

χ2

r2

)

, (B.11)

where χ′ = dχ/dr.
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[26] H. Lü, A. Perkins, C.N. Pope and K.S. Stelle, Black Holes in Higher-Derivative Gravity,

Phys. Rev. Lett. 114 (2015) 171601 [arXiv:1502.01028] [INSPIRE].

[27] T.C. Sisman, I. Gullu and B. Tekin, All unitary cubic curvature gravities in D dimensions,

Class. Quant. Grav. 28 (2011) 195004 [arXiv:1103.2307] [INSPIRE].

[28] P. Bueno, P.A. Cano, V.S. Min and M.R. Visser, Aspects of general higher-order gravities,

Phys. Rev. D 95 (2017) 044010 [arXiv:1610.08519] [INSPIRE].

[29] G. Anastasiou and R. Olea, From conformal to Einstein Gravity,

Phys. Rev. D 94 (2016) 086008 [arXiv:1608.07826] [INSPIRE].

[30] T.P. Sotiriou and V. Faraoni, f(R) Theories Of Gravity, Rev. Mod. Phys. 82 (2010) 451

[arXiv:0805.1726] [INSPIRE].

[31] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity,

Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[32] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[33] D.M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge

correlations, JHEP 05 (2008) 012 [arXiv:0803.1467] [INSPIRE].

[34] X.O. Camanho and J.D. Edelstein, Causality constraints in AdS/CFT from conformal

collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007 [arXiv:0911.3160]

[INSPIRE].

[35] J. de Boer, M. Kulaxizi and A. Parnachev, AdS7/CFT6, Gauss-Bonnet Gravity and

Viscosity Bound, JHEP 03 (2010) 087 [arXiv:0910.5347] [INSPIRE].

[36] A. Buchel, J. Escobedo, R.C. Myers, M.F. Paulos, A. Sinha and M. Smolkin, Holographic

GB gravity in arbitrary dimensions, JHEP 03 (2010) 111 [arXiv:0911.4257] [INSPIRE].

[37] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Lovelock Gravities and Black Holes,

JHEP 06 (2010) 008 [arXiv:0912.1877] [INSPIRE].

[38] S. Grozdanov and A.O. Starinets, On the universal identity in second order hydrodynamics,

JHEP 03 (2015) 007 [arXiv:1412.5685] [INSPIRE].

[39] T. Andrade, J. Casalderrey-Solana and A. Ficnar, Holographic Isotropisation in

Gauss-Bonnet Gravity, JHEP 02 (2017) 016 [arXiv:1610.08987] [INSPIRE].

[40] R.A. Konoplya and A. Zhidenko, Quasinormal modes of Gauss-Bonnet-AdS black holes:

towards holographic description of finite coupling, JHEP 09 (2017) 139

[arXiv:1705.07732] [INSPIRE].

[41] R.C. Myers and B. Robinson, Black Holes in Quasi-topological Gravity,

JHEP 08 (2010) 067 [arXiv:1003.5357] [INSPIRE].

[42] R.C. Myers, M.F. Paulos and A. Sinha, Holographic studies of quasi-topological gravity,

JHEP 08 (2010) 035 [arXiv:1004.2055] [INSPIRE].

– 35 –

https://doi.org/10.1088/0264-9381/27/22/225002
https://arxiv.org/abs/1003.4773
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4773
https://doi.org/10.1103/PhysRevD.94.104005
https://arxiv.org/abs/1607.06463
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06463
https://doi.org/10.1103/PhysRevLett.114.171601
https://arxiv.org/abs/1502.01028
https://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01028
https://doi.org/10.1088/0264-9381/28/19/195004
https://arxiv.org/abs/1103.2307
https://inspirehep.net/search?p=find+EPRINT+arXiv:1103.2307
https://doi.org/10.1103/PhysRevD.95.044010
https://arxiv.org/abs/1610.08519
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08519
https://doi.org/10.1103/PhysRevD.94.086008
https://arxiv.org/abs/1608.07826
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.07826
https://doi.org/10.1103/RevModPhys.82.451
https://arxiv.org/abs/0805.1726
https://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1726
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
https://doi.org/10.1088/1126-6708/2008/05/012
https://arxiv.org/abs/0803.1467
https://inspirehep.net/search?p=find+EPRINT+arXiv:0803.1467
https://doi.org/10.1007/JHEP04(2010)007
https://arxiv.org/abs/0911.3160
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.3160
https://doi.org/10.1007/JHEP03(2010)087
https://arxiv.org/abs/0910.5347
https://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5347
https://doi.org/10.1007/JHEP03(2010)111
https://arxiv.org/abs/0911.4257
https://inspirehep.net/search?p=find+EPRINT+arXiv:0911.4257
https://doi.org/10.1007/JHEP06(2010)008
https://arxiv.org/abs/0912.1877
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1877
https://doi.org/10.1007/JHEP03(2015)007
https://arxiv.org/abs/1412.5685
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5685
https://doi.org/10.1007/JHEP02(2017)016
https://arxiv.org/abs/1610.08987
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08987
https://doi.org/10.1007/JHEP09(2017)139
https://arxiv.org/abs/1705.07732
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.07732
https://doi.org/10.1007/JHEP08(2010)067
https://arxiv.org/abs/1003.5357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.5357
https://doi.org/10.1007/JHEP08(2010)035
https://arxiv.org/abs/1004.2055
https://inspirehep.net/search?p=find+EPRINT+arXiv:1004.2055


J
H
E
P
1
1
(
2
0
1
9
)
0
6
2

[43] L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic Calculations of Renyi

Entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].

[44] L.-Y. Hung, R.C. Myers and M. Smolkin, Twist operators in higher dimensions,

JHEP 10 (2014) 178 [arXiv:1407.6429] [INSPIRE].

[45] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic Entanglement Entropy in Lovelock

Gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[46] L. Bianchi, S. Chapman, X. Dong, D.A. Galante, M. Meineri and R.C. Myers, Shape
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