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for finding solutions of inhomogeneous Baxter equations involved. For the latter purpose
we present recursive construction of the dictionary for the solutions of Baxter equations
for given inhomogeneous parts. As an application of the proposed method we present the
computation of anomalous dimensions of twist 1 operators at six loop order. There is still
a room for improvements of the proposed algorithm related to the simplifications of arising
sums. The advanced techniques for their reduction to the basis of generalized harmonic
sums will be the subject of subsequent paper. We expect this method to be generalizable
to higher twists as well as to other theories, such as N' =4 SYM.
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1 Introduction

The study of integrability in quantum field theories with extended supersymmetry in space-
time dimensions greater then two is quite young subject. Nevertheless, we already have a
plenty of results, for a review and introduction see refs. [1-7]. Initially, this study was
started with the so called “experimental” tests of AdS/CFT duality [8-11] and soon
it was realized that many techniques from the world of two-dimensional integrable sys-
tems, such as sigma-model and spin-chain S-matrices [12-20], Asymptotic Bethe Ansatz
(ABA) [16, 21-26], Thermodynamic Bethe Ansatz (TBA) [27-30] as well as Y and T-
systems [31-37] can be also applicable for the computation of anomalous dimensions of
various operators in these theories. The most well understood theories at a moment are
N =4 SYM in four and N' = 6 super Chern-Simons theory (ABJM model) in three dimen-
sions [38]. The integrability based methods were also used in the study of quark-antiquark
potential [39-42], expectation values of polygonal Wilson loops at strong coupling and be-
yond [43-52], eigenvalues of BFKL kernel [53-56], structure constants [57-61], correlation



functions [57, 62-71], one-point functions of operators in the defect conformal field the-
ory [72-74] and observables at finite temperature such as Hagedorn temperature of N' =4
SYM [75, 76].

Eventually, a detailed study of TBA equations for super spin chains corresponding
to N = 4 SYM and ABJM models has led to their simplified alternative formulations
in terms of Quantum Spectral Curve (QSC), a set of algebraic relations for Baxter type
Q@-functions together with analyticity and Riemann-Hilbert monodromy conditions for the
latter [77-84]. Within the quantum spectral curve formulation one can relatively easy ob-
tain numerical solution for any coupling and state [85-87]. Also, QSC formulation allowed
to construct iterative analytic perturbative solutions for these theories at weak coupling
up to, in principle, arbitrary loop order [81, 88, 89]. The mentioned analytical solutions,
in contrast to numerical ones [85-87], are however limited to the situation when the states
quantum numbers are given explicitly by some integers. Recently, in refs. [90, 91] we
started developing techniques for the solution of QSC equations treating state quantum
numbers as parameters. The first technique based on Mellin space transform [90] turned
out to be quite complex to go for all-loop generalization. On the other hand, in ref. [91]
we suggested, that there should be relatively easy way to obtain a perturbative solution
for the spectrum of twist 1 operators in si(2) sector for ABJM model working directly in
spectral parameter space. The goal of this paper is to present the algorithm for pertur-
bative solution of ABJM quantum spectral curve at twist 1 in si(2) sector to any loop
order. The latter is based on the existence of a class of functions — products of rational
functions in spectral parameter with sums of Baxter polynomials and Hurwitz functions,
which is closed under elementary operations, such as shifts and partial fractions, as well
as differentiation. The introduced class of function is sufficient for finding solutions of in-
volved inhomogeneous Baxter equations using recursive construction of the dictionary for
the solutions of Baxter equations for given inhomogeneous parts. As an application of the
proposed method we present computations of anomalous dimensions of twist 1 operators at
six loop order. There is still a room for improvements of the proposed algorithm related to
the simplifications of the arising sums and we plan to present advanced techniques for their
reduction to the basis of generalized harmonic sums in one of our subsequent papers. The
presented approach has the potential for generalizations to higher twists of operators, as
well as to other theories such as N'=4 SYM and twisted N' =4 SYM and ABJM models.
Moreover, similar ideas should be also applicable to the study of BFKL regime within QSC
approach [54-56], as the latter also employs perturbative expansion in coupling constant g
in addition to the expansion in parameter w = S+ 1, so that the ratio ¢g?/w remains fixed.

This paper is organized as follows. In the next section we give necessary details on
ABJM quantum spectral curve equations putting emphasis on Pr-system. Section 3 con-
tains all the details about our solution of Riemann-Hilbert problem for Pr-system, used
for calculation of anomalous dimensions of twist 1 operators. Next, section 4 contains the
results for anomalous dimensions up to six loop order and their discussion. Finally, in
section 5 we come with our conclusion. Appendices and Mathematica notebooks contain
some details of our calculation together with notation used.



2 ABJM quantum spectral curve

As it was already mentioned in introduction, the ABJM model is the second most popular
playground for testing AdS/CFT correspondence. It is a three-dimensional N' = 6 Chern-
Simons theory based on the product U(N) x U(N) of two gauge groups with opposite
Chern-Simons levels +k. In the planar limit, where N, k — oo so that the 't Hooft coupling
A= % kept fixed, this theory has a dual description in terms of ITA superstring theory on
AdSy x CP3. The field content of ABJM model consists of two gauge fields 4,, and A;u
four complex scalars Y4 and four Weyl spinors 14 with matter fields transforming in the
bi-fundamental representation of the gauge group. The global symmetries of ABJM theory
with Chern-Simons level k£ > 2 are given by orthosymplectic supergroup OSp(6|4) [38, 92]
and the “baryonic” U(1), [92]. The bosonic subgroups of OSp(6|4) supergroup are related
to isometries of superstring background AdS, x CP3.

In the present paper we will be interested in the calculation of anomalous dimensions
of twist 1 gauge-invariant operators from si(2) sector for arbitrary spin values S. The latter
are given by single-trace operators of the form [93]:

tr {Dﬁ(YlYJ)L} . (2.1)

where twist 1 corresponds to L = 1. The expressions for anomalous dimensions can be con-
veniently obtained by solving the corresponding spectral problem for long-range OSp(6|4)
spin chain [24-26]. The most advanced framework for that! at the moment is offered
by quantum spectral curve (QSC) method. The latter is an alternative reformulation of
Thermodynamic Bethe Ansatz (TBA) as a finite set of functional equations: Q-system.
The most important advance is provided by the considerable simplification of the spec-
tral problem calculations. In the case of ABJM model QSC formulation was introduced
in refs. [82, 83], see also ref. [89]. To perform actual calculations of anomalous dimen-
sions we will use monodromy conditions for the part of ABJM Q-system known as Pu-
system [82, 83]. The latter consists of six functions P4, A = 1,...,6 and eight (4 + 4)
functions vy, 1%, a,b = 1, ... 4 satisfying nonlinear matrix Riemann-Hilbert problem [82, 83]:

Pu — Pup = Vol — Ul P — pob = _papb 4 b (2.2)
Uy = —Pu?, 7t = —P%y, . (2.3)
where
0 —P, —P, —P; 0 P, —P; Pg
P, 0 —-Ps—Ps ) -P, 0 P; —P,
P = . P = 2.4
b P, Ps, 0 —-Py P, -P; 0 P, (24)
P; P; P, O —Ps P, -P; 0

Here and in the following f will denote a function f analytically continued around one of
the branch points on the real axis. In addition, the P and v - functions should satisfy extra

! Accounting also for finite size corrections.



constraints

P;Ps = 1+ PyP3; — PPy, (25)
vy, = 0, (2.6)

Both P4 and v,, v* are functions of spectral parameter u. The P 4 functions have a single
cut on the defining Riemann sheet running from —2h to +2h (h is effective ABJM QSC
coupling constant?), while v,, % functions have an infinite set of branch cuts located at
intervals (—2h, +2h) 4 in,n € Z and satisfy simple quasi-periodicity relations

Da(u) = ePrg(u+1), %u) =e Pvi(u+1), (2.7)

where P is a state dependent phase fixed from self-consistency of QSC equations [83]. To
get QSC description of states in sl(2) sector (2.1) it is sufficient to consider Pr-system
reduced to symmetric, parity invariant states. The reduced Pr-system is identified by
constraints P5 = Pg = Py, v® = x?%1, and is written as [82, 83, 89]:

ﬂa - _Pab Xbcym (28)
Pu — Puy = valy — plg, (2.9)
where
00 0-1
0010
— 2.10
Xab 0-10 0 ( )
1 000

and v, satisfy now periodic/anti-periodic constraints (¢ = £1)
vy = Pyl = 5 2 (2.11)
where fI"l (u) = f (u+ in/2) and the constraint for P functions takes the form
(Py)? =1— PPy + PyP3. (2.12)

In addition to the above analytical properties of P and v functions it is required [83, 89|
that they are free of poles and stay bounded at branch points. The quantum numbers
of spin chain states under consideration, that is twist L, spin S and conformal dimension
A are encoded in the behavior of P, v functions at large values of spectral parameter
u [82, 83, 89:

P, ~ (Alqu, Agquil, ./43’11,+L+17 A4'LL+L, Aouo),

(A—L+S)A-L-S+1)(A+L—S+1)(A+L+5)
L2(2L+1)

A—L+S—1)A-L-S)(A+L-S+2)(A+L+S5+1)

Azdy = = (L+1)2(2L +1) , (213)

’In contrast to N' = 4 SYM, ABJM QSC coupling constant h is a nontrivial function of 't Hooft
coupling constant A, refs. [25, 94]. There is a conjecture for the exact form of h()), refs. [95, 96], made by

AAy = —

a comparison with the localization results.



and
Vg ~ (uA_L,uA+1,uA,uA+L+1) , (2.14)
which serve as boundary conditions for the Riemann-Hilbert problem under study. The

anomalous dimension v, which is our main interest here, is given by y = A — L — S.

3 Solution of Riemann-Hilbert problem for Pr-system

To solve the Riemann-Hilbert problem for fundamental Pv-system it is convenient to add
to original equations (2.8)—(2.9) their algebraic consequences [89]. First, from eq. (2.8)
using eq. (2.12) we obtain

Ve = =P, (3.1)
Next, dividing by P[122] equation (2.8) and subtracting from it the equation (3.1) divided by
Pis we get
(3] [—1] pltl  pCl
Bt ( 2 _ ?_bl]) Xl =0 (3.2)
Py Py Py Pp
We will also need the equations following from the sum of equations (2.8) and (3.1):
<V1 + UVF]) (po — (ha:)L) = p2 (1/2 + UV£2}> —p1 (1/3 + aui[f}) , (3.3)
<V2 + UV£2]) (Po + (hx)L) = P3 (Vl + 01/{2}) + P1 (7/4 + 0’1/4[12}) ) (3.4)
where p4 = (zh)*P4 and
V2 — 4h2
x=z(u) = H;—h (3.5)

is the Zhukovsky variable used to parameterize the single cut of P-functions on the defining
Riemann sheet.
In summary, the equations we are going to solve are given by

3 —1 1 ~1 1 -1
AR S & S o P, P’ il (3.6)
P[ll} P[l—l} P[ll] P[l—l] P[ll} P[l—l]
3 -1 1 -1 1 1
P W
1 —1 1 1 1 1 ; .
pll  pi pll  pi pll  pi
and
O'IJP] = Pov1 — Pon + Pius, (38)
01/%21 = —Povo + P3vy + Py, (3.9)
f’Q - PQ =0 <l/3l/£2] - I/1V£2}) y (310)
Py — Py =0 (v — i) | (3.11)
(ul + (TI/?]) (po - (h:U)L) =po (1/2 + UV£2}> - p1 (1/3 + O'I/:[f}) , (3.12)
(1/2 + 01/£2]> (po + (hz)*) = p3 (1/1 + O'I/FD +Pp1 (l/4 + O'VL[E}) . (3.13)



In addition, there are simple consequences of a given cut structure for v-functions, which
will be used during solution. Namely, the following combinations of functions

Vo (1) + Tg () = va(u) + ovP (u)
(2]

Vo(u) = Da(u) _ va(u) —ova (u) (3.14)
—AR2 u? — 4h?

don’t have cuts on the real axis. To find a perturbative solution of the above system of
equations we will use expansion of v,(u) functions in terms of QSC coupling constant h

u) = i R2=Ey W () (3.15)
1=0

together with the following parametrization of P-functions [88, 89]

P, =(zh) Ip; ( ii mk) (3.16)
1 — £ .

h > X h2l+k
Py = (2h) Fpo = (wh) " <x+ S = ) : (3.17)
k=2 1=0
0 L—1 oo h2l+k
Py = (zh) Lpg Z h21uL+ZZm Ip2yd —i—Z (() , (3.18)
=0 7=01=0 =0 x
2L oo co 0o l hQH_k
Ps=(zh) Fps= ZA Ip2y 2L+1+ZZI<: I 2 4 +>° | sk | (319
j=01=0 k=11=0

where we have also accounted for large u asymptotic of P functions (2.13). We would like
to note, that, due to residual gauge symmetry of QSC equations,® the coefficients mg.l), k:J@
in the above parametrization of P functions at twist L = 1 are left undetermined. Next,
the coefficients Aél), Agl) and cz(l,)C are some functions of spin S only and the mentioned
gauge freedom can be also used to set A; = 1 and Ay = h%. The analytical continuation

of P-functions through the cut on real axis is simple and is given by [88]:

Po= (") pe, § 3.20
a*(ﬁ) Pa pa*pam_ﬂ/m- ( )
In what follows we will consider perturbative solution in a special case of twist 1 operators,
so from now on we put L = 1.

3.1 Sums of Baxter polynomials

Recently, in ref. [91] we have suggested that the full all-loop solution of the P u-system (2.8)—
(2.9) can be obtained in terms of linear combinations of products of rational (in spectral
parameter u), Hurwitz-functions and Baxter polynomials and showed an explicit example
at four-loop order. The purpose of this paper is to present the algorithmic solution that

3See for details [89].



will work at any loop order. To do that, let us first introduce the necessary notation to
present a class of functions which will allow us to solve non-homogeneous Baxter equations
in next subsection.

The expressions for Baxter polynomials are obtained as leading order solutions for
l/fo) (u)-functions as follows. First, considering equations (2.13) and (2.12) at large values

of spectral parameter u we get
AV = ig(25 +1). (3.21)

Substituting this expression into the first Baxter equation (3.6) and solving it in leading
order in QSC coupling constant h we have?

() = aQg (u), (3.22)
where the Baxter polynomial Qg (u) is given by [89, 90]

1 (—)°T (3 + i) 11
= oF| | =S, = :1:2 | = Fi | =S5 = 1= - S5:—-1) .
Qs(u) 2 1< S,2+7,u7 ; > S!F(%+iu—5)2 1 S,2+zu,2+zu S,
(3.23)

and « is some spin-dependent constant to be determined later. Note, that the two different

expressions for Qg(u) in eq. (3.23) coincide only for integer non-negative values of S. In
order to unambiguously define Q) g for arbitrary complex spins S by analytical continuation,
one should fix the behavior at S — +ioo, according to Carlson’s theorem. The same
concerns the analytical continuation of the sums with S in the upper summation limit,
which appear below. The questions related to the analytical continuation will be considered
elsewhere.

Let us now introduce the following class of sums involving Baxter polynomials

(@ (u) Jwi (o) w2 (e) ... wn (o)) = Y Qs () [Tk G, (3.24)
k

S>j1>42..>n>0

(QW)]) = Qs (u), (3.25)

where wy, are some weights. The bullet e denotes summation index or argument of weight
function wy, whose particular symbolic representation or name is not important. Here and
below we write weights wy(e) in several equivalent ways, wy(e) = w(j) = wi and use W
to denote arbitrary (maybe empty) sequence of weights. For example, we have

(=1)°* 1 a NG 1
<Q (u)] (.)3 ) (S+1-— .>2> = Z QS—31( ) ]f (S+1 —j2)2 (3.26)

S5>j1>72>0

In the case, when the argument of Qg is u we will often drop it and simply write
(Qlwy (o) ,wa (o), ..., wy, (e)). We also introduce a shortcut

(wr ()2 (00D =(@ 5 )l @) (@) @) = 3 [

S>j1>j2..>jn>0 k

(3.27)

*One may use, for example, Mellin transform technique, see [90] for more details.



Note that the (wi, W)-sums satisfy usual stuffle relations. In addition, we will use the
notation

wi,wa, - wa) o= Y [ welin) (3.28)

Jo>j1..>n>0 k
so that
(Q (u) |wi, w2, ..., wn) = Z Q@s—j1 (u) w1 (j1)|w2a~'-7wn>]‘1 :
5>j1>0

It turns out that weights at twist 1 can always be reduced to a set of canonical weights for
which we introduce special notations:

.in =ny(e), (:73. =n_(e), (3.29)

(S+11—-)” =T7i(0), m =n_(e), (3.30)
! ; ()" i

ESFi—ey ) s i—ey (o) (3.31)

In ref. [91] we have considered elementary operations on Baxter polynomials,® such as shifts
and partial fractions. The latter can be also extended to the sums of Baxter polynomials.
In particular, the shift in spectral parameter u can be performed using (a = £1):

S
Q5" = Qs +2)a" Qs-k = Qs +2(QI0,) (3.32)
k=1
and
(Qlw, W) = (Qlw, W) +2(Q04, 0 - w, W) . (3.33)
Next, we have the rules for partial fractions (a = £):
Qs (—a)® | .. - -
__ 49 0a, 1) +2 T, 3.34
utas u+ag ia Q| ) +2ia(QT-a) (3.34)
and
(Qlw. W) _ (~a)®

L = ~{0_q - w, W) 4+ 2ia (Q]0q,1_,0_¢ - w, W) 4+ 2ia {Q|1_4,0_q -w, W) .
u+ag u+a%< ‘ > Q0 ¢ ) (Q-a,0-4 )
(3.35)

Finally we can shift the spin S of Baxter polynomials using

QW [(S+1-iu  —iu ol

QU N\ (S+iu —iu QU
S<Q[S—q \ —iu —S+iu Q[Sjl] : (3.37)

Remarkably, the introduced class of functions, (@] ...), is also closed under differentiation,
see appendix A for more details.

®These are highly nontrivial identities on hypergeometric functions, see [91] for more details.



So, let us summarize the results of the present subsection. We introduced the class of
functions — products of rational functions in spectral parameter u with (Q|W)-sums (3.24)
closed under elementary operations, such as argument shifts and partial fractions, as well
as under differentiation. As we will see in next subsection this class of functions extended
to products with Hurwitz functions® is also sufficient for finding a perturbative solution of
inhomogeneous Baxter equations.

3.2 Solutions of Baxter equations

The most complicated part in the perturbative solution of Riemann-Hilbert problem for
Pr-system is the solution of two inhomogeneous Baxter equations (3.6) and (3.7). Iterative
perturbative solution of equations (3.6)—(3.13) goes through the expansion in QSC coupling
constant h. In particular we expand equations (3.6), (3.7) up to h* and obtain the following

- , k) _ (kW
inhomogeneous Baxter equations for @9 = V12

Bi () = (/2 (uri) —i(25+ 10" (w) — (u—i/2)a{P (w—1) =", (3.38)
By (a87) = (uri/2)a” () +i(25 + D)5 () = (u=i/2)g8" (u—i) = 1™, (3.39)
where Vl(k) depends on qy)g with [ < k, and Vg(k) depends in addition on qgk). The solution of

these equations contains in general two pieces: the solution of homogeneous equation with
arbitrary periodic coefficients and some particular solution of nonhomogeneous equation.

3.2.1 Homogeneous solution

The first homogeneous solutions of Baxter equations (3.38) and (3.39) are easy to find, they
are given by” @%er(u)Qs(u) and @%nti(u)Qg(u) correspondingly. Here @%er(u) and @%ﬂti(u)
are arbitrary i-(anti)periodic functions of spectral parameter u. To find second solutions
let us consider the following identity

s S 1k
B (61Qs) = Q% - Qs =2 [1 - (—)k} Qs—k=—1) 2}9_(41115’1625—1“
= = (3.40)
where® . )
Eappy(u) =Y &) (3.41)

S (wrin—3)"
It is easy to see that the second homogeneous solution of the second Baxter equation (3.39)
is given by

S (K . .
Zo(u) =€ 1Qs+iYy 22_()1Q5k =§1Qs + 1(Q14+) — Q1) (3.42)
k=1

_l’_

5See appendix B for their definition.
"See the discussion at the beginning of subsection 3.1.
8See appendix B for full definition of Hurwitz functions £4.



Then the general solutions of first and second homogeneous Baxter equations are given by

o™ (S, u) = PP Qg (u) + P Zg(u) (3.43)
o™ (S, u) = P5Qgs(u) + P57 Zg(u), (3.44)

where & and @3““ are arbitrary i-periodic and i-anti-periodic functions in spectral pa-
rameter u. They have to be determined from the consistency conditions implied by the
equations (3.6)—(3.14). We will parametrize their u dependence similar to refs. [88, 89] us-
ing the basis of i-periodic and i-anti-periodic combinations of Hurwitz functions & defined
as

Pr(w) = &Y (w) + sgn(k) (=)Fe D (—u) = sgu(k)Pp(u+ i), k#0€Z,  (3.45)

Note that Py (u) can be expressed via elementary functions:

Pr(u) = (3.46)

(—0,)¥I=1 | wcoth(mu) k>0
(I =1! | 7/ cosh(mu) k<0

Then the functions ®5 and ®22 are written as

APET A'Il’]ti

DL (1) = P + Z GEIPi(u+1i/2), At (g Z qba““ (u+1/2) (3.47)

where the upper limits of summation depend on the order of perturbation theory as follows

Agk),per _ Agk),anti — 9k — 1, (348)
AlRyanit _ AGR)per _op 9 (3.49)

Here k =1 for NLO, k£ = 2 for NNLO, and so on.

3.2.2 Dictionary for inhomogeneous solutions

To find particular solutions of Baxter equations (3.38) and (3.39) let us introduce the
operators F11 which are right inverse of the Baxter operators B41, egs. (3.38), (3.39), i.e
satisfy

By (Fua(f) = f- (3.50)
Note that they are nothing but the operators .Ffz introduced in our previous paper [91].
So, we need to find a way to invert operators Byj for a given image value. Our basic

idea now is to compile a dictionary sufficient to treat all the functions appearing in the
right-hand sides of Baxter equations.

,10,



Action of Fi; on (Q|W). We first act with the operators Bi; on the functions
(Q () [w, W):

1 [(Qlw, W)] ZBl [Qs—5]w (7) W), (3.51)

= —mzcgs,jjw () W), = =20 (QI(~ 1)+ - w, W) |

S

1 [(Qlw, W) ZB 1[Qs—jlw (7) W), (3.52)
- Qizczs_j (28 = j+ 1w () W), = 2 (QU(T)4 - w, W)
j=1

Replacing w — 14 - w in the first formula and w — 1, - w in the second we obtain the
following entries in our dictionary:

A (@l W) = 5 (@I - w, W) (35)
(@I, W] = =2 QUL w, W) (3.54)

Special cases F1i [(Q])] can be read off from eqs. (3.42) and (3.43) of ref. [91]:

Fil(@h) = ~3(@ & - (@I - 5@, (355)

(@] = 55y (@) (3.56)

Action of Fiq on (Q|W) &4, ,as,...-. The basic idea of calculating Fiq[(Q|W) €4] is to
use the analogue of summation-by-part formulae from refs. [88, 89]. For any two functions
f and g we have®

Bolfsl = 18, la+ (-t 5 ) (19 1) g = (w3 ) (£72 - 1) o2
= /B lg] + (u + ;) (72 +r) g™ - (u - ;) (F=2+5) g7 @57)
Substituting ¢ — F1q[g] and f = £, 4, we obtain
Fo [gfoa\aLA] = Uafoa\aLAJraaa 9] — 0aFs |: < > <€Ua|a| A 0a50a|a|,A> Foao [g][Q]
- (u - ) ({a’a|a| A Uagaa|a\,A> ‘FO'a,O' [g][_Q]] : (3'58)

In the present section o = 41 is an arbitrary sign, not to be confused with ¢ = (f)s entering (2.11)
and other equations for Pr-system.

— 11 —



Here A = aj,ay... stands for an arbitrary (maybe empty) sequence of indices, and o, =
a/lal]. Then, for g = (Q|W), using egs. (3.53), (3.54), and (B.6), we have

-FU [(Q’w7 W> £U\a|,A] = ;{U <Q’1+ s w, W> ga’\a|,A (359)
F [<Qu+-w,w>[21 & o<Qu+-w,W>[—21§AH
ey (9"
Fo [<Q‘w7 W> g—a\a|,A] = ;{U <Q‘i+ T w, W> ’S—U|a|,A (360)

v 7| - (@ W)Y | oQll W) “|}
(u+ %)Ia\*l (u— %’)|a|71

The operators F41 in the right-hand side of the above equations act on the ‘simpler’ objects
because the number of indices of {-functions is reduced by one.

Let us present separately the formula

7

(2] ¢[2] o (o2
Fo [(QDE gaa] = e gA]}'

{0<Q|>5—|a|,A + F

2(25+1) (u+ %‘)la\*l (u— %‘)Ia\*l
(3.61)
In order to find F, [<Q|>§U|a"A], we consider the identity
By [(QN)oola.a] = o (@NPED, 1 — (@D piapa- (3.62)
We transform the right-hand side using the formulas (B.6) and obtain
(QNe
Bo [(Q))és.01a,a] = —2(Q)Esjap,a + " ~ 2(Q10+) &5jaj.a = 2(Q0-) &5aja - (363)
(u+3)
Then we obtain
! (@I
Fo [<Q’>£o|a|,A] = _5 <Q‘>£o,a|a\,A +Fs el 2 <Q|O+> €a|a\,A -2 <Q|0*> €U|a\,A .
(ut3)
(3.64)

Action of Fi;1 on (u:l:i#' From now on we will present only the final entries of our
dictionary as the derivations goes more or less along the same lines as before. The action
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of Fyq1 on @ i /2)0. is the following

Fy M@, A] =04 (Q)Es lapat+Fo {(u iQ’;w”g <(Q|>[2})|a 00 o)
#20(Q0)~ Q06
Fs (u+1;)a' = (@) ol + P —% 2((Qlo-) - <Q|0>]€_g|a]- (3.66)
s [(uz)“'] =(—)S{<QI> (00, o1al,4—Eolal +0,4) (3.67)
A W5A+2[<Qo )- <cz|o+>1g_a|a,A”.
Fs [(u_lé)(”] =<>S{<Q|> (0€o,-otal~Eotalo) (3.68)
LE|- <Q|(>u__22)|(a_)s+2[<Ql0—>—<Q!0+>]§g|a|] }

Action of Fi; on u™(Q|W)&a. Finally, the right-hand side of the Baxter equations
may also contain terms of the form u™(Q|W)&4 with n = 1,2. First, we use the same
summation-by-part technique as before. Namely, we use eq. (3.58) with g = u"(Q|W) to
reduce the problem to the calculation of Fy [u™(Q|W)].

In order to calculate Fy[u™(Q|W)], it is convenient to introduce notation

Q{"} [F (S+1+ n)rgn(”) Qsrn — {(5 +1),, @s4n; n>0
B e e L =

3.69
I'(S+1) (S+1+n)_,Qs4n, n<0 (3.69)

In terms of these functions we can easily express'® the required action:

Fo1 [u(Qluw(j), W)] = <Q{1}|23_() W> - % <Q{1}|2ws(f)j,w> . (3.70)

Fifu @), W) = -3 (@10 w ) + ] <Q{—1}y?~”@'>, wh, e
2 @) )] = § (0P D)+ £ (@
;<Q,<s i+ 1)J+(f_j) w(j),W>’ (372)
Fi [0 (Qlu(j), W] = <Q{2}?‘f”,w> <Q{ o) >
<Q|(S RN ‘j)2w<j>,w> . (3.73)

°One should use multiplication by u rules derived from spin shift relations (3.36).
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Here
<Q{”}\w1 (&) w2 (s), ..., wn <.)> - Z gi}jl (w) H wy, (Jx) (3.74)
S>41>52...>n,>0 L

and we assume that w(j) is one of the canonical weights (3.29). Then we use the partial-
fractioning identities similar to

w(j) _ w() - (£ w(l)
j—1 j—1 j—1

, (3.75)

where we choose the lower sign if w(j) contains (—)7 factor and the upper sign otherwise.
Then the first term in eq. (3.75) is obviously a combination of canonical weights. The
second term contains a shifted weight 14 (5 — 1). Note that this shift is correlated with
superscript {n} of Q functions. Therefore, we need the transformation rules for the sums
of the form

<Q{"}]w (o), W> 7 (3.76)
where w (e) is one of the canonical weights (3.29), and

<Q{"}|i (e —n), W> , (3.77)

where 1 is one of the four weights 1, 1_, 1,, 1_. First, we note simple consequences of
eq. (3.36): for n > 0 we have

Qén}[ll [ S+n—iu —iu Q{Sn_l}[l] 3.78
ot ) = T A (3.78)
Q{S—n}[l] _[S—n+1+1u —u Q{S_nﬂ}m (3.79)
Qé_n}[—l] - —iu —-S4+n—1+4u Qf{g_"ﬂ}[_u ' .

These relations allow one to shift the upper index of Q:{gn} to zero without generating any de-
nominators. Since Qéo} = g, we use these identities for the reduction of sums (3.76) (3.76)
to the combination of (Q]...), possibly, with shifted argument and/or multiplied by powers
of u.

The sums of the form (3.77) after the substitution of the definition (3.69) and shifting
j1 — 71 + n are almost of the required form except for the upper limit of summation over
jo which is j; +n — 1, i.e., is shifted by n. Then we can treat the missing/redundant terms
in a recursive manner. For example, we have

(QU ML (o 1) wi(e). ) = (QI(S +1— @I (o) (6. W)
_ <Q{71},1 (o 4+ 1) wi(e), W) . (3.80)

Then the second term is again of the same form as those in the right-hand side of eq. (3.70).
Note that special attention should be paid to the sums with depth less or equal to |n|. The
full set of the reductions rules can be found in the code of the attached Mathematica file.
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3.3 Constraints solution

Now, with the knowledge of how to find the solutions of two Baxter equations (3.38)

and (3.39) in each order of perturbation theory we may proceed with the determination
per|anti
a7j

parameterizing homogeneous parts of the solutions to mentioned Baxter equations. It

of constants in the anzats for P-functions together with additional ¢ constants
should be noted that to solve constraint equations one can greatly benefit from the use
of elementary operations on Baxter polynomials and their sums, such as shifts and partial
fractions, see subsection 3.1. In addition we have also extensively used stuffle relations for
products of (w, W)-sums together with Taylor expansion of (Q|w, W) sums at u = i/2,
see corresponding derivative rules at the end of subsection 3.1. To have intermediate
expressions as small as possible we have also fixed residual gauge freedom by putting all
coefficients mgl), kj(.l) to zero.

In the beginning of subsection 3.1 we have already found the expression for Ago) con-
stant together with LO solution of the first Baxter equation (3.6) up to yet undetermined
constant . Next, from equation (3.8) we determine the expression for I/éo) (u) and sub-
stitute it in the equation (3.10). Expanding the latter at v = 0 up to O(u?) we get the
expressionll for constant a:

1
— =—4iB;, By=H —H_. (3.81)
[0

(0)

Also from the requirement of absence of poles in combinations (3.14) for v’ we may

(0)

determine the value of o = (—)¥ in eq. (2.11). Knowing the expression for v, (u) we may

(

determine VQO) by solving second Baxter equation (3.7):

s 40 [3(5+2 (54D pry 352435 +1 0, 35 (51
g3 25 +3 S+2 25 + 1 S 25 —1

-1
Qs
(3.82)
Now, from equation (3.11) expanded at u = 0 up to O(u) we get the value of Ago) constant:

v = ()

4
AP = —5(25+3)(25 ~ 1By (3.83)

Starting from NLO, the solution at each perturbation order follows the same pattern.
First, the required expressions for I/ék) and Vik) functions at each perturbation order are
obtained from the equations (3.8) and (3.9), respectively,expanded to the required order
in QSC coupling constant. Then the required steps at each perturbation order can be

summarized as follows:

(1)
2,n
tion order k we perform a number of expansions of equation (3.10) up to O(

and O(u*2*k=0) for all I < k.

[ < 1 required at a given perturba-
h1+2l)

1. To get expressions for additional coefficients ¢

(D)

1> | < k required at a given pertur-

2. To get expressions for additional coefficients ¢
bation order & we perform a number of expansions of equation (3.11) up to O(h!*+?)

and O(u!*2*=0) for all | < k.

1Gee appendix C for definition of H and B sums.
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()

3. To get expressions for additional coefficients ¢;;,, | < k required at a given perturba-
tion order k we perform an expansion of equation (3.12) up to O(h'*2?*) and O(u).
Here, we would like to note, that combinations in brackets of equation (3.12) are the
same as in equations (3.14) and therefore they are free of poles at u = 0 at any order

of perturbation theory. The leading order O(h") expressions for p’s and hx are also

regular at w = 0. So, up to O(u) order of expansion in u the Vék)—functions do not

(@)

contribute to the resulting equations on coefficients ¢, .

()

3,n
tion order k we perform an expansion of equation (3.13) up to O(h'*2*) and O(u).

4. To get expressions for additional coefficients c5 , [ < k required at a given perturba-

Here apply the same argument we did at the end of the previous step and up to O(u)
(

order of expansion in u the Vak)-functions do not contribute to the resulting equations

(0)

on coefficients c;, .
9

5. Requiring the absence of poles in the combinations (3.14) for yfk) function allows us
to fix A((]k) together with expressions for all constants in the homogeneous piece of

solution for Z/YC) except the value of <Z>§}:3’per,

6. To determine the value of qﬁgﬁ%’per coefficient we perform the expansion of equa-

tion (3.10) up to the order O(h!*2¥) and O(u?).

7. Requiring the absence of poles in the combinations (3.14) for Vék) function allows us

(k).

to fix expressions for all constants in the homogeneous piece of solution for v,
8. Finally, to get the expression for Agk) coefficient we perform the expansion of equa-

tion (3.11) up to the order O(h!*2¥) and O(u).

3.3.1 NLO
Following the above procedure step by step at NLO we get!?

1. First, from equation (3.10):

Cg,g =0, c§?§ = 4ia® (B1By + Bs) . (3.84)

=0, %) =4B, —B? - 2B;. (3.85)

3. Equation (3.12) gives
i(=)%S(1+9)
1. .
3(1+25)a? (3.86)

4. Similarly from equation (3.13) we have

© _ 2(=)%8(1+ 9)(12i(1 4 25)a? — 2(—)5S(1 + S))
Gl 36(1 + 25)2a4 '

12The expressions for qu‘z)—functions can be found in accompanying Mathematica files.

(3.87)
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(1]
5. The homogeneous part of qg) = (141)) function is given by

gt} = 80P Qs + ad VPP (u+i/2)Qs (3.88)

Q

and from the absence of poles in equations (3.14) we have

AV =205 3429y, )P =2B,. (3.89)

)

6. From equation (3.10) we further fix!?

1
Lyrer = B{ —8H 9 +2H | _9—4H | 1 +4H 11 —2H 15— 6H; 5
1

+ 4H17_1 — 4H1,1 + 6H172 + 8H271 — 4H_17_1,_1 — 4H_17_1,1 + SH_17171

+ 8H1’_171 + 4H1’17_1 — 12H1’1,1 +2H 3 —4H o+ 4Hy — 2H3} . (390)

(1]
7. The homogeneous part of qél) = (l/él)) function is given by

G5 o = 0050 Zg + adl) P (u +1/2)Qs (3.91)

and from the absence of poles in equations (3.14) we have

ST =0, o) = 4iBy . (3.92)
8. Finally, from equation (3.11) we have

16 _ _ _ _ _ _
Aél) = —5(25— 1)(23+3) <3H_27_1 — 2H_27i — H_271 - H_L_Q +2H_1722‘ - H_172

—6H; o+12H; 9, —6H; 95— 6Ho; 1 +4Ho; ;+2Hoi 1 — Hy —o+2H, 2 — Hy 9+ 3Hs 1
—2Hy;—Ho1+2H 1;_1—2H_1;1+8H; 11— 12H; _1;+4H; _11—16H;; 1

_ _ _ _ _ 1 4
+16H; i +4H; 1,1 —4H;1;+2Hy ;1 —2Hy ;1 — 231@) —3(5+205+45%) B} (3.93)
3.3.2 NNLO
At NNLO we were not reducing all (w; (e),wz (), ..., wy, (e)) sums at intermediate steps

to H and B -sums. Such reduction was performed only for the NNLO anomalous dimen-
sions at the end. Moreover, this final reduction was not algorithmic — we just solved a
system of equations for 768 spin values, which is the dimension of our H basis'* at weight
5 corresponding to NNLO. Still, our preliminary considerations show that the required
algorithmic reduction at all steps is possible and, what is more important, it will make our

13This expression is different from the one reported in [90] due to different particular solution contribution.
1See definition of H-sums in appendix C.
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algorithm much more efficient. The details of this reduction will be the subject of one of
our subsequent papers. Following the steps of general procedure for constraints solution
at NNLO we get!®

1. First, from equation (3.10):
=0, &)=0 (3.94)

(0) (1)

and the results for coefficients c¢; 5 and ¢; 3 can be found in accompanying Mathemat-
ica files.

2. Then, from equation (3.11):
1

)

=0, =0 (3.95)

and the results for coefficients CE(Z and cg can be found in accompanying Mathemat-

ica files.

3. Next, equation (3.12) gives c((]?% = 0 and the expression for c(()g may be found in

accompanying Mathematica file.

4. Similarly equation (3.13) gives cg?% = 0 and the expression for cg% may be found in

accompanying Mathematica file.

@ _ ([ @\Y S
5. The homogeneous part of ¢;”" = (1/1 ) function is given by

3 2
0 = 80P Qs + 0 > 6P P+ i/2)Qs + Y o TIP_i(u+i/2) 25
i=1 i=1
(3.96)

and from the absence of poles in equations (3.14) we have

¢g2%,per —2iB,, f()),anti —0, ¢52%,anti — _4iB, (397)

) )

while the expressions for A(()Q), ﬁ’per and (ﬁ%’per can be found in accompanying

Mathematica files.

(2),per
1,0

6. From equation (3.10) we further fix the expression for , which may be found

in accompanying Mathematica file.

(1]
7. The homogeneous part of qg) = (1/52)) function is given by

2 3
0 pom = NPT Zs + Y O Pi(u+i/2)Zs + a Y $OI TP i(u+i/2)Qs
=1 =1

(3.98)
and from the absence of poles in equations (3.14) we have
gbg%yper _ ¢;?%,per _ g?l),anti —0, ¢§2,anti =4iBy, (3.99)

¢£:i)7per

5The files cijn contain results for cﬁg) coefficients, Ain for Ag"), phiPani for and phiAani for

n),anti
o,
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,per 2),anti
P and gb( )

while the expressions for qﬁgzi 5.0 can be found in accompanying Mathe-

matica files.

8. Finally, from equation (3.11) we determine the value of Ag2), which again may be

found in accompanying Mathematica file.

4 Anomalous dimensions

The expressions for the anomalous dimensions can be easily obtained from the correspond-
ing expressions for A§0’1’2) constants with the help of equation (2.13). The results for
anomalous dimensions of twist 1 operators up to six loop are then given by'®

7(S) = v (S)R? + 41 (S)h* + 42 ()R + ... (4.1)
where
7(0)(5) =4 (Eﬁ +H_q - 2Hi)
~F(8) = 16{3FI—2,—1 —2H 9;—H 91 —H_1_9+2H 19— H_15—6H; 5

+12H;9; — 6H; 9 — 6Hy; 1 + 4Ho; ; + 2Hoi1 — Hy o +2Hy 2; — Hi 2+ 3Ho 4
—2Hy; — Hoy +2H_ 1,1 —2H 1,1 +8H; 11— 12H; _1; +4H; 11 — 16H,,; 4

_ _ _ _ _ 4 _ _ _
+16H;;; +4H; 1,1 —4H;1; +2H1; 1 — 2H1,i,1} - §7T2 (H-y + Hy — 2H,;) (4.2)

and expression for six-loop anomalous dimension (NNLO) ~()(S) may be found in ap-
pendix D.

The LO expression was already known for a long time, see for example [89, 97, 98].
NLO expression together with the corresponding basis for generalized harmonic sums was
obtained recently in our papers [90, 91]. The NNLO expression is new and appeared here
for the first time. The obtained results are in complete agreement with previous results at
fixed spin values [89, 97, 98]. Note, that our H-sums here can be further rewritten using
cyclotomic or S-sums of refs. [99, 100] provided one extends the definition of the latter
for the complex values of x; parameters. It is also possible to express them in terms of
twisted n-functions introduced in ref. [41]. Here, we see that the maximal transcendentality
principle!” [104, 105] also holds for anomalous dimensions of ABJM theory with the account
for finite size corrections up to six loop order and it is now natural to assume it is validity
for ABJM model to all orders. That is the results for anomalous dimensions in each order
of perturbation theory are expressed in terms of H-sums of uniform weight w, where w = 3
at NLO and w = 5 at NNLO. In general, the size of the basis of H-sums at weight w is
equal to 3-4*~! and at NNNLO (w = 7) we should have 12288 such sums. Moreover, while
discussing solution of NNLO constraints in subsection 3.3 we noted that at present we are
missing automatic reduction of (w (e),ws (e),...,w, (e)) sums, arising at different steps

16See appendix C for the definition of H-sums.
Y"Similar considerations in the evaluation of Feynman diagrams first appeared in ref. [101]. See also
refs. [102, 103].
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of our calculation, to H-sums, which makes intermediate expressions even larger. We are
planing to address this latter issue in one of our subsequent publications. In addition it is
desirable to construct Gribov-Lipatov reciprocity respecting basis [106-108] of generalized
harmonic sums also for ABJM model. The latter in the case of N' =4 SYM is known to
be much more compact compared to the original basis of harmonic sums and was used in
refs. [109-113] to simplify the reconstruction of the full spin S dependence of anomalous
dimensions from the knowledge of anomalous dimensions at a set of fixed spin values.

5 Conclusion

In this paper we have presented an algorithmic perturbative solution of ABJM quantum
spectral curve for the case of twist 1 operators in si(2) sector of the theory. The solution
treats operator spin .S as a symbol and applies to all orders of perturbation theory. The pre-
sented solution is performed directly in spectral parameter u-space and effectively reduces
the solution of multiloop Baxter equations given by inhomogeneous second order difference
equations with complex hypergeometric functions to purely algebraic problem. The solu-
tion is based on the introduction of a new class of functions — products of rational functions
in spectral parameter with sums of Baxter polynomials and Hurwitz functions, which is
closed under elementary operations, such as shifts and partial fractions, as well as differenti-
ation. This class of functions is also sufficient for finding solutions of inhomogeneous Baxter
equations involved. For the latter purpose we present recursive construction of Fii images
for different products of Hurwitz functions with arbitrary indexes or fractions m with
leading order Baxter polynomials or their sums. The latter are entering inhomogeneous
pieces of multiloop Baxter equations at different orders of perturbative expansion in cou-
pling constant. Similar to refs. [88, 89], where all the operations performed were closing
on trilinear combinations of rational,  and Pg-functions, all our operations are closing on
fourlinear combinations of rational, n, Py and (Q|W)-functions. As a particular application
of our method we have considered anomalous dimensions of twist 1 operators in ABJM the-
ory up to six loop order. The obtained result was expressed in terms of generalized harmonic
sums decorated by the fourth root of unity factors and introduced by us earlier. The results
for anomalous dimensions respect the principle of maximum transcendentality. It should
be noted, that there is still a room for improvements of the proposed algorithm related to
the simplifications of arising sums at different steps of presented solution. The advanced
techniques for their reduction to H-sums will be the subject of one of our subsequent papers.

We expect the presented method to be generalizable to higher twists as well as to
other theories, such as N/ = 4 SYM. The developed techniques should be also applicable
for solution of twisted A" = 4 and ABJM quantum spectral curves with P functions having
twisted non-polynomial asymptotic at large spectral parameter values, see [79, 84, 114]
and references therein. The latter models received recently a lot of attention in connection
with the advances in so called fishnet theories [115-130]. Moreover, similar ideas should be
also applicable to the study of BFKL regime within quantum spectral curve approach [54—
56] for N'=4 SYM. In the latter case we also have a perturbative expansion when both
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coupling constant g and parameter w = .S + 1, describing the proximity of operator spin S
to —1 are considered to be small, while their ratio ¢?/w remains fixed.
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A Differentiation of sums of Baxter polynomials

To prove, that sums of Baxter polynomials (3.24) are closed under differentiation let us
first consider the sums

.1.w1<j1>7W> =Y UGG (A

Jo—n G josji>jaa>in>070 T I

and prove that these sums reduce to the linear combination of our standard sums (3.28).
We proceed by induction over the depth of the sum. Let us first write

wi(fy) _ wi(dy) = (7w (o) o (i
Jo—d1 J— + (%) 1(Jo)j0 — (A.2)

where the lower sign is chosen if w1 (j1) contains the factor (—)7*. Then the denominator jo—
j1 cancels in the first term and, therefore, this term gives rise only to standard sums (3.28).
The second term gives rise to the sums

o W>jo = 2 .(i)h, w2 (j2) - - - wn(Jjn) (A.3)

. )
Jo— ) o> 1> jn>0 Jo —J1

In order to transform these sums, we observe that

]bz—:l (:i:)jl joz_:l (i)jo+j2—j1 (A )
; — = —_— . 4

= Jo—J1 .= J1—J2

J1=j2+1 Ji=j2+1

This identity is proved by the substitution j; — jo + j2 — j1. Then

Z .(i)j.l wa(j2) ... wn(jn) = zoj(i)jﬁjl Z .(i)j.Q wa(j2) - - - wn(jn),

o> 1> e in>070 T J1 jim1 1> g0 T2

(A.5)
and the inner sum is again of the form (A.1), but the depth is reduced. This proves the
induction step.

Now, using the differentiation formula'®

S ) ‘
10,05 = S L5 (1 (L)) = (QI14) — (QI1). (A6)

jo=1 Jo

18]t can be obtained using generating function for Baxter polynomials and we leave the proof of this
formula to the reader.
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S S S—j1
Q ; .
0u(Qlw, W) = " i0,Qs—jlw(jn), W) = 3 3 I (] (<)) Ja(jy), W)
Ji=1 Ji1=1jo=1
S jo—1 L
Q i 1 — (=)Jota )
= Z Z S (1= (=) (), Z Qs—jo ) %\ww,m
1o 0T o1 i Jo—
S Jo—1 1 Jjo—1 (_)]1
Z S—jo Z — lw(j1), Z Qs—jo Z f|w(]1),W> (A.7)
o=1 Ji= 1'] g Jo=1 Ji1=1 Jo—

Since the inner sums in the last expression are both of the form (A.1), they can be expressed
as a linear combination of the standard sums (3.28). Therefore, i0,(Q)|...) can indeed be
expressed as a linear combination of (@] ...) sums. In particular, the expansion of (Q|W)-

sums at u = i/2 can be expressed in terms of (W)-sums.

B Hurwitz functions

We define Hurwitz functions entering the presented solution as

> 1

Eafa =

p— (u +in — %)
M ga——_—— ) (B.2)

n—1 (u-l—in — %)

(2} (B.1)

Here A denotes the arbitrary sequence of indexes and £ function without indexes is identical
to unity. These are the shifted versions of Hurwitz functions introduced in [88, 89]

4 =nly (B.3)

The &1 functions should be defined separately, as the series (B.1) diverge in this case.
For & -function we have

& (u) =i (—z’u + ;) ) (B.4)

and &1 functions are defined as [131]:
€1,...,1(w) (& + ) (B.5)

———

For shifts of our Hurwitz functions we have

e = 0uban - (:“i)mgﬁf] (B.6)
Uty
- 1
g([l’AQ] = O'aga,A + ﬂ{A. (B?)

— 922 —



C H and B-sums

To write down the results for anomalous dimensions we introduce generalization of har-
monic sums decorated with the fourth root of unity factors (exp(im/2))" (indexes may be
either real or purely imaginary)

S

k
o, ()= Y W g, () = (9) o, = o 25)(C1)
k=1

In addition our intermediate expressions for coefficients in the anzats for P functions and
for constants entering homogeneous pieces of solutions for V% functions contain B-sums.
The latter are defined similar to'® [90]. That is we have By = By(S) = 1, By = B1(5) =

Hy(S) — H_1(S), and By~ is defined recursively by the symbolic formula
B, = (Ol + (—1)" 0_1) B, 1, (02)

where Oy is a linear operator prepending index 41 to harmonic sums, i.e. O11Hg (S) =
Hii 4 (S). In particular, we have

By=(01+04)Bi=Hign+H 11 —H_1—H 11, (C.3)
B3 =(01—-0_1)By=Higa+Hi 11— Hi1,-1—Hi-1,1 (C.4)
—-H g0 —H g +H 1, 10+H 1 1-1. 5

D NNLO anomalous dimension

The NNLO anomalous dimension for twist 1 operators is given by
JO(S) = {1} + {2} + {3} + {4} + {5) (.1)
with
{1} = %ﬁl (A, + -, — 2 , (D.2)
{2} = —144((3){ —H y 1+2H_1;—H_ 11 +2H; 1—4H,;; +2H;,
— Hy 1 +2Hy,; — Hi1 +2H_5 —4ﬁ2¢+2£’2}, (D.3)
{3} =327° 108;(2){ —H 1 +2H 1;—H_ 11 +2H; 1 —4H;; +2H;,
— Hy 1 +2Hy,; — Hi1 +2H_5 —41[_[21‘4-2172}, (D.4)
{4} = ?ﬁ{ — 16H o1 +48H _o; — SH_ o1 — 6H_1 5+ 12H_1 5 — 6H_1 5
+ 601511-7,2 - 120f_li,2i + 60Hi,2 + 32f]2i,,1 — 96H2i,i + 1615121-,1 — 61511,,2

+12Hy 9; — 6Hy9 — 16Hy 1 +48Ho; —8Ho1 —3H_1 11 —6H_1 1,
—3H_ 1 11— 14H 1, 1 +44H_1,;;, —6H_1,1 —3H_17,1—6H_11;,

19Gee appendix B there.

— 23 —



—3H 111 —26H; 11+ 68H; 1;—18H; 11+ 84H;; 1 — 184H,
+52H; 51— 18H; 1 1 +52H; 13 —10H; 110 —3H1 11 —6H1 1
—3Hy 11— 14Hy; 1 +44H,;; —6Hy ;1 —3Hy 11 —6Hy 1, —3H1 11

"+ 20H_5 — 40Hs; + 201513} : (D.5)

and

{5} :64{12H,3,,2+8H,3,%—20113,2—121127,3 VU 55— 12H o 5+AH_1_4
—8H_14;+4H 1 4+8H; _4—16H; 4;+8H; 4—8Ho; _3+16H2; 3,—8Ha; 3

—24H3; _9—16H3; 2;+40H3; o+4Hy 4 —8Hy 4;+4H 4 —12Hy _3+24Hs 3,
—12H3+12H3 _o+8H3 2, —20H32+18H 3 1 _1—12H_3 1 ,—6H_3 11
—28H_ 5, 1+24H 5, ;+4H _5,1—6H_ 31, _1+4H 51 ,;+2H _311+30H 2 _5 1
—24H 5 _5;—6H_5 _51+22H 5 1 _9—60H_5 _12;+38H 5 _12+4H 5; o

+56H _32i—60H _2;0—44H 50, 1+48H _59; ;—4H 22;1—2H 21 2

—12H 51 0;+14H 51 2+46H 55 1—56H _52,;+10H 551 —12H 1 3 1
+12H 1 _53;—15H_1 o _o+14H 1 o0+ H 1 _2o—4H 1 1 _3+8H_1 _13

—4H 11 3+16H_1; _3—32H 1,3 +16H 1 ;3+34H 1 9; _o—36H_1 ;2

+2H 1 0i0+24H 1 5, 1 —24H 1 3;;—4H 11 _3+8H 113 —4H 113

—15H 19 _o+14H 1 90;+H _190—12H 13 _1+12H_13,—64H; _5_

+56H; _3;+8H; _31—10H; 5 _o+84H; _50;—TAH; 50—56H; 1 3

+112H; 13, —56H; _13+48H,; ; —3—96H,; ; 3;+48H,; ; 3+44H; 2; _o—216H,; 2; 2
+172H; 2; 0+ 128H; 3;, 1 —112H; 3;;—16H; 3,1 —8H; 1 _3+16H, 1 3,—8H; 1 3

—42H; 5 2+148H; 99i—106H; 90 —64H; 3 1 +56H,; 3 ;+8H; 31 —28Ha; 2 1
+28Ho; —01—12H; 1 _o+56Ho2; 1 2;—44Hz; 1 2—56Ho; ; —o—16Ha; ; 2;

+T72Ho; ;0+24Ho; 25 —1—24Ho; 2,1 +20H2; 1,2 —8Ho; 1 2;—12Ho; 1 2—60H2; 2 1
+64Ho; 0, —4Hoi01—36Hs; _1,_1+24H3; 1 ;+12Hs; 1 1+56Hs3;; 1 —48H3; ;;
—8H3;;1+12H3;1,—1—8Hz; 1 —4Hzi11—12Hy, 3 _1+12Hy _3,—15H; o5 5
+14Hy, 2 9i+Hy _90—4Hy 1 _3+8Hy _13;—4H, _13+16H,; _3—32H; ;3;
+16H; ; 3+34H; 2; 2 —36H 2 2i+2H1 2;0+24H1 3, 1 —24H; 3;;—4H;1 1 _3
+8H11,3i—4H1 13— 15H1 0 _o+14H1 9 0;+H1 20— 12H1 3 _1+12H 3

+30Hs, 5 1—24Hs _5,;—6Hs _51+22Hs 1 _5—60H2 _12;+38Hs 1 0+4Hs,; o
+56H2,;2; —60H2 ;0 —44Hs 2; _1+48Hs ;i —4Ho 2;1 —2Hs1,_2—12Hs 1 2
+14H 1 2+46Ho 5 1 —56H2 5 ;+10H221+18Hs 1 1 —12H3 1 ;—6Hs3 11
—28H3; _1+24H3;;+4H;3 ;1 —6Hs 1, _1+4Hs 1 ;4+2Hs11—48H_5 1 1 1
+64H o 1 _1;—16H 5 _1 _11+80H o _1,; 1—80H o _1,;—16H 5 _ 11 _1+16H o _11;
+52H o 1, 1—A4A8H _5; 1,;—4H _9; 11—112H_5,;; 1+112H 5 ;,;;—4H 5,1 1
+4H _9;11—16H 51 _1,14+16H 51 _1,;+16H 91, 1—16H _21,;,—8H_1 5 _1;
+8H_1 9 11—10H 1 o; 1+12H 1 _5;;—2H 1 _2;1+8H_1 21, 1—8H_ 1,21,
+4H 1 4 9 1—4H 1 1 _2;+3H 1 1,1 9—6H 1 1 _12+3H 1 _1,12—18H_1 1, 2
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+20H 1, —1i0i—2H 1, 150—24H 1 _12; 1+24H 1 19, ;+3H 1, 11,-2—6H_1 112

+3H_ 1 112+4H 1,12 1—4H 1 _12;—6H 1, 2 1+24H 1, 2,—18H 1, 21

—8H 11, 2+8H 14 _12+56H 1 2—48H 1,;;2i—8H _1;i2+28H 1,2 1

—48H 142 i+20H 1 ;0,1 —16H 1 ;1 o+16H 1, 12;+10H 1,5 1—8H 1,2,

—2H 1,21 —6H 19 1,-1+24H _12; 1,;—18H _19; 11+28H _12;; 1—32H_1.9;;,
+4H 1 21— 18H _19;1,-1+16H 121 ;+2H_19;11+4H 11,2 _1—4H 11,2,

+3H 11,1, 29—6H 11 _12+3H 11, -12—18H 11, 2+20H 11,2, —2H 11,2
—24H 1 19; 1+24H 112 ;+3H 111, 2—6H 11 19;+3H 1112+4H 112 1

—4H 112;—8H 19, 1;+8H 12 11—10H_19; 1+12H _12,;;—2H 12;1+8H 121, 1
—8H 151i+94H; 5 1 1—104H; 5 1,;+10H; 5 11—188H; 5; 1+160H; 5,
+28H; 9, 1+10H; _21,—1—10H; _91,1+114H; 1 _5 1 —120H; _1 _2;+6H; _1 _21
+T6H; 1 1, 2—168H; 1, _12;+92H; 1, _12—112H; _1,; 2+288H; 12— 176H; _1 ;2
—212H; _12i,—1+240H; 1,9, ;—28H; _1.9;1+20H; _11,-2—56H; _11,2i+36H; _112
+130H;,_1,9,1—152H; _12;+22H; _121—152H; ; o _1+112H;; 5 ,;+40H;; 21

—92H;; 1,—24+248H,; ; 12— 156H; ; _12+72H; ;; —o—336H;;;2,+264H; ;; 2

+304H, ;.2 —1—288H,; ;2;i—16H,; ;2,1 +4H; ;1 _o+56H,; ;12 —60H, ;10—216H; ;5 1
+240H; ;2 —24H,; ;01 —192H; 2; 1, —1+224H; 9; —1,—32H,; 2; 11+392H; 2, ; 1

—368H; 2i;—24H; ;i1 —32H; 91, -1+32H; 2;1:+34H; 1 o1 —24H; 1, —2,;—10H; 1 21
+20H;1,—1,—2—56H; 1,12 +36H; 1 _12+64H; 1 2i—64H; 1;2—52H; 19, 1+48H,; 1 9,
+4H; 1 9;1—4H; 11,-2—8H; 11,2;+12H; 1124+50H; 12 1—56H; 12, +6H; 121

+110H; 2, —1,-1—136H; 2,1 ;+26H; 5 11—220H; 5, —1+224H; 5, ;—4H; 2;1+26H; 21,1
—32H;21,;+6H;511+72H2i —1,—1,-1—88Ha; 1, —1,;+16H2; 1 _11—120Ho; 1, 1+96H2; 1,
+24Ho; 131 +16H2; _11,—1—8Ho; —1,1,,—8Ho2; 11,1 —64Ho; 5 _1,_1+32H2; 5 —1,;,+32Ho; ;11
+160Hy;,4,5,—1—128Ho; 5 5, —32Ho; 3 51 4+32Ho; 31,1 —32Ha; 51+ 16Hoi 1 1,1 —8Ho;1, 1
—8Hoi1,—11—8Hoi 1,5, —1+8H2;1,i1—8H211,-1+8H2i11,:,—8H1,—2 —1,+8H1, 2 11

—10H1, 24 —1+12H;, —2;;—2H1, —2;1+8H1, 21, 1—8H1, _21,i+4H1 1 o _1—4H1 1,2,
+3H1,—1,-1,—2—6H1 _1,_12;+3H1,_1,12—18Hy _1,4_2+20H1 10, —2H;1 _1;2—24H1, 12,1
+24Hy _19i;+3Hy 11, —2—6H1 _112i+3H1 _112+4H1 19 1—4H) 12,—6H1,; 2 1
+24H1 i —2,;—18H1; —21—8H1; —1,—2+8H1; 12+56H1;; 2—48H1 ;2 —8H1:i2
+28H1 i i, -1 —48H1 ;25 +20H1 ;2i1 —16Hy ;1,—2+16H1 ; 1.2;+10H1 ;01 —8H1 ;9.
—2H1,i21—6H1 2 —1,1+24H1 9; _1,;,—18H1 2 —11+28H1 2, —1—32H1 2i,ii+4H1 2i.i1

—18H1 9i1,—1+16H1 2;1,i+2H1 2i11+4H 1,2 1 —4H1 1, —2;+3H11 —1,—2—6H1 1 12
+3Hy 1, 12— 18H1 1,1, —2+20H1 1 42 —2H11i2—24H1 1 2;—1+24H1 1 2;i+3H111,—2
—6H111,2i+3H1110+4H1 12, 1—4H112;—8H12 _1,+8H1 9 _11—10H1 2, 1

+12H1 9, ;—2H12;1+8H121,-1—8H121;—48Hs 1 1 _1+64Hy 1 _1,;—16Hs 1 11
+80Hy 1 -1—80Hs 1;;—16Hs 11, 1+16Hs 11 ;+52H2; 1,1 —48H>,; —1,—4H2; 11
—112Hs ;1 +112H5 ;;;—4H2 ;1 —1+4H,;11—16H1 1, 1+16Hs1 _1;+16H2 1 1

—16Hs1 ;;+12H 1 1,14 -1—12H 1 1, 1;+6H 1,14 -1,-1—16H_1 14 1,+10H_1 1,11
—16H_1, 1,4 -1+16H_1 _1;;;+10H_1 _1;1,-1—8H_1 11, —2H 1 _1,;11+12H_1 _1141
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—12H 4 171,;—24H 1 1 1, 1+24H 1, 1,-1,;+36H_1; 1 -1—16H_1,; 1;;—20H_1,; 11
—8H 1 -11,i+8H 14 -111+32H 14 1:;—32H 1 ;i 11—24H 1 ;;; 1+24H 1 ;1

—32H 141, -1+32H 1 51;—8H 141, -1i+8H 11, -11—12H 11 1+16H_ 1,1,

—4H 41310 +8H 1511, 1—8H 1,11+ 12H 11,14 1—12H 11, 1;:;+6H 114 1,1
—16H_1714,-1,;+10H 115 -11—16H 11, 1+16H 11, ;+10H 11;1,-1—8H 11,1,

—2H 4111+ 12H 1110 -1—12H 1111, —96H; 1, _1,_1,—1+144H; 1 1 _1,—48H; 1 1,11
+180H,;,—1,—1,4,—1—208H; _1,_1,;+28H; _1,—1,,1—48H; _1,—1,1,—1+64H; 1 _11,—16H; 1,111
+192H; 14 —1,-1—256H; 1 1,;+64H; 1; 11—360H; _1,;; 1+384H; _1,;:—24H; 1,1
+64H; 14,1 —64H; 151, —48H; 11, -1,-1+64H; 11, -1,;—16H; 11 11+84H; 1141
—80H; 11,1 —4H; —11,i1—16H; _111,-1+16H; _111,;+192H;; 1 _1,_1—256H;,; 1,1,
+64H,; ; _1,—11—384H;; 1 -1+368H;; 1,;+16H;; 1;1+64H;; 11, _1—64H;; 11,
—280H; ;i —1,-1+320H; ;; —1,;—40H; ; ; _11+608H; ;;; 1—5T6H; ; ;;i—32H; ;1

—40H; ;i1,-1+32H; i 41,:+8H; 11 +64H; ;1 1, 1—64H; ;1 1, —128H; ;1 1

+112H; 41,1, +16H; ;1,1 —48H; 1, 1,1, _1+64H; 1 1,1, —16H; 1 1, _11+84H; 1 1,1
—80H; 1 —14i—4H;1 1,1—16H;1 11, 1+16H; 1 _11,;+64H; 1, 1,-1—64H; 1, 1.

—136H; 1,4 -1+128H;1;;+8H;1:1—16H; 11,1 1+16H; 11, 1,;+20H; 114 1
—16H;11,:i—4H;11:1+12Hy 1,14 -1—12Hy 1 —1,i;+6H1 14 -1,-1—16H1 1, 1,
+10H1,—14,-11—16H1, 14 -1+16Hy 1 ;+10H; 11,1 —8H1 —11:—2H1 1,11

+12Hy 114 -1—12Hy, 114 —24H1 ;1 -1, -1+24Hy; 1, 1;+36H1; 14 -1—16H1,; 1.,
—20H: ;1,1 —8H1i—11:+8H1; 111+32H1 ;i —1:—32H1 ;4 -11—24H1 ;441

+24H i 451—32H1 ;51,-1+32H1,i51,:—8H1,i1,—1,+8H1 i 1,-11—12H1 ;14,1
+16H1 1, —4H1;1,i1+8H1i1,1,-1—8H1,i1,1,i+12H1 1, 11— 12H1 1,144

sty 3Lyl

+6H1 14 -1,-1—16H1 14 1;+10H1 1 11—16H1 1, 1+16H1 1 ;+10H1 1,1 1
—8H1 11— 2H115101+12H 11, -1—12H1 11 “} (D.6)
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