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1 Introduction

The study of integrability in quantum field theories with extended supersymmetry in space-

time dimensions greater then two is quite young subject. Nevertheless, we already have a

plenty of results, for a review and introduction see refs. [1–7]. Initially, this study was

started with the so called “experimental” tests of AdS/CFT duality [8–11] and soon

it was realized that many techniques from the world of two-dimensional integrable sys-

tems, such as sigma-model and spin-chain S-matrices [12–20], Asymptotic Bethe Ansatz

(ABA) [16, 21–26], Thermodynamic Bethe Ansatz (TBA) [27–30] as well as Y and T -

systems [31–37] can be also applicable for the computation of anomalous dimensions of

various operators in these theories. The most well understood theories at a moment are

N = 4 SYM in four and N = 6 super Chern-Simons theory (ABJM model) in three dimen-

sions [38]. The integrability based methods were also used in the study of quark-antiquark

potential [39–42], expectation values of polygonal Wilson loops at strong coupling and be-

yond [43–52], eigenvalues of BFKL kernel [53–56], structure constants [57–61], correlation
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functions [57, 62–71], one-point functions of operators in the defect conformal field the-

ory [72–74] and observables at finite temperature such as Hagedorn temperature of N = 4

SYM [75, 76].

Eventually, a detailed study of TBA equations for super spin chains corresponding

to N = 4 SYM and ABJM models has led to their simplified alternative formulations

in terms of Quantum Spectral Curve (QSC), a set of algebraic relations for Baxter type

Q-functions together with analyticity and Riemann-Hilbert monodromy conditions for the

latter [77–84]. Within the quantum spectral curve formulation one can relatively easy ob-

tain numerical solution for any coupling and state [85–87]. Also, QSC formulation allowed

to construct iterative analytic perturbative solutions for these theories at weak coupling

up to, in principle, arbitrary loop order [81, 88, 89]. The mentioned analytical solutions,

in contrast to numerical ones [85–87], are however limited to the situation when the states

quantum numbers are given explicitly by some integers. Recently, in refs. [90, 91] we

started developing techniques for the solution of QSC equations treating state quantum

numbers as parameters. The first technique based on Mellin space transform [90] turned

out to be quite complex to go for all-loop generalization. On the other hand, in ref. [91]

we suggested, that there should be relatively easy way to obtain a perturbative solution

for the spectrum of twist 1 operators in sl(2) sector for ABJM model working directly in

spectral parameter space. The goal of this paper is to present the algorithm for pertur-

bative solution of ABJM quantum spectral curve at twist 1 in sl(2) sector to any loop

order. The latter is based on the existence of a class of functions — products of rational

functions in spectral parameter with sums of Baxter polynomials and Hurwitz functions,

which is closed under elementary operations, such as shifts and partial fractions, as well

as differentiation. The introduced class of function is sufficient for finding solutions of in-

volved inhomogeneous Baxter equations using recursive construction of the dictionary for

the solutions of Baxter equations for given inhomogeneous parts. As an application of the

proposed method we present computations of anomalous dimensions of twist 1 operators at

six loop order. There is still a room for improvements of the proposed algorithm related to

the simplifications of the arising sums and we plan to present advanced techniques for their

reduction to the basis of generalized harmonic sums in one of our subsequent papers. The

presented approach has the potential for generalizations to higher twists of operators, as

well as to other theories such as N = 4 SYM and twisted N = 4 SYM and ABJM models.

Moreover, similar ideas should be also applicable to the study of BFKL regime within QSC

approach [54–56], as the latter also employs perturbative expansion in coupling constant g

in addition to the expansion in parameter w ≡ S+1, so that the ratio g2/w remains fixed.

This paper is organized as follows. In the next section we give necessary details on

ABJM quantum spectral curve equations putting emphasis on Pν-system. Section 3 con-

tains all the details about our solution of Riemann-Hilbert problem for Pν-system, used

for calculation of anomalous dimensions of twist 1 operators. Next, section 4 contains the

results for anomalous dimensions up to six loop order and their discussion. Finally, in

section 5 we come with our conclusion. Appendices and Mathematica notebooks contain

some details of our calculation together with notation used.
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2 ABJM quantum spectral curve

As it was already mentioned in introduction, the ABJM model is the second most popular

playground for testing AdS/CFT correspondence. It is a three-dimensional N = 6 Chern-

Simons theory based on the product U(N) × Û(N) of two gauge groups with opposite

Chern-Simons levels ±k. In the planar limit, where N, k → ∞ so that the ’t Hooft coupling

λ = k
N kept fixed, this theory has a dual description in terms of IIA superstring theory on

AdS4 × CP 3. The field content of ABJM model consists of two gauge fields Aµ and Âµ,

four complex scalars Y A and four Weyl spinors ψA with matter fields transforming in the

bi-fundamental representation of the gauge group. The global symmetries of ABJM theory

with Chern-Simons level k > 2 are given by orthosymplectic supergroup OSp(6|4) [38, 92]
and the “baryonic” U(1)b [92]. The bosonic subgroups of OSp(6|4) supergroup are related

to isometries of superstring background AdS4 × CP 3.

In the present paper we will be interested in the calculation of anomalous dimensions

of twist 1 gauge-invariant operators from sl(2) sector for arbitrary spin values S. The latter

are given by single-trace operators of the form [93]:

tr
[
DS

+(Y
1Y †

4 )
L
]
. (2.1)

where twist 1 corresponds to L = 1. The expressions for anomalous dimensions can be con-

veniently obtained by solving the corresponding spectral problem for long-range OSp(6|4)
spin chain [24–26]. The most advanced framework for that1 at the moment is offered

by quantum spectral curve (QSC) method. The latter is an alternative reformulation of

Thermodynamic Bethe Ansatz (TBA) as a finite set of functional equations: Q-system.

The most important advance is provided by the considerable simplification of the spec-

tral problem calculations. In the case of ABJM model QSC formulation was introduced

in refs. [82, 83], see also ref. [89]. To perform actual calculations of anomalous dimen-

sions we will use monodromy conditions for the part of ABJM Q-system known as Pν-

system [82, 83]. The latter consists of six functions PA, A = 1, . . . , 6 and eight (4 + 4)

functions νa, ν
b, a, b = 1, . . . 4 satisfying nonlinear matrix Riemann-Hilbert problem [82, 83]:

P̃ab −Pab = νaν̃b − νbν̃a , P̃ab −Pab = −νaν̃b + νbν̃a , (2.2)

ν̃a = −Pabν
b , ν̃a = −Pabνb , (2.3)

where

Pab =




0 −P1 −P2 −P5

P1 0 −P6 −P3

P2 P6 0 −P4

P5 P3 P4 0


 , Pab =




0 P4 −P3 P6

−P4 0 P5 −P2

P3 −P5 0 P1

−P6 P2 −P1 0


 . (2.4)

Here and in the following f̃ will denote a function f analytically continued around one of

the branch points on the real axis. In addition, the P and ν - functions should satisfy extra

1Accounting also for finite size corrections.
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constraints

P5P6 = 1 +P2P3 −P1P4, (2.5)

νaνa = 0, (2.6)

Both PA and νa, ν
a are functions of spectral parameter u. The PA functions have a single

cut on the defining Riemann sheet running from −2h to +2h (h is effective ABJM QSC

coupling constant2), while νa, ν
a functions have an infinite set of branch cuts located at

intervals (−2h,+2h) + in, n ∈ Z and satisfy simple quasi-periodicity relations

ν̃a(u) = eiPνa(u+ i) , ν̃a(u) = e−iPνa(u+ i) , (2.7)

where P is a state dependent phase fixed from self-consistency of QSC equations [83]. To

get QSC description of states in sl(2) sector (2.1) it is sufficient to consider Pν-system

reduced to symmetric, parity invariant states. The reduced Pν-system is identified by

constraints P5 = P6 = P0, ν
a = χabνb and is written as [82, 83, 89]:

ν̃a = −Pab χ
bcνc, (2.8)

P̃ab −Pab = νaν̃b − νbν̃a, (2.9)

where

χab =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0


 . (2.10)

and νa satisfy now periodic/anti-periodic constraints (σ = ±1)

ν̃a = eiPν [2]a = σ ν [2]a , (2.11)

where f [n] (u) = f (u+ in/2) and the constraint for P functions takes the form

(P0)
2 = 1−P1P4 +P2P3. (2.12)

In addition to the above analytical properties of P and ν functions it is required [83, 89]

that they are free of poles and stay bounded at branch points. The quantum numbers

of spin chain states under consideration, that is twist L, spin S and conformal dimension

∆ are encoded in the behavior of P, ν functions at large values of spectral parameter

u [82, 83, 89]:

Pa ≃ (A1u
−L, A2u

−L−1, A3u
+L+1, A4u

+L, A0u
0),

A1A4 = −(∆− L+ S)(∆− L− S + 1)(∆ + L− S + 1)(∆ + L+ S)

L2(2L+ 1)

A2A3 = −(∆− L+ S − 1)(∆− L− S)(∆ + L− S + 2)(∆ + L+ S + 1)

(L+ 1)2(2L+ 1)
, (2.13)

2In contrast to N = 4 SYM, ABJM QSC coupling constant h is a nontrivial function of ’t Hooft

coupling constant λ, refs. [25, 94]. There is a conjecture for the exact form of h(λ), refs. [95, 96], made by

a comparison with the localization results.
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and

νa ∼
(
u∆−L, u∆+1, u∆, u∆+L+1

)
, (2.14)

which serve as boundary conditions for the Riemann-Hilbert problem under study. The

anomalous dimension γ, which is our main interest here, is given by γ = △− L− S.

3 Solution of Riemann-Hilbert problem for Pν-system

To solve the Riemann-Hilbert problem for fundamental Pν-system it is convenient to add

to original equations (2.8)–(2.9) their algebraic consequences [89]. First, from eq. (2.8)

using eq. (2.12) we obtain

νa = −Pabχ
bcν̃c (3.1)

Next, dividing by P
[2]
12 equation (2.8) and subtracting from it the equation (3.1) divided by

P12 we get

ν
[3]
a

P
[1]
12

− ν
[−1]
a

P
[−1]
12

+ σ

(
P

[1]
ab

P
[1]
12

− P
[−1]
ab

P
[−1]
12

)
χbcν [1]c = 0 (3.2)

We will also need the equations following from the sum of equations (2.8) and (3.1):
(
ν1 + σν

[2]
1

) (
p0 − (hx)L

)
= p2

(
ν2 + σν

[2]
2

)
− p1

(
ν3 + σν

[2]
3

)
, (3.3)

(
ν2 + σν

[2]
2

) (
p0 + (hx)L

)
= p3

(
ν1 + σν

[2]
1

)
+ p1

(
ν4 + σν

[2]
4

)
, (3.4)

where pA = (xh)LPA and

x ≡ x(u) =
u+

√
u2 − 4h2

2h
(3.5)

is the Zhukovsky variable used to parameterize the single cut of P-functions on the defining

Riemann sheet.

In summary, the equations we are going to solve are given by

ν
[3]
1

P
[1]
1

− ν
[−1]
1

P
[−1]
1

− σ

(
P

[1]
0

P
[1]
1

− P
[−1]
0

P
[−1]
1

)
ν
[1]
1 = −σ

(
P

[1]
2

P
[1]
1

− P
[−1]
2

P
[−1]
1

)
ν
[1]
2 , (3.6)

ν
[3]
2

P
[1]
1

− ν
[−1]
2

P
[−1]
1

+ σ

(
P

[1]
0

P
[1]
1

− P
[−1]
0

P
[−1]
1

)
ν
[1]
2 = σ

(
P

[1]
3

P
[1]
1

− P
[−1]
3

P
[−1]
1

)
ν
[1]
1 , (3.7)

and

σν
[2]
1 = P0ν1 −P2ν2 +P1ν3 , (3.8)

σν
[2]
2 = −P0ν2 +P3ν1 +P1ν4 , (3.9)

P̃2 −P2 = σ
(
ν3ν

[2]
1 − ν1ν

[2]
3

)
, (3.10)

P̃1 −P1 = σ
(
ν2ν

[2]
1 − ν1ν

[2]
2

)
, (3.11)

(
ν1 + σν

[2]
1

) (
p0 − (hx)L

)
= p2

(
ν2 + σν

[2]
2

)
− p1

(
ν3 + σν

[2]
3

)
, (3.12)

(
ν2 + σν

[2]
2

) (
p0 + (hx)L

)
= p3

(
ν1 + σν

[2]
1

)
+ p1

(
ν4 + σν

[2]
4

)
. (3.13)
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In addition, there are simple consequences of a given cut structure for ν-functions, which

will be used during solution. Namely, the following combinations of functions

νa(u) + ν̃a(u) = νa(u) + σν [2]a (u) ,

νa(u)− ν̃a(u)√
u2 − 4h2

=
νa(u)− σν

[2]
a (u)√

u2 − 4h2
(3.14)

don’t have cuts on the real axis. To find a perturbative solution of the above system of

equations we will use expansion of νa(u) functions in terms of QSC coupling constant h

νa(u) =
∞∑

l=0

h2l−Lν(l)a (u) (3.15)

together with the following parametrization of P-functions [88, 89]

P1=(xh)−Lp1=(xh)−L

(
1+

∞∑

k=1

∞∑

l=0

c
(l)
1,k

h2l+k

xk

)
, (3.16)

P2=(xh)−Lp2=(xh)−L

(
h

x
+

∞∑

k=2

∞∑

l=0

c
(l)
2,k

h2l+k

xk

)
, (3.17)

P0=(xh)−Lp0=(xh)−L




∞∑

l=0

A
(l)
0 h

2luL+
L−1∑

j=0

∞∑

l=0

m
(l)
j h

2luj+
∞∑

k=1

∞∑

l=0

c
(l)
0,k

h2l+k

xk


 , (3.18)

P3=(xh)−Lp3=(xh)−L




∞∑

l=0

A
(l)
3 h

2lu2L+1+
2L∑

j=0

∞∑

l=0

k
(l)
j h2luj+

∞∑

k=1

∞∑

l=0

c
(l)
3,k

h2l+k

xk


 . (3.19)

where we have also accounted for large u asymptotic of P functions (2.13). We would like

to note, that, due to residual gauge symmetry of QSC equations,3 the coefficients m
(l)
j , k

(l)
j

in the above parametrization of P functions at twist L = 1 are left undetermined. Next,

the coefficients A
(l)
0 , A

(l)
3 and c

(l)
i,k are some functions of spin S only and the mentioned

gauge freedom can be also used to set A1 = 1 and A2 = h2. The analytical continuation

of P-functions through the cut on real axis is simple and is given by [88]:

P̃a =
(x
h

)L
p̃a , p̃a = pa

∣∣∣
x→1/x

. (3.20)

In what follows we will consider perturbative solution in a special case of twist 1 operators,

so from now on we put L = 1.

3.1 Sums of Baxter polynomials

Recently, in ref. [91] we have suggested that the full all-loop solution of thePµ-system (2.8)–

(2.9) can be obtained in terms of linear combinations of products of rational (in spectral

parameter u), Hurwitz-functions and Baxter polynomials and showed an explicit example

at four-loop order. The purpose of this paper is to present the algorithmic solution that

3See for details [89].
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will work at any loop order. To do that, let us first introduce the necessary notation to

present a class of functions which will allow us to solve non-homogeneous Baxter equations

in next subsection.

The expressions for Baxter polynomials are obtained as leading order solutions for

ν
(0)
1 (u)-functions as follows. First, considering equations (2.13) and (2.12) at large values

of spectral parameter u we get

A
(0)
0 = iσ(2S + 1) . (3.21)

Substituting this expression into the first Baxter equation (3.6) and solving it in leading

order in QSC coupling constant h we have4

ν
(0)
1 (u) = αQ

[−1]
S (u) , (3.22)

where the Baxter polynomial QS(u) is given by [89, 90]

QS (u) = 2F1

(
−S, 1

2
+ iu; 1; 2

)
=

(−)SΓ
(
1
2 + iu

)

S!Γ
(
1
2 + iu− S

) 2F1

(
−S, 1

2
+ iu;

1

2
+ iu− S;−1

)
.

(3.23)

and α is some spin-dependent constant to be determined later. Note, that the two different

expressions for QS(u) in eq. (3.23) coincide only for integer non-negative values of S. In

order to unambiguously define QS for arbitrary complex spins S by analytical continuation,

one should fix the behavior at S → ±i∞, according to Carlson’s theorem. The same

concerns the analytical continuation of the sums with S in the upper summation limit,

which appear below. The questions related to the analytical continuation will be considered

elsewhere.

Let us now introduce the following class of sums involving Baxter polynomials

〈Q (u) |w1 (•) , w2 (•) , . . . , wn (•)〉 =
∑

S≥j1>j2...>jn>0

QS−j1 (u)
∏

k

wk (jk) , (3.24)

〈Q (u) |〉 = QS (u) , (3.25)

where wk are some weights. The bullet • denotes summation index or argument of weight

function wk, whose particular symbolic representation or name is not important. Here and

below we write weights wk(•) in several equivalent ways, wk(•) ≡ wk(j) ≡ wk and use W

to denote arbitrary (maybe empty) sequence of weights. For example, we have

〈
Q (u) |(−1)•

(•)3 ,
1

(S + 1− •)2
〉

=
∑

S≥j1>j2>0

QS−j1(u)
(−1)j1

j31

1

(S + 1− j2)2
(3.26)

In the case, when the argument of QS is u we will often drop it and simply write

〈Q|w1 (•) , w2 (•) , . . . , wn (•)〉. We also introduce a shortcut

〈w1 (•) ,w2 (•) , . . . ,wn (•)〉=
〈
Q

(
i

2

)
|w1 (•) ,w2 (•) , . . . ,wn (•)

〉
=

∑

S≥j1>j2...>jn>0

∏

k

wk .

(3.27)

4One may use, for example, Mellin transform technique, see [90] for more details.
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Note that the 〈w1,W 〉-sums satisfy usual stuffle relations. In addition, we will use the

notation

|w1, w2, . . . , wn〉j0 =
∑

j0>j1...>jn>0

∏

k

wk(jk) , (3.28)

so that

〈Q (u) |w1, w2, . . . , wn〉 =
∑

S≥j1>0

QS−j1 (u)w1 (j1) |w2, . . . , wn〉j1 .

It turns out that weights at twist 1 can always be reduced to a set of canonical weights for

which we introduce special notations:

1

•n = n+(•) ,
(−)•

•n = n−(•) , (3.29)

1

(S + 1− •)n = n+(•) ,
(−)•

(S + 1− •)n = n−(•) , (3.30)

1

(2S + 1− •)n = n̂+(•) ,
(−)•

(2S + 1− •)n = n̂−(•) . (3.31)

In ref. [91] we have considered elementary operations on Baxter polynomials,5 such as shifts

and partial fractions. The latter can be also extended to the sums of Baxter polynomials.

In particular, the shift in spectral parameter u can be performed using (a = ±1):

Q
[2a]
S = QS + 2

S∑

k=1

akQS−k = QS + 2 〈Q|0a〉 (3.32)

and

〈Q|w,W 〉[2a] = 〈Q|w,W 〉+ 2 〈Q|0a, 0a · w,W 〉 . (3.33)

Next, we have the rules for partial fractions (a = ±):

QS

u+ a i
2

=
(−a)S
u+ a i

2

+ 2ia
〈
Q|0a, 1−

〉
+ 2ia

〈
Q|1−a

〉
(3.34)

and

〈Q|w,W 〉
u+ a i

2

=
(−a)S
u+ a i

2

〈0−a · w,W 〉+ 2ia
〈
Q|0a, 1−, 0−a · w,W

〉
+ 2ia

〈
Q|1−a, 0−a · w,W

〉
.

(3.35)

Finally we can shift the spin S of Baxter polynomials using

(S + 1)

(
Q

[1]
S+1

Q
[−1]
S+1

)
=

(
S + 1− iu −iu

−iu −S − 1− iu

)(
Q

[1]
S

Q
[−1]
S

)
, (3.36)

S

(
Q

[1]
S−1

Q
[−1]
S−1

)
=

(
S + iu −iu
−iu −S + iu

)(
Q

[1]
S

Q
[−1]
S

)
. (3.37)

Remarkably, the introduced class of functions, 〈Q| . . .〉, is also closed under differentiation,

see appendix A for more details.

5These are highly nontrivial identities on hypergeometric functions, see [91] for more details.
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So, let us summarize the results of the present subsection. We introduced the class of

functions — products of rational functions in spectral parameter u with 〈Q|W 〉-sums (3.24)

closed under elementary operations, such as argument shifts and partial fractions, as well

as under differentiation. As we will see in next subsection this class of functions extended

to products with Hurwitz functions6 is also sufficient for finding a perturbative solution of

inhomogeneous Baxter equations.

3.2 Solutions of Baxter equations

The most complicated part in the perturbative solution of Riemann-Hilbert problem for

Pν-system is the solution of two inhomogeneous Baxter equations (3.6) and (3.7). Iterative

perturbative solution of equations (3.6)–(3.13) goes through the expansion in QSC coupling

constant h. In particular we expand equations (3.6), (3.7) up to hk and obtain the following

inhomogeneous Baxter equations for q
(k)
1,2 =

(
ν
(k)
1,2

)[1]

B1

(
q
(k)
1

)
≡ (u+ i/2)q

(k)
1 (u+ i)− i(2S+1)q

(k)
1 (u)−(u− i/2)q(k)1 (u− i)=V

(k)
1 , (3.38)

B−1

(
q
(k)
2

)
≡ (u+ i/2)q

(k)
2 (u+ i)+ i(2S+1)q

(k)
2 (u)−(u− i/2)q(k)2 (u− i)=V

(k)
2 , (3.39)

where V
(k)
1 depends on q

(l)
1,2 with l < k, and V

(k)
2 depends in addition on q

(k)
1 . The solution of

these equations contains in general two pieces: the solution of homogeneous equation with

arbitrary periodic coefficients and some particular solution of nonhomogeneous equation.

3.2.1 Homogeneous solution

The first homogeneous solutions of Baxter equations (3.38) and (3.39) are easy to find, they

are given by7 Φper
Q (u)QS(u) and Φanti

Q (u)QS(u) correspondingly. Here Φ
per
Q (u) and Φanti

Q (u)

are arbitrary i-(anti)periodic functions of spectral parameter u. To find second solutions

let us consider the following identity

B−1 (ξ−1QS) = Q
[2]
S −Q

[−2]
S = 2

S∑

k=1

[
1− (−)k

]
QS−k = −i

S∑

k=1

1− (−)k

2S − k + 1
B−1QS−k ,

(3.40)

where8

ξ±|k|(u) =
∞∑

n=1

(±)n−1

(
u+ in− i

2

)|k| . (3.41)

It is easy to see that the second homogeneous solution of the second Baxter equation (3.39)

is given by

ZS(u) = ξ−1QS + i
S∑

k=1

1− (−)k

2S − k + 1
QS−k = ξ−1QS + i〈Q|1̂+〉 − i〈Q|1̂−〉 . (3.42)

6See appendix B for their definition.
7See the discussion at the beginning of subsection 3.1.
8See appendix B for full definition of Hurwitz functions ξA.
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Then the general solutions of first and second homogeneous Baxter equations are given by

qhom1 (S, u) = Φper
1 QS(u) + Φanti

1 ZS(u) , (3.43)

qhom2 (S, u) = Φanti
2 QS(u) + Φper

2 ZS(u) , (3.44)

where Φper
a and Φanti

a are arbitrary i-periodic and i-anti-periodic functions in spectral pa-

rameter u. They have to be determined from the consistency conditions implied by the

equations (3.6)–(3.14). We will parametrize their u dependence similar to refs. [88, 89] us-

ing the basis of i-periodic and i-anti-periodic combinations of Hurwitz functions ξk defined

as

Pk(u) = ξ
[−1]
k (u) + sgn(k)(−)kξ

[−3]
k (−u) = sgn(k)Pk(u+ i) , k 6= 0 ∈ Z , (3.45)

Note that Pk(u) can be expressed via elementary functions:

Pk(u) =
(−∂u)|k|−1

(|k| − 1)!

{
π coth(πu) k > 0

π/ cosh(πu) k < 0
(3.46)

Then the functions Φper
a and Φanti

a are written as

Φper
a (u) = φpera,0 +

Λper
a∑

j=1

φpera,jPj(u+ i/2) , Φanti
a (u) =

Λanti
a∑

j=1

φantia,j−1P−j(u+ i/2) (3.47)

where the upper limits of summation depend on the order of perturbation theory as follows

Λ
(k),per
1 = Λ

(k),anti
2 = 2k − 1 , (3.48)

Λ
(k),anti
1 = Λ

(k),per
2 = 2k − 2 . (3.49)

Here k = 1 for NLO, k = 2 for NNLO, and so on.

3.2.2 Dictionary for inhomogeneous solutions

To find particular solutions of Baxter equations (3.38) and (3.39) let us introduce the

operators F±1 which are right inverse of the Baxter operators B±1, eqs. (3.38), (3.39), i.e.,

satisfy

B±1(F±1(f)) = f . (3.50)

Note that they are nothing but the operators FS
1,2 introduced in our previous paper [91].

So, we need to find a way to invert operators B±1 for a given image value. Our basic

idea now is to compile a dictionary sufficient to treat all the functions appearing in the

right-hand sides of Baxter equations.
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Action of F±1 on 〈Q|W 〉. We first act with the operators B±1 on the functions

〈Q (u) |w,W 〉:

B1 [〈Q|w,W 〉] =
S∑

j=1

B1 [QS−j ]w (j) |W 〉j (3.51)

= −2i
S∑

j=1

QS−jjw (j) |W 〉j = −2i 〈Q|(−1)+ · w,W 〉 ,

B−1 [〈Q|w,W 〉] =
S∑

j=1

B−1 [QS−j ]w (j) |W 〉j (3.52)

= 2i
S∑

j=1

QS−j (2S − j + 1)w (j) |W 〉j = 2i
〈
Q|(−̂1)+ · w,W

〉

Replacing w → 1+ · w in the first formula and w → 1̂+ · w in the second we obtain the

following entries in our dictionary:

F1 [〈Q|w,W 〉] = i

2
〈Q|1+ · w,W 〉 , (3.53)

F−1 [〈Q|w,W 〉] = − i

2

〈
Q|1̂+ · w,W

〉
. (3.54)

Special cases F±1 [〈Q|〉] can be read off from eqs. (3.42) and (3.43) of ref. [91]:

F1 [〈Q|〉] = −1

2
〈Q|〉 ξ1 −

i

2
〈Q|1+〉 −

i

2
〈Q|1−〉 , (3.55)

F−1 [〈Q|〉] = − i

2(2S + 1)
〈Q|〉 . (3.56)

Action of F±1 on 〈Q|W 〉 ξa1,a2,.... The basic idea of calculating F±1[〈Q|W 〉 ξA] is to
use the analogue of summation-by-part formulae from refs. [88, 89]. For any two functions

f and g we have9

Bσ [fg] = fBσ [g] +

(
u+

i

2

)(
f [2] − f

)
g[2] −

(
u− i

2

)(
f [−2] − f

)
g[−2]

= −fB−σ [g] +

(
u+

i

2

)(
f [2] + f

)
g[2] −

(
u− i

2

)(
f [−2] + f

)
g[−2] . (3.57)

Substituting g → F±σ[g] and f = ξa,A, we obtain

Fσ

[
gξσa|a|,A

]
= σaξσa|a|,AFσaσ [g]− σaFσ

[(
u+

i

2

)(
ξ
[2]
σa|a|,A

− σaξσa|a|,A

)
Fσaσ [g]

[2]

−
(
u− i

2

)(
ξ
[−2]
σa|a|,A

− σaξσa|a|,A

)
Fσaσ [g]

[−2]

]
. (3.58)

9In the present section σ = ±1 is an arbitrary sign, not to be confused with σ = (−)S entering (2.11)
and other equations for Pν-system.
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Here A = a1, a2 . . . stands for an arbitrary (maybe empty) sequence of indices, and σa =

a/|a|. Then, for g = 〈Q|W 〉, using eqs. (3.53), (3.54), and (B.6), we have

Fσ

[
〈Q|w,W 〉 ξσ|a|,A

]
=
i

2

{
σ 〈Q|1+ · w,W 〉 ξσ|a|,A (3.59)

+ Fσ

[〈Q|1+ · w,W 〉[2] ξ[2]A(
u+ i

2

)|a|−1
+
σ 〈Q|1+ · w,W 〉[−2] ξA(

u− i
2

)|a|−1

]}

Fσ

[
〈Q|w,W 〉 ξ−σ|a|,A

]
=
i

2

{
σ
〈
Q|1̂+ · w,W

〉
ξ−σ|a|,A (3.60)

+ Fσ

[
−

〈
Q|1̂+ · w,W

〉[2]
ξ
[2]
A(

u+ i
2

)|a|−1
+
σ
〈
Q|1̂+ · w,W

〉[−2]
ξA

(
u− i

2

)|a|−1

]}
.

The operators F±1 in the right-hand side of the above equations act on the ‘simpler’ objects

because the number of indices of ξ-functions is reduced by one.

Let us present separately the formula

Fσ

[
〈Q|〉ξ−σ|a|,A

]
=

i

2 (2S + 1)

{
σ〈Q|〉ξ−|a|,A + F1

[
− 〈Q|〉[2]ξ[2]A(

u+ i
2

)|a|−1
+
σ〈Q|〉[−2]ξA(
u− i

2

)|a|−1

]}
.

(3.61)

In order to find Fσ

[
〈Q|〉ξσ|a|,A

]
, we consider the identity

Bσ

[
〈Q|〉ξσ,σ|a|,A

]
= −σ〈Q|〉[2]ξ[2]σ|a|,A − 〈Q|〉[−2]ξσ|a|,A . (3.62)

We transform the right-hand side using the formulas (B.6) and obtain

Bσ

[
〈Q|〉ξσ,σ|a|,A

]
= −2〈Q|〉ξσ|a|,A +

〈Q|〉[2]ξ[2]A(
u+ i

2

)|a| − 2 〈Q|0+〉 ξσ|a|,A − 2 〈Q|0−〉 ξσ|a|,A . (3.63)

Then we obtain

Fσ

[
〈Q|〉ξσ|a|,A

]
=−1

2

{
〈Q|〉ξσ,σ|a|,A+Fσ

[
〈Q|〉[2]ξ[2]A(
u+ i

2

)|a| −2〈Q|0+〉ξσ|a|,A−2〈Q|0−〉ξσ|a|,A
]}

.

(3.64)

Action of F±1 on
ξA

(u±i/2)a
. From now on we will present only the final entries of our

dictionary as the derivations goes more or less along the same lines as before. The action
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of F±1 on ξA
(u±i/2)a

is the following

Fσ

[
1

(
u+ i

2

)|a| ξb,A
]
=−σb〈Q|〉ξσ,−σ|a|,b,A+Fσ

[ 〈Q|〉[2]
(
u+ i

2

)|a|+|b|
ξ
[2]
A −〈Q|〉[2]−1

(
u+ i

2

)|a| ξb,A (3.65)

+2[〈Q|0+〉−〈Q|0−〉]σbξ−σ|a|,b,A

]
.

Fσ

[
1

(
u+ i

2

)|a|

]
=−〈Q|〉ξσ,−σ|a|+Fσ

[
−〈Q|〉[2]−1

(
u+ i

2

)|a| +2[〈Q|0+〉−〈Q|0−〉]ξ−σ|a|

]
. (3.66)

Fσ

[
ξA(

u− i
2

)|a|

]
=(−)S

{
〈Q|〉

(
σξσ,−σ|a|,A−ξσ|a|+σ,A

)
(3.67)

+Fσ

[
−σ 〈Q|〉[−2]−(−)S

(
u− i

2

)|a| ξA+2[〈Q|0−〉−〈Q|0+〉]ξ−σ|a|,A

]}
.

Fσ

[
1

(
u− i

2

)|a|

]
=(−)S

{
〈Q|〉

(
σξσ,−σ|a|−ξσ|a|+σ

)
(3.68)

+Fσ

[
−σ 〈Q|〉[−2]−(−)S

(
u− i

2

)|a| +2[〈Q|0−〉−〈Q|0+〉]ξ−σ|a|

]}
.

Action of F±1 on un〈Q|W 〉ξA. Finally, the right-hand side of the Baxter equations

may also contain terms of the form un〈Q|W 〉ξA with n = 1, 2. First, we use the same

summation-by-part technique as before. Namely, we use eq. (3.58) with g = un〈Q|W 〉 to

reduce the problem to the calculation of Fσ[u
n〈Q|W 〉].

In order to calculate Fσ[u
n〈Q|W 〉], it is convenient to introduce notation

Q{n}
S =

[
Γ (S + 1 + n)

Γ (S + 1)

]sgn(n)
QS+n =

{
(S + 1)nQS+n, n ≥ 0

(S + 1 + n)−nQS+n, n < 0
(3.69)

In terms of these functions we can easily express10 the required action:

F−1 [u 〈Q|w(j),W 〉] = 1

4

〈
Q{1}| w(j)

2S − j + 2
,W

〉
− 1

4

〈
Q{−1}| w(j)

2S − j
,W

〉
, (3.70)

F1 [u 〈Q|w(j),W 〉] = −1

4

〈
Q{1}|w(j)

j − 1
,W

〉
+

1

4

〈
Q{−1}|w(j)

j + 1
,W

〉
, (3.71)

F−1

[
u2 〈Q|w(j),W 〉

]
=
i

8

〈
Q{2}| w(j)

2S − j + 3
,W

〉
+
i

8

〈
Q{−2}| w(j)

2S − j − 1
,W

〉

− i

8

〈
Q|(S − j + 1)2 + (S − j)2

2S − j + 1
w(j),W

〉
, (3.72)

F1

[
u2 〈Q|w(j),W 〉

]
= − i

8

〈
Q{2}|w(j)

j − 2
,W

〉
− i

8

〈
Q{−2}|w(j)

j + 2
,W

〉

+
i

8

〈
Q|(S − j + 1)2 + (S − j)2

j
w(j),W

〉
. (3.73)

10One should use multiplication by u rules derived from spin shift relations (3.36).
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Here

〈
Q{n}|w1 (•) , w2 (•) , . . . , wn (•)

〉
=

∑

S≥j1>j2...>jn>0

Q{n}
S−j1

(u)
∏

k

wk (jk) (3.74)

and we assume that w(j) is one of the canonical weights (3.29). Then we use the partial-

fractioning identities similar to

w(j)

j − 1
=
w(j)− (±)j−1w(1)

j − 1
+ w(1)

(±)j−1

j − 1
, (3.75)

where we choose the lower sign if w(j) contains (−)j factor and the upper sign otherwise.

Then the first term in eq. (3.75) is obviously a combination of canonical weights. The

second term contains a shifted weight 1±(j − 1). Note that this shift is correlated with

superscript {n} of Q functions. Therefore, we need the transformation rules for the sums

of the form 〈
Q{n}|w (•) ,W

〉
, (3.76)

where w (•) is one of the canonical weights (3.29), and

〈
Q{n}|1̃ (• − n) ,W

〉
, (3.77)

where 1̃ is one of the four weights 1+, 1−, 1̂+, 1̂−. First, we note simple consequences of

eq. (3.36): for n > 0 we have

(
Q{n}[1]

S

Q{n}[−1]
S

)
=

(
S + n− iu −iu

−iu −S − n− iu

)(
Q{n−1}[1]

S

Q{n−1}[−1]
S

)
, (3.78)

(
Q{−n}[1]

S

Q{−n}[−1]
S

)
=

(
S − n+ 1 + iu −iu

−iu −S + n− 1 + iu

)(
Q{−n+1}[1]

S

Q{−n+1}[−1]
S

)
. (3.79)

These relations allow one to shift the upper index ofQ{n}
S to zero without generating any de-

nominators. SinceQ{0}
S = QS , we use these identities for the reduction of sums (3.76) (3.76)

to the combination of 〈Q| . . .〉, possibly, with shifted argument and/or multiplied by powers

of u.

The sums of the form (3.77) after the substitution of the definition (3.69) and shifting

j1 → j1 + n are almost of the required form except for the upper limit of summation over

j2 which is j1+n− 1, i.e., is shifted by n. Then we can treat the missing/redundant terms

in a recursive manner. For example, we have

〈
Q{−1}|1̃ (•+ 1) , w1(•),W

〉
=

〈
Q|(S + 1− •)1̃ (•) , w1(•),W

〉

−
〈
Q{−1}|1̃ (•+ 1)w1(•),W

〉
. (3.80)

Then the second term is again of the same form as those in the right-hand side of eq. (3.70).

Note that special attention should be paid to the sums with depth less or equal to |n|. The
full set of the reductions rules can be found in the code of the attached Mathematica file.
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3.3 Constraints solution

Now, with the knowledge of how to find the solutions of two Baxter equations (3.38)

and (3.39) in each order of perturbation theory we may proceed with the determination

of constants in the anzats for P-functions together with additional φ
per|anti
a,j constants

parameterizing homogeneous parts of the solutions to mentioned Baxter equations. It

should be noted that to solve constraint equations one can greatly benefit from the use

of elementary operations on Baxter polynomials and their sums, such as shifts and partial

fractions, see subsection 3.1. In addition we have also extensively used stuffle relations for

products of 〈w,W 〉-sums together with Taylor expansion of 〈Q|w,W 〉 sums at u = i/2,

see corresponding derivative rules at the end of subsection 3.1. To have intermediate

expressions as small as possible we have also fixed residual gauge freedom by putting all

coefficients m
(l)
j , k

(l)
j to zero.

In the beginning of subsection 3.1 we have already found the expression for A
(0)
0 con-

stant together with LO solution of the first Baxter equation (3.6) up to yet undetermined

constant α. Next, from equation (3.8) we determine the expression for ν
(0)
3 (u) and sub-

stitute it in the equation (3.10). Expanding the latter at u = 0 up to O(u2) we get the

expression11 for constant α:

1

α2
= −4iB1 , B1 = H1 −H−1 . (3.81)

Also from the requirement of absence of poles in combinations (3.14) for ν
(0)
1 we may

determine the value of σ = (−)S in eq. (2.11). Knowing the expression for ν
(0)
1 (u) we may

determine ν
(0)
2 by solving second Baxter equation (3.7):

ν
(0)
2 = −(−)S

α

8
A

(0)
3

[
3 (S + 2) (S + 1)

2S + 3
Q

[−1]
S+2 − 2

3S2 + 3S + 1

2S + 1
Q

[−1]
S +

3S (S − 1)

2S − 1
Q

[−1]
S−2

]

(3.82)

Now, from equation (3.11) expanded at u = 0 up to O(u) we get the value of A
(0)
3 constant:

A
(0)
3 = −4

3
(2S + 3)(2S − 1)B1 (3.83)

Starting from NLO, the solution at each perturbation order follows the same pattern.

First, the required expressions for ν
(k)
3 and ν

(k)
4 functions at each perturbation order are

obtained from the equations (3.8) and (3.9), respectively,expanded to the required order

in QSC coupling constant. Then the required steps at each perturbation order can be

summarized as follows:

1. To get expressions for additional coefficients c
(l)
2,n, l < i required at a given perturba-

tion order k we perform a number of expansions of equation (3.10) up to O(h1+2l)

and O(u2+2(k−l)) for all l < k.

2. To get expressions for additional coefficients c
(l)
1,n, l < k required at a given pertur-

bation order k we perform a number of expansions of equation (3.11) up to O(h1+2l)

and O(u1+2(k−l)) for all l < k.

11See appendix C for definition of H and B sums.
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3. To get expressions for additional coefficients c
(l)
0,n, l < k required at a given perturba-

tion order k we perform an expansion of equation (3.12) up to O(h1+2k) and O(u).

Here, we would like to note, that combinations in brackets of equation (3.12) are the

same as in equations (3.14) and therefore they are free of poles at u = 0 at any order

of perturbation theory. The leading order O(h0) expressions for p’s and hx are also

regular at u = 0. So, up to O(u) order of expansion in u the ν
(k)
a -functions do not

contribute to the resulting equations on coefficients c
(l)
0,n.

4. To get expressions for additional coefficients c
(l)
3,n, l < k required at a given perturba-

tion order k we perform an expansion of equation (3.13) up to O(h1+2k) and O(u).

Here apply the same argument we did at the end of the previous step and up to O(u)

order of expansion in u the ν
(k)
a -functions do not contribute to the resulting equations

on coefficients c
(l)
3,n.

5. Requiring the absence of poles in the combinations (3.14) for ν
(k)
1 function allows us

to fix A
(k)
0 together with expressions for all constants in the homogeneous piece of

solution for ν
(k)
1 except the value of φ

(k),per
1,0 .

6. To determine the value of φ
(k),per
1,0 coefficient we perform the expansion of equa-

tion (3.10) up to the order O(h1+2k) and O(u2).

7. Requiring the absence of poles in the combinations (3.14) for ν
(k)
2 function allows us

to fix expressions for all constants in the homogeneous piece of solution for ν
(k)
2 .

8. Finally, to get the expression for A
(k)
3 coefficient we perform the expansion of equa-

tion (3.11) up to the order O(h1+2k) and O(u).

3.3.1 NLO

Following the above procedure step by step at NLO we get12

1. First, from equation (3.10):

c
(0)
2,2 = 0 , c

(0)
2,3 = 4iα2 (B1B2 +B3) . (3.84)

2. Then, from equation (3.11):

c
(0)
1,1 = 0 , c

(0)
1,2 = 4B1 −B2

1 − 2B2 . (3.85)

3. Equation (3.12) gives

c
(0)
0,1 = −1− i(−)SS (1 + S)

3(1 + 2S)α2
. (3.86)

4. Similarly from equation (3.13) we have

c
(0)
3,1 =

2(−)SS(1 + S)(12i(1 + 2S)α2 − 2(−)SS(1 + S))

36(1 + 2S)2α4
. (3.87)

12The expressions for q
(1|2)
1,2 -functions can be found in accompanying Mathematica files.
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5. The homogeneous part of q
(1)
1 =

(
ν
(1)
1

)[1]
function is given by

q
(1)
1,hom = αφ

(1),per
1,0 QS + αφ

(1),per
1,1 P1(u+ i/2)QS (3.88)

and from the absence of poles in equations (3.14) we have

A
(1)
0 = 2(−)S (3 + 2S)B1 , φ

(1),per
1,1 = 2iB1 . (3.89)

6. From equation (3.10) we further fix13

φ
(1),per
1,0 =

1

B1

{
− 8H−2,1 + 2H−1,−2 − 4H−1,−1 + 4H−1,1 − 2H−1,2 − 6H1,−2

+ 4H1,−1 − 4H1,1 + 6H1,2 + 8H2,1 − 4H−1,−1,−1 − 4H−1,−1,1 + 8H−1,1,1

+ 8H1,−1,1 + 4H1,1,−1 − 12H1,1,1 + 2H−3 − 4H−2 + 4H2 − 2H3

}
. (3.90)

7. The homogeneous part of q
(1)
2 =

(
ν
(1)
2

)[1]
function is given by

q
(1)
2,hom = αφ

(1),per
2,0 ZS + αφ

(1),anti
2,0 P−1(u+ i/2)QS (3.91)

and from the absence of poles in equations (3.14) we have

φ
(1),per
2,0 = 0 , φ

(1),anti
2,0 = 4iB1 . (3.92)

8. Finally, from equation (3.11) we have

A
(1)
3 =−16

3
(2S−1)(2S+3)

(
3H̄−2,−1−2H̄−2,i−H̄−2,1−H̄−1,−2+2H̄−1,2i−H̄−1,2

−6H̄i,−2+12H̄i,2i−6H̄i,2−6H̄2i,−1+4H̄2i,i+2H̄2i,1−H̄1,−2+2H̄1,2i−H̄1,2+3H̄2,−1

−2H̄2,i−H̄2,1+2H̄−1,i,−1−2H̄−1,i,1+8H̄i,−1,−1−12H̄i,−1,i+4H̄i,−1,1−16H̄i,i,−1

+16H̄i,i,i+4H̄i,1,−1−4H̄i,1,i+2H̄1,i,−1−2H̄1,i,1−
1

2
B1ζ2

)
− 4

3
(5+20S+4S2)B2

1 (3.93)

3.3.2 NNLO

At NNLO we were not reducing all 〈w1 (•) , w2 (•) , . . . , wn (•)〉 sums at intermediate steps

to H and B -sums. Such reduction was performed only for the NNLO anomalous dimen-

sions at the end. Moreover, this final reduction was not algorithmic — we just solved a

system of equations for 768 spin values, which is the dimension of our H̄ basis14 at weight

5 corresponding to NNLO. Still, our preliminary considerations show that the required

algorithmic reduction at all steps is possible and, what is more important, it will make our

13This expression is different from the one reported in [90] due to different particular solution contribution.
14See definition of H̄-sums in appendix C.
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algorithm much more efficient. The details of this reduction will be the subject of one of

our subsequent papers. Following the steps of general procedure for constraints solution

at NNLO we get15

1. First, from equation (3.10):

c
(0)
2,4 = 0 , c

(1)
2,2 = 0 (3.94)

and the results for coefficients c
(0)
2,5 and c

(1)
2,3 can be found in accompanying Mathemat-

ica files.

2. Then, from equation (3.11):

c
(0)
1,3 = 0 , c

(1)
1,1 = 0 (3.95)

and the results for coefficients c
(0)
1,4 and c

(1)
1,2 can be found in accompanying Mathemat-

ica files.

3. Next, equation (3.12) gives c
(0)
0,2 = 0 and the expression for c

(1)
0,1 may be found in

accompanying Mathematica file.

4. Similarly equation (3.13) gives c
(0)
3,2 = 0 and the expression for c

(1)
3,1 may be found in

accompanying Mathematica file.

5. The homogeneous part of q
(2)
1 =

(
ν
(2)
1

)[1]
function is given by

q
(2)
1,hom = αφ

(1),per
1,0 QS + α

3∑

i=1

φ
(2),per
1,i Pi(u+ i/2)QS + α

2∑

i=1

φ
(2),anti
1,i−1 P−i(u+ i/2)ZS

(3.96)

and from the absence of poles in equations (3.14) we have

φ
(2),per
1,3 = 2iB1 , φ

(2),anti
1,0 = 0 , φ

(2),anti
1,1 = −4iB1 (3.97)

while the expressions for A
(2)
0 , φ

(2),per
1,1 and φ

(2),per
1,2 can be found in accompanying

Mathematica files.

6. From equation (3.10) we further fix the expression for φ
(2),per
1,0 , which may be found

in accompanying Mathematica file.

7. The homogeneous part of q
(2)
2 =

(
ν
(2)
2

)[1]
function is given by

q
(2)
2,hom = αφ

(2),per
2,0 ZS + α

2∑

i=1

φ
(2),per
2,i Pi(u+ i/2)ZS + α

3∑

i=1

φ
(2),anti
2,i−1 P−i(u+ i/2)QS

(3.98)

and from the absence of poles in equations (3.14) we have

φ
(2),per
2,0 = φ

(2),per
2,2 = φ

(2),anti
2,1 = 0 , φ

(2),anti
2,2 = 4iB1 , (3.99)

15The files cijn contain results for c
(n)
i,j coefficients, Ain for A

(n)
i , phiPani for φ

(n),per
a,i and phiAani for

φ
(n),anti
a,i .
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while the expressions for φ
(2),per
2,1 and φ

(2),anti
2,0 can be found in accompanying Mathe-

matica files.

8. Finally, from equation (3.11) we determine the value of A
(2)
3 , which again may be

found in accompanying Mathematica file.

4 Anomalous dimensions

The expressions for the anomalous dimensions can be easily obtained from the correspond-

ing expressions for A
(0,1,2)
3 constants with the help of equation (2.13). The results for

anomalous dimensions of twist 1 operators up to six loop are then given by16

γ(S) = γ(0)(S)h2 + γ(1)(S)h4 + γ(2)(S)h6 + . . . (4.1)

where

γ(0)(S) = 4
(
H̄1 + H̄−1 − 2H̄i

)

γ(1)(S) = 16
{
3H̄−2,−1 − 2H̄−2,i − H̄−2,1 − H̄−1,−2 + 2H̄−1,2i − H̄−1,2 − 6H̄i,−2

+ 12H̄i,2i − 6H̄i,2 − 6H̄2i,−1 + 4H̄2i,i + 2H̄2i,1 − H̄1,−2 + 2H̄1,2i − H̄1,2 + 3H̄2,−1

− 2H̄2,i − H̄2,1 + 2H̄−1,i,−1 − 2H̄−1,i,1 + 8H̄i,−1,−1 − 12H̄i,−1,i + 4H̄i,−1,1 − 16H̄i,i,−1

+ 16H̄i,i,i + 4H̄i,1,−1 − 4H̄i,1,i + 2H̄1,i,−1 − 2H̄1,i,1

}
− 4

3
π2

(
H̄−1 + H̄1 − 2H̄i

)
(4.2)

and expression for six-loop anomalous dimension (NNLO) γ(2)(S) may be found in ap-

pendix D.

The LO expression was already known for a long time, see for example [89, 97, 98].

NLO expression together with the corresponding basis for generalized harmonic sums was

obtained recently in our papers [90, 91]. The NNLO expression is new and appeared here

for the first time. The obtained results are in complete agreement with previous results at

fixed spin values [89, 97, 98]. Note, that our H̄-sums here can be further rewritten using

cyclotomic or S-sums of refs. [99, 100] provided one extends the definition of the latter

for the complex values of xi parameters. It is also possible to express them in terms of

twisted η-functions introduced in ref. [41]. Here, we see that the maximal transcendentality

principle17 [104, 105] also holds for anomalous dimensions of ABJM theory with the account

for finite size corrections up to six loop order and it is now natural to assume it is validity

for ABJM model to all orders. That is the results for anomalous dimensions in each order

of perturbation theory are expressed in terms of H̄-sums of uniform weight w, where w = 3

at NLO and w = 5 at NNLO. In general, the size of the basis of H̄-sums at weight w is

equal to 3 ·4w−1 and at NNNLO (w = 7) we should have 12288 such sums. Moreover, while

discussing solution of NNLO constraints in subsection 3.3 we noted that at present we are

missing automatic reduction of 〈w1 (•) , w2 (•) , . . . , wn (•)〉 sums, arising at different steps

16See appendix C for the definition of H̄-sums.
17Similar considerations in the evaluation of Feynman diagrams first appeared in ref. [101]. See also

refs. [102, 103].

– 19 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
8

of our calculation, to H̄-sums, which makes intermediate expressions even larger. We are

planing to address this latter issue in one of our subsequent publications. In addition it is

desirable to construct Gribov-Lipatov reciprocity respecting basis [106–108] of generalized

harmonic sums also for ABJM model. The latter in the case of N = 4 SYM is known to

be much more compact compared to the original basis of harmonic sums and was used in

refs. [109–113] to simplify the reconstruction of the full spin S dependence of anomalous

dimensions from the knowledge of anomalous dimensions at a set of fixed spin values.

5 Conclusion

In this paper we have presented an algorithmic perturbative solution of ABJM quantum

spectral curve for the case of twist 1 operators in sl(2) sector of the theory. The solution

treats operator spin S as a symbol and applies to all orders of perturbation theory. The pre-

sented solution is performed directly in spectral parameter u-space and effectively reduces

the solution of multiloop Baxter equations given by inhomogeneous second order difference

equations with complex hypergeometric functions to purely algebraic problem. The solu-

tion is based on the introduction of a new class of functions — products of rational functions

in spectral parameter with sums of Baxter polynomials and Hurwitz functions, which is

closed under elementary operations, such as shifts and partial fractions, as well as differenti-

ation. This class of functions is also sufficient for finding solutions of inhomogeneous Baxter

equations involved. For the latter purpose we present recursive construction of F±1 images

for different products of Hurwitz functions with arbitrary indexes or fractions 1
(u±i/2)a with

leading order Baxter polynomials or their sums. The latter are entering inhomogeneous

pieces of multiloop Baxter equations at different orders of perturbative expansion in cou-

pling constant. Similar to refs. [88, 89], where all the operations performed were closing

on trilinear combinations of rational, η and Pk-functions, all our operations are closing on

fourlinear combinations of rational, η, Pk and 〈Q|W 〉-functions. As a particular application

of our method we have considered anomalous dimensions of twist 1 operators in ABJM the-

ory up to six loop order. The obtained result was expressed in terms of generalized harmonic

sums decorated by the fourth root of unity factors and introduced by us earlier. The results

for anomalous dimensions respect the principle of maximum transcendentality. It should

be noted, that there is still a room for improvements of the proposed algorithm related to

the simplifications of arising sums at different steps of presented solution. The advanced

techniques for their reduction to H̄-sums will be the subject of one of our subsequent papers.

We expect the presented method to be generalizable to higher twists as well as to

other theories, such as N = 4 SYM. The developed techniques should be also applicable

for solution of twisted N = 4 and ABJM quantum spectral curves with P functions having

twisted non-polynomial asymptotic at large spectral parameter values, see [79, 84, 114]

and references therein. The latter models received recently a lot of attention in connection

with the advances in so called fishnet theories [115–130]. Moreover, similar ideas should be

also applicable to the study of BFKL regime within quantum spectral curve approach [54–

56] for N = 4 SYM. In the latter case we also have a perturbative expansion when both
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coupling constant g and parameter w ≡ S +1, describing the proximity of operator spin S

to −1 are considered to be small, while their ratio g2/w remains fixed.
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A Differentiation of sums of Baxter polynomials

To prove, that sums of Baxter polynomials (3.24) are closed under differentiation let us

first consider the sums
∣∣∣∣

1

j0 − j1
w1 (j1) ,W

〉

j0

=
∑

j0>j1>j2...>jn>0

w1(j1)

j0 − j1
w2(j2) . . . wn(jn) . (A.1)

and prove that these sums reduce to the linear combination of our standard sums (3.28).

We proceed by induction over the depth of the sum. Let us first write

w1(j1)

j0 − j1
=
w1(j1)− (±)j0−j1w1(j0)

j0 − j1
+ (±)j0w1(j0)

(±)j1

j0 − j1
, (A.2)

where the lower sign is chosen if w1(j1) contains the factor (−)j1 . Then the denominator j0−
j1 cancels in the first term and, therefore, this term gives rise only to standard sums (3.28).

The second term gives rise to the sums
∣∣∣∣
(±)j

j0 − j
,W

〉

j0

=
∑

j0>j1...>jn>0

(±)j1

j0 − j1
w2(j2) . . . wn(jn) (A.3)

In order to transform these sums, we observe that

j0−1∑

j1=j2+1

(±)j1

j0 − j1
=

j0−1∑

j1=j2+1

(±)j0+j2−j1

j1 − j2
. (A.4)

This identity is proved by the substitution j1 → j0 + j2 − j1. Then

∑

j0>j1>j2...>jn>0

(±)j1

j0−j1
w2(j2) . . .wn(jn)=

j0∑

j1=1

(±)j0+j1
∑

j1>j2...>jn>0

(±)j2

j1−j2
w2(j2) . . .wn(jn) ,

(A.5)

and the inner sum is again of the form (A.1), but the depth is reduced. This proves the

induction step.

Now, using the differentiation formula18

i∂uQS =
S∑

j0=1

QS−j0

j0

(
1− (−)j0

)
= 〈Q|1+〉 − 〈Q|1−〉 . (A.6)

18It can be obtained using generating function for Baxter polynomials and we leave the proof of this

formula to the reader.
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we have

i∂u〈Q|w,W 〉 =
S∑

j1=1

i∂uQS−j1 |w(j1),W 〉 =
S∑

j1=1

S−j1∑

j0=1

QS−j1−j0

j0

(
1− (−)j0

)
|w(j1),W 〉

=
S∑

j1=1

S∑

j0=j1+1

QS−j0

j0 − j1

(
1− (−)j0+j1

)
|w(j1),W 〉 =

S∑

j0=1

QS−j0

j0−1∑

j1=1

1− (−)j0+j1

j0 − j1
|w(j1),W 〉

=

S∑

j0=1

QS−j0

j0−1∑

j1=1

1

j0 − j1
|w(j1),W 〉 −

S∑

j0=1

QS−j0(−)j0
j0−1∑

j1=1

(−)j1

j0 − j1
|w(j1),W 〉 (A.7)

Since the inner sums in the last expression are both of the form (A.1), they can be expressed

as a linear combination of the standard sums (3.28). Therefore, i∂u〈Q| . . .〉 can indeed be

expressed as a linear combination of 〈Q| . . .〉 sums. In particular, the expansion of 〈Q|W 〉-
sums at u = i/2 can be expressed in terms of 〈W 〉-sums.

B Hurwitz functions

We define Hurwitz functions entering the presented solution as

ξ|a|,A =

∞∑

n=1

1
(
u+ in− i

2

)|a| ξ
[2n]
A (B.1)

ξ−|a|,A = −
∞∑

n=1

(−)n

(
u+ in− i

2

)|a| ξ
[2n]
A , (B.2)

Here A denotes the arbitrary sequence of indexes and ξ function without indexes is identical

to unity. These are the shifted versions of Hurwitz functions introduced in [88, 89]

ξA = η
[1]
A (B.3)

The ξ1...1 functions should be defined separately, as the series (B.1) diverge in this case.

For ξ1-function we have

ξ1 (u) = iψ

(
−iu+

i

2

)
. (B.4)

and ξ1...1 functions are defined as [131]:

ξ1, . . . , 1︸ ︷︷ ︸
k

(u) =
1

k!
(ξ1 + ∂u)

k 1 . (B.5)

For shifts of our Hurwitz functions we have

ξ
[2]
a,A = σaξa,A − σa(

u+ i
2

)|a| ξ
[2]
A (B.6)

ξ
[−2]
a,A = σaξa,A +

1
(
u− i

2

)|a| ξA. (B.7)

– 22 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
8

C H and B-sums

To write down the results for anomalous dimensions we introduce generalization of har-

monic sums decorated with the fourth root of unity factors (exp(iπ/2))n (indexes may be

either real or purely imaginary)

Ha,b,...(S) =

S∑

k=1

ℜ[(a/|a|)k]
k|a|

Hb,...(k) Ha,... = Ha,...(S) H̄a,... = Ha,...(2S) (C.1)

In addition our intermediate expressions for coefficients in the anzats for P functions and

for constants entering homogeneous pieces of solutions for ν
(i)
1,2 functions contain B-sums.

The latter are defined similar to19 [90]. That is we have B0 = B0(S) = 1, B1 = B1(S) =

H1(S)−H−1(S), and Bn>1 is defined recursively by the symbolic formula

Bn = (O1 + (−1)nO−1)Bn−1 , (C.2)

where O±1 is a linear operator prepending index ±1 to harmonic sums, i.e. O±1Ha (S) =

H±1,a (S). In particular, we have

B2 = (O1 +O−1)B1 = H1,1 +H−1,1 −H1,−1 −H−1,−1 , (C.3)

B3 = (O1 −O−1)B2 = H1,1,1 +H1,−1,1 −H1,1,−1 −H1,−1,−1 (C.4)

−H−1,1,1 −H−1,−1,1 +H−1,1,−1 +H−1,−1,−1 . (C.5)

D NNLO anomalous dimension

The NNLO anomalous dimension for twist 1 operators is given by

γ(2)(S) = {1}+ {2}+ {3}+ {4}+ {5} (D.1)

with

{1} =
7

5
π4

(
H̄1 + H̄−1 − 2H̄i

)
, (D.2)

{2} = −144ζ(3)
{
− H̄−1,−1 + 2H̄−1,i − H̄−1,1 + 2H̄i,−1 − 4H̄i,i + 2H̄i,1

− H̄1,−1 + 2H̄1,i − H̄1,1 + 2H̄−2 − 4H̄2i + 2H̄2

}
, (D.3)

{3} = 32π2 log(2)
{
− H̄−1,−1 + 2H̄−1,i − H̄−1,1 + 2H̄i,−1 − 4H̄i,i + 2H̄i,1

− H̄1,−1 + 2H̄1,i − H̄1,1 + 2H̄−2 − 4H̄2i + 2H̄2

}
, (D.4)

{4} =
16

3
π2

{
− 16H̄−2,−1 + 48H̄−2,i − 8H̄−2,1 − 6H̄−1,−2 + 12H̄−1,2i − 6H̄−1,2

+ 60H̄i,−2 − 120H̄i,2i + 60H̄i,2 + 32H̄2i,−1 − 96H̄2i,i + 16H̄2i,1 − 6H̄1,−2

+ 12H̄1,2i − 6H̄1,2 − 16H̄2,−1 + 48H̄2,i − 8H̄2,1 − 3H̄−1,−1,−1 − 6H̄−1,−1,i

− 3H̄−1,−1,1 − 14H̄−1,i,−1 + 44H̄−1,i,i − 6H̄−1,i,1 − 3H̄−1,1,−1 − 6H̄−1,1,i

19See appendix B there.
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− 3H̄−1,1,1 − 26H̄i,−1,−1 + 68H̄i,−1,i − 18H̄i,−1,1 + 84H̄i,i,−1 − 184H̄i,i,i

+ 52H̄i,i,1 − 18H̄i,1,−1 + 52H̄i,1,i − 10H̄i,1,1 − 3H̄1,−1,−1 − 6H̄1,−1,i

− 3H̄1,−1,1 − 14H̄1,i,−1 + 44H̄1,i,i − 6H̄1,i,1 − 3H̄1,1,−1 − 6H̄1,1,i − 3H̄1,1,1

+ 20H̄−3 − 40H̄3i + 20H̄3

}
, (D.5)

and

{5}=64
{
12H̄

−3,−2+8H̄
−3,2i−20H̄

−3,2−12H̄
−2,−3+24H̄

−2,3i−12H̄
−2,3+4H̄

−1,−4

−8H̄
−1,4i+4H̄

−1,4+8H̄i,−4−16H̄i,4i+8H̄i,4−8H̄2i,−3+16H̄2i,3i−8H̄2i,3

−24H̄3i,−2−16H̄3i,2i+40H̄3i,2+4H̄1,−4−8H̄1,4i+4H̄1,4−12H̄2,−3+24H̄2,3i

−12H̄2,3+12H̄3,−2+8H̄3,2i−20H̄3,2+18H̄
−3,−1,−1−12H̄

−3,−1,i−6H̄
−3,−1,1

−28H̄
−3,i,−1+24H̄

−3,i,i+4H̄
−3,i,1−6H̄

−3,1,−1+4H̄
−3,1,i+2H̄

−3,1,1+30H̄
−2,−2,−1

−24H̄
−2,−2,i−6H̄

−2,−2,1+22H̄
−2,−1,−2−60H̄

−2,−1,2i+38H̄
−2,−1,2+4H̄

−2,i,−2

+56H̄
−2,i,2i−60H̄

−2,i,2−44H̄
−2,2i,−1+48H̄

−2,2i,i−4H̄
−2,2i,1−2H̄

−2,1,−2

−12H̄
−2,1,2i+14H̄

−2,1,2+46H̄
−2,2,−1−56H̄

−2,2,i+10H̄
−2,2,1−12H̄

−1,−3,−1

+12H̄
−1,−3,i−15H̄

−1,−2,−2+14H̄
−1,−2,2i+H̄−1,−2,2−4H̄

−1,−1,−3+8H̄
−1,−1,3i

−4H̄
−1,−1,3+16H̄

−1,i,−3−32H̄
−1,i,3i+16H̄

−1,i,3+34H̄
−1,2i,−2−36H̄

−1,2i,2i

+2H̄
−1,2i,2+24H̄

−1,3i,−1−24H̄
−1,3i,i−4H̄

−1,1,−3+8H̄
−1,1,3i−4H̄

−1,1,3

−15H̄
−1,2,−2+14H̄

−1,2,2i+H̄−1,2,2−12H̄
−1,3,−1+12H̄

−1,3,i−64H̄i,−3,−1

+56H̄i,−3,i+8H̄i,−3,1−10H̄i,−2,−2+84H̄i,−2,2i−74H̄i,−2,2−56H̄i,−1,−3

+112H̄i,−1,3i−56H̄i,−1,3+48H̄i,i,−3−96H̄i,i,3i+48H̄i,i,3+44H̄i,2i,−2−216H̄i,2i,2i

+172H̄i,2i,2+128H̄i,3i,−1−112H̄i,3i,i−16H̄i,3i,1−8H̄i,1,−3+16H̄i,1,3i−8H̄i,1,3

−42H̄i,2,−2+148H̄i,2,2i−106H̄i,2,2−64H̄i,3,−1+56H̄i,3,i+8H̄i,3,1−28H̄2i,−2,−1

+28H̄2i,−2,1−12H̄2i,−1,−2+56H̄2i,−1,2i−44H̄2i,−1,2−56H̄2i,i,−2−16H̄2i,i,2i

+72H̄2i,i,2+24H̄2i,2i,−1−24H̄2i,2i,1+20H̄2i,1,−2−8H̄2i,1,2i−12H̄2i,1,2−60H̄2i,2,−1

+64H̄2i,2,i−4H̄2i,2,1−36H̄3i,−1,−1+24H̄3i,−1,i+12H̄3i,−1,1+56H̄3i,i,−1−48H̄3i,i,i

−8H̄3i,i,1+12H̄3i,1,−1−8H̄3i,1,i−4H̄3i,1,1−12H̄1,−3,−1+12H̄1,−3,i−15H̄1,−2,−2

+14H̄1,−2,2i+H̄1,−2,2−4H̄1,−1,−3+8H̄1,−1,3i−4H̄1,−1,3+16H̄1,i,−3−32H̄1,i,3i

+16H̄1,i,3+34H̄1,2i,−2−36H̄1,2i,2i+2H̄1,2i,2+24H̄1,3i,−1−24H̄1,3i,i−4H̄1,1,−3

+8H̄1,1,3i−4H̄1,1,3−15H̄1,2,−2+14H̄1,2,2i+H̄1,2,2−12H̄1,3,−1+12H̄1,3,i

+30H̄2,−2,−1−24H̄2,−2,i−6H̄2,−2,1+22H̄2,−1,−2−60H̄2,−1,2i+38H̄2,−1,2+4H̄2,i,−2

+56H̄2,i,2i−60H̄2,i,2−44H̄2,2i,−1+48H̄2,2i,i−4H̄2,2i,1−2H̄2,1,−2−12H̄2,1,2i

+14H̄2,1,2+46H̄2,2,−1−56H̄2,2,i+10H̄2,2,1+18H̄3,−1,−1−12H̄3,−1,i−6H̄3,−1,1

−28H̄3,i,−1+24H̄3,i,i+4H̄3,i,1−6H̄3,1,−1+4H̄3,1,i+2H̄3,1,1−48H̄
−2,−1,−1,−1

+64H̄
−2,−1,−1,i−16H̄

−2,−1,−1,1+80H̄
−2,−1,i,−1−80H̄

−2,−1,i,i−16H̄
−2,−1,1,−1+16H̄

−2,−1,1,i

+52H̄
−2,i,−1,−1−48H̄

−2,i,−1,i−4H̄
−2,i,−1,1−112H̄

−2,i,i,−1+112H̄
−2,i,i,i−4H̄

−2,i,1,−1

+4H̄
−2,i,1,1−16H̄

−2,1,−1,−1+16H̄
−2,1,−1,i+16H̄

−2,1,i,−1−16H̄
−2,1,i,i−8H̄

−1,−2,−1,i

+8H̄
−1,−2,−1,1−10H̄

−1,−2,i,−1+12H̄
−1,−2,i,i−2H̄

−1,−2,i,1+8H̄
−1,−2,1,−1−8H̄

−1,−2,1,i

+4H̄
−1,−1,−2,−1−4H̄

−1,−1,−2,i+3H̄
−1,−1,−1,−2−6H̄

−1,−1,−1,2i+3H̄
−1,−1,−1,2−18H̄

−1,−1,i,−2
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+20H̄
−1,−1,i,2i−2H̄

−1,−1,i,2−24H̄
−1,−1,2i,−1+24H̄

−1,−1,2i,i+3H̄
−1,−1,1,−2−6H̄

−1,−1,1,2i

+3H̄
−1,−1,1,2+4H̄

−1,−1,2,−1−4H̄
−1,−1,2,i−6H̄

−1,i,−2,−1+24H̄
−1,i,−2,i−18H̄

−1,i,−2,1

−8H̄
−1,i,−1,−2+8H̄

−1,i,−1,2+56H̄
−1,i,i,−2−48H̄

−1,i,i,2i−8H̄
−1,i,i,2+28H̄

−1,i,2i,−1

−48H̄
−1,i,2i,i+20H̄

−1,i,2i,1−16H̄
−1,i,1,−2+16H̄

−1,i,1,2i+10H̄
−1,i,2,−1−8H̄

−1,i,2,i

−2H̄
−1,i,2,1−6H̄

−1,2i,−1,−1+24H̄
−1,2i,−1,i−18H̄

−1,2i,−1,1+28H̄
−1,2i,i,−1−32H̄

−1,2i,i,i

+4H̄
−1,2i,i,1−18H̄

−1,2i,1,−1+16H̄
−1,2i,1,i+2H̄

−1,2i,1,1+4H̄
−1,1,−2,−1−4H̄

−1,1,−2,i

+3H̄
−1,1,−1,−2−6H̄

−1,1,−1,2i+3H̄
−1,1,−1,2−18H̄

−1,1,i,−2+20H̄
−1,1,i,2i−2H̄

−1,1,i,2

−24H̄
−1,1,2i,−1+24H̄

−1,1,2i,i+3H̄
−1,1,1,−2−6H̄

−1,1,1,2i+3H̄
−1,1,1,2+4H̄

−1,1,2,−1

−4H̄
−1,1,2,i−8H̄

−1,2,−1,i+8H̄
−1,2,−1,1−10H̄

−1,2,i,−1+12H̄
−1,2,i,i−2H̄

−1,2,i,1+8H̄
−1,2,1,−1

−8H̄
−1,2,1,i+94H̄i,−2,−1,−1−104H̄i,−2,−1,i+10H̄i,−2,−1,1−188H̄i,−2,i,−1+160H̄i,−2,i,i

+28H̄i,−2,i,1+10H̄i,−2,1,−1−10H̄i,−2,1,1+114H̄i,−1,−2,−1−120H̄i,−1,−2,i+6H̄i,−1,−2,1

+76H̄i,−1,−1,−2−168H̄i,−1,−1,2i+92H̄i,−1,−1,2−112H̄i,−1,i,−2+288H̄i,−1,i,2i−176H̄i,−1,i,2

−212H̄i,−1,2i,−1+240H̄i,−1,2i,i−28H̄i,−1,2i,1+20H̄i,−1,1,−2−56H̄i,−1,1,2i+36H̄i,−1,1,2

+130H̄i,−1,2,−1−152H̄i,−1,2,i+22H̄i,−1,2,1−152H̄i,i,−2,−1+112H̄i,i,−2,i+40H̄i,i,−2,1

−92H̄i,i,−1,−2+248H̄i,i,−1,2i−156H̄i,i,−1,2+72H̄i,i,i,−2−336H̄i,i,i,2i+264H̄i,i,i,2

+304H̄i,i,2i,−1−288H̄i,i,2i,i−16H̄i,i,2i,1+4H̄i,i,1,−2+56H̄i,i,1,2i−60H̄i,i,1,2−216H̄i,i,2,−1

+240H̄i,i,2,i−24H̄i,i,2,1−192H̄i,2i,−1,−1+224H̄i,2i,−1,i−32H̄i,2i,−1,1+392H̄i,2i,i,−1

−368H̄i,2i,i,i−24H̄i,2i,i,1−32H̄i,2i,1,−1+32H̄i,2i,1,i+34H̄i,1,−2,−1−24H̄i,1,−2,i−10H̄i,1,−2,1

+20H̄i,1,−1,−2−56H̄i,1,−1,2i+36H̄i,1,−1,2+64H̄i,1,i,2i−64H̄i,1,i,2−52H̄i,1,2i,−1+48H̄i,1,2i,i

+4H̄i,1,2i,1−4H̄i,1,1,−2−8H̄i,1,1,2i+12H̄i,1,1,2+50H̄i,1,2,−1−56H̄i,1,2,i+6H̄i,1,2,1

+110H̄i,2,−1,−1−136H̄i,2,−1,i+26H̄i,2,−1,1−220H̄i,2,i,−1+224H̄i,2,i,i−4H̄i,2,i,1+26H̄i,2,1,−1

−32H̄i,2,1,i+6H̄i,2,1,1+72H̄2i,−1,−1,−1−88H̄2i,−1,−1,i+16H̄2i,−1,−1,1−120H̄2i,−1,i,−1+96H̄2i,−1,i,i

+24H̄2i,−1,i,1+16H̄2i,−1,1,−1−8H̄2i,−1,1,i−8H̄2i,−1,1,1−64H̄2i,i,−1,−1+32H̄2i,i,−1,i+32H̄2i,i,−1,1

+160H̄2i,i,i,−1−128H̄2i,i,i,i−32H̄2i,i,i,1+32H̄2i,i,1,−1−32H̄2i,i,1,i+16H̄2i,1,−1,−1−8H̄2i,1,−1,i

−8H̄2i,1,−1,1−8H̄2i,1,i,−1+8H̄2i,1,i,1−8H̄2i,1,1,−1+8H̄2i,1,1,i−8H̄1,−2,−1,i+8H̄1,−2,−1,1

−10H̄1,−2,i,−1+12H̄1,−2,i,i−2H̄1,−2,i,1+8H̄1,−2,1,−1−8H̄1,−2,1,i+4H̄1,−1,−2,−1−4H̄1,−1,−2,i

+3H̄1,−1,−1,−2−6H̄1,−1,−1,2i+3H̄1,−1,−1,2−18H̄1,−1,i,−2+20H̄1,−1,i,2i−2H̄1,−1,i,2−24H̄1,−1,2i,−1

+24H̄1,−1,2i,i+3H̄1,−1,1,−2−6H̄1,−1,1,2i+3H̄1,−1,1,2+4H̄1,−1,2,−1−4H̄1,−1,2,i−6H̄1,i,−2,−1

+24H̄1,i,−2,i−18H̄1,i,−2,1−8H̄1,i,−1,−2+8H̄1,i,−1,2+56H̄1,i,i,−2−48H̄1,i,i,2i−8H̄1,i,i,2

+28H̄1,i,2i,−1−48H̄1,i,2i,i+20H̄1,i,2i,1−16H̄1,i,1,−2+16H̄1,i,1,2i+10H̄1,i,2,−1−8H̄1,i,2,i

−2H̄1,i,2,1−6H̄1,2i,−1,−1+24H̄1,2i,−1,i−18H̄1,2i,−1,1+28H̄1,2i,i,−1−32H̄1,2i,i,i+4H̄1,2i,i,1

−18H̄1,2i,1,−1+16H̄1,2i,1,i+2H̄1,2i,1,1+4H̄1,1,−2,−1−4H̄1,1,−2,i+3H̄1,1,−1,−2−6H̄1,1,−1,2i

+3H̄1,1,−1,2−18H̄1,1,i,−2+20H̄1,1,i,2i−2H̄1,1,i,2−24H̄1,1,2i,−1+24H̄1,1,2i,i+3H̄1,1,1,−2

−6H̄1,1,1,2i+3H̄1,1,1,2+4H̄1,1,2,−1−4H̄1,1,2,i−8H̄1,2,−1,i+8H̄1,2,−1,1−10H̄1,2,i,−1

+12H̄1,2,i,i−2H̄1,2,i,1+8H̄1,2,1,−1−8H̄1,2,1,i−48H̄2,−1,−1,−1+64H̄2,−1,−1,i−16H̄2,−1,−1,1

+80H̄2,−1,i,−1−80H̄2,−1,i,i−16H̄2,−1,1,−1+16H̄2,−1,1,i+52H̄2,i,−1,−1−48H̄2,i,−1,i−4H̄2,i,−1,1

−112H̄2,i,i,−1+112H̄2,i,i,i−4H̄2,i,1,−1+4H̄2,i,1,1−16H̄2,1,−1,−1+16H̄2,1,−1,i+16H̄2,1,i,−1

−16H̄2,1,i,i+12H̄
−1,−1,−1,i,−1−12H̄

−1,−1,−1,i,i+6H̄
−1,−1,i,−1,−1−16H̄

−1,−1,i,−1,i+10H̄
−1,−1,i,−1,1

−16H̄
−1,−1,i,i,−1+16H̄

−1,−1,i,i,i+10H̄
−1,−1,i,1,−1−8H̄

−1,−1,i,1,i−2H̄
−1,−1,i,1,1+12H̄

−1,−1,1,i,−1

– 25 –



J
H
E
P
1
1
(
2
0
1
9
)
0
1
8

−12H̄
−1,−1,1,i,i−24H̄

−1,i,−1,−1,−1+24H̄
−1,i,−1,−1,i+36H̄

−1,i,−1,i,−1−16H̄
−1,i,−1,i,i−20H̄

−1,i,−1,i,1

−8H̄
−1,i,−1,1,i+8H̄

−1,i,−1,1,1+32H̄
−1,i,i,−1,i−32H̄

−1,i,i,−1,1−24H̄
−1,i,i,i,−1+24H̄

−1,i,i,i,1

−32H̄
−1,i,i,1,−1+32H̄

−1,i,i,1,i−8H̄
−1,i,1,−1,i+8H̄

−1,i,1,−1,1−12H̄
−1,i,1,i,−1+16H̄

−1,i,1,i,i

−4H̄
−1,i,1,i,1+8H̄

−1,i,1,1,−1−8H̄
−1,i,1,1,i+12H̄

−1,1,−1,i,−1−12H̄
−1,1,−1,i,i+6H̄

−1,1,i,−1,−1

−16H̄
−1,1,i,−1,i+10H̄

−1,1,i,−1,1−16H̄
−1,1,i,i,−1+16H̄

−1,1,i,i,i+10H̄
−1,1,i,1,−1−8H̄

−1,1,i,1,i

−2H̄
−1,1,i,1,1+12H̄

−1,1,1,i,−1−12H̄
−1,1,1,i,i−96H̄i,−1,−1,−1,−1+144H̄i,−1,−1,−1,i−48H̄i,−1,−1,−1,1

+180H̄i,−1,−1,i,−1−208H̄i,−1,−1,i,i+28H̄i,−1,−1,i,1−48H̄i,−1,−1,1,−1+64H̄i,−1,−1,1,i−16H̄i,−1,−1,1,1

+192H̄i,−1,i,−1,−1−256H̄i,−1,i,−1,i+64H̄i,−1,i,−1,1−360H̄i,−1,i,i,−1+384H̄i,−1,i,i,i−24H̄i,−1,i,i,1

+64H̄i,−1,i,1,−1−64H̄i,−1,i,1,i−48H̄i,−1,1,−1,−1+64H̄i,−1,1,−1,i−16H̄i,−1,1,−1,1+84H̄i,−1,1,i,−1

−80H̄i,−1,1,i,i−4H̄i,−1,1,i,1−16H̄i,−1,1,1,−1+16H̄i,−1,1,1,i+192H̄i,i,−1,−1,−1−256H̄i,i,−1,−1,i

+64H̄i,i,−1,−1,1−384H̄i,i,−1,i,−1+368H̄i,i,−1,i,i+16H̄i,i,−1,i,1+64H̄i,i,−1,1,−1−64H̄i,i,−1,1,i

−280H̄i,i,i,−1,−1+320H̄i,i,i,−1,i−40H̄i,i,i,−1,1+608H̄i,i,i,i,−1−576H̄i,i,i,i,i−32H̄i,i,i,i,1

−40H̄i,i,i,1,−1+32H̄i,i,i,1,i+8H̄i,i,i,1,1+64H̄i,i,1,−1,−1−64H̄i,i,1,−1,i−128H̄i,i,1,i,−1

+112H̄i,i,1,i,i+16H̄i,i,1,i,1−48H̄i,1,−1,−1,−1+64H̄i,1,−1,−1,i−16H̄i,1,−1,−1,1+84H̄i,1,−1,i,−1

−80H̄i,1,−1,i,i−4H̄i,1,−1,i,1−16H̄i,1,−1,1,−1+16H̄i,1,−1,1,i+64H̄i,1,i,−1,−1−64H̄i,1,i,−1,i

−136H̄i,1,i,i,−1+128H̄i,1,i,i,i+8H̄i,1,i,i,1−16H̄i,1,1,−1,−1+16H̄i,1,1,−1,i+20H̄i,1,1,i,−1

−16H̄i,1,1,i,i−4H̄i,1,1,i,1+12H̄1,−1,−1,i,−1−12H̄1,−1,−1,i,i+6H̄1,−1,i,−1,−1−16H̄1,−1,i,−1,i

+10H̄1,−1,i,−1,1−16H̄1,−1,i,i,−1+16H̄1,−1,i,i,i+10H̄1,−1,i,1,−1−8H̄1,−1,i,1,i−2H̄1,−1,i,1,1

+12H̄1,−1,1,i,−1−12H̄1,−1,1,i,i−24H̄1,i,−1,−1,−1+24H̄1,i,−1,−1,i+36H̄1,i,−1,i,−1−16H̄1,i,−1,i,i

−20H̄1,i,−1,i,1−8H̄1,i,−1,1,i+8H̄1,i,−1,1,1+32H̄1,i,i,−1,i−32H̄1,i,i,−1,1−24H̄1,i,i,i,−1

+24H̄1,i,i,i,1−32H̄1,i,i,1,−1+32H̄1,i,i,1,i−8H̄1,i,1,−1,i+8H̄1,i,1,−1,1−12H̄1,i,1,i,−1

+16H̄1,i,1,i,i−4H̄1,i,1,i,1+8H̄1,i,1,1,−1−8H̄1,i,1,1,i+12H̄1,1,−1,i,−1−12H̄1,1,−1,i,i

+6H̄1,1,i,−1,−1−16H̄1,1,i,−1,i+10H̄1,1,i,−1,1−16H̄1,1,i,i,−1+16H̄1,1,i,i,i+10H̄1,1,i,1,−1

−8H̄1,1,i,1,i−2H̄1,1,i,1,1+12H̄1,1,1,i,−1−12H̄1,1,1,i,i

}
. (D.6)
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[99] J. Ablinger, J. Blümlein and C. Schneider, Analytic and algorithmic aspects of generalized

harmonic sums and polylogarithms, J. Math. Phys. 54 (2013) 082301 [arXiv:1302.0378]

[INSPIRE].

[100] J. Ablinger, J. Blumlein and C. Schneider, Harmonic sums and polylogarithms generated by

cyclotomic polynomials, J. Math. Phys. 52 (2011) 102301 [arXiv:1105.6063] [INSPIRE].

[101] J. Fleischer, A.V. Kotikov and O.L. Veretin, Analytic two loop results for selfenergy type

and vertex type diagrams with one nonzero mass, Nucl. Phys. B 547 (1999) 343

[hep-ph/9808242] [INSPIRE].

[102] A.V. Kotikov, The property of maximal transcendentality in the N = 4 supersymmetric

Yang-Mills, in Subtleties in quantum field theory: Lev Lipatov Festschrift, (2010), pg. 150

[arXiv:1005.5029] [INSPIRE].

[103] A.V. Kotikov, The property of maximal transcendentality: calculation of Feynman integrals,

Theor. Math. Phys. 190 (2017) 391 [arXiv:1601.00486] [INSPIRE].

[104] A.V. Kotikov and L.N. Lipatov, DGLAP and BFKL equations in the N = 4

supersymmetric gauge theory, Nucl. Phys. B 661 (2003) 19 [Erratum ibid. B 685 (2004)

405] [hep-ph/0208220] [INSPIRE].

[105] A.V. Kotikov, L.N. Lipatov, A.I. Onishchenko and V.N. Velizhanin, Three loop universal

anomalous dimension of the Wilson operators in N = 4 SUSY Yang-Mills model,

Phys. Lett. B 595 (2004) 521 [Erratum ibid. B 632 (2006) 754] [hep-th/0404092]

[INSPIRE].

[106] Yu. L. Dokshitzer, G. Marchesini and G.P. Salam, Revisiting parton evolution and the

large-x limit, Phys. Lett. B 634 (2006) 504 [hep-ph/0511302] [INSPIRE].

[107] Yu. L. Dokshitzer and G. Marchesini, N = 4 SUSY Yang-Mills: three loops made simple(r),

Phys. Lett. B 646 (2007) 189 [hep-th/0612248] [INSPIRE].

[108] B. Basso and G.P. Korchemsky, Anomalous dimensions of high-spin operators beyond the

leading order, Nucl. Phys. B 775 (2007) 1 [hep-th/0612247] [INSPIRE].

[109] M. Beccaria, Yu. L. Dokshitzer and G. Marchesini, Twist 3 of the sl(2) sector of N = 4

SYM and reciprocity respecting evolution, Phys. Lett. B 652 (2007) 194 [arXiv:0705.2639]

[INSPIRE].

[110] T. Lukowski, A. Rej and V.N. Velizhanin, Five-loop anomalous dimension of twist-two

operators, Nucl. Phys. B 831 (2010) 105 [arXiv:0912.1624] [INSPIRE].

[111] V.N. Velizhanin, Six-loop anomalous dimension of twist-three operators in N = 4 SYM,

JHEP 11 (2010) 129 [arXiv:1003.4717] [INSPIRE].

[112] C. Marboe, V. Velizhanin and D. Volin, Six-loop anomalous dimension of twist-two

operators in planar N = 4 SYM theory, JHEP 07 (2015) 084 [arXiv:1412.4762] [INSPIRE].

[113] C. Marboe and V. Velizhanin, Twist-2 at seven loops in planar N = 4 SYM theory: full

result and analytic properties, JHEP 11 (2016) 013 [arXiv:1607.06047] [INSPIRE].

– 32 –

https://doi.org/10.1088/1126-6708/2009/06/008
https://arxiv.org/abs/0904.2463
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.2463
https://doi.org/10.1007/JHEP03(2011)001
https://arxiv.org/abs/1012.2054
https://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2054
https://doi.org/10.1063/1.4811117
https://arxiv.org/abs/1302.0378
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.0378
https://doi.org/10.1063/1.3629472
https://arxiv.org/abs/1105.6063
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.6063
https://doi.org/10.1016/S0550-3213(99)00078-4
https://arxiv.org/abs/hep-ph/9808242
https://inspirehep.net/search?p=find+EPRINT+hep-ph/9808242
https://arxiv.org/abs/1005.5029
https://inspirehep.net/search?p=find+EPRINT+arXiv:1005.5029
https://doi.org/10.1134/S0040577917030084
https://arxiv.org/abs/1601.00486
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.00486
https://doi.org/10.1016/S0550-3213(03)00264-5
https://arxiv.org/abs/hep-ph/0208220
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0208220
https://doi.org/10.1016/j.physletb.2004.05.078
https://arxiv.org/abs/hep-th/0404092
https://inspirehep.net/search?p=find+EPRINT+hep-th/0404092
https://doi.org/10.1016/j.physletb.2006.02.023
https://arxiv.org/abs/hep-ph/0511302
https://inspirehep.net/search?p=find+EPRINT+hep-ph/0511302
https://doi.org/10.1016/j.physletb.2007.01.016
https://arxiv.org/abs/hep-th/0612248
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612248
https://doi.org/10.1016/j.nuclphysb.2007.03.044
https://arxiv.org/abs/hep-th/0612247
https://inspirehep.net/search?p=find+EPRINT+hep-th/0612247
https://doi.org/10.1016/j.physletb.2007.07.016
https://arxiv.org/abs/0705.2639
https://inspirehep.net/search?p=find+EPRINT+arXiv:0705.2639
https://doi.org/10.1016/j.nuclphysb.2010.01.008
https://arxiv.org/abs/0912.1624
https://inspirehep.net/search?p=find+EPRINT+arXiv:0912.1624
https://doi.org/10.1007/JHEP11(2010)129
https://arxiv.org/abs/1003.4717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1003.4717
https://doi.org/10.1007/JHEP07(2015)084
https://arxiv.org/abs/1412.4762
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.4762
https://doi.org/10.1007/JHEP11(2016)013
https://arxiv.org/abs/1607.06047
https://inspirehep.net/search?p=find+EPRINT+arXiv:1607.06047


J
H
E
P
1
1
(
2
0
1
9
)
0
1
8

[114] C. Marboe and E. Widén, The fate of the Konishi multiplet in the β-deformed quantum

spectral curve, arXiv:1902.01248 [INSPIRE].

[115] A.B. Zamolodchikov, ‘Fishnet’ diagrams as a completely integrable system,

Phys. Lett. B 97 (1980) 63 [INSPIRE].

[116] D. Chicherin, S. Derkachov and A.P. Isaev, Conformal group: R-matrix and star-triangle

relation, JHEP 04 (2013) 020 [arXiv:1206.4150] [INSPIRE].
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[118] J. Caetano, O. Gürdoğan and V. Kazakov, Chiral limit of N = 4 SYM and ABJM and

integrable Feynman graphs, JHEP 03 (2018) 077 [arXiv:1612.05895] [INSPIRE].

[119] B. Basso and L.J. Dixon, Gluing ladder Feynman diagrams into fishnets,

Phys. Rev. Lett. 119 (2017) 071601 [arXiv:1705.03545] [INSPIRE].

[120] N. Gromov, V. Kazakov, G. Korchemsky, S. Negro and G. Sizov, Integrability of conformal

fishnet theory, JHEP 01 (2018) 095 [arXiv:1706.04167] [INSPIRE].

[121] D. Chicherin, V. Kazakov, F. Loebbert, D. Müller and D.-L. Zhong, Yangian symmetry for

fishnet Feynman graphs, Phys. Rev. D 96 (2017) 121901 [arXiv:1708.00007] [INSPIRE].

[122] D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4

supersymmetric Yang-Mills theory as an integrable conformal field theory,

Phys. Rev. Lett. 120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

[123] V. Kazakov and E. Olivucci, Biscalar integrable conformal field theories in any dimension,

Phys. Rev. Lett. 121 (2018) 131601 [arXiv:1801.09844] [INSPIRE].

[124] S. Derkachov, V. Kazakov and E. Olivucci, Basso-Dixon correlators in two-dimensional

fishnet CFT, JHEP 04 (2019) 032 [arXiv:1811.10623] [INSPIRE].

[125] A.C. Ipsen, M. Staudacher and L. Zippelius, The one-loop spectral problem of strongly

twisted N = 4 super Yang-Mills theory, JHEP 04 (2019) 044 [arXiv:1812.08794]

[INSPIRE].

[126] V. Kazakov, E. Olivucci and M. Preti, Generalized fishnets and exact four-point correlators

in chiral CFT4, JHEP 06 (2019) 078 [arXiv:1901.00011] [INSPIRE].

[127] G.P. Korchemsky, Exact scattering amplitudes in conformal fishnet theory,

JHEP 08 (2019) 028 [arXiv:1812.06997] [INSPIRE].

[128] B. Basso and D.-L. Zhong, Continuum limit of fishnet graphs and AdS σ-model,

JHEP 01 (2019) 002 [arXiv:1806.04105] [INSPIRE].

[129] B. Basso, J. Caetano and T. Fleury, Hexagons and correlators in the fishnet theory,

arXiv:1812.09794 [INSPIRE].

[130] N. Gromov and A. Sever, Derivation of the holographic dual of a planar conformal field

theory in 4D, Phys. Rev. Lett. 123 (2019) 081602 [arXiv:1903.10508] [INSPIRE].

[131] S. Leurent and D. Volin, Multiple zeta functions and double wrapping in planar N = 4

SYM, Nucl. Phys. B 875 (2013) 757 [arXiv:1302.1135] [INSPIRE].

– 33 –

https://arxiv.org/abs/1902.01248
https://inspirehep.net/search?p=find+EPRINT+arXiv:1902.01248
https://doi.org/10.1016/0370-2693(80)90547-X
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B97,63%22
https://doi.org/10.1007/JHEP04(2013)020
https://arxiv.org/abs/1206.4150
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.4150
https://doi.org/10.1103/PhysRevLett.117.201602
https://arxiv.org/abs/1512.06704
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06704
https://doi.org/10.1007/JHEP03(2018)077
https://arxiv.org/abs/1612.05895
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.05895
https://doi.org/10.1103/PhysRevLett.119.071601
https://arxiv.org/abs/1705.03545
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.03545
https://doi.org/10.1007/JHEP01(2018)095
https://arxiv.org/abs/1706.04167
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04167
https://doi.org/10.1103/PhysRevD.96.121901
https://arxiv.org/abs/1708.00007
https://inspirehep.net/search?p=find+EPRINT+arXiv:1708.00007
https://doi.org/10.1103/PhysRevLett.120.111601
https://arxiv.org/abs/1711.04786
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,120,111601%22
https://doi.org/10.1103/PhysRevLett.121.131601
https://arxiv.org/abs/1801.09844
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,121,131601%22
https://doi.org/10.1007/JHEP04(2019)032
https://arxiv.org/abs/1811.10623
https://inspirehep.net/search?p=find+J+%22JHEP,1904,032%22
https://doi.org/10.1007/JHEP04(2019)044
https://arxiv.org/abs/1812.08794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.08794
https://doi.org/10.1007/JHEP06(2019)078
https://arxiv.org/abs/1901.00011
https://inspirehep.net/search?p=find+EPRINT+arXiv:1901.00011
https://doi.org/10.1007/JHEP08(2019)028
https://arxiv.org/abs/1812.06997
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.06997
https://doi.org/10.1007/JHEP01(2019)002
https://arxiv.org/abs/1806.04105
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.04105
https://arxiv.org/abs/1812.09794
https://inspirehep.net/search?p=find+EPRINT+arXiv:1812.09794
https://doi.org/10.1103/PhysRevLett.123.081602
https://arxiv.org/abs/1903.10508
https://inspirehep.net/search?p=find+EPRINT+arXiv:1903.10508
https://doi.org/10.1016/j.nuclphysb.2013.07.020
https://arxiv.org/abs/1302.1135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1135

	Introduction
	ABJM quantum spectral curve
	Solution of Riemann-Hilbert problem for P nu-system
	Sums of Baxter polynomials
	Solutions of Baxter equations
	Homogeneous solution
	Dictionary for inhomogeneous solutions

	Constraints solution
	NLO
	NNLO


	Anomalous dimensions
	Conclusion
	Differentiation of sums of Baxter polynomials
	Hurwitz functions
	H and B-sums
	NNLO anomalous dimension

