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improve the behaviour of the perturbative expansion, and it has long been known how to

do this at leading power in the threshold variable, using a variety of approaches. Recently,

the problem of extending this resummation to logarithms suppressed by a single power of

the threshold variable has received considerable attention. In this paper, we show that

such next-to-leading power (NLP) contributions can indeed be resummed, to leading loga-

rithmic (LL) accuracy, for any QCD process with a colour-singlet final state, using a direct

generalisation of the diagrammatic methods available at leading power. We compare our

results with other approaches, and comment on the implications for further generalisations

beyond leading-logarithmic accuracy.
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1 Introduction

Perturbative calculations of hadronic cross sections in Quantum Chromodynamics (QCD)

are the cornerstone of theoretical predictions for all processes of phenomenological interest

at particle colliders, such as the Large Hadron Collider (LHC). Furthermore, the ever-

increasing precision of experimental data demands that theoretical predictions for scatter-

ing processes of interest be continually improved. The relevant calculations are carried out

using an expansion in powers of the coupling constant αs, and typically proceed on two

fronts. First, one may determine the complete behaviour of a given quantity at a fixed order

in the coupling constant. The state of the art for most processes is next-to-leading order

(NLO) in perturbation theory, with an increasing number of notable exceptions known at

NNLO, and even N3LO (see e.g. [1] for a review). Whilst successful for many observables,

the fixed order approach is only valid provided subleading perturbative corrections are

well-behaved. Given that perturbative coefficients depend on the momenta of the scatter-

ing particles, this criterion can fail in certain kinematic regimes: a well-known example

is the production of heavy particles near threshold. In such processes, one can define a

(partonic) threshold variable ξ, which satisfies ξ → 0 when the heavy particles carry all of

the energy in the final state. The precise definition of ξ will depend on the process being
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considered: in Drell-Yan production, for example, it takes the form ξ = 1 − Q2/ŝ, where

Q2 is the invariant mass of the produced vector boson, and ŝ the partonic centre of mass

energy; more generally, ξ will have the form of a dimensionless ratio of kinematic invariants.

One may then write a general schematic form for partonic production cross-sections near

threshold, as

dσ̂

dξ
= σ0

∞∑
n=0

(αs
π

)n 2n−1∑
m=0

[
c(−1)
nm

(
logm ξ

ξ

)
+

+ c(δ)
n δ(ξ) + c(0)

nm logm ξ +O(ξ)

]
. (1.1)

Here we denote by σ0 the Born-level cross section, which may contain additional coupling

factors. The first contribution in the square brackets consists of a series of terms, at fixed

order in αs, containing powers of the logarithm of the threshold variable, divided by ξ

itself. These contributions can be directly traced to soft and collinear singularities of the

underlying scattering amplitudes: the cancellation of infrared divergences between virtual

corrections and real radiation leaves behind potentially large corrections, which are still

singular as ξ → 0, but are regularised by the well-known plus prescription, so that they are

integrable; as discussed below, the all-order structure of these terms is well understood.

The second set of terms in eq. (1.1) has support localised on the threshold, ξ = 0, and

for processes with electroweak final states it is known that such terms can be formally

exponentiated (see, for example, ref. [2]). The third set of terms in the square brackets is

suppressed by a single power of ξ with respect to the leading-power contribution. These

terms are still singular as ξ → 0: while the singularities they generate are integrable, they

can still give numerically sizeable contributions in the threshold region. These next-to-

leading power (NLP) terms are the focus of the present work, while we will neglect all

further sub-leading contributions to eq. (1.1), which vanish at threshold.

Order by order in perturbation theory, one can distinguish two expansions in eq. (1.1).

Firstly, there is an expansion in powers of the threshold variable ξ, in which we can dis-

tinguish the plus distributions and delta function terms as being leading power (LP) in ξ,

while the remaining logarithms are next-to-leading-power (NLP). Secondly, for each fixed

power of ξ, we can consider the expansion in powers of the logarithm, labelling terms

proportional to log2n−1 ξ as leading logarithmic (LL), the next-highest power as next-to-

leading logarithmic (NLL), and so on.1 The problematic nature of LP terms was noted

already in the early days of QCD (see for example [3]), and it was quickly realised that

such terms at LL level could be summed up to all orders in perturbation theory to achieve

a well-behaved result as ξ → 0 [4, 5]. This resummation was subsequently extended to sub-

leading logarithmic accuracy using two equivalent approaches [6–8], themselves partially

reliant on earlier diagrammatic arguments for the exponentiation of soft behaviour [9–11].

Since that time, LP threshold resummation has been reinterpreted and clarified using a

wide variety of methods, including the use of Wilson lines [12, 13], the renormalisation

group [14], the connection to factorisation theorems [15], and soft collinear effective theory

1We note that the common convention for resummed calculations is to count logarithmic orders at the

level of the logarithm of the partonic cross-section, rather than the cross-section itself. This distinction will

not concern us in what follows, since we will focus on leading NLP logarithms only.
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(SCET) [16–19]. The state of the art for resummation at LP is NNLL accuracy in many

processes, including some cases of differential distributions. Recent, pedagogical reviews

may be found in refs. [20–22].

The phenomenological success of LP resummation, together with the increasing pre-

cision of contemporary collider data, makes it natural to ponder whether NLP terms in

the threshold expansion can also be classified and resummed, particularly since they have

been shown to be numerically significant, for example in the case of Higgs boson produc-

tion [23, 24]. Indeed, the study of such contributions has a long history. Subleading cor-

rections involving soft momenta were first investigated in the classic works of refs. [25, 26],

which dealt exclusively with massive particles in QED. The analysis of ref. [27] updated

this to include massless particles. Some years later, the topic was investigated using path-

integral methods in ref. [28], which derived a set of effective Feynman rules for the emission

of gauge bosons at next-to-soft level, and argued that a large class of NLP contributions

exponentiates. The results were subsequently confirmed by an all-order analysis of Feyn-

man diagrams [29], but concerned massive partons only. In a different approach, NLP

effects in certain processes were argued to be resummable, based on well-motivated physi-

cal assumptions [30–34] (see also refs. [35–39] for other work related to elucidating all-order

properties).

More recently, there has been a revival of interest in studying NLP effects at amplitude

level, partly motivated by more formal work relating soft radiation to asymptotic symme-

tries of the S-matrix in gauge theories and in gravity [40, 41]. Thus, in addition to the

phenomenological applications mentioned above, the study of subleading threshold effects

in quantum field theory can have a role to play in finding new representations of, and

relations between, gauge and gravity theories [42–47], whilst also finding applications in

transplanckian scattering [48–51]. In the latter context (as potentially in gauge theories),

resummation plays a key role.

In QCD (and related gauge theories), threshold resummation at leading power is known

to be a consequence of the universal factorisation of soft and collinear divergences in scatter-

ing amplitudes (see for example ref. [15] for a dedicated discussion of this point). This has

motivated attempts to construct a factorisation formula for NLP effects. References [52, 53]

use a diagrammatic approach, building on the earlier work of ref. [27], to describe the effect

of dressing a general non-radiative amplitude with an additional gluon emission up to NLO,

and NLP in the threshold expansion. This formula contains universal functions similar to

those appearing at LP level, but including extra contributions that describe, for example,

the emission of wide-angle soft gluons from within jets. A more complete analysis for scalar

theories coupled to electromagnetism was undertaken in refs. [54–56], which again stress

the importance of new quantities (both universal and non-universal) that appear beyond

LP order in emitted gluon momentum. Related analyses of NLP effects, envisaging a wide

range of applications, both within and beyond a threshold resummation context, have been

carried out in SCET [57–63] (see ref. [64] for earlier work in the context of flavour physics),

and results using either diagrammatic or effective theory methods have been shown to be

potentially useful for improving the accuracy of fixed-order calculations [59, 65–74]. Re-

cently, the SCET framework has been used to demonstrate that the leading-logarithmic
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(LL) NLP contributions can be resummed, first for event shapes [75], and then for Drell-

Yan production [76], where the results agree with the predictions of the physical evolution

kernel approach of refs. [30–34].

Our aim in this paper is to show how a similar resummation of LL NLP effects can be

achieved using the diagrammatic approach developed in refs. [28, 29], and itself analogous

to the original LP resummations of refs. [6, 7, 9–11]. As in the SCET approach of ref. [76]

(and as observed in refs. [52–56]), we will see that, while it is true that a number of new

functions appear at NLP level in the threshold expansion, many of them are irrelevant

for discussing the highest power of the NLP logarithm at any given order in perturbation

theory. Thus, the resummation of LL NLP contributions is remarkably straightforward.

Importantly, this method is sufficiently simple and universal that it can be directly applied

to any hadronic cross section with colour-singlet final states: indeed, we explicitly discuss

applications to Higgs boson production in the gluon fusion channel, and the formalism can

readily be generalised to multi-boson final states. There are a number of motivations for

the present analysis. First, they are a natural application of the programme of work com-

menced in refs. [28, 29], where it is was shown that a broad subclass of NLP effects indeed

exponentiates. Second, the history of LP resummation suggests that it is highly useful to

have more than one formalism for describing equivalent physics: one may note, for exam-

ple, that comparing logarithmic accuracies between different approaches is non trivial (see

for example refs. [77–79]), approaches to the choice of factorisation scales may differ, and

resummations can be performed in different kinematic spaces [16]. Comparing different

approaches may therefore provide interesting estimates of the theoretical uncertainty of

physical predictions. Third, our diagrammatic approach will provide an alternative start-

ing point for generalising the NLP resummation formalism beyond leading-logarithmic

accuracy.

The structure of our paper is as follows. In section 2, we review the resummation of

LP threshold contributions, introducing notation that will be useful for what follows. In

particular, we will relate our calculation to the path-integral methods of ref. [28], which

provide a particularly elegant proof of exponentiation. In section 3, we show how the picture

can be naturally extended to NLP level, using existing results. We will argue in detail that

potential additional contributions to NLP behaviour, including hard collinear effects, non-

universal behaviour and phase-space correlations between gluons, can be ignored at LL.

Armed with this knowledge, we will then perform an explicit calculation that resums the

LL NLP terms in Drell-Yan, comparing our results with others in the literature [30–34].

We will then comment on the general applicability of our framework to the production of

an arbitrary number of colour singlet particles, before examining Higgs production in the

large top mass limit as a further example. In section 3.4, we briefly compare our framework

with the recent analysis of ref. [76], in the framework of Soft Collinear Effective Theory

(SCET). Finally, we discuss our results in section 4 before concluding. Technical details

are collected in three appendices.
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Figure 1. Drell-Yan production at leading order.

2 Threshold resummation at leading power

In this section, we review the resummation of terms at leading power in the threshold

variable, using factorisation methods. Given that our aim in what follows is to sum leading-

logarithmic terms only at NLP, we will mostly concern ourselves here with LL terms also at

LP. Furthermore, we will phrase our discussion in terms of methods and notation that allow

a straightforward generalisation to subleading power in the threshold expansion. While our

discussion applies to general colour-singlet final states, we will first explicitly consider the

Drell-Yan production of a massive (or off-shell) vector boson, which at LO corresponds to

the partonic scattering process

q(p1) + q̄(p2) → V (Q) , (2.1)

depicted in figure 1. We will not explicitly consider here the quark-gluon production

channel, where NLP logarithms are present, but constitute in fact the leading power, since

LP logarithms are absent; in the gluon-gluon channel for the Drell-Yan process, only NNLP

logarithms can arise. We write the invariant mass distribution in the qq̄ channel as

dσ

dτ
= σ0(Q2)

∫
1
0dzdx1dx2 δ(τ − x1x2z) q(x1, µ

2
F ) q̄(x2, µ

2
F ) ∆

(
z, αs(µ

2
R),

µ2
F

Q2
,
µ2
R

Q2

)
, (2.2)

where we restrict ourselves to a single quark flavour for simplicity. Here σ0(Q2) is the

LO total partonic cross section, whose precise value will depend on the nature of the

vector boson. Furthermore, αs(µ
2
R) is the strong coupling at the renormalisation scale

µR, q(x, µ2
F ) is a quark distribution function with longitudinal momentum fraction x and

factorisation scale µF , while q̄ is the equivalent for an antiquark. Given that scale choice

effects contribute to only subleading logarithms (see for example [7]), we will simply choose

µF = µR = Q from now on, and simplify notation accordingly. In eq. (2.2) we defined the

invariants

τ =
Q2

s
, z =

Q2

ŝ
, (2.3)

where ŝ = (p1 + p2)2 is the squared partonic centre of mass energy, and s = ŝ/x1x2 is the

hadronic centre of mass energy. The ratio z represents the fraction of ŝ carried by the final

state vector boson. At LO this must be unity, so that one has2

∆(0) (z) = δ(1− z) . (2.4)

2For brevity, we will use the term partonic cross-section for quantities such as that of eq. (2.4), even

though they have a LO Q2-dependent parameter factored out.
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The invariant mass distribution in eq. (2.2) is a convolution in z, and can be diagonalised

by taking Mellin moments with respect to τ , with the result∫ 1

0
dτ τN−1 dσ

dτ
= σ0(Q2) q(N,Q2) q̄(N,Q2) ∆(N,Q2) , (2.5)

where

q(N,Q2) =

∫ 1

0
dxxN−1 q(x,Q2) (2.6)

is the transformed quark distribution (and similarly for the antiquark), and we have defined

∆(N,Q2) =

∫ 1

0
dz zN−1 ∆(z,Q2). (2.7)

Note that, here and in the following, we use a notation in which functions and their

Mellin transforms are distinguished only by their arguments. Beyond LO, eq. (2.7) receives

potentially large threshold corrections. In Mellin space, these appear as contributions of

the form

αns logmN , m = 0, . . . , 2n , (2.8)

which in momentum space are associated with plus distributions of the form

Di(z) =

(
logi(1− z)

1− z

)
+

, i = 0, . . . 2n− 1 , (2.9)

defined such that ∫ 1

0
dz f(z)

[
g(z)

]
+

=

∫ 1

0
dz
[
f(z)− f(1)

]
g(z) . (2.10)

When computed in perturbation theory from quark scattering, ∆
(
N,Q2

)
is affected by

collinear divergences, which must be reabsorbed in the quark distributions: below, we will

mostly work with the ‘bare’ ∆, before renormalisation of the coupling αs, and before the

factorisation of collinear divergences, which will be regulated using dimensional regular-

isation in d = 4 − 2ε. For clarity, we will denote this bare partonic cross section with

∆̂(z,Q2, ε) in momentum space, and with ∆̂(N,Q2, ε) in Mellin space. Collinear factorisa-

tion is understood to be performed in the MS scheme.

For any QCD process with a colour-singlet final state produced near threshold, ∆̂ has

a factorised structure, and can be written as [6, 80]

∆̂
(
N,Q2, ε

)
=
∣∣H (Q2

)∣∣2 ∏
i ψi

(
N,Q2, ε

)∏
i ψeik,i (N,Q2, ε)

S
(
N,Q2, ε

)
, (2.11)

where H
(
Q2
)

is an amplitude-level finite hard function containing off-shell virtual con-

tributions, S(N,Q2, ε) is a soft function collecting all soft enhancements associated with

(real or virtual) soft radiation, and ψi(N,Q
2, ε) is a perturbative (anti-)quark distribution

function, collecting collinear singularities associated with initial line i; finally, given that

infrared enhancements of both soft and collinear origin are included twice (both in the soft

– 6 –
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and quark distribution functions), one may remove the double counting by dividing each

quark distribution by its own eikonal approximation ψeik,i(N,Q
2, ε). Formal definitions of

the (eikonal) quark distributions and of the soft function are given, for example, in ref. [80]:

sometimes, eikonal quark distributions are absorbed into the soft function to build the so-

called reduced soft function, organising wide-angle soft radiation. On the other hand, one

may consider the factor

ψ h,i(N,Q
2, ε) =

ψi(N,Q
2, ε)

ψeik,i(N,Q2, ε)
, (2.12)

for each initial parton line: this has the effect of removing the soft behaviour from each

quark distribution, leaving hard collinear behaviour only. This arrangement is particularly

convenient if one wishes to focus only on leading logarithms, as we do in this paper: indeed,

at any fixed order in αs, leading logarithms at leading power arise only when the maximum

number of singular integrations is performed, yielding the highest inverse power of ε. Thus,

the factor ψh,i(N,Q
2, ε) for each external line contributes only at subleading logarithmic

accuracy, and can be put equal to unity at LL. We are then left with the simple result

∆̂LL

(
N,Q2, ε

)
=
∣∣H (Q2

)∣∣2 S(N,Q2, ε
)
, (2.13)

implying that leading logarithms in the DY cross-section at arbitrary orders in perturbation

theory are governed purely by the soft function [6, 7, 13], on which we now focus.

For any QCD process with a colour-singlet final state, the soft function has a formal

definition as a vacuum expectation value of Wilson line operators associated with the

colliding partons. Defining the dimensionless four-vectors βi via

pµi =
√
ŝ βµi , (2.14)

one may write the soft function (in momentum space) as

S(z,Q2, ε) =
1

Nc

∑
n

Tr
[ 〈

0
∣∣∣Φ†β1Φβ2

∣∣∣n〉〈n ∣∣∣Φ†β2Φβ1

∣∣∣ 0〉 ] δ(z − Q2

ŝ

)
. (2.15)

Here the trace is over colour indices, and the Wilson line operators are defined by

Φβi = P exp

[
igsT

a

∫ 0

−∞
dλβi ·Aa(λβi)

]
, (2.16)

where Ta is a colour generator in the fundamental representation; furthermore, eq. (2.15)

includes a sum over final states containing n partons generated by the Wilson lines, in-

cluding the appropriate phase space integration, and subject to the constraint that the

total energy radiated in the final state equals (1 − z)ŝ; finally, the division by the number

of colours Nc corrects for the fact that this factor has already been included in the LO

cross-section σ0 in eq. (2.13). Introducing the momentum space gauge field Ãµ(k), one

may write the Wilson line exponent as

igsTa

∫
ddk

(2π)d
βi · Ãa(k)

∫ 0

−∞
dλ eiλβi·k =

∫
ddk

(2π)d
Ãaµ(k)

[
gsTa

βµi
βi · k − iε

]
, (2.17)
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where the square-bracketed factor on the right constitutes the momentum-space factor asso-

ciated to the emission of a gluon from the Wilson line. We recognise this as the well-known

eikonal Feynman rule for soft gluon emission, so that finding the soft function amounts

to calculating the cross section for the incoming partons in the eikonal approximation.

This cross-section is known to exponentiate, which relies on two properties: first, vacuum

expectation values of Wilson lines exponentiate before any phase space integrations are

carried out, which may be shown diagrammatically [9–11], or using renormalisation group

arguments, themselves relying on the multiplicative renormalisability of Wilson line op-

erators [81–86]; second, the phase space for the emission of n soft partons factorises into

n decoupled one-parton phase space integrals, given that momentum conservation can be

ignored at leading power in the threshold expansion.

Combining these two properties, one finds that the complete soft function, at cross-

section level, has an exponential form, and the exponent can be directly computed in

terms of a special class of Feynman diagrams known as webs [9–11]. These results have

been reinterpreted more recently using a path integral approach [28], which incorporated

statistical physics methods (the replica trick) to provide a particularly streamlined proof of

diagrammatic exponentiation. These methods have in turn allowed the web language to be

generalised to multiparton scattering [87–95] (see also [96, 97], or ref. [98] for a pedagogical

review). We review the replica trick here in appendix A, given that it can also be used

to demonstrate directly the exponentiation of a large class of contributions at NLP in the

threshold expansion.

Concentrating on leading logarithms, it is important to note that the pattern of expo-

nentiation of soft and collinear singularities is non-trivial, in that the exponent is single-

logarithmic (containing terms of the form αns logmN with m ≤ n + 1), while the cross

section is double-logarithmic, as noted in eq. (2.8). The leading logarithms for the cross

sections are therefore completely determined by a one-loop evaluation, which we briefly

review below. The eikonal cross-section, up to NLO and in momentum space, can be

written as:3

S
(
z,Q2, ε

)
=
(

1 + S(1)
virtual(Q

2, ε)
)
δ(1− z) + S(1)

real(z,Q
2, ε) +O

(
α2
s

)
. (2.18)

The real radiation contribution can be obtained from the graphs of figure 2 using eikonal

Feynman rules, and one finds

S(1)
real(z,Q

2, ε) = µ2εg2
s CF

∫
ddk

(2π)d−1
δ+(k2) δ

(
1− z − 2k · (p1 + p2)

ŝ

)
2p1 · p2

p1 · k p2 · k
. (2.19)

The momentum integral is easily evaluated introducing the Sudakov decomposition

kµ = k+β
µ
1 + k−β

µ
2 + kµT , (2.20)

where kµT is a four-vector transverse to βµ1 and βµ2 ,

kT · β1 = kT · β2 = 0 . (2.21)

3Our presentation is motivated by that of ref. [7].
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Figure 2. Real emission diagrams for the eikonal cross-section of eq. (2.19), where all emission

vertices are assumed to be eikonal.

Contracting eq. (2.20) with βµ1 and βµ2 , it is straightforward to verify that the components

k± are given by

k+ =
2p2 · k√

ŝ
, k− =

2p1 · k√
ŝ

; (2.22)

furthermore, the integration measure in eq. (2.19) becomes∫
ddk =

1

4

∫
dk+ dk− dk

2
T dΩd−2

(
k2
T

)(d−4)/2
, (2.23)

where dΩm is the element of solid angle in m spatial dimensions. Eq. (2.19) then becomes

S(1)
real(z,Q

2, ε) =
µ2εΩd−2

(2π)d−1
g2
s CF

∫ ∞
0

dk+ dk− (k+k−)
d−6
2 δ

(
1− z − k+ + k−√

ŝ

)
. (2.24)

The remaining integrals can be easily carried out using the reparameterisation

k+ =
√
ŝ x y , k− =

√
ŝ x (1− y) , (2.25)

which expresses eq. (2.24) as

S(1)
real(z,Q

2, ε) =
µ2εΩd−2

(2π)d−1
g2
s CF ŝ

d−4
2

∫ 1

0
dy [y(1− y)]

d−6
2

∫ ∞
0
dxxd−5 δ (1− z − x) . (2.26)

Taking into account also that

Ωd−2 =
2π

d−2
2

Γ
(
d−2

2

) (2.27)

one has

S(1)
real(z,Q

2, ε) =
αsCF
π

(
µ̄2

ŝ

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)
(1− z)−1−2ε , (2.28)

where µ̄ is the MS renormalisation scale, µ̄2 = 4π e−γEµ2, and the Q dependence is easily

restored by recalling that ŝ = Q2/z. In experiments one measures the Drell-Yan cross

section at fixed Q, thus for z → 1 we expand the cross section around Q, and eq. (2.28)

becomes4

S(1)
real(z,Q

2, ε) =
αsCF
π

(
µ̄2

Q2

)ε eεγEΓ2(−ε)
Γ(1− ε)Γ(−2ε)

[
1− ε(1− z) + . . .

]
(1− z)−1−2ε . (2.29)

4In this paper we are interested to consistently expand in powers of 1 − z, in such a way to determine

unambiguously the contribution at next-to-leading power. It would be also possible to keep the factor

ŝ unexpanded in eq. (2.28), thus retaining a tower of power-suppressed contributions originating from

this “kinematic” correction. This is the approach followed in [99], which leads to resummation of plus

distributions of the type lnm
[
(1− z)/

√
z
]
/(1− z), m = 0, . . . , 2n− 1.

– 9 –



J
H
E
P
1
1
(
2
0
1
9
)
0
0
2

Given that we focus on leading logarithmic corrections, in the following we will drop the ε

dependent term in the square brackets.

The virtual contribution at O(αs) can be obtained by direct calculation, or by imposing

the soft gluon unitarity requirement∫ 1

0
dz S

(
z,Q2, ε

)
= 1 , (2.30)

reflecting the requirement that soft divergences from the virtual and real contributions

must cancel, and the fact that Wilson line correlators are pure counterterms in dimensional

regularisation. This requirement implies

S(1)
virtual(Q

2, ε) = −
∫ 1

0
dz S(1)

real(z,Q
2, ε) , (2.31)

which applied to eq. (2.29) immediately gives

S(1)
virtual(Q

2, ε) =
αsCF
π

(
µ̄2

Q2

)ε eεγEΓ2(−ε)
Γ(1− ε)Γ(−2ε)

1

2ε
. (2.32)

Summing real and virtual correction as in eq. (2.18) we obtain the eikonal cross-section

at O(αs):

S(1)(z,Q2, ε) =
αsCF
π

(
µ̄2

Q2

)ε eεγEΓ2(−ε)
Γ(1− ε)Γ(−2ε)

{
(1− z)−1−2ε +

1

2ε
δ(1− z)

}
. (2.33)

At this point, we can safely take the Mellin transform

S(1)(N,Q2, ε) =

∫ 1

0
dz zN−1 S(1)(z,Q2, ε) , (2.34)

which gives

S(1)(N,Q2, ε) =
αsCF
π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)

[
Γ(−2ε)Γ(N)

Γ(−2ε+N)
+

1

2ε

]
. (2.35)

Expanding in ε one finds

S(1)(N,Q2, ε) =

(
µ̄2

Q2

)ε
αs
π
CF

[
2

ε

(
ψ(0)(N) + γE

)
+

6ψ(0)(N)
(
ψ(0)(N) + 2γE

)
− 6ψ(1)(N) + π2 + 6γ2

E

3

]
, (2.36)

where ψ(n−1) denotes the n-th derivative of the logarithm of the Γ function. Keeping the

dominant logarithmic behaviour as N →∞ one finds the simple result

S(1)(N,Q2, ε)
∣∣∣
LL

=

(
µ̄2

Q2

)ε
2αs
π

CF

[
logN

ε
+ log2N

]
, (2.37)
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where we kept the leading power of the logarithm separately for the divergent and for the

finite contributions.5 As discussed above, we may exponentiate this result to obtain the

leading logarithmic behaviour at all orders. Upon doing so, we may absorb the resulting

collinear poles into the parton distributions, using the MS scheme. This amounts to defining

renormalised and resummed quark distributions via

qLL(N,Q2) = q(N,Q2) exp

[
αs
π
CF

logN

ε

]
, (2.38)

and similarly for the antiquark, so that eq. (2.5) becomes∫ 1

0
dτ τN−1 dσDY

dτ

∣∣∣∣
LL

= σ0(Q2) qLL(N,Q2) q̄LL(N,Q2) exp

[
2αs
π

CF log2N

]
. (2.39)

This formula explicitly sums up leading logarithms in N to all orders. It can easily be

verified that eq. (2.39) reproduces the well-known results of earlier studies, see for exam-

ple [6, 7, 31], both in Mellin space and in momentum space. We note in passing that in

our analysis that the dimensional regularisation scale µ appears only through the factor

µ2ε, as must be the case on dimensional grounds. Given that µ is then identified with the

renormalisation and factorisation scales, it follows that logarithms of these scales (which

may be chosen to depend on z) must be suppressed by a single power of ε, and thus do

not contribute to the leading logarithmic behaviour in the threshold variable (1 − z), as

could be expected. The same argument will hold at NLP level. We also note that, in going

beyond LP level, we will have to keep track of subleading terms in eq. (2.36). Expanding

this to NLP order one finds

S(1)(N,Q2, ε) =

(
µ̄2

Q2

)ε
2αsCF
π

[
1

ε

(
logN − 1

2N

)
+ log2N − logN

N

]
, (2.40)

which will be useful later on.

3 Threshold resummation at next-to-leading power

In the previous section, we reviewed the exponentiation of leading logarithmic threshold

contributions to the Drell-Yan cross-section at leading power. We now discuss how to ex-

tend this procedure to next-to-leading power, and we will keep our remarks general enough

to apply to both quark and gluon-initiated processes, and for general colour-singlet final

states. Recall that LP resummation at LL accuracy relied on two facts: the exponentia-

tion of the soft function before integration over phase space (at squared matrix element

level), and the factorisation of phase space for m parton emissions into m decoupled single-

parton phase space integrals. This motivates the following schematic decomposition of the

partonic cross-section up to NLP order, which was already shown to be useful in ref. [29]:

σ̂ =
1

2ŝ

[ ∫
dΦLP |M|2LP +

∫
dΦLP |M|2NLP +

∫
dΦNLP |M|2LP + . . .

]
. (3.1)

5Here and below, we are not displaying contributions that are independent of N : such contributions arise

also from different factors in eq. (2.11), and they can be separately resummed, as discussed for example in

refs. [2, 36]. N -independent terms can be incorporated here as shown in eq. (3.36) below, and do not affect

leading logarithms at NLP.
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H H H

(a) (b) (c)

Figure 3. (a) Non-radiative amplitude with two incoming particles and a hard interaction H; (b)

external emission contribution; (c) internal emission contribution.

The first term on the right-hand side of eq. (3.1) gives the leading-power result of section 2,

integrating the leading-power squared matrix element with leading-power phase space, i.e.

neglecting correlations between radiated partons. The second term consists of the NLP

contribution to the squared matrix element, integrated with LP phase space. The third

term consists of the LP matrix element, but where the phase space includes the effect of

parton correlations at NLP. Finally, the ellipsis denotes terms which are NNLP and beyond

in the threshold expansion. Based on this classification, the task of determining whether

LL NLP terms can be resummed amounts to elucidating the relevant structure of the NLP

matrix element, as well as considering whether NLP corrections to the LP phase space are

significant. Let us consider each of these issues in turn.

3.1 Structure of the NLP squared matrix element at LL

For simplicity, let us first describe the structure of squared matrix elements at NLP

level when the hard emitters are massive, following refs. [28, 29] (themselves building on

refs. [25, 26]). In figure 3(a), we draw a non-radiative amplitude with an incoming quark

and antiquark, which interact via a hard interaction H. Radiation can then be divided

into two types of contribution:

1. External emissions. In this case, radiation couples directly to the incoming hard lines,

as exemplified in figure 3(b). Notice that this case includes all radiation that does not

resolve the structure of the hard interaction, and incorporates intricate diagrammatic

cancellations that lead to a factorised form of the amplitude: indeed, all radiation at

leading power falls in this category.

2. Internal emissions. At next-to-leading power, non-factorisable contributions from

next-to-soft partons arise, which can be depicted as originating from inside the hard

interaction, as in figure 3(c). This corresponds to the insertion of sub-leading power

operators in an effective field theory language, and it is the first level of interaction

where soft radiation begins to unravel the structure of the hard scattering.

As shown for the first time in ref. [28], external emissions can be described by generalised

Wilson lines, which extend the definition given in eq. (2.16) to next-to-leading power in

the soft expansion. Along the lines of eq. (2.17), we may write this operator in momentum
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space as [53]

F (p) = P exp

[
gsT

a

∫
ddk

(2π)d
Ãaµ(k)

(
pµ

p · k −
kµ

2p · k + k2 pµ

2(p · k)2
+ ikν

Sνµ

p · k

)
+ . . .

]
(3.2)

for a generalised semi-infinite straight Wilson in the direction of four-momentum p. Here

Ta is a colour generator in the appropriate representation, and Sµν is the generator of

Lorentz transformations for the parton under consideration, vanishing for scalar fields,

while it is given by

(Sνµ)αβ ≡ Σµν
αβ =

i

4
[γν , γµ]αβ (3.3)

for spin-1/2 fields, and

(Sνµ)ρσ ≡ Mνµ
ρσ = i

(
δνρ δ

µ
σ − δνσ δµρ

)
(3.4)

for vector fields. The first term in eq. (3.2) corresponds to the eikonal Feynman rule of

eq. (2.17), and the remaining terms (suppressed by one power of the gluon momentum k)

correspond to effective next-to-eikonal Feynman rules, describing the emission of next-to-

soft gauge bosons [28]. The ellipsis in eq. (3.2) refers to terms involving two gluons being

emitted from the same point along the Wilson line, through seagull-type vertices. These

vertices start contributing to the cross section at NNLO (either through double radiation,

or through one-loop corrections to single radiation), therefore they cannot contribute at

leading logarithmic accuracy at NLP (as was the case at LP). Indeed, our proposed resum-

mation rests upon an amplitude-level factorisation theorem [27, 52, 53], which implies the

existence of evolution equations, which in turn can be understood in terms of renormalisa-

tion of suitable operator matrix elements: the solution of evolution equations of this type

always leads to a non-trivial pattern of exponentiation, with single logarithms in the expo-

nent generating double logarithms in the cross section. Such a pattern of exponentiation

implies that all leading logarithms are generated by the one-loop exponent. A test of this

argument is provided by ref. [36], where the exponentiation of leading logarithms at NLP

was explictly tested at NNLO; finally, as a further check, we verify in appendix C that

next-to-soft Feynman rules for double radiation in eq. (3.2) do no contribute to leading

logarithms in the case of Drell-Yan production at two loops.

Let us now consider the contribution of internal emissions. When massive external

particles are being considered, the hard interaction is analytic in the total momentum K

of the emitted radiation, and can safely be expanded about the soft limit Kµ → 0. One

may then show, using Ward identities, that the effect of a single internal emission is given

by derivatives of the non-radiative amplitude with respect to its external momenta. As

has been noted in the context of the so-called next-to-soft theorems of refs. [40, 41],6 these

derivatives can be organised in terms of the orbital angular momentum operator associated

with each external leg, which, in momentum space, has the form

L(i)
νµ = i

(
piν

∂

∂piµ
− piµ

∂

∂piν

)
. (3.5)

6See ref. [100] for a discussion of how to relate the more formal works of refs. [40, 41] to the present

framework.
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On each hard leg, this combines with the spin angular momentum contribution to construct

the total angular momentum operator

Sνµ → Sνµ + Lνµ ≡ Jνµ . (3.6)

In ref. [28], the orbital angular momentum contribution was not included in the generalised

Wilson line operator of eq. (3.2), despite the fact that it might make sense to do so, given

that the internal and external emission contributions are not separately gauge-invariant,

but instead combine into a gauge-invariant object, the total angular momentum. For

practical purposes, however, it remains convenient to keep the orbital angular momentum

separate, given that it involves derivatives which have yet to act on the hard interaction.

How to keep track of such contributions will be discussed explicitly below.

Armed with the operator defined in eq. (3.2), we may construct a next-to-soft function

by analogy with the LP soft function of eq. (2.15), as

S̃
(
z,Q2, ε

)
=

1

Nc

∑
n,LP

Tr
[〈

0
∣∣F †(p1)F (p2)

∣∣n〉〈n∣∣F †(p2)F (p1)
∣∣0〉] δ(z − Q2

ŝ

)
. (3.7)

Here we have replaced the Wilson line operators in the LP soft function by their NLP

counterparts, and the subscript in the sum over final states indicates that all phase space

integrals are to be carried out with LP phase space only (i.e. with a measure of integra-

tion consisting of a product of single-gluon phase space integrals). Corrections to this will

be considered in section 3.2. Note also that all generalised Wilson lines are semi-infinite

straight lines proceeding from the origin in position space. At NLP accuracy the cross

section is sensitive to a potential non-zero initial position, but this is related to the deriva-

tive contributions above [28], which are to be dealt with separately. As was the case at

LP, the next-to-soft function in eq. (3.7) can be shown to exponentiate using replica trick

arguments (see appendix A). At NLP, however, we must carefully disentangle what this

means, given that the generalised Wilson line of eq. (3.2) is matrix-valued in the spin space

of the external hard particles. As an example, consider the spin-1/2 case, and let us write

the non-radiative amplitude with an incoming fermion and antifermion with explicit spin

indices {α, β}, as

M = v̄α(p2)Mαβuβ(p1) , (3.8)

so that the spin matrix M is defined by stripping off the initial state wave functions from

the full amplitude. The next-to-soft function of eq. (3.7) can then be explicitly written as

a spin operator

S̃ α1α2ᾱ1ᾱ2

β1β2β̄1β̄2
(z,Q2, ε) =

1

Nc

∑
n,LP

〈
0
∣∣F † ᾱ1

β̄1
(p1)F ᾱ2

β̄2
(p2)

∣∣n〉〈n∣∣F †α2

β2
(p2)F α1

β1
(p1)

∣∣0〉 δ(z − Q2

ŝ

)
,

(3.9)

where the ordering of spinor indices is depicted in figure 4. The spin matrix Mαβ in eq. (3.8)

factorises into a product of hard and next-to-soft factors, so that the integrated squared

matrix element, dressed by arbitrary amounts of radiation from the next-to-soft function,
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β2

F †
2

α2

β1

F1

α1

F †
1

ᾱ1

ᾱ2

β̄2

F2

H H†

β̄1

α1

α2

ᾱ1

ᾱ2

Figure 4. Labelling of spin indices for the squared amplitude, where H is the hard function, and

Fi a generalised Wilson line.

can be written as∫
dΦ(n+1) |M|2 = S̃ α1α2ᾱ1ᾱ2

β1β2β̄1β̄2
(z,Q2, ε)

∫
dΦ(1)

[
v̄β2(p2)Hα1α2u

β1(p1)
][
ūβ̄1(p1)H†ᾱ1ᾱ2

vβ̄2(p2)
]
,

(3.10)

where dΦ(m) denotes the m-particle Lorentz-invariant phase space measure, and the inte-

gration over the phase space of the heavy vector boson has been singled out, relying upon

the factorisation of the n-body phase space at LP. Note that eq. (3.10) also applies to

the case of incoming particles of spin one, if the spinor wave functions are replaced with

polarisation vectors, and spinor indices by vector indices.

The discussion so far applies strictly only to the case of massive external particles.

When massless particles are involved, it is no longer true that the hard function H is

analytic in the momentum carried by soft radiation: it develops logarithmic singulari-

ties due to the presence of collinear divergences. As discussed in the Introduction, this

was first explored in a QED context in ref. [27], which presented a factorisation for-

mula at amplitude level, extending the Low-Burnett-Kroll theorem to include collinear

effects. Similar ideas have recently been extended to full QCD [52, 53], and analysed using

SCET [57–62, 68–72, 75, 76, 101–103], while an alternative, first-principles, diagrammatic

approach has been explored in ref. [54]. Common to all these approaches is the factorisa-

tion of collinear contributions into universal functions, sensitive to the spin of the colliding

particles but otherwise independent of the details of the hard scattering. More precisely,

one may recall that, at leading power, collinear radiation is accounted for by means of

jet-type functions, such as the parton distributions introduced in eq. (2.11). At NLP, one

must generalise this analysis, expressing radiative amplitudes in terms of new types of jet

functions, describing soft emissions from collinearly enhanced configurations. The first such

radiative jet function was proposed in ref. [27], and was recently calculated at one loop
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in QCD for external quarks in refs. [52, 53], where it was used to reproduce known NLP

threshold logarithms in Drell-Yan production at NNLO. The amplitude-level factorisation

proposed in [52] is expected to apply only to annihilation processes involving two colliding

hard partons producing colourless final states: on the other hand, the analysis of ref. [54]

(which focuses on scalar theories, but considers more general scattering processes), and

the results of refs. [57, 76, 101, 102] suggest that further types of jet emission function are

necessary in QCD, which have yet to be calculated.

Importantly, for the purposes of the present paper, radiative jet functions can be

ignored, since it can be shown that leading logarithms at NLP can only arise from momen-

tum regions of integration that are already fully accounted for by the next-to-soft function

introduced in eq. (3.2). To illustrate this point, consider first, for comparison, the well-

understood situation at leading power.7 In that case, threshold singularities, inducing non-

analytic behaviour at z → 1, are directly related to infrared singularities of the amplitude;

these, in turn, arise from integrations of the relevant momentum components (‘normal vari-

ables’) near singular surfaces in momentum space, which can be completely characterised to

all orders in perturbation theory by means of Landau equations and power counting tech-

niques [104]. For massless theories, it can be shown in general that infrared singularities

arise only from soft and collinear momentum configurations. At leading power, therefore,

one finds that at n loops there are precisely 2n normal variables that must be integrated

with a logarithmic measure: in a suitable frame, these can be taken to be n parton energies

Ei, with a leading-power integration measure dEi/Ei, and n transverse momenta with re-

spect to the directions defined by external particles, kiT , with a leading-power integration

measure dkiT /kiT . Threshold logarithms in general arise when different combinations of

normal variables become small at different rates, but leading logarithms arise only with a

very specific scaling, when all energies and transverse momenta are strongly ordered,8 say

E1 � . . .� En and k1T � . . .� knT . In that limit, at LP, the 2n logarithmic integrations

yield contributions of the form ln2n−1(1− z)/(1− z), since the last logarithmic integration

must not performed when computing dσ̂/dz. At NLP, either the phase-space measure or

the squared matrix element provide a single power of one of the normal variables, so that

only 2n− 1 momentum components need be integrated with a logarithmic measure. Once

again, leading logarithms will arise from the configuration where the remaining normal

variables are strongly ordered, with 2n−1 integrations leading to contributions of the form

ln2n−1(1− z), while the z integration will not introduce further singularities at NLP. Now,

two possibilities arise. On the one hand, the normal variable whose integration has become

non-singular can be a transverse momentum, in which case the corresponding parton is

soft, but not strictly collinear: this configuration is accounted for by the leading-power

7For clarity, we focus here on real-radiation contributions to the inclusive cross section, which are the

origin of the z-dependence we are interested in.
8This property of leading logarithms is not special to threshold resummation, but underlies our un-

derstanding of leading-logarithmic singularities in variety of kinematical situations: classic applications

involve the ladder-based derivation of the DDT formula for the resummed Drell-Yan transverse momentum

distribution [105], the resummation of leading collinear logarithms in ref. [106], the ladder resummation

of Sudakov behaviour in [107], and the treatment of leading high-energy logarithms (see for example the

pedagogical discussion in ref. [108]).
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soft function, which contains ‘wide-angle’ soft gluons. On the other hand, the suppressed

variable can be an energy: in this case, all transverse momenta must be strongly ordered;

such next-to-soft, collinear configurations are accounted for by the next-to-soft function

defined in eq. (3.7). Notice that radiative jet functions such as the one computed in [52]

also contain the next-to-soft, collinear configuration: this, however, contributes to a double

counting that must be explicitly subtracted, either by introducing eikonal jets, as done in

eq. (2.11), or by defining an appropriate counterterm, as done for example in ref. [53]. The

subtracted radiative jet function then contains only hard collinear configurations for all

radiated partons, and cannot contribute at leading logarithmic accuracy.

An explicit example and test of the above discussion is provided in ref. [53], where

the non-abelian radiative jet function for quarks was computed at one-loop order, and the

overlap between (next-to-)soft and collinear emissions was explicitly identified. Further-

more, a large class of (N)LP threshold effects has been calculated in Drell-Yan production

at NNLO [66] and N3LO [67] using the method of regions [109–111], which allows for a

precise identification of the (next-to)soft and/or collinear origin of all contributions to the

cross section. The role of hard collinear effects is indeed found in these studies to be as-

sociated with NLL terms and beyond,9 while all LL contributions can be traced to the

(next-to)soft function, if the results are recast in the present framework. Notice that, as

discussed above, upon exponentiation leading logarithms at NLP must be generated by

one-loop contributions: the results of [53, 66, 67] therefore provide a complete test of our

argument for the Drell-Yan process.

To summarise, NLP contributions to squared matrix elements can be categorised into

two main types, as follows.

(i) (Next-to-)soft emissions. These are captured by the next-to-soft function, defined

in terms of generalised Wilson lines in eq. (3.7), together with the orbital angular

momentum contributions associated with internal emissions in figure 3. As at LP,

the next-to-soft function exponentiates (see appendix A).

(ii) Collinear contributions. These are described by radiative jet functions, which overlap

with the next-to-soft function. Upon removing the double counting, the remaining

collinear effects do not contribute at LL accuracy.

In this section, we have discussed the second term on the right-hand side of eq. (3.1), and

argued that the next-to-soft function underlies all contributions to the NLP matrix element

that can result in LL terms in the cross-section. This is only part of the story: we must also

check whether or not LL terms can arise from the LP matrix element, once correlations

between radiated gluons (a NLP effect) are included. This is the subject of the following

section.

3.2 Corrections to the LP phase space

The third term in eq. (3.1) consists of the LP matrix element integrated over the NLP

phase space. To see whether or not this term can give LL contributions at NLP, it is

9The fact that hard collinear contributions are subleading has also been argued in various SCET ap-

proaches [59, 70, 76, 103].

– 17 –



J
H
E
P
1
1
(
2
0
1
9
)
0
0
2

sufficient to take the LL contribution to the LP matrix element at each order, and then to

evaluate the phase space integral up to NLP order. The LL contributions to the matrix

element have already been discussed in section 2, and involve exponentiating the NLO

eikonal squared matrix element. This generates terms with n ≥ 1 gluon emissions, and,

according to eq. (2.15), one must then integrate each such term over the n-gluon phase

space. Considering all possible contributions to an n-gluon final state yields a squared

matrix element of the form

|M|2LP,n = f
(
αs, ε, µ

2
) n∏
i=1

p1 · p2

p1 · ki p2 · ki
, (3.11)

where the prefactor f(αs, ε, µ
2) collects coupling dependence, possible poles in ε due to the

integration over loop momenta, and combinatorial factors from the exponentiation of the

squared matrix element. The explicit form of this function is irrelevant for what follows.

We must now integrate eq. (3.11) over the (n+1)-body phase space, consisting of n gluons,

as well as the electroweak vector boson that defines the final state at LO. The integration

measure is given by

dΦ(n+1) =

[ n∏
i=1

∫
ddki

(2π)d−1
δ+(k2

i )

]
δ

(
1− z − 2

n∑
i=1

ki · (p1 + p2)

ŝ
+ 2

∑
i<j

ki · kj
ŝ

)
, (3.12)

where the integration of the vector boson momentum has already been carried out, using

the overall momentum conservation δ function. In order to compute the integral, it is

particularly convenient to use the Sudakov decomposition of eq. (2.20) for each momentum

ki. One finds∫
dΦ(n+1)|M|2LP,n = f(αs, ε, µ

2)

[
n∏
i=1

1

πŝ

∫ ∞
0

dki+
ki+

∫ ∞
0

dki−
ki−

∫
dd−2kiT
(2π)d−2

δ(ki−ki+ − k2
iT )

]

× δ
(

1− z − (ki+ + ki−)√
ŝ

+ 2
∑
i<j

ki · kj√
ŝ

)
, (3.13)

where we absorbed the θ functions from the factors δ+(k2
i ) into the integration limits for

ki±. In order to proceed, we can represent the δ function in the second line of eq. (3.13)

using

δ(x) =

∫ i∞

−i∞

dT

2πi
eTx . (3.14)

We may then rewrite eq. (3.13) as∫
dΦ(n+1)|M|2LP,n = f(αs, ε, µ

2)

∫ i∞

−i∞

dT

2πi
eT (1−z)

[
n∏
i=1

1

πŝ

∫ ∞
0

dki+
ki+

∫ ∞
0

dki−
ki−

(3.15)

×
∫
dd−2kiT
(2π)d−2

δ(ki−ki+−k2
iT ) e

−T (ki++ki−)
√
ŝ

][
1+

2T

ŝ

∑
i<j

ki · kj+O(T 2)

]
,

where in the second line we Taylor-expanded the term in the exponent that is quadratic

in soft momentum, anticipating that higher order contributions in T in the last line will
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correspond to subleading powers of (1− z) in the final result. We will verify this fact later,

but, for the moment, note that the term at O(T ) corresponds to a phase space correlation

between pairs of gluons that is absent at LP. Thus, this term constitutes the “NLP phase

space” correction referred to in eq. (3.1). In the Sudakov decomposition, the dot product

of gluon momenta reads

ki · kj =
ki+kj− + ki−kj+

2
− kiT · kjT . (3.16)

The term involving the transverse momenta leads to an odd integrand in each kiT in

eq. (3.15), and will therefore give a vanishing contribution to the final result. We can then

carry out the remaining transverse momentum integrals to obtain∫
dΦ(n+1)|M|2LP,n = f(αs, ε, µ

2)

∫ i∞

−i∞

dT

2πi
eT (1−z)

[
n∏
i=1

Ωd−2

ŝ(2π)d−1

∫ ∞
0

dki+

∫ ∞
0

dki− (3.17)

(ki+ ki−)(d−6)/2 e
−T (ki++ki−)

√
ŝ

][
1+

T

ŝ

∑
i<j

(ki+kj− + ki−kj+) +O(T 2)

]
.

Next, the ki± integrals can be straightforwardly carried out to give∫
dΦ(n+1)|M|2LP,n = f(αs, ε, µ

2)
Ωn
d−2 ŝ

n(d−6)/2

(2π)n(d−1)

∫ i∞

−i∞

dT

2πi
eT (1−z) (3.18)

×
[

1

Tn(d−4)
Γ2n

(
d− 4

2

)
+

n(n− 1)

Tn(d−4)+1
Γ2n−2

(
d− 4

2

)
Γ2

(
d− 2

2

)
+O

(
1

Tn(d−4)+2

)]
.

The integral in T is recognisable as an inverse Laplace transform, which yields the result∫
dΦ(n+1)|M|2LP,n = f(αs, ε, µ

2)
Ωn
d−2 ŝ

n(d−6)/2

(2π)n(d−1)

Γ2n[(d− 4)/2]

Γ[n(d− 4)]
(1− z)n(d−4)−1

×
{

1 +
(n− 1)(d− 4)(1− z)

4
+O

[
(1− z)2

]}
. (3.19)

Note that the terms O(T 2) we have neglected in expanding the exponential factor in

eq. (3.15) give subleading power corrections in (1− z), justifying the approximation made

above. Eq. (3.19) is the final result of integrating the LP contribution to the matrix el-

ement responsible for LL terms, with the multigluon phase-space measure expanded to

NLP order. The second term in the last line of eq. (3.19) is the desired NLP correction,

as can be seen by the fact that it is suppressed by a single power of (1 − z). Furthermore,

it contains an explicit factor of d − 4 = −2ε, which directly implies that the phase space

correction does not affect LL terms, which are associated with the most singular poles in ε.

In summary, we have shown that the third term in eq. (3.1), consisting of the LP matrix

element dressed with NLP phase space corrections, does not contribute to LL terms at NLP

order. It can thus be neglected for the purposes of this paper. Combining this observation

with the results of the previous section, we now have everything we need to perform an

explicit resummation of LL NLP threshold logarithms in Drell-Yan production. We turn

to this task in the next section.
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p1

p2

k

H H

(a)

H H

(b)

Figure 5. Diagrams contributing to a squared amplitude with a qq̄ initial state, arising from the

next-to-soft function S̃ acting on the LO hard interaction H, as in eq. (3.10). Further diagrams are

obtained by reflection about the final state cut, or by interchanging p1 ↔ p2.

3.3 Resummation of leading NLP logs in Drell-Yan production

In the previous sections, we have seen that LL contributions at NLP level are governed

by next-to-soft radiation. This in turn is captured by the next-to-soft function defined in

eq. (3.7), possibly complemented by contributions involving the orbital angular momentum

of each incoming parton. In this section, we apply these ideas to resum LL NLP terms

in Drell-Yan production. While clearly very interesting for its own sake, this example is

also a useful warm-up case: first, it will allow us to make contact with the LP treatment

of section 2; furthermore, in this case the hard interaction is especially simple, so that its

derivatives with respect to the external momenta vanish at leading order. Thus, we do

not have to worry about orbital angular momentum contributions at LL accuracy, and it

is sufficient to calculate the next-to-soft function. Once this has been calculated for single

radiation, it may be exponentiated (as at LP), yielding the resummation formula that we

are seeking.

For the first steps of our derivation, we do not need to specify the final-state particle

content of the process we are studying. Rather, we will consider a general hard interaction

H connecting to an incoming qq̄ pair, such that the LO amplitude is given by eq. (3.8).

Representative diagrams contributing to the squared amplitude arising from the next-to-

soft function at NLO, eq. (3.10), are shown in figure 5. We may directly evaluate them

using the Feynman rules arising from eq. (3.2). First, we may note that contributions

involving k2 vanish, since the radiated gluon is on shell. Next, it is convenient to combine

the scalar-like and spin-dependent emission vertices as

kµ

2pi · k
− ikν

Σνµ

pi · k
=
6kγµ

2pi · k
. (3.20)

Then, the diagrams of figure 5 yield a NLP contribution

|M|2NLP, (a)+(b) = 2g2
sCF

(
pµ1
p1 · k

− pµ2
p2 · k

)
Tr

[
6p2H

( 6kγµ
2p1 · k

)
6p1H†

]
= − g2

sCF
p1 · k p2 · k

Tr
[
6p2H 6k 6p2 6p1H†

]
, (3.21)

where a factor of two for complex conjugate diagrams has already been included. In order

to extract the LO squared amplitude, we may use an argument similar to one presented
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recently in ref. [65]. Writing the decomposition (cf. eq. (2.20))

6k =
p2 · k
p1 · p2

6p1 +
p1 · k
p1 · p2

6p2+ 6kT , (3.22)

and substituting into eq. (3.21) reveals that the term involving transverse momentum

occurs linearly in the squared matrix element, leading to an odd integrand which vanishes

upon integrating over kT . This contribution can thus be ignored, leading effectively to the

expression

|M|2NLP, (a)+(b) = − 2g2
sCF

p1 · k
Tr
[
6p2H 6p1H†

]
. (3.23)

Notably, in eq. (3.23) the LO squared matrix element is factored out. Combining this with

diagrams obtained from those of figure 5 by interchanging p1with p2, summing over spins

and colours, and dividing out the LO cross section one easily obtains an expression for

the real emission contribution to the one-loop next-to-soft function. Notice that at NLP

singularities as z → 1 are integrable: thus, there is no need to combine real emission with

virtual corrections in order to generate LL contributions, and the NLP soft function reads

S(1)
NLP

(
z,Q2, ε

)
= −2µ2εg2

s CF

∫
ddk

(2π)d−1
δ+(k2) δ

(
1− z − 2k · (p1 + p2)

ŝ

)
×
(

1

p1 · k
+

1

p2 · k

)
. (3.24)

The integration over the real gluon phase space can be carried out straightforwardly us-

ing the Sudakov decomposition of eq. (2.20), and the subsequent change of variables in

eq. (2.25), with the result

S(1)
NLP

(
z,Q2, ε

)
= −2αsCF

π

(
µ̄2

Q2

)ε
eεγEΓ2(−ε)

Γ(1− ε)Γ(−2ε)
(1− z)−2ε . (3.25)

Taking the Mellin transform we find

S(1)
NLP

(
N,Q2, ε

)
≡
∫ 1

0
dz zN−1S(1)

NLP

(
z,Q2, ε

)
= −2αsCF

π

(
µ̄2

Q2

)ε
eεγEΓ(−ε)Γ(N)

Γ(1− 2ε+N)

=
2αsCF
π

(
µ̄2

Q2

)ε
1

N

[
1

ε
+ 2ψ(0)(N + 1) + 2γE

]
+O(ε) . (3.26)

The leading behaviour as N →∞ is

S(1)
NLP

(
N,Q2, ε

)
=

2αsCF
π

(
µ̄2

Q2

)ε [
1

ε

1

N
+

2 logN

N
+ . . .

]
, (3.27)

where the ellipsis denotes terms which are non-singular in ε and non-logarithmic in N , as

well as terms suppressed by further powers of N . We see that the NLP soft function gener-

ates contributions which are suppressed by (at least) a single power of N compared to LP,

as expected. Eq. (3.27) must now be combined with the LP soft function given eq. (2.40),
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which itself includes subleading terms in N space arising from the Mellin transformation

from z space. The result is

SLP+NLP

(
N,Q2, ε

)
=

2αsCF
π

(
µ̄2

Q2

)ε [
1

ε

(
logN +

1

2N

)
+ log2N +

logN

N

]
. (3.28)

As explained above, we may directly exponentiate eq. (3.28), and combine it with the LO

cross-section. Furthermore, the collinear pole can be absorbed in the quark distributions,

for which we again use the MS factorisation scheme. To this end, we generalise eq. (2.38) to

qLL,NLP

(
N,Q2

)
= qN (Q2) exp

[
αsCF
π

1

ε

(
logN +

1

2N

)]
, (3.29)

and similarly for the antiquark. Note that it is important in eq. (3.29) that we correctly

kept track of subleading terms in the Mellin transform of the LP soft function. The cross-

section at NLP in the threshold expansion and at LL accuracy then becomes∫ 1

0
dτ τN−1 dσDY

dτ

∣∣∣∣
LL,NLP

= σ0(Q2) qLL,NLP

(
N,Q2

)
q̄LL,NLP

(
N,Q2

)
× exp

[
2αsCF
π

(
log2N +

logN

N

)]
. (3.30)

Upon expanding the exponential factor in powers of αs, we may now perform the in-

verse Mellin transform of the partonic cross-section order by order, using the results of

appendix B, to get

∆LL
LP+NLP(z) =

∞∑
m=1

(
2αsCF
π

)m 1

(m− 1)!

[
2

(
log2m−1(1−z)

1−z

)
+

− 2 log2m−1(1−z)

]
. (3.31)

This is in complete agreement with (and indeed provides an independent proof of) the

result of ref. [31], which argued (consistently with previous observations [23, 36]) that the

LL NLP terms at any order have a coefficient which is always the negative of that of the

corresponding leading logarithmic plus distribution. The origin of this phenomenon can

be traced to the coefficient of the ε pole in eq. (3.27). Given that this pole represents a

collinear singularity that must be absorbed in the parton distributions, it must emerge

from the NLP contribution to the LO DGLAP splitting kernel that governs such terms.

More specifically, the collinear poles in the NLO Drell-Yan cross-section have the form (see

for example ref. [112])

− 2

ε
P (0)
qq , (3.32)

where the factor of 2 arises from having collinear singularities associated with either of the

incoming partons. The splitting function can be expanded near threshold as

P (0)
qq (z) =

αs
2π

CF

[
2

(1− z)+
− 2 + . . .

]
. (3.33)

where the second term gives the NLP contribution in z-space, whose Mellin transform is∫ 1

0
dzzN−1 P (0)

qq (z)
∣∣∣
NLP

= −αsCF
π

1

N
. (3.34)
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We thus expect the collinear pole of the NLP contribution to the next-to-soft function in

Mellin space to be given by
2αsCF
π

1

N

1

ε
, (3.35)

which is indeed observed in eq. (3.27), and, in momentum space, in eq. (3.25). We see that

the next-to-soft function generates the correct NLP correction to the splitting kernel as

expected. This in turn dictates the LL behaviour in the finite part: indeed, in z-space, this

contribution arises completely from an overall ε-dependent power of (1 − z), dressing the

pole term. Thus, ensuring that the NLP behaviour of the pole term is correct is sufficient to

describe also the finite part.10 Note that the fact that all NLP information in the DGLAP

splitting function is correctly generated by the next-to-soft expansion provides a test of the

statement made earlier, that all LL threshold effects at (N)LP arise from radiation that is

(next-to) soft, in addition to being collinear. This in turn confirms that, at LL accuracy,

one may neglect radiative jet functions [27, 52–56].

Eq. (3.30) resums the leading-logarithmic behaviour of the Drell-Yan cross section at

LP and NLP in the threshold expansion: it completely agrees with expectations from the

literature [31, 36], and thus with the recent SCET analysis of ref. [76], which cross-checked

against the same references. We emphasise that, of course, at leading power there is no

need to limit the resummation to leading logarithms: this was done in eq. (3.30) only for

simplicity, and to underline the close connection between leading logarithms at LP and

NLP. Indeed, because of the link discussed above between NLP leading logarithms and

the DGLAP kernels, it is straightforward to incorporate our results in the standard LP

resummation formalism: it is sufficient to include NLP terms in the quark splitting function.

This was argued to be appropriate in refs. [23, 31, 36], and, with the mild assumptions

discussed in section 3.1, it is now proven. For completeness, we include here the general

resummation ansatz introduced in ref. [36], which implements this change in the classic

threshold resummation formula of [6–8], together with other proposed modifications that

have effects on subleading NLP logarithms. In Mellin space, the result of ref. [36] for the

Drell-Yan process can be written as

ln
[
∆(N,Q2)

]
= FDY

[
αs(Q

2)
]

+

∫ 1

0
dz zN−1

{
1

1− z D
[
αs

(
(1− z)2Q2

z

)]

+2

∫ (1−z)2Q2/z

Q2

dq2

q2
P LP+NLP
qq

[
z, αs(q

2)
]}

+

. (3.36)

In eq. (3.36), D(αs) is the well-known LP wide-angle soft function for the Drell-Yan process,

which has been computed up to three loops in [113–116]; FDY(αs) resums N -independent

contributions following ref. [2]; P LP+NLP
qq (z, αs) is the soft expansion of the DGLAP split-

ting function up to NLP, order by order in perturbation theory, which was derived in [36]

starting from the results of ref. [117]; furthermore, the ‘plus’ prescription is defined to

10This story becomes more complicated in N -space, as can be seen from the fact that eq. (3.26) contains

a number of contributions that are subleading in N , all of which can ultimately be traced to a power of

(1− z) in z-space.
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apply only to LP contributions, that are singular as z → 1. Leading NLP logarithms in

eq. (3.36) are generated by the one-loop NLP contribution to P LP+NLP
qq , as discussed in

this section. Higher-order terms in the NLP splitting function will contribute to, but not

exhaust, subleading NLP logarithms; indeed, the shifts in the phase space boundary and in

the argument of the coupling, proposed in eq. (3.36), and corresponding to a NLP-accurate

definition of the soft scale of the process, also contribute to subleading logarithms at NLP.

In ref. [36], the accuracy of eq. (3.36) was tested by comparing its expansion to NNLO with

existing exact results: as expected from our current discussion, leading NLP logarithms

are exactly predicted; furthermore, one observes that next-to-leading NLP logarithms are

predicted very accurately, and they mostly arise from the NLO contribution to the NLP

splitting function. The small discrepancy arising at this level of accuracy (NLL at NLP)

between the resummation and the finite order result is the first footprint of the need to

include radiative jet functions at NLP.

3.4 A brief comparison with the SCET approach

In section 3.3, we have achieved the resummation of leading NLP logarithms (jointly with

all LP logarithms) by applying essentially diagrammatic arguments, based on the previous

analysis of ref. [28], summarised here in appendix A. Clearly, these diagrammatic arguments

are in turn based on an underlying factorisation [52, 53], but the argument for resummation

is greatly simplified by the diagrammatic exponentiation properties of the (next-to-)soft

function. Recently, the resummation of these same contributions has been achieved for the

Drell-Yan process also within an effective field theory approach based on SCET [76] (see

also ref. [75]). In this section, we briefly compare our methods with the SCET analysis,

whose physics must ultimately be equivalent.

The SCET approach relies upon a factorisation of the partonic cross section ∆(z),

obtained by expanding the Drell-Yan QCD current into operators defined in terms of

effective soft and collinear fields, with a different collinear sector associated with each

external parton. Hard modes of the field contribute through short-distance coefficients of

SCET operators, which can be obtained by matching to full QCD. Under the assumption

that Glauber-type modes of the gluon field do not contribute to the relevant observable,11

soft and collinear modes can be factorised into (universal) matrix elements, which define

collinear and soft functions, in direct correspondence with the jet and the soft functions

emerging from the diagrammatic approach considered in this work.

Restricting to the terms relevant for the resummation of leading logarithms up to

NLP, the momentum-space SCET factorisation for the partonic cross-section ∆ introduced

in eq. (2.5) takes the form

∆(Q2, z, µ) = H(Q2, µ)Q

[
SDY

(
Q(1− z), µ

)
− 4

Q

∫
dω S2ξ(Q(1− z), ω, µ)

]
, (3.37)

where H(Q2, µ) is the hard function, SDY represents the leading-power soft function, equiv-

alent to the one defined in eq. (2.15), and S2ξ represents that part of the NLP soft function

11The cancellation of Glauber gluons for the Drell-Yan cross section at leading twist was proven in

refs. [118, 119]. For a detailed treatment of Glauber effects in an effective-field-theory context, see ref. [120].
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which contributes at leading logarithmic accuracy, to be compared with LL form of SNLP

in section 3.3. In eq. (3.37) no collinear functions appear explicitly, since hard collinear

modes contribute only starting at NLL accuracy. This conclusion is obtained within SCET

by an analysis of all possible operators contributing at NLP, and confirmed a posteriori,

as we will see below.

At a given factorisation scale µ, as written in eq. (3.37), either the hard or the soft

function (or both) develop large logarithms. The effective field theory formulation allows

one to evaluate each function at their characteristic momentum scale, thus setting µ =

µh ∼ Q in the hard function, and µ = µs ∼ Q(1 − z) in the soft function, so that no

large logarithms appear. The independence of physical observables on factorisation scales

yields then a renormalisation group equation, whose solution allows one to evolve the hard

and soft scale to the common scale µ, thus resumming the large logarithms. To this end,

in ref. [76] the common scale was chosen to be µ = µc ∼ Q
√

1− z. To LL accuracy, the

evolved hard and soft functions can be written as [76]

H(Q2, µc)
∣∣
LL

= exp
[
4ELL(µh, µc)

]
H(Q2, µh) ,

S2ξ(Q(1− z), ω, µc)|LL =
2CF
β0

ln
αs(µc)

αs(µs)
exp

[
− 4ELL(µs, µc)

]
θ(1− z)δ(ω) . (3.38)

Here the evolution factor ELL resums the logarithms, and can be expressed in terms of the

strong coupling evaluated at different scales, as

ELL(ν, µ) = −
αs(µ)∫
αs(ν)

dα
Γcusp(α)

β(α)

α∫
αs(ν)

dα′

β(α′)

LL
=

CF
β2

0

4π

αs(ν)

(
1− αs(ν)

αs(µ)
+ ln

αs(ν)

αs(µ)

)
, (3.39)

where we have introduced the QCD cusp anomalous dimension Γcusp(αs) and the beta

function β(αs), with the normalisation

β0 =
11Nc − 2nf

3
. (3.40)

Using the fact that, for Drell-Yan production, H(Q2, µh) = 1 + O(αs), one can compute

∆(Q2, z, µc) in eq. (3.37) with all factors evaluated at the scale µc. In order to avail oneself

of the standard collinear factorisation machinery, one must then evolve both ∆(Q2, z, µc)

and the parton distributions to a generic factorisation scale µ, exploiting the RG invariance

of the physical cross-section. One then finds

∆LL
NLP(Q2, z, µ) = − 8CF

β0
exp

[
4ELL(µh, µ)− 4ELL(µs, µ)

]
ln

αs(µ)

αs(µs)
. (3.41)

The fact that the evolution of parton distributions (dictated by DGLAP splitting functions)

is consistent at LL accuracy with the evolution of the partonic cross section to a generic

scale provides an independent check of the fact that collinear function (absent in eq. (3.37))

cannot contain leading NLP logarithms. This is directly analogous to the observation made

here in section 3.3, where we noted that the effect of including next-to-soft radiation led to
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reproducing the NLP contribution to the DGLAP kernels, testing our arguments for not

including radiative jet functions in the derivation leading to eq. (3.30).

In order to compare the result in eq. (3.41) with eq. (3.31), one needs to expand the

ratios of running couplings in eq. (3.41) and eq. (3.39) in powers of αs(µ). When this is

done, the NLP term in eq. (3.41) reduces to

∆LL
NLP(Q2, z, µ) = −4

αs
π
CF exp

[
−2αsCF

π
ln2 µ

µh

]
exp

[
2αsCF
π

ln2 µ

µs

]
ln
µs
µ
θ(1− z) .

(3.42)

Upon setting the hard and soft scales to their natural values, µh = Q and µs = Q(1− z),

and choosing (as above) a factorisation scale of µ = Q, we find

∆LL
NLP(Q2, z, µ) = −4

αs
π
CF exp

[
2αsCF
π

ln2(1− z)

]
ln(1− z) θ(1− z) , (3.43)

which is equivalent to eq. (3.31). To see this, one must Mellin transform eq. (3.43), expand

in αs, and then perform the inverse transform back to momentum space.

3.5 Resummation for general quark-initiated colour-singlet production

In section 3.3 we have seen how to resum the highest power of NLP logs, for the specific

case of Drell-Yan production. In fact, the result can easily be generalised to the production

of N colour singlet particles (which may be loop-induced at leading order), with a qq̄ initial

state. Crucial to our arguments will be exponentiation of the next-to-soft function in terms

of webs [28, 29], which implies that the next-to-soft function has the schematic form

SNLP = exp

[∑
i

W
(i)
LP +

∑
j

W
(j)
NLP

]
, (3.44)

where the first sum is over leading power webs composed with eikonal Feynman rules, and

the second sum is over next-to-leading power webs, containing eikonal Feynman rules with

at most one next-to-eikonal vertex. Next, we may note, as was remarked in refs. [28, 29],

that if we are only interested in NLP terms in the final result for the cross-section, we do

not in fact have to exponentiate the NLP webs: upon expanding eq. (3.44) in powers of

the coupling, quadratic and higher powers of the NLP term will give NNLP contributions

and beyond. Thus, we may formally replace eq. (3.44) with the equivalent expression (up

to NLP level)

SNLP = exp

[∑
i

W
(i)
LP

](
1 +

∑
j

W
(j)
NLP

)
. (3.45)

This expression shows us that, in order to generate a contribution to the highest power

of the NLP logarithm at any given order, we must take the leading logarithmic behaviour

from the NLP web term, namely the contribution proportional to

αs
logN

N
(3.46)
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Figure 6. Production of N colour singlet particles with (a) a qq̄ initial state; (b) a gg initial state.

in Mellin space, and dress this with the leading logarithms coming from the leading-power

soft function. Note in particular that the webs W
(i)
NLP do not contain terms of the type

αps
log2p−1N

N
; (3.47)

such terms will arise in the cross section only through the expansion of the exponential

in eq. (3.44), precisely through the interference between leading-power and next-to-leading

power webs. We can see this directly in eq. (3.30) for Drell-Yan production: upon Taylor-

expanding in αs, the leading logarithm at NLP comes from a single instance of the leading

NLP log at O(αs), dressed by arbitrary powers of the leading logarithm at leading power.

For arbitrary processes, we must broaden the discussion presented for the Drell-Yan

case to include an additional next-to-soft contribution, associated with the orbital angular

momentum of incoming particles, which combines with the spin angular momentum present

in the next-to-soft function to build a gauge-invariant result. To this end, let us consider

the effect of a single emission from the non-radiative amplitude; this has been examined

recently in ref. [65], and we will now present a short summary of that discussion, before

drawing consequences for the present paper. We label momenta as shown in figure 6(a),

and we write the LO non-radiative amplitude for a qq̄-initiated process as

M(qq̄)
LO

(
{pi}

)
= v̄(p2)M

(qq̄)
LO

(
{pi}

)
u(p1) = v̄(p2)H(qq̄)

LO

(
{pi}

)
u(p1) . (3.48)

where {pi} are the incoming parton momenta, and HLO is the LO hard function, which

coincides with the LO stripped matrix element M
(qq̄)
LO . Let us now consider the radiative

amplitude with external wave functions removed, which we denote by M
(qq̄g)
σ . As shown

in ref. [65], this amplitude, up to NLP order, can be decomposed as

M
(qq̄g)σ
NLP = M

(qq̄g)σ
scal. +M

(qq̄g)σ
spin +M

(qq̄g)σ
orb. , (3.49)

where the first (second) term on the right-hand side originates from the spin-independent

(spin-dependent) part of the next-to-soft function, while the third term corresponds to

the orbital angular momentum contribution discussed above. The squared real emission
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amplitude, summed over colours and spins, is then given by12∣∣∣M(qq̄g)
NLP

(
p1, p2, k

)∣∣∣2 = −
∑

colours

Tr
[
6p1M

(qq̄g)σ
NLP 6p2M

(qq̄g) †
NLP, σ

]
, (3.50)

where we have used the gluon polarisation sum∑
λ

ε(λ)
σ (k) ε(λ)∗

τ (k) = −ηστ , (3.51)

since the contribution of unphysical polarisations vanishes when just a single gluon is

radiated. The various contributions to eq. (3.49) have been calculated explicitly in ref. [65],

and one obtains for squared matrix element, summed over colours and spins, the expression∣∣∣M(qq̄g)
NLP (p1, p2, k)

∣∣∣2 = g2
sCF

ŝ

p1 · k p2 · k
∣∣∣M(qq̄)

LO

(
p1 + δp1, p2 + δp2

)∣∣∣2 , (3.52)

where initial state momenta in the LO matrix element have been shifted according to13

δp1 = −1

2

(
p2 · k
p1 · p2

pα1 −
p1 · k
p1 · p2

pα2 + kα
)
, δp2 = −1

2

(
p1 · k
p1 · p2

pα2 −
p2 · k
p1 · p2

pα1 + kα
)
.

(3.53)

In words, the NLP squared amplitude for single real emission (summed over colours and

spins) consists of an overall eikonal factor dressing the LO squared amplitude, whose in-

coming momenta are shifted according to eq. (3.53). These shifts have the effect of rescaling

the partonic Mandelstam invariant ŝ according to

ŝ = (p1 + p2)2 −→ (p1 + δp1 + p2 + δp2)2 = (p1 + p2 − k)2 = zŝ , (3.54)

where the threshold variable z is defined by

z =
P 2

ŝ
, Pµ =

N+2∑
i=3

pµi , (3.55)

satisfying the momentum conservation condition

pµ1 + pµ2 = Pµ + kµ . (3.56)

Crucially for what follows, all NLP effects in the matrix element are absorbed in the

momentum shift, so that the prefactor in eq. (3.52) simply dresses the shifted matrix

element with a leading-power soft emission. We may obtain the partonic cross-section for

the single real emission contribution by integrating over phase space and including flux

and spin/colour averaging factors. The phase space for the (N + 1)-body final state, with

momenta labelled as in figure 6(a), may be written in factorised form as∫
dΦN+1 (P + k; p3, . . . pN+2, k) =

∫
dP 2

2π
dΦ2 (P + k;P, k) dΦN (P ; p3, . . . pN+2) , (3.57)

12Note that eq. (3.50), as written, contains terms at NNLP, arising from squaring NLP contributions.

Such terms should be neglected in the final result, given that accuracy is guaranteed up to NLP only.
13Note that the shifts of eq. (3.53) include more physics than is captured solely by the next-to-soft

function: they also contain the orbital angular momentum contributions.
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namely as the convolution of a two-body phase space for the gluon momentum k and the

total momentum P carried by colour singlet particles, with the subsequent decay of the

latter into the individual colour singlet momenta {pi}. Parametrising momenta according to

p1 =

√
ŝ

2
(1, 0, . . . , 0, 1) , p2 =

√
ŝ

2
(1, 0, . . . , 0,−1) ,

k =
(1− z)

√
ŝ

2
(1, 0, . . . , sinχ, cosχ) , (3.58)

Eq. (3.57) becomes [65]∫
dΦN+1 (P + k; {pi}, k) =

1

16π2 Γ(1− ε)

(
4π

ŝ

)ε∫
dP 2 dΦ

(z)
N dy (1− z)1−2ε

[
y(1− y)

]−ε
,

(3.59)

with

y =
1 + cosχ

2
, (3.60)

and where dΦ
(z)
N denotes the phase space for the N colour singlet particles, but with

kinematics shifted according to eq. (3.54). Then, the partonic cross-section including a

single additional emission (up to NLP level) takes the form14

∆̂
(qq̄)
NLP(z, ε) = KNLP(z, ε) ∆̂

(qq̄)
LO

(
zŝ
)
, (3.61)

where

KNLP (z, ε) =
αs
π
CF

(
4πµ2

ŝ

)ε
z (1− z)−1−2ε Γ2(−ε)

Γ(−2ε)Γ(1− ε) , (3.62)

while the LO cross-section with shifted kinematics is given by

∆̂
(qq̄)
LO (zŝ) =

1

σ0(Q2)

1

2(zŝ)

1

4N2
c

∫
dΦ

(z)
N

∣∣∣M (qq̄)
LO

(
p1 + δp1, p2 + δp2

)∣∣∣2 . (3.63)

To calculate this in practice, one must implement the momentum shifts in the squared

amplitude, and then integrate over the real-emission phase space, whose momentum con-

servation condition includes NLP corrections: see ref. [65] for a full discussion. Note that

we have changed the flux factor on the right-hand side so as to give the full shifted cross-

section on the left-hand side. As discussed above, the generalisation of eq. (3.61) to all

orders is obtained by dressing the single-emission cross-section with a further arbitrary

number of leading-power soft gluon emissions. In eq. (3.52), this has the effect of replac-

ing the prefactor — whose form is obtained from the soft function at O(αs) — with that

obtained from the all-order leading-power soft function. Furthermore, the (N + m)-body

phase space for the emission of N colour singlet particles and m additional gluons, with

momenta {pi} and {kj} respectively, factorises as in eq. (3.59), and one may write∫
dΦN+m

(
P +

m∑
j=1

kj ; {pi}, {kj}
)

=

∫
dP 2

2π
dΦm+1

(
P +

m∑
j=1

kj ;P, {kj}
)
dΦN

(
P ; {pi}

)
,

(3.64)

14We recall that the the factor σ0(Q2) collected in eq. (2.2) by definition depends only on Q, therefore it

is unaffected by the shift in eq. (3.61).
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so that eq. (3.61) can be straightforwardly replaced with

∆̂
(qq̄)
NLP(z, ε) = z SLP(z, ε) ∆̂

(qq̄)
LO

(
zŝ
)
, (3.65)

where the factor of z on the right-hand side originates from having shifted the flux factor

in eq. (3.63). In eq. (3.65), SLP(z, ε) is the leading-power soft function, defined to include

integration over the soft gluon phase space, as in eq. (3.7): it will contain residual collinear

poles in ε that must be absorbed into the quark distribution functions, as was done in

eq. (3.29). We may then resum leading-logarithmic LP and NLP terms in the partonic cross-

section as follows. First, we notice that the leading-order partonic cross section with shifted

kinematics becomes a function of zŝ = Q2, which is the physically measured invariant mass

that must be kept fixed: we can therefore treat the factor ∆̂
(qq̄)
LO as independent of z, writing

∆̂
(qq̄)
NLP(z, ε) = z SLP(z, ε) ∆̂

(qq̄)
LO (Q2) , (3.66)

Taking the Mellin transform we find∫ 1

0
dzzN−1∆̂

(qq̄)
NLP(z, ε) = SLP(N + 1, ε) ∆̂

(qq̄)
LO (Q2) . (3.67)

Since the leading-power soft function is insensitive to the details of the hard process, we can

directly use eq. (2.40) for the soft factor. Removing collinear poles, using exponentiation,

and keeping track of NLP terms that arise from the Mellin transform of the LP soft function,

we find∫ 1

0
dzzN−1∆

(qq̄)
NLP(z) = ∆̂

(qq̄)
LO (Q2) exp

[
2αsCF
π

log2(N)

](
1 +

2αsCF
π

logN

N

)
. (3.68)

This simple result resums leading logarithmic terms in Mellin space at both LP and NLP,

in the partonic cross-section, for a general quark-induced colour singlet production process.

In the Drell-Yan case, it agrees with eq. (3.30),15 thus providing an important cross-check

of eq. (3.68). As was the case for the Drell-Yan process, eq. (3.68) can be generalised

to include the complete known result for the resummation of leading-power subleading

logarithms, yielding an expression identical to eq. (3.36) for the resummed partonic cross

section ∆(N,Q2). Indeed, the orbital angular momentum contribution that was trivial for

the Drell-Yan cross section, due to the point-like nature of the Born process, will result in a

shift of the center-of-mass energy ŝ, which must be applied to the Born cross section, with

consequences that will depend on the particular process and observable being considered

(it would for example be non-trivial for loop-induced processes). The Sudakov exponent,

on the other hand, will be unaffected, so that eq. (3.36) will still apply.

In this section, we have seen that resummation of LL terms is possible at both LP and

NLP for the general production of N colour-singlet particles, in the qq̄ channel. Similar

arguments may be made for gluon-initiated processes, as we discuss in the following section.

15Note that, in eq. (3.30), we were able to exponentiate the NLP term due to the known exponentiation

properties of the next-to-soft function. This is formally equivalent to eq. (3.68) to NLP accuracy. In the

general case, the NLP term contains additional physics that is not captured by the next-to-soft function, but

arises from orbital angular momentum effects. However, one would still expect such terms to exponentiate,

given that the total angular momentum is gauge-invariant. This issue deserves further study.
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Figure 7. Higgs boson production via gluon-gluon fusion, where • denotes the effective coupling

resulting from the integration of the top quark loop.

3.6 Resummation for general gluon-initiated colour-singlet production

In section 3.5 we considered the production of a generic colour singlet final state in quark-

antiquark scattering. A similar analysis can be made for gluon-initiated processes: one

may obtain leading logarithmic NLP contributions by combining the next-to-soft function

with orbital angular momentum contributions. As for the quark case of section 3.5, we

can then dress the effect of a single gluon emission at NLP with an arbitrary number of

leading-power soft gluon emissions. The case of single emission has been studied alongside

the quark case in ref. [65], leading to a result identical in form to eq. (3.52) for the squared

amplitude. Indeed one finds∣∣∣M(ggg)
NLP (p1, p2, k)

∣∣∣2 = g2
sCA

ŝ

p1 · k p2 · k
∣∣∣M(gg)

LO (p1 + δp1, p2 + δp2)
∣∣∣2 . (3.69)

As in the quark case, this takes the form of the LO non-radiative transition probability,

with kinematics shifted according to eq. (3.53), dressed by a single leading-power soft

emission, whose colour factor in this case reflects the emission from an initial-state gluon

rather than an initial-state (anti)-quark. The factorisation of phase space will be identical

to the previous section, given that this is independent of the particle species. One then

obtains the resummed result

∆̂
(gg)
NLP(z, ε) = z SLP(z, ε) ∆̂

(gg)
LO (zŝ) , (3.70)

where the soft function on the right-hand side is defined in terms of Wilson lines in the ad-

joint representation. One may then follow similar arguments to those leading to eq. (3.68),

yielding∫ 1

0
dzzN−1∆

(gg)
NLP(z) = ∆̂

(gg)
LO (Q2) exp

{
2αsCA
π

log2(N)

}(
1 +

2αsCF
π

logN

N

)
. (3.71)

A check of this result is that it reproduces known LP, and conjectured NLP results for

Higgs boson production, in the large top mass limit. As is well-known, the LO process

consists of an effective coupling between the Higgs boson and a pair of gluons, as shown

in figure 7. Higher-order contributions near threshold have been discussed for example in
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ref. [33], which expressed the hadronic cross section for the gg channel as

σH
(
s,m2

H

)
= τ σ̃0

∫ 1

0

dx1

x1

∫ 1

0

dx2

x2
g(x1, µ

2) g(x2, µ
2)

×
∫ 1

0
dz δ

(
z − τ

x1x2

)
cgg

(
z, αS(µ2),

m2
H

µ2

)
. (3.72)

Here g(xi, µ
2) is the gluon distribution, we have set the factorisation and the renormalisa-

tion scales to the common value µ, and cgg a perturbative coefficient function. Furthermore,

we have introduced the quantities

σ̃0 =
πC2(µ2)

64v2
, C(µ2) = −αs

3π

(
1 + 11

αs(µ
2)

4π
+O

(
α2
s

))
, (3.73)

which normalises the LO cross-section, and where v is the Higgs field vacuum expectation

value. With the normalisation adopted in eq. (2.2) we have σ0 = m2
H σ̃0, and

cgg = ∆
(gg)
NLP(z) = z SLP,fin.(z) ∆̂

(gg)
LO (m2

H) , (3.74)

where collinear poles in SLP(z, ε) have already been factorised into the gluon distributions,

leaving a finite remainder SLP,fin.(z). Eq. (3.74) is valid in general, i.e. also away from the

infinite top mass approximation for the ggH vertex. In this case one has

∆̂
(gg)
LO (m2

H) = F

(
m2
H

4m2
t

)
δ(1− z), (3.75)

where F
(
m2
H/(4m

2
t )
)

= F
(
m2
H/(4m

2
t ), ε

)
|ε=0 is defined e.g. in eq. (5.3) of [65]. In the

infinite top mass approximation F
(
m2
H/(4m

2
t )
)
→ 1, and we can easily identify

cgg|LL =
[
1− (1− z)

]
SLP,fin.(z) +O(1− z) . (3.76)

This in turn implies that the coefficient of the LL NLP term in cgg at a given order in αs
is related to the LL LP term by a minus sign. Furthermore, both sets of terms are related

to their counterparts in Drell-Yan production by the simple replacement CF → CA, given

that the LP soft functions in both cases obey ‘Casimir scaling’ to the relevant order. We

thus reproduce the results of ref. [33] for the resummation of LL NLP logarithms in single

Higgs production in the large top mass limit. We stress, however, that the main result

of this section (eq. (3.71)) is more general: it applies also away from the large top mass

limit, and for other gluon-induced processes. Its application to specific collider processes

of interest will be the subject of future study.

Also for gluon-initiated processes, we note that subleading LP logarithms can be in-

cluded, and the result will take the general form of eq. (3.36): in this case, the gluon

DGLAP splitting functions will be involved, while the soft function for gluon annihilation

can be obtained from the quark case by Casimir scaling, at least up to three loops.
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4 Conclusion

In this paper, we have developed a formalism for resumming leading-logarithmic (LL)

threshold contributions to perturbative hadronic cross-sections, at next-to-leading power

(NLP) in the threshold variable. This generalises previous approaches at leading power

(see for example refs. [6–8, 12–19]), and applies to the production of an arbitrary colour-

singlet final state at LO. Our method builds upon the previous work of refs. [28, 29] (and

subsequent studies [52, 53]), which describes leading NLP effects in terms of a next-to-soft

function, which can be shown to exponentiate at the diagram level, so that the logarithm of

the next-to-soft function can be directly expressed in terms of Feynman diagrams dubbed

next-to-soft webs. In general processes, the next-to-soft function must then be supple-

mented by terms involving derivatives acting on the non-radiative amplitude, which can be

interpreted in terms of the orbital angular momentum of the colliding partons. Leading-

logarithmic accuracy can then be achieved by dressing the effect of a single emission,

computed up to NLP level, with the LP soft function. In this sense, our results provide a

non-trivial generalisation of the so-called next-to-soft theorems [40, 41], which have recently

been intensively studied in a more formal context, for both gauge theories and gravity.

We have explicitly reproduced previously conjectured results for both Drell-Yan pro-

duction [31] and Higgs boson production in the large top mass limit [33]. In particular, we

have verified the observation that the LL NLP contribution at a given order in perturbation

theory is generated by including a subleading term in the DGLAP kernels that accompany

the leading pole in ε in the unsubtracted cross-section. Our reasoning provides a proof of

one of the ingredients building up the resummation ansatz proposed in ref. [36], which was

partly based on the idea of exponentiating NLP contributions to DGLAP splitting func-

tions. We note again that it is natural, in this context, to exponentiate NLP contributions

to the splitting functions also beyond leading order in perturbation theory: this step is

strongly suggested by the arguments in ref. [117], which were, in turn, based on the idea

of reciprocity between time-like and space-like splitting kernels. Ref. [36] verified that the

inclusion in the Sudakov exponent of NLP terms in the NLO DGLAP kernel is responsible

for the bulk of next-to-leading logarithms at NLP in the Drell-Yan and DIS cross sections.

On the other hand, it is clear that, beyond leading NLP logarithms, hard collinear effects

and phase space corrections become relevant, and a full resummation can only be achieved

by including in the initial factorisation the contributions of radiative jet functions, as done

for example in refs. [52, 53]. For the Drell-Yan cross section, we have also compared our

results with a recent analysis based on Soft-Collinear Effective Theory techniques [76] (see

also ref. [75]), finding complete agreement.

There are many directions for further work. First, of course, is the extension of the

present results to subleading logarithmic accuracy at NLP. This will require a proper treat-

ment of non-factorising phase-space effects for real emission contributions, and a thorough

study of the radiative jet functions introduced in [27, 52–56]. The latter have yet to be

fully classified in QCD, while considerable progress was recently achieved in SCET [121].

We note that the quark radiative jet function needed for quark annihilation processes into

electroweak final states is currently known to one-loop order [52, 53], which will consti-
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tute a key ingredient to extend the present work to subleading NLP logarithms. A second

direction for further studies is the inclusion of processes with final state partons at Born

level: in these cases, additional threshold contributions associated with hard collinear real

radiation are expected, as happens at leading power in the threshold variable. An analysis

of processes of this kind was performed very recently in refs. [73, 74]. When more than

one parton is present in the final state, further complications due to non-trivial colour flow

will have to be handled, as was the case at leading power.

In order to move towards phenomenological applications of this formalism, another

required step will be the inclusion of threshold contributions arising beyond leading order

from different partonic channels, that are not available at Born level. For example, for

the Drell-Yan process, the quark-gluon channel enters at NLO, and it generates Sudakov

logarithms suppressed by an overall power of the threshold variable, because of the required

radiation of a final state fermion. The inclusion of such contributions is necessary for

consistent treatment of (resummed) NLP threshold effects. Another important issue that

will need to be studied in detail, in order to gauge the impact of NLP resummation on

phenomenology, is related to exponentiation: as pointed out in this paper, when including

NLP corrections, exponentiation has to be understood in a limited sense, since NLP terms

in the Sudakov exponent will generate a large set of potentially spurious contributions at

NNLP and beyond upon expanding the exponential to any finite order. A precise way

to limit the resummation to relevant and well-understood contributions must therefore be

devised, for example by expanding the NLP part of the Sudakov exponent to fixed order,

as was done in this paper. This issue is closely related to that of matching the resummation

to finite order results, which is likely to be particularly relevant at NLP.

Once these issues are understood, NLP resummation will provide a new versatile tool

to gauge the impact of high-order corrections for a range of highly topical Standard Model

and BSM processes at the Large Hadron Collider and beyond, significantly enhancing our

mastery of precision high-energy phenomenology.
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A Exponentiation via the replica trick

In this appendix, we review the methods of ref. [28], that provide a convenient shortcut for

proving that the soft function exponentiates at the diagrammatic level. For simplicity, let

us first focus on QED rather than QCD, and consider a single vacuum expectation value
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(a) (b)

G

H

Figure 8. (a) Example diagram generated by the path integral in eq. (A.3), with straight semi-

infinite Wilson lines for illustration, containing three subdiagrams. (b) Example diagram in the

replicated theory, with different colours denoting different replicas.

of n Wilson line operators, as would be appropriate for contributions to the soft function

involving virtual radiation. We take a number of semi-infinite Wilson lines emanating from

a common vertex, and write

Sn =

〈
0

∣∣∣∣∣
n∏
i=1

Φi

∣∣∣∣∣ 0
〉
, (A.1)

where

Φi = exp

[
ie

∫
dxµi Aµ(xi)

]
. (A.2)

In path-integral language, this matrix element may be written as

Sn =

∫
DAµ

(
n∏
i=1

Φi

)
eiS(Aµ,ψ̄,ψ)

=

∫
DAµ exp

[
n∑
i=1

ie

∫
dxµi Aµ(xi) + iS

(
Aµ, ψ̄, ψ

)]
. (A.3)

where S
(
Aµ, ψ̄, ψ

)
is the QED action. Carrying out the path integral generates Feynman

diagrams in which multiple Wilson lines are connected by subdiagrams consisting of photons

and fermion loops, as shown for example in figure 8(a). Now let us generate N independent

copies or replicas of the gauge and fermion fields, labelled by {A(j)
µ } and {ψ(j)}, such that

particle species with different replica number j never interact. The soft function in such a

theory, involving the same n Wilson lines (which are not replicated) is given by

Sn,R =

∫
DA(1)

µ . . .

∫
DA(N)

µ exp

ie

N∑
j=1

n∑
i=1

∫
dxµi A

(j)
µ +

N∑
j=1

S
(
A(j)
µ , ψ̄(j), ψ(j)

) . (A.4)

Note that the sum in the Wilson line term in eq. (A.4) is over both the replica numbers and

the external lines, since all replicated gauge fields may interact with any given Wilson line.

Furthermore, the fact that the action for the replicated theory is just the sum of the actions

of individual replicas follows from the fact that replicas are non-interacting. Carrying out
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the path integral in the replicated theory amounts to generating Feynman diagrams such

as that shown in figure 8(b). Any such diagram must be built of connected subdiagrams,

such as G and H in the figure, and each individual connected subdiagram must contain

only a single replica number, given that the replicated gauge fields only interact with their

respective replicated fermions, and with the Wilson lines.

The replicated soft function in eq. (A.3) is therefore related to the original soft function

simply by

Sn,R = SNn , (A.5)

which can be expanded in powers of N to obtain

Sn,R = 1 +N log (Sn) +O(N2) . (A.6)

It follows that one may write

Sn = exp

[∑
W

W

]
, (A.7)

where the sum is over diagrams W that are precisely O(N) in the replicated theory. To

find these, note that mutual independence of the replicated fields implies that a diagram

containing m connected subdiagrams must be O(Nm), given that there is a choice of N

possible replicas for each subdiagram. Thus, the logarithm of the soft function in QED

must contain only connected subdiagrams. This result was originally derived using detailed

combinatorial arguments [122], which are rather elegantly circumvented using the replica

approach.

In QCD, the combinatorics of exponentiation becomes more complicated due to the

non-commuting nature of the emission vertices coupling gluons to the Wilson lines. Never-

theless, the replica trick argument still works [28], and leads to conclude that the logarithm

of the soft function, for processes involving only two partons, is built with subdiagrams

that are two-line irreducible, which were dubbed webs in the pioneering work of refs. [9–11].

Similar methods apply to the case of three partons, but when more than three coloured

particles are involved the nature of webs becomes more complicated, due to the multi-

ple possible colour flows contributing to the amplitude. Again, however, the replica trick

can be used to reconstruct the logarithm of the soft function [87]. In the multi-parton

case, webs turn out to be sets of diagrams related to each other by permutations of gluon

attachments to the Wilson lines [87, 88]. Multi-parton webs are governed by interesting

mathematical objects known as web mixing matrices, whose combinatorial properties are

continuing to be explored [91, 92, 95].

The arguments just discussed apply directly only to the case of virtual contributions

to the soft function, which arise from a single vacuum expectation value of Wilson lines.

Including also real emissions, we must define the soft function according to eq. (2.15), which

contains two expectation values involving non-trivial external states, as well as integrals

over the multi-gluon phase space. This does not prevent us from using the replica trick:

the arguments of this appendix can be used to straightforwardly prove exponentiation at

cross-section level, provided real radiations associated with different replica numbers are

mutually independent. The latter requirement is fulfilled if the phase space integral for
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n gluon emissions factorises into n decoupled single-gluon phase space integrals. This

condition is satisfied at LL accuracy, as discussed in section 2.

In this brief summary, we have explicitly discussed only leading-power soft effects,

such that the soft function is defined in terms of vacuum expectation values of conventional

Wilson lines, as in eq. (2.15). The argument, however, readily generalises to the next-to-soft

function defined in eq. (3.7), which involves the generalised Wilson lines of eq. (3.2). Crucial

in the definition of eq. (3.7) is that the sum over final states involves only leading-power (and

therefore uncorrelated) phase space integrals for n gluon emissions. Thus, the replica trick

is not invalidated, given that emissions of different gluon replicas remain independent, even

at next-to-soft level. Note that, as we stated above, we explicitly considered Wilson lines

emanating from a common vertex. As discussed in ref. [28], displacing individual Wilson

lines leads to additional contributions, which are in fact associated with the derivative terms

that build up the orbital angular momentum. Thus, these contributions are irrelevant to

the present argument, and are correctly captured elsewhere. Displaced Wilson lines have

been discussed from a different point of view in ref. [99].

B Mellin transforms of NLP contributions

In this appendix, we collect known results concerning the Mellin transforms of logarithmic

threshold contributions to hadronic cross sections, both at leading and next-to-leading

power. The relevant integrals that need to be performed in order to compute the Sudakov

exponent at LP and NLP can be written as

Dp(N) =

∫ 1

0
dz

zN−1 − 1

1− z lnp(1− z) , Jp(N) =

∫ 1

0
dz zN−1 lnp(1− z) . (B.1)

These integrals were computed to the required accuracy (that is, up to corrections sup-

pressed by N−2 at large N) for example in ref. [36], with the results

Dp(N) =
1

p+ 1

p+1∑
k=0

dk(N)

(
p+ 1

k

)
(− lnN)p+1−k +O

(
lnmN

N2

)
,

Jp(N) =
1

N

p∑
k=0

Γ(k)(1)

(
p

k

)
(− lnN)p−k +O

(
lnmN

N2

)
, (B.2)

where Γ(k) is the k-th derivative of the Γ function, while

dk(N) ≡ dk

dλk

[
Γ(1 + λ)

(
1 +

λ(1− λ)

2N

)]
λ=0

. (B.3)

Keeping only leading logarithms at both LP and NLP, one finds

Dp(N) = (−1)p+1

[
1

p+ 1
logp+1N − logpN

2N

]
+ . . . , (B.4)

as well as

Jp(N) =
(− logN)p

N
+ . . . . (B.5)
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Considering now the application of these results to eq. (3.30), we note that the partonic

factor for the (qq̄)-channel of the resummed Drell-Yan cross-section at LL accuracy, at

O(αms ), and in Mellin space, takes the form(
2αsCF
π

)m 1

m!

(
log2N +

logN

N

)m
=

(
2αsCF
π

)m 1

(m− 1)!

[
2

(
log2mN

2m
− log2m−1N

2N

)
+

2 log2m−1N

N

]
. (B.6)

In the second line, we have rewritten the result in order to explicitly recognise the leading-

logarithmic contributions to the integrals D2m−1 and J2m−1, given in eq. (B.4) and in

eq. (B.5), respectively. One finds then(
2αsCF
π

)m 2

(m− 1)!

(
D2m−1(N)− J2m−1(N)

)
, (B.7)

which leads immediately to eq. (3.31).

C Two gluon emission from the generalised Wilson line

In section 3.1, we defined a next-to-soft function in terms of generalised Wilson lines, which

have been introduced and discussed extensively in refs. [28, 29]. These operators generate

effective Feynman rules for the emission of (next-to-)soft gluons from a given hard particle,

and the one-gluon emission terms required for describing radiation at O(αs) are shown in

eq. (3.2). However, as refs. [28, 29] make clear, the required Feynman rules also involve

effective vertices describing the emission of two gluons from the same point. These are

neglected in the analysis of this paper, for reasons discussed in section 3.1. It is therefore

appropriate to check explicitly in a simple example that such vertices cannot contribute to

leading-logarithmic NLP terms at higher orders in perturbation theory.

Ignoring coupling and colour factors, the form of the two-gluon emission vertex from

a hard scalar particle, in momentum space, is given by [28]

Rµν(p; k, l) ∝ (p · k)(p · l)ηµν − pν lµ(p · k)− pµkν(p · l) + (k · l)pµpν
(p · k)(p · l) [p · (k + l)]

, (C.1)

where p is the hard momentum of the emitting particle, and (k, l) are the soft momenta of

the emitted gluons. The latter may also be sums of individual gluon momenta, which will

not affect the following.

Throughout the paper, we have considered processes with two incoming massless hard

partons carrying four-momenta p1 and p2. Without loss of generality, let us consider the

two-gluon emission vertex as occuring on leg p1. Then, as we have argued in section 3.1,

leading logarithmic effects can only come from radiation that is maximally (next-to) soft,

as well as collinear. This in turn means that either k or l must be proportional to pµ1 or pµ2 .

From eq. (C.1), it is straightforward to show that R(p; k, l) vanishes if k ∝ p or if l ∝ p.

Thus, for a non-zero contribution, both k and l must be proportional to p2, yielding

Rµν(p1; p2, p2) =
1

4(p1 · p2)

[
ηµν − (pµ1p

ν
2 + pν1p

µ
2 )

p1 · p2

]
. (C.2)
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In a squared matrix element summed over final state gluon polarisations, the Lorentz

indices µ and ν must ultimately be contracted with one of the external momenta p1 or

p2, or with a further soft momentum. However, the combination in the square brackets in

eq. (C.2) acts as a projection tensor, that removes the component of any four-momentum

that is collinear with p1 or p2. We have already seen that leading log behaviour can only

arise from soft gluon emissions that are maximally (next-to) soft and collinear. We thus

find that the two-gluon emission vertex is irrelevant at LL accuracy.

To be more precise, the above discussion relates only to emissions from a scalar particle.

In the case of non-zero spin, an extra contribution to the two-gluon emission vertex appears,

that involves the spin generator of the emitting particle. There is however an independent

line of argument that allows us to discard this contribution, and that indeed could be

applied to the first term of eq. (C.1): in position space, a four-point vertex for double

gluon emission necessarily involves both gluons being emitted from the same point on the

emitting Wilson line, and thus involves one less propagator than contributions involving

two separate gluon emissions. As a result, such contributions will not contribute a leading

logarithm which, as discussed in section 3.1, requires a maximal number of integrations

over normal variables. We therefore conclude, also in the case of spinning hard particles,

that the two-gluon next-to-soft emission vertex can be neglected at LL accuracy.
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