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1 Introduction

One of the most appealing and successful approaches towards a consistent theory of quan-

tum gravity is string theory. The celebrated discovery of the AdS/CFT correspondence

relating string theory on anti-de Sitter backgrounds to conformal field theories in one

dimension less, has provided a further promising arena to address questions related to

quantum gravity, such as the microscopic description of black holes and the information

paradox. In these developments the quest to understand quantum gravity has been guided

by approaching it from relativistic classical gravity and/or quantum field theory. However,

an alternative route is to first consider the quantization of non-relativistic gravity as a step

towards (relativistic) quantum gravity. This third path has been much less appreciated, in

part since already the classical description of such a theory has not been fully understood,1

nor how such a theory connects to string theory. The study of non-relativistic string theory

1See however the recent work [1] which presents an action principle for Newtonian gravity, but also goes

beyond by including the effects of strong gravitational fields in non-relativistic gravity.
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in this paper is motivated by pursuing this latter route, and in particular by applying it to

the realm of the AdS/CFT correspondence.

A natural setting in which to expect a connection between non-relativistic gravity,

string theory and holography is to consider the Spin Matrix Theory (SMT) limits of [2].

These are tractable limits of the AdS5/CFT4 correspondence described by quantum me-

chanical theories, obtained by zooming into the sector near unitarity bounds of N = 4 SYM

on R × S3. Indeed, these limits can in fact be thought of as a non-relativistic limit [2],

since the relativistic magnon dispersion relation [3] of the N = 4 spin chain exhibits non-

relativistic features in the SMT limit [4]. One is thus led to consider SMT as a concrete and

well-defined framework to formulate a holograpic correspondence involving non-relativistic

string theory and corresponding non-relativistic bulk geometries.

The first step towards uncovering this connection was taken in ref. [5], showing that

strings moving in a certain type of non-relativistic target spacetime geometry, described

by a non-relativistic world-sheet action, are related to the SMT limits of the AdS/CFT

correspondence. The approach taken was to first consider a target space null reduction of

the relativistic Polyakov action with fixed momentum of the string along the null isome-

try, leading to a covariant action for strings moving in a torsional Newton-Cartan (TNC)

geometry2 [6–13] after a Legendre transform that puts the momentum conservation off-

shell. In a second step a further limit was performed, sending the string tension to zero

while rescaling the Newton-Cartan clock 1-form, so as to keep the string action finite.

This gives a non-relativistic world-sheet sigma-model describing a non-relativistic string

moving in a non-relativistic geometry, which was dubbed U(1)-Galilean geometry. When

applied to strings on AdS5 × S5 this scaling limit is realized by the SMT limits of [2, 4].

The SMT limit is in turn closely related to limits of spin chains [14] (see also [15–19])

that have been studied in connection to integrability in AdS/CFT. In particular, the sim-

plest example of the non-relativistic world-sheet theory describes a covariant version of the

Landau-Lifshitz sigma-model which is the continuum limit of the ferromagnetic XXX1/2

Heisenberg spin chain.

In this paper we will present a general Polyakov-type formulation for the non-

relativistic string action on TNC geometry as well as the corresponding non-relativistic

sigma-model theory obtained from the SMT scaling limit. In fact, as also discussed in the

present work, the formulation originally presented in [5] corresponds rather to a Nambu-

Goto-type description3 of these non-relativistic string theories. As part of this, we find

that the correct interpretation of the η field found in [5] is that of a periodic target space

direction on which the string has a winding mode.

Using the Polyakov-type formulation we show that the action for strings moving in

TNC geometry has a local Weyl symmetry. Interestingly, after taking the scaling limit, we

find that the novel class of non-relativistic sigma models exhibits a non-relativistic version

of this local Weyl symmetry. When going to a flat space gauge on the world-sheet, we

then show that the action possesses a symmetry corresponding to the (two-dimensional)

2As will be clear in section 2.1 we find in this paper that the TNC geometry is extended with a periodic

target space direction.
3This Nambu-Goto form was also obtained in [20].
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Galilean Conformal Algebra (GCA)4, paralleling the Virasoro algebra of relativistic string

theory. Thus our novel class of non-relativistic sigma models, including those that appear

in SMT limits of the AdS/CFT correspondence, represent a realization of non-relativistic

conformal two-dimensional field theories.

The existence of such a general class of non-relativistic sigma models with GCA sym-

metry, connected to non-relativistic strings, is expected to provide a fertile ground for

further exploration. These are non-trivial interacting two-dimensional field theories that

are first order in time and second order in space derivatives on the world-sheet and that

couple to a type of non-relativistic target space geometry. It is interesting to note that the

two-dimensional GCA also appears as the residual gauge symmetry of the tensionless closed

(super)string in the analogue of the conformal gauge [23, 24]. However, the world-sheet

theories in [23, 24] appear to be of a different type.

By using the SMT limits to study the specific application to AdS/CFT of this non-

relativistic sigma model, we will show that these world-sheet theories are realized in well-

known physical models. In particular, the simplest example of the SMT/scaling limit

(called the SU(2) limit) leads to a Polyakov version of the Landau-Lifshitz (LL) model.

This shows that the LL model can be interpreted as a non-relativistic string theory with

a four-dimensional non-relativistic target space and, moreover, has the GCA symmetry.

Part of this interpretation involves identifying the periodic target space direction on which

the string has a winding mode as the position on the Heisenberg spin chain. We also treat

in detail the most general SMT limit of strings on AdS5 × S5, called the SU(1, 2|3) limit.

This SMT limit admits black hole solutions. Further, the other SMT limits can be viewed

as special cases of the SU(1, 2|3) limit.

There is considerable literature on non-relativistic strings. See e.g. [14, 21, 25–27] for

earlier work and [5, 20, 28–33] for more recent work). Interestingly, the non-relativistic

string theory obtained in [25, 26] from consistent low energy limits of relativistic string

theory was recently shown [32] to be related to strings that couple to the so-called string NC

geometry introduced in ref. [28]. These formulations are intimately connected to the non-

relativistic strings on TNC geometry that we discuss in this paper and can (modulo details

and subtleties) be considered to be different incarnations of the same overall structure.

In particular, we will show that the Gomis-Ooguri non-relativistic string action [25] can

also be obtained from the action of non-relativistic strings on TNC geometry discussed

in [5] and the present paper, by restricting the target space to flat NC spacetime. We

furthermore discuss how our formulation relates to the one in refs. [28, 32].

For clarity, we include some words on nomenclature. The non-relativistic string theory

on TNC geometry (and hence also the theory of [25]) is non-relativistic in the sense that

the strings move in a non-relativistic target space geometry. The actual world-sheet theory

is still relativistic, and governed by a two-dimensional CFT. On the other hand, the

theory obtained after the scaling limit does not only have a non-relativistic target space,

but is also governed by non-relativistic world-sheet symmetries, leading to the GCA as

remarked above.

4The GCA was also observed in earlier work on non-relativistic limits of AdS/CFT [21]. See also ref. [22]

for useful work on representations of the GCA and aspects of non-relativistic conformal two-dimensional

field theories.
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2 Strings on torsional Newton-Cartan geometry

2.1 Polyakov action for strings on TNC geometry

We consider a (d + 2)-dimensional space-time with a null isometry. One can always put

the metric in the following null-reduced form

ds2 = GMNdx
MdxN = 2τ(du−m) + hµνdx

µdxν , (2.1)

with ∂u being a null Killing vector field and where M = (u, µ), τ = τµdx
µ and m = mµdx

µ

with xµ coordinates on a (d+ 1)-dimensional manifold. The rank-d symmetric tensor hµν
has signature (0, 1, . . . , 1). We assume that u is a non-compact direction. The tensors

τµ, mµ and hµν in the line element (2.1) are independent of u and exhibit a set of local

symmetries corresponding to Galilean (or Milne) boosts and a U(1) gauge transformation,

along with (d+1)-dimensional diffeomorphisms. Thus these fields and their transformations

correspond to those of torsional Newton-Cartan (TNC) geometry [6, 9, 11–13] in agreement

with the known fact that null reductions give rise to TNC geometry [8, 34–36].

On this background, the Polyakov Lagrangian of a relativistic string is given by

L = −T
2

√
−γγαβh̄αβ − T

√
−γγαβτα∂βXu , (2.2)

where γαβ is the world-sheet metric with γ its determinant, XM = XM (σ0, σ1) the embed-

ding coordinates of the string with σα, α = 0, 1 the world-sheet coordinates and we have

performed pullbacks of the target-space fields to the world-sheet, e.g. τα = ∂αX
µτµ. We

have also defined

h̄µν = hµν − τµmν −mµτν , (2.3)

which is invariant under local Galilean boosts. We are considering a closed string without

winding, hence XM (σ0, σ1 + 2π) = XM (σ0, σ1). The world-sheet has the topology of a

cylinder. The world-sheet momentum current of the string’s momentum in the u direction is

Pαu =
∂L

∂∂αXu
= −T

√
−γγαβτβ . (2.4)

The total momentum along u is

P =

∫ 2π

0
dσ1P 0

u . (2.5)

In the above formulation, the conservation of the momentum is on-shell.

Our goal is to find an action for a closed string on the TNC geometry given by τµ,

mµ and hµν . For this reason, we focus on a sector of fixed null (light-cone) momentum

P 6= 0.5 It is therefore convenient to find a dual formulation in which the conservation of

P is implemented off-shell. To this end consider the Lagrangian

LηA = −T
2

√
−γγαβh̄αβ − T

(√
−γγαβτα − εαβ∂αη

)
Aβ , (2.6)

5Note that this is analogous to the procedure of getting the action for a non-relativistic point-particle

on TNC geometry via null-reduction of a massless particle [34, 35, 37]. Also in that case one works in a

sector of fixed null momentum. This momentum becomes the mass of the non-relativistic particle.
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where we have introduced the new fields η and Aα on the world-sheet and we employ the

convention ε01 = −ε01 = 1 for the two-dimensional Levi-Civita symbols. This Lagrangian

is classically equivalent to (2.2). This is seen by first solving the equation of motion

(EOM) for η, giving that εαβ∂αAβ = 0. This is solved by Aα = ∂αχ where χ is a scalar

on the world-volume. We get back the Lagrangian (2.2) by demanding no winding, i.e.

identifying Xu = χ.

We notice that the two components of the field Aα act as Lagrange multipliers in (2.6).

They impose the constraints √
−γγαβτβ = −εαβ∂βη . (2.7)

Using (2.4), these constraints imply Pαu = Tεαβ∂βη and hence the conservation of the mo-

mentum current ∂αP
α
u = 0. Thus, we see that with the Lagrangian (2.6) the conservation

of P is implemented off-shell.

The field η can be interpreted as the embedding field for a target-space direction v

dual to u. We emphasize that the above rewriting of the world-sheet Lagrangian does not

correspond to a T-duality since u is a non-compact null-direction and since we work in

a sector of fixed momentum P .6 Note that η = Xv needs to have non-zero winding to

account for the non-zero momentum P along u. To this end, write

η(σ0, σ1) =
P

2πT
σ1 + ηper(σ

0, σ1) , (2.8)

where ηper is periodic ηper(σ
0, σ1 + 2π) = ηper(σ

0, σ1). As we are in a sector with fixed

P , we interpret eq. (2.8) as the target space direction v being periodic with period P/T

and the string winding one time around v (assuming here for simplicity P > 0). The

momentum along v is zero

Pv =

∫ 2π

0
dσ1∂LηA

∂∂0η
= T

∫ 2π

0
dσ1A1 = 0 , (2.9)

using the η EOM which tells us that A1 = ∂1X
u and using that Xu is periodic under

σ1 → σ1 + 2π, which follows from the fact that the string has no winding along the u

direction before the change of variables to η and Aα.

We now consider another form for the Lagrangian (2.6). To this end, we introduce the

world-sheet zweibein eα
a and its inverse

eαa =
1

e
εαβeβ

bεba , (2.10)

where a, b = 0, 1 are flat indices and e = εαβeα
0eβ

1. Write the world-sheet metric and its

inverse as

γαβ = ηabeα
aeβ

b , γαβ = ηabeαae
β
b . (2.11)

This gives
√
−γ = e. The constraints are now equivalent to

εαβ∂βη = −e ηabeαaeβbτβ . (2.12)

6We will see below that some properties of the classically dual descriptions obtained by integrating out

either η or Aα in (2.6) are reminiscent of the Roček-Verlinde procedure for T-duality [38].

– 5 –



J
H
E
P
1
1
(
2
0
1
8
)
1
9
0

Using εαβ = e εabeαae
β
b this is equivalent to

εabeβb∂βη = −ηabeβbτβ . (2.13)

This corresponds to the two equations eα1∂αη = eα0τα and eα0∂αη = eα1τα. Using (2.10)

and adding and subtracting the two equations one gets the equivalent relations

εαβ(eα
0 + eα

1)(τβ + ∂βη) = 0 , εαβ(eα
0 − eα1)(τβ − ∂βη) = 0 . (2.14)

These equations are equivalent to the constraints (2.7).

Consider the field redefinition

Aα = mα +
1

2
(λ+ − λ−)eα

0 +
1

2
(λ+ + λ−)eα

1 . (2.15)

With this, we trade the two independent components of Aα for λ±. Inserting this in (2.6)

gives

LPol = −T
2

[
2εαβmα∂βη + e ηabeαae

β
bhαβ

+λ+ε
αβ(eα

0 + eα
1)(τβ + ∂βη) + λ−ε

αβ(eα
0 − eα1)(τβ − ∂βη)

]
. (2.16)

This is our proposal for a Polyakov-type Lagrangian for a string moving in the TNC

geometry given by τµ, mµ and hµν . Apart from the TNC geometry the target space-time

has one additional compact direction v along which the string has a winding mode. The

Lagrangian has the two Lagrange multipliers λ± that impose the constraints (2.14). Thus,

also for this action the conservation of the current Pαu is off-shell.

The Lagrangian (2.16) is of Polyakov type and has a local Lorentz/Weyl symmetry

eα
0 + eα

1 → f+(eα
0 + eα

1) , eα
0 − eα1 → f−(eα

0 − eα1) , λ± → λ±/f± , (2.17)

for any functions f± on the world-sheet. For f− = f+ this constitutes a world-sheet Weyl

transformation and for f− = f−1
+ a local Lorentz boost. Under this symmetry the world-

sheet metric transforms as γαβ → f+f−γαβ . It follows that the Lagrangian (2.16) is a

two-dimensional conformal field theory.

For the Lagrangian (2.16) the momentum current along v is

Pαv =
∂LPol

∂∂αη
= TεαβAβ , (2.18)

with Aα given in (2.15). Using this one finds that the total momentum along v is zero as

in eq. (2.9) using again the fact that A1 = ∂1X
u where Xu is periodic.

The constraints (2.14) imply that eα
0 ± eα1 = h±(τα ± ∂αη) where h± are arbitrary

functions on the world-sheet. If we substitute these expressions back into (2.16), the

functions h± drop out and we obtain7

LNG = T

(
−εαβmα∂βη +

εαα
′
εββ

′ (
∂α′η∂β′η − τα′τβ′

)
2εγγ′τγ∂γ′η

hαβ

)
. (2.19)

7Note that using the local Lorentz/Weyl symmetry (2.17), we can anyway set h± = 1, which means

choosing a gauge where eα
0 = τα and eα

1 = ∂αη.
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This Lagrangian was previously found in [5] to describe strings on a TNC geometry given

by τµ, mµ and hµν . We have shown here that it is the Nambu-Goto version8 of the

Polyakov-type Lagrangian (2.16), in the sense that the two Lagrangians (2.16) and (2.19)

are classically equivalent and that to get (2.19) from (2.16) we have to integrate out the

world-sheet zweibein. Moreover, we have found an interpretation of η as the embedding

function of the string on a compact target-space direction v. Since the action is invariant

under a constant shift of η, the target space direction v is an isometry. Furthermore, it is

wrapped by the string and thus we should regard v as a compact spacelike direction. We

stress that v is not part of the TNC target space geometry but should rather be viewed as

an additional target space dimension added to the xµ directions of the TNC manifold.

2.2 Relation to the Gomis-Ooguri non-relativistic string action

It is possible to relate (2.16) to the Gomis-Ooguri non-relativistic string action [25]. To

do that we specialize to the flat (conformal) gauge eaα = δaα and to flat TNC spacetime by

choosing mµ = 0, τµ = δµ
0, h00 = h0i = 0 and hij = δij , i, j = 1, . . . , d. Setting η = Xv we

find from (2.16) ,

L = −T
2

[
−∂0X

i∂0X
i+∂1X

i∂1X
i+λ+(∂1−∂0)(X0+Xv)+λ−(∂1+∂0)(X0−Xv)

]
. (2.20)

Now define

γ = X0 −Xv , γ̄ = X0 +Xv , β = πTλ− , β̄ = πTλ+ , (2.21)

and, after Wick rotating to the Euclidean section by σ0 = −iσ2, define furthermore

z = σ1 + iσ2 , z̄ = σ1 − iσ2 , ∂ =
1

2
(∂1 − i∂2) , ∂̄ =

1

2
(∂1 + i∂2) . (2.22)

We then find the Euclidean action

S =
1

2π

∫
d2z

(
2πT ∂X i∂̄X i + β∂̄γ + β̄∂γ̄

)
, (2.23)

which agrees with the Gomis-Ooguri action (eq. (3.8) of [25], omitting the instantonic part).

We are thus able to match the relativistic string with a fixed momentum along a

non-compact null direction with the Gomis-Ooguri string action. This was possible by

performing a duality transformation whereby the non-compact null direction u is replaced

by a compact spacelike direction v. The importance of a compact target space direction

in the context of non-relativistic string theory was also emphasized in [26]. The Gomis-

Ooguri string action was obtained in [25] by performing a large speed of light limit of the

relativistic string in the background of a Kalb-Ramond 2-form. Here we thus see that there

is an entirely different way in which the same result can be obtained.

It is shown in appendix A that the Lagrangian (2.16) can be mapped to the non-

relativistic Polyakov action for a string moving in what is called a string Newton-Cartan

geometry [32] under certain conditions. In appendix A it will be also shown that contact

8Similar observations were made in [20].
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with the work of [32] requires that we impose dτ = 0. String Newton-Cartan geometry

is essentially Newton-Cartan geometry with one additional direction - here denoted by v.

In [39] this conection will be explored further by including the Kalb-Ramond 2-form and

the dilaton.

3 Strings with non-relativistic world-sheet theories

The string theories discussed in the previous section are non-relativistic from the target

space-time perspective. However, the world-sheet theories are still described by relativistic

CFTs. In this section we will go one step further and take a scaling limit whereby also

the world-sheet theory becomes a non-relativistic field theory. We will show that one can

obtain first order time derivative sigma models describing strings moving in a target space-

time that is closely related to TNC geometry. These sigma models will be shown to admit

infinite dimensional symmetry algebras. These are the analogue of the classical infinite

dimensional algebra of local conformal symmetries of the relativistic string theory.

3.1 Polyakov action for strings with non-relativistic world-sheet theories

In [5] a zero tension limit of the Lagrangian (2.19) (combined with a limit on the target

space geometry to ensure finiteness of the action in the limit) was introduced in which

one obtains a string with a non-relativistic world-sheet theory. In the following we shall

generalize this scaling limit to our Polyakov-type Lagrangian (2.16).

Our starting point is the Lagrangian (2.16) for a string on a TNC geometry described

by τµ, mµ and hµν with one extra dimension added - the compact isometry parametrized

by v. In terms of the pullbacks, the scaling limit of [5] is

c→∞ , T =
T̃

c
, τα = c2τ̃α , mα = m̃α , hαβ = h̃αβ , η = c η̃ , (3.1)

where the tilde quantities are the rescaled ones. Note that P in (2.5) does not scale. We

supplement this with the following scaling of the zweibeins and Lagrange multipliers

eα
0 = c2ẽα

0 , eα
1 = c ẽα

1 , λ± =
ω

2c3
± ψ

2c2
. (3.2)

Note that e = c3ẽ, eα0 = c−2ẽα0 and eα1 = c−1ẽα1 under this scaling. Clearly, this scaling

limit is a non-relativistic limit on the world-sheet as it scales eα
0 and eα

1 differently. It is

essentially a limit in which we are sending the world-sheet speed of light to infinity.

Taking the scaling limit (3.1)–(3.2) of (2.16) one gets the Lagrangian

LNRPol = −T
2

[
2εαβmα∂βη + e eα1e

β
1hαβ + ωεαβeα

0τβ + ψεαβ
(
eα

0∂βη + eα
1τβ

)]
, (3.3)

where to avoid heavy notation we have removed the tildes from the tension and all the

tilded fields in (3.1) and (3.2). As we shall see below, this is the Lagrangian for a string

with a non-relativistic world-sheet theory propagating in a non-relativistic target space

whose geometric properties differ from those of TNC geometry in a manner to be discussed

– 8 –
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below. Note that the scaling limit of the zweibeins (3.2) is consistent with the definition

of the inverse zweibeins (2.10). Thus this formula can be used also after the scaling limit.

The rescaling of the η field is consistent with the scaling of the tension in (3.1) such

that also after the scaling we have

η(σ0, σ1) =
P

2πT
σ1 + ηper(σ

0, σ1) , (3.4)

where ηper is periodic ηper(σ
0, σ1 + 2π) = ηper(σ

0, σ1). Again, we can interpret η as the

embedding map for a periodic target space direction ṽ with period P/T so that η = X ṽ.

To avoid clutter we now also drop the tilde on v. Eq. (3.4) means then that the closed

string is winding one time around the periodic v direction. The momentum current along

v is

Pαv =
∂LNRPol

∂∂αη
= TεαβAβ , Aα = mα +

1

2
ψ eα

0 . (3.5)

This can also be obtained by taking the scaling limit (3.1)–(3.2) of (2.18) and (2.15). From

the EOM of η this is seen to be conserved ∂αP
α
v = 0 which gives that Aα is closed. Indeed

from section 2 we have that Aα = ∂αX
u where Xu is periodic under σ1 → σ1 +2π and this

is unaffected by the scaling limit (3.1)–(3.2). From this we get that the momentum along

v is again zero

Pv =

∫ 2π

0
dσ1P 0

v = T

∫ 2π

0
dσ1∂1X

u = 0 . (3.6)

The action (3.3) is invariant under local transformations that act on the target space

fields τµ, mµ and hµν = δabe
a
µe
b
ν as [5]

δτµ = 0 , δmµ = ∂µσ , δhµν = 2τ(µe
a
ν)λa . (3.7)

along with target space diffeomorphisms. The former symmetries were shown in [5] to

correspond to the gauging of a spacetime symmetry algebra consisting of a direct sum of

the (massless) Galilei algebra Gal and a U(1)σ. This is analogous to the way that gauging

the Bargmann algebra (massive Galilei algebra) gives TNC geometry [13, 28]. The resulting

geometry was dubbed U(1)-Galilean geometry. We note that the U(1) factor in this algebra

is crucial in order to allow for time derivatives in the theory. A massless Galilei symmetry

without such a U(1) only admits spatial derivatives.9

The scaling limit (3.1)–(3.2) respects the reduction of (2.16) to the Nambu-Goto type

Lagrangian (2.19). Indeed, if one puts eα
0 = τα and eα

1 = ∂αη (where the fields are not

rescaled) we get (2.19) and we can subsequently take the scaling limit (3.1) to obtain

LNRNG = −T

[
εαβmα∂βη +

εαα
′
εββ

′
τα′τβ′

2εγγ′τγ∂γ′η
hαβ

]
. (3.8)

9One way to see this is to note that for a free particle, massless Galilean symmetries, imply that the

dispersion relation is ~k2 = 0 where ~k is the momentum vector. This follows from the Bargmann dispersion

relation ω =
~k2

2m
after setting m = 0 or from the relativistic massless dispersion relation ω = c|~k| after

sending c→∞.
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This is the Lagrangian found in [5]. Alternatively, one can first take the scaling limit

of (2.16) to obtain (3.3), and then subsequently solve for the Lagrange multipliers ω and

ψ as we shall see below.

The Lagrangian (3.3) is invariant under the local symmetry

eα
0 → feα

0 , eα
1 → feα

1 + f̂ eα
0 , ω → 1

f
ω − f̂

f2
ψ , ψ → 1

f
ψ , (3.9)

for arbitrary functions f and f̂ on the world-sheet. These constitute local Galilei/Weyl

symmetries acting on the world-sheet vielbeins and Lagrange multipliers. The Lagrange

multipliers ω and ψ in the Lagrangian (3.3) impose the constraints

εαβeα
0τβ = 0 , εαβ

(
eα

0∂βη + eα
1τβ

)
= 0 . (3.10)

The general solution to these constraints is

eα
0 = h τα , eα

1 = h ∂αη + ĥ τα , (3.11)

where h and ĥ can be any functions on the world-sheet. In particular, we can use the local

Galilei/Weyl symmetries (3.9) to set eα
0 = τα and eα

1 = ∂αη. One obtains again (3.8),

so this shows in particular that the Polyakov-type Lagrangian (3.3) is equivalent to the

Nambu-Goto type Lagrangian (3.8) originally found in [5], in analogy to what was done

before the large c limit.

The world-sheet geometry in the Polyakov-type formulation is described by eα
0 and

eα
1. The Lagrange multipliers ω and ψ can be written as

ω = eα0χα , ψ = eα1χα , (3.12)

where eα0 and eα1 are the inverse vielbeins. The latter transform as

eα0 → f−1eα0 −
f̂

f2
eα0 , eα1 → f−1eα1 . (3.13)

Hence in order to reproduce the transformations of ω and ψ in (3.9) we do not need to

transform χα. Thus, even though χα is a world-sheet 1-form, we do not think of it as being

part of the geometry (like we would for example in the case of TNC geometry where m

transforms under the local Galilean boosts that act on the vielbeins). In other words the

world-sheet geometry can be thought of as a 2-dimensional massless Galilei geometry, i.e.

the geometry obtained by gauging the massless 2-dimensional Galilei algebra.

3.2 GCA symmetry of the non-relativistic sigma-model

Combining the local Galilei/Weyl symmetry (3.9) with local diffeomorphisms we have

enough symmetry to transform the zweibeins to the gauge10

eα
a = δaα . (3.14)

10We can use one diffeomorphism and the Weyl transformation to set eα
0 = δ0α. We can then use the

local Galilean boost to set eα
1 ∝ δ1α and subsequently the second diffeomorphism to set eα

1 = δ1α.
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In this flat gauge, the Lagrangian (3.3) takes the form

Lflat = −T
2

[
2mµε

αβ∂αX
µ∂βη + hµν∂1X

µ∂1X
ν + ωτµ∂1X

µ + ψ
(
∂1η − τµ∂0X

µ
)]

.

(3.15)

We remind the reader that the µ index does not include the v direction. The residual

gauge transformations, i.e. those obtained from the local Galilei/Weyl transformations and

world-sheet diffeomorphisms preserving the flat gauge (3.14) are

σ0 → σ̂0(σ) = F (σ0) , σ1 → σ̂1(σ) = F ′(σ0)σ1 +G(σ0) , (3.16)

for any functions F (σ0) and G(σ0) with F (σ0) monotonically increasing. While Xµ(σ) and

η(σ) transform as scalars, ω(σ) and ψ(σ) transform as

ω(σ) = F ′ω̂(σ̂) + (F ′′σ1 +G′)ψ̂(σ̂) , ψ(σ) = F ′ψ̂(σ̂) . (3.17)

It is straightforward to verify that (3.16) and (3.17) leave the flat gauge Lagrangian (3.15)

invariant.

The transformations (3.16) are generated by the following infinitesimal

diffeomorphisms

ξ0 = f(σ0) , ξ1 = g(σ0) + f ′(σ0)σ1 . (3.18)

Assuming f and g to be analytic so that they can be analytically continued to the complex

plane we can perform a Laurent expansion of f and g. Let us define

f = −
∑
n

an(σ0)n+1 , g =
∑
n

bn(σ0)n+1 , (3.19)

and if we furthermore define

ξα∂α =
∑
n

(anLn + bnMn) , (3.20)

then from (3.18) we find the algebra generators Ln and Mn

Ln = −(σ0)n+1∂0 − (n+ 1)(σ0)nσ1∂1 , (3.21)

Mn = (σ0)n+1∂1 . (3.22)

They satisfy the algebra

[Ln , Lm] = (n−m)Ln+m , [Ln ,Mm] = (n−m)Mn+m . (3.23)

This algebra is the 2-dimensional Galilei conformal algebra (GCA) without any central

extensions. The latter are absent because we treated the world-sheet theory classically.

We thus conclude that the non-relativistic sigma model (3.15) has the GCA as its infinite

dimensional symmetry algebra.

It is known that the GCA can be obtained from two copies of the Virasoro algebra

via a contraction [21]. Here, we have found a general class of non-relativistic sigma models

exhibiting this symmetry. It would be very interesting to study in more detail whether

the GCA symmetry of these sigma-models plays the same role as the Virasoro algebra

(including its central extension) in relativistic string theory.
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4 Spin Matrix theory limits of strings on AdS5 × S5

In [5] it was found that the Spin Matrix theory limits introduced in [2] are realizations

of the zero tension scaling limit (3.1) of the Nambu-Goto-type Lagrangian (2.19) that

gives the Lagrangian (3.8). In this section we generalize this statement to the scaling

limit (3.1)–(3.2) of the Polyakov-type Lagrangian (2.16) that gives the Lagrangian (3.3)

with a non-relativistic Weyl symmetry.

In the course of this, we find a particularly nice interpretation of the limit of the

compact v direction as the position of the spins in the spin-chain limit of Spin Matrix theory.

4.1 Spin Matrix theory

Let us first briefly review the Spin Matrix theory (SMT) limits [2] of the AdS/CFT cor-

respondence.11 The AdS/CFT correspondence asserts a duality between SU(N) N = 4

super Yang-Mills theory (SYM) and type IIB string theory on AdS5 × S5. On the gauge

theory side, N = 4 SYM on R× S3 with gauge group SU(N) has certain unitarity bounds

that we schematically can write as

E ≥ Q , (4.1)

where for a given state E is the energy and Q is a linear sum over the Cartan charges of

PSU(2, 2|4) being the two angular momenta S1 and S2 on S3 and the three R-charges J1,

J2 and J3. We have set the radius of S3 to one. Taking a limit [2]

λ→ 0 , N = fixed ,
E −Q
λ

= fixed , (4.2)

N = 4 SYM simplifies greatly and is effectively described by a quantum mechanical theory

called Spin Matrix theory (SMT). SMTs are quantum mechanical theories characterized by

having a Hilbert space made from harmonic oscillators with both an index in a represen-

tation of a Lie group (called the spin group) as well as matrix indices corresponding to the

adjoint representation of SU(N) (or U(N)) subject to a singlet constraint for the matrix

indices. The Hamiltonian of SMT is factorized into a spin and a matrix part, acting on the

Hilbert space by removing two excitations and creating two new ones [2]. One can equiv-

alently take the limit in the grand canonical ensemble by approaching a zero-temperature

critical point.

In the limit (4.2) only states in N = 4 SYM on R × S3 for which E is close to Q

will survive. The rest of the states decouple. Writing E = E0 + λE1 +O(λ2) where E0 is

the classical (tree-level) energy and E1 is the one-loop correction, we see that only states

with classical energy E0 = Q survive. This gives the Hilbert space of the resulting SMT.

Moreover, the Hamiltonian of the resulting SMT corresponds to the one-loop correction

E1 in N = 4 SYM. In fact, we write

H = Q+ g lim
λ→0

E −Q
λ

= Q+ gE1 , (4.3)

as the Hamiltonian of SMT where g is the coupling of the SMT. The global symmetry group

PSU(2, 2|4) of N = 4 SYM reduces to the so-called spin group in the SMT limit. In table 1

11See also [4] as well as [40–42]. On SMT-type limit related to AdS3/CFT2 correspondence see [43].
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Unitarity bound E ≥ Q Gs Cartan diagram Rs d+ 2

Q = J1 + J2 SU(2) © [1] 4

Q = J1 + J2 + J3 SU(2|3) ©−−
⊗
−−©−−© [0, 0, 0, 1] 6

Q = S1 + J1 + J2 SU(1, 1|2)
⊗
−−©−−

⊗
[0, 1, 0] 6

Q = S1 + S2 + J1 SU(1, 2|2) ©−−
⊗
−−©−−

⊗
[0, 0, 0, 1] 6

Q = S1 + S2 + J1 + J2 + J3 SU(1, 2|3) ©−−
⊗
−−©−−©−−

⊗
[0, 0, 0, 1, 0] 10

Table 1. Five unitarity bounds of N = 4 SYM that give rise to SMTs in the limit (4.2). For

each limit we list the spin group Gs, the Cartan diagram for the corresponding algebra and the

representation Rs of the algebra (in terms of Dynkin labels) that defines the Spin Matrix Theory for

a given limit. Moreover, d+ 2 is the space-time dimension of the target space for the corresponding

sigma-model (see section 4.2).

we have listed five limits of N = 4 SYM where E = Q defines a supersymmetric subsector

of N = 4 SYM, which means that SMT describes a near-BPS regime of N = 4 SYM.

In the planar limit N →∞ SMT reduces to a nearest-neighbor spin chain [2]. For the

five cases of table 1 the spins of the spin chain are in the representation Rs for the algebra

of the spin group Gs. Since the spin chain Hamiltonian defines uniquely the SMT also for

finite N one can think of SMT as a finite-N generalization of nearest-neighbor spin chains.

The low energy excitations of spin chains are magnons. The dispersion relation of a

single magnon in N = 4 SYM is [3]

E −Q =

√
1 +

λ

π2
sin2 p

2
− 1 , (4.4)

where p is the momentum. Taking the SMT limit (4.3) gives [4]

H −Q =
g

2π2
sin2 p

2
. (4.5)

This corresponds to a dispersion relation of a magnon in a nearest-neighbor spin chain.

The magnon excitations dominate for g � 1 which one can think of as the strong coupling

limit of SMT. Comparing (4.4) and (4.5) we see that the SMT limit clearly can be thought

of as a non-relativistic limit [2]. This is even clearer for the small momentum limit p� 1,

corresponding to the pp-wave limit, in which one goes from a relativistic dispersion relation

to a Galilean one [4]. Thus, one observes that the SMT limits in this sense correspond to

non-relativistic limits of N = 4 SYM.

Using coherent states on each spin chain site, one can find a semi-classical limit with

many magnon states on the spin chain. In the limit in which the spin chain is long, one

can furthermore find a long wavelength limit. This procedure results in a sigma-model

description in a semi-classical limit of the spin chain [14] (see also [15–19] and [4]). The

sigma-model is based on the coset related to the representation of the spin group in table 1.

The resulting sigma-models are what we below in section 4.2 will find from taking SMT

limits of strings on AdS5 × S5.

Consider the SU(2) SMT in the planar limit N =∞. This is described by the XXX1/2

ferromagnetic Heisenberg spin-chain. In this case Q = J1+J2 is the length of the spin chain.
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For Q� 1 and in a semi-classical regime, one obtains an effective sigma-model description

of the spin chain called the Landau-Lifshitz model. The Landau-Lifshitz model is

LLL =
Q

4π

[
cos θφ̇− 1

4

(
(θ′)2 + sin2 θ(φ′)2

)]
, (4.6)

where the fields θ and φ are functions of σ0 and σ1. The fields are periodic under σ1 →
σ1 + 2π. We also defined φ̇ = ∂0φ and φ′ = ∂1φ. In the semi-classical limit Q → ∞ that

gives the Lagrangian (4.6) one identifies σ1 with the position on the spin chain [14] (also

reviewed in [4])

σ1 = 2π
k

Q
, (4.7)

where k is a site on the spin chain and Q is the length of the spin chain, thus explaining

that the fields are periodic in σ1 with period 2π. Since the spin chain description arises

from single-trace operators [44], the cyclicity of the trace gives that the total momentum

along the spin chain is zero, corresponding to the condition∫ 2π

0
dσ1 cos θφ′ = 0 , (4.8)

in the semi-classical limit.

4.2 Limits of strings on AdS5 × S5

We now turn to the string theory side of the AdS/CFT correspondence. Using the dictio-

nary of the AdS/CFT correspondence, we can formulate a SMT limit (4.2) of N = 4 SYM

as a limit of type IIB string theory on AdS5 × S5. As we shall see, this corresponds to a

limit of the sigma-model of the string that realizes the c→∞ scaling limit (3.1)–(3.2).

We write the metric on AdS5 × S5 in the global patch as

ds2 = R2
[
− cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2

3 + dΩ2
5

]
. (4.9)

The AdS/CFT dictionary states that 4πgs = λ/N and R/ls = λ1/4 where λ is the ’t Hooft

coupling of the gauge theory and gs and ls are the string coupling and string length of the

string theory side, respectively, and R is radius of S5 and AdS5. On the string theory side

N translates to the flux of the self-dual Ramond-Ramond five-form field strength on AdS5

and on S5. Moreover, we can translate the unitarity bounds (4.1) with Q given in table 1

into corresponding BPS bounds E ≥ Q where E is the energy corresponding to the global

time coordinate t, S1 and S2 are the angular momenta on the S3 within AdS5 and J1, J2,

J3 are the angular momenta on S5, all measured in units of 1/R.

In terms of the metric (4.9) the string tension is 1/(2πl2s). However, since the factor

R2 in (4.9) is uniform we can include it in the tension instead of the metric. With this,

one gets an effective string tension

T =
R2

2πl2s
=

√
4πgsN

2π
. (4.10)

– 14 –



J
H
E
P
1
1
(
2
0
1
8
)
1
9
0

In using this as the string tension, we should rescale the metric (4.9) as

ds2 = − cosh2 ρ dt2 + dρ2 + sinh2 ρ dΩ2
3 + dΩ2

5 . (4.11)

For a given BPS bound E ≥ Q (with Q of table 1) the SMT limit of type IIB string

theory on AdS5 × S5 is

gs → 0 , N = fixed ,
E −Q
gs

= fixed . (4.12)

This is the translation of the limit (4.2) to the string theory side. To implement this, we

use that given a particular BPS bound defined by Q of table 1 one can find coordinates

u, xµ, yI for the metric (4.11) for AdS5 × S5, where µ = 0, 1, . . . , d, I = 1, 2, . . . , 2n and

d = 8− 2n, such that

• ∂x0 and ∂u are Killing vector fields with

i∂x0 = E −Q , P = −i∂u =
1

2
(E +Q) , (4.13)

where P is defined as the momentum along u.

• For yI = 0 one has guu = 0 and one can furthermore put the metric restricted to

yI = 0 in a form (2.1) with

m0 = h00 = h0i = 0 , (4.14)

for i = 1, 2, . . . , d.

Here n is the number of angular momenta (out of S1, S2, J1, J2 and J3) that are not

included in the unitarity bound. This gives 2n directions yI , that we call external directions,

that realize n rotation planes associated to the n commuting angular momenta that are

not included. In the SMT limit (4.12) one has a confining potential with effective mass

proportional to 1/gs for each of these n rotation planes that drives the strings to sit at

the minimum of the potential located at yI = 0. This gives an effective reduction of the

number of spatial dimensions in the SMT limit for four out of the five limits listed in table 1.

In table 1 we have furthermore recorded the number of surviving space-time dimensions

d+ 2 = 10− 2n for each case.

To make contact with the scaling limit (3.1)–(3.2), we identify

c =
1√

4πgsN
, (4.15)

and scale the x0 coordinate as

x0 = c2x̃0 , (4.16)

while the coordinates u, xi, i = 1, . . . , d, are held fixed in the c→∞ limit. Writing

τ = τµdx
µ = Fdx0 + βidx

i = c2Fdx̃0 + βidx
i , (4.17)
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before the limit, one sees that in the c → ∞ limit the first term goes like c2 which means

τα has the correct scaling. Taking the limit one finds

τ = Fdx̃0 , (4.18)

where we removed the tildes on the l.h.s. .

In addition to τ having the correct scaling, one finds also that mα and hαβ do not scale

in the c → ∞ limit. As seen in section 2, η scales like η = cη̃ and u is held fixed. Thus,

in this way the SMT limit (4.12) is a realization of the scaling limit (3.1). This should be

supplemented with the zweibein scalings (3.2) when we do not fix a gauge for the zweibeins

before the limit. Below we carry out this limit more explicitly in two of the cases of table 1.

These are the same cases considered in [5].

In the c→∞ limit described above the effective string tension becomes

T =
1

2π
. (4.19)

Using (4.13) we see that the momentum P = −i∂u along the u direction becomes

P = Q . (4.20)

4.3 SU(2) limit and Polyakov Lagrangian for Landau-Lifshitz model

Our first example is the SMT/scaling limit towards the BPS bound E ≥ Q = J1 +J2. This

has n = 3 and d = 2. Our starting point is the metric (4.11) for AdS5 × S5. Write the

five-sphere part as

dΩ2
5 = dα2 + sin2 αdβ2 + cos2 α

[
(dΣ1)2 + (dγ +A)2

]
, (4.21)

with

(dΣ1)2 =
1

4
(dθ2 + sin2 θdφ2) , A =

1

2
cos θdφ . (4.22)

We have E = i∂t and Q = −i∂γ . Write now t and γ as linear functions of x0 and u. To

satisfy (4.13) we need12

t = x0 − 1

2
u , γ = x0 +

1

2
u . (4.23)

This, in turn, ensures that guu = 0 for ρ = α = 0. Using this, one can write the metric (4.11)

of AdS5 × S5 as

ds2 = cos2 α
[
2τ(du−m) + hµνdx

µdxν
]
− (sinh2 ρ+ sin2 α)

(
dx0 − 1

2
du

)2

+dρ2 + sinh2 ρ dΩ2
3 + dα2 + sin2 αdβ2 , (4.24)

with d+ 2 = 4 and

τ = dx0 +
1

4
cos θdφ , m = −cos θ

2
dφ , hµνdx

µdxν =
1

4
(dθ2 + sin2 θdφ2) . (4.25)

12Note here that since γ is compact the (x0, u) plane is in fact a strip. This does not affect the non-

compactness of x̃0 (defined below) after the limit.
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These coordinates for AdS5 × S5 can be seen to correspond to the above-mentioned

(u, xµ, yI) coordinates by identifying xµ = (x0, θ, φ) and finding a coordinate transforma-

tion for the external directions between the six coordinates given by ρ, α, β and the coordi-

nates for the three-sphere to yI , I = 1, 2, . . . , 6, such that yI = 0 corresponds to ρ = α = 0.

The six external directions have a potential proportional to (sinh2 ρ+ sin2 α)/gs that con-

fines them to the point ρ = α = 0 corresponding to yI = 0 in the SMT limit (4.12) [4].

Therefore we set ρ = α = 0 in the following.

The SMT/scaling limit (3.1)–(3.2) combined with (4.12), (4.15) and (4.16) then gives

the sigma-model Lagrangian (3.3) with the U(1)-Galilean background given by

τ = dx̃0 , m = −cos θ

2
dφ , hµνdx

µdxν =
1

4
(dθ2 + sin2 θdφ2) . (4.26)

In addition to the three directions xµ = (x̃0, θ, φ), the four-dimensional target space in-

cludes the compact direction v as well. The closed string on this background has winding

number one along v as in (3.4) with η = Xv. Using (3.4), (4.19) and (4.20) we find

η(σ0, σ1) = Qσ1 + ηper(σ
0, σ1) , (4.27)

as we shall see below this has an interesting interpretation. Note that the v direction has

period 2πQ.

Fixing the gauge on the world-sheet to eα
0 = τα and eα

1 = ∂αη, and furthermore

choosing the following gauge for η

η(σ0, σ1) = Qσ1 , (4.28)

as well as the static gauge choice

X0(σ0, σ1) = Q2σ0 , (4.29)

one finds using (3.8) that the sigma-model reduces to the Landau-Lifshitz model (4.6).

We consider now the condition (3.6) of zero momentum along v. The momentum

current along v is given by (3.5). Since e1
0 = τµ∂1X

µ = 0 we find P 0
v = Tmµ∂1X

µ.

Therefore, the condition of zero momentum along v is∫ 2π

0
dσ1 cos θ∂1φ = 0 . (4.30)

This is seen to correspond to the zero momentum condition (4.8) for the Landau-Lifshitz

sigma-model.

The above shows that the general Lagrangian (3.3) on the background (4.26) and (4.27)

is an equivalent description of the Landau-Lifshitz model. This general description can be

interpreted as a Polyakov version of the Landau-Lifshitz model in which we can interpret

the Landau-Lifshitz model as a non-relativistic string theory with a four-dimensional non-

relativistic target space.

As part of this, we see that the compact v direction is identified with the position on

the Heisenberg spin chain. This is seen by combining (4.7), (4.27) and (4.28). This shows
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that in the general situation in which we do not gauge-fix η = Xv, the compact v direction

gives the position on the spin chain. In detail, one has that a given site k on the spin chain

is identified with v/(2π).

The identification of v with the position on the spin chain is further verified by the

connection to the requirement of zero momentum along the v direction in the general

description of section 3.1. The origin of this is the fact that the u direction is a null isometry

and hence cannot be periodic and have winding, as explained in section 2.1. Obviously,

this is in particular the case when starting with the AdS5×S5 background. The condition

of having zero winding along u leads to zero momentum along the v direction, both before

and after the c→∞ limit (3.1)–(3.2). This is seen to perfectly correspond to the fact that

the spin chain description also dictates a zero momentum condition along the periodic spin

chain, in accordance with the identification of v with the position on the spin chain.

4.4 SU(1, 2|3) limit of strings on AdS5 × S5

The most interesting SMT limit of the AdS/CFT correspondence is the SU(1, 2|3) case of

table 1 with

Q = S + J , S = S1 + S2 , J = J1 + J2 + J3 . (4.31)

Taking the SMT limit (4.2) of N = 4 SYM one gets SU(1, 2|3) SMT. This is the SMT with

the largest possible Hilbert space and global symmetry group (of the ones obtained as limits

of N = 4 SYM). Moreover, the other four SMTs of table 1 can be obtained as subsectors

of the SU(1, 2|3) SMT, both with respect to the Hilbert space and the Hamiltonian. Con-

nected to this is the fact that the SU(1, 2|3) SMT limit is the only SMT limit with n = 0,

hence one does not decouple any directions when taking the SMT limit on the string theory

side. This means that the resulting target-space geometry is ten-dimensional. Finally, it is

also interesting to note that the 1/16 BPS supersymmetric black hole in AdS5×S5 of [45]

obeys the BPS bound E = Q and it survives thus the SU(1, 2|3) SMT limit on the string

theory side of the correspondence.

Below we consider the SMT/scaling limit towards the BPS bound E ≥ Q with Q given

by (4.31). The starting point is the metric (4.11) for AdS5×S5. We parametrize the three-

and five-sphere as

dΩ2
5 = (dΣ2)2 + (dψ +A)2 , dΩ2

3 = (dΣ1)2 + (dχ+ C)2 , (4.32)

where (dΣk)
2 are Fubini-Study metrics for CP k, k = 1, 2, given by

(dΣ2)2 = dξ2
1 +

1

4
sin2 ξ1(dξ2

2 + sin2 ξ2dζ
2
1 ) +

1

4
sin2 ξ1 cos2 ξ1(dζ2 + cos ξ2dζ1)2 , (4.33)

(dΣ1)2 =
1

4
(dξ2

3 + sin2 ξ3dζ
2
3 ) . (4.34)

with the one-forms

A = −1

2
cos ξ2 sin2 ξ1dζ1 +

(
1

3
− 1

2
sin2 ξ1

)
dζ2 , C =

1

2
cos ξ3dζ3 . (4.35)

We have

E = i∂t , S = −i∂χ , J = −i∂ψ . (4.36)
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We write now t, χ and ψ as linear functions of x0, u and a new variable w that is periodic

with period 2π. Then eq. (4.13) fixes the coefficients in front of x0 and u.13 Demanding

furthermore that −i∂w = S we get

t = x0 − 1

2
u , χ = x0 +

1

2
u+ w , ψ = x0 +

1

2
u . (4.37)

This brings the metric of AdS5 × S5 in the null-reduced form (2.1) with

τ = cosh2 ρ dx0 +
1

2
sinh2 ρ(dw + C) +

1

2
A ,

m = − tanh2 ρ(dw + C)− cosh−2 ρA , (4.38)

hµνdx
µdxν = dρ2 + tanh2 ρ(dw + C −A)2 + sinh2 ρ (dΣ1)2 + (dΣ2)2 , (4.39)

corresponding to an (8 + 1)-dimensional TNC background with isometry group SU(1, 2|3).

We take the SMT/scaling limit (3.1)–(3.2) combined with (4.12), (4.15) and (4.16).

This gives the sigma-model Lagrangian (3.3) with the (8 + 1)-dimensional U(1)-Galilean

background given by

τ = cosh2 ρ dx̃0 ,

m = − tanh2 ρ(dw + C)− cosh−2 ρA , (4.40)

hµνdx
µdxν = dρ2 + tanh2 ρ(dw + C −A)2 + sinh2 ρ (dΣ1)2 + (dΣ2)2 , (4.41)

and with 2πT = 1. One can check that this background has global isometry group

SU(1, 2|3) as well. The full target space geometry is ten-dimensional, as the (8 + 1)-

dimensional U(1)-Galilean geometry is supplemented by the compact v direction with

period 2πQ. The closed string has winding number one on this background, so that

η(σ0, σ1) = Qσ1 + ηper(σ
0, σ1) where ηper is periodic in σ1.

Choosing the gauge eα
0 = τα and eα

1 = ∂αη for the world-sheet zweibeins and the

gauge η(σ0, σ1) = Qσ1 and X0(σ0, σ1) = Q2σ0 for the target space embedding, we obtain

the Lagrangian

L = − Q
2π

(
mµ∂0X

µ +
1

2
hµν∂1X

µ∂1X
ν

)
, (4.42)

with mµ and hµν given in (4.40)–(4.41). The zero-momentum condition is∫ 2π

0
dσ1mµ∂1X

µ = 0 . (4.43)

To have a semi-classical sigma-model one needs Q to be large.

13One can derive the coefficients of x0 and u by demanding only i∂x0 = E − Q, guu = 0 and that w is

periodic. From i∂x0 = E − Q we get t = x0 + b1u + c1w, χ = x0 + b2u + c2w and ψ = x0 + b3u + c3w.

guu = 0 gives b21 = b22 = b23. Demanding periodicity of χ, ψ and w gives that b1 = −b2 = −b3. Assuming

P > 0 we find −b1 = b2 = b3 > 0. We choose b3 = 1
2
.

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
1
9
0

5 Discussion

One of the main results of this paper is that we have presented a Polyakov-type formulation

(see eq. (3.3)) of the non-relativistic world-sheet sigma-model action, which was recently [5]

found in Nambu-Goto form. This action is obtained from a scaling limit of a string action

describing strings with Poincaré world-sheet symmetry but moving in a non-relativistic

(TNC) target spacetime, for which we also have obtained the corresponding Polyakov-

type formulation (see eq. (2.16)). Another central result of the paper is that this new

non-relativistic world-sheet sigma model has the following properties:

• The target space is a type of non-relativistic geometry, namely U(1)-Galilean geom-

etry [5], extended with a periodic target space direction.

• The residual gauge symmetry in flat gauge is the Galilean Conformal Algebra.

Thus this novel class of non-relativistic sigma-models, describing non-relativistic conformal

two-dimensional field theories, provides an interesting setting for further exploration of

non-relativistic string theory.

Importantly, the non-relativistic world-sheet sigma-model action is concretely realized

in the SMT limits [2] of the AdS/CFT correspondence. The latter are tractable limits of

the AdS/CFT correspondence, and we thus obtain a covariant form for the corresponding

non-relativistic string theories, being well-defined and quantum mechanically consistent.

Moreover, following the two bullets above, our description i) elucidates the nature of the

target space that these non-relativistic strings move in, and ii) shows that these world-sheet

theories are non-relativistic two-dimensional conformal field theories. The SMT sigma-

models of section 4 can thus be considered as specific string theory realizations relevant

to the non-relativistic sector of quantum gravity/holography advocated in the introduc-

tion. They represent a natural starting point for further studies of the corresponding

quantum theory.

In this connection already the simplest case, being the SU(2) SMT limit, provides a

new perspective on the Landau-Lifshitz sigma model, which is known to appear as the

long wavelength limit of integrable spin chains [14]. For this we have shown that the spin

chain direction has an interpretation as the periodic target space direction of the non-

relativistic geometry. The same holds for more general SMT limits and the corresponding

integrable theories which are generalizations of the Landau-Lifshitz sigma model [15–19].

In particular, we discussed the most symmetric and most general SU(1, 2|3) SMT limit.

With these sigma-models in hand, we can start to address the question of how non-

relativistic gravity (with the gauge symmetries of U(1)-Galilean geometry) emerges from

SMT, and subsequently more generally for the entire class of non-relativistic sigma models

of section 3. Since these models have the GCA as a symmetry group, and hence an underly-

ing (non-relativistic) conformal symmetry, it would be very interesting to see whether it is

possible to compute the analogue of the standard beta-functions of relativistic string theory.

This would point the way towards uncovering the underlying low-energy non-relativistic
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gravity theory.14 The backgrounds described for the Polyakov-type actions in section 4 are

then naturally expected to be solutions of such gravity theories.

To complete this program, one should obviously include all the string theory back-

ground fields in the analysis performed in this paper. The first steps towards this will

be considered in an upcoming work [39]. Moreover, the inclusion of supersymmetry, D-

branes15 and many of the other standard features of relativistic string theory are natural

extensions to consider. More generally, understanding the general properties of sigma-

models with GCA symmetry would be a further important direction. We also note that

there are tantalizing connections with doubled field theory and doubled geometry [29, 31]

that are worthwhile to examine. Finally, one could speculate that the non-relativistic cor-

ner of string theory and its relation to SMT could be useful towards understanding closed

string field theory.
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A Relation to string Newton-Cartan geometry

In [32] the theory for strings moving in a string-NC geometry [28] was considered in detail.

Being a theory of strings moving in a non-relativistic target geometry, hence akin in this

respect to the one presented in section 2 and ref. [5], it is interesting to study the precise

relation between the two. We work out the precise dictionary in section A.1, specializing to

backgrounds with zero Kalb-Ramond field and dilaton16 and discuss the difference between

the two frameworks. Moreover, in A.2 we also consider the large c scaling limit (in the

spirit of section 3) of the action given in [32] and briefly comment on the result.

14It would furthermore be interesting to find a string theory connection to the action for the non-

relativistic limit of Einstein gravity, recently found in [1].
15See [46] for the SU(2) SMT limit of the non-abelian Born-Infeld action for D-branes in the AdS/CFT

correspondence.
16A more general analysis will be included in [39].
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A.1 Dictionary from string NC geometry

The Polyakov Lagrangian for the sigma model describing a closed string in a string-NC

(d+ 2)-dimensional geometry is [32]

L = −T
2

[√
−γγαβHαβ + λεαβ(eα

0 + eα
1)(τβ

0 + τβ
1) + λ̄εαβ(eα

0 − eα1)(τβ
0 − τβ1)

]
,

(A.1)

where the zweibein eα
a is introduced as in (2.11), τα

A, mα
A,17 and Hαβ are the pullbacks

on the world-sheet of the spacetime tensors τM
A, mM

A and

HMN = EM
A′EN

B′δA′B′ + (τM
AmN

B + τN
AmM

B)ηAB . (A.2)

The indices A = 0, 1 and A′ = 2, . . . , d+ 1 respectively denote longitudinal and transverse

directions of the manifold’s tangent space. The two-dimensional foliation is specified by

two one-forms τM
A which are taken to satisfy

D[MτN ]
A = 0 , (A.3)

where the derivative is covariant with respect to longitudinal SO(1, 1) Lorentz transforma-

tions, so it includes a spin-connection field ωM
AB.

The target space symmetries of (A.1) are those of string-NC geometry, given by

δτM
A = LξτMA + ΛABτM

B , (A.4)

δEM
A′ = LξEMA′ + λA

′
AτM

A + λA
′
B′EM

B′ , (A.5)

δmM
A = LξmM

A − λA′AEMA′ + ΛABmM
B +DMσ

A + σABτM
B , (A.6)

where the target space-time diffeomorphisms are generated by the Lie derivatives along

ξM , and where ΛAB = ΛεAB and λA
′
B′ describes longitudinal SO(1, 1) and transverse

SO(d) transformations, respectively. The parameters λA
′
A describe string Galilei boost

transformations and σA form string Bargmann-type (non-central) extensions of the alge-

bra. Finally, the parameteres σAB are only constrained to be traceless, in order that the

Lagrangian (A.1) remains invariant, but they will play no role in what follows. The indices

A and A′ are raised/lowered with δAB and δA′B′ . On the world-sheet we have diffeomor-

phisms, Weyl transformations and local Lorentz transformations acting on the world-sheet

tangent space.

Let us split M = (v, µ) with Xv = η a (spatial) longitudinal direction. We choose

to set

τµ
0 = τµ , τµ

1 = 0 , τv
0 = 0 , τv

1 = 1 . (A.7)

The last two conditions can be shown to be a gauge choice. The relevant infinitesimal

symmetry transformation here is (A.4) with ΛAB = ΛεAB. We can set τv
0 = 0 using Λ

and subsequently perform a diffeomorphism choosing ξM such that ∂vξ
µ = 0 (ensuring

17It is important to notice that the superscripts 0, 1 in (A.1) are of different nature: those on the zweibein

specify the flat world-sheet tangent directions a, while those on the clock form select the longitudinal

directions A on the target spacetime tangent space.
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preservation of the first condition). This still leaves us the freedom to set τv
1 = 1. The

residual gauge transformations are given by the subset of gauge transformations respecting

δτv
0 = δτv

1 = 0.

Instead, setting τµ
1 = 0 is not a gauge choice but rather a truncation of the theory.

Indeed the residual gauge transformation of τµ
1 turns out to be

δτµ
1 = ξρ∂ρτµ

1 + τρ
1∂µξ

ρ + ξv∂vτµ
1 + ∂µξ

v − τµ0τρ
0∂vξ

ρ , (A.8)

and we do not have enough freedom to set τµ
1 = 0. Nevertheless, as will be shown in [39],

the situation is improved when we include the Kalb-Ramond 2-form as in that case we

do not need to truncate τµ
1 = 0 to obtain a relation with the string NC description. In

other words in the presence of the Kalb-Ramond 2-form we do not need to arbitrarily

impose any conditions on τµ
A other than the gauge choices already discussed. The residual

transformations preserving (A.7) are those respecting

Λ + τµ∂vξ
µ = 0 , ∂vξ

v = 0 , Λτµ + ∂µξ
v = 0 . (A.9)

With Xv being a longitudinal direction, it makes sense to also impose Ev
A′ = 0. This

is easily done through a string Galilei boost, infinitesimally given by δEM
A′ = λA

′
AτM

A.

Residual transformations must then respect Eµ
A′∂vξ

µ + λA
′
1 = 0.

We furthermore choose

mµ
0 = mµ , mµ

1 = mv
0τµ , mv

1 = 0 . (A.10)

The last of the above can be imposed without loss of generality (and respecting previous

gauge choices) by using for example the extension transformation δmv
1 = Dvσ

1. For the

combination mµ
1 −mv

0τµ one instead finds that similarly to τµ
1 it cannot be put to zero

by gauge fixing.

From the above it follows that Hvv = Hvµ = 0 and Hµν = hµν −mµτν −mντµ where

we defined hµν = Eµ
A′Eν

B′δA′B′ . With the redefinition

λ = λ+ +
1

e
εαβ(eα

0 − eα1)mβ , λ̄ = λ− +
1

e
εαβ(eα

0 + eα
1)mβ , (A.11)

one then easily verifies that (A.1) becomes (2.16).

We end this section with some comments. It turns out that in order to correctly retrieve

the target space NC symmetries starting from those of (A.1) we also need to assume that

V = ∂v is a Killing vector, i.e. the fields τµ, mµ and hµν do not depend on v. Using this,

an important consequence18 of (A.3) is then that ωM
AB = 0. From (A.7) and (A.3) we

then obtain

∂[µτν] = 0 . (A.12)

Thus we have the additional condition that τµ be closed. The necessity of setting dτ = 0

can be seen by studying the Lagrangian (A.1) in which we substitute (A.7). Doing so one

can see that whenever mµ
1 6= 0 the TNC transformation δmµ = ∂µσ is a symmetry if and

18This can be seen by putting M = µ and N = v in (A.3).
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only if dτ = 0. This same calculation also shows that when we set mµ
1 = 0 by hand we

recover the usual TNC gauge symmetry δmµ = ∂µσ for any τ .

Therefore, though we showed that the novel Polyakov string action we propose in

this paper is closely related to the one in [32], a fundamental distinction on the allowed

backgrounds is to be made. The relevance of this is underlined by the fact that a nonzero

dτ is essential in order to link the non-relativistic string theory described in this paper

to Spin Matrix Theory limits of the AdS/CFT correspondence analyzed in section 4. In

fact one can straightforwardly verify that dτ 6= 0 (before the SMT limit is taken) for all

examples in section 4.

A.2 Scaling limit of string NC geometry sigma model

We record here how to take a scaling limit of (A.1), similarly to what is done in section 3.

The limit is non-relativistic both on the target spacetime and on the world-sheet. For

simplicity, we first redefine the Lagrange multipliers according to a more general version19

of (A.11)

λ = λ+ +
1

e
εαβ(eα

0− eα1)(mβ
0−mβ

1) , λ̄ = λ−+
1

e
εαβ(eα

0 + eα
1)(mβ

0 +mβ
1) . (A.13)

The limit is

c→∞ , T =
1

c
T̃ , eα

0 = c2 ẽα
0 , eα

1 = c ẽα
1 , λ± =

ω

2c3
± ψ

2c2
,

τα
0 = c2 τ̃α

0 , τα
1 = c τ̃α

1 , H⊥αβ = H̃⊥αβ , mα
0 = m̃α

0 , mα
1 =

1

c
m̃α

1 .

(A.14)

The outcome is the Lagrangian

L = −T
2

[
e eα1e

β
1H
⊥
αβ + 2εαβ(τα

0mβ
1 − τα1mβ

0) + ωεαβeα
0τβ

0 + ψεαβ(eα
0τβ

1 + eα
1τβ

0)
]

(A.15)

where we removed tildes to avoid clutter. The inverse zweibein is still defined by (2.10). The

above Lagrangian is invariant under the world-sheet local Galilei/Weyl symmetry (3.9), so

the theory also has non-relativistic (Galilean) conformal symmetry. For the study of the

full symmetry algebra that emerges from (A.15), resulting from the contraction (A.14) on

the string Galilei algebra of ref. [28], we refer to [39].
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