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1 Introduction

The Standard Model (SM) of particle physics has been remarkably successful in explaining

almost all the measurements made till date in accelerator-based experiments, ranging from

a few GeV in centre-of-mass energy to a few hundred GeV. However, deviations from

the SM expectations approximately at the 2σ − 4σ level have shown up in a number of

recent measurements involving semi-leptonic B-meson decays, both in charged current and

neutral current channels.

In this work, we focus mainly on the analysis of the charged current anomalies,1 namely

RD and RD∗ defined in the following way

RD(∗) =
B
(
B → D(∗) τ ν

)
B
(
B → D(∗)

0̀ ν
) , (1.1)

where the 0̀ stands for either e or µ. The experimental results as well as the SM predictions

for RD and RD∗ are summarised in table 1. We also show two other relevant recent

measurements, which are however rather imprecise at the moment — the τ polarisation,

Pτ (D∗), in the decay B → D(∗) τ ν, and RJ/ψ, a ratio similar to eq. (1.1) for the decay

Bc → J/ψ τ ν. It can be seen from table 1 that a successful explanation of the RD,D∗

anomalies requires a new physics (NP) contribution of the order of at least 10 - 20% of

the SM contribution to the branching ratio. As the SM contribution is generated at the

tree level by W± boson exchange, this is a rather large effect. Such a large effect puts any

NP explanation under strong pressure arising from experimental measurements of other

∆F = 1 and ∆F = 2 processes, electroweak precision observables and direct searches at

the LHC.

In the first part of this work (sections 2–4), we provide a comprehensive analysis of

the possible explanations of these anomalies in as model independent way as possible. We

discuss the various implications of (linearly realised) SU(2)×U(1) symmetry. In particular,

we focus on the correlations among the observables which could be used in the future to

decipher the physics behind these anomalies.

Some of the results which are presented in this part already exist in the literature

in some form or another. While we try to perform the analysis in a comprehensive and

systematic way, and present our results within a unified language, we will explicitly point

out to the existing literature wherever appropriate.

1While the statistical significance of these experimental results is not yet large enough to claim a dis-

covery, we will call them ‘anomalies’ by common usage of the word.
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Observable SM prediction Measurement

0.300± 0.008 [1]

RD 0.299± 0.011 [2] 0.407± 0.046 [3]

0.299± 0.003 [4]

RD∗ 0.252± 0.003 [5] 0.304± 0.015 [3]

0.260± 0.008 [6]

Pτ (D∗) −0.47± 0.04 [6] −0.38± 0.51(stat.) +0.21
−0.16(syst.) [7, 8]

RJ/ψ 0.290 0.71± 0.25 [9]

Table 1. Observables, their SM predictions and the experimentally measured values. The exper-

imental averages for RD and RD∗ shown in the third column are based on [7, 10–15]. The SM

prediction of RJ/ψ is based on the form-factors given in [16], see appendix B for more details. As

the Bc → J/ψ form-factors are not very reliably known, we do not show any uncertainty for RJ/ψ.

However, it is expected to be similar to that of RD∗ .

In the second part of the paper (section 5), we apply these results to composite Higgs

models with partial compositeness. An explanation of the flavour anomalies within this

framework has received a lot of attention in the recent past [17–28]. However, this scenario,

motivated by the Higgs mass naturalness problem, generically predicts flavour violating

effects which are often too large to be compatible with experimetal measurements. This can

be partially cured by introducing additional flavour symmetries suppressing the undesirable

flavour violating effects [17, 20, 24]. In this work, instead of explicitly relying on flavour

symmetries, we take an agnostic approach and rely only on the correlations among the

various flavour violating observables coming from partial compositness. Interestingly, even

without making any assumption on the flavour structure of the composite sector, we are

able to find strong correlations between ∆F = 1 and ∆F = 2 observables leading to an

upper bound on the scale of compositeness.

2 Operators for b→ c ` ν decay

The relevant Lagrangian for the quark level process b→ c ` ν can be written as,

Lb→c ` νeff = Lb→c ` νeff |SM −
∑ gcb`νi

Λ2
Ocb`νi + h.c.+ . . . (` = τ, µ, e) (2.1)

where the ellipses refer to terms which are suppressed by additional factors of ( ∂Λ)2. As

( ∂Λ)2 ∼ (MB
Λ )2 for the processes we are interested in, these ellipses are completely negligible

for new physics (NP) scales heavier than the weak scale. Here,

Lb→c ` νeff |SM = −2GFVcb√
2

(
Ocb`νVL −Ocb`νAL

)
, (2.2)

– 2 –
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and the definition of the operators are

Ocb`νVL = [c̄ γµ b][¯̀γµ PL ν] Ocb`νVR = [c̄ γµ b][¯̀γµ PR ν]

Ocb`νAL = [c̄ γµ γ5 b][¯̀γµ PL ν] Ocb`νAR = [c̄ γµ γ5 b][¯̀γµ PR ν]

Ocb`νSL = [c̄ b][¯̀PL ν] Ocb`νSR = [c̄ b][¯̀PR ν] (2.3)

Ocb`νPL = [c̄ γ5 b][[¯̀PL ν] Ocb`νPR = [c̄ γ5 b][[¯̀PR ν]

Ocb`νTL = [c̄ σµν b][¯̀σµν PL ν] Ocb`νTR = [c̄ σµν b][¯̀σµν PR ν] .

Note that the operators in the right hand side of eq. (2.3) (referred to as right-chiral

operators below) involve right-chiral neutrinos. In this work, we assume that light right-

chiral neutrinos do not exist in nature.2 Moreover, even in their presence, the operators

involving them do not interfere with those involving left-chiral neutrinos (and hence not

to the SM operators). This means, by naive power counting, that in order to explain the

experimental data by the right-chiral operators, the required NP scale of these operators

have to be lower than that for the left-chiral operators.

For notational convenience, we will normalise the new WCs by

2GFVcb√
2

=
1

Λ2
SM

≈ 1

(1.2 TeV)2
. (2.4)

Thus, we have

Lb→c ` νeff = Lb→c ` νeff |SM −
∑ gcb`νi

Λ2
Ocb`νi + h.c.

= −2GFVcb√
2

∑
Ccb`νi Ocb`νi + h.c. (2.5)

where,

gcb`νVL

Λ2
=

2GFVcb√
2

(Ccb`νVL −1),
gcb`νAL

Λ2
=

2GFVcb√
2

(Ccb`νAL +1),
gcb`νSL,PL,TL

Λ2
=

2GFVcb√
2

Ccb`νSL,PL,TL.

In the SM, Ccb`νVL = 1, Ccb`νAL = −1.

Although there are five operators with left-chiral neutrinos, not all of them contribute

to both RD and RD∗ . This is because the following matrix elements vanish identically:

〈D(pD,MD)|c̄γµγ5b|B(pB,MB)〉 = 0 , (2.6)

〈D(pD,MD)|c̄γ5b|B(pB,MB)〉 = 0 , (2.7)

〈D∗(pD∗ ,MD∗ , εD∗)|c̄b|B(pB,MB)〉 = 0 . (2.8)

Thus, the operators Ocb`νAL and Ocb`νPL do not contribute to RD, and similarly, the operator

Ocb`νSL does not contribute to RD∗ .

In appendix C, we provide approximate semi-numerical formulas for RD and RD∗ in

terms of the Wilson coefficients.

2See [29, 30] for some recent proposals where the anomalies are explained by operators with right-handed

neutrinos.
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3 Explaining RD and RD∗

In this section, we systematically study the possible role of various dimension-6 operators

in explaining the RD and RD∗ anomalies. As mentioned before, some of the results that

will be shown in this section are not new, and already exist in the literature in some form

or another [31–42]. Our aim would be to offer a coherent picture to the readers and add

some important insights and aspects to the discussion.

For the calculation of RD we have used the vector and scalar form factors from [2, 43]

and tensor form factors from [44, 45]. As lattice QCD results at nonzero recoil are not yet

available for B → D∗, we have used the HQET form factors parametrized by [46] with the

following numerical values of the relevant parameters [47, 48]

R1(1) = 1.406± 0.033, R2(1) = 0.853± 0.020, ρ2
D∗ = 1.207± 0.026

hA1(1) = 0.906± 0.013 . (3.1)

In view of the absence of lattice calculations, to be conservative, we use two times larger

uncertainties than those quoted above.

For state-of-the-art B → D∗ form-factors we refer the readers to [49] (see also [50]). It

should be noted that, since we have not used the state-of-the-art form-factors, our results

for the allowed values of the Wilson Coefficients are correct only up to sub-leading terms

in Λ/mb,c.

3.1 Vector and axial-vector operators

Here we consider only the operators OτVL and OτAL, and investigate whether they are

capable of explaining RD and RD∗ anomalies simultaneously. We also comment on the

compatibility with the recent measurement of RJ/ψ.

In figure 1, we show the regions in the CτVL-CτAL plane that satisfy the experimental

data on RD, RD∗ and RJ/ψ within 1σ. Note that the uncertainties in the form-factors

have been carefully taken into account in obtaining the various allowed regions. However,

the semi-numerical formulas given in the previous section can be used to qualitatively

understand the results. It can be seen that there is an overlap region (the overlap between

the red and green bands) that successfully explains both RD and RD∗ . This overlap region

is outside the 1σ experimental measurement of RJ/ψ, but consistent with RJ/ψ at ≈ 1.5σ.

It is interesting that CτVL = −CτAL ≈ 1.1 falls in the overlap region mentioned above.

As we will see in the next section, the relation CτVL = −CτAL is expected if SU(2)L ×
U(1)Y gauge invariance in linearly realised at the dimension-6 level. Note that the vec-

tor and axial-vector operators do not have anomalous dimensions if only QCD interac-

tions are considered (see, for example, appendix-E of [51] and also [52]). Hence, we take

CτVL,AL(Λ) = CτVL,AL(mb).

3.2 Scalar and pseudo-scalar operators

Here we consider the scalar and pseudo-scalar operators, OτSL and OτPL respectively. In the

left panel of figure 2, we show the parameter space that satisfies the individual experimental

– 4 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

0.8 1.0 1.2 1.4 1.6

-1.8

-1.6

-1.4

-1.2

-1.0

CVL
τ (mb)

C
A
L

τ
(m

b
)

RD

RD*

RJψ

SM

Figure 1. The vertical red band corresponds to the values of CτVL that satisfy the experimental

measurement of RD within 1σ. Similarly, the green (blue) region corresponds to the values of CτVL

and CτAL that satisfy the experimental measurement of RD∗ (RJ/ψ) within 1σ. All the WCs are

defines at the mb scale. The oblique dashed line is the locus of the equation CτVL = −CτAL.
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Figure 2. Left panel : the red and green (blue) bands correspond to the values of CτSL and CτPL

that satisfy the experimental measurement of RD and RD∗ (RJ/ψ) within 1σ respectively. The

values of CτPL that correspond to Br(Bc → τν) < 30% and < 10% are also shown. Right panel :

renormalisation group running of the WCs CτSL and CτPL.

data on RD, RD∗ and RJ/ψ within 1σ. As discussed before, while the operator OτSL

contributes to RD only, the operator OτPL contributes only to RD∗ . This explains the

vertical and horizontal nature of the allowed regions for RD and RD∗ respectively.
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Figure 3. Left panel : the horizontal lines correspond to the values of CτTL that satisfy the experi-

mental measurement of RD, RD∗ and RJ/ψ within 1σ. The green band corresponds to values of CτTL

that explains RD and RD∗ simultaneously. Right panel : renormalisation group running of CτTL.

Note that the operator OτPL directly contributes to the decay Bc → τν also (refer to

appendix A for more details). The regions below the two horizontal dashed lines correspond

to Br(Bc → τν) < 30% and < 10%, which were claimed to be the indirect experimental

upper bounds by the authors of [53] and [54] respectively. Thus, an explanation of RD∗ by

the operator OτPL is in serious tension with the upper bound on Br(Bc → τν).

The right panel of figure 2 shows the renormalisation group (RG) running (considering

only QCD interactions) of the WCs CτSL and CτPL from the mb scale to 5 TeV using the

following equation [51],

C(mb) =

[
αs(mt)

αs(mb)

] γ

2β
(5)
0

[
αs(Λ)

αs(mt)

] γ

2β
(6)
0 C(Λ) , (3.2)

where, γ = −8. The values at the mb scale are taken from the allowed bands in the

left panel.

3.3 Tensor operators

We now turn to the discussion of the tensor operator. In figure 3, we show the allowed

values of CτTL that are consistent with the 1σ experimental measurements of RD, RD∗ and

RJ/ψ. The values enclosed by the green vertical dashed lines correspond to simultaneous

explanation of RD and RD∗ anomalies. Note however that the prediction for RJ/ψ in this

CτTL region is ≈ 0.17 − 0.23, which is below the SM prediction and quite far from the

current experimental central value. The RG running of CτTL is shown in the right panel of

figure 3 (using eq. (3.2) with γ = 8/3 [51]) where the initial values of CτTL at the mb scale

correspond to the range enclosed by the two vertical dashed lines in the left panel.

Note that the tensor operator does not contribute to the decay Bc → τν because the

matrix element 〈0|c̄ σµν b|B̄c〉 identically vanishes. Hence, there is no constraint on CτTL

from the process Bc → τν.
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Figure 4. The red and green (blue) shaded regions in the left panel correspond to the values of

CτSL = −CτPL and CτTL that satisfy the experimental measurement of RD and RD∗ (RJ/ψ) within

1σ respectively. The small overlap of the red and green regions for positive (negative) values of CτSL
(CτTL) is magnified separately in the middle panel. The right panel shows the RG evolution of the

coupling ratio CτSL/C
τ
TL assuming CτSL/C

τ
TL = 2 at 3 TeV. See text for more details.

3.4 Combination of tensor, scalar and pseudo-scalar operators

In this section, we consider the scenario in which the scalar, pseudo-scalar and tensor

operators are present simultaneously.3 In the upper left panel of figure 4, we show the

various allowed regions in the CτTL-CτSL plane assuming the relation CτSL = −CτPL. From

the upper panel of figure 4, it can be seen that a simultaneous explanation of the RD and

RD∗ anomalies requires CτSL(mb) = −CτPL(mb) ∈ [0.08, 0.23] and CτTL(mb) ∈ [−0.11,−0.06]

(the small overlap of the red and green regions for positive values of CτSL and negative

values of CτTL). We are ignoring the overlap regions with CτPL > 1 because of the bound

from Br(Bc → τν). There is also an overlap region enclosing CτSL = −CτPL = 0 and for

non-zero CτTL which corresponds to the tensor solution discussed in the previous section.

We would like to comment in passing that there exist scalar leptoquark models that

generate the operator (c̄PLν) (τ̄PLb) at the matching scale4 Λ, see e.g., [55]. This op-

erator can be written in terms of the operators in eq. (2.3) after performing the Fierz

transformation,5

(c̄PLν) (τ̄PLb) = −1

8

[
2(OτSL −OτPL) +OτTL

]
. (3.3)

3The combination of vector and scalar operators is discussed in appendix C.7.
4This operator arises from a SU(2)L × U(1)Y gauge invariant operator

(
l̄′
k
u′
)
εjk
(
q̄′
j
e′
)

which, by

using Fierz transformation, gives

(
l̄′
k
u′
)
εjk
(
q̄′
j
e′
)

= −1

8

[
4
(
l̄′
j
e′
)
εjk
(
q̄′
k
u′
)

+
(
l̄′
j
σµνe

′
)
εjk
(
q̄′
k
σµνu′

)]
.

See section 4 below for the notations.
5Note that vector leptoquarks, after Fierz transformation, generate vector operators only in the basis of

section 2. A scenario with vector leptoquarks will be discussed in section 5.3.
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Thus, at the matching scale one gets

CτSL(Λ) = −CτPL(Λ) = 2CτTL(Λ) . (3.4)

This was our motivation to consider CτSL = −CτPL in figure 4. The ratio CτSL/C
τ
TL, however,

increases with the decreasing RG scale as shown in the right panel of figure 4. Assuming

CτSL(Λ)/CτTL(Λ) = 2 for Λ = 3 TeV, we get CτSL(mb)/C
τ
TL(mb) ≈ 4.

Note that, in the above discussion we have considered only real values of the Wilson

coefficients. Allowing for complex Wilson coefficients may lead to new possibilities, see for

example [56].

3.5 Distinguishing the various explanations

In the previous subsections we saw that simultaneous explanations of the RD and RD∗

anomalies are possible by

1. a combination of vector and axial-vector operators (the overlap of red and green

regions in figure 1)

2. a combination of scalar and pseudo-scalar operators (the overlap of red and green

regions in figure 2)

3. tensor operator only (the region between the two dashed vertical lines in figure 3)

4. a combination of scalar, pseudo-scalar and tensor operators (the overlap of red and

green regions in figure 4, in particular, the region with positive values of CτSL and

negative values of CτTL.)

The second solution is quite strongly disfavoured by the existing indirect upper bound

on the branching ratio of Bc → τν. So we ignore it here. We also ignore the scenario with

a combination of vector and scalar operators because of the reason mentioned in the last

paragraph of section C.7.

We now very briefly comment on the possibility of distinguishing the three possible

solutions 1), 3) and 4) by measuring the τ -polarisation (Pτ (D∗)), forward-backward asym-

metry (AFB(D∗)) and more interestingly, RJ/ψ. In figure 5, we plot the predictions for

Pτ (D∗), AFB(D∗) and RJ/ψ for values of the WCs that correspond to various simultaneous

solutions of RD and RD∗ anomalies.

It can be seen that it is indeed possible to discriminate the three solutions by measuring

Pτ (D∗), AFB(D∗) and RJ/ψ. In fact, as can be seen from the right panel of figure 5, RJ/ψ
can be a very good discriminating observable between the solutions 1) and 3). Of course,

with more data, various kinematical distributions can also be used to discriminate the

different Lorentz structures [31, 39, 42, 57–61].

4 Linearly realised SU(2)L × U(1)Y gauge invariance

In the previous sections, we considered operators which were manifestly SU(3) × U(1)em in-

variant, but invariance under the full electroweak group was not demanded. We investigate

the consequences of SU(2)L × U(1)Y invariance in this section.
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Figure 5. Predictions for Pτ (D∗), AFB(D∗) and RJ/ψ for values of the WCs that correspond to

various simultaneous solutions of RD and RD∗ anomalies. See text for more details.

4.1 List of operators

The SU(3) × SU(2)L × U(1)Y invariant dimension-6 operators that lead to b→ c τ ν decay

are given by (using the same notation as in [62]; the primes represent the fact that the

operators and couplings are written in the gauge basis)

Ldim6 = − 1

Λ2

∑
p′r′s′t′

{
[C

(3)
lq ]′p′r′s′t′

(
l̄′p′γµσ

I l′r′
) (
q̄′s′γ

µσIq′t′
)

+ h.c. (4.1)

+[Cledq]
′
p′r′s′t′

(
l̄′
j
p′e
′
r′

)(
d̄′s′q

′j
t′

)
+ h.c. (4.2)

+[C
(1)
lequ]′p′r′s′t′

(
l̄′
j
p′e
′
r′

)
εjk

(
q̄′
k
s′u
′
t′

)
+ h.c. (4.3)

+[C
(3)
lequ]′p′r′s′t′

(
l̄′
j
p′σµνe

′
r′

)
εjk

(
q̄′
k
s′σ

µνu′t′
)

+ h.c. (4.4)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+[C
(3)
φl ]′p′r′

(
φ†i
←→
D I

µφ
) (
l̄′p′ σ

Iγµ l′r′
)

+ h.c. (4.5)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+[C
(3)
φq ]′p′r′

(
φ†i
←→
D I

µφ
) (
q̄′p′ σ

Iγµ q′r′
)

+ h.c. (4.6)

+[Cφud]
′
p′r′

(
φjεjk i(Dµφ)k

) (
ū′p′γ

µd′r′
)

+ h.c.

}
(4.7)

where, εij is antisymmetric with ε12 = +1, and

φ†i
←→
D I

µφ = i
(
φ†σIDµφ− (Dµφ)†σIφ

)
(4.8)

Dµφ =

(
∂µ + ig2

σI

2
W I
µ + ig1YφBµ

)
φ , Yφ =

1

2
. (4.9)

(Note that, the operator structure
(
l̄′
j
p′σµνe

′
r′

)(
d̄′s′σ

µνq′jt′
)

vanishes algebraically.)
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The operators [O(3)
φq ]p′r′ and [Oφud]p′r′ modify the charged current vertex of the quarks,

in particular, the one of our interest c̄bW . However, this affects both the b → c τ ν and

b→ c 0̀ ν decays in the same way. Consequently, the operators [O(3)
φq ]p′r′ and [Oφud]p′r′ are

not relevant for the explanation of the RD and RD∗ anomalies, and we will ignore them in

the rest of the paper.

It can be seen from eq. (4.1) and eq. (4.5) that the operators only involve left chiral

fields. Consequently, these operators only lead to V-A interactions. We stress that it is

not true in general that linearly realised SU(2)L × U(1)Y gauge invariance forbids V+A

operators at the dimension-6 level. For example, the operator in eq. (4.7) generates V+A

operator, but, as mentioned before, it does not lead to lepton non-universality at the

dimension-6 level. This is an important consequence of linearly realised SU(2)L × U(1)Y

gauge invariance.

Note however that at the dimension-8 level, the operator (OτVL +OτAL) with the pos-

sibility of lepton non-universality can be generated. For example, consider the operator

O8
RL =

1

Λ4

(
l̄′p′φ

)
γµ
(
l′r′φ
) (
ū′s′γ

µd′t′
)

(4.10)

where the objects inside each of the parenthesis are constructed as SU(2) singlets. After

electroweak symmetry breaking, this operator generates the following interaction term

v2

Λ2

1

Λ2
[¯̀γµ PL ν][c̄ γµ PR b] (4.11)

with right handed current in the quark sector. We will however ignore dimension-8 opera-

tors in the rest of this paper.

4.2 Correspondence with section 2

We now expand the various SU(2) structures in order to relate the WCs of the SU(2)L ×
U(1)Y invariant operators to those in section 2:(
l̄′p′γµσ

I l′r′
)(
q̄′s′γ

µσIq′t′
)

=
(
ν̄ ′p′γ

µPLν
′
r′
)(
ū′s′γµPLu

′
t′
)
+
(
ē′p′γ

µPLe
′
r′
)(
d̄′s′γµPLd

′
t′
)

−
(
ē′p′γ

µPLe
′
r′
)(
ū′s′γµPLu

′
t′
)
−
(
ν̄ ′p′γ

µPLν
′
r′
)(
d̄′s′γµPLd

′
t′
)

+2
(
ν̄ ′p′γ

µPLe
′
r′
)(
d̄′s′γµPLu

′
t′
)
+2
(
ē′p′γ

µPLν
′
r′
)(
ū′s′γµPLd

′
t′
)
(4.12)(

φ†i
←→
D I

µφ
)(
l̄′p′ σ

Iγµ l′r′
)

=

[
− 1

2

g2

cosθW
Zµ
(
ν ′p′γ

µPLν
′
r′
)
+

1

2

g2

cosθW
Zµ
(
e′p′γ

µPLe
′
r′
)

− g2√
2
W+
µ

(
ν ′p′γ

µPLe
′
r′
)
− g2√

2
W−µ

(
e′p′γ

µPLν
′
r′
)](
v2+2vh+h2

)
.

(4.13)

The scalar and tensor operators can be decomposed similarly. It is clear that, as a con-

sequence of the manifest SU(2)L × U(1)Y gauge invariance, the operators relevant for the

explanation of the RD and RD∗ anomalies get related to other operators, in particular,

to operators that give rise to neutral current decays. However, in order to understand

these correlations more concretely, we have to first rotate the fields from the gauge to the

mass eigenstates.
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From the gauge to the mass eigenstates. We introduce the following mixing matrices

which relate the gauge and mass eigenstates

(eL,R)r′ = (V e
L,R)r′r(eL,R)r, (νL,R)r′ = (V ν

L,R)r′r(νL,R)r ,

(uL,R)r′ = (V u
L,R)r′r(uL,R)r, (dL,R)r′ = (V d

L,R)r′r(dL,R)r (4.14)

The CKM and PMNS matrices are defined as

VCKM = (V u
L )†V d

L , VPMNS = (V ν
L )†V e

L . (4.15)

Using the above definition of the mixing matrices, we get (see appendix D)

∆Ccbτν3VL =
Λ2

SM

Λ2

[
[C̃

(3)eνud
lq ]3323 +

(
[C̃

(3)νedu
lq ]3332

)∗]
−

Λ2
SM

Λ2

[
[C̃

(3)eν
φl ]33 +

(
[C̃

(3)νe
φl ]33

)∗]
Vcb (4.16)

∆Ccbτν3AL = −∆CcbτντVL (4.17)

Similar relations can also be found for the scalar and tensor operators, see appendix D.

The [C̃] couplings are related to the [C]′ couplings of section 4.1 by appropriate mixing

matrices. For example,∑
p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

ν
L )†pp′(V

ν
L )r′r(V

u
L )†ss′(V

u
L )t′t ≡ [C̃

(3)ννuu
lq ]prst (4.18)

see appendix D for more details.

Note that the operator
(
φ†i
←→
D I

µφ
) (
l̄′p′ σ

Iγµ l′r′
)

modifies the leptonic charged and

neutral current vertices of W and Z bosons respectively (see eq. (4.13)). So in order

to explain the RD(∗) data by this operator, lepton non-universality has to be introduced

at these vertices. However, a strong bound on such lepton non-universality exists from

LEP [63]:

Br(W+ → τ+ν)

[Br(W+ → µ+ν) + Br(W+ → e+ν)]/2
= 1.077± 0.026 . (4.19)

This means that the branching ratio of W+ → τ+ν can exceed that of W+ → µ+ν or

W+ → e+ν at most by 10.3% at 1σ. Thus the correction to the Wτν vertex can at most

be 5% of the SM, assuming that the Wµ̄ν and Wēν vertices have no NP. This gives (using

eq. (4.13) and appendix D)6

−
[(

[C̃
(3)eν
φl ] + [C̃

(3)νe
φl ]†

)
33

]
v2

Λ2
. 0.05 , (4.21)

6The SM couplings are defined by

LSM
Wτν = − g2√

2
gτW
(
W−µ τ̄ γ

µPLντ +W+
µ ν̄τγ

µPLτ
)
, (4.20)

where gτW = 1. Any deviation from the SM will be denoted by ∆gτW .

– 11 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

which, from the second line of eq. (4.16), implies

∆CτVL = −∆CτAL < 0.05 , (4.22)

where we have used v2 = 1/(
√

2GF ) = Λ2
SMVcb ≈ (246 GeV)2.

As we saw in section 3.1, ∆CτVL = −∆CτAL < 0.05 is not enough to explain the RD(∗)

data within their 1 σ experimental ranges. Moreover, as can be seen from eq. (4.16),

contribution of this operator to the WCs CτVL = −CτAL is suppressed by Vcb compared

to the other contribution. This operator also modifies the Zµτ̄ γ
µPLτ coupling, and the

modification is given by7

∆gτL =
1

2

[(
[C̃

(3)eν
φl ] + [C̃

(3)νe
φl ]†

)
VPMNS

]
33

v2

Λ2
, ∆gτR = 0. (4.24)

Using the experimental constraint from LEP [64], and assuming that there is no NP in the

decays to light leptons, we get8

|∆gτL| . 6× 10−4, ⇒
∣∣∣([C̃

(3)eν
φl ] + [C̃

(3)νe
φl ]†

)
33

∣∣∣ . 0.02

(
Λ2

TeV2

)
(4.25)

⇒ ∆CτVL . 0.001 . (4.26)

Similarly,

∆gνL = −1

2

[
VPMNS

(
[C̃

(3)eν
φl ] + [C̃

(3)νe
φl ]†

)
V †PMNS

]
33

v2

Λ2
(4.27)

which should be compared with the experimental constraint [64]

|∆gνL| . 1.2× 10−3 . (4.28)

Given these constraints, it is clear that the operator O(3)
φl alone is unable to explain the

RD,D∗ data. We will thus not consider this operator anymore in this work. Before closing

this section, we would like to mention that a much stronger indirect constraint (compared

to eq. (4.21)) on the Wτν coupling can be obtained from measurements of leptonic tau

decays assuming that no other four-fermion operator that can either contribute to τ → e ν ν̄

or µ→ e ν ν̄ exists [65]. Assuming no NP in the Wµν vertex, this gives,

−0.4× 10−3 . −
[(

[C̃
(3)eν
φl ] + [C̃

(3)νe
φl ]†

)
33

]
v2

Λ2
. 2.6× 10−3 . (4.29)

7We define the SM couplings to be

LSM
Zττ = − g2

cos θW
Zµ (gτLτ̄ γ

µPLτ + gτRτ̄ γ
µPRτ) , (4.23)

where gτL = −1/2 + sin2 θW ≈ −0.27 and gτR = sin2 θW ≈ 0.23. The vector and axial-vector couplings are

defined by gτV,A = gτL ± gτR.
8Here we have assumed (VPMNS)33 = 1. However, given the strong experimental constraints, our results

will not change if correct values of (VPMNS)13 and (VPMNS)23 are used.
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4.3 Correlations

The linearly realised SU(3) × SU(2)L × U(1)Y symmetry leads to various correlations

among the flavour violating neutral and charged current observables. To start with, we

assume that only the operator(s) that is (are) needed for the explanation of the RD,D∗

anomalies is (are) present. In particular, we consider the operator of eq. (4.1) and investi-

gate the correlations arising from it. We will not consider the scalar and tensor operators

anymore because, as discussed in the previous sections, an explanation of RD,D∗ anomalies

by scalar (or a combination of scalar and tensor) operators is strongly disfavoured by the

upper bound on Br(Bc → τ ν), and it is rather difficult to generate only the tensor operator.

Without loss of generality, we now go to a basis where the left-chiral down quarks and

left-chiral charged leptons are in the mass basis. This amounts to setting

V e
L = 13×3 , V d

L = 13×3 . (4.30)

It should be emphasised that we are not making any assumption here by going to a partic-

ular basis. This just means that our primed WCs of section 4.1 are defined in this basis.

In this basis, we have

VCKM = V u†
L , VPMNS = V ν†

L . (4.31)

Let us first consider the contribution to the operator (τ̄ γµPLν)(c̄γµPLb). From eq. (D.1)

and (D.2), one can read off the coefficient of this operator. For simplicity, we assume that

the NP Wilson coefficients, [C
(3)
lq ]′p′r′s′t′ , are diagonal in the Lepton flavours. We get

− 2
(

[C̃
(3)eνud
lq ]3r23 + ([C̃

(3)νedu
lq ]r332)∗

)
(τ̄ γµPLνr) (c̄γµPLb) (4.32)

= −2
(

([C
(3)
lq ]′3313 + ([C

(3)
lq ]′3331)∗)Vcd + ([C

(3)
lq ]′3323 + ([C

(3)
lq ]′3332)∗)Vcs

+([C
(3)
lq ]′3333 + ([C

(3)
lq ]′3333)∗)Vcb

)
× [V †PMNS]3r (τ̄ γµPLνr) (c̄γµPLb) (4.33)

Note that νLτ = [V †PMNS]3r νLr, νLτ being the τ -flavour neutrino. As we discussed in

the previous sections, in order to explain the anomalies at the 1 σ level, the coefficient of

the operator (τ̄ γµPLντ ) (c̄γµPLb) in eq. (4.33) should at least be ∼ 0.16 for a NP scale

Λ = ΛSM. This gives,

([C
(3)
lq ]′3313+([C

(3)
lq ]′3331)∗)Vcd+([C

(3)
lq ]′3323+([C

(3)
lq ]′3332)∗)Vcs+([C

(3)
lq ]′3333+([C

(3)
lq ]′3333)∗)Vcb

& 0.06

(
Λ2

TeV2

)
. (4.34)

We would now like to understand whether this condition is consistent with the other

measurements of B meson decays. We first consider the decay B → K∗ν̄ν, or in other

words, the operator (ν̄γµPLν) (s̄γµPLb). Contribution to this operator is given by(
[C

(3)
lq ]′p′r′23 + [C

(3)
lq ]

′ ∗
r′p′32

) (
ν̄p′γ

µPLνr′
)

(s̄γµPLb) . (4.35)
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Experimental bound on Br(B0 → K∗ 0ν̄ν) [66] then requires the Wilson coefficients to

satisfy (the SM prediction is taken from [67]),

−0.005

(
Λ2

TeV2

)
. [C

(3)
lq ]′3323 + [C

(3)
lq ]

′ ∗
3332 ≤ 0.025

(
Λ2

TeV2

)
. (4.36)

The first term on the left hand side of eq. (4.34) contributes to b→ d ν̄ ν processes. Using

the experimental bound on the Br(B0 → π0ν̄ ν) [66] and the corresponding SM prediction

from [68], we obtain

−0.018

(
Λ2

TeV2

)
. [C

(3)
lq ]′3313 + [C

(3)
lq ]

′ ∗
3331 . 0.023

(
Λ2

TeV2

)
. (4.37)

The same coupling can also be constrained by measurement of Br(Bu → τ ντ ). Assuming

the maximum allowed value of Br(Bu → τ ντ ) to be twice that of the SM [69] and, in the

absence of cancellations (see eq. (4.50) below), we get

−0.15

(
Λ2

TeV2

)
. [C

(3)
lq ]′3313 + [C

(3)
lq ]

′ ∗
3331 . 0.025

(
Λ2

TeV2

)
. (4.38)

Thus, the maximum contribution from the first two terms of eq. (4.34) subject to the

constraints in eqs. (4.36) and (4.37) is ≈ 0.03
(
Λ2/TeV2

)
. This requires

([C
(3)
lq ]′3333 + [C

(3)
lq ]

′ ∗
3333)Vcb & 0.03

(
Λ2

TeV2

)
. (4.39)

See also [70] for a related discussion. We now investigate whether the coupling ([C
(3)
lq ]′3333 +

[C
(3)
lq ]

′ ∗
3333) is constrained by other measurements. First of all, notice that the coefficient of

the operator (τ̄ γµPLτ)
(
b̄γµPLb

)
is given by

[C̃
(3)eedd
lq ]3333 + ([C̃

(3)eedd
lq ]3333)∗ = [C

(3)
lq ]′3333 + ([C

(3)
lq ]′3333)∗ . (4.40)

Direct searches of processes involving two τ leptons in the final state constrain this coupling

weakly [71]: ∣∣∣[C(3)
lq ]′3333 + ([C

(3)
lq ]′3333)∗

∣∣∣ < 2.6

(
Λ2

TeV2

)
. (4.41)

Moreover, as we show below, the same coupling also appears in the coefficient of the

operator (τ̄ γµPLτ) (t̄γµPLt). From eq. (D.1) and (D.2) we get, for the coefficient of this

operator, [
C̃

(3)eeuu
lq

]
3333

+
[
C̃

(3)eeuu
lq

]∗
3333

(4.42)

where,[
C̃

(3)eeuu
lq

]
3333

=
[
C

(3)
lq

]′
p′r′s′t′

(V e
L)†3p′ (V

e
L)r′3 (V u

L )†3s′ (V
u
L )t′3

=
[
C

(3)
lq

]′
3333
|Vtb|2 +

[
C

(3)
lq

]′
3323

VtsV
∗
tb +

[
C

(3)
lq

]′
3332

VtbV
∗
ts

+
[
C

(3)
lq

]′
3311
|Vtd|2 +

[
C

(3)
lq

]′
3313

VtdV
∗
tb +

[
C

(3)
lq

]′
3331

VtbV
∗
td

+
[
C

(3)
lq

]′
3322
|Vts|2 +

[
C

(3)
lq

]′
3312

VtdV
∗
cb +

[
C

(3)
lq

]′
3321

VcbV
∗
td . (4.43)
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The 2nd, 3rd, 5th and 6th terms in eq. (4.43) are small because of eqs. (4.36) and (4.37).

All the other terms which are of the form [C
(3)
lq ]′33ij , i, j = 1, 2 are constrained by direct

searches of τ τ final state (taking into account the enhancement of the di-jet → ττ cross-

section compared to that of b̄ b → τ+ τ− due to larger parton distribution functions, we

get bounds which are stronger than eq. (4.41) by a factor of ∼ 2 for ([C
(3)
lq ]′3322 + c.c) to a

factor of ∼ 8 for ([C
(3)
lq ]′3311 + c.c)). Thus, the only term which remains is of the form

([
C

(3)
lq

]′
3333

+
[
C

(3)
lq

]′ ∗
3333

)
|Vtb|2 . (4.44)

This term, once the top quarks in the operator (τ̄ γµPLτ) (t̄γµPLt) form a loop and are

attached to Z, contributes to ∆gτL [72]. As ∆gτL is very strongly constrained, see eq. (4.25),

this provides a stringent constraint on the coupling of eq. (4.44). Indeed, from eq. (E.9) in

appendix E, we find

∣∣∣[C(3)
lq ]′3333 + [C

(3)
lq ]

′ ∗
3333

∣∣∣ . 0.017

Vcb

(
Λ

TeV

)2 1

1 + 0.6 log Λ
TeV

, (4.45)

which clearly rules out the possibility of explaining RD,D∗ anomalies by this term, unless

there are other contributions to the modifications of the Z couplings making it compatible

with the experimental observations.

It is worth mentioning that in our discussion so far we have made the assumption that

no other operator is present except the one required for the RD,D∗ anomaly. The presence

of other operator(s) can however help evade some of these constraints [73]. For example,

one possibility is to assume the presence of the singlet operator

Ldim6 ⊃ − 1

Λ2

∑
p′r′s′t′

[C
(1)
lq ]′p′r′s′t′

(
l̄′p′γµl

′
r′
) (
q̄′s′γ

µq′t′
)

+ h.c. (4.46)

which, for appropriate values of the WC, can cancel the large contribution from the triplet

operator both in b→ s ν̄ ν [73] and ∆gτL [72, 74]. However, NP contributions to ∆gτL, ∆gνL
and ∆gτW cannot be cancelled simultaneously. This can be understood in the following

way. Note that, while the operator [O(3)
lq ]′ generates the operator [O(3)

φl ]′ (and not [O(1)
φl ]′)

through RG running, the operator [O(1)
lq ]′ generates the operator [O(1)

φl ]′ (and not [O(3)
φl ]′).

The operator [O(3)
φl ]′ contributes to ∆gτL and ∆gνL with opposite signs (see eq. (4.13))while

[O(1)
φl ]′ contributes to them with the same sign. Thus, taking into account constraints from

∆gνL, ∆gτL and ∆gτW , we get (see appendix E for details)

∣∣∣[C(3,1)
lq ]′3333 + [C

(3,1)
lq ]

′ ∗
3333

∣∣∣ . 0.025

Vcb

(
Λ

TeV

)2 1

1 + 0.6 log Λ
TeV

. (4.47)
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This makes the explanation of the RD,D∗ anomalies by the third term of eq. (4.34) impossi-

ble even in the presence of the operator of eq. (4.46). This leaves us with two possibilities:

I. The anomaly is explained by the second term in eq. (4.34). The tension with the

Br(B0 → K∗ 0ν̄ν) in eq. (4.36) is assumed to be cured by cancellation against the

contribution of the operator in eq. (4.46). However, in this case, the flavour structure

of the BSM sector must be such that the last term of eq. (4.34) is smaller than the

second by at least factor of ∼ 3.

II. The other possibility is to assume the presence of appropriate UV contribution at the

matching scale that takes care of the ∆gτ,νL constraints. In this case, one can explain

the anomalies by the third term of eq. (4.34) alone.

As we will see in section 5.2 and 5.3, where we study the explanation of the RD,D∗ anomalies

within the partial compositeness framework, elements of both the above mechanisms can

in principle be present there.

Before concluding this section, we would like to comment on a few observables which do

not provide relevant constraints at this moment, but may become important in the future.

• b→ sττ transition. The coefficient of the operator (τ̄ γµPLτ) (s̄γµPLb) is given by

−([C
(3)
lq ]′3323 + ([C

(3)
lq ]

′ ∗
3332) . (4.48)

Now we assume that we are in scenario (I) where B → K∗ν̄ν transition is cancelled

by the singlet operator, and eq. (4.34) is saturated by the second term. Then, in the

standard notation, we get for the WCs, ∆Cτ9 = −∆Cτ10 = −35, with the correspond-

ing Lagrangian:

Lb→sττ = −35
4GF√

2
VtbV

∗
ts

αem
4π

[τ̄ γµ(1− γ5)τ ][s̄γµPLb] . (4.49)

giving rise to large enhancement in Bs → τ+τ− (by a factor of ∼ 50 compared

to the SM in the branching fraction) and B → K/K∗ τ+τ− decays (by a factor

of ∼ 60 (forK), 75 (forK∗) compared to the SM in the branching fraction). It is

interesting to note that large enhancement in Br(Bs → τ+τ−) was also proposed as

a possible solution to the like-sign di-muon charge asymmetry observed in one of the

experiments in Tevatron [75, 76].

• b → uτν transition. In this case, the operator (τ̄ γµPLν) (ūγµPLb) is generated with

the Wilson coefficient:

−
(

2[C̃
(3)eνud
lq ]3r13 + 2([C̃

(3)νedu
lq ]r331)∗

)
(τ̄ γµPLνr) (ūγµPLb)

= −2
(

([C
(3)
lq ]′3313 + ([C

(3)
lq ]′3331)∗)Vud + ([C

(3)
lq ]′3323 + ([C

(3)
lq ]′3332)∗)Vus

+([C
(3)
lq ]′3333 + ([C

(3)
lq ]′3333)∗)Vub

)
× (τ̄ γµPLντ ) (ūγµPLb) (4.50)

where, we have again used νLτ = [V ν
L ]3rνr, and assumed that the NP Wilson co-

efficients, [C
(3)
lq ]′p′r′s′t′ , are diagonal in the Lepton flavours. Assuming that we have
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both singlet and triplet operators, the b → s(d)νν transitions do not lead to any

constraints. Then, if the second (third) term in eq. (4.34) is responsible for RD,D∗

anomalies (i.e., saturates the inequality), we get

Lb→uτν ≈ −0.2(0.1)
4GF√

2
Vub (τ̄ γµPLντ ) (ūγµPLb) , (4.51)

which leads to approximately 45% (20%) increase in Br(Bu → τ ντ ). Instead, if

one assumes that the first term in eq. (4.34) is responsible for RD,D∗ anomalies and

saturates the inequality, the corresponding NP coupling for b→ uτν becomes,

Lb→uτν ≈ −4
4GF√

2
Vub (τ̄ γµPLντ ) (ūγµPLb) , (4.52)

which is obviously ruled out by experiment. Thus, even in the presence of cancel-

lation in b → d ν̄ ν, an explanation of RD,D∗ by the first term in eq. (4.34) seems

very unlikely.

Similar analysis can also be done for the scalar, pseudo-scalar and tensor operators.

Since the scalar and pseudo-scalar operators alone cannot explain the anomalies because

of the strong constraint from Bc → τν (see section 3.2), we do not discuss them anymore.

The tensor operator, [C
(3)
lequ]′p′r′s′t′

(
l̄′
j
p′σ

µνe′r′
)
εjk

(
q̄′
k
s′σµνu

′
t′

)
, on the other hand, is not

affected by the process Bc → τν, and generates, along with the charged current operator

which is relevant for RD(∗) , also neutral current operators involving up-type quarks.

5 Going beyond the dimension-6 analysis: partial compositeness

In the previous section, we illustrated that some other processes e.g., B → K∗ν ν, Z τ τ

and Z ν ν couplings can provide stringent restrictions on the possible explanations of RD
and RD∗ anomalies. It would be interesting also to study the correlations with the various

∆F = 2 observables where the constraints on NP are particularly strong. Such an analysis

requires specific assumptions on the underlying UV theory, or some power-counting rules.

As we discussed before, explanations for the RD and RD∗ anomalies call for NP close to the

TeV scale, which is also expected for the naturalness of the Higgs mass. This coincidence of

scales advocates for the speculation of a common origin of these two seemingly unrelated

phenomena. This motivates us to consider the Composite Higgs paradigm [77], and, in

particular, the models where fermion masses are generated via the Partial Compositeness

(PC) mechanism [78]. In fact, recently there has been a lot of effort invested in analysing the

B-meson anomalies within this framework [19–21, 24–27], all of which, however, focusses

on specific models. A novel feature of our study would instead be to carry out the analysis

in the EFT language, emphasising the correlations among the various observables. In

particular, our aim would be to identify the key features that these models should possess

in order to satisfy the experimental data. Our main results will be independent of the

concrete realisation of PC, and are thus expected to be quite generic.
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5.1 Two-site Lagrangian

In this subsection we will briefly sketch the minimal Composite Higgs construction (for the

details see the orginal paper [79] and reviews [80, 81]) and the familiar reader can directly

proceed to the subsection 5.2. The global symmetry breaking pattern is taken as follows:

MCHM : U(1)X × SU(3)× SO(5)→ U(1)X × SU(3)× SU(2)L × SU(2)R. (5.1)

We will study the phenomenology within effective field theory approach, using so called two

site model [82]. The model consists of two sectors: the composite sector invariant under

SO(5)× SU(3)×U(1)X and the elementary sector invariant under SU(2)× SU(3)×U(1)Y.

The SM gauge symmetry is identified with the diagonal subgroup, where the “composite

hypercharge” generator is defined as follows

TY = TX + T 3
R. (5.2)

The Higgs boson appears as the Goldstone boson of the spontaneous symmetry breaking

SO(5)/SO(4). We will use the CCWZ formalism [83, 84] to parametrise the nonlinearly

realised symmetry SO(5)/SO(4) for the composite sector (in our discussion we will follow

closely the notations of [85]). Then the Higgs boson appears inside the usual Goldstone

boson matrix U which in the unitary gauge is equal to:

U = eiΠ(x) =

 13×3

cos hf sin h
f

− sin h
f cos hf

 , (5.3)

where h is the Higgs boson and the f is the scale of the global symmetry breaking. It is

customary to define two covariant derivatives (Maurer-Cartan 1-form)

−iU †DµU = dâµT
â + EaµT

a = dµ + Eµ (5.4)

decomposing it along the broken T â and unbroken T a generators. The Higgs kinetic term

and the mass of the gauge terms come from the two derivative term of the chiral Lagrangian

f2

4
Tr(dµd

µ) =
1

2
(∂µh)2 +

1

2

(
2m2

WW
+
µ W

−
µ +m2

ZZµZ
µ
)

sin2 h

f
. (5.5)

5.1.1 Fermion masses

Let us proceed to the fermion mass generation. For concreteness we consider the model

where the composite fields appear as a fiveplets of SO(5), i.e. MCHM5 model [79]. However

we will show explicitly that our results depend only mildly on this assumption and practi-

cally do not change for the other fermion embeddings. The fivepletes after the SO(5)/SO(4)

breaking can be decomposed as a fourplet of SO(4) and a singlet. The fourplet of SO(4) has

in its turn two SU(2)L doublets: one with the standard model quantum numbers denoted

as OSM,9 and another one OEX, where the doublets are related by SU(2)R transformations.

9We intend that it has the same quantum numbers as the elementary doublet under the SU(3)×SU(2)L×
U(1)Y subgroup.
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SU(3)co SU(2)co
L SU(2)co

R U(1)co
X

Õq1 3 2 2 2/3

Õq2 3 2 2 −1/3

Õu 3 1 1 2/3

Õd 3 1 1 −1/3

Õ`1 1 2 2 0

Õ`2 1 2 2 −1

Õe 1 1 1 −1

SU(3)el SU(2)el
L U(1)Y

el

q̃L 3 2 1/6

ũR 3 1 2/3

d̃R 3 1 −1/3

˜̀
L 1 2 −1/2

ẽR 1 1 −1

ν̃R 1 1 0

Table 2. Group representations and charges of the fermion composite resonances and elementary

fields.

The singlet operators are denoted as Õu,d,e and the full spectrum is

Õq1 =
(
Õq1EX Õ

q1
SM

)
, Õq1SM =

(
U

D

)
, Õq1EX =

(
χ5/3

χ2/3

)
5-plet Ψq1 =

(
Õq1 , Õu

)
(5.6)

Õq2 =
(
Õq2SM Õ

q2
EX

)
, Õq2SM =

(
U ′

D′

)
, Õq2EX =

(
χ−1/3

χ−4/3

)
5-plet Ψq2 =

(
Õq2 , Õd

)
(5.7)

Õ`1 =
(
Õ`1EX Õ

`1
SM

)
, Õ`1SM =

(
N

E

)
, Õ`1EX =

(
χ+1

χ0

)
5-plet Ψl1 =

(
Õl1 , ÕN

)
(5.8)

Õ`2 =
(
Õ`2SM Õ

`2
EX

)
, Õ`2SM =

(
N ′

E′

)
, Õ`2EX =

(
χ−1

χ−2

)
5-plet Ψl2 =

(
Õl2 , Õe

)
(5.9)

where the charges of the components of a SU(2)R doublet Õ =
(
Õ1, Õ2

)
under T 3

R are

equal to +1
2 and −1

2 respectively. The elementary fields are denoted as q̃L, l̃L, ũR, d̃R, ẽR.

Each field is a 3-vector in the flavour generation space and the subscript of χ field indicates

its electric charge.

The elementary SU(2)L doublet q̃L is embedded in the incomplete fiveplet of SO(5).

Thus, the group representations and charges of the fermion states are depicted in table 2.

Note that we have two composite doublets Õq1SM and Õq2SM which have the same quantum

numbers under the SM gauge group; similarly for the leptons.
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The symmetries of the composite sector are broken explicitly to the diagonal subgroup

by the mixing with the elementary sector, which is given by:

Lflavour = λqM∗q̃LU(h)Ψq1 + λ̃qM∗q̃LU(h)Ψq2 + λuM∗ũRU(h)Ψq1 + λdM∗d̃RΨq2

+ λlM∗ l̃LU(h)Ψl1 + λ̃lM∗ l̃LU(h)Ψl2 + λeM∗ẽRU(h)Ψl2 (5.10)

where the SM doublets where uplifted to incomplete 5-plets as follows:

λq q̃L ≡ λq [(0, qL), 0]

λ̃q q̃L ≡ λ̃q [(qL, 0), 0] , (5.11)

where we put zeros in all the missing components and (qL, 0) singles out the SO(4) multi-

plet. Note also that symmetries of the model allow us to further split λq mixing into two

independent parameters

λq q̃LU(h)Ψq1 →


[
λ

(4)
q q̃L

]
I
U(h)Ii [Oq1 ]i , where I = 1, . . . 5, i = 1, . . . 4[

λ
(1)
q q̃L

]
I
U(h)I5Ou

, (5.12)

where the sum over repeating indices is understood. Let us look at the fermion spectrum

before EWSSB. Due to the mixing λ we will have one massless SM state and one heavy

field with the mass M∗(1 + λ)/
√

1 + λ2, which becomes M∗ in the limit λ� 1. This leads

to the mixing between the elementary and composite states which can be described by the

mixing angles defined as follows:(
ψ̃

Õ

)
=

(
cos θψ − sin θψ
sin θψ cos θψ

)(
ψ′

O

)
(5.13)

with

sin θψ ≡ ŝ =
λ√

1 + λ2
, cos θψ ≡ ĉ =

1√
1 + λ2

, (5.14)

where ŝ, ĉ are the sine and cosine of the corresponding mixing angles. Then the SM Yukawa

coupling will scale as

yu,d ∼
sq1,2su,dM∗

f
. (5.15)

5.1.2 Vector fields

We are interested in the interactions between the SM fermions and the composite vector

fields. We will follow the vector formalism [85] (see for example the ref. [86] for the

comparison of various formalisms) for a spin-1 fields where it is assumed that the vector

fields transform non-homogeneously

ρ̃µ → Hρ̃µH† − iH∂µH†, (5.16)

where H is unbroken subgroup (SO(4)) transformation. Then the following interactions

are allowed by the CCWZ symmetries:

Lvec = − 1

4g2
∗
ρ̃aµν ρ̃

µν
a +

M2
∗

2g2
∗

(ρ̃aµ − Eaµ)2 + . . . (5.17)
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where g∗ is a strength of interactions between the composite fields and we have ignored

the higher derivative terms. The Lagrangian eq. (5.17) in the limit of vanishing Higgs vev

reduces to

Lvec = −1

4
ρ̃aµν ρ̃

µν
a +

M2
∗

2
ρ̃aµρ̃

µ
a −M2

∗
gel
g∗
ρ̃aµA

µ
a +

M2
∗

2

g2
el

g2
∗
AaµA

µ
a , (5.18)

where Aµa are the elementary vector fields. The interaction between ρ̃ and the composite

fermions can be deduced from the symmetries

Lferm = Ψ̄γµ (i∂µ + g∗ρ̃µ) Ψ, (5.19)

where ρ̃µ = ρ̃aµT
co
a and T co

a are the generators of the global symmetry group of the composite

sector.10 In order to get mass eigenstates vectors, a diagonalisation of the matrix of masses

and mixing is needed(
Aµ
ρ̃µ

)
→

(
cos θ − sin θ

sin θ cos θ

)(
ASMµ
ρµ

)
, cos θ =

g∗√
g2
∗ + g2

el

(5.20)

where ρ̃µ is an eigenstate with mass of M∗

√
1 + g2

el/g
2
∗ and the orthogonal ASMµ is the

massless state, that is identified with the SM gauge boson. Rotating to the mass eigenstate

basis we get

ψ̄′i

[√
g2
∗ − g2

[
ŝ†T co

a ŝ
]i
j
− g2√

g2
∗ − g2

[
ĉ†T el

a ĉ
]i
j

]
γµψ′jρaµ , (5.21)

where the first term comes from the mixing of the elementary and composite fermions

and the second term corresponds to the mixing between composite and elementary vector

bosons (eq. (5.20)). In this paper we are mainly interested in the flavour non universal

and flavour violating effects, so the contribution of the last term will be subleading since

g∗ � g and the non-universalities in ĉ ∼ 1 − ŝ2/2 have an extra ŝ supression. Note that

the eq. (5.21) is a generic prediction of the partial compositness and the various fermion

embeddings lead only to the generators T aco for the different group representations.

5.2 RD,D∗ from the composite electroweak resonances

We are interested in the dimension-6 four-fermion operators. These operators are generated

by the exchange of the composite vector resonances. Using the eq. (5.21) and assuming

g∗ � g we can see that the these operators at the dimension-6 level schematically take

the form
g2
∗

M2
∗

[
ψ̄′ ŝ†T co

a ŝ γ
µψ′
] [
ψ̄′ ŝ†T co

a ŝ γµψ
′
]
. (5.22)

Our aim would now be to understand the correlations among the flavour-changing ∆F = 2

operators and those that contribute to the RD(∗) anomalies. The effective Lagrangian for

the ∆F = 2 transitions can be written as

L∆F=2 = −const× g2
∗

M2
∗

(
ψ̄i L

[
V d†
L ŝ†q ŝqV

d
L

]i
j
γµ ψj L

)2

, (5.23)

10Of course, we can have different values of g∗ for SU(3), SO(5) and U(1)X parts of the global group.
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where V d
L is the rotation matrix for the left-handed quarks defined in eq. (4.15) and the

constant in front for the case of MCHM5 is equal to

const =
M2
∗

2g2
∗

(
1

3

g2
∗3

M2
∗3

+
1

2

g2
∗2

M2
∗2

+
4

9

g2
∗X

M2
∗X

)
. (5.24)

The first term inside the parenthesis corresponds to the contribution of the composite

gluon, the second to the SU(2)L,R triplets and the third to U(1)X vector bosons (the number

4/9 is fixed by the U(1)X charge assignment of the up-like multiplet Õq1 , see eq. (5.6)).

Experimental data on K̄-K, B̄d-Bd and B̄s-Bs mixings give the following constraints,11

∣∣∣∣[V d†
L ŝ†q ŝqV

d
L

]i
j

∣∣∣∣ . (M∗/TeV)

g∗
√

const


10−3 , from K̄-K mixing, i.e., i = 1, j = 2 [87]

1.1× 10−3 , from B̄d-Bd mixing, i.e., i = 1, j = 3 [88]

4× 10−3 , from B̄s-Bs mixing, i.e., i = 2, j = 3 [88],

(5.25)

where the numerical values are obtained by running the couplings to the scale M∗. Keeping

the above constraints from ∆F = 2 processes in mind, we now look at the b → cτν

transitions. We assume that the NP contribution arises from the exchange of a composite

vector field which is a triplet of SU(2)L. This generates the interaction Lagrangian

Lb→c τ ν = − g2
∗2

2M2
∗2

(
τ̄L

[
V e†
L ŝl

†ŝlV
ν†
L

]3

3
γµ ντL

)(
c̄L

[
V u†
L ŝq

†ŝqV
d
L

]2

3
γµ bL

)
= − g2

∗
2M2
∗

(
τ̄L

[
V e†
L ŝl

†ŝlV
ν
L

]3

3
γµ ντL

)(
c̄L

[
VCKMV

d†
L ŝq

†ŝqV
d
L

]2

3
γµ bL

)
, (5.26)

where we have assumed g∗2 = g∗,M∗2 = M∗ and the roational matrices are defined in

eq. (4.15). If we decide to remain agnostic about the leptonic sector, we can still use the

loose upper bound ∣∣∣∣[V e†
L ŝl

†ŝlV
ν
L

]3

3

∣∣∣∣ < 1 (5.27)

which is satisfied even for maximal possible τ compositeness. Thus, for the explanation of

RD and RD∗ anomalies at the 1 σ level, we need[
VCKMV

d†
L ŝq

†ŝqV
d
L

]2

3
& 0.2

(
M∗/g∗
TeV

)2

, (5.28)

where the numerical factor 0.2 corresponds to ∆CτVL = −∆CτAL = 0.08 (see figure 1).

Expanding eq. (5.28), we get

Vcd

[
V d†
L ŝq

†ŝqV
d
L

]1

3
+Vcs

[
V d†
L ŝq

†ŝqV
d
L

]2

3
+Vcb

[
V d†
L ŝq

†ŝqV
d
L

]3

3
& 0.2

(
M∗/g∗
TeV

)2

=⇒ |Vcd|
∣∣∣∣[V d†

L ŝq
†ŝqV

d
L

]1

3

∣∣∣∣+|Vcs| ∣∣∣∣[V d†
L ŝq

†ŝqV
d
L

]2

3

∣∣∣∣+|Vcb| ∣∣∣∣[V d†
L ŝq

†ŝqV
d
L

]3

3

∣∣∣∣& 0.2

(
M∗/g∗
TeV

)2

11Here, we have assumed that only one ∆F = 2 operator (the operator Q1 in the basis of [87]) is

generated. In principle, other operator(s) may also be generated at the matching scale, and cancel part of

the contribution from Q1. However, barring large accidental cancellations, our results should always hold.
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Using the upper bounds on

∣∣∣∣[V d†
L ŝq

†ŝqV
d
L

]1

3

∣∣∣∣ and

∣∣∣∣[V d†
L ŝq

†ŝqV
d
L

]2

3

∣∣∣∣ from eq. (5.25) and the

trivial inequality
∣∣∣[V d†ŝq

†ŝqV
d
]3

3

∣∣∣ ≤ 1, we now get

1.1× 10−3 |Vcd|
(M∗/TeV)

g∗
√

const
+ 4× 10−3 |Vcs|

(M∗/TeV)

g∗
√

const
+ |Vcb| & 0.2

(
M∗/TeV

g∗

)2

(5.29)

As the first two terms are negligibly small compared to the third term (for small

(M∗/TeV)/g∗) on the left hand side, we finally get

M∗/g∗ . 0.45 TeV (5.30)

Note that partial compositeness automatically selects the scenario (II) (see discussion after

eq. (4.47)) for fitting the RD,D∗ anomalies. This solution, as mentioned in section 4.3,

requires the presence of additional UV contributions to protect gτ,νL couplings of the Z

boson. In the appendix F, we explicitly show how this can be achieved. Interestingly, the

generated operators automatically satisfy the condition of scenario (I) due to the SO(4)

structure of the model.

We would like to make a few comments here regarding the robustness of this result

and its applicability to the various models employing partial compositeness. The only

assumption that we have made in deriving the eq. (5.30) is that the charged current operator

(see eq. (5.26)) is generated by a vector field, which is a triplet of electroweak SU(2)L. The

rest of the discussion is completely model independent and applies to various embeddings

of the SM fermions into the composite multiplets, choices of the off-diagonal elementary-

composite mixing parameters ŝ, and is practically independent of the mass of the composite

gluon and the mass of the U(1)X vector. It should also be emphasised that we have been

completely agnostic of the dynamics that allows the model under consideration to satisfy

the constraints from ∆F = 2 processes namely, those given in eq. (5.25). For example, in

anarchic partial compositness, where the left-handed quark mixing parameters scale as the

CKM matrix elements

[ŝq]i ∼ Vti (5.31)

these bounds are roughly M∗ & 10–20 TeV [89, 90],12 which is a too high scale to explain the

RD and RD∗ anomalies. However the scale of the compositeness can be lowered and made

consistent with the RD(∗) anomalies by invoking additional flavour symmetries, for example

U(2) [17, 91, 92]. Interestingly the bounds from the direct searches at the LHC [93, 94] on

the composite partners of the top quarks are still in the range of M∗ & 1.2 TeV, making

them consistent with the requirement of eq. (5.30)

The constraint in eq. (5.30), in general, can pose serious difficulties with the elec-

troweak precision observables and measurement of Higgs’s couplings to electroweak vector

bosons. Indeed the constraints from electroweak precision tests [95–97] require the scale of

12The strongest constraint in this case comes from the εK bound.
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compositeness to be & 1.2 TeV in order to satisfy the data at 2σ level. At the same time

the mass of the vector resonance is related to the scale of compositeness, f , as

M2
∗ = aρg

2
∗f

2, (5.32)

where aρ is a number of O(1). In an explicit two-site construction, aρ = 1/
√

2 (see for

example [81]) so that the compositeness scale is constrained to f . 0.64 TeV. This is incom-

patible with the bound from electroweak precision measurements mentioned above. It may

however be possible to accommodate the electroweak precision observables by additional

UV contributions, see for example, [98–100].

The tension with meson mixing data makes it interesting to think of other possibilities

of enhancing the contributions to RD and RD∗ without modifying the ∆F = 2 observables

considerably. This can be partially achieved in scenarios with composite vector leptoquarks

which we discuss in the next section.

5.3 Leptoquark contribution

The composite vector leptoquark scenario in connection to the B meson anomalies was

first proposed in [17, 20, 24]. In this construction, the global symmetry of the composite

sector is extended from SO(5) × SU(3) (where SU(3) is weakly gauged later and becomes

the SU(3) of QCD) to SO(5) × SU(4). The composite gluon, which is an octet of SU(3),

lies inside the 15 dimensional adjoint of SU(4) and is accompanied by two SU(3) triplets

3 + 3̄ (Ṽ(3,1) 2
3

+ Ṽ ∗
(3̄,1)− 2

3

) and a singlet (B̃(1,1)0), where the subscripts of vectors indicate

the representations under the SU(3)×SU(2)L×U(1)Y subgroup. The hypercharge is given

by the following combination of group generators: Y =
√

2
3T15 + T 3

R + X and under the

SM gauge group these fields. The Lagrangian is the same as in section 5.1, apart from

the presence of Ṽ(3,1) 2
3

and B̃(1,1)0 vector bosons. In particular, in the composite sector,

leptoquarks couple to fermion currents in which there are quark and lepton resonances.

Indeed, from eq. (5.19) one gets also the interaction

g∗√
2
ṼµÕ

q

SMγ
µÕlSM (5.33)

where g∗ is the strong coupling for the SU(4) of the composite sector. This interaction

after integrating out the heavy fermions reduces to
g∗√

2
ψ̄′q

[
ŝq
†ŝl

]
γµψ′lṼµ . (5.34)

Here we focus only on the relevant interaction term for RD,D∗ anomalies,

LLQ = −g∗
(
q̄′L i

[
ŝ†q ŝl

]i
j
γµ l
′
L j

)
V µ
LQ . (5.35)

Moving to the mass basis the effective Lagrangian for the b → c τ ν processes can now be

written as,

Lb→c τ ν = − g2
∗

2M2
∗

(
c̄L

[
VCKMV

d†
L ŝq

†ŝlV
ν
L

]2

3
γµ ντL

)(
τ̄L

[
V e†
L ŝl

†ŝqV
d
L

]3

3
γµ bL

)
=
Fierz − g2

∗
2M2
∗

[
VCKMV

d†
L ŝq

†ŝlV
ν
L

]2

3

[
V e†
L ŝl

†ŝqV
d
L

]3

3
(c̄L γ

µ bL) (τ̄L γ
µ ντL) . (5.36)
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In order to find the upper bound on the coefficient of the operator (c̄L γ
µ bL) (τ̄L γ

µ ντL),

we need to find an upper bound on
[
VCKMV

d†
L ŝq

†ŝlV
ν
L

]2

3
consistent with the data on B

meson mixing. As before, we have used the trivial inequality
[
V e†
L ŝl

†ŝqV
d
L

]3

3
≤ 1.

Without loss of generality, we now go to the basis of elementary and composite fields

in which the lepton compositeness matrix has the following form:

ŝl =

 ∗ 0 0

∗ ∗ 0

∗ ∗ ∗

 , (5.37)

where ∗ stands for non-zero entry. We now assume that only the third family of leptons has

a strong mixing with the composite sector i.e. only (ŝl)33 ∼ 1 and the rest of the elements

are much smaller. In this case, the WC in eq. (5.36) is controlled by,[
VCKMV

d†
L ŝq

†
]2

3
= Vcd

[
V d†
L ŝq

†
]1

3
+ Vcs

[
V d†
L ŝq

†
]2

3
+ Vcb

[
V d†
L ŝq

†
]3

3
. (5.38)

Our aim now is to understand how big
[
VCKMV

d†
L ŝq

†
]2

3
can be, consistently with an almost

diagonal
[
V d†
L ŝq

†ŝqV
d
L

]
(as the off-diagonal elements are constrained to be . 10−3, see

eq. (5.25)). Similar to the leptonic elementary-composite mixing matrix ŝl, we can also

make ŝq triangular by suitable field redefinitions of the elementary fields. Thus, without

loss of generality, we can write,

ŝq =

 s11 0 0

s21 s22 0

s31 s32 s33

 , (5.39)

Let us now consider the special case where only the third generation quark mixes strongly

with the composite sector so that,

s33 � sij , i or j 6= 3 , (5.40)

In this case, while [V d†
L ŝq

†]33 can be close to unity, the other terms in eq. (5.38), in order

to be consistent with a diagonal
[
V d†
L ŝq

†ŝqV
d
L

]
, must scale as

[
V d†
L ŝq

†
]1

3
∼ s31(sij)

2

(s33)2
,
[
V d†
L ŝq

†
]2

3
∼ s32(sij)

2

(s33)2
. (5.41)

It can be noticed that these elements have an additional suppression of (sij/s33) compared

to the naive expectation. This renders the contributions of the first two terms of eq. (5.38)

subdominant. Thus, adding the contribution of the electroweak triplet from eq. (5.29), for

the explanation of RD,D∗ anomalies at the 1 σ level, we must have

2Vcb & 0.2

(
M∗/g∗
TeV

)2

=⇒ M∗/g∗ . 0.63 TeV , (5.42)
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where we have assumed that the electroweak triplet and the leptoquarks have the same

mass and coupling. Hence, the role of leptoquarks is just to double the contribution to

RD,D∗ without worsening the other low energy observables. This increase of the upper

bound on the scale of compositeness by a factor of
√

2 helps ameliorate the constraints

from S and T parameters which are now in agreement at almost 2 σ level.13

It is worth emphasising that the result of eq. (5.42) was derived assuming the hierar-

chical nature (see eq. (5.40)) of the mixing matrix ŝq and the constraint of eq. (5.42) can be

relaxed if this assumption is not valid. For example, if we assume that the matrix ŝq is not

hierarchical but unitary, then
[
V d†
L ŝq

†
]

is again unitary and
[
V d†
L ŝq

†ŝqV
d
L

]
is automatically

diagonal. However, this only implies that([
V d†
L ŝq

†
]1

3

)2

+

([
V d†
L ŝq

†
]2

3

)2

+

([
V d†
L ŝq

†
]3

3

)2

= 1 . (5.43)

Now, choosing
[
V d†
L ŝq

†
]2

3
∼ 1 and the other two elements to be very small, we get from

eq. (5.38) that
[
VCKMV

d†
L ŝq

†
]2

3
∼ 1. In this case, eq. (5.42) gets modified to

(1 + Vcb) & 0.2

(
M∗/g∗
TeV

)2

→M∗/g∗ . 2.28 TeV . (5.44)

This very conspired scenario could be realised in U(3) symmetric models [92, 101] where

ŝq ∝ 13×3. Indeed, if
[
VCKMV

d†
L ŝq

†
]2

3
∼ 1, the constraint on the composite scale becomes

that of eq. (5.44). However in this case [92] we have to face the constraints from the

modification of the Z decays to hadrons requiring (see table 4 of [92])

M∗ & 6
√
g∗TeV, (5.45)

for the composite fermions masses. Assuming the vector fields are at the same scale, fitting

the anomalies becomes practically impossible.

6 RK,K∗ anomalies

In this section, we investigate very briefly whether the RK,K∗ anomalies can be explained

within the composite Higgs framework (see [18–22, 24–28, 102] for related discussion). It

is known that the discrepancy of the experimental data on RK and RK∗ with the SM

expectations can be alleviated by the following operator [103–108]14

Lb→sµµ = − 1

Λ2
(s̄γµPL b)(µ̄γ

µPL µ) , (6.1)

with 1/Λ2 & 1/(38 TeV)2 at the 1σ level.

13Note that if we assume g∗4
M∗4

> g∗2
M∗2

i.e., smaller masses of the SU(4) resonances than those of the SO(4)

fields, we can be in the situation where the composite leptoquark contribution dominates in RD,D∗ and the

tension with electroweak precision observables can be relaxed even further.
14Actually, the experimental value of RLow

K∗ cannot be explained simultaneously with RK and RCentral
K∗

by this operator (see, for example, the upper left panel of figure 6 in [108]), and either additional light

fields [108] or tensor operators [109] are required.
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In models with partial compositeness, such an operator can be generated by the ex-

change of either a neutral Z ′ vector boson or a vector leptoquark. We examine the flavour

structures of these two cases and identify the features that can explain the data.

Z′ contribution. Following the analysis of section 5.2, neutral composite bosons ρ3
L,R, ρX

will generate

g2
∗2

2M2
∗2

(
s̄ [V d †

L ŝ†q ŝqV
d
L ]23γµPL b

)(
µ̄ [V e †

L ŝ†l ŝlV
e
L ]22γ

µPL µ
)

(6.2)

which, after implementing the B̄s-Bs mixing constraint from eq. (5.25), gives (assuming

V e
L = 1 and diagonal ŝl),

g∗
(M∗/TeV)

1√
const

s2
µ & 0.35, (6.3)

for the explanation of the RK,K∗ anomaly, where ‘const’ is defined in eq. (5.24) and

g∗,2 = g∗, M∗,2 = M∗. This inevitably requires large muon compositeness. Let us com-

pare our results with the discussion in the previous two sections 5.2 and 5.3. Constraints

from ∆F = 2 processes require an almost diagonal
[
V d†
L ŝ†ŝV d

L

]
matrix, which forces the

operator in eq. (6.2) to be small as well. However, note that if
[
V d†
L ŝ†ŝV d

L

]
23

= ε (ε being

some small parameter), ∆F = 2 observables scale as ε2 and RK as ε. It is precisely this

extra power of ε suppression that can make the explanation for the two measurements

consistent [20].

Leptoquark contribution. The flavour structure in this case is different from the Z ′

contribution and the relevant operator in given by

g2
∗

M2
∗

(
s̄ [V d †

L ŝ†q ŝlV
e
L ]22γµPL µ

)(
µ̄ [V e †

L ŝ†l ŝqV
d
L ]23γ

µPL b
)
, (6.4)

In this case correlations with the other low energy measurements are less strict and

as an illustration we will consider two extreme scenarios (for simplicity we will assume

diagonal ŝl,q)

• Flavour trivial lepton sector. In this case we assume V e
L = 1 and this obviously evades

all the constraints from LFV processes like τ → 3µ. In such a scenario, the main

constraint comes from Bs mixing. Using the bound from eq. (5.25), we get

sµ ≥ 0.1(const)1/8

(
M∗/TeV

g∗

)3/4

, (6.5)

where ss,b are equal to the maximal possible values allowed by the B̄s − Bs mixing.

Interestingly, even in this case the bound becomes less strict compared to the one

obtained for the Z ′ contribution (see eq. (6.3)). However, the scale of the muon

compositeness must still be quite high.
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• Flavour trivial down quarks [24]. If we assume V d
L = 1, RK can be generated solely by

the leptoquark contribution and Z ′ mediated diagrams vanish. Interestingly, we can

correlate the RK with the flavour violating τ decay τ → 3µ arising from the operator:

const× g2
∗

M2
∗

(
τ̄
[
V e†
L ŝ†l ŝlV

e
L

]3

2
γµPLµ

)(
µ̄
[
V e†
L ŝ†l ŝlV

e
L

]2

2
γµPLµ

)
(6.6)

where now

const =
1

2

M2
∗

g2
∗

(
g2
∗

2M2
∗2

+
3g2
∗3

8M2
∗3

+
g2
∗X

4M2
∗X

)
, (6.7)

comes from the contributions of the ρ3
L, ρ

3
R, ρX and ρT15 and we have assumed that

the λl mixing is the dominant one (see appendix F). Assuming that the mixing with

the first generation is small, we focus only on the µ − τ rotations with the mixing

angle θ. The experimental bound on τ → 3µ [110] gives

const

2

g2
∗

M2
∗
s2
τ sin 2θ

[
cos2 θs2

µ + sin2 θs2
τ

]
≤ 4× 10−3

TeV2 (6.8)

If the angle θ is small, say θ ∼ sµ/sτ � 1, then the upper bound on the muon

compositeness becomes

sµs
1/3
τ ≤ 0.1 (const)−1/3

(
M∗/TeV

g∗

)2/3

. (6.9)

On the other hand, the bound on RK implies

sssbsµsτ sin 2θ ≥ 10−3

(
M∗/TeV

g∗

)2

(6.10)

If sb ∼ 1 and sτ ∼ 1 we see that there is no tension between the RK data and the

τ → 3µ data; in fact eq. (6.9) translates into a bound on the compositeness scale of

the strange quark

ss ≥ 0.02

(
M∗/TeV

g∗

)2/3

, (6.11)

which is similar to the naive expectations for the left-handed strange quark compos-

iteness ss ∼ Vts.

Thus we can conclude that it is possible to fit RK as well within the partial compositeness

paradigm.

7 Summary and outlook

In this paper, we have studied various aspects of the RD and RD∗ anomalies in depth. The

main objective of our work has been to understand potential correlations of RD,D∗ to other

∆F = 1 and ∆F = 2 processes that give rise to constraints on the NP explanations, and

thus allowing us to identify the desired properties of the underlying UV theory.
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After reviewing the possible roles of vector, axial-vector, scalar, pseudo-scalar and ten-

sor operators in solving these anomalies (sections 2 and 3), we have investigated (section 4)

how the linearly realised SU(2)×U(1) symmetry can give rise to correlations to other well

measured ∆F = 1 processes, e.g. B → K∗ ν ν, B → ρ ν ν, B → τ ν and couplings like

Z τ τ , Z ν ν and W τ ν, posing serious difficulties in explaining RD,D∗ .

We then extend our analysis to composite Higgs paradigm with the partial compos-

iteness mechanism to generate the fermion masses. In this case, because of an available

power-counting rule, the ∆F = 2 processes, namely K, Bd and Bs mixing measurements

turn out to be extremely constraining. We show that generically the models with partial

compositeness can offer an explanation of these anomalies only if the scale of compositeness

is below 0.90 (0.64) TeV for scenarios with (without) leptoquarks. While the requirement

of such a low scale is favoured by the electroweak hierarchy problem, it is problematic

from direct searches, and also indirect electroweak precision measurements unless some

additional cancellations are involved.

Finally, in section 6 we also comment on the possibility of explaining the other neutral

current B-meson anomalies RK and RK∗ in this framework.

As the charged current anomalies require a NP scale which is rather low (∼TeV), they

might as well be the harbingers of new physics at the TeV scale. It is thus important to

critically examine the models that can provide simultaneous solutions to different problems

at the TeV scale. At this point, it seems that the manifestation of New Physics, if any,

in the dynamics of flavour transitions is likely to be quite non-generic and subtle. Thus

the interpretation of any NP signal would require a large amount of data with a high

precision. It is encouraging that such a large amount of data are expected to come from

both the LHCb and Belle-II in the near future, and hopefully, we are not far from an

exciting discovery.
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A Decay width of the Bc meson

The differential decay rate for the process B−c (p)→ τ−(k1) + ν̄τ (k2) is given by

dΓ

dΩ
=

1

32π2

|k1|
m2
Bc

|M|2

where, k1 is the 3-momentum of the τ in the rest frame of the Bc meson, and

|k1| =
m2
Bc
−m2

τ

2mBc

.
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The matrix element is given by,

iM=
2GFVcb√

2

[
CcbτAL 〈0|c̄γµγ5b|Bc(p)〉ū(k1)(iγµPL)v(k2)+CcbτPL 〈0|c̄γ5b|Bc(p)〉ū(k1)(iPL)v(k2)

+CcbτAR〈0|c̄γµγ5b|Bc(p)〉ū(k1)(iγµPR)v(k2)+CcbτPR〈0|c̄γ5b|Bc(p)〉ū(k1)(iPR)v(k2)

]
(The operators Ocb`νVL,VR , Ocb`νSL,SR and Ocb`νTL,TR do not contribute because the corresponding

matrix elements, 〈0|c̄γµb|Bc〉, 〈0|c̄b|Bc〉 and 〈0|c̄σµνb|Bc〉 identically vanish)

=
2GFVcb√

2
ifBc

[
CcbτAL p

µ ū(k1)(iγµPL)v(k2)−CcbτPL
m2
Bc

mb+mc
ū(k1)(iPL)v(k2)

+CcbτAR p
µ ū(k1)(iγµPR)v(k2)−CcbτPR

m2
Bc

mb+mc
ū(k1)(iPR)v(k2)

]
(

In the above step, we have used 〈0|c̄γµγ5b|Bc(p)〉= ifBc
pµ, and

〈0|c̄γ5b|Bc(p)〉=−ifBc

m2
Bc

mb+mc

)
=

2GFVcb√
2

ifBc

[
CcbτAL mτ ū(k1)(iPL)v(k2)−CcbτPL

m2
Bc

mb+mc
ū(k1)(iPL)v(k2)

+CcbτARmτ ū(k1)(iPR)v(k2)−CcbτPR
m2
Bc

mb+mc
ū(k1)(iPR)v(k2)

]
=

2GFVcb√
2

imτfBc

[(
CcbτAL−CcbτPL

m2
Bc

mτ (mb+mc)

)
ū(k1)(iPL)v(k2)

+

(
CcbτAR−CcbτPR

m2
Bc

mτ (mb+mc)

)
ū(k1)(iPR)v(k2)

]
This gives,

|M|2 =

[
2G2

F |Vcb|2
][
m2
τf

2
Bc

][
m2
Bc

(
1− m2

τ

m2
Bc

)]
×∣∣∣∣∣CcbτAL −

m2
Bc

mτ (mb +mc)
CcbτPL

∣∣∣∣∣
2

+

∣∣∣∣∣CcbτAR − m2
Bc

mτ (mb +mc)
CcbτPR

∣∣∣∣∣
2


Thus, the partial decay rate is given by,

ΓBc→τν =
1

16πmBc

(
1− m2

τ

m2
Bc

)
|M|2

=
1

8π
G2
F |Vcb|2f2

Bcm
2
τmBc

(
1− m2

τ

m2
Bc

)2

×∣∣∣∣∣CcbτAL −
m2
Bc

mτ (mb +mc)
CcbτPL

∣∣∣∣∣
2

+

∣∣∣∣∣CcbτAR − m2
Bc

mτ (mb +mc)
CcbτPR

∣∣∣∣∣
2
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Figure 6. The Br(Bc → τ ντ ) as a function of CτAL and CτPL. The upper bounds, 30% and 10% on

this branching fraction from [53] and [54] respectively are also shown. The SM branching ratio is

≈ 2%. We have used fBc = 0.434± 0.015 GeV [111] in our calculation.

which gives, for the branching ratio,

B(B−c → τ−ν̄τ ) =
1

8π
G2
F |Vcb|2f2

Bcm
2
τmBcτBc

(
1− m2

τ

m2
Bc

)2

×(∣∣∣∣CcbτAL−
m2
Bc

mτ (mb+mc)
CcbτPL

∣∣∣∣2+

∣∣∣∣CcbτAR− m2
Bc

mτ (mb+mc)
CcbτPR

∣∣∣∣2
)

(A.1)

The variation of Br(Bc → τ ντ ) as a function of CτAL or CτPL is shown in figure 6.

B Form factors for Bc → J/ψ and Bc → ηc decay processes

B.1 Vector and axial-vector form-factors

B.1.1 Bc → ηc

The Bc → ηc matrix elements are parametrised in the same way as the B → D matrix

elements, see for example section 4 of [51]. Unfortunately, only preliminary lattice results

are available for Bc → ηc matrix elements [112]. In figure 7, we show the pQCD estimates

of the F+ and F0 form-factors from [16]. The preliminary lattice results from [112] are

also overlaid.

The functional form of F0 and F+ is given by

f = f0 exp
(
a q2 + b (q2)2

)
(B.1)

where f can be either F0 or F+. Then f0 = 0.48 ± 0.06, a0(+) = 0.037(0.055),

b0(+) = 0.0007(0.0014).

〈ηc(pηc ,Mηc)|c̄γµb|B̄(pBc ,MBc)〉=F+(q2)

[
(pBc+pηc)

µ−M2
Bc
−M2

ηc

q2
qµ
]

+F0(q2)
M2
Bc
−M2

ηc

q2
qµ (B.2)

〈ηc(pηc ,Mηc)|c̄γµγ5b|B̄(pBc ,MBc)〉= 0 (B.3)
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Figure 7. Form factors F0(q2)Bc→ηc and F+(q2)Bc→ηc from pQCD [16] and lattice [112].

B.1.2 Bc → J/ψ

Similarly, parametrisation of the different Bc → J/ψ matrix elements are the same as those

for B → D∗ matrix elements, see again [51] for the notations. The pQCD estimates [16]

for the Bc → J/ψ form-factors: V , A0, A1 and A2, are shown in figure 8. Preliminary

lattice results for V and A1 from [112] are also shown.

B.2 Tensor form-factors

As no estimate of the tensor form-factors exists in the literature, we use the quark level

equations of motion to relate them to the other form-factors. We show this explicitly below.

B.2.1 Bc → ηc

The tensorial form factors are given by

〈ηc(pηc ,Mηc)|c̄ iσµνb|B̄(pBc ,MBc)〉 = (pµBcp
ν
ηc − p

ν
Bcp

µ
ηc)

2FT (q2)

MBc +Mηc

(B.4)

〈ηc(pηc ,Mηc)|c̄σµνγ5b|B̄(pBc ,MBc)〉 = εµνρσpBcρpηcσ
2FT (q2)

MBc +Mηc

(B.5)

Multiplying the l.h.s. of eq. (B.4) by qµ and using iσµν = ηµν − γµγν we get,

qµ〈ηc|c̄iσµνb|B̄c〉 = qν〈ηc|c̄b|B̄c〉 − 〈ηc|c̄ /q γνb|B̄c〉 (B.6)

= 〈ηc|c̄b|B̄c〉qν + (mb +mc)〈ηc|c̄γνb|B̄c〉 − 2pνB〈ηc|c̄b|B̄c〉
= −〈ηc|c̄b|B̄c〉(pBc + pηc)

ν + (mb +mc)〈ηc|c̄γνb|B̄c〉

= −F0

M2
Bc
−M2

ηc

mb −mc
(pBc + pηc)

ν

+ (mb +mc)

[
F+(pBc + pηc)

ν − (F+ − F0)
M2
Bc
−M2

ηc

q2
qν

]
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Figure 8. Form factors V (q2)Bc→J/ψ, A0(q2)Bc→J/ψ, A1(q2)Bc→J/ψ and A2(q2)Bc→J/ψ from

pQCD and lattice.

The l.h.s. of eq. (B.6), using the tensor form factor, is then

[
(pBc − pηc)ν

(
−
M2
Bc
−M2

ηc

2

)
+ (pBc + pηc)

ν

(
M2
Bc

+M2
ηc

2
− pBc .pηc

)]
2FT

MBc +Mηc

(B.7)

Noting that q = pBc−pηc , we can equate the coefficients of qν on either side of eq. (B.6).

This gives us the relation between the tensor and the vector form factors to be

−
M2
Bc
−M2

ηc

MBc +Mηc

FT = −(mb +mc)
M2
Bc
−M2

ηc

q2
(F+ − F0) (B.8)

=⇒ FT = (mb +mc)
MBc +Mηc

q2
(F+ − F0) (B.9)
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B.2.2 Bc → J/ψ

The hadronic matrix elements for B̄ → V transition are parametrised by

〈V (pV , ε,MV )|c̄γµb|B̄(pB,MB)〉= iεµνρσε
ν∗pρBp

σ
V

2V (q2)

MB+MV
(B.10)

〈V (pV , ε,MV )|c̄γµγ5b|B̄(pB,MB)〉= 2MV
ε∗.q

q2
qµA0(q2)+(MB+MV )

[
ε∗µ−

ε∗.q

q2
qµ

]
A1(q2)

− ε∗.q

MB+MV

[
(pB+pV )µ−

M2
B−M2

V

q2
qµ

]
A2(q2)

(B.11)

〈V (pV , ε,MV )|c̄γ5b|B̄(pB,MB)〉=−ε∗.q 2MV

mb+mc
A0(q2) (B.12)

〈V (pV , ε,MV )|c̄ iσµνb|B̄(pB,MB)〉=−iεµναβ

[
−εα∗(pV +pB)βT1(q2)

+
M2
B−M2

V

q2
ε∗αqβ

(
T1(q2)−T2(q2)

)
(B.13)

+2
ε∗.q

q2
pαBp

β
V

(
T1(q2)−T2(q2)− q2

M2
B−M2

D∗
T3(q2)

)]
〈V (pV , ε,MV )|c̄ iσµνqνb|B̄(pB,MB)〉=−2iεµνρσε

∗νpρBp
σ
V T1(q2) (B.14)

Using,

iσµν = ηµν − γµγν (B.15)

the l.h.s. of eq. (B.14) yields,

〈V (pV , ε,MV ) |c̄ iσµνqνb|B̄(pB,MB)〉 = 〈V (pV , ε,MV ) |c̄ (qµ − γµ 6 q) b|B̄(pB)〉
= qµ〈V (pV , ε,MV ) |c̄b|B̄(pB,MB)〉
− (mb +mc)〈V (pV , ε,MV ) |c̄ γµb|B̄(pB,MB)〉

(B.16)

The first term vanishes, and after using eq. (B.10) and (B.14), leaves

−2iεµνρσε
∗νpρBp

σ
V T1(q2) = −(mb +mc)× 2iεµνρσε

ν∗pρBp
σ
V

V (q2)

MB +MV

which give us

T1(q2) =
mb +mc

MB +MV
V (q2) (B.17)

Consider the term 〈V (pV , ε,MV ) |c̄ iσµνqνγ5b|B̄(pB,MB)〉. Using

σµνγ5 =
i

2
εµνρσσ

ρσ (we use ε0123 = 1, which implied that ε0123 = −1)

we have

〈V (pV , ε,MV ) |c̄ iσµνqνγ5b|B̄(pB)〉 =
i

2
εµνρσ〈V (pV ,MV ε) |c̄ iσρσqνb|B̄(pB)〉
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Simplification of the r.h.s. using eq. (B.13), we get,

=
i

2
εµνρσq

ν

[
−iερσαβ

(
−ε∗α(pBc + pJ/ψ)βT1 +

M2
Bc
−M2

J/ψ

q2
ε∗αqβ (T1 − T2)

−ε
∗.q

q2
(pBc + pJ/ψ)α(pBc − pJ/ψ)β

(
T1 − T2 −

q2

M2
Bc
−M2

J/ψ

T3

))]

= −
(
δαµδ

β
ν − δαν δβµ

)[
−ε∗α(pBc + pJ/ψ)βT1 +

M2
Bc
−M2

J/ψ

q2
ε∗αqβ (T1 − T2)

−ε
∗.q

q2
(pBc + pJ/ψ)αqβ

(
T1 − T2 −

q2

M2
Bc
−M2

J/ψ

T3

)]
(B.18)

=
[
(pBc + pJ/ψ).q ε∗µ − ε∗.q(pBc + pJ/ψ)µ

]
T1 −

(
M2
Bc −M

2
J/ψ

)(
ε∗µ −

ε∗.q

q2
qµ

)
(T1 − T2)

+ ε∗.q

[
(pBc + pJ/ψ)µ −

(pBc + pJ/ψ).q

q2
qµ

](
T1 − T2 −

q2

M2
Bc
−M2

J/ψ

T3

)

= ε∗µ

[
(M2

Bc −M
2
J/ψ)T2

]
− ε∗.q(pBc + pJ/ψ)µ

[
T2 +

q2

M2
Bc
−M2

J/ψ

T3

]
+

(
ε∗.q

q2
qµ

)[
q2 T3

]
The l.h.s. , simplified using the equation of motion is,

〈J/ψ|c̄ iσµνqνγ5b|B̄c〉= (mb−mc)〈J/ψ|c̄ γµγ5b|B̄c〉

= (mb−mc)

[
2MJ/ψ

(
ε∗.q

q2
qµ

)
A0 +(MBc+MJ/ψ)

(
ε∗µ−

ε∗.q

q2
qµ

)
A1

− ε∗.q

MBc+MJ/ψ

(
(pBc+pJ/ψ)µ−

M2
Bc
−M2

J/ψ

q2
qµ

)
A2

]
(B.19)

Comparing the coefficients of ε∗µ from either side, we get

T2 =
mb −mc

MBc −MJ/ψ
A1 (B.20)

Comparing the coefficients of ε∗.q qµ/q
2 from either side, we get

T3 = −
(
mb −mc

q2

)(
MBc(A1 −A2) +MJ/ψ(A1 +A2 − 2A0

)
(B.21)

The equations (B.17), (B.20) and (B.21) agree with those given in [113].

C Formulae for calculating branching ratios

The double differential branching fractions for the decays B → D`ν` and B → D∗`ν` can

be written as

d2BD(∗)
`

dq2 d(cos θ)
= N |pD(∗) |

(
aD

(∗)
` + bD

(∗)
` cos θ + cD

(∗)
` cos2 θ

)
. (C.1)
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The normalisation factor, N and the absolute value of the D(∗)-meson momentum, |pD(∗) |
are given by,

N =
τB G

2
F |Vcb|2q2

256π3M2
B

(
1−

m2
`

q2

)2

, |pD(∗) | =

√
λ(M2

B,M
2
D(∗) , q

2)

2MB
, (C.2)

where λ(a, b, c) = a2 + b2 + c2 − 2(ab + bc + ca). The angle θ is defined as the angle

between the lepton and D(∗)-meson in the lepton-neutrino centre-of-mass frame, and q2 is

the invariant mass squared of the lepton-neutrino system.

C.1 Analytic formulas for B → D decay

The quantities aD` , bD` and cD` for negative and positive helicity lepton are given by [51]:

Negative helicity lepton.

aD` (−) =
8M2

B|pD|2

q2
|C`

VL|2F2
+ +m`

[
32M2

B|pD|2

q2 (MB +MD)
R
(
C`

TLC`∗
VL

)
F+FT

]
+m2

`

[
32|pD|2M2

B

q2 (MB +MD)2 |C
`
TL|2F2

T

]
bD` (−) = 0

cD` (−) = −
8M2

B|pD|
2

q2
|C`

VL|2F2
+ −m`

[
32|pD|2M2

B

q2 (MB +MD)
R
(
C`

VLC`
TL

)
F+FT

]

−m2
`

[
32|pD|2M2

B

(MB +MD)2 q2
|C`

TL|2F2
T

]
(C.3)

Positive helicity lepton.

aD` (+) =
2
(
M2
B −M2

D

)2
(mb −mc) 2

|C`
SL|2F2

0 +m`

[
4
(
M2
B −M2

D

)2
q2(mb −mc)

R
(
C`

SLC`∗
VL

)
F2
0

]

+m2
`

[
2
(
M2
B −M2

D

)2
q4

|C`
VL|2F2

0

]

bD` (+) =

[
−16MB|pD|

MB −MD

mb −mc
R
(
C`

SLC`∗
TL

)
F0FT

]
−m`

[
16|pD| (MB −MD)MB

q2
R
(
C`

VLC`∗
TL

)
F0FT

+
8|pD|MB

(
M2
B −M2

D

)
q2 (mb −mc)

R
(
C`

SLC`∗
VL

)
F0F+

]

−m2
`

[
8|pD|MB

(
M2
B −M2

D

)
q4

|C`
VL|2F0F+

]

cD` (+) =

[
32|pD|2M2

B

(MB +MD)2 |C
`
TL|2F2

T

]
−

32M2
B|pD|2

(MB +MD) q2
R
(
C`

VLC`∗
TL

)
F+FT

+m2
`

[
8|pD|2M2

B

q4
|C`

VL|2F2
+

]
(C.4)
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C.2 Semi-numerical formulas for RD

We now provide semi-numerical formulae for the branching ratios and RD in terms of the

Wilson coefficients (WCs) (from now onwards, instead of using “cb`ν” we will just use “` ”

in the superscript of the operators and WCs):

B (B → Dτντ ) =
(

6.9 + 13.9 ∆Cτ
VL + 11.9 ∆Cτ

SL + 3.5 ∆Cτ
TL

+ 6.9 (∆Cτ
VL)2 + 9.4 (∆Cτ

SL)2 + 1.2 (∆Cτ
TL)2

+ 11.9 ∆Cτ
VL∆Cτ

SL + 3.5 ∆Cτ
VL∆Cτ

TL

)
× 10−3 (C.5)

B (B → D 0̀ ν 0̀) =
(

23.3 + 46.6 ∆C 0̀
VL + 2.0 ∆C 0̀

SL + 1.0 ∆C 0̀
TL

+ 23.3 (∆C 0̀
VL)2 + 33.5 (∆C 0̀

SL)2 + 3.5 (∆C 0̀
TL)2

+ 2.0 ∆C 0̀
VL∆C 0̀

SL + 1.0 ∆C 0̀
VL∆C 0̀

TL

)
× 10−3 (C.6)

Here, ∆C`
i correspond to the NP WCs g`i of eq. (2.1). The above formulas are based on the

analytic expressions of the decay amplitudes given above which are based on ref. [51]. In

order to obtain the various numerical coefficients, central values of the form-factors (see [51]

for more details) and other parameters have been used.

If NP is assumed to exist only in the decay to τ leptons, one gets from the above

formulas

RD = 0.30 + 0.60 ∆Cτ
VL + 0.51 ∆Cτ

SL + 0.15 ∆Cτ
TL

+ 0.30 (∆Cτ
VL)2 + 0.40 (∆Cτ

SL)2 + 0.05 (∆Cτ
TL)2

+ 0.51 ∆Cτ
VL∆Cτ

SL + 0.15 ∆Cτ
VL∆Cτ

TL (C.7)

C.3 Analytic formulas for B → D∗ decay

Negative helicity lepton.

aD
∗

` (−) =
8M2

B |pD∗ |
2

(MB+MD∗ )2

∣∣C`
VL

∣∣2V2+
(MB+MD∗ )2 (8M2

D∗q
2+λ)

2M2
D∗q

2

∣∣C`
AL

∣∣2A2
1

+
8M4

B |pD∗ |
4

M2
D∗ (MB+MD∗ )2 q2

∣∣C`
AL

∣∣2A2
2−

4 |pD∗ |2M2
B

(
M2
B−M

2
D∗−q

2
)

M2
D∗q

2

∣∣C`
AL

∣∣2A1A2

+m`

[
32M2

B |pD∗ |
2

q2 (MB+MD∗ )
R
(
C`

VLC`∗
TL

)
VT1

+
8(MB+MD∗ )

(
2M2

D∗
(
M2
B−M

2
D∗

)
+M2

B |pD∗ |
2
)

q2M2
D∗

R
(
C`

ALC`∗
TL

)
A1T2

− 8M2
B

(
M2
B−M

2
D∗−q

2
)
|pD∗ |2

q2 (MB−MD∗ )M2
D∗

R
(
C`

ALC`∗
TL

)
A1T3

− 8M2
B

(
M2
B+3M2

D∗−q
2
)
|pD∗ |2

q2 (MB+MD∗ )M2
D∗

R
(
C`

ALC`∗
TL

)
A2T2

+
32M4

B |pD∗ |
4

q2M2
D∗ (MB+MD∗ )

(
M2
B−M

2
D∗

)R(C`
ALC`∗

TL

)
A2T3

]
+m2

`

[
32M2

B |pD∗ |
2

q4

∣∣C`
TL

∣∣2T2
1+

2
(
8M2

D∗
(
2
(
M2
B+M2

D∗
)
−q2

)
q2+

(
4M2

D∗+q2
)
λ
)

q4M2
D∗

∣∣C`
TL

∣∣2T2
2

+
32M4

B |pD∗ |
4

q2M2
D∗

(
M2
B−M

2
D∗

)2 ∣∣C`
TL

∣∣2T2
3−

16M2
B |pD∗ |

2 (M2
B+3M2

D∗−q
2
)

q2M2
D∗

(
M2
B−M

2
D∗

) ∣∣C`
TL

∣∣2T2T3

]
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bD
∗

` (−) =−16|pD∗ |MBR
(
C`

VLC`∗
AL

)
VA1−m`

[
32MB (MB−MD∗ ) |pD∗ |

q2
R
(
C`

VLC`∗
TL

)
VT2

+
32MB (MB+MD∗ ) |pD∗ |

q2
R
(
C`

ALC`∗
TL

)
A1T1

]
−m2

`

[
64MB

(
M2
B−M

2
D∗

)
|pD∗ |

q4

∣∣C`
TL

∣∣2T1T2

]
cD
∗

` (−) =
8 |pD∗ |2M2

B

(MB+MD∗ )2

∣∣C`
VL

∣∣2V2− (MB+MD∗ )2λ

2M2
D∗q

2

∣∣C`
AL

∣∣2A2
1−

8|pD∗ |4M4
B

(MB+MD∗ )2M2
D∗q

2

∣∣C`
AL

∣∣2A2
2

+
4 |pD∗ |2M2

B

(
M2
B−M

2
D∗−q

2
)

M2
D∗q

2

∣∣C`
AL

∣∣2A1A2

+m`

[
32M2

B |pD∗ |
2

q2 (MB+MD∗ )
R
(
C`

VLC`∗
TL

)
VT1 −

8M2
B (MB+MD∗ ) |pD∗ |2

q2M2
D∗

R
(
C`

ALC`∗
TL

)
A1T2

+
8M2

B

(
M2
B−M

2
D∗−q

2
)
|pD∗ |2

q2M2
D∗ (MB−MD∗ )

R
(
C`

ALC`∗
TL

)
A1T3

+
8M2

B

(
M2
B+3M2

D∗−q
2
)
|pD∗ |2

q2M2
D∗ (MB+MD∗ )

R
(
C`

ALC`∗
TL

)
A2T2

− 32M4
B |pD∗ |

4

q2M2
D∗ (MB+MD∗ )

(
M2
B−M

2
D∗

)R(C`
ALC`∗

TL

)
A2T3

+m2
`

[
32M2

B |pD∗ |
2

q4

∣∣C`
TL

∣∣2T2
1+

2
(
4M2

D∗−q
2
)
λ

M2
D∗q

4

∣∣C`
TL

∣∣2T2
2

− 32M4
B |pD∗ |

4

q2M2
D∗

(
M2
B−M

2
D∗

)2 ∣∣C`
TL

∣∣2T2
3 +

16M2
B |pD∗ |

2 (M2
B+3M2

D∗−q
2
)

q2M2
D∗

(
M2
B−M

2
D∗

) ∣∣C`
TL

∣∣2T2T3

]
(C.8)

Positive helicity lepton.

aD
∗

` (+) =
8 |pD∗ |2M2

B

(mb+mc)
2

∣∣C`
PL

∣∣2A2
0+

32M2
B |pD∗ |

2

q2

∣∣C`
TL

∣∣2T2
1+

8
(
M2
B−M

2
D∗

)2
q2

∣∣C`
TL

∣∣2T2
2

−m`

[
16 |pD∗ |2M2

B

(mb+mc)q2
R
(
C`

ALC`∗
PL

)
A2

0−
32M2

B |pD∗ |
2

q2 (MB+MD∗ )
R
(
C`

VLC`∗
TL

)
VT1

− 8(MB+MD∗ )
(
M2
B−M

2
D∗

)
q2

R
(
C`

ALC`∗
TL

)
A1T2

]
+m2

`

[
8 |pD∗ |2M2

B

q4

∣∣C`
AL

∣∣2A2
0+

8 |pD∗ |2M2
B

(MB+MD∗ )2 q2

∣∣C`
VL

∣∣2V2 +
2(MB+MD∗ )2

q2

∣∣C`
AL

∣∣2A2
1

]
bD
∗

` (+) =
8MB

(
M2
B+3M2

D∗−q
2
)
|pD∗ |

(mb+mc)MD∗
R
(
C`

PLC`∗
TL

)
A0T2

− 32M3
B |pD∗ |

3

(mb+mc)MD∗
(
M2
B−M

2
D∗

)R(C`
PLC`∗

TL

)
A0T3

+m`

[
4|pD∗ |MB (MB+MD∗ )

(
M2
B−M

2
D∗−q

2
)

MD∗ (mb+mc)q2
R
(
C`

ALC`∗
PL

)
A0A1

− 16

(mb+mc)

|pD∗ |3M3
B

(MB+MD∗ )MD∗q2
R
(
C`

ALC`∗
PL

)
A0A2

− 8MB

(
M2
B+3M2

D∗−q
2
)
|pD∗ |

MD∗q2
R
(
C`

ALC`∗
TL

)
A0T2 +

32M3
B |pD∗ |

3

q2MD∗
(
M2
B−M

2
D∗

)R(C`
ALC`∗

TL

)
A0T3

]
+m2

`

[
−4|pD∗ |MB (MB+MD∗ )

MD∗q4

(
M2
B−M2

D∗−q2
)∣∣C`

AL

∣∣2A0A1 +
16|pD∗ |3M3

B

(MB+MD∗ )MD∗q4

∣∣C`
AL

∣∣2A0A2

]
cD
∗

` (+) =−32M2
B |pD∗ |

2

q2

∣∣C`
TL

∣∣2T2
1−

2
(
4M2

D∗−q
2
)
λ

M2
D∗q

2

∣∣C`
TL

∣∣2T2
2

+
32M4

B |pD∗ |
4

M2
D∗

(
M2
B−M

2
D∗

)2 ∣∣C`
TL

∣∣2T2
3−

16M2
B |pD∗ |

2 (M2
B+3M2

D∗−q
2
)

M2
D∗

(
M2
B−M

2
D∗

) ∣∣C`
TL

∣∣2T2T3

−m`

[
32M2

B |pD∗ |
2

q2 (MB+MD∗ )
R
(
C`

VLC`∗
TL

)
VT1−

8M2
B (MB+MD∗ ) |pD∗ |2

q2M2
D∗

R
(
C`

ALC`∗
TL

)
A1T2

– 38 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

+
8M2

B

(
M2
B−M

2
D∗−q

2
)
|pD∗ |2

q2M2
D∗ (MB−MD∗ )

R
(
C`

ALC`∗
TL

)
A1T3 +

8M2
B

(
M2
B+3M2

D∗−q
2
)
|pD∗ |2

q2M2
D∗ (MB+MD∗ )

R
(
C`

ALC`∗
TL

)
A2T2

− 32M4
B |pD∗ |

4

q2M2
D∗ (MB+MD∗ )

(
M2
B−M

2
D∗

)R(C`
ALC`∗

TL

)
A2T3

+m2
`

[
− 8 |pD∗ |2M2

B

(MB+MD∗ )2 q2

∣∣C`
VL

∣∣2V2+
(MB+MD∗ )2λ

2M2
D∗q

4

∣∣C`
AL

∣∣2A2
1

+
8|pD∗ |4M4

B

M2
D∗ (MB+MD∗ )2 q4

∣∣C`
AL

∣∣2A2
2 −

4 |pD∗ |2M2
B

M2
D∗q

4

(
M2
B−M2

D∗−q2
)∣∣C`

AL

∣∣2A1A2

]
(C.9)

C.4 Semi-numerical formulas for RD∗

B (B → D∗τντ ) =
(

13.8 + 1.6 ∆Cτ
VL − 26.1 ∆Cτ

AL + 1.6 ∆Cτ
PL

− 28.8 ∆Cτ
TL + 0.8 (∆Cτ

VL)2 + 13.0 (∆Cτ
AL)2

+ 0.6 (∆Cτ
PL)2 + 42.1 (∆Cτ

TL)2 + 5.4 ∆Cτ
VL∆Cτ

TL

− 1.6 ∆Cτ
AL∆Cτ

PL + 34.2 ∆Cτ
AL∆Cτ

TL

)
× 10−3

B (B → D∗ 0̀ν 0̀) =

(
54.9 + 11.9 ∆C 0̀

VL − 151.5 ∆C 0̀
AL + 0.5 ∆C 0̀

PL

− 6.8 ∆C 0̀
TL + 3.8

(
∆C 0̀

VL

)2
+ 51.1

(
∆C 0̀

AL

)2

+ 3.3
(
∆C 0̀

PL

)2
+ 163.4

(
∆C 0̀

TL

)2
+ 1.9 ∆C 0̀

VL∆C 0̀
TL

− 0.5 ∆C 0̀
AL∆C 0̀

PL + 6.6 ∆C 0̀
AL∆C 0̀

TL

)
× 10−3

RD∗ = 0.25 + 0.03 ∆Cτ
VL − 0.48 ∆Cτ

AL + 0.03 ∆Cτ
PL − 0.52 ∆Cτ

TL

+ 0.01 (∆Cτ
VL)2 + 0.24 (∆Cτ

AL)2 + 0.01 (∆Cτ
PL)2 + 0.77 (∆Cτ

TL)2

+ 0.10 ∆Cτ
VL∆Cτ

TL − 0.03 ∆Cτ
AL∆Cτ

PL + 0.62 ∆Cτ
AL∆Cτ

TL

C.5 Semi-numerical formulas for Rηc

B (Bc → ηcτντ ) =
(

1.4 + 2.9 ∆Cτ
VL + 2.5 ∆Cτ

SL + 0.6 ∆Cτ
TL

+ 1.4 (∆Cτ
VL)2 + 1.9 (∆Cτ

SL)2 + 0.2 (∆Cτ
TL)2

+ 2.5 ∆Cτ
VL∆Cτ

SL + 0.6 ∆Cτ
VL∆Cτ

TL

)
× 10−3 (C.10)

B (Bc → ηc 0̀ ν 0̀) =
(

4.6 + 9.3 ∆C 0̀
VL + 0.4 ∆C 0̀

SL + 0.2 ∆C 0̀
TL

+ 4.6 (∆C 0̀
VL)2 + 7.0 (∆C 0̀

SL)2 + 0.4 (∆C 0̀
TL)2

+ 0.4 ∆C 0̀
VL∆C 0̀

SL + 0.2 ∆C 0̀
VL∆C 0̀

TL

)
× 10−3 (C.11)

Rηc = 0.30 + 0.62 ∆Cτ
VL + 0.53 ∆Cτ

SL + 0.13 ∆Cτ
TL

+ 0.30 (∆Cτ
VL)2 + 0.41 (∆Cτ

SL)2 + 0.04 (∆Cτ
TL)2

+ 0.53 ∆Cτ
VL∆Cτ

SL + 0.13 ∆Cτ
VL∆Cτ

TL . (C.12)
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Figure 9. The red and green shaded regions correspond to the values of CτVL (= −CτAL) and

CτSL (= −CτPL for the left panel and = CτPL for the right panel) that satisfy the experimental

measurement of RD and RD∗ within 1σ respectively.

C.6 Semi-numerical formulas for RJ/ψ

B (Bc→ J/ψ τντ ) =
(

3.1+0.1 ∆Cτ
VL−6.2 ∆Cτ

AL+0.4 ∆Cτ
PL

−7.7 ∆Cτ
TL+3.1 (∆Cτ

AL)2

+0.2 (∆Cτ
PL)2+8.2 ∆Cτ

TL
2+0.3 ∆Cτ

VL∆Cτ
TL

−0.4 ∆Cτ
AL∆Cτ

PL+8.0 ∆Cτ
AL∆Cτ

TL

)
×10−3 (C.13)

B (Bc→ J/ψ 0̀ν 0̀) =

(
10.8+0.7 ∆C 0̀

VL−34.2 ∆C 0̀
AL+0.2 ∆C 0̀

PL

−1.8 ∆C 0̀
TL+0.2

(
∆C 0̀

VL

)2
+10.6

(
∆C 0̀

AL

)2

+1.0
(
∆C 0̀

PL

)2
+36.5

(
∆C 0̀

TL

)2
+0.1 ∆C 0̀

VL∆C 0̀
TL

−0.2 ∆C 0̀
AL∆C 0̀

PL+0.6 ∆C 0̀
AL∆C 0̀

TL

)
×10−3 (C.14)

RJ/ψ = 0.29+0.01 ∆Cτ
VL−0.57 ∆Cτ

AL+0.04 ∆Cτ
PL−0.71 ∆Cτ

TL

+0.29 (∆Cτ
AL)2+0.02 (∆Cτ

PL)2+0.76 (∆Cτ
TL)2

+0.03 ∆Cτ
VL∆Cτ

TL−0.04 ∆Cτ
AL∆Cτ

PL+0.74 ∆Cτ
AL∆Cτ

TL .

(C.15)

C.7 Combination of vector and scalar operators

In this appendix, we briefly comment on the scenario where both vector and scalar operators

are present (see, for example [114] for a model). In figure 9, we show the allowed regions

in the CτVL-CτSL plane assuming CτVL = −CτAL and CτSL = ±CτPL.

It can be seen that the overlap of the red and green regions (that corresponds to the

simultaneous solution of RD and RD∗) touches the CτSL = ±CτPL = 0 point. Thus, a
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combination of the vector and scalar operators extends the solution with only the vector

operator discussed in section 3.1. Interestingly, if the red shaded region shrinks in the

future due to more precise measurement of RD (without affecting the current central value

much), the combination of scalar and vector operators may lead to a better fit than with

only vector operators.

D From the gauge to the mass eigenstates

[C
(3)
lq ]′p′r′s′t′

(
l̄′p′γµσ

Il′r′
) (
q̄′s′γ

µσIq′t′
)
. Using eq. (4.12) and the definitions from

eq. (4.14), we get,∑
p′,r′,s′,t′

[
[C

(3)
lq ]′p′r′s′t′

(
l̄′p′γµσ

I l′r′
) (
q̄′s′γ

µσIq′t′
) ]

=
∑
p,r,s,t

[ ∑
p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′

[
(V ν
L )†pp′(V

ν
L )r′r(V

u
L )†ss′(V

u
L )t′t (ν̄pγ

µPLνr) (ūsγµPLut)

+ (V e
L)†pp′(V

e
L)r′r(V

d
L )†ss′(V

d
L )t′t (ēpγ

µPLer)
(
d̄sγµPLdt

)
− (V e

L)†pp′(V
e
L)r′r(V

u
L )†ss′(V

u
L )t′t (ēpγ

µPLer) (ūsγµPLut)

− (V ν
L )†pp′(V

ν
L )r′r(V

d
L )†ss′(V

d
L )t′t (ν̄pγ

µPLνr)
(
d̄sγµPLdt

)
+ 2(V ν

L )†pp′(V
e
L)r′r(V

d
L )†ss′(V

u
L )t′t (ν̄pγ

µPLer)
(
d̄sγµPLut

)
+ 2(V e

L)†pp′(V
ν
L )r′r(V

u
L )†ss′(V

d
L )t′t (ēpγ

µPLνr) (ūsγµPLdt)

]]

=
∑
p,r,s,t

[
[C̃

(3)ννuu
lq ]prst (ν̄pγ

µPLνr) (ūsγµPLut) + [C̃
(3)eedd
lq ]prst (ēpγ

µPLer)
(
d̄sγµPLdt

)
− [C̃

(3)eeuu
lq ]prst (ēpγ

µPLer) (ūsγµPLut)− [C̃
(3)ννdd
lq ]prst (ν̄pγ

µPLνr)
(
d̄sγµPLdt

)
+ 2[C̃

(3)νedu
lq ]prst (ν̄pγ

µPLer)
(
d̄sγµPLut

)
+ 2[C̃

(3)eνud
lq ]prst (ēpγ

µPLνr) (ūsγµPLdt)

]
,

(D.1)

where ∑
p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

ν
L )†pp′(V

ν
L )r′r(V

u
L )†ss′(V

u
L )t′t ≡ [C̃

(3)ννuu
lq ]prst∑

p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

e
L)†pp′(V

e
L)r′r(V

d
L )†ss′(V

d
L )t′t ≡ [C̃

(3)eedd
lq ]prst∑

p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

e
L)†pp′(V

e
L)r′r(V

u
L )†ss′(V

u
L )t′t ≡ [C̃

(3)eeuu
lq ]prst (D.2)

∑
p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

ν
L )†pp′(V

ν
L )r′r(V

d
L )†ss′(V

d
L )t′t ≡ [C̃

(3)ννdd
lq ]prst∑

p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

ν
L )†pp′(V

e
L)r′r(V

d
L )†ss′(V

u
L )t′t ≡ [C̃

(3)νedu
lq ]prst∑

p′,r′,s′,t′

[C
(3)
lq ]′p′r′s′t′(V

e
L)†pp′(V

ν
L )r′r(V

u
L )†ss′(V

d
L )t′t ≡ [C̃

(3)eνud
lq ]prst
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[C
(3)
φl ]′p′r′

(
φ†i
←→
D I

µφ
) (
l̄′p′ σ

Iγµ l′r′
)
.

∑
p′,r′

[C
(3)
φl ]′p′r′

(
φ†i
←→
D I

µφ
) (
l̄′p′ σ

Iγµ l′r′
)

=
(
v2 + 2vh+ h2

)∑
p,r

[∑
p′,r′

[C
(3)
φl ]′p′r′

[
− 1

2

g2

cosθW
(V ν
L )†pp′(V

ν
L )r′rZµ (νpγ

µPLνr)

+
1

2

g2

cosθW
(V e
L)†pp′(V

e
L)r′rZµ (epγ

µPLer)−
g2√

2
(V ν
L )†pp′(V

e
L)r′rW

+
µ (νpγ

µPLer)

− g2√
2

(V e
L)†pp′(V

ν
L )r′rW

−
µ (epγ

µPLνr)

]]

=
(
v2 + 2vh+ h2

)∑
p,r

[
− 1

2

g2

cosθW
[C̃

(3)νν
φl ]prZµ (νpγ

µPLνr)

+
1

2

g2

cosθW
[C̃

(3)ee
φl ]prZµ (epγ

µPLer)−
g2√

2
[C̃

(3)νe
φl ]prW

+
µ (νpγ

µPLer)

− g2√
2

[C̃
(3)eν
φl ]prW

−
µ (epγ

µPLνr)

]
, (D.3)

where ∑
p′,r′

[C
(3)
φl ]′p′r′(V

ν
L )†pp′(V

ν
L )r′r = [C̃

(3)νν
φl ]pr∑

p′,r′

[C
(3)
φl ]′p′r′(V

e
L)†pp′(V

e
L)r′r = [C̃

(3)ee
φl ]pr∑

p′,r′

[C
(3)
φl ]′p′r′(V

ν
L )†pp′(V

e
L)r′r = [C̃

(3)νe
φl ]pr∑

p′,r′

[C
(3)
φl ]′p′r′(V

e
L)†pp′(V

ν
L )r′r = [C̃

(3)eν
φl ]pr (D.4)

[Cledq]
′
p′r′s′t′

(
l̄′
j
p′e
′
r′

) (
d̄′s′q

′j
t′

)
.

∑
p′,r′,s′,t′

[Cledq]
′
p′r′s′t′

(
l̄′
j
p′e
′
r′

)(
d̄′s′q

′j
t′

)

=
∑
p,r,s,t

[ ∑
p′,r′,s′,t′

[Cledq]
′
p′r′s′t′

[
(V ν
L )†pp′(V

e
R)r′r(V

d
R)†ss′(V

u
L )t′t (ν̄pPRer)

(
d̄sPLut

)
+ (V e

L)†pp′(V
e
R)r′r(V

d
R)†ss′(V

d
L )t′t (ēpPRer)

(
d̄sPLdt

) ]]

=
∑
p,r,s,t

[
[C̃νeduledq ]prst (ν̄pPRer)

(
d̄sPLut

)
+ [C̃eeddledq ]prst (ēpPRer)

(
d̄sPLdt

) ]
, (D.5)

– 42 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

where ∑
p′,r′,s′,t′

[Cledq]
′
p′r′s′t′(V

ν
L )†pp′(V

e
R)r′r(V

d
R)†ss′(V

u
L )t′t = [C̃νeduledq ]prst∑

p′,r′,s′,t′

[Cledq]
′
p′r′s′t′(V

e
L)†pp′(V

e
R)r′r(V

d
R)†ss′(V

d
L )t′t = [C̃eeddledq ]prst (D.6)

[C
(1)
lequ]′p′r′s′t′

(
l̄′
j
p′e
′
r′

)
εjk

(
q̄′
k
s′u
′
t′

)
.∑

p′,r′,s′,t′

[C
(1)
lequ]′p′r′s′t′

(
l̄′
j
p′e
′
r′

)
εjk

(
q̄′
k
s′u
′
t′

)

=
∑
p,r,s,t

[ ∑
p′,r′,s′,t′

[C
(1)
lequ]′p′r′s′t′

[
(V ν
L )†pp′(V

e
R)r′r(V

d
L )†ss′(V

u
R )t′t (ν̄pPRer)

(
d̄sPRut

)
− (V e

L)†pp′(V
e
R)r′r(V

u
L )†ss′(V

u
R )t′t (ēpPRer) (ūsPRut)

]]

=
∑
p,r,s,t

[
[C̃

(1)νedu
lequ ]prst (ν̄pPRer)

(
d̄sPRut

)
− [C̃

(1)eedu
lequ ]prst (ēpPRer) (ūsPRut)

]
, (D.7)

where ∑
p′,r′,s′,t′

[C
(1)
lequ]′p′r′s′t′(V

ν
L )†pp′(V

e
R)r′r(V

d
L )†ss′(V

u
R )t′t = [C̃

(1)νedu
lequ ]prst∑

p′,r′,s′,t′

[C
(1)
lequ]′p′r′s′t′(V

e
L)†pp′(V

e
R)r′r(V

u
L )†ss′(V

u
R )t′t = [C̃

(1)eedu
lequ ]prst (D.8)

Thus,

∆Ccbτν3SL =
1

2

Λ2
SM

Λ2

(
[C̃νeduledq ]3332 + [C̃

(1)νedu
lequ ]3332

)∗
, (D.9)

∆Ccbτν3PL =
1

2

Λ2
SM

Λ2

(
[C̃νeduledq ]3332 − [C̃

(1)νedu
lequ ]3332

)∗
. (D.10)
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(3)
lequ]′p′r′s′t′

(
l̄′
j
p′σ

µνe′r′
)
εjk

(
q̄′
k
s′σµνu

′
t′

)
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p′,r′,s′,t′
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(3)
lequ]′p′r′s′t′

(
l̄′
j
p′σ

µνe′r′
)
εjk

(
q̄′
k
s′σµνu

′
t′

)

=
∑
p,r,s,t

[ ∑
p′,r′,s′,t′

[C
(3)
lequ]′p′r′s′t′

[
(V ν
L )†pp′(V

e
R)r′r(V

d
L )†ss′(V

u
R )t′t (ν̄pσ

µνPRer)
(
d̄sσµνPRut

)
−(V e

L)†pp′(V
e
R)r′r(V

u
L )†ss′(V

u
R )t′t (ēpσ

µνPRer)(ūsσµνPRut)

]]

=
∑
p,r,s,t

[
[C̃

(3)νedu
lequ ]prst (ν̄pσ

µνPRer)
(
d̄sσµνPRut

)
−[C̃

(3)eedu
lequ ]prst (ēpσ

µνPRer)(ūsσµνPRut)

]
,

(D.11)
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where ∑
p′,r′,s′,t′

[C
(3)
lequ]′p′r′s′t′(V

ν
L )†pp′(V

e
R)r′r(V

d
L )†ss′(V

u
R )t′t = [C̃

(3)νedu
lequ ]prst∑

p′,r′,s′,t′

[C
(3)
lequ]′p′r′s′t′(V

e
L)†pp′(V

e
R)r′r(V

u
L )†ss′(V

u
R )t′t = [C̃

(3)eedu
lequ ]prst (D.12)

Thus,

∆Ccbτν3TL =
1

2

Λ2
SM

Λ2

(
[C̃

(3)νedu
lequ ]3332

)∗
. (D.13)

E Mixing of [C
(3,1)
lq ]′ and [C

(3,1)
φl ]′

The β-functions of [C
(3)
φl ]′33 and [C

(3)
lq ]′3333 can be approximately written as (assuming that

no other couplings are generated at the matching scale Λ) [52, 115]

16π2 d

d log µ
[C

(3)
φl ]′33 =

(
−5g2

2 + 6y2
t + 6y2

b + 4y2
τ

)
[C

(3)
φl ]′33 + 3y2

τ [C
(1)
φl ]′33

+
(
2g2

2 − 6y2
b − 6y2

t

)
[C

(3)
lq ]′3333 (E.1)

16π2 d

d log µ
[C

(1)
φl ]′33 =

(
1

3
g2

1 + 6y2
t + 6y2

b + 6y2
τ

)
[C

(1)
φl ]′33 + 9y2

τ [C
(3)
φl ]′33

+

(
2

3
g2

1 − 6y2
b + 6y2

t

)
[C

(1)
lq ]′3333 (E.2)

This gives

[C
(3)
φl ]′33(mt) ' 0.027 [C

(3)
lq ]′3333(Λ) log(Λ/mt) , (E.3)

[C
(1)
φl ]′33(mt) ' −0.034 [C

(1)
lq ]′3333(Λ) log(Λ/mt) . (E.4)

Thus, we get

∆gτL '
1

2

(
[C

(3)
φl ]′33(mt) + [C

(3)
φl ]′ ∗33(mt) + [C

(1)
φl ]′33(mt) + [C

(1)
φl ]′ ∗33(mt)

) v2

Λ2

'
(

0.0014 ([C
(3)
lq ]′3333 + [C

(3)
lq ]

′ ∗
3333)− 0.0018 ([C

(1)
lq ]′3333 + [C

(1)
lq ]

′ ∗
3333)

)
×
(

TeV

Λ

)2

(1 + 0.6 log(Λ/TeV)) (E.5)

∆gνL '
1

2

(
−[C

(3)
φl ]′33(mt)− [C

(3)
φl ]′ ∗33(mt) + [C

(1)
φl ]′33(mt) + [C

(1)
φl ]′ ∗33(mt)

) v2

Λ2

' −
(

0.0014 ([C
(3)
lq ]′3333 + [C

(3)
lq ]

′ ∗
3333) + 0.0018 ([C

(1)
lq ]′3333 + [C

(1)
lq ]

′ ∗
3333)

)
×
(

TeV

Λ

)2

(1 + 0.6 log(Λ/TeV)) (E.6)

∆gτW ' −
(

[C
(3)
φl ]′33(mt) + [C

(3)
φl ]′ ∗33(mt)

) v2

Λ2

' −0.0028
(

[C
(3)
lq ]′3333 + [C

(3)
lq ]

′ ∗
3333

)(TeV

Λ

)2

(1 + 0.6 log(Λ/TeV)) (E.7)

– 44 –



J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

Using |∆gτL| . 6× 10−4, and in the absence of [C
(1)
lq ]′3333, we get∣∣∣[C(3)

lq ]′3333 + [C
(3)
lq ]

′ ∗
3333

∣∣∣ . 0.43

(1 + 0.6 log(Λ/TeV))

(
Λ

TeV

)2

(E.8)

In the presence of both [C
(1)
lq ]′3333 and [C

(3)
lq ]′3333, combining all the constraints on ∆gτW ,

∆gτL and |∆gνL| < 1.2× 10−3 we get∣∣∣[C(1)
lq ]′3333+[C

(1)
lq ]

′ ∗
3333

∣∣∣. 0.5

(1+0.6log(Λ/TeV))

(
Λ

TeV

)2

−0.63

(1+0.6log(Λ/TeV))

(
Λ

TeV

)2

. [C
(3)
lq ]′3333+[C

(3)
lq ]

′ ∗
3333 .

0.14

(1+0.6log(Λ/TeV))

(
Λ

TeV

)2

.

(E.9)

F Constraints from Z interactions with fermions

One of the advantages of the MCHM5 model is that it can provide protection for some

of the gτZ , g
b
Z , g

ν
Z couplings. Indeed, discrete PLR symmetry [116] protects gτZ , however it

cannot protect (gνZ , g
τ
Z , g

τ
W ) at the same time. Indeed let us consider the leptonic part of

the lagrangian in eq. (5.10) and allow the splitting of the mixing parameters defined in the

eq. (5.12):

L = iÕl1 ( 6D + i 6E) Õl1 + iÕl2 ( 6D + i 6E)Ol2 +

(
ic1Õ

i

l1 6diÕN + ic2Õ
i

l2 6diÕe + h.c.

)
−m(1)

4 Õl1Õl1 −m
(2)
4 Õl2Õl2 −m

(e)
1 ÕeÕe −m

(N)
1 ÕN ÕN

+ λ
(4)
l l̃LU(h)IiOl1 + λ

(1)
l l̃LU(h)I5ON + λ̃

(4)
l l̃LU(h)IiOl2 + λ̃

(1)
l l̃LU(h)I5Oe . (F.1)

Then the modifications to gτZ , g
ν
Z can be read-off from the refs. [99, 117], where analogous

discussion was applied to the top quark, so that

δgτZ = − v2

4f2

M2
∗

[(
λ̃

(4)
l m

(e)
1

)2
+
(
λ̃

(1)
l m

(2)
4

)2
− 2
√

2c2λ̃
(4)
l λ̃

(1)
l m

(e)
1 m

(2)
4

]
(
m

(e)
1

)2
((

m
(2)
4

)2
+
(
λ̃

(4)
l M∗

)2
) ,

δgνZ = − v2

4f2

M2
∗

[(
λ

(4)
l m

(N)
1

)2
+
(
λ

(1)
l m

(1)
4

)2
− 2
√

2c1λ
(4)
l λ

(1)
l m

(N)
1 m

(2)
4

]
(
m

(N)
1

)2
((

m
(1)
4

)2
+
(
λ

(4)
l M∗

)2
) . (F.2)

We can see that PLR symmetry forces the δgτZ to depend only on λ̃
(1,4)
l and δgνZ on λ

(1,4)
l .

Since the bound on gτZ is a bit stronger, it is natural to assume that λl > λ̃l and the

contribution to RD,D∗ is dominated by λl. Note that this coupling does not enter the

leading expression of the τ mass which scales as

mτ ∝ λeλ̃(1,4)
l . (F.3)

Then in order to pass the constraints from gνZ we will have to tune additionally the param-

eter c1 as was suggested in [24].
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[22] E. Megias, G. Panico, O. Pujolàs and M. Quirós, A Natural origin for the LHCb anomalies,

JHEP 09 (2016) 118 [arXiv:1608.02362] [INSPIRE].

[23] D. Buttazzo, A. Greljo, G. Isidori and D. Marzocca, Toward a coherent solution of diphoton

and flavor anomalies, JHEP 08 (2016) 035 [arXiv:1604.03940] [INSPIRE].

[24] R. Barbieri and A. Tesi, B-decay anomalies in Pati-Salam SU(4), Eur. Phys. J. C 78

(2018) 193 [arXiv:1712.06844] [INSPIRE].

[25] G. D’Ambrosio and A.M. Iyer, Flavour issues in warped custodial models: B anomalies and

rare K decays, Eur. Phys. J. C 78 (2018) 448 [arXiv:1712.08122] [INSPIRE].

[26] F. Sannino, P. Stangl, D.M. Straub and A.E. Thomsen, Flavor Physics and Flavor

Anomalies in Minimal Fundamental Partial Compositeness, Phys. Rev. D 97 (2018) 115046

[arXiv:1712.07646] [INSPIRE].

[27] A. Carmona and F. Goertz, Recent B Physics Anomalies - a First Hint for

Compositeness?, arXiv:1712.02536 [INSPIRE].

[28] D. Marzocca, Addressing the B-physics anomalies in a fundamental Composite Higgs Model,

JHEP 07 (2018) 121 [arXiv:1803.10972] [INSPIRE].

[29] P. Asadi, M.R. Buckley and D. Shih, It’s all right(-handed neutrinos): a new W
′

model for

the RD(∗) anomaly, JHEP 09 (2018) 010 [arXiv:1804.04135] [INSPIRE].

[30] A. Greljo, D.J. Robinson, B. Shakya and J. Zupan, R(D(∗)) from W
′

and right-handed

neutrinos, JHEP 09 (2018) 169 [arXiv:1804.04642] [INSPIRE].

[31] A. Datta, M. Duraisamy and D. Ghosh, Diagnosing New Physics in b→ c τ ντ decays in the

light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760]

[INSPIRE].

[32] M. Tanaka and R. Watanabe, New physics in the weak interaction of B̄ → D(∗)τ ν̄, Phys.

Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

[33] D. Choudhury, D.K. Ghosh and A. Kundu, B decay anomalies in an effective theory, Phys.

Rev. D 86 (2012) 114037 [arXiv:1210.5076] [INSPIRE].

– 47 –

https://indico.cern.ch/event/586719/contributions/2531261/attachments/1470695/2275576/2_fpcp_talk_wormser.pdf
https://indico.cern.ch/event/586719/contributions/2531261/attachments/1470695/2275576/2_fpcp_talk_wormser.pdf
https://doi.org/10.1088/1674-1137/37/9/093102
https://arxiv.org/abs/1212.5903
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5903
https://doi.org/10.1140/epjc/s10052-016-3905-3
https://arxiv.org/abs/1512.01560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.01560
https://doi.org/10.1007/JHEP05(2015)006
https://arxiv.org/abs/1412.1791
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.1791
https://doi.org/10.1007/JHEP01(2016)119
https://arxiv.org/abs/1508.00569
https://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00569
https://doi.org/10.1140/epjc/s10052-016-4578-7
https://arxiv.org/abs/1611.04930
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.04930
https://doi.org/10.1007/JHEP04(2017)117
https://arxiv.org/abs/1611.09356
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09356
https://doi.org/10.1007/JHEP09(2016)118
https://arxiv.org/abs/1608.02362
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.02362
https://doi.org/10.1007/JHEP08(2016)035
https://arxiv.org/abs/1604.03940
https://inspirehep.net/search?p=find+EPRINT+arXiv:1604.03940
https://doi.org/10.1140/epjc/s10052-018-5680-9
https://doi.org/10.1140/epjc/s10052-018-5680-9
https://arxiv.org/abs/1712.06844
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.06844
https://doi.org/10.1140/epjc/s10052-018-5915-9
https://arxiv.org/abs/1712.08122
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.08122
https://doi.org/10.1103/PhysRevD.97.115046
https://arxiv.org/abs/1712.07646
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.07646
https://arxiv.org/abs/1712.02536
https://inspirehep.net/search?p=find+EPRINT+arXiv:1712.02536
https://doi.org/10.1007/JHEP07(2018)121
https://arxiv.org/abs/1803.10972
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.10972
https://doi.org/10.1007/JHEP09(2018)010
https://arxiv.org/abs/1804.04135
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.04135
https://doi.org/10.1007/JHEP09(2018)169
https://arxiv.org/abs/1804.04642
https://inspirehep.net/search?p=find+EPRINT+arXiv:1804.04642
https://doi.org/10.1103/PhysRevD.86.034027
https://arxiv.org/abs/1206.3760
https://inspirehep.net/search?p=find+EPRINT+arXiv:1206.3760
https://doi.org/10.1103/PhysRevD.87.034028
https://doi.org/10.1103/PhysRevD.87.034028
https://arxiv.org/abs/1212.1878
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.1878
https://doi.org/10.1103/PhysRevD.86.114037
https://doi.org/10.1103/PhysRevD.86.114037
https://arxiv.org/abs/1210.5076
https://inspirehep.net/search?p=find+EPRINT+arXiv:1210.5076


J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

[34] Y. Sakaki, M. Tanaka, A. Tayduganov and R. Watanabe, Testing leptoquark models in

B̄ → D(∗)τ ν̄, Phys. Rev. D 88 (2013) 094012 [arXiv:1309.0301] [INSPIRE].

[35] B. Bhattacharya, A. Datta, D. London and S. Shivashankara, Simultaneous Explanation of

the RK and R(D(∗)) Puzzles, Phys. Lett. B 742 (2015) 370 [arXiv:1412.7164] [INSPIRE].
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[89] C. Csáki, A. Falkowski and A. Weiler, The Flavor of the Composite Pseudo-Goldstone

Higgs, JHEP 09 (2008) 008 [arXiv:0804.1954] [INSPIRE].

[90] K. Agashe, A. Azatov and L. Zhu, Flavor Violation Tests of Warped/Composite SM in the

Two-Site Approach, Phys. Rev. D 79 (2009) 056006 [arXiv:0810.1016] [INSPIRE].

[91] R. Barbieri, G. Isidori, J. Jones-Perez, P. Lodone and D.M. Straub, U(2) and Minimal

Flavour Violation in Supersymmetry, Eur. Phys. J. C 71 (2011) 1725 [arXiv:1105.2296]

[INSPIRE].

[92] R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs

boson versus flavour and electroweak precision tests, JHEP 05 (2013) 069

[arXiv:1211.5085] [INSPIRE].

[93] CMS collaboration, Search for vector-like T and B quark pairs in final states with leptons

at
√
s = 13 TeV, JHEP 08 (2018) 177 [arXiv:1805.04758] [INSPIRE].

[94] ATLAS collaboration, Combination of the searches for pair-produced vector-like partners of

the third-generation quarks at
√
s = 13 TeV with the ATLAS detector, arXiv:1808.02343

[INSPIRE].

[95] M. Ciuchini, E. Franco, S. Mishima and L. Silvestrini, Electroweak Precision Observables,

New Physics and the Nature of a 126 GeV Higgs Boson, JHEP 08 (2013) 106

[arXiv:1306.4644] [INSPIRE].

[96] Gfitter Group collaboration, M. Baak et al., The global electroweak fit at NNLO and

prospects for the LHC and ILC, Eur. Phys. J. C 74 (2014) 3046 [arXiv:1407.3792]

[INSPIRE].

[97] J. de Blas et al., Electroweak precision observables and Higgs-boson signal strengths in the

Standard Model and beyond: present and future, JHEP 12 (2016) 135 [arXiv:1608.01509]

[INSPIRE].

[98] A. Azatov, R. Contino, A. Di Iura and J. Galloway, New Prospects for Higgs Compositeness

in h→ Zγ, Phys. Rev. D 88 (2013) 075019 [arXiv:1308.2676] [INSPIRE].

[99] C. Grojean, O. Matsedonskyi and G. Panico, Light top partners and precision physics,

JHEP 10 (2013) 160 [arXiv:1306.4655] [INSPIRE].

[100] D. Ghosh, M. Salvarezza and F. Senia, Extending the Analysis of Electroweak Precision

Constraints in Composite Higgs Models, Nucl. Phys. B 914 (2017) 346 [arXiv:1511.08235]

[INSPIRE].

[101] M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP 11 (2011)

108 [arXiv:1106.6357] [INSPIRE].

[102] M. Chala and M. Spannowsky, Behavior of composite resonances breaking lepton flavor

universality, Phys. Rev. D 98 (2018) 035010 [arXiv:1803.02364] [INSPIRE].

– 51 –

https://doi.org/10.1016/0370-2693(89)91627-4
https://inspirehep.net/search?p=find+J+%22Phys.Lett.,B223,425%22
https://doi.org/10.1088/1126-6708/2008/03/049
https://arxiv.org/abs/0707.0636
https://inspirehep.net/search?p=find+EPRINT+arXiv:0707.0636
https://doi.org/10.1007/JHEP03(2014)016
https://arxiv.org/abs/1308.1851
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.1851
https://doi.org/10.1088/1126-6708/2008/09/008
https://arxiv.org/abs/0804.1954
https://inspirehep.net/search?p=find+EPRINT+arXiv:0804.1954
https://doi.org/10.1103/PhysRevD.79.056006
https://arxiv.org/abs/0810.1016
https://inspirehep.net/search?p=find+EPRINT+arXiv:0810.1016
https://doi.org/10.1140/epjc/s10052-011-1725-z
https://arxiv.org/abs/1105.2296
https://inspirehep.net/search?p=find+EPRINT+arXiv:1105.2296
https://doi.org/10.1007/JHEP05(2013)069
https://arxiv.org/abs/1211.5085
https://inspirehep.net/search?p=find+EPRINT+arXiv:1211.5085
https://doi.org/10.1007/JHEP08(2018)177
https://arxiv.org/abs/1805.04758
https://inspirehep.net/search?p=find+EPRINT+arXiv:1805.04758
https://arxiv.org/abs/1808.02343
https://inspirehep.net/search?p=find+EPRINT+arXiv:1808.02343
https://doi.org/10.1007/JHEP08(2013)106
https://arxiv.org/abs/1306.4644
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4644
https://doi.org/10.1140/epjc/s10052-014-3046-5
https://arxiv.org/abs/1407.3792
https://inspirehep.net/search?p=find+EPRINT+arXiv:1407.3792
https://doi.org/10.1007/JHEP12(2016)135
https://arxiv.org/abs/1608.01509
https://inspirehep.net/search?p=find+EPRINT+arXiv:1608.01509
https://doi.org/10.1103/PhysRevD.88.075019
https://arxiv.org/abs/1308.2676
https://inspirehep.net/search?p=find+EPRINT+arXiv:1308.2676
https://doi.org/10.1007/JHEP10(2013)160
https://arxiv.org/abs/1306.4655
https://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4655
https://doi.org/10.1016/j.nuclphysb.2016.11.013
https://arxiv.org/abs/1511.08235
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.08235
https://doi.org/10.1007/JHEP11(2011)108
https://doi.org/10.1007/JHEP11(2011)108
https://arxiv.org/abs/1106.6357
https://inspirehep.net/search?p=find+EPRINT+arXiv:1106.6357
https://doi.org/10.1103/PhysRevD.98.035010
https://arxiv.org/abs/1803.02364
https://inspirehep.net/search?p=find+EPRINT+arXiv:1803.02364


J
H
E
P
1
1
(
2
0
1
8
)
1
8
7

[103] G. D’Amico et al., Flavour anomalies after the RK∗ measurement, JHEP 09 (2017) 010

[arXiv:1704.05438] [INSPIRE].

[104] B. Capdevila, A. Crivellin, S. Descotes-Genon, J. Matias and J. Virto, Patterns of New

Physics in b→ s`+`− transitions in the light of recent data, JHEP 01 (2018) 093

[arXiv:1704.05340] [INSPIRE].

[105] M. Ciuchini et al., On Flavourful Easter eggs for New Physics hunger and Lepton Flavour

Universality violation, Eur. Phys. J. C 77 (2017) 688 [arXiv:1704.05447] [INSPIRE].
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