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1 Introduction

A distinct feature of the gauge theory scattering amplitudes in the high-energy limit is the

presence of the “Sudakov” radiative corrections enhanced by the second power of the large

logarithm of the energy ratio to a characteristic infrared scale of the process per each power

of the coupling constant. These double-logarithmic corrections determine the leading devi-

ation in the asymptotic behavior of the quantum field theory amplitudes from the classical

result. Since the original work [1] on the double-logarithmic approximation of the electron

form factor in QED the analysis has been extended to nonabelian gauge theories and to sub-

leading logarithms [2–7]. Sudakov logarithms exponentiate and result in a strong universal

suppression of the scattering amplitudes in the limit when all the kinematic invariants of

the process are large. This analysis however does not extend to the amplitudes suppressed

by a power of an infrared scale in the high energy limit. The power-suppressed contribu-

tions now attract a lot of attention in various contexts (see e.g. [8–28]). Incorporating the

logarithmically enhanced power-suppressed terms can significantly increase the accuracy

and extend the region where the leading-power approximation is applicable. Besides their

phenomenological importance these contributions are very interesting from the general ef-

fective field theory point of view since the structure of the renormalization group evolution

in this case becomes highly nontrivial already in the leading logarithmic approximation.

We focus on the double-logarithmic corrections to the amplitudes suppressed by the

leading power of the fermion mass. In general very little is known so far about the all-order
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structure of such corrections. In contrast to Sudakov logarithms they do not exponentiate

and do not factorize into the wave functions of scattering particle. While the mass effects

on the leading-power contributions have been extensively studied in the context of the

high-order electroweak and QED radiative corrections [29–37], a few known examples of

the all-order resummation for the power-suppressed terms are restricted to abelian gauge

theory [14, 16, 38, 39]. Extension of the analysis to QCD is not straightforward and requires

a systematic treatment of the factorization. Only recently the first QCD result in the field

has been reported in a short letter [22]. Below we present a detailed account of this analysis.

The paper is organized as follows. In the next section we use a simple example of

quark scattering by a scalar color-singlet gluon field operator to outline the method and

to derive the factorization formula for the mass-suppressed double-logarithmic corrections.

In section 3 we apply the method to the analysis of the Higgs boson production in gluon

fusion mediated by a bottom quark loop. In section 4 we derive the asymptotic behaviour

of the leading power corrections to various massive quark form factors. The universality

of our solution for different amplitudes and gauge models as well as the phenomenological

applications are discussed in section 5.

2 Massive quark scattering by a gluon field operator

Throughout this paper we deal with a massive quark scattering by various external currents.

To introduce the main idea of our approach we start with an amplitude G for the scattering

of a quark of mass mq, initial momentum p1 and final momentum p2, by a local operator

(Gaµν)2 of the gauge field strength tensor. The origin of such a vertex is not relevant for our

discussion and one may suggest that it describes the gluon field interaction to the Higgs

boson mediated by an infinitely heavy quark loop. This rather artificial amplitude is a

perfect example to reveal the main features of the general problem in the most illustrative

way and with minimal technical complications.

2.1 The leading-order amplitude

We consider the limit of the on-shell quark p21 = p22 = m2
q and the large Euclidean momen-

tum transfer Q2 = −(p2 − p1)2 when the ratio ρ ≡ m2
q/Q

2 is positive and small. In the

light-cone coordinates p1 ≈ p−1 and p2 ≈ p+2 . The leading-order scattering is given by the

one-loop diagram in figure 1(a). Conservation of helicity at high energy requires a helicity

flip on the virtual quark line. As a consequence at high energy the amplitude is suppressed

by the first power of mq. The virtual quark propagator then can be approximated as follows

S(l) ≈ mq

l2−m2
q
. Thus, the one-loop integral reduces to

2iQ2

π2

∫
d4l

(l2 −m2
q)(p1 + l)2(p2 + l)2

, (2.1)

where the prefactor is introduce for convenience. For the soft quark momentum mq �
l � Q the gauge boson propagators are eikonal i.e. proportional to 1

2pil
, and the integral

has the double-logarithmic scaling. To evaluate the double logarithmic contribution the
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(a) (b) (c) (d)

Figure 1. The leading-order one-loop Feynman diagrams for (a) quark scattering by the (Gaµν)2

vertex (black circle) and (c) the Higgs boson production in gluon fusion. The diagrams (b) and

(d) with the effective vertices (gray circles) defined in the text represent the non-Sudakov double-

logarithmic corrections to the process (a) and (c), respectively.

propagators can be approximated as follows [1]

1

l2 −m2
q

≈ −iπδ(Q2uv + l2⊥ −m2
q) ,

1

(p1 + l)2
≈ 1

Q2v
,

1

(p2 + l)2
≈ 1

Q2u
, (2.2)

where we introduce the standard Sudakov parametrization of the soft quark momentum

l = up1+vp2+l⊥. The validity of the eikonal approximation in eq. (2.2) requires |u|, |v| < 1

and the additional kinematical constraints uv > ρ has to be imposed to ensure that the

soft quark propagator can go on the mass shell. After integrating eq. (2.1) over l⊥ with

the double-logarithmic accuracy we get

2

∫ 1

ρ

dv

v

∫ 1

ρ/v

du

u
= 2 ln2ρ

∫ 1

0
dξ

∫ 1−ξ

0
dη = ln2ρ , (2.3)

where the normalized logarithmic variables read η = ln v/ ln ρ, ξ = lnu/ ln ρ. This defines

the leading order amplitude

G0 = 2CFxmq q̄q , (2.4)

where x = αs
4π ln2ρ is a double logarithmic variable, CF = (N2

c − 1)/(2Nc) is the quadratic

Casimir operator of the fundamental representation of the SU(Nc) color group, and αs is

the strong coupling constant. Thus we have a typical situation when a soft quark exchange

generates the double-logarithmic contribution to the mass-suppressed amplitude. As we

see, the emission of the soft quark results in the change of the color group representation of

a particle propagating along the eikonal line, or the eikonal color charge nonconservation.

This is a crucial feature of the process which plays an important role in further analysis.

2.2 Factorization of the double-logarithmic corrections

We start with the two-loop radiative corrections. In a covariant gauge the two-loop double-

logarithmic contributions are produced by the Feynman diagrams in figure 2. Let us

consider first the abelian case of the photon interaction corresponding to the diagrams

in figures 2(a,b). The key idea of our approach is to move the soft photon vertex from
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the virtual soft quark line in figure 2(a) to an eikonal photon line through a sequence

of identities graphically represented in figure 3. Let us describe this sequence in more

detail. In a covariant gauge only A− light-cone component of the photon field can be

emitted by the eikonal quark line with the momentum p2, while the emission of the A+

and transverse components is suppressed. Since A− is not a physical polarization its

interaction to the quark line is completely determined by gauge invariance. For the soft

quark line in figure 3(a) we therefore can write the following relation

S(l)γµS(l + lg) ≈ S(l)γ−S(l + l+g ) =
1

l+g

(
S(l)− S(l + l+g )

)
, (2.5)

with lg being the soft photon momentum. Multiplying eq. (2.5) with lgµ ≈ lg− = l+g
gives the standard QED Ward identity. Note that we neglect l−g = lg+ in S(l + lg) to get

the logarithmic scaling of the integral over l−g since the lower eikonal quark propagator is

proportional to 1/l−g . The right hand side of eq. (2.5) corresponds to the diagram figure 2(b)

where the crossed circle on the quark propagator represents the replacement S(l)→ S(l)−
S(l+ l+g ) and the 1/l+g factor is absorbed into the upper eikonal quark propagator. By the

momentum shift l → l − l+g in the second term of the above expression the crossed circle

can be moved to the upper eikonal photon line which becomes 1
2p1l
− 1

2p1(l+l
+
g )

, figure 2(c).

The opposite eikonal line is not sensitive to this shift since p−2 ≈ 0. On the final step we

use the “inverted Ward identity” on the upper eikonal photon line

1

l+g

(
1

2p1l
− 1

2p1(l + l+g )

)
=

1

2p1l
2p1
− 1

2p1(l + l+g )
≈ 1

(p1 + l)2
2pµ1

1

(p1 + l + lg)2
(2.6)

to transform the diagram figure 2(c) into figure 2(d) with an effective dipole coupling 2eqp
µ
1

to the eikonal photon, where eq is the quark charge. Note that we can replace 2p1(l + l+g )

by (p1 + l + lg)
2 in the gauge boson propagator as long as lg � Q since p+1 ≈ 0.

By adding the symmetric diagram we get a “ladder” structure characteristic to the

standard eikonal factorization for the Sudakov form factor. This factorization, however,

requires the summation over all possible insertions of the soft photon vertex along each

eikonal line while in the case under consideration the diagram in figure 1(b) with the soft

exchange between the photon lines is missing. This diagram can be added to complete

the factorization and then subtracted. Note that the first Ward identity of the sequence

in figure 1 is sufficient to prove the factorization of the soft photons with the momentum

lg � mq as it has been done in the original paper [40]. This algorithm however does

not work for the momentum interval mq � lg � Q which does contribute to the double-

logarithmic corrections. Our method extends the factorization to this region at the expense

of introducing the above subtraction term, which compensates the charge variation of the

eikonal line after the soft quark emission.

After adding the diagram figure 1(b) the integral over the soft photon momentum in the

double-logarithmic approximation factors out with respect to the leading order amplitude

and reads

−
e2q

(4π)2
2iQ2

π2

∫
ddlg

l2((p1 + lg)2 −m2
q)((p2 + lg)2 −m2

q)
= −

e2q
(4π)2

(
2

ln ρ

ε
+ ln2 ρ

)
, (2.7)
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(a) (b) (c) (d)

Figure 2. The two-loop Feynman diagrams for the quark scattering by the (Gaµν)2 vertex

(black circle) which contribute in the double-logarithmic approximation. Symmetric diagrams are

not shown.

where the dimensional regularization with d = 4 − 2ε is used to deal with the infrared

divergence. The above equation coincides with the one-loop on-shell Sudakov form factor,

which includes all the universal Sudakov double logarithms for the amplitudes with the

quark and antiquark external lines. The remaining soft photon contribution is given by the

diagram figure 1(b) with the coefficient −e2q . The corresponding two-loop integral reads(
2iQ2

π2

)2 ∫
d4l

(l2 −m2
q)(p1 + l)2(p2 + l)2

d4lg
l2g(p1 + lg + l)2(p2 + lg + l)2

. (2.8)

The integration over the soft quark momentum l is double-logarithmic if the latter can be

neglected in the eikonal propagators with the soft gluon momentum lg. This defines the

conditions lp1 < lgp1, lp2 < lgp2 corresponding to the ordering of the Sudakov parameters

along the eikonal lines v < vg, u < ug. Then in the double-logarithmic approximation the

propagators take the following form

1

l2g
≈ −iπδ(Q2ugvg + lg

2
⊥) ,

1

(p1 + lg + l)2
≈ 1

Q2vg
,

1

(p2 + lg + l)2
≈ 1

Q2ug
,

1

l2 −m2
q

≈ −iπδ(Q2uv + l2⊥ −m2
q) ,

1

(p1 + l)2
≈ 1

Q2v
,

1

(p2 + l)2
≈ 1

Q2u
.

(2.9)

After integrating over the transverse momentum components eq. (2.8) reduces to

4

∫ 1

ρ

dv

v

∫ 1

ρ/v

du

u

∫ 1

v

dvg
vg

∫ 1

u

dug
ug

. (2.10)

By subsequent integrating over the parameters ug, vg and converting the result to the

logarithmic variables we get the two-loop non-Sudakov double-logarithmic correction to

the amplitude

e2q
(4π)2

ln2ρ

(
2

∫ 1

0
dξ

∫ 1−ξ

0
dη (2ηξ)

)
G0 =

e2q
(4π)2

ln2ρ

6
G0 . (2.11)

Note that the result is infrared finite since the quark mass regulates both collinear and

soft divergences.

The above result can be generalized to QCD in a straightforward way. The difference

with respect to the abelian case is that the factor e2q/(4π) should be replaced by CFαs.
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→ → →

(a) (b) (c) (d)

Figure 3. Diagramatic representation of the sequence of identities which move the soft gauge

boson vertex from the soft quark to the eikonal gauge boson line, as explained in the text.

Moreover, the contribution similar to figure 1(b) does exist in QCD due to gluon self-

coupling and is proportional to the quadratic Casimir operator of the adjoint representation

CA = Nc. Thus the part of the soft gluon exchange which does not factorize into external

lines is given by the diagram figure 1(b) with the color factor CA−CF , which directly links

it to the variation of the color charge along the eikonal lines. Let us now demonstrate how

the above factorization emerges in the direct evaluation of the two-loop QCD diagrams in

figure 2. In general the calculation can be performed in the same way as in eq. (2.8) up

to the treatment of the infrared divergences not regulated by the quark mass. Figure 2(a)

is the only diagram with such a divergence in the final result. The integration over the

soft gluon momentum lg in this diagram is double-logarithmic when one can neglect it

in the eikonal propagators with the soft quark momentum l. This defines the conditions

lgpi � lpi corresponding to the ordering of the Sudakov parameters vg � v, ug � u. Thus

lg should be retained only in the propagators without the soft quark momenta and the

integral over the soft gluon momentum is reduced to

2iQ2

π2

∫
d4lg

l2g((p1 + lg)2 −m2
q)((p2 + lg)2 −m2

q)
, (2.12)

with the above restriction on lg. In the double-logarithmic approximation the propagators

in this expression take a form slightly different from eq. (2.9)

1

l2g
≈ −iπδ(Q2ugvg + lg

2
⊥) ,

1

(p1 + lg)2 −m2
q

≈ 1

Q2(vg + 2ρug)
,

1

(p2 + lg)2 −m2
q

≈ 1

Q2(ug + 2ρvg)
. (2.13)

After integrating eq. (2.12) over lg⊥ with the double-logarithmic accuracy we get

2

∫ v

ρug

dvg
vg

∫ u

ρvg

dug
ug

. (2.14)

Eq. (2.14) has soft divergence when vg and ug simultaneously become small. This diver-

gence can be removed by subtracting the factorized expression

2

∫ 1

ρug

dvg
vg

∫ 1

ρvg

dug
ug

. (2.15)
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The subtraction term does not depend on the soft quark momenta and is equivalent to

the factorized one-loop Sudakov form factor in eq. (2.7), which does not have a nonabelian

contribution. The subtracted expression reads

−2

(∫ 1

v

dvg
vg

∫ u

ρvg

dug
ug

+

∫ v

ρug

dvg
vg

∫ 1

u

dug
ug

+

∫ 1

v

dvg
vg

∫ 1

u

dug
ug

)

= − ln2ρ
(
(η − ξ)2 + 2(η + ξ)

)
. (2.16)

The contributions of the infrared subtracted diagram figure 2(a) along with the remaining

infrared finite diagrams can be written as the integral over the soft quark momentum

variables

x

(
2
∑
i

c
(1)
λ

∫ 1

0
dξ

∫ 1−ξ

0
dη w

(1)
λ (η, ξ)

)
G0 , (2.17)

where the color factors c
(1)
λ and the weight function w

(1)
λ resulting from the logarithmic

integration over the soft gluon momentum are collected in table 1.1 Summing up the

contributions we get

− z
(

2

∫ 1

0
dξ

∫ 1−ξ

0
dη (2ηξ)

)
G0 = −z

6
G0 , (2.18)

where z = (CA − CF )x, which coincides with eq. (2.11) up to the modification of the

effective coupling discussed above. Thus we observe the relations between the diagrams

imposed by the Ward identities at the integrand level. The only new relation with respect

to the abelian case provides the cancellation of the color space commutator of the soft

gluon vertex at the first step of the sequence in figure 3 by the diagram figure 2(c) with

the three-gluon coupling, as can be seen from the second and the third lines of table 1. It

is equivalent to the standard Ward identity for the factorization of the soft gluon emission

which provides the cancellation of the nonabelian contribution in the double-logarithmic

Sudakov form factor. We have verified the above result diagram by diagram through the

explicit evaluation of the two-loop integrals in the high-energy limit within the expansion

by regions framework [41–43].

2.3 Resummation of the double-logarithmic corrections and the asymptotic

behavior of the amplitude

With the established factorization structure at hand it is straightforward to perform the

resummation of the double logarithmic corrections to all orders of perturbation theory.

Indeed, the emission of the soft gluons from an eikonal line of a given color charge factorizes

and exponentiates [44] so we can apply the procedure discussed in the previous section to an

arbitrary number of gluons emitted from the soft quark line. Then the factorized one-loop

Sudakov logarithms exponentiate to the universal factor for the quark-antiquark external

on-shell lines

Z2
q = exp

[
−CF

(
αs
2π

ln ρ

ε
+ x

)]
. (2.19)

1Further details of the soft gluon momentum integration can be found in ref. [21].
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λ w
(1)
λ c

(1)
λ

a (η − ξ)2 + 2(η + ξ) CF

b η2 − 2ηξ + 2η −CF + 1
2CA

c η2 − 2ηξ + 2η −1
2CA

d 2ηξ −CA

Table 1. The weights w
(1)
λ and the color factors c

(1)
λ for the diagrams in figure 2. The weights for

the symmetric diagrams are obtained by interchanging the η and ξ variables. The singular part of

the infrared divergent diagram (a) is subtracted as discussed in the text.

The same statement is true for the soft gluon exchange between the effective vertices,

figure 1(b). Thus the all-order non-Sudakov double logarithms can be obtained by replacing

the one-loop contribution −2zηξ in eq. (2.11) with its exponent inside the integral over

the logarithmic variables. Hence the the all-order expression for the double-logarithmic

corrections to the amplitude reads

G = Z2
q g(−z)G(0) , (2.20)

where the function g(−z) incorporates the non-Sudakov contribution of figure 1(b) with an

arbitrary number of the effective soft gluon exchanges. The function g(z) of the variable

z = (CA − CF )x is normalized to g(0) = 1 and is given by the two-fold integral

g(z) = 2

∫ 1

0
dξ

∫ 1−ξ

0
dηe2zηξ . (2.21)

The integral eq. (2.21) can be solved in terms of the generalized hypergeometric function

g(z) = 2F2 (1, 1; 3/2, 2; z/2) = 2

∞∑
0

n!

(2n+ 2)!
(2z)n (2.22)

with the following asymptotic behavior at z →∞

g(−z) ∼ ln(2z) + γE
z

, g(z) ∼
(

2πez

z3

)1/2

, (2.23)

where γE = 0.577215 . . . is the Euler constant and both limits are necessary since the

variable z is positive in QCD and negative in QED. The above equations determine the

amplitude G in the high-energy limit in double-logarithmic approximation. In the next

section we verify the perturbative expansion of eq. (2.20) to O(α3
s) by explicit evaluation

of the three-loop double-logarithmic term.

2.4 Explicit evaluation of the three-loop amplitude

For the calculation of the three-loop logarithmic corrections we use the same method of

Sudakov parameters but now have to integrate over two virtual soft gluon momenta lg1
and lg2. The relevant Feynman diagrams are given in figure 4. The sum of all the diagrams

– 8 –
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

(u) (v) (w) (x) (y)

(z) (ρ) (σ) (τ)

Figure 4. The three-loop Feynman diagrams for the quark scattering by the (Gaµν)2 vertex which

contribute in the double-logarithmic approximation. Symmetric diagrams are not shown.
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λ w
(2)
λ c

(2)
λ

a 2ξ/3 + ξ2 + ξ3/2 + ξ4/24 + 2η/3− ξ2η/2− ξ3η/6 4C2
F

+η2 − ξη2/2 + ξ2η2/4 + η3/2− ξη3/6 + η4/24

b −2ξ/3− ξ2/2 + ξ4/12− 2η/3 + ξη − ξ3η/3− η2/2 4C2
F − 2CFCA

+ξ2η2/2− ξη3/3 + η4/12

c −2ξ/3− ξ2/2 + ξ4/12− η2/4 + ξη2/2− ξ2η2/4− η3/6 CFCA

+ξη3/6

d −2η/3 + ξ2η/2 + ξ3η/6− 5η2/4 + ξη2 − ξ2η2/2− 5η3/6 4C2
F − 2CFCA

+ξη3/2− η4/8

e −2ξ/3− 5ξ2/4− 5ξ3/6− ξ4/8 + ξ2η + ξ3η/2 2CFCA

+ξη2/2− ξ2η2/2 + ξη3/6

f −ξ2η − ξ3η/2− ξη2 + ξ2η2 − ξη3/2 4CFCA

g 2η/3− ξη + ξ3η/3 + η2/4 + ξη2/2− 3ξ2η2/4− η3/6 CFCA − 1
2C

2
A

+ξη3/2− η4/8 + 2ξ/3 + ξ2/4− ξ3/6− ξ4/8− ξη

+ξ2η/2 + ξ3η/2− 3ξ2η2/4 + ξη3/3

h 0 1
4C

2
A

i η2/2− ξη2 + ξ2η2/2 + η3/2− ξη3/2 + η4/8 2CFCA − C2
A

j ξη − ξ2η/2− ξ3η/2− ξη2/2 + 5ξ2η2/4− ξη3/2 2CFCA − C2
A

k ξη2/2− ξ2η2/2 + ξη3/3 2C2
A

l η2/4− ξη2/2 + ξ2η2/4 + η3/6− ξη3/6 + η4/24 4C2
F − 6CFCA + 2C2

A

m ξ2η2/4 C2
A

n 2ξ/3 + ξ2/4− ξ3/6− ξ4/8− ξη + ξ2η/2 + ξ3η/2 2CFCA − C2
A

−3ξ2η2/4 + ξη3/3

o η2/4− ξη2/2 + ξ2η2/4 + η3/6− ξη3/6 CFCA − 1
2C

2
A

p ξ2η2/4 4C2
A

q ξη2 − ξ2η2 + ξη3/2 4CFCA − 2C2
A

r η2/4− ξη2/2 + ξ2η2/4 + η3/3− ξη3/3 + η4/12 C2
A

s η2/4− ξη2/2 + ξ2η2/4 + η3/6− ξη3/6 + η4/24 CFCA − 1
2C

2
A

t η2/4− ξη2/2 + ξ2η2/4 + η3/3− ξη3/3 + η4/12 4C2
F − 4CFCA + C2

A

u ξ2η2/4 C2
A

v ξη − ξ2η/2− ξ3η/2− ξη2/2 + 5ξ2η2/4− ξη3/2 4C2
F − 4CFCA + C2

A

w 2η/3− ξη + ξ3η/3 + η2/4 + ξη2/2− 3ξ2η2/4− η3/6 4C2
F − 4CFCA + C2

A

+ξη3/2− η4/8

x ξη2/2− ξ2η2/2 + ξη3/6 1
2C

2
A

y η2/4− ξ2η2/4 + η3/6 + η4/24 1
2C

2
A

z η2/4− ξη2/2 + ξ2η2/4 + η3/6− ξη3/6 1
2C

2
A

ρ ξ2η/2 + ξ3η/6− ξ2η2/2 C2
A

σ 2ξ/3 + ξ2/4− ξ3/6− ξ4/8− ξη2/2 + ξ2η2/2− ξη3/6 1
2C

2
A

τ η2/2− ξη2 + ξ2η2/2 + η3/2− ξη3/2 + η4/8 2CFCA − C2
A

Table 2. The weights w
(2)
λ and the color factors c

(2)
λ for the diagrams in figure 4.
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has the infrared divergent part described by the Sudakov factor eq. (2.19). As in the two-

loop case the divergent parts of the individual diagrams can be separated in the Sudakov

parameter space by subtracting the factorized infrared divergent contributions where the

upper integration for a given parameter vgi or ugj is set to 1 (cf. eq. (2.15)). The factorized

double-pole singular contributions of the diagrams in figures 4(a-c) indeed add up to

C2
F

2

(
αs
2π

ln ρ

ε
+ x

)2

G0 , (2.24)

while the factorized single-pole contributions of the diagrams in figures 4(a-f) give

CF z

6

(
αs
2π

ln ρ

ε
+ x

)
G0 , (2.25)

which agrees with eq. (2.19)–(2.22). Though some of the remaining diagrams taken sepa-

rately are infrared divergent, their sum is finite and gives the following contribution to the

amplitude

x2

(
2
∑
λ

c
(2)
λ

∫ 1

0
dξ

∫ 1−ξ

0
dη w

(2)
λ (η, ξ)

)
G0 , (2.26)

where the color factors c
(2)
λ and the weight function w

(2)
λ resulting from the logarithmic

integration over the two soft gluon momenta are collected in table 2. Note that the weights

w
(2)
λ correspond to the infrared subtracted diagrams and the weights for the symmetric

diagrams not shown in figure 4 are obtained by interchanging the η and ξ variables and

should be included into the sum. It is straightforward to check that the sum in eq. (2.26)

reduces to

z2
(

2

∫ 1

0
dξ

∫ 1−ξ

0
dη 2 (ηξ)2

)
G0 =

z2

45
G0 , (2.27)

in full agreement with eqs. (2.20)–(2.22).

3 Higgs boson production mediated by bottom quark loop

The analysis and the result of the previous section can be generalized in a straightforward

way to an important case of the bottom quark mediated Higgs boson production in gluon

fusion. We postpone the discussion of the phenomenological aspects of this process to

the last section and focus now on the structure of the radiative corrections. The leading

order contribution is given by the one-loop diagram in figure 1(c). Note that the dominant

contribution to the gluon fusion process is given by the same diagram with the top quark

loop and in the formal limit of the large top quark mass mt � mH is proportional to

the square of the Higgs boson mass mH . By contrast for the intermediate bottom quark

with mb � mH the amplitude is suppressed by the square of the bottom quark mass.

Indeed, the Higgs boson coupling to the bottom quark is proportional to mb. Then the

scalar interaction of the Higgs boson results in a helicity flip at the interaction vertex

and helicity conservation requires the amplitude to vanish in the limit mb → 0 even if

the Higgs coupling to the bottom quark is kept fixed. As in the example considered in the
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(a) (b) (c) (d)

Figure 5. The two-loop Feynman diagrams for the bottom quark mediated gg → H fusion, which

contribute in the double-logarithmic approximation. Symmetric diagrams and the diagrams with

the opposite direction of the closed quark line are not shown.

previous section the additional power of mb originates from the t-channel quark propagator

which effectively becomes scalar and results in double-logarithmic scaling of the diagram

absent for the top quark contribution. By using the explicit one-loop result the bottom

quark mediated amplitude can be written in such a way that its power suppression and

the logarithmic enhancement is manifest

Mb(0)
gg→H = −3

2
ln2ρ ρMt(0)

gg→H , (3.1)

where ρ = m2
b/s is now a Minkowskian parameter, s ≈ m2

H is the total energy of colliding

gluons, and the result is given in terms of the heavy top quark mediated amplitudeMt(0)
gg→H ,

which corresponds to a local gluon-gluon-Higgs interaction vertex and has one independent

helicity component.

Thus the processes in figures 1(a,c) are similar in a few important aspects: they are

mass suppressed due to the quark helicity flip, the double-logarithmic contribution is in-

duced by the soft quark exchange and the color charge is not conserved along the eikonal

lines. Moreover, since the eikonal or Wilson lines are characterized by the momentum and

color charge but not the spin, in the double-logarithmic approximation the processes are

identical up to the color group representation of the external lines and the direction of

the color charge flow to/from an eikonal line at the soft quark emission vertex. There-

fore the factorization structure of the double-logarithmic corrections found in the section 2

directly applies to the case under consideration. In particular the two-loop non-Sudakov

double-logarithmic contribution is given by the diagram figure 1(d) where the effective

gluon exchange has the color weight CF − CA rather than CA − CF of the diagram fig-

ure 1(b), and the higher-order non-Sudakov double-logarithmic terms are described by the

same function g(z) with CA and CF exchanged, i.e. with the opposite sign of the argument.

Hence to all orders in αs we get

Mb
gg→H = Z2

gg(z)Mb(0)
gg→H , (3.2)

where

Z2
g = exp

[
−CAs

−ε

ε2
αs
2π

]
(3.3)

is the Sudakov factor for a gluon scattering. Let us now demonstrate how the above

factorization is realized for the two-loop corrections. The relevant diagrams are given in
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λ w̃
(1)
λ c

(1)
λ

a −(η + ξ − τ)2 1
2CA

b η2 + 2ηξ − 2ητ 1
4CA

c η2 + 2ηξ − 2ητ 1
4CA

d 2ηξ -12CF

Table 3. The weights w̃
(1)
λ and the color factors c

(1)
λ for the diagrams in figure 5.

figure 5 and the corresponding contribution to the amplitude can be written in the form

similar to eq. (2.17)

x

(
2
∑
i

c
(1)
λ

∫ 1

0
dξ

∫ 1−ξ

0
dη w̃

(1)
λ (η, ξ)

)
Mb(0)

gg→H , (3.4)

with the color factors c
(1)
λ and the weights w̃

(1)
λ collected in table 3. As before the weights

for the symmetric diagrams not shown in figure 5 are obtained by interchanging the η and

ξ variables and should be included into the sum. To make the factorization of the Sudakov

logarithms explicit we do not subtract the factorized contribution and the functions w̃
(1)
i

correspond to the unsubtracted Feynman integrals over the soft gluon momentum, which

are infrared divergent. They are regularized by introducing a small auxiliary gluon mass

λg � mb, which is more convenient for the calculation in the Sudakov parameter space

than dimensional regularization. In table 3 the dependence on the infrared regulator is

encoded into the parameter τ = ln2(λ2g/s)/ ln2(m2
b/s). The contributions of the individual

diagrams in eq. (3.4) combine into the sum of two terms(
2

∫ 1

0
dξ

∫ 1−ξ

0
dη (2zηξ − CAxτ)

)
Mb(0)

gg→H . (3.5)

The first term in eq. (3.4) coincides with the expression for the diagram figure 1(d) and

represents the first-order term in the perturbative expansion of the function g(z). The

second term in the brackets does not depend on the soft quark momentum variables, i.e.

here the soft gluon momentum integral factorizes and gives the one-loop massive gluon

Sudakov form factor −CAxτ = −CAαs

4π ln2(λ2g/s). After converting to the dimensional

regularization it recovers the first-order term in the perturbative expansion of Z2
g . Thus

the double-logarithmic contributions factorize at the integrand level as suggested by the

Ward identities discussed in the previous section. Note that the two-loop contribution to

eq. (3.2) agrees with the analytical result for the amplitude with an arbitrary value of the

quark mass [45] expanded in the series in ρ.

4 Quark form factors beyond the leading-power approximation

In this section we consider the asymptotic behavior of the leading mass-suppressed con-

tribution to the amplitude of quark scattering in an external field. The problem is more
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(a) (b) (c) (d) (e)

Figure 6. The leading order two-loop Feynman diagrams for (a) vector form factor F
(1)
1 and (c)

scalar form factor F
(1)
S in the double-logarithmic approximation. The diagrams with an effective

soft gluon exchange which incorporate the non-Sudakov double-logarithmic corrections to (b) vector

and (d,e) scalar form factor. Symmetric diagrams and the diagrams with the opposite direction of

the closed quark line are not shown.

complex since in contrast to the amplitudes considered in the previous sections the quark

form factors do get the leading power contribution which does not vanish in mq → 0 limit.

In refs. [14, 17] it was shown within the expansion by regions framework that a soft gauge

boson exchange responsible for the standard Sudakov logarithms does not generate the

leading mass suppressed double-logarithmic contribution. Such a contribution results from

the soft fermion pair exchange between the eikonal lines. Therefore the approach elabo-

rated in the previous section can be naturally extended to the quark form factors. We start

with the analysis of the external vector field and consider the scalar field case next.

4.1 Vector form factor

The amplitude of a quark scattering in an external color-singlet vector field can be param-

eterized in the standard way by the Dirac and Pauli form factors. The Pauli form factor

contribution to the amplitude at high energy is suppressed by the first power of ρ but

does not acquire the double logarithmic corrections in the approximation discussed in this

paper. Indeed, the leading-order one-loop Pauli form factor F2 is finite so the higher-order

Sudakov double logarithms will give a subleading contribution to the scattering ampli-

tude suppressed by an additional power of the coupling constant. Thus we focus on the

high-energy behavior of the Dirac form-factor F1 described by an asymptotic series in ρ

F1 = Z2
q

∞∑
n=0

ρnF
(n)
1 , (4.1)

where F
(n)
1 are given by the power series in αs with the coefficients depending on ρ only

logarithmically, and we use the same notations and kinematics as in section 2. Since the Su-

dakov corrections in eq. (4.1) are factored out, in the double-logarithmic approximation the

leading term of the expansion is just the Born value F
(0)
1 = 1, and the double-logarithmic

corrections to the leading power-suppressed term F
(1)
1 are purely non-Sudakov. According

to the results of refs. [14, 21] such corrections are induced by the nonplanar soft quark

pair exchange, figure 6(a), and start with the two-loop contribution. In contrast to the

previously considered cases the vector interaction conserves helicity and require a helicity

flip on each of soft quark lines which become sufficiently singular to develop the double
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7. The three-loop diagrams contributing to the vector form factor F
(1)
1 in the double-

logarithmic approximation. Symmetric diagrams are not shown. The remaining diagrams either do

not have the double-logarithmic integration region or have vanishing color factor.

logarithmic scaling. The corresponding Feynman integral reads(
2iQ2

π2

)2 ∫ (
d4l1

(l21 −m2
q)(p2 + l1)2((p1 + l1 + l2)2 −m2

q)

× d4l2
(l22 −m2

q)(p1 + l2)2((p2 + l1 + l2)2 −m2
q)

)
. (4.2)

The integration over the soft quark momenta li in this case is double-logarithmic when

l2p1 < l1p1, l1p2 < l2p2 and the corresponding Sudakov parameters are ordered along the

eikonal lines v2 < v1, u1 < u2. With the additional kinematical constraints uivi > ρ the

integral over the Sudakov parameters reduces to

4 ln4ρ

∫ 1

0
dη1

∫ 1

η1

dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2

dξ1 =
ln4ρ

3
, (4.3)

which corresponds to the leading-order result[
F

(1)
1

]
2−loop

=
CF (CA − 2CF )

6
x2 , (4.4)

in agreement with [46]. To derive the factorization formula for the higher-order double-

logarithmic terms let us consider the three-loop corrections, figure 7, and start with the

abelian QED case. Following the algorithm described in section 2.2 we use the sequence of
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→ →

(a) (b) (c) (d)

+ →

(e) (f) (g)

Figure 8. Diagramatic representation of the transformation which moves the soft gauge boson

vertex from a soft quark to an eikonal line.

Ward identities and the soft quark momentum shifts to move the soft photon vertex from

a soft quark to an eikonal line. The result of the transformation is shown in figure 8, where

the effective vertex is proportional to the charge of the corresponding external line. The

first two relations are rather straightforward to derive. In the third relation the presence of

the additional diagram figure 8(f) needs to be clarified. First we note that this diagram has

an opposite sign with respect to figure 8(b) since the photon couples to the antiquark rather

than the incoming quark line. Thus the diagram figure 8(f) is not relevant for the eikonal

factorization of the soft photon ladder. On the contrary, its role is similar to the diagram

figure 2(c) which cancels the color space commutator when the soft gluon vertex is moved

in figure 2(b). Though now we consider the abelian case, such commutator appears in the

transformation of figure 8(e) since the electric charge is not conserved along the eikonal

line. A set of the resulting ladder diagrams figures 8(b,d,g) together with figures 7(a,b)

needs the last missing permutation of the soft photon vertex, figure 6(b), to complete the

eikonal factorization. After adding this diagram the soft photon exchange factorizes into

the one-loop Sudakov factor in eq. (4.1). Thus the remaining soft photon contribution to

F
(1)
1 is given by the negative of figure 6(b), and the symmetric one. A characteristic feature

of the diagram figure 6(b) is that the soft gluon connects two eikonal lines determined by

the same soft quark momentum. Such a diagram cannot be obtained by the transformation

of another diagram described in section 2.2 and has to be added by hand to complete the

Sudakov logarithms factorization. Hence the above property can be a guiding principle for

selecting the diagrams which define the non-Sudakov double logarithmic contribution. As

in the example discussed in section 2.2 the QCD result is obtained from the QED one by

substituting −e2q/(4π) with (CA−CF )αs in the above diagram. In analogy with eq. (2.17)

we can write the three-loop contribution to the form factor as follows

x

(
12
∑
i

c
(1)
λ

∫ 1

0
dη1

∫ 1

η1

dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2

dξ1w
(1)
λ (η, ξ)

) [
F

(1)
1

]
2−loop

, (4.5)
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λ w
(1)
λ c

(1)
λ

a −η2(η2 + 2)− ξ1(ξ1 − 2η2 + 2) −CF
b 2ξ2η1 −CF
c 2(ξ1 − ξ2)(η2 − η1) CA − CF
d −η1(η1 − 2ξ1 + 2) CA − CF
e (η2 − η1)(η1 + η2 − 2ξ1 + 2) −CA

2

f 2η1(ξ1 − ξ2) −CA
2

g 2η2(ξ1 − ξ2) −CA
2

h η1(η1 − 2ξ1 + 2) CA
2 − CF

i η2(η2 − 2ξ1 + 2) CA
2 − CF

Table 4. The weights w
(1)
λ and the color factors c

(1)
λ for the diagrams in figure 7.

where c
(1)
λ and w

(1)
λ are listed in table 4. The weights for the symmetric diagrams not shown

in figure 7 are obtained in this case by the replacement η1 ↔ ξ2 and η2 ↔ ξ1. Eq. (4.5)

sums up to

− z
(

12

∫ 1

0
dη1

∫ 1

η1

dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2

dξ1 (2η1(ξ1 − ξ2) + 2ξ2(η2 − η1))
)[

F
(1)
1

]
2−loop

,

(4.6)

which can be recognized as the contribution of the effective soft gluon exchange in fig-

ure 6(b) and in the symmetric diagram.

Now the factorization formula for the leading power-suppressed contribution to the

vector form factor can be written as follows

F
(1)
1 =

CF (CA − 2CF )

6
x2f(−z) , (4.7)

where the function f(−z) incorporates the non-Sudakov contribution of figure 6(b) with

an arbitrary number of the effective soft gluon exchanges and is normalized to the two-loop

result f(0) = 1. This function is obtained by exponentiating the single effective soft gluon

exchange in eq. (4.6) and therefore has the following integral representation

f(z) = 12

∫ 1

0
dη1

∫ 1

η1

dη2

∫ 1−η2

0
dξ2

∫ 1−η1

ξ2

dξ1 e
2zη1(ξ1−ξ2)e2zξ2(η2−η1) . (4.8)

It is difficult to solve the four-fold integral eq. (4.8) in a closed analytic form. However,

the coefficients of the series f(z) = 1 +
∑∞

n=1 cnz
n can be computed for any given n

corresponding to the (n + 2)-loop double-logarithmic contribution and have the following

large-n behavior cn ∼ lnn
n!2nn5/2 . The first ten coefficients of the series are listed in table 5.

The asymptotic behavior of the function at z →∞ reads

f(−z) ∼ C−
(

ln z

z

)2

, f(z) ∼ C+ ln z

(
ez

z5

)1/2

, (4.9)
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n 1 2 3 4 5 6 7 8 9 10

2nn2n!cn
2
5

88
105

8
7

70144
51975

640
429

25344
15925

2727424
1640925

1868824576
1091215125

8994816
5143775

27430420480
15460335891

Table 5. The normalized coefficients of the Taylor series for the function f(z), eq. (4.8), up

to n = 10.

where the constant C− = 3.6 . . ., C+ = 14.8 . . . are found numerically. The result eq. (4.7)

vanishes for Nc → ∞, which is consistent with the explicit evaluation of the three-loop

massive form factor in this limit [47].

4.2 Scalar form factor

The quark scattering in the external scalar field is parametrized by a single form factor FS
which has the high-energy asymptotic expansion similar to eq. (4.1)

FS = Z2
q

∞∑
n=0

ρnF
(n)
S , (4.10)

with the Born result normalized to F
(0)
S = 1. The general arguments of the previous

section on the origin of the leading mass suppressed double-logarithmic corrections are

equally applicable to the scalar form factor. However, the contribution of the nonplanar

diagram figure 6(a) in this case vanishes. Indeed, the scalar vertex induces an additional

helicity flip along the quark line and requires an odd number of the soft quark exchanges.

At the same time the planar soft quark pair exchange figure 6(c) with a closed quark line,

which vanishes for the external vector field by Furry theorem, does contribute in the scalar

case. The relevant Feynman integral reads(
2iQ2

π2

)2 ∫ (
d4l1

(l21 −m2
q)(p2 + l1)2(p1 + l1)2

× d4l2
(l22 −m2

q)((p1 + l1 + l2)2 −m2
q)((p2 + l1 + l2)2 −m2

q)

)
, (4.11)

with the double-logarithmic integration region l1p1 < l2p1, l1p2 < l2p2, or v1 < v2, u1 < u2.

It reduces to

4 ln4ρ

∫ 1

0
dη1

∫ 1−η1

0
dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2 =
ln4 ρ

6
(4.12)

corresponding to the leading-order form factor[
F

(1)
S

]
2−loop

= −CFTF
3

x2 , (4.13)

where TF = 1/2, in agreement with [48]. Let us now discuss the factorization of the

double-logarithmic corrections. By using the same procedure as for the vector form factor

one can reduce the non-Sudakov part of the corrections to the contribution of the diagrams

in figures 6(d,e) with the effective soft gluon exchange between the eikonal lines determined
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Figure 9. The three-loop diagrams contributing to the scalar form factor F
(1)
S . Symmetric

diagrams and the diagrams with the opposite direction of the closed quark line are not shown. The

remaining diagrams either do not have the double-logarithmic integration region or have vanishing

color factor.

by the same soft quark momentum. The diagram figure 6(d) has the color factor CA−CF
while the diagram figure 6(e) is proportional to CF − CA as dictated by the variation of

the color charge along the eikonal lines in each case. The only subtlety is related to the

fact that in the diagram figure 6(d) the soft gluon momentum integral factors out from the

inner quark loop in the same way as the Sudakov corrections factor out in the gg → H

amplitude discussed in section 3. The corresponding correction to the form factor reads

− z
(

24

∫ 1

0
dη1

∫ 1−η1

0
dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

(2η2ξ2 − 2η1ξ1)

)[
F

(1)
S

]
2−loop

, (4.14)

where the first and the second terms in the brackets represent the contributions of the

diagrams in figure 6(d) and figure 6(e), respectively.

The three-loop non-Sudakov double logarithmic corrections can of course be evaluated

explicitly. The relevant three-loop diagrams are given in figure 9 and the corresponding

contribution to the form factor written in the standard form reads

x

(
24
∑
i

c
(1)
λ

∫ 1

0
dη1

∫ 1−η1

0
dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

w
(1)
λ (η, ξ)

) [
F

(1)
S

]
2−loop

, (4.15)

where c
(1)
λ and w

(1)
λ are listed in table 5. The weights for the symmetric diagrams not

shown in figure 9 are obtained in this case by the replacement η1 ↔ ξ1 and η2 ↔ ξ2. As

we expect the sum in eq. (4.15) reduces to eq. (4.14) confirming the above factorization.

Thus we get the following expression describing the asymptotic behavior of the leading

mass-suppressed contribution to the scalar form factor

F
(1)
S = −CFTF

3
x2fS(−z) , (4.16)

where the function

fS(z) = 24

∫ 1

0
dη1

∫ 1−η1

0
dξ1

∫ 1−ξ1

η1

dη2

∫ 1−η2

ξ1

dξ2 e
2zη2ξ2e−2zη1ξ1 (4.17)

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
1
5
8

λ w
(1)
λ c

(1)
λ

a η2(η2 + 2) + ξ2(ξ2 − 2η2 + 2) CF

b −2ξ1η1 CF

c 2(ξ1 − ξ2)(η1 − η2) −CA
d η1(η1 − 2ξ2 + 2) −1

2CA

e (η2 − η1)(η2 + η1 − 2ξ2 + 2) −1
2CA

f 2η1(ξ1 − ξ2) 1
2CA

g 2η1(ξ1 − ξ2) 1
2CA

h η2(η2 − 2η2ξ2 + 2) 1
2CA − CF

Table 6. The weights w
(1)
λ and the color factors c

(1)
λ for the diagrams in figure 8. The contributions

of the diagrams with the opposite direction of the closed quark line are included.

is determined by the diagrams in figures 6(d,e) with the corresponding exponential factors

given separately. Eq. (4.16) is consistent with the expansion of the exact result for the

three-loop massive form factor in the large-Nc limit [49].

Amazingly, though the topology of the diagrams in figure 6(b) and figures 6(d,e) is

completely different, eqs. (4.8) and (4.17) describe the same function

fS(z) ≡ f(z) , (4.18)

as it can be easily verified. It is straightforward to extend the analysis to the axial FA and

the pseudoscalar FP form factors, for which we obtain the result in the form of eq. (4.7)

and eq. (4.16) with fA(z) = −f(z) and fP (z) = f(z), respectively.

5 Summary and discussion

We have presented the details of the first systematic analysis of the high-energy asymptotic

behaviour of the QCD amplitudes beyond the leading-power approximation and derived all-

order double-logarithmic result for the leading mass-suppressed terms in typical two-scale

problems. In contrast to the Sudakov logarithms, the mass-suppressed double-logarithmic

corrections are induced by a soft quark exchange. The structure of the corrections and

the asymptotic behavior of the amplitudes in this case crucially depend on the color flow

in a given process and are determined by the eikonal color charge nonconservation. Af-

ter separating the standard Sudakov factors the remaining non-Sudakov double-logarithmic

corrections are described by two universal functions g(±z) and f(±z), eqs. (2.22) and (4.8),

of the variable z = αs
4π (CA − CF ) ln2(m2

q/Q
2) for the processes with single and double soft

quark exchange, respectively. These functions play the role of “Sudakov exponent” for

the non-Sudakov double-logarithmic corrections. They grow as ez/2 i.e. are exponentially

enhanced for large positive values of the argument and are power suppressed for the large

negative values. Our result reveals highly nontrivial relations between the asymptotic be-

havior of different amplitudes and the amplitudes in different gauge theories. In particular,
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if a QCD amplitude gets the exponential enhancement at high energy, an amplitude with

the inverted color charge flow from the eikonal line defined by a scattering particle, or the

same amplitude in QED are suppressed by a power of the large logarithm,2 and vice versa.

In general the amplitudes with larger number of scattering particles, such as Bhabha

scattering in QED [17], get contributions from both single and double soft fermion ex-

change. The factorization structure in this case can be more complex and the corresponding

asymptotic expressions may involve new functions besides g(z) and f(z).

One of the most interesting phenomenological applications of our analysis is an estimate

of the high-order corrections to the bottom quark mediated Higgs boson production in gluon

fusion, which is one of the main sources of uncertainty in the theoretical predictions for

the Higgs cross section at the Large Hadron Collider. The effective expansion parameter

in this case is ln2(m2
b/m

2
H)αs ≈ 40αs rather than αs, and the resummation of the double-

logarithmic corrections is mandatory for a reliable theoretical estimate. From the result of

section 3 we can immediately get such an estimate for the exclusive Higgs boson production

cross section with a veto on the jet transverse momentum of the order of the bottom quark

mass. In this case the bottom quark loop induced interaction is local with respect to the

soft emission and therefore results in an overall correction factor to the leading order cross

section. The dominant contribution is due to its interference with the top-loop mediated

amplitudes which reads

δσgg→H = −3ρ ln2ρ

(
1 +

z

6
+
z2

45
+

z3

420
+ . . .

)
σgg→H , (5.1)

where the series in z is the Taylor expansion of the function g(z). Up to the next-to-

leading order the exact dependence of the cross section on the bottom quark mass without

the expansion in ρ has been known for a while [50]. The next-to-next-to-leading O(z2)

term in eq. (5.1) is new. Numerically for mH = 125 GeV, mb = 5 GeV, and αs(mb) = 0.21

we get z ≈ 1.2 which in general is not a good expansion parameter. However for this value

of z the above series becomes 1 + 0.19 + 0.030 + 0.0037 + . . . and converges sufficiently

fast. The O(z2) term results in about 0.6% decrease of the cross section, which can be

considered as an estimate of the bottom quark loop effect in the next-to-next-to-leading

order. An interesting and important problem is the generalization of our result for more

inclusive observables such as Higgs plus jet production cross section and the Higgs boson

transverse momentum distribution, which can be significantly affected by the bottom quark

contribution. Only the abelian part of the corresponding double-logarithmic corrections is

known so far [16].
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