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1 Introduction

In this paper we will consider the partition functions of five-dimensional N = 1 gauge

theories with an SU(2) R-symmetry on M4 × S1, partially topologically twisted on the

toric Kähler manifoldM4 [1, 2], with a view to holography. In particular, we are interested

in evaluating through localization [3] the topologically twisted index of a five-dimensional

theory on M4 × S1, which is defined as the equivariant Witten index

ZM4×S1(sI , yI) = TrM4(−1)F e−β{Q,Q̄}
∏
I

yJII , (1.1)

of the topologically twisted theory on M4, where sI are magnetic fluxes on M4 that

explicitly enter in the Hamiltonian and yI complexified fugacities for the flavor symmetries

JI of the theory.

In three and four dimensions, the topologically twisted index has proven useful in check-

ing dualities and in the microscopic counting for the entropy of a class of asymptotically

AdS4/5 black holes/strings [4, 5]. Since one of the goals of this work is to extend the above

analyses to higher dimensions, let us briefly review what is known in lower dimensions.

1.1 The three- and four-dimensional indices

The topologically twisted index of three-dimensional N = 2 and four-dimensional N = 1

gauge theories with an R-symmetry is the supersymmetric partition function on Σg1 × T d,
partially topologically A-twisted along the genus g1 Riemann surface Σg1 , where T d is a

torus with d = 1, 2, respectively. The index can be computed in two different ways. It

has been first derived by topological field theory arguments in [6–9]. In this approach,

further discussed and generalized in [10–17], the index is written as a sum of contributions
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coming from the Bethe vacua, the critical points of the twisted superpotential of the two-

dimensional theory obtained by compactifying on T d. The index has been also derived

using localization in [4, 18] and can be written as the contour integral

Z(sI , yI) =
∑

m∈Γh

∮
C
Zint(m, x; sI , yI) , (1.2)

of a meromorphic differential form in variables x parameterizing the Cartan subgroup and

subalgebra of the gauge group, summed over the lattice of gauge magnetic fluxes m on Σg1 .

Here sI and yI = ei∆I are, respectively, fluxes and fugacities for the global symmetries of

the theory.

One remarkable application of the topologically twisted index is to understand the mi-

croscopic origin of the Bekenstein-Hawking entropy of asymptotically anti de Sitter (AdS)

black holes. In particular, the microscopic entropy of certain four-dimensional static, dy-

onic, BPS black holes [19–23], which can be embedded in AdS4 × S7, has been calculated

in this manner [5, 24], by showing that the ABJM [25] twisted index, in the large N limit,

agrees with the area law for the black hole entropy — SBH = A/(4GN) with A being the

horizon area and GN the Newton’s constant. Specifically, the statistical entropy SBH as a

function of the magnetic and electric charges (s, q) is given by the Legendre transform of

the field theory twisted index Z(s, ∆̄), evaluated at its critical point ∆̄I :

I(s, ∆̄) ≡ logZ(s, ∆̄)− i

∑
I

qI∆̄I = SBH(s, q) . (1.3)

This procedure was dubbed I-extremization in [5]. These results have been generalized

to black strings in five dimensions [26–28], black holes with hyperbolic horizons [18, 29],

universal black holes [30],1 black holes in massive type IIA supergravity [31, 32], M-theory

black holes in the presence of hypermultiplets [33], Taub-NUT-AdS/Taub-Bolt-AdS so-

lutions [34], and N M5-branes wrapped on hyperbolic three-manifolds [35].2 Another

interesting general result is the Cardy behaviour of the topologically twisted index of four-

dimensional N = 1 gauge theories that flow to an infrared (IR) two-dimensional N = (0, 2)

superconformal field theory (SCFT) upon twisted compactification on Σg1 [26]:

logZΣg1×T 2 ≈
iπ

12τ
cr(s,∆) , (1.4)

where cr(s,∆) is the trial right-moving central charge of the N = (0, 2) SCFT [45] and

τ is the modular parameter of the torus T 2.3 This result is valid at high temperature,

1These can be embedded in all M-theory and massive type IIA compactifications, thus explaining the

name universal.
2Other interesting progresses in this context include: computing the logarithmic correction to AdS4 ×

S7 black holes [36] (see also [37, 38]), evaluating the on-shell supergravity action for the latter black

holes [39, 40], localization in gauged supergravity [41] (see also [42]), relation between anomaly polynomial

of N = 4 super Yang-Mills (6D N = (2, 0) theory) and rotating, electrically charged, AdS black holes in

five (seven) dimensions [43, 44].
3Here we use the chemical potentials ∆I/π to parameterize a trial R-symmetry of the theory.
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τ → i0+, and is a consequence of the fact that the index computes the elliptic genus of the

two-dimensional CFT.

Furthermore, it has been shown in [5, 26] that, in the large N limit, one particular

Bethe vacuum dominates the partition function. It has also been found in [26, 46] (see [47]

for examples) that the topologically twisted index of three- and four-dimensional field

theories, at large N or high temperature, can be compactly written as

logZΣg1×T d
≈
∑
I

sI
∂W̃d(∆I)

∂∆I
, W̃d(∆I) ∝

{
FS3(∆I), for d = 1

a(∆I), for d = 2
, (1.5)

where W̃d(∆I) is the effective twisted superpotential, evaluated on the dominant Bethe

vacuum, FS3(∆I) is the S3 free energy of 3D N = 2 theories, computed for example

in [48–50], and a(∆I) is the conformal anomaly coefficient of 4D N = 1 theories. Here

(and throughout the paper) ≈ denotes the equality at large N .4 Based on (1.5) it has been

conjectured in [46] that

W̃d(∆I) ∝ Fsugra(XΛ) , I-extremization = attractor mechanism , (1.6)

where Fsugra(XΛ) is the prepotential of the effective N = 2 gauged supergravity in four

dimensions describing the horizon of the black hole or black string. We refer the reader to

section 4.1 for details on the attractor mechanism in gauged supergravity.

1.2 The five-dimensional index

In this paper we take the first few steps in generalizing the above analysis to five dimensions.

We will consider the case of a generic N = 1 gauge theory on M4 × S1, where M4

is a toric Kähler manifold and S1 a circle of length β.5 One main complication compared

to three and four dimensions is that, in the localization computation for five-dimensional

gauge theories, there are non-perturbative contributions due to the presence of instantons.

The topologically twisted index is still given by the contour integral

ZM4×S1(q, sI , yI) =
∞∑
k=0

∑
{m}|semi-stable

∮
C
qkZ

(k-instantons)
int (m, a; q, sI , yI) , (1.7)

of a meromorphic form in the complex variable a, which parameterizes the Coulomb branch

of the four-dimensional theory obtained by compactifying on S1. Here q = e−8π2β/g2
YM is

the instanton counting parameter with gYM being the gauge coupling constant, and m are

a set of gauge magnetic fluxes that depend on the toric data of M4.

We find it useful to work first on an Ω-deformed background specified by equivariant

parameters ε1 and ε2 for the toric (C∗)2 action on M4, for which we write explicitly

4The relation (1.5) is only valid when we use a set of chemical potentials such that W̃d(∆I) is

a homogeneous function of the ∆I (and a similar parameterization for the fluxes), which is always

possible [26, 46]. Otherwise, (1.5) should be replaced by logZΣg1
×Td ≈ (1 − g1)D

(1)
d W̃d(∆I), where

D
(1)
d ≡

(d+1)
π

+
∑
I

(
sI

1−g1
− ∆I

π

)
∂

∂∆I
for g1 6= 1.

5See [51, 52] for another localization computation on P2 × S1.
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the supersymmetry background, the Lagrangian and the one-loop determinant around the

classical saddle point configurations. The non-perturbative contribution is given by contact

instantons that, with the equivariant parameters turned on, are localized at the fixed point

of the toric action on M4 and wrap S1. There are χ(M4) fixed points and each of these

contributes a copy of the five-dimensional Nekrasov’s partition function ZC2×S1

Nekrasov(a, ε1, ε2)

on C2 × S1, so that the partition function on M4 × S1 is given by the gluing formula

ZM4×S1 =
∑

{m}|semi-stable

∮
C

da

χ(M4)∏
l=1

ZC2×S1

Nekrasov

(
a(l), ε

(l)
1 , ε

(l)
2

)
, (1.8)

where a(l), ε
(l)
1 and ε

(l)
2 are determined by the toric data near each fixed point and encode

the dependence on the fluxes m. For brevity, we suppressed the dependence on the flavor

fluxes and fugacities sI and yI that can be easily reinstated by considering them as compo-

nents of a background vector multiplet. This formula is the five-dimensional analogue of a

similar four-dimensional expression that has been successfully used to evaluate equivariant

Donaldson invariants [53–56].

In this paper we will be interested in the non-equivariant limit ε1, ε2 → 0. Despite the

fact that ZC2×S1

Nekrasov(a, ε1, ε2) is singular in the non-equivariant limit, ZM4×S1 is perfectly

smooth. Moreover, with an eye to holography, we will be mostly interested in the large

N limit and therefore we will neglect instanton contributions, since they are exponentially

suppressed in this limit. As we will see, the classical and one-loop contributions to the

non-equivariant partition function still yield a non-trivial and complicated matrix model.

As for the topologically twisted index in three dimensions, we can interpret the result as

the Witten index of the quantum mechanics obtained by reducing the N = 1 gauge theory

onM4 in the presence of background magnetic fluxes sI . This index receives contributions

from infinitely many topological sectors specified by the gauge magnetic fluxes m.

We will also initiate the study of the large N limit of the topologically twisted index

in five dimensions and of other related quantities, leaving a more complete analysis for the

future. We will focus on two five-dimensional N = 1 field theories. The first is the USp(2N)

theory with Nf flavors and an antisymmetric matter field, which has a 5D ultraviolet (UV)

fixed point with enhanced ENf+1 global symmetry [57]. The theory is dual to AdS6×wS4 in

massive type IIA supergravity [58]. The second theory is N = 2 super Yang-Mills (SYM),

which we consider as the compactification of the N = (2, 0) theory in six dimensions on a

circle of radius R6 = g2
YM/(8π

2) [59–61].6 Using this interpretation, the index of N = 2

SYM can be considered as the partition function of the N = (2, 0) theory on M4 × T 2.

The topologically twisted index at large N for the USp(2N) theory should then contain

information about black holes with horizons AdS2×M4 in massive type IIA supergravity,

while the index for N = 2 SYM should contain information about AdS7×S4 black strings

in M-theory.

An interesting object to study in the large N limit is the Seiberg-Witten (SW) pre-

potential F(a) of the four-dimensional theory obtained by compactifying on S1, which

6An analogous argument has been used in [51, 52, 62] in order to study the superconformal index of the

6D N = (2, 0) theory.

– 4 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

receives contributions from all the Kaluza-Klein (KK) modes on S1 [63]. F(a) is expected

to play a role similar to the twisted superpotential W̃ in three and four dimensions. We

therefore study the distribution of its critical points in the large N limit and we find that

its critical value, as a function of the chemical potentials ∆ς (ς = 1, 2),7 is given by

F(∆ς) ∝ FS5(∆ς) , (1.9)

where FS5(∆ς) is the free energy on S5 of the corresponding N = 1 theory, in perfect

analogy with (1.5). One of the reasons for analysing the critical points of F(a) is the

expectation that they play a role similar to the Bethe vacua for the five-dimensional par-

tition function, and, in particular, one such critical point dominates the large N limit of

the index. We have no real evidence that this is the case but we will see that working

under this assumption leads to interesting results. Some motivations for this conjecture

are discussed in section 3.

We will consider the particular example of an N = 1 field theory on P1 × P1 × S1.

With no effort, we can generalize all results to the non-toric manifold Σg1×Σg2×S1, where

Σg1 and Σg2 are two Riemann surfaces of genus g1 and g2, respectively. We denote by sς
and tς (ς = 1, 2) the background magnetic fluxes on Σg1 and Σg2 . We will be able to define

an effective twisted superpotential W̃ for the three-dimensional theory that we obtain by

compactifying the five-dimensional N = 1 theory on Σg2 . We refer for details to section 3.

We will find that the value of W̃, evaluated at the combined critical points of F and W̃,

as a function of the chemical potentials ∆ς and fluxes tς , satisfies

W̃(tς ,∆ς) ∝
2∑
ς=1

tς
∂FS5(∆ς)

∂∆ς
∝

{
FΣg2×S3(tς ,∆ς) , for USp(2N)

a(tς ,∆ς) , for N = (2, 0)
. (1.10)

Here FΣg2×S3(tς ,∆ς) is the S3 free energy of the three-dimensional N = 2 theory obtained

by compactifying the USp(2N) theory on Σg2 , recently computed holographically in [64],

and a(tς ,∆ς) is the conformal anomaly coefficient of the four-dimensional N = 1 theory

obtained by compactifying the N = (2, 0) theory on Σg2 , computed in [65, 66]. We verified

the statement for the USp(2N) theory only upon extremization with respect to ∆ς , but we

expect it to be true for all values of the chemical potentials.8

We shall also consider the large N limit of the topologically twisted index itself. The

matrix model is too hard to compute directly even in the large N limit. The main difficulty

compared to the three- and four-dimensional cases is the quadratic dependence on the gauge

and background fluxes that do not allow for a simple resummation in (1.8). The case of

P1 × P1 × S1 is technically simpler, since there are two sets of gauge fluxes, one for each

P1, but still too hard to attack directly. By resumming one set of gauge magnetic fluxes

7The ∆ς parameterize the Cartan of the SU(2) R-symmetry and the SU(2) flavor symmetry of the

USp(2N) theory and the Cartan of the SO(5) R-symmetry of the N = (2, 0) theory, respectively. They

satisfy the constraint
∑2
ς=1 ∆ς = 2π. Similarly, in the case of Σg1 × Σg2 × S1 discussed below, the fluxes

fulfill the constraints
∑2
ς=1 sς = 2(1 − g1),

∑2
ς=1 tς = 2(1 − g2). With such a choice, all expressions

in (1.9), (1.10) and (1.11) are homogeneous functions of ∆ς , sς and tς . Details are given in section 3.
8This was confirmed in [67] that appeared after the completion of this work.
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(call them m), we obtain a set of Bethe equations for the eigenvalues ai (these are just the

Bethe vacua of the effective twisted superpotential W̃ of the compactification on Σg2). The

result still depends on the second set of gauge magnetic fluxes (call them n). We expect

that, in the large N limit, one single distribution of eigenvalues ai and one single set of

fluxes ni dominate the partition function. At this point we shall pose the conjecture that

the extremization of F(a) provides the missing condition for determining both ai and ni.

Under this conjecture we obtain

logZΣg1×Σg2×S1 ∝
2∑
ς=1

sς
∂W̃(tς ,∆ς)

∂∆ς
∝

2∑
ς,%=1

sς t%
∂2FS5(∆)

∂∆ς∂∆%
, (1.11)

where we generalized the result to Σg1 × Σg2 × S1.

It is remarkable that (1.11), which is based on a conjecture, is completely analogous to

the three- and four-dimensional result (1.5). Even more remarkably, we can compare (1.11)

with the existing results for the twisted compactification of the 6D N = (2, 0) theory on

Σg1 × Σg2 [68]. Eq. (1.11) is expected to compute the leading behaviour, in the limit

τ → i0+, of the elliptic genus of the two-dimensional CFT obtained by the twisted com-

pactification. We find that (1.11) indeed leads to the correct Cardy behaviour

logZΣg1×Σg2×S1 ≈
iπ

12τ
cr(sς , tς ,∆ς) , (1.12)

where cr(sς , tς ,∆ς) precisely coincides with the trial central charge of the two-dimensional

CFT computed in [68]. Moreover, we will show in section 4 that (1.11) is equivalent to the

attractor mechanism for the corresponding black strings in AdS7. All this is in complete

analogy with the four-dimensional results (1.4) and (1.6). It would be very interesting to

see if the conjectured result for the USp(2N) theory matches the entropy of magnetically

charged AdS6 ×w S4 black holes in massive type IIA supergravity, which are still to be

found. Work in this direction is in progress [69].

1.3 Overview

The structure of this paper is as follows. In section 2 we analyse the conditions of super-

symmetry and the Lagrangian for a five-dimensional N = 1 gauge theory on M4 × S1,

whereM4 is a toric manifold, in a Ω-background for the torus action (C∗)2. We determine

the classical saddle points and compute explicitly the one-loop determinants. We finally

write an expression for the (equivariant) topologically twisted index as a gluing of various

copies of the K-theoretic Nekrasov’s partition function, one for each fixed point of the toric

action. We then study in detail the non-equivariant limit in the sector with no instantons.

We also write explicitly the SW prepotential F(a) that will play an important role in the

rest of the paper.

In section 3 we discuss the large N limit of the topologically twisted index and of

related quantities. We first motivate the importance of finding the critical points of F(a).

Then we consider the partition function on Σg1 × Σg2 × S1 of two theories, N = 2 SYM,

which decompactify to the N = (2, 0) theory in six dimensions and the USp(2N) theory

– 6 –
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with Nf flavors and an antisymmetric matter field, corresponding to a 5D UV fixed point.

Under some assumptions, we will derive (1.9), (1.10) and (1.11).

Special attention will be devoted to the 6D N = (2, 0) theory where we can compare

the results with the existing holographic literature about domain walls and black strings.

For this theory, in section 4 we will be able to interpret our results as the counterpart of

the attractor mechanism in four-dimensional N = 2 gauged supergravity.

We conclude in section 5 with discussions and future problems to explore. Some

details regarding toric varieties, conventions, computation of anomaly coefficients in twisted

compactifications, and polylogarithms are collected in four appendices.

Note added: while we were writing this work, we became aware of [67] which has some

overlaps with the results presented here.

2 Localization onM4 × S1

In this section we evaluate the twisted indices of five-dimensional N ≥ 1 theories, i.e. the

partition function onM4×S1, using localization. We begin in section 2.1 by describing the

geometry of the toric Kähler manifoldM4. Although the twisted theory is semi-topological,

i.e. does not depend on the metric onM4, we find it useful to have a canonical set of coordi-

nates and a canonical metric. In section 2.3, we describe the rigid supergravity background

to which we couple the theory in order to produce the twist and the Ω-deformation. We

describe the relevant supersymmetry algebra and supersymmetric actions in section 2.4.

The localization procedure is carried out in section 2.5. In section 2.6 we present the rel-

evant expression for the K-theoretic Nekrasov’s partition function. Finally, in section 2.7

we present the complete partition function on M4 × S1.

2.1 Geometry of M4

We review the construction of a canonical invariant metric for a toric Kähler manifold M4

in symplectic coordinates [70, 71].

A Kähler manifold M2n is a complex manifold of real dimension 2n with an integrable

almost complex structure

J2 = −12n . (2.1)

It is also a symplectic manifold with symplectic form ω, satisfying a compatibility condition

on the metric defined by the bilinear form

g ≡ ω (·, J ·) , (2.2)

which states that g is symmetric and positive definite.

A toric Kähler manifold is a Kähler manifold with an effective (faithful), Hamiltonian,

and holomorphic action of a real n-torus Tn. Given a Hamiltonian action, there exists

a vector field ṽ for each element of the Lie algebra of Tn and a smooth function µ, the

moment map, such that

ṽ = ω−1dµ . (2.3)

– 7 –
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The moment map should be thought of as an equivariant map from the Lie algebra of Tn to

the space of smooth functions on M2n. It is defined only up to the addition of a constant.

The image of the moment map, the orbit space

∆ ≡M2n/Tn , (2.4)

is a convex n-dimensional polytope called the moment polytope. It can be written as

∆ = {x ∈ Rn| 〈x, ui〉 − λi ≥ 0, i ∈ {1, . . . , d}} , (2.5)

for an appropriate set of data

ui ∈ Zn , λi ≥ 0 . (2.6)

Its vertices are located at the fixed points of the torus action and ∆ is the convex hull. The

moment polytope is related to the combinatorial description of M2n as a toric variety with

an associated toric fan, dual to ∆, which constructed out of the vectors nj (see appendix A).

It will be important in the following that the number of vertices d of the polytope, or

equivalently the number of vectors nj of the fan, is equal to the number of fixed points of

the toric action. It is also equal to the Euler characteristic of M2n, d = χ(M2n).

One may describe all three structures appearing in the definition of M2n explicitly

using symplectic coordinates: xi for ∆ and yi for Tn. Define the functions

lr (x) ≡ 〈x, ur〉 − λ , (2.7)

and an auxiliary potential function

p (x) ≡ gp (x) + h (x) , gp ≡
1

2

d∑
r=1

lr (x) log lr (x) , Gij (x) ≡ ∂xi∂xjp (x) . (2.8)

The function h (x) must be such that there exists a smooth, strictly positive function δ (x)

satisfying

1

detG(x)
= δ(x)

d∏
r=1

lr(x) . (2.9)

The complex structure, symplectic (Kähler) form, and Tn invariant Kähler metric are then

given by

J =

(
0 −G−1

G 0

)
, ω = dxi ∧ dyi , g = Gijdx

idxj +
(
G−1

)ij
dyidyj . (2.10)

Note that det g = 1.

All smooth symplectic toric manifolds are simply connected [72]. Compact simply

connected topological four-manifolds are mostly classified by their intersection form. Note,

in particular, that

b+2 = 1 , (2.11)

for any symplectic toric four-manifold. One can check with the metric above that9

? ω = ω . (2.12)

9The orientation for which this is true is such that εx1y
1x2y

2

= 1.
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2.2 Nekrasov’s conjecture

There is a standard way, reviewed in the next section, of putting any four-dimensional N =

2 Lagrangian field theory on a smooth four-manifold while preserving supersymmetry. This

is done using the Witten twist [1]. The resulting computations are insensitive to, or at least

piece-wise constant under, variations of the metric. This is an example of a cohomological

topological quantum field theory (TQFT), usually called the Donaldson-Witten TQFT.

The relevant observables reside in the cohomology of the preserved supercharge.

Nekrasov has introduced a generalization of this TQFT which is valid when the four-

manifold admits a metric with an isometry [53].10 The toric manifolds described in the

previous section are prime examples of this construction. The construction can be seen as

a generalization of the computation of the equivariant partition function for theories on

R4, that can be used to recover the exact effective prepotential [73, 74]. The latter can be

defined as [73]

F0(Λ, a) ≡ lim
ε1,2→0

ε1ε2 logZC2

Nekrasov(q, a, ε1, ε2) , q → Λ2h∨(G)−k(R) , (2.13)

where ZC2

Nekrasov is the so-called Nekrasov’s partition function, coinciding with the partition

function on R4 in the presence of the Ω deformation with parameter ~ε = (ε1, ε2). Λ is

the dynamically generated scale, and a represents the vacuum expectation value for the

scalar field in the vector multiplet at a specific point on the Coulomb branch. Moreover,

h∨(G) is the dual Coxeter number of the gauge group G and k(R) is the quadratic Casimir

normalized such that it is 2h∨(G) for the adjoint representation.

It has been argued in [53] that the analogous partition function on a compact toric

manifold M4 takes the form

ZM4 =
∑

pl∈ZN

∮
C

da

χ(M4)∏
l=1

ZC2

Nekrasov

(
a+ ε

(l)
1 pl + ε

(l)
2 pl+1, ε

(l)
1 , ε

(l)
2 ; q

)
. (2.14)

In the equation above we have chosen to disregard insertions of operators and the depen-

dence on characteristic classes for non-simply connected gauge groups, both of which are

not relevant for our purposes. The main new ingredient in this formula, in comparison to

the formula on R4, is the appearance of a sum over a set of fluxes pl. These are associated

with equivariant divisors on M4, and thus with vectors in the toric fan. The deformation

parameters ε
(l)
1 , ε

(l)
2 are also given by the data in the fan. Note that the modulus a is now

integrated over, as should be the case on a compact space. The result presented in [53] is

a conjecture. Specifically, the exact form of the sum over the integers pl and the contour

for the integral over the modulus a are not known.

It is expected that the results for the Donaldson-Witten theory are recovered in the

non-equivariant limit, ε1,2 → 0. Nekrasov conjectured that this limit is given by11

ZM4 =
∑

k(i)∈ZN

∮
C

da exp

[ ∫
M4

F0

(
a+

∑
i

k(i)c1(Li)

)
+ c1(M4)H 1

2

(
a+

∑
i

k(i)c1(Li)

)

+ χ(M4)F1(a) + (3σ(M4) + 2χ(M4))G1(a)

]
. (2.15)

10In this section we restrict ourselves to describing the U(N) theory.
11We correct a misprint in [53] here.
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The Li are line bundles supported on two-cycles of M4, which do not have a flat space

analogue, and c1(Li) their first Chern class. χ(M4) is the Euler characteristic of M4 and

σ(M4) its signature. The additional terms in the exponential, relative to the usual effective

action on R4, come from subleading terms in ZC2

Nekrasov:

logZC2

Nekrasov (a, ε1, ε2; q) =
1

ε1ε2
F0 +

ε1 + ε2
ε1ε2

H 1
2

+ F1 +
(ε1 + ε2)2

ε1ε2
G1 + . . . . (2.16)

The authors of [54–56] have began to verify (2.14) using localization. Our twisted

indices are a generalization of the partition functions onM4, and we will follow closely the

arguments used in these papers. We will not have anything to add regarding the part of

the calculation involving the sum over fluxes. However, we will comment on the similarities

between the present setup and the calculation using localization of the twisted indices in

three and four dimensions, in which a similar contour integral arises and is given by an

explicit prescription.

2.3 Supersymmetry on M4 × S1

Supersymmetric theories can sometimes be coupled to a curved background while preserv-

ing some supersymmetry. This was originally achieved by twisting the theory — identify-

ing a new euclidean rotation group with a diagonal subgroup of rotations and R-symmetry

transformations. A subset of the supercharges become scalars under the new rotation

group, and are conserved on an arbitrary curved manifold, as long as the coupling to the

metric is implemented using this new group. As a bonus, the energy momentum tensor

turns out to be the supersymmetry variation of a scalar supercharge Q. The twisted the-

ory, where observables are restricted to be Q-closed operators, then becomes a TQFT of

cohomological type [1].

A more general procedure for preserving supersymmetry, initiated in [75] and continued

for four dimensions in [76, 77], is to couple the theory to rigid supergravity and to search

for backgrounds which are fixed points of the supersymmetry transformations. Technically,

this means choosing a configuration for the bosonic fields in the supergravity multiplet such

that the supersymmetry variation of the gravitino vanishes for some spinor. The vanishing

of the gravitino variation yields a linear differential equation known as a generalized Killing

spinor equation whose solutions are known as generalized Killing spinors. A variation using

these spinors constitutes a rigid supersymmetry.

One can expand the scope of this construction by considering superconformal tensor

calculus instead of a specific Poincare supergravity [77, 78]. In superconformal tensor

calculus, the gravitino is part of the Weyl multiplet which includes another fermion, the

dilatino, whose supersymmetry variation must also vanish. The resulting solutions are

generalized Killing spinors which generate an action of a subalgebra of the superconformal

algebra on the dynamical fields. In order to use this algebra to localize, one should avoid

including transformations which are not true symmetries of the theory such as dilatations.

To the best of our knowledge, this is the most general context in which this program of

preserving rigid supersymmetry on curved backgrounds has been pursued.
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A five-dimensional N = 1 theory with R-symmetry group SU(2) can be formulated

while preserving supersymmetry on any five-manifold as long as the holonomy group is

contained in SO(4). The necessary supergravity background is simply a twist. We derive

the rigid 5D N = 1 supergravity background corresponding to the Ω-background on a man-

ifold with topology M4 × S1, where M4 is a toric Kähler four-manifold. Supersymmetry

is preserved using a five-dimensional uplift of the Witten twist on M4 augmented to in-

clude the Ω-deformation. The rigid supergravity background for a twisted four-dimensional

N = 2 theory, with the background corresponding to the Ω-deformation, was explicitly con-

structed for any toric Kähler manifold in [79]. These backgrounds can be lifted to the 5D

N = 1 theory on M4 × S1 in a straightforward manner, implicitly described in [80, 81].

We review this below. Our spinor and metric conventions are spelled out in appendix B.

We consider X ≡M4 × S1 and choose coordinates such that the S1 is parameterized

by x5 ∈ [0, β). The construction of a T 2 invariant Kähler metric g forM4 was reviewed in

section 2.1. Let us define

ṽ = εi∂yi , x2 ≡ y1 , x4 = y2 , (2.17)

and let

e m
a , a ∈ {1, 2, 3, 4} , m ∈ {1, 2, 3, 4} , (2.18)

be a vielbein for g. We define the metric on X by augmenting e m
a with

e m
5 = ṽm , e 5

5 = 1 . (2.19)

The associated spin connection still has U(2) holonomy.

The Weyl multiplet of five-dimensional superconformal tensor calculus is described, for

instance, in [82]. Along with the vielbein, it contains the following independent bosonic

fields: an SU(2) R-symmetry gauge field which we denote A
(R)
m , and an anti-symmetric

tensor Tmn, a vector bm, and a scalar D. The remaining bosonic fields are determined in

terms of these, and of the fermions, by constraints. We will turn off Tmn and bm. After

some renaming, the variation of the gravitino in the remaining background can be written

as

δψIm = DmξI − ΓmηI , (2.20)

where12

DmξI ≡ ∂mξI +
1

4
ω ab
m ΓabξI +

(
A(R)
m

) J

I
ξJ . (2.21)

We perform the twist by setting

A(R)
m =

1

4
ω ab
m σab . (2.22)

One can easily check that the spinor

ξ = − 1√
2

(
τ2

0

)
, η = 0 , (2.23)

12Throughout this paper, Dm will denote a generic covariant derivative. The covariance is with respect

to the spin, R-symmetry, gauge, and background flavor symmetry connections. We will specify the concrete

form of the derivative when appropriate.
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is a solution. Note that the components of both ω and A(R) in the x5 direction vanish in

the non-equivariant limit, ε1,2 → 0. One may verify explicitly that ξ satisfies the dilatino

equation with an appropriate value of D.

2.4 Supersymmetry transformations and Lagrangian

We record the supersymmetry transformations for the vector and hypermultiplets, following

the conventions of [83, 84]. For the purposes of localization it is simpler to use twisted fields

defined using the Killing spinor ξ. Note that ξ satisfies

ξIξ
I = 1 , vmvm = 1 , vm∂m ≡ ξIΓmξI∂m = ε1∂3 + ε2∂4 + ∂5 . (2.24)

For consistency of notation with [85], we define

κm ≡ gmnvn . (2.25)

Note that κ = dx5 is not a contact form for M4 × S1.

2.4.1 Vector multiplet

The five-dimensional N = 1 vector multiplet has 8 + 8 off-shell components. It comprises

a connection Am, a real scalar σ, an SU(2) Majorana spinor λαI , and a triplet of auxiliary

fields DIJ satisfying the reality condition

(D∗)IJ = εIKεJLDKL , (2.26)

all in the adjoint representation of the Lie algebra g. We use the physics convention where

all gauge fields are hermitian. We define the gauge covariant derivative acting on fields in

the adjoint representation and the field strength as

Dm ≡ ∂m − i[Am, ·] , Fmn ≡ ∂mAn − ∂nAm − i[Am, An] . (2.27)

A gauge transformation with parameter α reads

Gα = i[α, ·] , GαAm = Dmα . (2.28)

In order to ensure convergence of the actions in section 2.4.3, we will preemptively rotate

both DIJ and σ into the imaginary plane

DIJ → iDIJ , σ → −iσ . (2.29)

The new reality conditions are such that

(D∗)IJ = −εIKεJLDKL . (2.30)

The supersymmetry transformations read [83]

δAm = iξIΓmλ
I , δσ = −ξIλI ,

δλI = −1

2
ΓmnFmnξI − iDmσΓmξI − iDIJξ

J − 2iξ̃Iσ ,

δDIJ = −ξIΓmDmλJ − ξJΓmDmλI − [σ, ξIλJ + ξJλI ] + ξ̃IλJ + ξ̃JλI .

(2.31)
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The spinor ξ̃ is defined as

ξ̃ ≡ 1

5
ΓmDmξ , (2.32)

and therefore vanishes in the present context.

Following [86], we define the twisted fields13

Ψm ≡ ξIΓmλI , Hmn ≡ 2F+
mn + iξIΓmnξ

JDIJ ,

χmn ≡ ξIΓmnλI + vnξIΓmλ
I − vmξIΓnλI ,

(2.33)

where

F+ ≡ 1

2
(1 + iv?) (1− κ ∧ iv)F . (2.34)

The two projection operators appearing in the definition of F+ split the two-forms on

M4 × S1 into vertical and horizontal forms. The latter are further split into self-dual and

anti-self-dual forms on M4:

F = FH + FV = (1− κ ∧ iv)F + (κ ∧ iv)F ,

FH = F+
H + F−H =

1

2
(1 + iv?)FH +

1

2
(1− iv?)FH .

(2.35)

The supersymmetry algebra now takes the standard cohomological form, up to the addition

of the equivariant deformation

δAm = iΨm , δσ = −vmΨm , δΨm = ivF − iDmσ ,

δχmn = Hmn , δHmn = iLAv χmn + i [σ, χmn] .
(2.36)

The square of the transformation δ contains a translation and a gauge transformation

δ2 = iLv +GΦ , (2.37)

where L is the Lie derivative on forms and

Φ ≡ σ − ivmAm , LAv ≡ Lv − i [vmAm, ·] . (2.38)

Note that δΦ = 0.

2.4.2 Hypermultiplet

A hypermultiplet comprises a pair of complex scalars qAI and a fermion ψA satisfying(
qAI
)∗

= ΩABε
IJqAI ,

(
ψA
)∗

= ΩABCψ
B , (2.39)

where

ΩAB =

(
0 1N

−1N 0

)
, (2.40)

13The orientation here is the opposite of that used in [86], and corresponds with the one used in [85].

Due to this choice, some forms which were anti-self-dual in [86] are now self-dual.
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is the invariant tensor of USp(2N), which is a symmetry group of N free hypermultiplets.

A,B,C, . . . indices are raised and lowered using Ω. The gauge group is a subgroup of

USp(2N) whose indices we sometimes suppress.

The supersymmetry transformations read

δqI = −2iξIψ , δψ = ΓmξIDmq
I + iξIσq

I , (2.41)

where Dm is covariant with respect to Am and SU(2)R, and both Am and σ act in the

appropriate representation

(σq)A ≡ σABqB . (2.42)

After twisting, the field qAI becomes a spinor

q ≡ ξIqI . (2.43)

This spinor is actually pseudo-real, and contains only 4 degrees of freedom(
qA
)∗

= ΩABCq
B . (2.44)

Its variation includes only the part of ψ given by the projection

ψ+ ≡
1

2
(14 + vmΓm)ψ =

1

2

(
14 + Γ5

)
ψ . (2.45)

The supersymmetry transformations can be closed off-shell by introducing a superpartner

F for the component14

ψ− =
1

2

(
14 − Γ5

)
ψ . (2.46)

The twisted supersymmetry transformations are then given by

δq = iψ+ , δψ+ = (Lv − iGΦ) q ,

δψ− = F , δF = (iLv +GΦ)ψ− .
(2.47)

2.4.3 Supersymmetric actions on M4 × S1

The action for twisted theories is a covariantized version of the flat space action. This is in

contrast to the additional terms which appear, for instance, in the superconformal index,

on the five sphere, and on a general contact manifold. Such actions are still supersymmetric

because the Killing spinor is covariantly constant.

The flat space Yang-Mills term is given by [83]

SR5

YM =
1

g2
YM

∫
Tr

(
1

2
FmnFmn −DmσDmσ −

1

2
DIJDIJ + iλIΓ

mDmλ
I − λI

[
σ, λI

])
,

(2.48)

where Dm is the covariant derivative with respect to the connection Am, see (2.27). The

action on M4 × S1 can be written as

SM4×S1

YM =
1

g2
YM

∫
√
gTr

(
1

2
FmnFmn −DmσDmσ

− 1

2
DIJDIJ + iλIΓ

mDmλ
I − λI

[
σ, λI

])
, (2.49)

where Dm is covariant with respect to Am, the spin connection and the SU(2) R-symmetry.

14See [87, section 4.2] for a more complete explanation.
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In order to evaluate the Euclidean path integral with action

exp
(
−SM4×S1

YM

)
, (2.50)

we must choose a contour for the bosonic fields. An appropriate contour which ensures

convergence of the integral reads

A†m = Am , σ† = −σ , (D∗)IJ = −εIKεJLDKL . (2.51)

Integration of fermionic fields is an algebraic procedure and does not require such a choice

of contour. Note the change in reality conditions for the auxiliary field DIJ . In the rotated

variables, appearing in the supersymmetry transformations and in the rest of the paper,

SM4×S1

YM =
1

g2
YM

∫
√
gTr

(
1

2
FmnFmn +DmσDmσ

+
1

2
DIJDIJ + iλIΓ

mDmλ
I + iλI

[
σ, λI

])
. (2.52)

The action for a hypermultiplet is similarly given by

SM4×S1

R-hyper =

∫
√
g
(
DmqAI Dmq

I
A + qAI σABσ

BCqIC − 2iψAΓmDmψA

+ 2iψAσABψ
B − 4ψAλABIq

BI + qAI D
IJ
ABq

BI
)
,

(2.53)

where the matrices σAB, λ
A
I B, and DA

B act in the representation R. This action is

convergent with the contour implied by the reality condition (2.39).

2.5 Localization onto the fixed points

The actions in the previous section are invariant under the fermionic transformation δ.

By a standard argument, expectation values of δ-closed observables, and in particular the

partition function, are invariant under δ-exact deformations of the action

Stotal = S + tδV , (2.54)

provided we choose the fermionic functional V in such a way that δ2V|bosonic = 0,

δV|bosonic ≥ 0, and all configurations which yield a finite result when evaluated using

Stotal also yield a finite result when evaluated using S. In order to localize the theory with

Euclidean measure

exp (−Stotal) , (2.55)

we take the limit t → ∞. All configurations with δV|bosonic 6= 0 have infinite action in

this limit and the theory localizes onto the moduli space δV|bosonic = 0. The semi-classical

approximation around this moduli space yields the exact result for the functional integral.

In order to localize the five-dimensional N = 1 twisted theories, we can add the

following localizing terms

δVgauge ≡ δ
∫

Tr

(
2iχ ∧ ?F+ +

1

2
Ψ ∧ ? (δΨ)∗

)
,

δVmatter ≡ δ
∫
√
g
(
ψA+ (δψ+)∗A + ψA− (δψ−)∗A + ψA−ΓmDmqA

)
.

(2.56)
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The bosonic parts of which are

δVgauge|bosonic =

∫
Tr

(
2iH ∧ ?F+ +

1

2
(ivF − iDσ) ∧ ? (ivF − iDσ)∗

)
,

δVmatter|bosonic =

∫
√
g
(

[(Lv − iGΦ) q]A (Lv + iGΦ∗) qA + FAFA + FAΓmDmqA

)
.

(2.57)

The field H acts as a Lagrange multiplier, setting

F+ = 0 . (2.58)

The rest of the condition δVgauge|bosonic = 0, then requires

F+ = 0 , ivF = 0 , Dσ = 0 . (2.59)

A similar procedure for the hypermultiplet localizing term yields

Lvq = 0 , GΦq = 0 , ΓiDiq = 0 , (2.60)

where in the last term we have made explicit use of the fact that

FΓ5∇5q = 0 , (2.61)

by summing i ∈ {1, . . . , 4}. These equations may admit solutions for certain representations

of the gauge group, which would indicate that there are moduli coming from the hyper-

multiplets. However, we will consider the situation in which the hypermultiplets are also

coupled to background vector multiplets frozen to supersymmetric configurations which

effectively give all hypermultiplets a generic mass. In this situation, there are no solutions

to (2.60). In what follow, we consider only solutions of the vector multiplet equations.

2.5.1 Bulk solutions

An obvious set of solutions to (2.59) is given by flat connections and covariantly constant

σ. The topology of our spacetime satisfies

π1(M4 × S1) ' Z . (2.62)

Flat connections are therefore parameterized by the holonomies around the S1 factor,

restricted only by large gauge transformations. Using an appropriate gauge transformation,

these can be brought to the form of a constant Cartan subalgebra valued connection A(0):

A
(0)
i = 0 , i ∈ {1, 2, 3, 4} , A

(0)
5 ∈ Cartan(g) . (2.63)

Large gauge transformations identify(
A

(0)
5

)
j
∼
(
A

(0)
5

)
j

+
2π

β
n , n ∈ Z , (2.64)

where j is an index in the Cartan subalgebra. At generic values of the holonomy, a covari-

antly constant scalar is then also constant and Cartan valued, i.e.

∂mσ
(0) = 0 ,

[
σ(0), A5

]
= 0 . (2.65)
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We denote

a ≡ −iΦ(0) = −A(0)
5 − iσ(0) , a ∼ a+

2π

β
Z . (2.66)

Note that the equivariant action acts as

δ2 = i(Lv +Ga) . (2.67)

In principle, the localization calculation includes an integral over the rank g cylinders

parameterized by a. Later on we will find it more convenient to move to exponentiated

coordinates on this space, whereby the integration region becomes (C∗)rk(g).

2.5.2 Fermionic zero modes

The quadratic approximation of δVgauge around a bulk configuration specified by a allows

fermionic zero modes for both χ and Ψ. In the presence of such zero modes the functional

integral naively vanishes. However, following [54–56], we will take this as an indication

that the localizing term needs to be improved to include a fermion mass term which will

soak up the zero modes. Since the additional term is by definition δ-exact, the value of the

coefficient with which it is added, as long as it is nonzero, does not change the final result.

The Ψ zero mode can be read off from the Ψ kinetic term which is proportional to∫
Tr (Ψ ∧ ? (Lv −Ga∗) Ψ) . (2.68)

The zero mode is a constant profile for the Cartan part of Ψ given by

Ψ(0)
m ∝ vm ∝ Ψ

(0)
5 . (2.69)

It is the superpartner of the holonomy.

The zero mode for χ is also Cartan valued and can be identified using the projection

operator

π :M4 × S1 →M4 , (2.70)

with a multiple of the pullback of the Kähler form on M4:

χ(0) ∝ π∗ω . (2.71)

Indeed, one can check that

Lvχ(0) = Gaχ
(0) = 0 . (2.72)

We can construct a nowhere vanishing off-diagonal mass term by pairing the two sets

of zero modes using

V(0) ≡
∫

Tr
(
σ(0) ∧ ?χ(0) ∧ π∗ω

)
, (2.73)

such that

δV(0) =

∫
Tr
(
ivΨ

(0) ∧ ?χ(0) ∧ π∗ω + σ(0) ∧ ?H(0) ∧ π∗ω
)
, (2.74)

where we have defined

H(0) ≡ δχ(0) . (2.75)
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Note that the mass is nowhere vanishing due to the property

π∗ω ∧ ?π∗ω 6= 0 . (2.76)

We add to the localizing V the term −isV(0). Note that the reality conditions on H and σ

require s to be real.

2.5.3 Fluxes

As shown in [55], the four-dimensional equations defined on M4

iṽF = dφ , (2.77)

admit Abelian solutions corresponding to equivariant line bundles supported on H2 (M4).

Specifically, the flux is viewed now as a symplectic form for the torus action represented

by ṽ, and φ represents the moment map for the symplectic action.

The addition of δV(0) to the localizing action relaxes the constraint imposed by the

Lagrange multiplier in (2.59) from F+ = 0 to

F+ = jπ∗ω , (2.78)

where j is some element of the Cartan subalgebra. The combined equations

ivF = 0 , F+ = jπ∗ω , (2.79)

are five-dimensional versions of those analyzed in [55], with A5 playing the role of φ. To

make the connection, use indices i, j, . . . for M4 and write the equation

ivF = 0 , (2.80)

for an Abelian field strength in 4+1 notation as

ṽiFij + ∂5Aj − ∂jA5 = 0 , ṽi∂iA5 − ṽi∂5Ai = 0 . (2.81)

If we set ∂5Aj = 0, then the first equation is the symplectic moment map condition. The

second equation follows from the first after applying iṽ.

The solutions above correspond to solutions of the moment map equation (2.77) and

define equivariant cohomology classes. The resulting equivariant line bundles are associ-

ated to the equivariant divisors on M4. The relationship between these divisors and the

description of M4 using the toric fan is explained in appendix A. In particular, there is

an equivariant divisor Dl for each vector in the fan, and therefore for each fixed point of

the torus action. The total flux is then associated with a linear combination of divisors∑d
l=1 plDl, where pl lives in the Cartan subalgebra. We denote the resulting field strengths

F (0). Note that

F (0) = π∗F
(0)
4 , (2.82)

for some two-form F
(0)
4 on M4.

Notice that, due to (2.81), the field a acquires a nonzero profile on the manifold M4.

Near the fixed points of the torus action, the field becomes

a(l) = a+ ε
(l)
1 pl + ε

(l)
2 pl+1 , (2.83)

where the identification of the parameters ε
(l)
1 , ε

(l)
2 is given in appendix A.
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2.5.4 Instantons

Near the fixed circles of v, the complex determined in section 2.4 coincides with the one

considered by Nekrasov [73]. We therefore conjecture, in the spirit of [3, 83, 86], that these

points support point-like instantons which are accounted for by the five-dimensional or

K-theoretic version of the Nekrasov’s partition function

ZC2×S1

inst (gYM, k, a,∆, ε1, ε2, β) , (2.84)

described in section 2.6. The parameters appearing in this partition function can be read

off from the classical action, the toric geometry, the metric, the fluxes, and the mass param-

eters. Specifically, the identification of the parameters ε1, ε2 and a is given in appendix A

and corresponds to the values appearing in (2.83).

The authors of [86] identified a class of solutions to the equations

F+ = 0 , ivF = 0 , ivκ = 1 , (2.85)

on any contact five-manifolds with contact structure determined by a one-form κ. These

solutions were dubbed contact instantons. Although the one-form κ defined in (2.25) is not

a contact form, the instantons appearing in our partition function are the same solutions.

2.5.5 Gauge fixing

As discussed in [3], one can add a BRST-closed term to the action in order to gauge fix

without disturbing the localization procedure. A convenient gauge for our calculation is

the background gauge

d†
A(0)A = 0 , (2.86)

where A(0) represents the value of A at a point in moduli space. This gauge is part of the

definition of the Atiyah-Hitchin-Singer complex for the instanton moduli space [88]. We

will, in addition, gauge fix the scalar moduli such that their non-Cartan elements vanish.

The modulus a will be Cartan valued

ai , i ∈ 1, . . . , rk(G) . (2.87)

Doing so incurs a determinant in the matrix model which is, however, already taken into

account in the one-loop determinant described below. An additional factor of the inverse

volume of the Weyl group, |W|−1, is also present.

2.5.6 Integration

Localization takes effect when the coefficient t of the localizing action is taken to be very

large. The value of s is up to us. Following [55], we choose to take a limit

s→∞ . (2.88)

In order to keep the moduli finite, we rescale

σ(0) → 1

s
σ(0) . (2.89)
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In taking the limit, the fermion zero modes acquire a large mass can be trivially integrated

out. In addition, σ(0) drops out of all terms except (2.74). Following [55], we write the

remaining integral over the scalar moduli as∫
da dā

∂

∂ā

∫
dH0

H0
eiāH0 × (ā independent terms) , (2.90)

where we have used H0 to mean ∫
?H(0) ∧ π∗ω . (2.91)

The fact that the integrand is a total derivative in ā should also follow from the algebra of

supersymmetry of the zero mode supermultiplet [4, 89].

The integral, being a total derivative in ā, reduces to a contour integral. After the

integral over H0, which takes the residue at H0 = 0, we will be left with the contour

integral of a meromorphic function of a. Following [4, 89–91] we expect that the interplay

between a proper regularization of the integrand and the use of the zero mode H0 as a

regulator will lead to the determination of the correct contour of integration. We also

expect that the appropriate contour is given by some Jeffrey-Kirwan prescription [92]. In

related contexts, this prescription appears in the calculation of the instanton partition

function [91, 93]. It also makes an appearance in the calculation of the partition functions

of the two-dimensional A-model [4, 89] and the three- and four-dimensional topologically

twisted indices [4], which are lower-dimensional analogues of the partition function on M4

and the five-dimensional twisted index. We postpone to future work the determination of

the correct contour of integration.

2.5.7 Classical contribution

Classical contributions to the localization calculation come from evaluating (2.52)

and (2.53) on the moduli space identified above. Since all hypermultiplet fields vanish

on the moduli space, there is no contribution from (2.53). Moreover, the bulk moduli do

not contribute even to (2.52). This is in contrast to the contact manifold case [85]. The

contribution of instantons will be discussed when we discuss the Nekrasov’s partition func-

tion. All that is left is the contribution of the fluxes and the auxiliary field to (2.52). Recall

that the evaluation of the classical action is on the configurations such that the right hand

side of the fermion transformations vanish. Specifically, this implies that H = 0, regard-

less of the reality conditions of DIJ . In fact, H appears alone on the right hand side of

the transformation of χ, see (2.36), meaning that we are free to add an arbitrarily large

quadratic term for it in the localizing action. The equation H = 0 imposes the relation

F (0)+
mn = − i

2
ξIΓmnξ

JD
(0)
IJ . (2.92)

Similar relations involving fluxes appear in the three-dimensional computations of the

twisted indices [4, 18]. The relevant part of the classical action is

exp

[
− 1

g2
YM

∫ (
F (0) ∧ ?F (0) +

1

2
D(0)IJ ∧ ?D(0)

IJ

)]
= exp

[
− 1

g2
YM

∫ (
F

(0)
V ∧ ?F (0)

V + F
(0)+
H ∧ ?F (0)+

H

+ F
(0)−
H ∧ ?F (0)−

H +
1

2
D(0)IJ ∧ ?D(0)

IJ

)]
.

(2.93)
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Due to the properties of F (0), we can rewrite this as

exp

[
− β

g2
YM

∫
M4

(
F

(0)
4 ∧ ?4F

(0)
4 +

1

2
D(0)IJD

(0)
IJ

)]
= exp

[
− β

g2
YM

∫
M4

(
F

(0)+
4 ∧ F (0)+

4 − F (0)−
4 ∧ F (0)−

4 +
1

2
D(0)IJD

(0)
IJ

)]
= exp

[
− β

g2
YM

∫
M4

(
2F

(0)+
4 ∧ F (0)+

4 − F (0)
4 ∧ F (0)

4 +
1

2
D(0)IJD

(0)
IJ

)]
= exp

(
β

g2
YM

∫
M4

F
(0)
4 ∧ F (0)

4

)
,

(2.94)

where F (0) = π∗F
(0)
4 and we have used (2.92).

Given the relationship between the field strength and the differential representative of

the first Chern class

c1(A) = − 1

2π
F , (2.95)

the classical contribution can be written as

ZM4×S1

cl (gYM, p, β) = exp

[
4π2β

g2
YM

(∫
M4

c1({p}) ∧ c1({p})
)]

= exp

(
4π2β

g2
YM

c(p)

)
,

c(p) ≡
( d∑
l=1

plDl

)
·
( d∑
l=1

plDl

)
.

(2.96)

The factor c (p) can be evaluated for any given fan and choice of pl using the techniques in

appendix A. We will give explicit examples in section 2.7.

2.5.8 One-loop determinants via index theorem

We can compute the one-loop determinant from the equivariant index theorem. We fol-

low the derivation in [3, 94]. The fields appearing in the supersymmetry algebra (2.36)

and (2.47) can be put into the canonical form

δϕe,o = ϕ̂o,e , δϕ̂o,e = Rϕe,o . (2.97)

where ϕe, ϕ̂e are bosonic and ϕo, ϕ̂o are fermionic. The expression above is meant to

represent the δ-complex linearized around a point in the moduli space. We can identify

R = i(Lv +Ga) . (2.98)

The localizing functional contains a term of the form

V = ϕoDoeϕe . (2.99)

According to [94], the result of the Gaussian integral around a point in moduli space is

given by

Z1-loop =
detcokerDoeR|o
detkerDoeR|e

. (2.100)

– 21 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

Using (2.56) and the supersymmetry algebra, we can identify

Dvector = (1 + iv?)(1− κ ∧ iv)dA , Dhyper = ΓiDi = π∗DDirac . (2.101)

The operator Dvector is the projection of the covariantized exterior derivative operator on

M4, acting on one-forms, to the self-dual two-forms. One should take into account the

gauge fixing. Together with Dvector, this forms the self-dual complex

DSD : Ω0 d−→ Ω1 d+−−→ Ω2+ , (2.102)

tensored with the adjoint representation. Dhyper is simply the Dirac operator onM4. The

relevant complex is the Dirac complex

DDirac : S+ → S− , (2.103)

tensored with the representation of the gauge and flavor groups. The bundles S± are the

positive and negative chirality spin bundles on M4. If M4 is not spin, these should be

replaced by an appropriate bundle associated with a spinc structure. Neither of these com-

plexes are elliptic. However, both are transversely elliptic with respect to the action of R.

The data entering (2.100) can be extracted from the computation of the R-equivariant

index for the operator Doe:

indDoe = TrkerDoee
R − TrcokerDoee

R . (2.104)

The computation of this index is described in [95]. We will follow the exposition in [96]. Let

E be a G-equivariant complex of linear differential operators acting on sections of vector

bundles Ei over X:

E : Γ(E0)
D0−−→ Γ(E1)

D1−−→ Γ(E2)→ . . . , DiDi+1 = 0 . (2.105)

The equivariant index of the complex E is the virtual character of the G action on the

cohomology classes Hk(E):

indGD(g) =
∑
k

(−1)k TrHk(E) g , g ∈ G . (2.106)

If the set of fixed points of G is discrete, the index can be determined by examining the

action of G at those points, denoted XG:

indGD =
∑
x∈XG

∑
k(−1)kchG(Ek)|x

detTxX(1− g−1)
. (2.107)

The numerator in this expression encodes the action of G on the bundles, while the de-

nominator is the action on the tangent space of X. We refer the reader to [94] for more

information, and to [95] for a complete treatment.

The index and the one-loop determinant can be computed using the equivariant index

theorem on M4. There is one fixed point at the origin of every cone in the fan which

determines M4. The copy of C2 associated to the cone is acted upon by the equivariant
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parameters, and feels the flux from equivariant divisors associated to the two neighboring

vectors, as determined in appendix A. All that is needed to construct the character forM4

is to add up the contributions. The subtleties in the calculation involve the use of the right

complex for the index theorem, and the necessity of regularizing the infinite products that

it yields.

The complex identified above for the vector multiplet is the self-dual complex. Follow-

ing the discussion in [97], we use the Dolbeault complex (the “holomorphic projection of

the vector multiplet”) and find a match to the gluing calculation in section 2.7. The two

complexes are related on a Kähler manifold (see e.g. of [98, section 2.3.1]). The relevant

index for the twisted Dolbeault operator ∂̄ on C2 × S1 is given by

indRπ
∗(∂̄)|C2×S1 =

∑
α∈G

∞∑
n=−∞

e
i

2πn
β eiα(p1)ε1eiα(p2)ε2eiα(a)

(1− e−iε1) (1− e−iε2)
, (2.108)

where we have incorporated the free action of the rotation on S1 and denoted by p1,2 the

coefficients of the two divisors. Here, α are the roots of the gauge group G and the ε1,2
are arbitrary complex deformation parameters, which we will take to zero at the end. The

complete index reads

indRπ
∗(∂̄)|M4×S1 =

d∑
l=1

indR(l)π∗(∂̄)|C2×S1 , (2.109)

where d is the number of cones in the fan determining M4 and R(l) signifies the use of the

coefficients and equivariant parameters relevant to that cone.

We will explicitly evaluate the one-loop determinant resulting from (2.109) only in the

non-equivariant limit. Define the degeneracy

d(p) ≡ lim
ε1,2→0

d∑
l=1

eiα(pl)ε
(l)
1 eiα(pl+1)ε

(l)
2(

1− e−iε
(l)
1

)(
1− e−iε

(l)
2

) . (2.110)

Our flux conventions are those in [96]. The limit reduces the equivariant index to the

Hirzebruch-Riemann-Roch theorem

d(p) =

∫
M4

ch(E)td(M4) , (2.111)

where E corresponds to
∑d

l=1 plDl. We will give explicit examples of degeneracies in

section 2.7.

The one-loop determinant for a vector multiplet is then given by

Zvector
1-loop (a, p, β) =

∏
α∈G

[ ∞∏
n=−∞

(
i
2π

β
n+ iα(a)

)]d(α(p))

. (2.112)

The infinite product above requires regularization. A physically acceptable regularization

is given by

∞∏
n=−∞

(
i
2π

β
n+ iα(a)

)
=

(
1− xα

xα/2

)
, xα ≡ eiβα(a) , α(a) = αia

i . (2.113)

– 23 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

This choice has simple transformation properties under parity and correctly accounts for

the induced Chern-Simons term when used in the three-dimensional calculations [4]. See

also [91] for an example of its use. We thus obtain

Zvector
1-loop (a, p, β) =

∏
α∈G

(
1− xα

xα/2

)d(α(p))

. (2.114)

The index for a hypermultiplet is based on the twisted Dirac complex instead of the

Dolbeault complex. It also incorporates background scalar moduli and fluxes, which we

denote ∆ and tl respectively. Given the relation on M4 between these two complexes, one

needs to change the index for the vector multiplet by an overall flux corresponding to the

square root of the canonical bundle and take into account the opposite grading between the

two complexes [96]. The canonical bundle is minus the sum of all the equivariant divisors.

In addition, there is an ε dependent choice of the origin of the flavor mass parameter. The

choice corresponding to the superconformal fixed point in five dimensions was discussed

in [99–101], following the correction to the four sphere partition function found in [102].

The authors of [55] found a match with the results derived by Vafa and Witten in [103]

for the N = 4 theory with yet another choice. If the manifold M4 is not spin, there may

be other complications related to the choice of spinc structure. Specifically, we have made

no attempt to identify the canonical spinc structure associated with the almost complex

structure of M4 since this choice can be shifted by background fluxes. For notational

convenience we choose a common shift of the mass parameter for all manifolds

∆→ ∆− 1

2
(ε1 + ε2) , (2.115)

although this may require an appropriate redefinition of the origin of the background fluxes

in particular examples.

Incorporating both of these leads to

dhyper(p, t) ≡ − lim
ε1,2→0

d∑
l=1

ei(ρ(pl)+ν(tl)−1)ε
(l)
1 ei(ρ(pl+1)+ν(tl+1)−1)ε

(l)
2(

1− e−iε
(l)
1

)(
1− e−iε

(l)
2

) , (2.116)

where R is the representation under the gauge group G, ρ the corresponding weights, and ν

is the weight of the hypermultiplet under the flavor symmetry group. The complete result

can then be written as

Zhyper
1-loop (a,∆, p, t, β) =

∏
ρ∈R

(
1− xρyν

xρ/2yν/2

)dhyper(ρ(p),ν(t))

, yν ≡ eiβν(∆). (2.117)

2.6 The Nekrasov’s partition function

In this section we collect the expressions for the K-theoretic Nekrasov’s partition function:

ZC2×S1

Nekrasov(gYM, k, a,∆, ε1, ε2, β) ≡ ZC2×S1

pert ZC2×S1

inst . (2.118)

As we will discuss in the next section, the topologically twisted index on M4 × S1 can be

obtained by gluing copies of the Nekrasov’s partition functions in the spirit of (2.14).
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2.6.1 Perturbative contribution

The perturbative part of the partition function on C2 × S1 consists of a classical and a

one-loop contribution.

Classical contribution. The classical contribution to (2.118) is given by [104, 105]

ZC2×S1

cl (gYM, k, a, ε1, ε2) = exp

(
4π2β

g2
YMε1ε2

TrF(a)2 +
ikβ

6ε1ε2
TrF(a3)

)
, (2.119)

where k is the Chern-Simons level of G and TrF is the trace in fundamental representation.15

One-loop contribution. We will use the perturbative part of the partition function on

C2 × S1 as defined in [106]. For a gauge group G the contribution of a vector multiplet to

the perturbative part is given by

ZC2×S1

pert-vector (ε1, ε2, a; Λ, β) = exp

(
−
∑
α∈G

γ̃ε1,ε2 (α(a)|β; Λ)

)
, (2.120)

where

γ̃ε1,ε2 (a|β; Λ) =
1

ε1ε2

(
π2a

6β
− ζ(3)

β2

)
+
ε1 + ε2
2ε1ε2

(
a log (βΛ) +

π2

6β

)
+

1

2ε1ε2

[
−β

6

(
a+

1

2
(ε1 + ε2)

)3

+ a2 log (βΛ)

]

+
ε21 + ε22 + 3ε1ε2

12ε1ε2
log (βΛ) +

∞∑
n=1

1

n

e−βna

(eβnε1 − 1) (eβnε2 − 1)
.

(2.121)

With this definition of the perturbative part of the partition function, the authors of [106]

derived a formula for the partition function for the blowup of C2 at a point, which is

just an example of the gluing procedure we will discuss in section 2.7. This expression

is written in the conventions of [106] and also includes what we already defined as the

classical contribution. One can swap between the conventions by

athere = −iahere , εthere
i = −iεhere

i . (2.122)

The one-loop contribution from a vector multiplet in our conventions is given by

ZC2×S1

1-loop, vector(a, ε1, ε2) = ZC2×S1

parity, vector(a, ε1, ε2)
∏
α∈G

(xα; p, t)∞ ,

ZC2×S1

parity, vector(a, ε1, ε2) =
∏
α∈G

exp

[
1

ε1ε2

(
i

2β2
g3 (−α(βa))− i(ε1 + ε2)

4β
g2 (−α(βa))

+
i(ε1+ε2)2

16
g1 (−α(βa))− iβ

96
(ε1+ε2)3 +

iπ

48

(
ε21+ε22

)
− ζ(3)

β2

)]
.

(2.123)

15The generators Ta are normalized as TrR(TaTb) = k(R)δab with k(F) = 1/2 for the fundamental

representation of SU(N).
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Here, we defined the double (p, t)-factorial as

(x; p, t)∞ =

∞∏
i,j=0

(1− xpitj) , (2.124)

where p = e−iβε1 and t = e−iβε2 . The polynomial functions gs(a) are given in (E.3). The

parity contribution in (2.123) is related to the choice of regularization we made in (2.113).

It can be partially understood as an effective one-half Chern-Simons contribution (2.119).

The contribution of a hypermultiplet to the one-loop determinant instead reads

ZC2×S1

1-loop, hyper(a,∆, ε1, ε2) = ZC2×S1

parity, hyper(a,∆, ε1, ε2)
∏
ρ∈R

(xρyν ; p, t)−1
∞ ,

ZC2×S1

parity, hyper(a,∆, ε1, ε2) =
∏
ρ∈R

exp

[
1

ε1ε2

(
i

2β2
g3

(
ρ(βa) + ν(β∆)

)
+

i(ε1+ε2)

4β
g2

(
ρ(βa) + ν(β∆)

)
+

i(ε1 +ε2)2

16
g1

(
ρ(βa)+ν(β∆)

)
+

iβ

96
(ε1 + ε2)3 +

iπ

48

(
ε21 + ε22

))]
. (2.125)

Putting everything together, the perturbative part of the Nekrasov’s partition function

can be written as

ZC2×S1

pert (gYM, k, a,∆, ε1, ε2, β) = ZC2×S1

cl ZC2×S1

1-loop, vector Z
C2×S1

1-loop, hyper . (2.126)

2.6.2 Instantons contribution

The localization calculation for a five-dimensional gauge theory conjecturally includes non-

perturbative contributions from contact instantons [83, 86]. With the equivariant deforma-

tion turned on, these configurations are localized to the fixed points of the action on M4

and wrap the S1. Their contribution to the matrix model is given by the five-dimensional

version of the Nekrasov’s instanton partition function, which we describe below.

Nekrasov’s instanton partition function, [73, 74], is the equivariant volume of the in-

stanton moduli space on R4 with respect to the action of

U(1)a ×U(1)ε1 ×U(1)ε2 . (2.127)

The three factors correspond to constant gauge transformations and to rotations in two

orthogonal two-planes inside R4, respectively. The five-dimensional version of the parti-

tion function counts instantons extended along an additional S1 factor in the geometry, of

circumference β. The four-dimensional partition function can be recovered by letting the

size of this S1 shrink to zero. As with the perturbative contribution, there is an ambigu-

ity related to the regularization of the KK modes on the extra circle. Different looking

expressions are found in [100].
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The K-theoretic instanton partition function for gauge group U(N) in our conventions,

as derived from [106–108], is given by

ZC2×S1

inst (q, k, a,∆, ε1, ε2, β) =
∑
~Y

q|
~Y|ZCS

~Y,k
(a, ε1, ε2, β)Z~Y (a,∆, ε1, ε2, β) ,

Z~Y (a,∆, ε1, ε2, β) = Zvector
~Y

(a, ε1, ε2, β)

Nf∏
f=1

Zhyper
~Y

(a,∆f , ε1, ε2, β) .

(2.128)

We have

ZCS
~Y,k

(a, ε1, ε2, β) =

N∏
i=1

∏
s∈Yi

e−iβkφ(ai,s) ,

Zvector
~Y

(a, ε1, ε2, β) =
N∏

i,j=1

(
N
~Y
i,j(0)

)−1
,

Zadj-hyper
~Y

(a,∆, ε1, ε2, β) =

N∏
i,j=1

N
~Y
i,j(∆) , (2.129)

Z fund-hyper
~Y

(a,∆, ε1, ε2, β) =

N∏
i=1

∏
s∈Yi

(
1− eiβ(φ(ai,s)+∆+ε1+ε2)

)
,

N
~Y
i,j(∆) ≡

∏
s∈Yj

(
1− eiβ(E(ai−aj ,Yj ,Yi,s)+∆)

)
×
∏
t∈Yi

(
1− eiβ(ε1+ε2−E(aj−ai,Yi,Yj ,t)+∆)

)
,

where for a box s = (i, j) ∈ Z≥0 × Z≥0 we defined the functions

E(a, Y1, Y2, s) ≡ a− ε1LY2(s) + ε2(AY1(s) + 1) ,

φ(a, s) ≡ a− (i− 1)ε1 − (j − 1)ε2 .
(2.130)

The rest of the symbols above are defined as follows.

— ~Y is a vector of partitions Yi. A partition is a non-increasing sequence of non-negative

integers which stabilizes at zero

Yi = {Yi 1 ≥ Yi 2 ≥ . . . ≥ Yi ni+1 = 0 = Yi ni+2 = Yi ni+3 = . . .} . (2.131)

We define ∣∣~Y∣∣ ≡ N∑
i,j=1

Yij . (2.132)

— For a box s ∈ Yl with coordinates s = (i, j), we define the leg length and the arm

length

LYl(s) ≡ Y
T
lj − i , AYl(s) ≡ Yli − j , (2.133)

where T stands for transpose.
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— a is a complex Cartan subalgebra valued scalar of framing parameters associated with

the gauge group action.

— ∆ is a flavor symmetry group vector of mass parameters for the hypermultiplets.

— q is a counting parameter coming from the one instanton action

q = e
− 8π2β

g2
YM . (2.134)

2.6.3 Effective Seiberg-Witten prepotential

In this section we provide the general form of the perturbative Seiberg-Witten (SW) pre-

potential for a 5D N = 1 theory with gauge group G, coupling constant gYM, and Chern-

Simons coupling k. For a theory with hypermultiplets transforming in the representation

RI of G, the effective prepotential is related to the Nekrasov’s partition function ZC2×S1

Nekrasov

as follows [73, 74, 106]:

2πiF ≡ − lim
ε1,ε2→0

ε1ε2 logZC2×S1

Nekrasov(gYM, k, a,∆RI , ε1, ε2, β) , (2.135)

whose perturbative part can be explicitly written as

2πiFpert(a,∆) = − 4π2β

g2
YM

TrF(a2)− ikβ

6
TrF(a3)

− 1

β2

∑
α∈G

[
Li3(xα) +

i

2
g3 (−α(βa))− ζ(3)

]
+

1

β2

∑
I

∑
ρI∈RI

[
Li3(xρIyνI )− i

2
g3 (ρI(βa) + νI(β∆))− ζ(3)

]
,

(2.136)

where the function g3(a) is defined in (E.4). The first term in (2.136) comes from the

classical action while the Li3 factor is the one-loop contribution of the infinite tower of

KK modes on S1 as discussed in [63]. The other polynomial terms come explicitly from

the limit of the perturbative contribution in [106]. We interpret them as effective Chern-

Simons terms coming from a parity preserving regularization of the path integral, as also

discussed in section 2.5.8.

2.7 Partition function on M4 × S1

The functional integral under consideration is to be computed in an exact saddle point

approximation around the moduli space which comprises the bulk moduli, the fluxes, and

the instantons. We will assume as in [54–56] that the complete partition function is given

by gluing d copies of ZC2×S1

Nekrasov, one for each fixed point of the toric action. At each fixed

point, the parameters a, ∆, ε1, ε2 in (2.118) are replaced with their equivariant version a(l),

∆(l), ε
(l)
1 , ε

(l)
2 , whose explicit form is explained in appendix A and given, for simple cases,

in examples 2.1–2.3. In particular, as in [55], the gauge magnetic fluxes are incorporated

into this expression through

a(l) = a+ ε
(l)
1 pl + ε

(l)
2 pl+1 . (2.137)
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The reason for this replacement is discussed in section 2.5.3 and it is also easy to see in the

index theorem discussed in section 2.5.8. Furthermore, the equivariant chemical potential

is given by (see the discussion around (2.115))

∆(l) = ∆̇ + ε
(l)
1 tl + ε

(l)
2 tl+1 , ∆̇ = ∆−

(
ε
(l)
1 + ε

(l)
2

)
. (2.138)

As we will see this gluing is consistent with the classical and one-loop contributions deter-

mined in sections 2.5.7 and 2.5.8.

The topologically twisted index of an N = 1 theory on M4 × S1 then reads16

ZM4×S1 =
∑

{pl}|semi-stable

∮
C

da

χ(M4)∏
l=1

ZC2×S1

Nekrasov

(
a(l), ε

(l)
1 , ε

(l)
2 , β, q; ∆(l)

)
. (2.139)

Here, following [53–56], we restrict the sum in (2.139) to fluxes pl corresponding to

semi-stable bundles. It was argued in [54–56] that the sum should be extended to all

semi-stable equivariant bundles. These are classified by a set of fluxes pl, one for each

divisor,17 subject to stability conditions that have been studied by mathematicians [112].

These conditions are already quite complicated for N = 2. Summing over all semi-stable

equivariant bundles, the authors of [54–56] found perfect agreement with known Donaldson

invariant results. In this paper we have not determined either the correct contour of

integration or the correct conditions to be imposed on the fluxes. We expect that the two

aspects are related.

Notice that formula (2.139) is consistent with and generalizes the blowup formula

derived in [106], which just corresponds to the case whereM4 is the (non-compact) blowup

of C2 at a point.18

In this paper we will be interested in theories with gauge group U(N) or USp(N).

Moreover, we want the partition function in the large N , non-equivariant limit ε1,2 → 0.

The appropriate large N limit is defined in the next section. We will assume that the

instanton contribution to the free energy, defined by

FM4×S1 ≡ − logZM4×S1 , (2.140)

decays exponentially in any such limit. This is supported by the appearance of the factor

q|
~Y| in (2.128). In the following sections, all partition functions are written only for the

zero instanton sector.

2.7.1 The non-equivariant limit

The Nekrasov’s partition function (2.118) is singular for ε1, ε2 → 0 but the product

in (2.139) is perfectly smooth in this limit. By performing explicitly the limit, we can

16Similar gluing formulae hold for other five-dimensional partition functions [109–111].
17Remember that there are d divisors but only d− 2 independent two-cycles in the cohomology of M4.
18See [106, eq. (4.14)]. The blowup of C2 at a point can be described by a toric fan with ~n1 = (1, 0),

~n2 = (1, 1) and ~n3 = (0, 1).
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write the classical and perturbative part of the localized partition function in the non-

equivariant limit as

ZM4×S1 =
1

|W|
∑
{pl}

∮
C

rk(G)∏
i=1

dxi
2πixi

e
4π2β

g2
YM

TrF c(pl)+
ikβ
2

TrF(c(pl)a) ∏
α∈G

(
1− xα

xα/2

)d(α(pl))

×
∏
I

∏
ρI∈RI

(
1− xρIyνI
xρI/2yνI/2

)dhyper(ρI(pl),νI(tl))

.

(2.141)

As one can see, the results from gluing (and taking the non-equivariant limit) precisely

match the classical contributions (2.96) and the one-loop determinants evaluated using the

index theorem (see (2.114) and (2.117)). We may also expect some simplification in the

sum over fluxes compared with the equivariant formula (2.139). We expect that, in the

non-equivariant limit, the fluxes pl should just correspond to the set of non-equivariant

bundles on M4.

Formula (2.141) has a natural interpretation in terms of the quantum mechanics ob-

tained by reducing the five-dimensional theory on M4. In the reduction onM4 in a sector

with gauge and background fluxes pl and tl, we will obtain a set of zero modes whose mul-

tiplicity is given by the Hirzubruch-Riemann-Roch theorem and coincides with d or dhyper.

They will organize themselves into a set of Fermi or chiral multiplets according to the sign

of d and dhyper. Eq. (2.141) is then precisely the sum over all sectors of gauge magnetic

fluxes of the localization formula for the corresponding quantum mechanics partition func-

tions, as derived in [91]. This is in complete analogy with the structure of the three- and

four-dimensional topologically twisted indices [4].

Some examples of the calculation of the degeneracy are given below. We refer to

appendix A for details and notations.

Example 2.1. Complex projective space, P2.

~n1 = (1, 0) , ~n2 = (0, 1) , ~n3 = (−1,−1) . (2.142)

P2

l 1 2 3

ε
(l)
1 ε1 ε2 − ε1 −ε2
ε
(l)
2 ε2 −ε1 ε1 − ε2

~n1, D1

~n2, D2

~n3, D3

cP2(pl) = (p1 + p2 + p3)2 ,

dP2(pl) =
1

2
(p1 + p2 + p3 + 1) (p1 + p2 + p3 + 2) ,

dhyper
P2 (pl, tl) = −1

2
(p1 + p2 + p3 + t1 + t2 + t3 − 2) (p1 + p2 + p3 + t1 + t2 + t3 − 1) .

(2.143)
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Example 2.2. The product of two spheres, F0 ' P1 × P1.

~n1 = (1, 0) , ~n2 = (0, 1) , ~n3 = (−1, 0) , ~n4 = (0,−1) . (2.144)

F0

l 1 2 3 4

ε
(l)
1 ε1 ε2 −ε1 −ε2
ε
(l)
2 ε2 −ε1 −ε2 ε1

~n1, D1

~n2, D2

~n3, D3

~n4, D4

cF0(pl) = 2 (p1 + p3) (p2 + p4) ,

dF0(pl) = (p1 + p3 + 1) (p2 + p4 + 1) ,

dhyper
F0

(pl, tl) = − (p1 + p3 + t1 + t3 − 1) (p2 + p4 + t2 + t4 − 1) .

(2.145)

Example 2.3. F1, the blowup of P2 at a point.

~n1 = (1, 0) , ~n2 = (0, 1) , ~n3 = (−1, 1) , ~n4 = (0,−1) . (2.146)

F1

l 1 2 3 4

ε
(l)
1 ε1 ε1 + ε2 −ε1 −ε2
ε
(l)
2 ε2 −ε1 −ε1 − ε2 ε1

~n1, D1

~n2, D2
~n3, D3

~n4, D4

cF1(pl) = (p2 + p4) (2p1 − p2 + 2p3 + p4) ,

dF1(pl) =
1

2
(p2 + p4 + 1) (2p1 − p2 + 2p3 + p4 + 2) ,

dhyper
F1

(pl, tl) = −1

2
(p2 + p4 + t2 + t4 − 1) (2p1 − p2 + 2p3 + p4 + 2t1 − t2 + 2t3 + t4 − 2) .

(2.147)

2.7.2 A closer look at P1 × P1 × S1

We can compare the previous result with the expectations for the case P1×P1×S1, where

the computation, in principle, can be done by an explicit expansion in modes. By an

obvious generalization of the results in [4], we expect the following partition function

ZP1×P1×S1 =
1

|W|
∑
m,n

∮
C

rk(G)∏
i=1

dxi
2πixi

e
8π2β

g2
YM

TrF(mn)+ikβTrF(mna) ∏
α∈G

(
1− xα

xα/2

)(α(m)+1)(α(n)+1)

×
∏
I

∏
ρI∈RI

(
xρI/2yνI/2

1− xρIyνI

)(ρI(m)+νI(s)−1)(ρI(n)+νI(t)−1)

,

(2.148)
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where m/n (and s/t) are the gauge (and background) magnetic fluxes on two spheres. The

degeneracies come from the Hirzebruch-Riemann-Roch theorem and the classical action

comes from an explicit computation along the lines of section 2.5.7.

We see that the result coincides with (2.141) with the replacements

m = p1 + p3 n = p2 + p4 , s = t1 + t3 , t = t2 + t4 . (2.149)

The integral in (2.141) indeed only depends on such combinations. We also expect that, in

the non-equivariant limit, the sum over semi-stable equivariant fluxes reduces to a sum over

the two standard fluxes m and n on P1×P1. Such set of non-equivariant fluxes was indeed

used in [54], where the four-dimensional partition function on P1 × P1 has been studied.

Notice that, in the conventions that we are using for the background fluxes, what we

will call universal twist [113, 114] in section 3 corresponds to s = t = 1.

3 Large N limit

In this section, we analyze the large N limit of some of the topologically twisted indices

and other related quantities, finding an interesting structure.

In the large N limit we may expect some simplifications. In particular, instantons

are suppressed and the perturbative contribution to the topologically twisted index of 5D

N = 1 theories discussed in section 2 becomes exact. Moreover, we may also expect that

the choice of integration contour and the stability conditions on fluxes become simpler at

large N . In particular, we will work under the assumption that, in the large N limit, the

fluxes become actually independent.

In the topologically twisted index of 3D N = 2 theories on Σg1 × S1 [4, 8, 13, 18]

a distinguished role was played by the twisted superpotential W̃ of the two-dimensional

theory obtained by compactification on S1 (with infinitely many KK modes). In particular,

the partition function can be written as a sum over the set of Bethe vacua of the two-

dimensional theory, which corresponds to the critical points of W̃ [8, 13]. Moreover, in

the large N limit, one particular Bethe vacuum dominates the partition function [5]. The

natural quantity to consider for the 5D topologically twisted index is the SW prepotential

F(a) of the four-dimensional theory obtained by compactification on S1. There are two

reasons to expect that the critical points of F(a) play a distinguished role in five dimensions.

First, the partition function of the topologically twisted N = 2 theories in four dimensions

can be split into two contributions, one coming from the integration over the Coulomb

plane (usually called the u plane), and the other from the locus where monopoles and

dyons become massless, corresponding to the critical points of the prepotential F [115].

The integral over the u plane also often reduces to boundary contributions from all the

singular points in the moduli space. Secondly, in the integrable system obtained by placing

the four-dimensional theory on a Ω-background on R4 with ε1 = ~ and ε2 = 0, the Bethe

vacua read [116]

exp

(
i
∂W̃~(a)

∂aj

)
= 1 , j = 1, . . . , rk(G) , (3.1)
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where W̃~(a) is the twisted superpotential for the two-dimensional effective theory obtained

by reducing on the Ω-deformed copy of R2. We expect that these conditions play a role in

the equivariant partition function with ε1 = ~ and ε2 = 0. Since W̃~(a) has the following

expansion as ~→ 0,

W̃~(a) = −2π

~
F(a) + . . . , (3.2)

we also obtain, in the limit ~→ 0, the quantization conditions (cf. [117, eq. (3.62)] and [118,

eq. (4.6)])

exp

(
2πi

~
aD
j

)
= exp

(
2πi

~
∂F(a)

∂aj

)
= 1 , j = 1, . . . , rk(G) . (3.3)

It is possible that, in taking the non-equivariant limit of the index, the information about

the pole configurations of the integrand is partially lost and we need to impose extra

conditions following from (3.3). For all these reasons, we may think that the critical points

of F(a) may play a role in the evaluation of the index. In particular, in analogy with

the 3D index, we may expect that, in the large N limit, one particular critical point of

F(a) dominates the partition function. We will provide some evidence of this picture

by evaluating various quantities in the large N limit at the critical point of F(a) and

showing that they nicely agree with holographic predictions. Independently from these

considerations, the problem of finding the distribution of critical points of F(a) in the

large N limit is interesting in itself and deserves to be studied.

We will then consider the large N limit of the distribution of critical points of the

functional F(a) focusing on two 5D theories, N = 2 SYM, which decompactifies to the

N = (2, 0) theory in six dimensions and the N = 1 USp(2N) theory with Nf flavors and

an antisymmetric matter field, which corresponds to a 5D UV fixed point. In both cases we

find that the value of F(a) at its critical points, as a function of flavor fugacities, precisely

coincides, in the large N limit, with the partition function of the same theory on S5. This

is in parallel with what was found for the twisted superpotential of 3D N = 2 theories in

the large N limit [46], thus re-enforcing the analogy between the two quantities.

We shall then study the large N limit of the topologically twisted index of 5D N = 1

theories on P1×P1×S1. With no effort, we can replace P1×P1×S1 with the more general

manifold Σg2 ×Σg1 × S1 and we will consider this more general case in the following. The

interest of this model is that we can formally dimensionally reduce on Σg2 and obtain

a three-dimensional theory. In three dimensions we can guess the form of the partition

function in the large N limit and use the results in [4, 8, 13, 18]. We expect the partition

function of the three-dimensional theory to be given as a sum over topological sectors

on Σg2 . We will denote the gauge/flavor magnetic fluxes on Σg1 and Σg2 by m/s and

n/t, respectively. We also denote by ∆ a complexified chemical potential for the flavor

symmetry. In each sector of gauge magnetic flux n on Σg2 we have a twisted superpotential

for the compactified theory satisfying [119]

∂W̃(a, n,∆, t)

∂ni
= −2π

∂F(a,∆)

∂ai
,

∂W̃(a, n,∆, t)

∂t
= −2π

∂F(a,∆)

∂∆
. (3.4)
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One way to determine W̃ is to compare the 5D partition function for P1×P1×S1 given in

section 2 with the structure of the topologically twisted index in three dimensions. This is

given by localization as a contour integral of a meromorphic quantity [4, 13, 18]∑
m∈Γh

Z3D
int (a,m, n) =

∑
m∈Γh

e
imi

∂W̃(a,n)
∂ai Z3D

int (a,m = 0, n) , (3.5)

where Γh is the lattice of gauge magnetic fluxes for the gauge group G. By generaliz-

ing (2.148) from P1×P1 to Σg1×Σg2 as in [18], and choosing a convenient parameterization

for the fluxes, we expect the integrand Z3D
int (a,m, n) to be(

det
ij

∂2W̃(a, n)

∂ai∂aj

)g1

e
8π2β

g2
YM

TrF(mn)+ikβTrF(mna) ∏
α∈G

(
1− xα

xα/2

)(α(m)+1−g1)(α(n)+1−g2)

×
∏
I

∏
ρI∈RI

(
xρI/2yνI/2

1− xρIyνI

)(ρI(m)+νI(s)+g1−1)(ρI(n)+νI(t)+g2−1)

.

(3.6)

We can therefore read off the twisted superpotential

W̃pert(a, n,∆, t) = − 8π2
iβ

g2
YM

TrF(na) +
kβ

2
TrF(na2)

+
1

β

∑
α∈G

(α(n) + 1− g2)

[
Li2(xα)− 1

2
g2 (−α(βa))

]
− 1

β

∑
I

∑
ρI∈RI

(ρI(n) + νI(t) + g2 − 1)

×
[
Li2(xρIyνI )− 1

2
g2 (ρI(βa) + νI(β∆))

]
,

(3.7)

that indeed satisfies (3.4).

The topologically twisted index can then be computed as follows [8, 18]

Zpert
Σg2×(Σg1×S1)

(s, t,∆) =
(−1)rk(G)

|W|
∑
n∈Γh

∑
a=a(i)

Zpert
∣∣
m=0

(a, n)

(
det
ij

∂2W̃pert(a, n)

∂ai∂aj

)g1−1

,

(3.8)

where a(i) are the solutions to the Bethe ansatz equations (BAEs)

exp

(
i
∂W̃pert(a, n; ∆, t)

∂aj

)
= 1 , j = 1, . . . , rk(G) . (3.9)

As we will see below, these BAEs (3.9) fix the value of the gauge magnetic fluxes ni in the

large N limit, hence, one needs an extra input in order to fix the value of the Coulomb

branch parameter ai. Assuming that the right condition to be imposed in the large N

limit is (3.3), we will be able to compute the index for both N = 2 SYM and the USp(2N)

theory.19 In particular, in the case of N = 2 SYM, thought of as compactification of the

19An alternative method for evaluating the partition function of the USp(2N) theory is discussed in

appendix D.
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6D N = (2, 0) theory on a circle, the index computes the elliptic genus of the 2D CFT

obtained by compactifying the 6D theory on Σg2 × Σg1 . And, indeed, we find the correct

Cardy behaviour of the index in the high-temperature limit. This is in parallel with what

was found in [26] for the topologically twisted index of 4D N = 1 SCFTs on Σg1 × T 2.

Finally, we will also consider the large N limit of the twisted superpotential (3.7) and

the distribution of its critical points. We expect the on-shell value of W̃pert to compute

some physical quantities of the intermediate compactification on Σg2 . We find indeed that

this is the case. For N = 2 SYM, the critical value of W̃pert is precisely the trial central

charge of the 4D SCFT obtained by compactifying the 6D (2, 0) theory on Σg2 , computed

both in field theory and holographically in [65, 66]. Quite remarkably, the identification

holds for an arbitrary assignment of R-charges for the trial central charge. For the USp(2N)

theory, the critical value of W̃pert, extremized with respect to ∆, coincides with the S3 free

energy of the 3D theory, obtained by compactifying the 5D fixed point on Σg2 , recently

computed holographically in [64].20

3.1 N = 2 super Yang-Mills on Σg2 × (Σg1 × S1)

A decoupling limit of type IIB string theory on asymptotically locally Euclidean (ALE)

spaces predicts the existence of interacting 6D, N = (2, 0) theories labelled by an ADE Lie

algebra g = (An≥1, Dn≥4, E6, E7, E8) [120]. The AN−1 type can also be realized as the low-

energy description of the worldvolume theory of N coincident M5-branes in M-theory [121].

A direct formulation of the (2, 0) theory has been a long standing problem. However, it

has been argued in [59–61] that the (2, 0) theory on a circle S1
(6) of radius R6 is equivalent

to the five-dimensional N = 2 supersymmetric Yang-Mills (SYM) theory, whose coupling

constant is identified with the S1
(6) radius by

R6 =
g2

YM

8π2
. (3.10)

We are interested in computing the partition function of the (2, 0) theory on Σg2 ×
(Σg1 × T 2), partially topologically twisted on Σg2 ×Σg1 . Given the above relation between

the (2, 0) theory and 5D maximally SYM, and considering the torus T 2 = S1×S1
(6), this is

equivalent to compute the twisted partition function of N = 2 SYM on Σg2 × (Σg1 × S1).

A further reduction on S1 gives a four-dimensional theory. Recalling that the length of S1

is β, we see that the (complexified) gauge coupling of the four-dimensional theory can be

correctly identified with the modular parameter of the torus T 2 = S1 × S1
(6),

τ =
4πiβ

g2
YM

=
iβ

2πR6
. (3.11)

The twisted compactification of the (2, 0) theory on Σg1×Σg2 gives rise to an N = (0, 2)

SCFT in two dimensions [68]. The holonomy group of Σg1 × Σg2 is SO(2)1 × SO(2)2. In

order to preserve N = (0, 2) supersymmetry in two dimensions we turn on a background

20The free energy on Σg2 ×S3 as a function of ∆ was explicitly computed in field theory in [67] after the

completion of this work and perfectly agrees with the on-shell value of W̃pert as a function of ∆.
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Abelian gauge field coupled to an SO(2)2 subgroup of SO(5)R, embedded block-diagonally.

The right-moving trial central charge cr(∆) and the gravitational anomaly k = cr − cl for

this class of theories were computed in [68] and, at large N , they can be rewritten as (see

also appendix C)

cr(s, t,∆) ≈ cl(s, t,∆) ≈ 2N3β2

(2π)2
[∆1∆2(t1s2 + t2s1) + (∆1s2 + ∆2s1)(∆1t2 + ∆2t1)]

≈ N3β2

(2π)2

2∑
ς,%=1

tςs%
∂2(∆1∆2)2

∂∆ς∂∆%
, (3.12)

where we introduced the democratic chemical potentials and fluxes for the SO(2)2 subgroup

of SO(5)R symmetry

∆1 = ∆ , ∆2 =
2π

β
−∆ ,

2∑
ς=1

∆ς =
2π

β
,

s1 = s , s2 = 2(1− g1)− s ,
2∑
ς=1

sς = 2(1− g1) ,

t1 = t , t2 = 2(1− g2)− t ,

2∑
ς=1

tς = 2(1− g2) .

(3.13)

The partition function of the (2, 0) theory on Σg2 × (Σg1 ×T 2) is just the elliptic genus

of the two-dimensional CFT. Thus we expect, in the high-temperature limit β̃ → 0, where

β̃ ≡ −2πiτ is a fictitious inverse temperature,21 the partition function to have a Cardy

behaviour

logZ(s, t,∆) ≈ iπ

12τ
cr(s, t,∆) . (3.14)

We will work in the ’t Hooft limit

N � 1 with λ =
g2

YMN

β
= fixed , (3.15)

for which the instanton contributions to the partition function are exponentially suppressed.

The high-temperature limit of the partition function corresponds to large λ.

3.1.1 Effective prepotential at large N

The effective SW prepotential (2.136) of N = 2 SYM can be written as

F(a,∆) =

N∑
i=1

Fcl(ai) +

N∑
i 6=j
F1-loop(ai − aj)−

N∑
i,j=1

F1-loop(ai − aj + ∆)

=
2πiβ

g2
YM

N∑
i=1

a2
i +

i

2πβ2

N∑
i 6=j

Li3(eiβ(ai−aj))− i

2πβ2

N∑
i,j=1

Li3(eiβ(ai−aj+∆))

− 1

4πβ2

N∑
i 6=j

g3 (β(aj − ai)) +
1

4πβ2

N∑
i,j=1

g3 (β(ai − aj + ∆)) .

(3.16)

21The torus partition function at a given τ corresponds to a thermal ensemble while the elliptic genus is

only counting extremal states. Therefore, the temperature represented by Im τ is fictitious.
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The BAEs (3.3) are then given by

−8π2N

λ
ai =

i

β

N∑
j=1

[
Li2(eiβ(ai−aj))− Li2(e−iβ(ai−aj))

− Li2(eiβ(ai−aj+∆)) + Li2(e−iβ(ai−aj−∆))
]

+
i

2β

N∑
j=1

[−g2 (β(aj − ai)) + g2 (β(ai − aj))]

+
i

2β

N∑
j=1

[g2 (β(ai − aj + ∆))− g2 (β(aj − ai + ∆))] .

(3.17)

In the strong ’t Hooft coupling λ� 1 the eigenvalues are pushed apart, i.e. | Im(ai−aj)| �
1, and (3.17) can be approximated as

8π2N

λ
ak ≈

i

2
∆(2π − β∆)

N∑
j=1

sign (Im(ak − aj)) . (3.18)

The sign function could be replaced by sign(i − j) if the eigenvalues ai are ordered by

increasing imaginary part. We thus find the solution

ak =
iλ

16π2N
[∆(2π − β∆)(2k −N − 1)] . (3.19)

It is also interesting to see what the value of the effective SW prepotential (3.16) at the

solution (3.19) is. In the strong ’t Hooft coupling λ� 1 we find that

F(a,∆) ≈ 2πiN

λ

N∑
i=1

a2
i

− 1

4πβ2

N∑
i,j=1

[g3 (β(aj − ai)) + g3 (β(ai − aj + ∆))] sign (Im(ai − aj))

=
2πiN

λ

N∑
i=1

a2
i +

1

8π
∆(2π − β∆)

N∑
i,j=1

(ai − aj) sign (Im(ai − aj))

= −
N∑
j=1

[
2πiN

λ
Im(aj)−

i

4π
∆(2π − β∆)(2j −N − 1)

]
Im(aj) .

(3.20)

In order to get the last equality we used the relation

N∑
i,j=1

| Im(ai − aj)| = 2

N∑
j=1

(2j − 1−N) Im(aj) . (3.21)

Plugging the solution (3.19) back into (3.20), we obtain

F(∆) ≈
iβg2

YMN
3

384π3
(∆1∆2)2 . (3.22)
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In order to obtain (3.22) we used

N∑
k=1

(2k −N − 1)2 =
1

3

(
N3 −N

)
. (3.23)

Remarkably, the BAEs (3.18) and the SW prepotential in the large N

limit (3.20), (3.22) are identical to matrix model saddle point equations and free energy

for the path integral on S5 found in [122] (cf. [122, eqs. (4.13), (4.16) and (4.17)]).22

3.1.2 Effective twisted superpotential at large N

The effective twisted superpotential of the theory reads

W̃(a, n,∆, t) = − 8π2
iβ

g2
YM

N∑
i=1

niai

+
1

β

N∑
i 6=j

(ni − nj + 1− g2)

[
Li2(eiβ(ai−aj))− 1

2
g2 (−β(ai − aj))

]

− 1

β

N∑
i,j=1

(ni−nj+t+g2−1)

[
Li2(eiβ(ai−aj+∆))− 1

2
g2 (β(ai − aj + ∆))

]
.

(3.24)

Let us try to find a solution to the BAEs (3.9). For the twisted superpotential (3.24), they

are given by23

8π2
iβ

g2
YM

ni
1− g2

= i

N∑
j( 6=i)

[(
ni − nj
1− g2

+ 1

)
Li1(eiβ(ai−aj))−

(
nj − ni
1− g2

+ 1

)
Li1(e−iβ(ai−aj))

]

+
1

2

N∑
j( 6=i)

[(
ni − nj
1− g2

+ 1

)
g1 (−β(ai − aj))−

(
nj − ni
1− g2

+ 1

)
g1 (β(ai − aj))

]

− i

N∑
j=1

[(
ni − nj + t

1− g2
− 1

)
Li1(eiβ(ai−aj+∆))−

(
nj − ni + t

1− g2
− 1

)
Li1(e−iβ(ai−aj−∆))

]

+
1

2

N∑
j=1

[(
ni−nj+t

1− g2
− 1

)
g1 (β(ai−aj+∆))−

(
nj−ni+t

1− g2
− 1

)
g1 (−β(ai−aj−∆))

]
.

(3.25)

In the strong ’t Hooft coupling limit, i.e. λ� 1, (3.25) can be approximated as

ni ≈
iλβ

16π2N
(∆1t2 + ∆2t1)

N∑
j( 6=i)

sign (Im(ai − aj)) . (3.26)

22One needs to set ∆1 = π
(
1 + 2i

3
mthere

)
and ∆2 = π

(
1− 2i

3
mthere

)
.

23The BAEs actually read ∂W̃pert

∂aj
= 2πlj where lj ∈ Z are angular ambiguities. Since lj ’s are generically

of order one they are negligible in the final solution and we set them to zero in the following.
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The sign function in (3.26) could be replaced by sign(i−j) if the eigenvalues ai are ordered

by increasing imaginary part. We thus find that

nk ≈
iλβ

16π2N
(∆1t2 + ∆2t1)(2k −N − 1) . (3.27)

Note that the above result is neither real nor integer. This is peculiar to the limit λ� 1.

Since the nk’s are large we treat them effectively as a continuous variable. We also consider

the above result as a complex saddle point contribution to the partition function.

The twisted superpotential (3.24) at strong ’t Hooft coupling limit can be approxi-

mated as

W̃(a, n,∆, t)

1− g2
≈ − 8π2

iN

λ(1− g2)

N∑
i=1

niai

− 1

2β

N∑
i,j=1

(
ni − nj
1− g2

+ 1

)
g2 (−β(ai − aj)) sign (Im(ai − aj))

+
1

2β

N∑
i,j=1

(
ni − nj + t

1− g2
− 1

)
g2 (β(ai − aj + ∆)) sign (Im(ai − aj)) .

(3.28)

This can be further simplified to

W̃(a, n,∆, t) ≈ 8π2N

λ

N∑
j=1

Im(aj)

[
nj −

iλβ

16π2N
(∆1t2 + ∆2t1)(2j −N − 1)

]

− β

4
∆1∆2

N∑
i,j=1

(ni − nj) sign (Im(ai − aj)) .

(3.29)

Plugging (3.27) back into (3.29), all the dependence on ai goes away and we are left with

W̃(∆, t) ≈ −β
4

∆1∆2

N∑
i,j=1

(ni − nj) sign (Im(ai − aj))

= −
iβg2

YMN
3

96π2
∆1∆2(∆1t2 + ∆2t1) .

(3.30)

This can be more elegantly rewritten as

W̃(∆, t) ≈ −2π

2∑
ς=1

tς
∂F(∆)

∂∆ς
, (3.31)

where F(∆) is given in (3.22).

W̃(∆, t) and the 4D central charge. Remarkably, we find the following relation be-

tween the twisted superpotential (3.30) and the conformal anomaly coefficient a(∆, t) of

the four-dimensional N = 1 theory that is obtained by compactifying the 6D N = (2, 0)

theory on Σg2 [65, 66],

W̃(∆, t) ≈ − 8π2

27βτ
a(∆, t) , (3.32)

where τ is the four-dimensional coupling constant.
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Indeed, the central charge of the 4D theory, at large N , can be written as

a(∆, t) ≈ −9N3

128

2∑
ς=1

tς
∂(∆̂1∆̂2)2

∂∆̂ς

, (3.33)

where we used ∆̂ς = β∆ς/π, satisfying ∆̂1 + ∆̂2 = 2, to parameterize a trial R-symmetry

of the 4D N = 1 theory. Eq. (3.33) can be easily derived from the results in [65, 66] (cf. for

example [66, eq. (2.22)]). It can be also more straightforwardly derived as in appendix C.

Curiously, the same relation between the twisted superpotential and the central charge

in (3.32) was found for a class of N = 1 gauge theories on S2×T 2, with a partial topological

twist along S2 [26].

3.1.3 Partition function at large N

The topologically twisted index of 5D N = 2 SYM on Σg2 × (Σg1 × S1) reads

Z(y, s, t) =
1

N !

∑
{m,n}∈ZN

∮
C

N∏
i=1

dxi
2πixi

e
8π2β

g2
YM

(mi−mj)(ni−nj)
(

det
ij

∂2W̃(a, n)

∂ai∂aj

)g1

×
N∏
i 6=j

(
1− xi/xj√

xi/xj

)(mi−mj+1−g1)(ni−nj+1−g2)

×
N∏

i,j=1

( √
xiy/xj

1− xiy/xj

)(mi−mj+s+g1−1)(ni−nj+t+g2−1)

.

(3.34)

This can be evaluated using (3.8). We can write

Z(y, s, t) =
(−1)N

N !

( √
y

1− y

)N(g1+s−1)(g2+t−1) ∑
n∈ZN

∑
a=a(i)

(
det
ij

∂2W̃(a, n)

∂ai∂aj

)g1−1

×
N∏
i 6=j

(
1− xi/xj√

xi/xj

)(1−g1)(ni−nj+1−g2)( √
xiy/xj

1− xiy/xj

)(s+g1−1)(ni−nj+t+g2−1)

.

(3.35)

We are interested in the logarithm of the partition function in the strong ’t Hooft coupling

limit. The only piece which survives in this limit is given by

logZ(1) ≡ log

N∏
i 6=j

(
1− xi/xj√

xi/xj

)(1−g1)(ni−nj+1−g2)( √
xiy/xj

1− xiy/xj

)(s+g1−1)(ni−nj+t+g2−1)

= −
N∑
i 6=j

(1− g1)(ni − nj + 1− g2)

[
Li1(eiβ(ai−aj))− i

2
g1 (−β(ai − aj))

]

+
N∑
i 6=j

(s+g1−1)(ni−nj+t+g2−1)

[
Li1(eiβ(ai−aj+∆)) +

i

2
g1 (β(ai − aj + ∆))

]
.

(3.36)
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In the strong ’t Hooft coupling limit it can be approximated as

logZ(1) ≈ −iβ

4

N∑
i 6=j

[(ai − aj)(t1s2 + t2s1) + (ni − nj)(∆1s2 + ∆2s1)] sign (Im(ai − aj))

=
β

2

N∑
j=1

(2j − 1−N) [(t1s2 + t2s1) Im(aj)− i(∆1s2 + ∆2s1)nj ] , (3.37)

where we assumed that the eigenvalues ai are ordered by increasing imaginary part, and

used the relation

N∑
i,j=1

(ni − nj) sign(i− j) = 2

N∑
j=1

(2j −N − 1)ni . (3.38)

Plugging the solutions (3.19) and (3.27) back into (3.37), we find that

logZ ≈
βg2

YMN
3

96π2
[∆1∆2(t1s2 + t2s1) + (∆1s2 + ∆2s1)(∆1t2 + ∆2t1)]

= i

2∑
ς=1

sς
∂W̃(t,∆)

∂∆ς
= −2iπ

2∑
ς,%=1

sς t%
∂2F(∆)

∂∆ς∂∆%

=
g2

YMN
3

192π2β

2∑
ς,%=1

sς t%
∂2(β∆1∆2)2

∂∆ς∂∆%
,

(3.39)

where W̃(t,∆) is given in (3.30) and we used (3.31) in writing the last equality. Eq. (3.39)

can be also expressed in terms of the trial right-moving central charge of the 2D N = (0, 2)

SCFT, see (3.12), as

logZ(s, t,∆) ≈ iπ

12τ
cr(s, t,∆) ≈ − 8iπ2

27βτ

2∑
ς=1

sς
∂a(t,∆)

∂∆ς
. (3.40)

In writing the second equality we used the relation (3.32). In [26], the very same Cardy

behaviour (3.40) of the partition function in the high-temperature limit has been proved

for a class of N = 1 gauge theories on S2 × T 2, with a partial topological twist along S2.

3.1.4 Counting states and the I-extremization principle

The topologically twisted index of the 6D (2, 0) theory on Σg2×Σg1×T 2 can be interpreted

as a trace over a Hilbert space of states on Σg2 × Σg1 × S1:

Z(s, t,∆) = TrΣg2×Σg1×S1(−1)F qHLyJ , (3.41)

where q = e2πiτ , y = eiβ∆ and the Hamiltonian HL on Σg2×Σg1×S1 explicitly depends on

the magnetic fluxes sς , tς (ς = 1, 2). The number of supersymmetric ground states dmicro

with momentum n and electric charge q under the Cartan subgroup of the flavor symmetry
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commuting with the Hamiltonian — in the microcanonical ensemble — is then given by

the Fourier transform of (3.41) with respect to (τ,∆):

dmicro(s, t, n, q) = − iβ

(2π)2

∫
iR

dβ̃

∫ 2π
β

0
d∆Z(s, t,∆) eβ̃n−iβ∆q , (3.42)

where β̃ = −2πiτ and the corresponding integration is over the imaginary axis.

In the limit of large charges, we may use the saddle point approximation. Consider for

simplicity q = 0. The number of supersymmetric ground states dmicro with charges (s, t, n)

can be obtained by extremizing

ISCFT(β̃,∆) ≡ logZ(s, t,∆) + β̃n =
N3

24β̃

2∑
ς,%=1

sς t%
∂2(β∆1∆2)2

∂∆ς∂∆%
+ nβ̃ , (3.43)

with respect to ∆ and β̃, i.e.

∂I(β̃,∆)

∂∆
= 0 ,

∂I(β̃,∆)

∂β̃
= 0 , (3.44)

and evaluating it at its extremum

log dmicro(s, t, n, 0) = I
∣∣
crit

(s, t, n) . (3.45)

Given (3.40), we see that the extremization with respect to ∆ is the c-extremization prin-

ciple [45, 68] and sets the trial right-moving central charge cr(s, t,∆) to its exact value

cCFT ≈ cr ≈ cl in the IR. For the case at our disposal, (3.12) has a critical point at

∆̄ = −2π

β

t1s2 + t2s1 − t1s1

s1(t1 − 2t2) + s2(t2 − 2t1)
, (3.46)

and its value at ∆̄ reads

cCFT(s, t) ≈ −2N3 t21s
2
2 + t1t2s1s2 + t22s

2
1

s1(t1 − 2t2) + s2(t2 − 2t1)
. (3.47)

Extremizing I(β̃,∆) with respect to β̃ yields

¯̃
β(s, t, n) = π

√
cCFT(s, t)

6n
. (3.48)

Plugging back (3.46) and (3.48) into I(β̃,∆), we find that

ISCFT

∣∣
crit

(s, t, n) = 2π

√
n cCFT(s, t)

6
. (3.49)

This is obviously nothing else than Cardy formula [123].

This procedure corresponds to the I-extremization principle used for BPS black holes

(strings) [5, 24, 26, 27] in the context of the AdS4(5) /CFT3(4) correspondence and contains

two basic pieces of information:

1. extremizing the index unambiguously determines the exact R-symmetry of the SCFT

in the IR;

2. the value of the index at its extremum is the (possibly regularized) number of ground

states.

We will apply this counting to supergravity black strings and black holes in section 4.
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3.2 USp(2N) theory with matter on Σg2 × (Σg1 × S1)

In this section we focus on gauge theories with a conjectured massive type IIA dual [124]

(see also [57, 58, 125, 126]) and compute their partition function at large N . The dual

supergravity backgrounds have a warped AdS6 × S4 geometry. The stringy root of this

theories is in type I’ string theory as strongly coupled microscopic theories on the intersec-

tion of N D4-branes and Nf D8-branes and orientifold planes. The worldvolume theory

on the N D4-branes plus their images is a USp(2N) gauge theory with Nf hypermul-

tiplets in the fundamental representation and one hypermultiplet A in the antisymmet-

ric representation of USp(2N). In addition to the SU(2) R-symmetry the theory has an

SU(2)M ×SO(2Nf )×U(1)I global symmetry: SU(2)M acts on A as a doublet, SO(2Nf ) is

the flavor symmetry associated to the fundamental hypermultiplets, and U(1)I is the topo-

logical symmetry associated to the conserved instanton number current j = ∗Tr(F∧F ). At

the fixed point, the SO(2Nf )×U(1)I part of the symmetry is enhanced non-perturbatively

to an exceptional group ENf+1, due to the instanton which becomes massless at the origin

of the Coulomb branch of the fixed point theory [57]. Finally, in the large N limit the free

energy of the USp(2N) theory on S5 reads [127]

FS5 ≈ −
9
√

2πN5/2

5
√

8−Nf

. (3.50)

The Cartan of USp(2N) has N elements which we denote by ui, i = 1, . . . , N . We

normalize the weights of the fundamental representation of USp(2N) to be ±ei (so they

form a basis of unit vectors for RN ). The antisymmetric representation thus has weights

±ei±ej with i > j and N −1 zero weights, and the roots are ±ei±ej with i > j and ±2ei.

As we shall see below, at large N , ui = O(N1/2) (see (3.52) with α = 1/2). Hence, the

contributions with nontrivial instanton numbers are exponentially suppressed in the large

N limit.

We set the length of S1 to one, i.e. β = 1, throughout this section.

3.2.1 Effective prepotential at large N

The effective prepotential of the theory is then given by (2.136):

F(ai,∆K) =

N∑
i=1

[
Fpert(±2ai)−

Nf∑
f=1

Fpert(±ai + ∆f )

]

+
N∑
i>j

[
Fpert(±ai ± aj)−Fpert(±ai ± aj + ∆m)

]
+ (N − 1)Fpert(∆m) ,

(3.51)

where the index K labels all the matter fields in the theory. Here, we introduced the

notation F(±a) ≡ F(a) + F(−a). Notice that the contribution of the last term to the

large N prepotential is of O(N2) and thus subleading. Let us analyze the effective pre-

potential (3.51) assuming that the eigenvalues grow in the large N limit. We restrict to

Im ai > 0 due to the Weyl reflections of the USp(2N) group. We consider the following
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large N saddle point eigenvalue distribution ansatz:

aj = iNαtj , (3.52)

for some number 0 < α < 1 to be determined later. At large N , we define the continuous

function tj = t(j/N) and we introduce the density of eigenvalues

ρ(t) =
1

N

dj

dt
, (3.53)

normalized so that
∫

dtρ(t) = 1. In the large N limit the sums over N become Riemann

integrals, for example,

N∑
j=1

→ N

∫
dtρ(t) . (3.54)

Consider the first line in (3.51):

i

2π

N∑
i=1

[
Li3(e2iai) + Li3(e−2iai)−

Nf∑
f=1

Li3(ei(ai+∆f ))−
Nf∑
f=1

Li3(e−i(ai−∆f ))

]

− 1

4π

N∑
i=1

[
g3(−2ai) + g3(2ai) +

Nf∑
f=1

g3(ai + ∆f ) +

Nf∑
f=1

g3(−ai + ∆f )

]
.

(3.55)

The second line is of O(N2α+1) and thus subleading in the large N limit (as we see below).

Using the ansatz (3.52) we may write

F (0) ≈iN

2π

∫
dtρ(t)

[
Li3(e−2Nαt) + Li3(e2Nαt)−

Nf∑
f=1

Li3(e−N
αt+i∆f )−

Nf∑
f=1

Li3(eN
αt+i∆f )

]

≈ −
i(8−Nf )

12π
N1+3α

∫
dtρ(t)t3 [Θ(t)−Θ(−t)] +O(N2α+1)

= −
i(8−Nf )

12π
N1+3α

∫
dtρ(t)|t|3 +O(N2α+1) , (3.56)

where Θ(t) is the Heaviside theta function. Now, let us focus on the second line of (3.51).

Consider the following terms

F (1)
hyper = − i

2π

N∑
i>j

[
Li3(ei(ai−aj+∆m)) + Li3(e−i(ai−aj−∆m))

]

− 1

4π

N∑
i>j

[g3(ai − aj + ∆m) + g3(aj − ai + ∆m)] .

(3.57)
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At large N , we obtain

F (1)
hyper ≈ −

iN2

4π

∫
dtρ(t)

∫
dt′ρ(t′)

[
Li3(e−N

α(t−t′)+i∆m) + Li3(eN
α(t−t′)+i∆m)

]
− N2

8π

∫
dtρ(t)

∫
dt′ρ(t′)

[
(π −∆m)N2α(t− t′)2 + 2g3(∆m)

]
≈ N2

4π

∫
dtρ(t)

∫
dt′ρ(t′)g3

(
−iNα(t′ − t) + ∆m

)
Θ(t′ − t)

+
N2

4π

∫
dtρ(t)

∫
dt′ρ(t′)g3

(
−iNα(t− t′) + ∆m

)
Θ(t− t′)

− N2

8π

∫
dtρ(t)

∫
dt′ρ(t′)

[
(π −∆m)N2α(t− t′)2 + 2g3(∆m)

]
=

iN2

4π

∫
dtρ(t)

∫
dt′ρ(t′)

(
1

6
N3α

∣∣t− t′∣∣3 − g2(∆m)Nα
∣∣t− t′∣∣) .

(3.58)

Next, consider

F (1)
vector =

i

2π

N∑
i>j

[
Li3(ei(ai−aj)) + Li3(e−i(ai−aj)) +

i

2
g3(aj − ai) +

i

2
g3(ai − aj)

]
. (3.59)

Its contribution can be simply obtained by, see (E.5),

F (1)
vector = −F (1)

hyper

∣∣
∆m=2π

. (3.60)

We thus find

F (1)
vector + F (1)

hyper ≈
i

4π

[
π2

3
− g2(∆m)

]
N2+α

∫
dtρ(t)

∫
dt′ρ(t′)

∣∣t− t′∣∣ . (3.61)

The next term that we shall consider is the following

F (2)
hyper = − i

2π

N∑
i>j

[
Li3(ei(ai+aj+∆m)) + Li3(e−i(ai+aj−∆m))

]

− 1

4π

N∑
i>j

[g3(ai + aj + ∆m) + g3(−ai − aj + ∆m)] .

(3.62)

The first term in the first line is exponentially suppressed in the large N limit (since

Im ai > 0 , ∀i). We then get

F (2)
hyper ≈ −

iN2

4π

∫
dtρ(t)

∫
dt′ρ(t′) Li3(eN

α(t+t′)+i∆m)

− N2

8π

∫
dtρ(t)

∫
dt′ρ(t′)

[
(π −∆m)N2α(t+ t′)2 + 2g3(∆m)

]
≈ N2

4π

∫
dtρ(t)

∫
dt′ρ(t′)g3(−iNα(t+ t′) + ∆m)

− N2

8π

∫
dtρ(t)

∫
dt′ρ(t′)

[
(π −∆m)N2α(t+ t′)2 + 2g3(∆m)

]
=

iN2

4π

∫
dtρ(t)

∫
dt′ρ(t′)

[
1

6
N3α(t+ t′)3 − g2(∆m)Nα(t+ t′)2

]
.

(3.63)
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The last term that we shall consider reads

F (2)
vector =

i

2π

N∑
i>j

[
Li3(ei(ai+aj)) + Li3(e−i(ai+aj)) +

i

2
g3(−ai − aj) +

i

2
g3(ai + aj)

]
.

(3.64)

Its contribution can be simply obtained by, see (E.5),

F (2)
vector = −F (2)

hyper

∣∣
∆m=2π

. (3.65)

We thus find that

F (2)
vector + F (2)

hyper ≈
i

4π

[
π2

3
− g2(∆m)

]
N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(t+ t′) . (3.66)

Putting (3.56), (3.61), and (3.66) together we obtain the final expression for the effective

prepotential at large N :

F [ρ(t),∆m] = F (0) +

2∑
ϑ=1

(
F (ϑ)

vector + F (ϑ)
hyper

)
≈ −

i(8−Nf )

12π
N1+3α

∫ t∗

0
dtρ(t)|t|3 − µ

(∫ t∗

0
dtρ(t)− 1

)
+

i

4π

[
π2

3
− g2(∆m)

]
N2+α

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)

[
|t− t′|+ (t+ t′)

]
,

(3.67)

where we added the Lagrange multiplier µ for the normalization of ρ(t). α will be de-

termined to be 1/2 by the competition between the first and the last term in (3.67), and

therefore F ∝ N5/2. Remarkably, the effective prepotential (3.67) equals the large N

expression of the S5 free energy computed in [127, eq. (3.4)] (see also [128, eq. (3.14)]).

This is in complete analogy with the observation made in [46]. There, the effective twisted

superpotential of a three-dimensional N = 2 theory on A-twisted Σg1 × S1 was shown to

be equal to the S3 free energy of the same N = 2 theory, both evaluated at large N .

Extremizing (3.67) with respect to the continuous function ρ(t) we find the following

saddle point equation

2iπµ

N5/2
=

(8−Nf )

6
|t′|3 −

[
π2

3
− g2(∆m)

] ∫ t∗

0
ρ(t)

[
|t− t′|+ (t+ t′)

]
. (3.68)

On the support of ρ(t) the solution reads

ρ(t) =
2|t|
t2∗

, t∗ =
2√

8−Nf

[
π2

3
− g2(∆m)

]1/2

,

µ =
4i

3π

N5/2√
8−Nf

[
π2

3
− g2(∆m)

]3/2

.

(3.69)

Evaluating (3.67) at (3.69) yields24

F(∆m) ≈ 23/2
i

15π

N5/2√
8−Nf

[∆m(2π −∆m)]3/2 . (3.70)

24F(∆m) = 2
5
µ(∆m) due to a virial theorem for the large N prepotential (3.67).
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Finally, let us rewrite (3.70) as

F(∆) ≈ 23/2
i

15π

N5/2√
8−Nf

(∆1∆2)3/2 , (3.71)

for later use. Here we introduced the democratic chemical potentials

∆1 = ∆m , ∆2 = 2π −∆m . (3.72)

3.2.2 Effective twisted superpotential at large N

We are interested in the large N limit of the effective twisted superpotential

W̃pert(a, n,∆, t) =
N∑
i=1

[
W̃pert(±2ai)−

Nf∑
f=1

W̃pert(±ai + ∆f )

]

+

N∑
i>j

[
W̃pert(±ai ± aj)− W̃pert(±ai ± aj + ∆m)

]
+ (N − 1)W̃pert(∆m) .

(3.73)

We consider the following ansatz for the large N saddle point eigenvalue distribution

ai = iNαti , ni = iNαNi . (3.74)

Consider the first line in (3.73):

W̃(0) =

N∑
i=1

(±2ni + 1− g2)

[
Li2(e±2iai)− 1

2
g2(∓2ai)

]

−
Nf∑
f=1

N∑
i=1

(ni + tf + g2 − 1)

[
Li2(ei(ai+∆f ))− 1

2
g2(ai + ∆f )

]

−
Nf∑
f=1

N∑
i=1

(−ni + t̃f + g2 − 1)

[
Li2(e−i(ai−∆̃f ))− 1

2
g2(−ai + ∆̃f )

]
.

(3.75)

The g2 terms are of O(N2) and thus subleading in the large N limit. Hence,

W̃(0) ≈ i
(8−Nf )

2
N1+3α

∫
dtρ(t)N(t)t2 sign(t) . (3.76)

Now, let us focus on the second line of (3.73). Consider the following terms

W̃(1)
hyper = −

N∑
i>j

(ni − nj + tm + g2 − 1)

[
Li2(ei(ai−aj+∆m))− 1

2
g2(ai − aj + ∆m)

]

−
N∑
i>j

(nj − ni + tm + g2 − 1)

[
Li2(e−i(ai−aj−∆m))− 1

2
g2(aj − ai + ∆m)

]
.

(3.77)
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At large N , we obtain

W̃(1)
hyper ≈ −

i

4
N2+3α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′))(t− t′)2 sign(t− t′)

+
i

4
g2(∆1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t− t′)

+
i

8
(∆1 −∆2)(t1 − t2)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| ,

(3.78)

where we used the democratic chemical potentials and fluxes

∆1 = ∆m , ∆2 = 2π −∆m , t1 = tm , t2 = 2(1− g2)− tm . (3.79)

The similar contribution coming from the vector multiplet can be obtained by using

W̃pert
vector = −W̃pert

hyper|tm=2(1−g2),∆m=2π . (3.80)

It reads

W̃(1)
vector ≈

i

4
N2+3α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′))(t− t′)2 sign(t− t′)

− iπ2

6
N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t− t′)

− iπ

2
(1− g2)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| .

(3.81)

We thus find that

W̃(1)
vector + W̃(1)

hyper ≈ −
i

4
∆1∆2N

2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t− t′)

− i

4
(∆1t2 + ∆2t1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| .

(3.82)

The next term we shall consider is given by

W̃(2)
vector + W̃(2)

hyper =

N∑
i>j

(ni + nj + 1− g2)

[
Li2(ei(ai+aj))− 1

2
g2(−ai − aj)

]

+

N∑
i>j

(−ni − nj + 1− g2)

[
Li2(e−i(ai+aj))− 1

2
g2(ai + aj)

]

−
N∑
i>j

(ni + nj + tm + g2 − 1)

[
Li2(ei(ai+aj+∆m))− 1

2
g2(ai + aj + ∆m)

]

−
N∑
i>j

(−ni−nj+tm+g2−1)

[
Li2(e−i(ai+aj−∆m))− 1

2
g2(−ai−aj+∆m)

]
.

(3.83)

In the large N limit it can be approximated as

W̃(2)
vector + W̃(2)

hyper ≈ −
i

4
∆1∆2N

2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t) + N(t′))

− i

4
(∆1t2 + ∆2t1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(t+ t′) .

(3.84)

– 48 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

Putting (3.76), (3.82), and (3.84) together we obtain the final expression for the effective

twisted superpotential at large N :

W̃ [ρ(t),N(t),∆m, tm] = W̃(0) +

2∑
ϑ=1

(
W̃(ϑ)

vector + W̃(ϑ)
hyper

)
≈ i

(8−Nf )

2
N1+3α

∫ t∗

0
dtρ(t)N(t)t2 − iγ

(∫ t∗

0
dtρ(t)− 1

)
− i

4
(∆1∆2)N2+α

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)(N(t)−N(t′)) sign(t−t′)

− i

4
(∆1∆2)N2+α

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)(N(t) + N(t′))

− i

4
(∆1t2+∆2t1)N2+α

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)

[
|t− t′|+(t+t′)

]
,

(3.85)

where we added the Lagrange multiplier γ for the normalization of ρ(t). In order to have a

non-trivial saddle point we need to set 1 + 3α = 2 +α, implying that α = 1/2. The twisted

superpotential thus scales as N5/2. Setting to zero the variation with respect to ρ(t), we

get the equation

γ

N5/2
=

(8−Nf )

2
N(t′)t′2 − 1

2
(∆1t2 + ∆2t1)

∫ t∗

0
ρ(t)

[
|t+ t′|+ (t+ t′)

]
− 1

2
(∆1∆2)

∫ t∗

0

[
(N(t)−N(t′)) sign(t− t′) + (N(t) + N(t′))

]
.

(3.86)

On the support of ρ(t) the solution is given by

ρ(t) =
2|t|
t2∗

, t∗ =
(2∆1∆2)1/2√

8−Nf

, N(t) =
1

2

(
t1
∆1

+
t2
∆2

)
t ,

γ = − N5/2√
8−Nf

(2∆1∆2)1/2(∆1t2 + ∆2t1) .

(3.87)

Evaluating (3.85) at (3.87) yields25

W̃(∆m, tm) ≈ − 23/2
iN5/2

5
√

8−Nf

(∆1∆2)1/2(∆1t2 + ∆2t1) . (3.88)

This can be more elegantly rewritten as

W̃(∆m, tm) ≈ −2π

2∑
ς=1

tς
∂F(∆)

∂∆ς
, (3.89)

where F(∆) is given in (3.71).

25W̃(∆m, tm) = 2i
5
γ(∆m, tm) due to a virial theorem for the large N twisted superpotential (3.85).
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W̃ and the free energy on Σg2 × S3. Remarkably, we find the following relation

between the twisted superpotential (3.89) and the S3 free energy of the 3D N = 2 theory

that is obtained by compactifying the 5D theory on Σg2 with fluxes tς :

W̃(∆̄m, t) ≈
iπ

2
FΣg2×S3(t) , (3.90)

where W̃(∆̄m, t) is evaluated at its extremum

∆̄m

π
=

5t1 − 3t2 ±
√

9t21 − 14t1t2 + 9t22
4(t1 − t2)

. (3.91)

Indeed, the S3 free energy was very recently computed holographically in [64] and

it reads

FΣg2×S3(t) ≈ 16π

5

(1− g2)N5/2

κ
√

8−Nf

(z2 − κ2)3/2
(√

κ2 + 8z2 − κ
)

(
4z2 − κ2 + κ

√
κ2 + 8z2

)3/2
, (3.92)

where κ = 1 for g2 = 0 and κ = −1 for g2 > 1 and the variable z parameterizes the fluxes

tς . In the special case of the torus, g2 = 1, the above expression should be replaced by

FΣg2×S3(t) ≈ 4
√

2π

5

N5/2√
8−Nf

|z| . (3.93)

It is now a simple exercise to check that (3.90) holds identically for all g2 upon

identifying

t1 = (1− g2)

(
1 +

z

κ

)
, t2 = (1− g2)

(
1− z

κ

)
. (3.94)

We expect that (3.90) holds also off-shell

W̃(∆, t) ≈ iπ

2
FΣg2×S3(∆, t) , (3.95)

where FΣg2×S3(∆, t) is the free energy as a function of a trial R-symmetry. Eq. (3.90) would

correspond then to the statement that the S3 free energy of the 3D theory is obtained by

extremizing FΣg2×S3(∆, t) with respect to ∆ [129].26

3.2.3 Partition function at large N

The topologically twisted index of the USp(2N) theory with matter on Σg2 × (Σg1 × S1)

reads

Zpert(y, s, t) =
(−1)N

2NN !

∑
n∈Γh

∑
a=a(i)

(
det
ij

∂2W̃(a, n)

∂ai∂aj

)g1−1

×
(

y
1/2
m

1− ym

)(N−1)(sm+g1−1)(tm+g2−1) ∏
g=±1

N∏
i=1

(
1− x2g

i

xgi

)(1−g1)(2gni+1−g2)

26The free energy on Σg2 ×S3 as a function of ∆ was explicitly computed in field theory in [67] after the

completion of this work. The result in [67] perfectly agrees with (3.95).
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×
N∏
i=1

Nf∏
f=1

(
x

1/2
i y

1/2
f

1− xiyf

)(sf+g1−1)(ni+tf+g2−1)( x−1/2
i ỹ

1/2
f

1− x−1
i ỹf

)(s̃f+g1−1)(−ni+t̃f+g2−1)

×
∏
g=±1

N∏
i>j

(
1−(xixj)

g

(xixj)g/2

)(1−g1)(gni+gnj+1−g2)(1−(xi/xj)
g

(xi/xj)g/2

)(1−g1)(gni−gnj+1−g2)

×
∏
g=±1

N∏
i>j

(
(xixj)

g/2y
1/2
m

1− (xixj)gym

)(sm+g1−1)(gni+gnj+tm+g2−1)

×
∏
g=±1

N∏
i>j

(
(xi/xj)

g/2y
1/2
m

1− (xi/xj)gym

)(sm+g1−1)(gni−gnj+tm+g2−1)

. (3.96)

The products
∏N
i=1 are of O(N2) and thus subleading in the large N limit. Then we

consider the last line in (3.96):

logZ
(1)
hyper = (sm + g1 − 1)

N∑
i>j

(ni − nj + tm + g2 − 1)

×
[
Li1(ei(ai−aj+∆m)) +

i

2
g1(ai − aj + ∆m)

]
+ (sm + g1 − 1)

N∑
i>j

(nj − ni + tm + g2 − 1)

×
[
Li1(e−i(ai−aj−∆m)) +

i

2
g1(aj − ai + ∆m)

]
.

(3.97)

At large N , it can be approximated as

logZ
(1)
hyper ≈ −

1

8
(∆1 −∆2)(s1 − s2)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t− t′)

− 1

8
(t1 − t2)(s1 − s2)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| , (3.98)

where we introduced the democratic fluxes

s1 = sm , s2 = 2(1− g1)− sm . (3.99)

The similar contribution coming from the vector multiplet can be obtained by using

logZpert
vector = − logZpert

hyper|sm=2(1−g1), tm=2(1−g2),∆m=2π . (3.100)

It reads

logZ
(1)
vector ≈

π

2
(1− g1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t− t′)

+
1

2
(1− g2)(1− g1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| .

(3.101)

We thus find that

logZ
(1)
vector + logZ

(1)
hyper ≈

1

4
(∆1s2 + ∆2s1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t)−N(t′)) sign(t−t′)

+
1

4
(t1s2 + t2s1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)|t− t′| . (3.102)
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The terms coming from the roots e1 + e2 and −e1 − e2 are treated as in (3.98). They can

be approximated at large N as

logZ
(2)
vector + logZ

(2)
hyper ≈

1

4
(∆1s2 + ∆2s1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(N(t) + N(t′))

+
1

4
(t1s2 + t2s1)N2+α

∫
dtρ(t)

∫
dt′ρ(t′)(t+ t′) .

(3.103)

Putting everything together we obtain the following functional for the logarithm of the

partition function at large N :

logZ

N5/2
≈ 1

4
(∆1s2 + ∆2s1)

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)

[
(N(t)−N(t′)) sign(t−t′)+(N(t)+N(t′))

]
+

1

4
(t1s2 + t2s1)

∫ t∗

0
dtρ(t)

∫ t∗

0
dt′ρ(t′)

[
|t− t′|+ (t+ t′)

]
.

(3.104)

Finally we take the solution to the BAEs (3.87), plug it back into (3.104) and compute the

integral. We obtain

logZ(∆m, tm, sm) ≈
√

2N5/2

5
√

8−Nf

[
(∆1s2 + ∆2s1)(∆1t2 + ∆2t1)

(∆1∆2)1/2
+ 2(∆1∆2)1/2(t1s2 + t2s1)

]
=

√
2N5/2

5
√

8−Nf

∆1s2(∆1t2 + 3∆2t1) + ∆2s1(3∆1t2 + ∆2t1)

(∆1∆2)1/2
.

(3.105)

Remarkably, this can be rewritten as

logZ(∆m, tm, sm) ≈ i

2∑
ς=1

sς
∂W̃(t,∆)

∂∆ς
= −2iπ

2∑
ς,%=1

sς t%
∂2F(∆)

∂∆ς∂∆%
, (3.106)

where W̃(t,∆) and F(∆) are given in (3.88) and (3.71), respectively.

In analogy with [5, 24], we expect that the extremization of the topologically twisted

index (3.106) reproduces the entropy of asymptotically AdS6 black holes in massive type

IIA supergravity with magnetic fluxes tm and sm, and horizon topology AdS2×Σg1 ×Σg2 .

Unfortunately, such black holes are still to be found. The only known example is the black

hole dual to the universal twist, i.e. tm = 1 − g2 and sm = 1 − g1, whose entropy was

computed in [114], using gauged supergravity in six dimensions and elaborating on the

results in [130]. The result for the entropy [114, eq. (4.36)] has been recently corrected

by a factor of two in [131]. Our index (3.106) for the appropriate values of the chemical

potentials for the universal twist, i.e. ∆1 = ∆2 = π, predicts

SBH ≈
8
√

2π

5
(1− g1)(1− g2)

N5/2√
8−Nf

≈ −8

9
(1− g1)(1− g2)FS5 , (3.107)

and correctly matches the result in [131].27

27We thank P. Marcos Crichigno, Dharmesh Jain and Brian Willett for pointing out a numerical mistake

in our computation in the first version of this paper.
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4 4D black holes from AdS7 black strings

Our primary interest in this section is to understand the I-extremization principle (3.43)

for the topologically twisted index of the 6D N = (2, 0) theory in terms of holography and,

in particular, in terms of the attractor mechanism [132, 133] in N = 2 supergravity.

We shall consider the supergravity dual of two-dimensional N = (0, 2) SCFTs obtained

by compactifying a stack of M5-branes on Σg1 × Σg2 . These solutions were constructed

in [68] and can be viewed as black strings in seven dimensions, interpolating between the

maximally supersymmetric AdS7 vacuum at infinity and the near-horizon AdS3×Σg1×Σg2

geometry. This leads to a natural holographic interpretation of these black strings as RG

flows across dimensions — we have a flow from the 6D N = (2, 0) theory in the UV to a 2D

N = (0, 2) SCFT in the IR. The BPS black strings in AdS7, á la Maldacena-Nuñez [134],

preserve supersymmetry due to the topological twist on the internal space Σg1 × Σg2 .

Let us briefly review these solutions. We work with a U(1)2 consistent truncation [135]

of the SO(5) maximal (N = 4) gauged supergravity in seven dimensions [136], obtained

by reducing the eleven-dimensional supergravity on S4 [137, 138]. It contains the metric,

a three-form gauge potential S5, two Abelian gauge fields AI in the Cartan of SO(5) and

two real scalars λI (I = 1, 2). The solution can then be written as28

ds2
7 = e2f(r)(−dt2 + dz2 + dr2) +

2∑
σ=1

e2gσ(r)ds2
Σσ ,

S5 = − 1

32
√

3η1η2

(t1s2 + t2s1)e−4(λ1+λ2)−2(g1+g2)dt ∧ dz ∧ dr

F I =
sI

4η1
vol (Σ1) +

tI

4η2
vol (Σ2) , λI = λI(r) ,

(4.1)

where ds2
Σ = dθ2 + f2

κ(θ)dϕ2 defines the metric on a surface Σ of constant scalar curvature

2κ, with κ = ±1, and

fκ(θ) =
1√
κ

sin(
√
κθ) =

{
sin θ κ = +1 ,

sinh θ κ = −1 .
(4.2)

The volume of Σσ is given by

vol (Σσ) =

∫
fκ(θ)dθ ∧ dφ = 2πησ , ησ =

{
2|gσ − 1| g 6= 0 ,

1 g = 0 .
(4.3)

Moreover, F I = dAI and f(r), gσ(r), λI(r) are functions of the radial coordinate only. In

the AdS3 region the scalars are fixed in terms of the magnetic charges:

e10λ1 =
(s1t

2
2 + t21s2)(s2

1t2 + t1s
2
2)(s1t2 + t1s2 − s2t2)2

(s2
1t

2
2 + t21s

2
2 + s1s2t1t2)(s1t2 + t1s2 − s1t1)3

,

e10λ2 =
(s1t

2
2 + t21s2)(s2

1t2 + t1s
2
2)(s1t2 + t1s2 − s1t1)2

(s2
1t

2
2 + t21s

2
2 + s1s2t1t2)(s1t2 + t1s2 − s2t2)3

,

(4.4)

28For notational convenience we use Σσ ≡ Σgσ . The relations between the magnetic fluxes sI , tI in (4.1)

and aσ, bσ in [68, eq. (5.26)] are the following: a1 = −s1/η1, b1 = −s2/η1, a2 = −t1/η2, b2 = −t2/η2 .
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and the warp factors read

e2g1 = − 1

4η1
e−4λ1−4λ2(s1e

2λ1 + s2e
2λ2) ≡ R2

Σ1
,

e2g2 = − 1

4η2
e−4λ1−4λ2(t1e

2λ1 + t2e
2λ2) ≡ R2

Σ2
,

ef =
s2t2 − s1t2 − t1s2

s1t1 + s2t2 − 2s1t2 − 2t1s2

e2λ2

r
≡ RAdS3

r
.

(4.5)

As shown in [68] the holographic central charge csugra(s, t) can be computed, á la Brown-

Henneaux [139], as

csugra(s, t) =
8N3

π2
vol (Σ1 × Σ2)RAdS3R

2
Σ1
R2

Σ2
, (4.6)

and it matches the CFT result (3.47).

If we now add a momentum n along the circle inside AdS3 and do a compactification

along this circle, we obtain a static black hole in six-dimensional gauged supergravity. By

a standard argument, the entropy of such black hole is given by the number of states of

the CFT with momentum n, and is therefore given by the Cardy formula (3.49)

SBH(s, t, n) = ISCFT

∣∣
crit

(s, t, n) = 2π

√
n cCFT(s, t)

6
. (4.7)

As discussed in section 3.1.4, the entropy SBH(s, t, n) is the result of extremizing the func-

tional ISCFT(β̃,∆). Both for dyonic BPS black holes in AdS4 [5, 24, 31, 32] and BPS

black strings in AdS5 [26, 27, 41] the I-extremization principle has been identified with the

attractor mechanism in 4D N = 2 gauged supergravity [19, 20]. We thus expect that the I-

extremization principle (3.43) corresponds to the attractor mechanism in six-dimensional

gauged supergravity. Unfortunately, not much is known about such mechanism in six

dimensions. Therefore, our strategy is to first reduce the seven-dimensional gauged super-

gravity on Σg2 down to five dimensions and then do a further reduction on the circle inside

AdS3 to four-dimensional N = 2 gauged supergravity, where the attractor mechanism for

static BPS black holes is well-understood. An analogous argument has been used in [140]

to explain the extremization of the R-symmetry in the two-dimensional CFT.

4.1 Attractor mechanism

In 4D N = 2 gauged supergravity29 with nV vector multiplets (Λ = 0, 1, . . . , nV) the

Bekenstein-Hawking entropy of a static BPS black hole with horizon topology Σσ, with a

charge vector Q = (pΛ, qΛ), can be be obtained by extremizing [20]

Isugra(XΛ) =
2πiησ

4G
(4)
N

qΛX
Λ − pΛFΛ

gΛXΛ − gΛFΛ
, (4.8)

29We refer to [141] and the appendices of [43] for notations and more details about gauged supergravity

in five and four dimensions.
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with respect to the symplectic sections XΛ such that its value at the critical point is

real. Here,

FΛ ≡
∂Fsugra(XΛ)

∂XΛ
, (4.9)

with Fsugra(XΛ) being the prepotential, G = (gΛ, gΛ) is the vector of magnetic gΛ and

electric gΛ Fayet-Iliopoulos (FI) parameters, and G
(4)
N is the four-dimensional Newton’s

constant.30 In general, in gauged supergravity, Fsugra(XΛ) is a homogeneous function of

degree two, so we can equivalently define X̂Λ ≡ XΛ/(gΛX
Λ − gΛFΛ) and extremize

Isugra(X̂Λ) = −2πiησ

4G
(4)
N

(
pΛFΛ(X̂Λ)− qΛX̂

Λ
)
. (4.10)

The critical value of (4.10) X̄Λ determines the value of the physical scalars zi at the

horizon, and the entropy of the black hole is then given by evaluating the functional (4.10)

at its extremum

SBH(pΛ, qΛ) = Isugra(X̄Λ) . (4.11)

This is the so-called attractor mechanism [132, 133], stating that the area of the black

hole horizon is given in terms of the conserved charges and is independent of the asymp-

totic moduli.

In a general gauged supergravity with nH hypermultiplets, in addition to the gravitino

and gaugino BPS equations, one needs to impose the BPS equations for the hyperino.

Altogether these equations become algebraic in the near-horizon limit and fix the horizon

value of the scalars in the vector multiplets zI = XI/X0 and the hyperscalars qu, u =

1, · · · , 4nH. The full set of equations can be found in [142]. In general, the hyperino

equations at the horizon just yield a set of linear constraints on the sections XΛ. In simple

models, this can be used to integrate out all massive fields at the horizon and write an

effective theory with only massless vectors to which we can directly apply (4.10). This

approach has been used in [31, 32] to reproduce the entropy of AdS4 × S6 black holes in

massive type IIA supergravity and, as we will see below, also works here.

4.2 Localization meets holography

In order to use the attractor mechanism (4.10), we need to determine the matter content

and the prepotential of the four-dimensional N = 2 gauged supergravity. This can be done

in two steps, by first reducing on Σg2 , and then on a circle. Fortunately, both reductions

have been worked out in the literature, respectively in [143] and [141], and we can use the

results reported there.

The consistent truncation of seven-dimensional N = 4 SO(5) gauged supergravity

reduced on a Riemann surface has been discussed in [143]. It contains two vector multiplets

and a charged hypermultiplet. The vector multiplet scalars in 5D N = 2 supergravity are

30The magnetic and electric charges are defined as
∫

Σσ
FΛ = vol(Σσ)pΛ and

∫
Σσ
GΛ = vol(Σσ)qΛ where

GΛ = 8πG
(4)
N δ(L dvol4)/δFΛ. In a frame with purely electric gauging gΛ, the charges are quantized as

ησgΛp
Λ ∈ Z and ησqΛ/(4G

(4)
N gΛ) ∈ Z, not summed over Λ.

– 55 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

parameterized by a set of constrained real scalars LI satisfying

1

6
cIJKL

ILJLK = 1 , (4.12)

where the symmetric coefficients cIJK can be identified with the ’t Hooft cubic anomaly

coefficients [144], and for the model at hand c123 = 1 is the only nonzero component. The

prepotentials and Killing vectors associated to the hypermultiplet can be found in [143]

but we will not need the explicit form of them here.

We can proceed further by adding a momentum n along S1 ⊂ AdS3. The near-horizon

geometry of the 5D black string is then BTZ×Σg1 , where the metric for the extremal BTZ

reads [145]

ds2
3 =

1

4

−dt2 + dr2

r2
+ ρ

[
dz +

(
−1

4
+

1

2ρr

)
dt

]2

. (4.13)

Here, the parameter ρ is related to the electric charge n. This is locally equivalent to

AdS3, since there exists locally only one constant curvature metric in three dimensions,

and solves the same BPS equations; however, they are inequivalent globally. Compactifying

the 5D black string on the circle [141] we obtain a static BPS black hole in four dimensions,

with magnetic charges (s1, s2) and electric charge n. It can be thought as a domain wall

which interpolates between an AdS2 × Σg1 near-horizon region and an asymptotic non-

AdS4 vacuum.

The 4D N = 2 gauged supergravity is the STU model (nV = 3) coupled to a charged

hypermultiplet [141]. It has the prepotential

Fsugra(XΛ) = −1

6

cIJKX
IXJXK

X0
= −X

1X2X3

X0
. (4.14)

The new vector multiplet corresponds to the isometry of the compactification circle and

is associated with Λ = 0. The physical scalars zI = XI/X0 are now complex. Their

imaginary part is proportional to the five-dimensional real scalars LI and the real part

is given by the component of the gauge fields along the compactified direction. In the

near-horizon region, the hyperscalars have a nonzero expectation value and, consequently,

one of the gauge fields31 becomes massive. The only physical role of the hypermultiplet is

indeed to Higgs one of the gauge fields leaving an effective theory with only two massless

vector multiplets. We can write down the effective theory as follows. The hyperino BPS

equation can be obtained by reducing to four dimensions equation [143, eq. (A.22)]. After

setting the massive gauge field to zero and considering constant scalars at the horizon, we

find that32

4η2X
3 + t1X

2 + t2X
1 = 0 . (4.15)

We see that the hyperino BPS equation only imposes a linear constraint among the sections,

which can be used to write an effective prepotential

Fsugra(XΛ) =
1

4η2

X1X2(t1X
2 + t2X

1)

X0
=

1

8η2X0

2∑
I=1

tI
∂(X1X2)2

∂XI
, (4.16)

for the sections X0, X1, X2 corresponding to the massless vectors at the horizon.

31This vector is called cµ in [143].
32We are using [143, eqs. (23) and (36)]. The relations between parameters are the following: −4η2pI = tI

and LIhere = XI
there. Note that, in the black string of [68], the 7D gauge coupling has been fixed as m = 2.
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We can now use (4.10). In our case, the vector of FI parameters reads [141]

G = (0, 0, 0, 0, g, g) . (4.17)

The charge vector of the 4D black hole is also given by

Q = − 1

gη1

(
0, s1, s2, 4g2G

(4)
N n, 0, 0

)
, (4.18)

so that (4.10) can be written as

Isugra(X̂Λ) =
iπ

16gG
(4)
N η2X̂0

2∑
I,J=1

sI tJ
∂(X̂1X̂2)2

∂X̂I∂X̂J
− 2iπgnX̂0 . (4.19)

We may fix the constant g = 4 in the following. Upon identifying

X̂I ≡ β∆I

2πg
, X̂0 ≡ iβ̃

2πg
, (4.20)

and using the relations between field theory and gravitational parameters33 at large N

N3 =
3π2

16G
(7)
N

, G
(4)
N =

G
(7)
N

vol(Σ2 × S1)
=

G
(7)
N

(2π)2η2
, (4.21)

we find that the attractor mechanism (4.19) elegantly matches the field theory result (3.43).

Explicitly, we can write

Fsugra(X̂Λ) ∝ W̃(∆, β̃) , Isugra(X̂Λ) = ISCFT(∆, β̃) , (4.22)

where W̃ is given in (3.30).

We also see that the I-extremization principle for the topologically twisted index of

the 6D N = (2, 0) theory correctly leads to the microscopic counting for the entropy of

the six-dimensional black holes obtained by compactifying on a circle the black string

solutions of [68].

5 Discussion and future directions

In this paper we took the first few steps towards the derivation and evaluation of the

topologically twisted index of five-dimensional N = 1 gauge theories. There are countless

aspects that we have just briefly addressed in this paper.

In particular, the structure of the index at finite N needs to be studied in more details.

It was argued in [54–56] that the equivariant partition function is summed over a set of

magnetic fluxes that satisfy complicated semi-stability conditions. These conditions have

been studied by mathematicians [112] but they become increasingly complicated with N

and are almost intractable already for N = 3 or N = 4. A related problem is the choice of

33The reduction in [143] and [141] is done on a Riemann surface and a circle of volume 2πη2 and 2π,

respectively.

– 57 –



J
H
E
P
1
1
(
2
0
1
8
)
1
1
9

integration contour. This is selected by supersymmetry, but it is not determined so simply

in our approach. We expect, in analogy with three and four dimensions, that some sort

of Jeffrey-Kirwan prescription [92] is at work. It would be very interesting if the correct

determination of the contour allows to simplify the final expression for the matrix model

and also the semi-stability constraints on the fluxes.

In the paper we conjectured that the Seiberg-Witten prepotential F(a) in five dimen-

sions should play the role of the twisted superpotential in three and four dimensions and,

in particular, its critical points should be relevant for the evaluation of the topologically

twisted index. In three and four dimensions, a large set of partition functions, not only

the twisted indices, can be written as a sum over Bethe vacua [12, 13, 16, 17]. It would be

interesting to see if F(a) plays, at least partially, a similar role in five dimensions. For this

reason, it would be interesting to evaluate explicitly the index for simple theories in five

dimensions and compare the results for dual pairs [146, 147].

Also our computations at large N is based on the assumption of the importance of the

critical points of F(a). The large N results can be explicitly tested against holographic

predictions. It would be particularly interesting, from this point of view, to find a class of

AdS6 black holes depending non-trivially on a set of magnetic fluxes [69]. This would allow

to test the results in section 3 and compare with possible alternatives (like, for example,

the one discussed in appendix D).

In the large N analysis we considered for simplicity two particular theories, N = 2

SYM and the USp(2N) UV fixed point. We expect that our formalism and our general

results (1.9), (1.10) and (1.11) extend to other theories, with no particular complications.

We also considered just the case of P1 × P1 × S1 (which can be trivially generalized to

Σg1 × Σg2 × S1). The main reason is that, for a factorized manifold, we can perform

a dimensional reduction to three dimensions and use the results for three-dimensional

topologically twisted indices, which are well developed. One main ingredient of the analysis

was the twisted superpotential of such compactification, defined for each sector of the gauge

magnetic flux on Σg2 . However, let us notice that, even for a compactification onM4×S1,

we can formally define a twisted superpotential. This can be defined through (3.4), by

considering the theory on the equivariant background with ε1 = ~ and ε2 = 0 and by

gluing the corresponding Nekrasov’s partition functions, or just by analogy with (3.7).

Once we have this twisted superpotential W̃(a, n), that depends on the Coulomb variables

ai and gauge fluxes ni, we can extremize both F(a) and W̃(a, n) with respect to ai and

ni. A generalization of (3.8) would then give an expression for the topologically twisted

index. We do not know if this approach leads to the correct result, but we have reasons

to expect that, in the large N limit, the result for different M4 should be very similar. In

particular, one can easily see from appendix C that the two-dimensional trial central charge

of the compactification of the N = (2, 0) theory on M4 depends on M4 only through the

topological factor p1(M4) + 2χ(M4). It would be very interesting to investigate further

this issue.

We plan to came back to all these points in the near future.
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A Toric geometry

A manifold M4 of complex dimension two is toric if it admits a (C∗)2 action and (C∗)2

itself is dense in M4. Smooth toric surfaces can be obtained by gluing together copies of

C2 [72]. In this appendix we briefly review this construction focusing on the aspects used

in the paper.

A compact toric variety M4 of complex dimension two is described a set of d integer

vectors ~nl in the lattice N = Z2 such that the angle between any pair of adjacent vectors

is less than π, as in figure 1. We order the vectors such that ~nl and ~nl+1 are adjacent and

we also identify ~nd+1 = ~n1. The variety is smooth if ~nl and ~nl+1 are a basis for the lattice

N = Z2. We will assume from now on that our varieties are smooth.

Consider also the dual lattice M = N∗, equipped with the natural pairing 〈~m,~n〉 =∑2
i=1mini ∈ Z for ~m ∈ M , ~n ∈ N . Points in N are associated with one-parameter

subgroups of (C∗)2 and points in M with holomorphic functions on (C∗)2. In particular,

we associate points ~m ∈ M with monomial functions zm1
1 zm2

2 and define a natural (C∗)2

action on the variables zi.

Each pair of adjacent vectors (~nl, ~nl+1) defines a two-dimensional cone σl in the real

vector space NR = N ⊗Z R,

σl = {λ1~nl + λ2~nl+1 |λi ≥ 0} . (A.1)

We can associate an affine variety Vσl (which in the smooth case is a copy of C2) to each

σl as follows. Consider the dual cone

σ̌l = {~m ∈MR | 〈~m, ~u〉 ≥ 0 for ~u ∈ σl} , (A.2)

in MR = M ⊗ZR. The lattice of integer points in σ̌l are generated by the primitive integer

vectors ~ml normal to the faces of σl and pointing inwards.34 We define Vσl as the affine

34A vector is primitive if its components are relatively prime.
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~n1, D1

~n2, D2

~n3, D3

~nd, Dd

~m1

~m2σ1σ2

σd

Figure 1. A toric fan for a two-dimensional complex manifold.

variety whose set of holomorphic functions is {zµ1
1 zµ2

2 } for all integer vectors (µ1, µ2) ∈ σ̌l.
Vσl is just isomorphic to C2. For example, consider the case ~n1 = (1, 0) and ~n2 = (0, 1).

The dual cone is then generated by ~m1 = (1, 0) and ~m2 = (0, 1) and contains all the integer

points in the first quadrant. The corresponding set of functions zµ1
1 zµ2

2 with µ1 ≥ 0, µ2 ≥ 0

are precisely the holomorphic functions on C2. We also associate the vector ~n1 with the

open dense subset where z2 6= 0 and the vector ~n2 with the open dense subset where z1 6= 0.

Since ~nl and ~nl+1 are a basis for N = Z2, the generic case can be always reduced to the

previous one by a change of lattice basis. Explicitly, we can just replace in the previous

example z1 and z2 with local coordinates z
(l)
1 = z

ml,1
1 z

ml,2
2 and z

(l)
2 = z

ml+1,1

1 z
ml+1,2

2 that

parameterize a copy of C2, where ~ml and ~ml+1 are the primitive integer vectors orthogonal

to ~nl+1 and ~nl and pointing inwards in σl, respectively.

The smooth toric variety M4 is then constructed by gluing together the d affine va-

rieties Vσl , isomorphic to C2, by identifying the dense open subset associated with ~nl in

Vσl−1
and Vσl . This is completely analogous to the construction of P1 as a gluing of two

copies of C. The action of the torus (C∗)2 on the variables z1 and z2 extends naturally to

a global action on V . Each chart Vσl contains a special point, the origin (0, 0) ∈ C2, which

is invariant under the torus action. These are the only invariant points and each of these

belongs precisely to one chart. We then see that there exactly are d fixed points under the

torus action (C∗)2, one for each of the two-dimensional cones σl.

Each vector ~nl determines a divisor Dl inM4 and a corresponding line bundle.35 There

are precisely two relations among them given by

d∑
l=1

〈~mk, ~nl〉Dl = 0 , k = 1, 2 , (A.3)

where ~m1 = (1, 0) and ~m2 = (0, 1) is a basis for M . This means that there are d − 2

independent two-cycles in M4. The intersection number of Dl and Dl′ , with l 6= l′, is one

if ~nl and ~nl′ are adjacent and otherwise is zero.

As we saw, the partition function on M4 × S1 localizes at the d fixed points of (C∗)2.

Each contributes a copy of the Nekrasov’s partition function of the corresponding chart

35In a local chart corresponding to ~n1 = (1, 0) and ~n2 = (0, 1), D1 restricts to z1 = 0 and D2 to z2 = 0.
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Vσl , twisted by the magnetic flux. The total magnetic flux is given by a divisor
∑d

l=1 plDl

in M4, but the fixed point in the chart Vσl will only feel the contribution of the flux

coming from the divisors Dl and Dl+1. In the case of the chart C2, specified by the vectors

~n1 = (1, 0) and ~n2 = (0, 1), the local variables z1 and z2 parameterize the tangent space

around the fixed point z1 = z2 = 0. In this case we write a copy of the Nekrasov’s partition

function with equivariant parameters ε1 and ε2 and Coulomb variable a given by

a+ ε1p1 + ε2p2 . (A.4)

The replacement for a generic chart Vσl is then easily obtained. The equivariant parameters

are replaced by the action of (C∗)2 on the local parameters z
(l)
1 and z

(l)
2 :

ε
(l)
1 = ~ml · ~ε , ε

(l)
2 = ~ml+1 · ~ε , (A.5)

where ~ε = (ε1, ε2) and ~ml and ~ml+1 are the primitive integer vectors orthogonal to ~nl+1

and ~nl, respectively, and the Coulomb parameter by

a(l) = a+ ε
(l)
1 pl + ε

(l)
2 pl+1 . (A.6)

We can also use toric geometry to evaluate the contribution of the magnetic flux to the

Hirzebruch-Riemann-Roch index. This can be done be evaluating (2.110) or using (2.111).

The two results obviously coincide, (2.110) being the localization formula for (2.111). For

completeness, let us also show how to evaluate (2.111) using toric geometry techniques. In

the case where E is a line bundle, the index (2.111) reads∫
M4

ch(E)td(M4) = χ(M4) +

∫
M4

(
td1(P2)c1(E) +

1

2
c1(E)2

)
. (A.7)

We need the following general information about toric variety [72]. The holomorphic Euler

characteristic of every smooth toric four-manifold is one and c1(M4) is associated with

the divisor
∑d

l=1Dl. We can then evaluate the integral of products of Chern classes with

the intersection of the corresponding divisors. Since td1(M4) = c1(M4)/2 and c1(E) =∑d
l=1 plDl the index is given by

1 +
1

2

( d∑
l=1

plDl

)
·
( d∑
l=1

(pl + 1)Dl

)
. (A.8)

The intersection of divisors can be computed with the rules given above. For example, F1

is the toric manifold specified by the vectors ~n1 = (1, 0), ~n2 = (0, 1), ~n3 = (−1, 1) and

~n4 = (0,−1). The relations (A.3) gives D3 = D1 and D4 = D1 +D2. By combining these

relations with the fact that Di ·Dj = 1 if ~ni and ~nj are adjacent and Di ·Dj = 0 otherwise

(for i 6= j), we can determine the nonzero intersections among the independent divisors D1

and D2: D2
1 = 0, D1 ·D2 = 1 and D2

2 = −1. We then easily obtain the index

1

2
(p2 + p4 + 1)(2p1 − p2 + 2p3 + p4 + 2) , (A.9)

which correctly reproduces the results in example 2.3.
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Notice that, by comparing (A.8) with (2.110), we can derive a general formula for the

self intersections of divisors

Dl ·Dl =

{
−(nl+1,1 + nl−1,1)/nl,1 , if nl,1 6= 0

−(nl+1,2 + nl−1,2)/nl,2 , if nl,2 6= 0
. (A.10)

The two expressions agree when both conditions are met.

B Metric and spinor conventions

We work in Euclidean signature in five dimensions. We use m,n, p, . . . for spacetime and

a, b, c, . . . for tangent space indices. Spacetime indices are lowered and raised by gmn and

its inverse gmn. Tangent space indices are lowered and raised by δab and δab. Repeated

indices are summed. The two sets of indices are related using a vielbein e a
m , such that

gmn = e a
m e a

n . (B.1)

We define the Levi-Civita connection

Γmnp =
1

2
gmt (∂ngtp + ∂pgnt − ∂tgnp) , (B.2)

and the spin connection

ω ab
m = e a

n ∇menb . (B.3)

The Riemann tensor is defined as

R ab
mn (e) = ∂mω

ab
n − ∂nω ab

m + ω ac
m ω b

nc − ω ac
m ω b

nc . (B.4)

The Ricci scalar is then given by

R(e) = enae
m
b R

ab
mn (e) . (B.5)

The spin group is Spin(5) ' USp(4). A spinor is a section ζα of the pseudo-real 4

representation of USp(4) with α ∈ {1, . . . , 4}. The Clifford algebra is generated by Γa with

a ∈ {1, . . . , 5} and {
Γa,Γb

}
= 2δab . (B.6)

The Γ matrices have index structure (Γa)αβ . We define the Pauli matrices

τ1 =

(
0 1

1 0

)
, τ2 =

(
0 −i
i 0

)
, τ3 =

(
1 0

0 −1

)
, (B.7)

and

σi = −σ̄i = −iτ i , σ4 = σ̄4 = 12 . (B.8)

A possible choice of the Γa is given by

Γi =

(
0 σi

σ̄i 0

)
, i ∈ {1, . . . , 4} ,

Γ5 = Γ1Γ2Γ3Γ4 =

(
12 0

0 −12

)
.

(B.9)
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We define the Γ matrices with multiple indices using permutations as

Γa1a2...ap ≡ 1

p!

∑
σ∈perm(p)

sign(σ)

p∏
i=1

Γaσ(i) , (B.10)

such that

Γab =
1

2

(
ΓaΓb − ΓbΓa

)
. (B.11)

We also define

σij ≡ 1

2
(σiσ̄j − σj σ̄i) , σ̄ij ≡ 1

2
(σ̄iσj − σ̄jσi) . (B.12)

The covariant derivatives for spinors are defined by

∇mξ = ∂mξ +
1

4
ω ab
m Γabξ . (B.13)

We also define a spinor Lie derivative along a Killing vector field v as

Lvξ ≡ vm∇mξ +
1

2
∇mvnΓmnξ . (B.14)

The Γa satisfy

(Γa)† = Γa , (B.15)

where † denotes the conjugate transpose. We define a charge conjugation matrix

Cαβ ≡

(
σ2 0

0 σ2

)
, (B.16)

satisfying

(Γa)T = CΓaC−1 , C∗ = C , C† = −C , C∗C = −14 , (B.17)

where T denotes transposition. Spinor bilinears are defined as

ξΓa1a2...apη ≡ ξαCαβ (Γa1a2...ap)βγ η
γ . (B.18)

The R-symmetry group of the five-dimensional N = 1 super-algebra is SU(2)R with

invariant antisymmetric tensor εIJ such that

ε12 = −ε21 = 1 . (B.19)

An SU(2) Majorana spinor is a doublet ζαI with I ∈ {1, 2} in the fundamental representa-

tion of SU(2)R satisfying the condition

ζ∗α
I = Cαβε

IJζβJ . (B.20)

If the manifold M4 is not spin, all spinors are valued instead in an appropriate bun-

dle associated with the choice of a spinc structure. This choice can be made canoni-

cally for an almost complex manifold, but doing so may require a redefinition of certain

background fluxes. See [148] for examples in the context of localization and [149] for a

complete reference.
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C Large N ’t Hooft anomalies of 4D/2D SCFTs from M5-branes

In this appendix we provide a simple formula, at large N , in order to extract the ’t

Hooft anomaly coefficients of four-dimensional N = 1 (or two-dimensional N = (0, 2)

field theories) that arise from M5-branes wrapped on a Riemann surface Σg2 (or a four-

manifold M4). The trial ’t Hooft anomaly coefficients of this class of theories can be

extracted by integrating the eight-form anomaly polynomial I8 of the 6D N = (2, 0) the-

ory over Σg2 or M4 [65, 66, 68, 150]. The anomaly eight-form of the 6D theory of type

g = (An≥1, Dn≥4, E6, E7, E8) reads [151–153]

I8[g] = rgI8[1] + dghg
p2(NW )

24
, (C.1)

where I8[1] is the anomaly eight-form of one M5-brane [154], NW is the SO(5) R-symmetry

bundle, and p2(NW ) is its second Pontryagin class. Here we have denoted the rank, the

dimension, and the Coxeter number of the Lie algebra g by rg, dg and hg, respectively. For

the AN−1 theory, in the large N limit, the anomaly eight-form is simply given by

I8[AN−1] ≈ N3

24
e2

1e
2
2 , (C.2)

where eς (ς = 1, 2) are the Chern roots of NW .

Let us first consider the compactification of 6D theories on a Riemann surface Σg2 .

The prescription in [65, 66] for computing the anomaly coefficient a(∆̂) of the 4D SCFT

amounts to first replace the Chern roots eς in (C.2) with

eς → −
tς

2(1− g2)
x+ ∆̂ςc1(F ) , (C.3)

implementing the topological twist along Σg2 , and then integrate the I8[AN−1] on Σg2 :

I6 =

∫
Σg2

I8[AN−1] . (C.4)

Here x is the Chern root of the tangent bundle to Σg2 , c1(F ) is a flux coupled to the

R-symmetry, tς are the fluxes parameterizing the twist and ∆̂ς parameterize the trial R-

symmetry. They fulfill the following constraints

t1 + t2 = 2(1− g2) , ∆̂1 + ∆̂2 = 2 . (C.5)

On the other hand, the anomaly six-form of a 4D SCFT, at large N , reads

I6 ≈
16

27
a(∆̂)c1(F )3 . (C.6)

The ’t Hooft anomaly coefficient a(∆̂), at large N , where c = a, can then be read off by

expanding I8[AN−1] at first order in x, using (C.4) —
∫

Σg2
x = 2(1− g2) — and comparing

the result with (C.6). It is simply given by

a(∆̂) ≈ −9N3

128

2∑
ς=1

tς
∂(∆̂1∆̂2)2

∂∆̂ς

. (C.7)

This is (3.33) in the main text.
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Consider now the compactification of 6D field theories on Σg1×Σg2 [68]. We first need

to replace

eς → −
sς

2(1− g1)
x1 −

tς
2(1− g2)

x2 + ∆̂ςc1(F ) , (C.8)

where xς are now the Chern roots of the tangent bundles to Σgς , and tς/sς the fluxes on

Σg2/Σg1 , with

t1 + t2 = 2(1− g2) , s1 + s2 = 2(1− g1) . (C.9)

Then we integrate I8[AN−1] over Σg1 ×Σg2 using
∫

Σgς
x% = 2(1− gς)δς%. The result should

be compared with the four-form anomaly polynomial of the two-dimensional SCFT that,

in the large N limit, where cl = cr, reads

I4 ≈
cl(∆̂)

6
c1(F )2 . (C.10)

This time only the term proportional to x1x2 in (C.2) contributes and we obtain

cl(∆̂) ≈ N3

4

2∑
ς,%=1

tςs%
∂2(∆̂1∆̂2)2

∂∆̂ς∂∆̂%

. (C.11)

This is (3.12) with the identification β∆ς/π = ∆̂ς .

For completeness, we also study the compactification of 6D field theories on a four-

manifold M4 with a single flux on M4. Denoting with x1 and x2 the Chern roots of the

tangent bundle to M4, the topological twist can be implemented by [68]

eς → −rς(x1 + x2) + ∆̂ςc1(F ) , (C.12)

where r1 + r2 = 1. The integration of I8[AN−1] over M4 can be done by noticing that the

integrals

p1(M4) = 3σ(M4) =

∫
M4

(x2
1 + x2

2) , χ(M4) =

∫
M4

x1x2 (C.13)

give the first Pontryagin number and the Euler number of M4. The result is then simply

cl(∆̂) ≈ N3

8
(p1(M4) + 2χ(M4))

2∑
ς,%=1

rςr%
∂2(∆̂1∆̂2)2

∂∆̂ς∂∆̂%

. (C.14)

We see that the ’t Hooft anomaly coefficients of 4D (or 2D) field theories, which are

obtained by wrapping M5-branes on Σg2 (or M4), can always be written as (multiple)

applications of operators of the form
∑2

ς=1 rς∂∆̂ς
to the function (∆̂1∆̂2)2, appearing in

the eight-form anomaly polynomial through the term p2(NW ).

D An alternative large N saddle point for the USp(2N) theory

In this appendix, for completeness, we discuss a possible alternative method for evalu-

ating (3.8) in the saddle point approximation. Solving (3.9) in the large N limit gives a
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relation between a(i) and ni. Eliminating a(i), we can write (3.8) as a sum over the fluxes ni:

Zpert
Σg2×(Σg1×S1)

(s, t,∆) =
(−1)rk(G)

|W|
∑
n∈Γh

Zpert
∣∣
m=0

(a(n), n)

(
det
ij

∂2W̃pert(a(n), n)

∂ai∂aj

)g1−1

,

(D.1)

where a(i)(n) is the large N solution to (3.9). Each term in the sum is an exponentially large

function of N , and we can use again the saddle point approximation to find the dominant

contribution to the partition function. While for N = 2 SYM this method fails since (3.9)

completely fixes the values of ni, it works for the USp(2N) theory. For completeness, we

quote the result for the partition function evaluated with this approach

logZ(∆m, tm, sm) =
4N5/2

5
√

8−Nf

√
(∆1t2 + ∆2t1)(∆1s2 + ∆2s1)(s1t2 + s2t1) . (D.2)

Notice that this is different from (3.106). It coincides with (3.106) only in the case of the

universal twist, tm = 1 − g2 and sm = 1 − g1. It would be very interesting to compare

the two alternative results with the entropy of asymptotically AdS6 black holes in massive

type IIA supergravity, with magnetic fluxes tm and sm [69].

E Polylogarithms

Polylogarithms Lis(z) are defined by

Lis(z) =
∞∑
n=1

zn

ns
, (E.1)

for |z| < 1 and by analytic continuation outside the disk. They satisfy the

following relations

∂a Lis(e
ia) = iLis−1(eia) , Lis(e

ia) = i

∫ a

+i∞
Lis−1(eia

′
) da′ . (E.2)

For s ≥ 1, the functions have a branch point at z = 1 and we shall take the principal

determination with a cut [1,+∞) along the real axis. The functions Lis(e
ia) are periodic

under a→ a+ 2π and have branch cut discontinuities along the vertical line [0,−i∞) and

its images. For 0 < Re a < 2π, polylogarithms fulfill the following inversion formula36

Lis(e
ia) + (−1)s Lis(e

−ia) = −(2iπ)s

s!
Bs

( a
2π

)
≡ i

s−2gs(a) , (E.3)

where Bs(a) are the Bernoulli polynomials. In this paper we need, in particular,

g2(a) =
a2

2
− πa+

π2

3
, g3(a) =

a3

6
− π

2
a2 +

π2

3
a . (E.4)

One can find the formulæ in the other regions by periodicity. Let us also mention that

gs(2π − a) = (−1)sgs(a) . (E.5)

Finally, assuming 0 < ∆ < 2π, we find that

Lis(e
t+i∆) ∼ i

s−2gs(−it+ ∆) , as t→∞ . (E.6)
36The inversion formulæ in the domain −2π < Re a < 0 are obtained by sending a→ −a.
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