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Abstract: We study D-brane instantons in systems of D3-branes at toric CY 3-fold sin-

gularities. The instanton effect can be described as a backreaction modifying the geometry

of the mirror configuration, in which the breaking of U(1) symmetries by the instanton

translates into the recombination of gauge D-branes, which also directly generates the

instanton-induced charged field theory operator. In this paper we describe the D-brane in-

stanton backreaction in terms of a combinatorial operation in the bipartite dimer diagram

of the original theory. Interestingly, the resulting theory is a general Bipartite Field The-

ory (BFT), defined by a bipartite graph tiling a general (possibly higher-genus) Riemann

surface. This provides the first string theory realization of such general BFTs. We study

the general properties of the resulting theories, including the construction of the higher-

dimensional toric diagrams and the interplay between backreaction and Seiberg duality. In

cases where the non-perturbative effects relate to complex deformations, we show that the

procedure reproduces and explains earlier existing combinatorial recipes. The combinato-

rial operation and its properties generalize to an operation on the class of general BFTs,

even including boundaries, relating BFTs defined on Riemann surfaces of different genus.

Keywords: Brane Dynamics in Gauge Theories, D-branes, Supersymmetric Gauge The-

ory

ArXiv ePrint: 1805.00011

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP11(2018)098

mailto:sfranco@ccny.cuny.edu
mailto:eduardo.garcia.valdecasas@gmail.com
mailto:angel.uranga@uam.es
https://arxiv.org/abs/1805.00011
https://doi.org/10.1007/JHEP11(2018)098


J
H
E
P
1
1
(
2
0
1
8
)
0
9
8

Contents

1 Introduction 2

2 Review of D-brane instanton backreaction on D-branes at singularities 4

2.1 Dimers and instantons 4

2.1.1 Overview of dimers 4

2.1.2 D-brane instantons on dimers 6

2.2 D-brane instanton backreaction in the mirror 7

3 D-brane instanton backreaction on the dimer 8

3.1 General idea 8

3.2 Examples 10

3.2.1 A PdP2 example 10

3.2.2 A PdP4 example 13

3.3 Non-generic situations: global identifications 13

3.3.1 Examples 14

3.3.2 Fake tilings 17

3.4 Extension to general BFTs 19

3.5 BFT genus and instanton backreaction 20

4 The toric geometry of backreacted dimers 21

4.1 Perfect matchings 22

4.2 The new toric diagram 23

4.3 Coordinates from bridges 24

4.4 Example: dP3 24

5 Seiberg duality 27

5.1 Seiberg duality on the instanton face 27

5.2 Seiberg duality on an adjacent face 28

5.2.1 Different results: dP2 30

5.2.2 Same result: F0 32

5.2.3 Seiberg duality and D-brane charges 32

6 Multi-instantons and complex deformations 34

7 The inverse problem 37

8 Conclusions 38

– 1 –



J
H
E
P
1
1
(
2
0
1
8
)
0
9
8

1 Introduction

The present paper combines new results in two interesting areas of D-brane physics: non-

perturbative D-brane instantons and the realization of Bipartite Field Theories (BFTs)

using D-branes.

D-brane instantons have become a centerpiece in the understanding of string theory

beyond perturbation theory (see e.g. [1–4]) and in model building applications to moduli

stabilization (see e.g. [5, 6]) or the generation of charged field theory operators (see e.g. [7–

9] and [10, 11] for reviews). These field theory operators arise as ’t Hooft couplings required

by the saturation of fermion zero modes charged under the gauge groups carried by the D-

branes [12], coming from the open sector between gauge D-branes and D-brane instantons.

A particularly interesting setup in which they can be studied is systems of D3-branes at

toric Calabi-Yau (CY) 3-fold singularities, which are described in terms of dimer diagrams,

also known as brane tilings [13–15] (see [16] for a review). These are bipartite tilings of a

2-torus, namely graphs whose nodes can be colored black and white, such that white nodes

are connected only to black nodes and vice-versa. These diagrams also allow to describe

D-brane instantons and easily read out the charged fermion zero modes and their couplings,

either directly on the dimer diagram or in the mirror picture. In the latter, the configuration

corresponds to a set of intersecting D6-branes and D2-brane instantons, eventually encoded

in a set of 1-cycles in the mirror punctured Riemann surface. In a recent development in

this framework, [17] showed that in this mirror picture the generation of non-perturbative

charged field theory operators can be obtained as a perturbative coupling in a modified

geometry, triggered by the backreaction of the D-brane instanton on the mirror CY. In the

resulting configuration, the D2-brane instanton is geometrized, along the lines of [18–20],

and we are left with a set of recombined D6-branes in the modified geometry.

In this paper we show that the resulting gauge theory (and thus the charged field theory

operators) can be encoded in a Bipartite Field Theory, albeit in general not defined on a

2-torus (as the original dimer diagram) but on a general (possibly higher-genus) Riemann

surface, thus of the kind introduced in [21]. This resulting BFT is related to the original

one by a simple operation, which can be regarded as the direct backreaction of the D-brane

instanton on the gauge theory. For the simplest case of a D-brane instanton located on a

face of the original dimer diagram, it essentially corresponds to the removal of the face and

its edges, and the recombination of nodes of the same color. In general, avoiding crossing

of edges requires the introduction of handles, so that the new BFT is in general defined in

higher genus.

Considered abstractly, this operation can be carried out also by taking a general BFT as

starting point. From this perspective, a main result of the present paper is the definition of

a new operation on BFTs, relating theories defined on Riemann surfaces of different genus.

This is thus a particularly interesting new insight in the field of BFTs.

BFTs are 4d N = 1 supersymmetric gauge theories whose Lagrangians are defined by

bipartite graphs embedded into a Riemann surface, possibly with boundaries [21].1 The

special subclass of BFTs defined on a torus without boundaries are the brane tilings or

1Closely related theories were introduced in [22] and studied further in [23].
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dimer diagrams mentioned before, which describe the worldvolume theory of D3-branes

probing toric CY3 singularities [13, 14, 16, 24]. Extensive catalogues of explicit BFT

examples have been provided in e.g. [21, 25] for general BFTs and [26–28] for higher genus

examples without boundaries.

General BFTs and their associated graphs have received several physical interpreta-

tions, in particular in connection with the reformulation of 4d N = 4 SYM in terms of

on-shell diagrams [29]. The new approach makes all symmetries of the theory manifest

and sheds new light on previous results [29–32]. The connection of on-shell diagrams with

bipartite graphs and BFTs has been extensively studied in [21, 25, 33–36].

On the other hand, there has been no direct realization of BFTs in string theory beyond

the very restricted subclass of theories associated to graphs with vanishing curvature [23,

33]. Our work provides precisely that link, regarding higher genus BFTs as the result of D-

brane instanton backreactions in lower genus theories. We expect that the new operation

we have obtained linking BFTs in different genus has interesting implications both for

the further study of general BFTs in string theory, and for the complementary physical

realizations of the corresponding graphs.

Our work takes first steps in this direction, for instance by computing the toric CYs

associated to the new BFTs and establishing how they are connected to the original ones.

We expect this to be a very useful tool towards a general dictionary, and the study of dual

theories, the inverse problem, etc.

The paper is organized as follows: in section 2 we review the description of systems of

D3-branes at singularities and their D-brane instantons in terms of dimers (section 2.1),

and the backreaction description of the latter in the mirror geometry (section 2.2). In

section 3 we derive the description of the D-brane instanton backreaction in the dimer,

and its properties. In section 3.1 we prove that in general it leads to a higher genus

BFT, and provide illustrative examples in section 3.2.1 and section 3.2.2. In section 3.3

we discuss instances in which the backreaction does not result in an increase of the genus,

which correspond to dimers where the global T2 topology implies certain identifications

among faces. In section 3.4 we apply the combinatorial recipe of dimers to general BFTs,

thus defining a new operation relating BFTs in different genus Riemann surfaces. In

section 3.5 we introduce a useful graphical depiction of the handle attachment surgery which

simplifies the discussion of the genus increase. In section 4 we describe the computation

of the new toric data corresponding to the backreacted BFTs. The change in perfect

matchings between the original and final theories is discussed in section 4.1, yielding the

construction of the new toric diagram in section 4.2. A direct construction based on relating

new toric coordinates with the bridges identifying formerly different nodes of the original

theory is provided in section 4.3. These concepts are illustrated in a detailed example in

section 4.4. In section 5 we describe instances of the interplay of instanton backreaction

and Seiberg duality: in section 5.1, when they are applied to the same dimer face, and in

section 5.2 when applied to neighboring faces. In section 6 we consider the generalization to

backreaction of multi-instantons, focusing on cases corresponding to complex deformations

of the original CY 3-fold, and recover earlier results in the literature. In section 7 we show

the non-uniqueness of the inverse problem of reconstructing initial theories for a given final

one. We present our concluding remarks in section 8.

– 3 –
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2 Review of D-brane instanton backreaction on D-branes at singularities

In this section we review some background material on dimer diagrams as tools to describe

systems of D3-branes at toric singularities. Subsequently we review the backreaction of

instantons in the mirror of these systems, to lay the ground for their novel discussion in

the dimer diagram, and the connection with general BFTs.

2.1 Dimers and instantons

2.1.1 Overview of dimers

The gauge theory on Type IIB D3-branes probing toric CY 3-fold singularities is given

by a set of unitary gauge factors, bifundamental or adjoint chiral multiplets, and a su-

perpotential. Much information on these gauge theories, and properties of the underlying

D-branes, can be encoded in a brane tiling or dimer diagram,2 see e.g. [13, 14], and [16] for

a review. A dimer diagram is a tiling of T2 defined by a bipartite graph. Faces in the dimer

correspond to gauge factors in the field theory, edges describe bifundamental fields, and

nodes represent superpotential terms. The bipartite character of the graph underlies the

assignment of chirality for the bifundamental matter in terms of the edge orientation, e.g.

clockwise and counterclockwise around black and white nodes, respectively. The node col-

ors also determine the signs of the corresponding superpotential terms. Several well-known

theories are described in the examples later on.

For future convenience we emphasize that these theories are easily generalized to Bi-

partite Field Theories (BFTs). These are 4d N = 1 supersymmetric gauge theories whose

Lagrangians are defined by bipartite graphs embedded into a Riemann surface, possibly

with boundaries [21]. For the purposes of this section, however, we stick to BFTs defined

on T2. Throughout the paper, we restrict the meaning of the term “dimer diagram” to

such theories. Additional ingredients and extensions for general BFTs will arise at different

points of the paper.

For D3-brane systems, the type IIA mirror configuration can be constructed in terms

of combinatorics of the dimer diagram, as described in [15]. The mirror corresponds to a

double fibration over the complex plane, with fibers given by a C∗ and a genus-g Riemann

surface Σ. This is a smooth punctured Riemann surface which can be thought of as a

thickening of the (p, q)-web diagram [37–39] dual to the toric diagram, see figure 1.

The information about the gauge theory is encoded in a set of 1-cycles on Σ (which

are part of the 3-cycles wrapped by the D6-branes in the mirror picture). Each 1-cycle

corresponds to a gauge factor, and their intersections support bifundamental chiral multi-

plets associated to the edges in the dimer. Oriented disks suspended among intersections

provide worldsheet instantons producing the superpotential terms of the dimer nodes.

The Riemann surface Σ and these 1-cycles can be systematically obtained from the

dimer that defines the gauge theory as follows. Given a dimer diagram, we introduce the

so-called zig-zag paths [40], as paths composed of edges that turn maximally to the right

2The description of 4d N = 1 gauge theories in terms of tilings is complementary to that of quiver

diagrams, in which gauge groups are represented by nodes, and chiral multiplets by arrows. However, brane

tilings also encode the superpotentials, and thus facilitate a deeper understanding of these theories.
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Figure 1. a) Toric diagram, b) (p, q)-web and c) mirror Riemann surface Σ for the conifold.

External legs of the web map to punctures in Σ.
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Figure 2. Various diagrams for the double conifold. a) Toric diagram. b) (p, q)-web. c) Quiver. d)

Dimer with zig-zag paths. The blue dashed parallelogram indicates the unit cell. Its opposite sides

are identified to form a T2. e) The mirror Riemann surface Σ is a sphere with 6 punctures. Here

we represent it as the complex plane with the point at infinity, indicated by the blue circle, added.

at e.g. black nodes and maximally to the left at white nodes. They can be conveniently

depicted as oriented lines that cross once at each edge and turn at each vertex. Notice that

the two zig-zag paths that intersect every edge must have opposite orientations. As shown

in [15], the zig-zag paths of the dimer diagram associated to D3-branes at a singularity lead,

by an untwisting procedure, to a tiling of the Riemann surface Σ in the mirror geometry.

Specifically, each zig-zag path encloses a face of the tiling of Σ which includes a puncture,

and the (p, q) charge of the associated leg in the web diagram is the (p, q) homology charge

of the zig-zag path in T2. The Riemann surface Σ can be regarded as a thickening of this

web diagram into a genus g surface. Figure 2 illustrates all these objects in an explicit

example, a non-chiral Z2 orbifold of the conifold, also known as the double conifold.

By construction, the 1-cycles in the mirror Riemann surface associated to the different

gauge factors are given by zig-zag paths of the tiling of Σ. This description allows to easily
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classify supersymmetric wrapped branes in toric singularities and their mirrors. In fact,

they can be used to describe gauge D-branes (i.e. D-branes spanning the 4d Minkowski

directions) or D-brane instantons (i.e. Euclidean D-branes localized in the 4d dimensions),

as extensively exploited in the next sections.

2.1.2 D-brane instantons on dimers

As just described, D-brane instantons in systems of D3-branes at toric CY3 singularities

can be described as D-branes wrapped on faces of dimer diagrams. As explained later, the

dimer combinatorics allows an easy description of these instantons and some features of

the non-perturbative field theory operators they produce. We should note that in general,

such D-brane instantons do not generate 4d superpotential terms, due to the existence

of additional neutral fermion zero modes. Although these can be subsequently removed

by further ingredients (orientifolds, fluxes, etc), our main goal in the present paper is to

understand the breaking of U(1) symmetries by the appearance of charged 4d fields in the

non-perturbative instanton operator, even if the latter is not a superpotential term. Hence,

we focus on the pattern of instanton fermion zero modes charged under the 4d gauge group,

independently of any additional bosonic or neutral fermionic zero modes.

The realization of instantons in the dimer makes it easy to read out the content of

fermion zero modes charged under the 4d gauge group, from edges between the instanton

faces and other gauge faces. Although the general discussion is straightforward, for con-

creteness we focus on the case of a single instanton on a single dimer face. The pattern of

breaking of U(1) symmetries by the instanton follows from the pattern of bifundamentals

defined by the edges around the instanton face. Also, the couplings of these fermion zero

modes to 4d bifundamental fields is given by the superpotential couplings (see e.g. [41], as

a particular case of [42]).

In the mirror, the instanton face maps to a 1-cycle on Σ, which corresponds to a zig-

zag path of its tiling. The charged fermion zero modes are supported at the intersections

between this 1-cycle and those of the 4d gauge D-branes. Thus, the breaking of U(1)

symmetries is determined by the intersection numbers of the instanton cycle, as shown

in [7–10]. Also, their couplings with 4d bifundamental matter are determined by the

corresponding worldsheet instanton disks.

The computation of the 4d charged field theory operator by saturation of charged

fermion zero modes is also simplified by the bipartite character of the dimer. For simplic-

ity, we focus on the abelian case, in which all relevant gauge factors correspond just to

U(1)’s. Most of the discussion extends to the non-abelian case, with the proviso of tak-

ing determinants of certain combination of fields. It is easy to realize that there are two

instanton-induced 4d field theory operators, arising from exactly two ways of saturating

fermion zero modes, obtained by taking the couplings corresponding to either all the white

or all the black nodes, and “forgetting” the fermion zero modes. This procedure has a

more direct physical interpretation in terms of the instanton backreaction on the mirror

geometry, as we review in the next section. In the mirror, black and white nodes fall on

different sides of the instanton 1-cycle, so the two 4d charged operators induced by the

instanton are read out from the disks at either side of the instanton 1-cycle.

– 6 –
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2.2 D-brane instanton backreaction in the mirror

As proposed in [20] building on [18, 19], D-brane instanton effects can be described in terms

of a backreacted geometry. In the context of D-branes at singularities, this description was

achieved in terms of the mirror setup with both gauge D6-branes and D2-brane instantons

in [17]. In this section we review the description of the instanton backreaction in terms

of simple graph operations in the mirror geometry. The direct description in terms of the

original systems of D-branes at singularities was not provided in [17], and is in fact one of

the main points of the present paper.

In the mirror, backreaction is captured by the recombination of the D6-branes in-

tersecting the instanton and the appearance of the non-perturbative D-brane instanton

superpotential in terms of purely worldsheet instanton effects in the backreacted geometry.

The recombination of the D6-branes provides a direct physical realization of the breaking

of U(1) symmetries by the instanton. We refer the reader to [17] for further details.

As mentioned above, we restrict the discussion to the case of a single instanton, namely

the D2-brane on a 3-cycle Π3 associated to a single 1-cycle in the mirror Riemann surface.

Also, note that, although the combinatorial recipe does not care about the ranks of the

gauge factors, the physical process as described below corresponds to the abelian case. With

this condition, the backreacted configuration can be generated with very simple steps on

this graph:

• Step 1. Cut: the instanton 3-cycle Π3 should disappear from the geometry, so we

cut Σ by removing a small strip around the instanton 1-cycle, and seal off the two

resulting boundaries in Σ by identifying each of them to a point. Any 3-cycle formerly

intersecting Π3 turns into a 3-chain in the backreacted geometry, so correspondingly

any 1-cycle intersecting the cut is split, and turns into a chain with boundary points.

These 1-chains will be glued in the next step.

• Step 2. Recombine: the bipartite character of the graphs implies that the instanton

1-cycle in Σ has an equal number of positive and negative orientation intersections

with the other 1-cycles. Thus, on each side of the cut there is an equal number of

incoming and outgoing 1-chains, which we must recombine to form 1-cycles. The

recombination should be carried out without crossing edges of the underlying tiling

of Σ, which becomes possible due to the bipartite nature of the graph.

• Step 3. Field theory operators: the previous two steps already define the backreacted

geometry. This last step merely establishes that the 4d non-perturbative field the-

ory operator induced by the original instanton arises as a worldsheet instanton on

the backreacted geometry, bounded by the recombined D-branes. Such world sheet

instantons are easily identified by considering disks bounded by recombined 1-cycles

(and the cut, which recall is regarded as shrunk to a point). There are always two such

couplings, which nicely agrees with the fact that the saturation of charged fermion

zero modes in the open string picture can always occur in two ways, as a consequence

of the dimer being bipartite.

The general structure of the process is shown in figure 3 for an instanton on a 2k-sided

face of the dimer.

– 7 –
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Figure 3. Left: local piece of the mirror Riemann surface around the 1-cycle wrapped by a D2-

brane instanton (blue), consisting of 2k edges. The top and bottom dotted lines are identified.

The collections of half edges sticking out of each node represent general superpotential couplings.

The orange, brown and cyan, and the red, green and purple arrowed lines are pieces of additional

zig-zag paths that correspond to D6-branes intersecting the D2-brane instanton, with positive or

negative intersection numbers, respectively. Right: the D2-brane instanton has backreacted, so the

blue line has disappeared. D6-brane paths have been cut at their intersection with the former D2-

brane instanton cycle, and recombined. The black nodes and the white nodes should be regarded

as recombined into a single black and a single white node, respectively.

3 D-brane instanton backreaction on the dimer

In this section we present a main result of this paper. We show that the description of

the instanton backreaction can be carried out directly on the dimer diagram, and that it

generically turns it into a general BFT. This motivates the definition of a general combina-

toric operation, which extends automatically to the whole class of BFTs, and which relates

BFTs on different Riemann surfaces.

3.1 General idea

The procedure in section 2.2 to describe the instanton backreaction in the mirror configu-

ration, turns a system of intersecting D6-branes into a different one, which is nevertheless

still described in terms of a bipartite graph tiling of the backreacted Riemann surface. The

remarkable fact that we obtain a bipartite structure implies that we can reconstruct faces,

edges and nodes of a BFT describing the resulting set of D6-branes, including the instanton

superpotential.

The fact that in general this corresponds not to a 2-torus dimer diagram but rather

to a generically different genus BFT is easily derived. Using the recipe for the generic

case summarized by figure 3, the change of genus in the corresponding gauge theory is as

follows. First, the number of edges is reduced by ∆E = −2k; the number of vertices V

changes, since each set of k black/white nodes turns into a single black/white node, hence

∆V = −2k+2; finally, the number of faces in the BFT is determined by the disappearance

of the instanton 1-cycle in the mirror, and the recombination of the 2k D6-brane 1-cycles

– 8 –
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into a single one (see section 3.3 for other possibilities in non-generic cases), resulting in

∆F = −2k. Since the Euler formula gives

F + V − E = 2− 2g , (3.1)

we have a change in the BFT genus

∆g =
1

2
( ∆E −∆F −∆V ) = k − 1 . (3.2)

The above analysis exploits the fact that the gauge theory resulting after the transfor-

mation in the mirror discussed in section 2.2 still corresponds to a bipartite graph. In fact,

it is easy to check that there is a simple operation that can be carried out in the dimer and

which reproduces the different steps in the mirror, and that yields a BFT on a Riemann

surface of the appropriate genus.

These steps are:

• Step 1. Remove: remove the face corresponding to the D-brane instanton, and its

edges, leaving the adjacent faces open. This reproduces the operation of removing

the instanton mirror 1-cycle and cutting the 1-cycles intersecting it.

• Step 2. Fuse: declare that all black nodes of the former instanton face are identified

into a single black node, and similarly for all white nodes. The edges ending on the

initial nodes remain as edges ending on the final node, and their ordering is preserved

(this can be done by performing the identification of nodes sequentially according to

their ordering as one circles the original face). In order to avoid edge crossings after

the identifications of nodes, it is in general necessary to introduce k handles for an

original instanton face of 2k sides. This provides the required increase in the genus of

the resulting BFT. This step closes off the former open faces, in general into a single

recombined one.

• Step 3. Field theory operators: the above two steps already define the backreacted

BFT. This last step merely establishes that the 4d non-perturbative field theory

operators induced by the original D-brane instanton are simply the superpotential

terms corresponding to the combined black and white nodes.

Figures 4 and 5 illustrate this operation in the case of instantons on 4- and 6-sided

faces. The recombination of black and white nodes is indicated by blue (for white nodes)

and red (for black nodes) bridges. Whenever a bridge connects two nodes of the same

color, we understand that there is a 2-valent node of the opposite color in the middle of it,

making the graph bipartite. In other words, bridges correspond to massive pairs of chiral

fields, which lead to the desired identifications of nodes if they are integrated out. For

clarity, we leave such intermediate nodes implicit in the figures that follow.

Clearly, although we have introduced this operation for bipartite graphs defined on

2-tori, the procedure extends to general BFTs, thus defining an operation relating BFTs

on Riemann surfaces generically of different genus. In the generic case (see section 3.3 for

non-generic situations) the operation corresponds to a local surgery, whose characterization

– 9 –
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a) b) c) 

Figure 4. a) Local piece of the BFT surface around a face wrapped by the D-brane instanton

(blue). The collections of half edges sticking out of each node indicate general superpotential

couplings. b) After backreaction, the blue face and its edges disappear. The black and white nodes

are recombined into single black and white nodes, respectively; this is indicated by bridges. The

crossing of bridges can be avoided by embedding the BFT in a surface with an additional handle,

in agreement with ∆g = 1. Generically, the faces around the original instanton recombine into a

single one. c) An alternative representation of the backreacted BFT, in which bridges are replaced

by pairs of actual edges, joined by 2-valent nodes corresponding to superpotential mass terms.

b) b) c) 

Figure 5. Backreaction of a local piece of a BFT surface around a D-brane instanton on a 6-edge

face. Similar remarks to figure 4 apply, with the difference that ∆g = 2 in this case.

we study in more detail in section 3.5. The application of the operation in general BFTs

is discussed in section 3.4.

It is easy to check that the above transformation rule on the dimer preserves the struc-

ture of zig-zag paths, see figure 6. This dovetails the fact that the instanton backreaction

in the mirror preserves the punctures of the Riemann surface.

3.2 Examples

Below we present two examples illustrating the ideas introduced in the previous section.

3.2.1 A PdP2 example

Let us consider the pseudo del Pezzo 2 (PdP2) theory. By this we mean the theory obtained

by placing D3-branes at the tip of a complex cone over the PdP2 surface. In the examples

that follow, we will often use this abbreviated way of referring to the full CY3 and the

corresponding gauge theory. This geometry, which corresponds to a blowup of CP2 at two

non-generic points, was originally studied in [43], where it was determined that it has a

single toric phase. Figure 7 shows the toric diagram for PdP2, the corresponding quiver

and the dimer with zig-zag paths.
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Figure 6. Structure of zig-zag paths around faces in a dimer, and in its backreacted version.

Zig-zag paths maintain their structure, in agreement with the fact that punctures in the mirror

Riemann surface are unchanged by the backreaction process.
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Figure 7. Diagrams for PdP2: a) toric diagram, b) quiver and c) dimer with zig-zag paths.

The mirror surface is presented in figure 8a. Consider introducing a D-brane instanton

on face 4 of the dimer, which corresponds to the zig-zag path 4 on the mirror Riemann

surface. Let us first perform the backreaction in the mirror, following the prescription

reviewed in section 2.2. The result is shown in figure 8b. The final theory is described by

the recombined 1-cycles, their intersections and worldsheet instanton disks. Interestingly,

all the zig-zags in the mirror fuse into a single one, i.e. the corresponding BFT has a

single face. We obtain a BFT with F = 1, V = 6 and E = 9, i.e. with 1 gauge group 6

superpotential terms and 9 chiral fields. From the Euler formula (3.1), we conclude that

it is a BFT defined on a genus-2 surface. Let us describe the final gauge theory explicitly.

The 9 chiral fields transform in the adjoint representation of the single gauge group, as

shown in the quiver in figure 9b. Below we will discuss the superpotential in further detail.
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Figure 8. a) Mirror surface for PdP2. b) Backreaction of an instanton on face 4 of the dimer,

which maps to the blue zig-zag path. All zig-zags recombine into a single one.
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Figure 9. a) Backreaction of an instanton on face 4 of the PdP2 dimer and b) quiver for the

resulting BFT.

Let us now see how the same theory is recovered by implementing backreaction directly

on the dimer, as described in section 3.1. Applying this recipe to an instanton on face 4,

the edges of the instanton face disappear and the nodes of the same color are identified.

The resulting diagram is shown in figure 9a, where we see that a new handle needs to

be introduced for the identification, nicely reproducing the expected genus-2 result. The

original face numbers are shown in grey for reference. Integrating out the massive edges

associated to the bridges, we obtain a BFT with V = 6 and E = 9, which combined

with the Euler formula imply that F = 1. We thus replicate the result of the mirror. As

mentioned earlier, the theory has a single gauge group and 9 adjoint chirals as shown in

figure 9b. The superpotential contains 6 terms, which can be read from figure 9a, where

we have labeled the chiral fields associated with the edges, and is given by

W = Φ1Φ2Φ9 + Φ3Φ4Φ5 + Φ6Φ7Φ8 − Φ2Φ3Φ5 − Φ1Φ6Φ4 − Φ7Φ9Φ8 . (3.3)
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Figure 10. a) Toric diagram for PdP4. b) Quiver and c) dimer for its phase 1.

3.2.2 A PdP4 example

We now focus on PdP4, which is a blowup of CP2 at four non-generic points. This geom-

etry was first considered in [44], where it was established that it has three toric phases.

Figure 10 shows the toric diagram for PdP4, and the quiver and dimer for its phase 1, in

the classification of [44].

Let us consider an instanton on the hexagonal face 1 of the dimer, indicated in blue

in figure 10. Its backreaction is shown in figure 11a. Note that it is necessary to add

two handles, so the resulting BFT is in genus 3. This theory has F = 1, V = 4 and

E = 9. The gauge theory has 1 gauge group with 9 adjoint chiral fields, as illustrated in

the quiver in figure 11b. While this is the same quiver that we obtained for the example

in the previous section, shown in figure 9b, we know that the two BFTs are fundamentally

different; in particular the first theory has g = 2 and the second one has g = 3. The

distinction between both theories comes from the superpotential. Instead of the 6 cubic

terms of (3.3), the superpotential of the new theory is given by

W = Φ5Φ4Φ3Φ8Φ7 + Φ2Φ1Φ6Φ9 − Φ3Φ1Φ2Φ9Φ8 − Φ4Φ5Φ7Φ6 . (3.4)

In the examples that follow, we will not write the superpotentials explicitly, since it is

straightforward to read them from the corresponding bipartite graphs.

3.3 Non-generic situations: global identifications

In the previous discussion we have implicitly assumed that in the dimer diagram all the

faces adjacent to the instanton face are different. In terms of the mirror, this implies that

any 1-cycle intersects the 1-cycle wrapped by the instanton at most once. Therefore, when

the mirror Riemann surface Σ is cut along the instanton 1-cycle, the formerly intersecting

1-cycles become connected 1-chains (namely, they do not split into several disjoint pieces).

All these 1-chains combine into a single 1-cycle, as accounted for in the change of the

number of faces of the BFT that we used in the Euler formula (3.2). If this condition is not

satisfied, the genus of the resulting BFT need not be higher than the original one. More

generally, it is possible for the change in genus to be in the range

0 ≤ ∆g ≤ k − 1 . (3.5)
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Figure 11. a) Backreaction of an instanton on face 1 of the dimer for phase 1 of PdP4 and b)

quiver for the resulting BFT.
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Figure 12. a) Toric diagram for F0. b) Quiver and c) dimer for its phase 1.

We refer to this situation as cases with global identifications, in the sense that faces adjacent

to the instanton are identified due to the global topology on the dimer 2-torus.

3.3.1 Examples

We now present various examples with global identifications and explain how to implement

backreaction at the level of the dimer in such cases.

From F0 to the conifold. Let us consider F0, which admits two toric phases (see

e.g. [45]). Figure 12 shows the toric diagram for F0 and the quiver and dimer for its

phase 1.

Let us consider an instanton on face 1 of the dimer (the symmetry of the theory

implies that single instantons on any of the faces are equivalent). We start with the mirror

description. The mirror for phase 1 of F0 is again a square lattice and is given in figure 13a.3

Zig-zags have been labeled according to the corresponding faces in the original dimer. An

instanton on face 1 of the dimer corresponds to an instanton on the blue 1-cycle in the

3This particular theory is special in that the mirror is identical to the original dimer, see e.g. [15] While

this behavior is not generic, it is certainly common for simple toric phases (namely those with the smallest

number of chiral fields) for geometries for which Σ is a punctured 2-torus, i.e. when the toric diagram has

a single internal point. We expect the original dimer and the tiling of the mirror are not confused and that

the distinction between them becomes clear from the context.
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Figure 13. Backreaction in the mirror of F0. The instanton wraps the blue 1-cycle, which

corresponds to face 1 of the original dimer. The final result is the mirror of the conifold.

mirror. The backreaction is shown in figure 13b. Upon rearranging the diagram and

integrating out massive fields associated to some of the 2-valent nodes, we recognize the

result (c) as the mirror of the conifold theory. This is a theory that can be defined by a

dimer diagram on T2, so in this case instanton backreaction does not increase the genus of

the BFT.

As anticipated, the reason for this behavior is that the original dimer contains faces

that intersect the instanton more than once. This implies that some of the 1-cycle pieces

in figure 3 are actually not different. In this case, the counting in the Euler formula needs

to be modified to take into account that there are two 1-cycles intersecting the instanton,

each of them with intersection number ±2. These 1-cycles recombine into a single one,

leading to ∆F = −2 (including the disappearance of the instanton 1-cycle), instead of the

generic ∆F = −2k = −4. This implies that ∆g = 0 and the resulting BFT remains defined

by a standard dimer on T2.

Let us now explain how this can be understood directly at the level of the dimer. The

procedure introduced in section 3.1 is still valid, with a minor clarification. The underlying

feature of these non-generic cases is that some of the faces intersecting the instanton are

globally identified. Therefore, in the process of identifying the black/white corners of the

instanton face into a single black/white node, we should not insist in doing so in the local

patch given by the instanton face (as implicit in figures 4 and 5). Such local procedure

would lead to a higher genus BFT. Instead, we should always pick the identifications that

minimize ∆g. In other words, we should choose bridges such that the number of crossings is

minimal. We refer to the original and the new prescriptions as the local and global recipes,

respectively. The global prescription is the correct one and must always be used. The local

and global prescriptions agree whenever there are no global identifications.

In figure 14 we illustrate this phenomenon for the F0 example. (a) shows the instanton.

In (b), we removed the corresponding face and added bridges, taking advantage of the

periodicity of the T2 to evade crossings without increasing the genus. We also labeled the

new faces in black. In the rest of the paper, we will apply a similar relabeling in those

examples that remain on T2 after backreaction, for which visualizing the recombined faces
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Figure 14. Instanton backreaction from phase 1 of F0 to the conifold.
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Figure 15. Diagrams for dP0: a) toric diagram, b) quiver and c) dimer.

is trivial. In (c) we switched to a different (but fully equivalent) unit cell, in order to

bring the final theory to a more standard form. Finally, in (d) we condensed the bridges,

obtaining the dimer for the conifold. As this example shows, the global properties of the

dimer can sometimes lead to ∆g < k−1, which would be the naive result of the local recipe.

From dP0 to C3. As another example, let us consider dP0. Its toric diagram, and the

quiver and dimer for its only toric phase are presented in figure 15.

Let us consider an instanton on face 1 of the dimer (the two other faces are equivalent

by symmetry). The instanton has six edges but they represent intersections with only

two gauge factors, since each of them intersects the instanton three times. The number of

faces decreases from 3 to 1, i.e. ∆F = −2, instead of the generic ∆F = −2k = −6. This

implies that the resulting BFT has ∆g = 0, instead of the generic ∆g = k − 1 = 3, and

remains on T2.

We are now ready to implement the backreaction directly on the dimer, as shown in

figure 16. The instanton under consideration is given in (a). (b) shows a choice of bridges

that exploits the periodicity of T2 to avoid crossings. (c) shows a continuous deformation

of the diagram, which moves the two middle nodes horizontally. Upon condensation of the

bridges we obtain the dimer for the C3 theory, i.e. for N = 4 SYM, as shown in (d). This

result is fully reproduced by the mirror, as explicitly worked out in [17].

From dP1 to C2/Z2 × C. Let us finally consider dP1, whose toric diagram, quiver and

dimer are presented in figure 17.

Let us consider an instanton on face 2. Figure 18 shows the backreaction in the dimer.

As shown in (b), it is possible to pick bridges such that there are no crossings. The final

result is the dimer for C2/Z2 × C.
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Figure 16. Instanton backreaction from dP0 to C3.
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Figure 17. Diagrams for dP1: a) toric diagram, b) quiver and c) dimer.
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Figure 18. Instanton backreaction from dP1 to C2/Z2 × C.

It is interesting to use this example to discuss in further detail how the local recipe

for backreaction in the dimer fails when there are global identifications. Figure 19 shows

the incorrect backreaction that would be obtained by naively applying the local recipe.

The zig-zag paths in this figure should be compared to the correct ones, which appear in

figure 18b. Note that the local and global backreactions do not change the intersections

between the zig-zag paths. They however differ in the topology of their windings around

cycles. As we will see in section 3.3.2, the local recipe generates a diagram that is not a

consistent tiling.

3.3.2 Fake tilings

We may provide a deeper insight into why the local recipe fails in cases with global iden-

tifications. Since the local recipe preserves the correct intersections of zig-zag paths, e.g.

figures 18.b and 19, it would naively appear that both pictures correspond to the same

mirror. On the other hand, there is a problem with the counting of faces in the config-
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Figure 19. Backreaction using the naive local recipe. This figure should be compared with

figure 18b, which correctly exploits global identifications.
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Figure 20. a) The local recipe for backreaction leads to a non-contractible cycle, shown in yellow.

b) The cycle is not present if the global recipe is used. In both cases, the numbers label the resulting

“faces”. c) Spurious handle connecting faces 1 and 2 for the example of the backreacted dP1 theory.

uration obtained with the local recipe, so they cannot agree. The conundrum is solved

by noticing that in cases with global identifications the local recipe gives rise to a graph

which is not a consistent tiling of the corresponding Riemann surface, so it actually is not

a consistent BFT.

Mathematically, a graph embedded in a Riemann surface provides a tiling of it if the

Riemann surface is cut into regions which are, topologically, disks bounded by a concate-

nation of edges. Namely, faces must necessarily have the topology of a disk. It is easy to

show that in cases with global identifications, the local recipe produces what we call fake

tilings of the resulting higher genus Riemann surfaces, in which some of the “faces” are not

disks but rather correspond to cylinders or other topologies. In particular, they contain

non-trivial cycles precisely defined by exploiting the global identifications, as we now show.

As an example, consider an instanon on a square face with opposite edges separating it

from a given same face and let us apply the instanton backreaction using the local recipe.

The global identification leads to a non-contractible cycle along the redundant handle, as

shown in figure 20a. This cycle precisely specifies where the bridge must be, instead of

through a spurious handle. Instead, if the correct local prescription is implemented, there

is no non-contractible cycle, as shown in figure 20b.

This non-contractible cycle indicates that two faces are identified by the additional

handle. For instance, in the dP1 example presented in figure 19, the local recipe produces

an additional handle as shown in figure 20c. This handle connects face 1 and 2, supports

a non-contractible cycle and spoils the tiling.
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Figure 21. a) Application of the local recipe of the backreaction for an instanton on face 1 of F0.

b) It produces a theory identical to the correct (global) backreaction, with an additional spurious

handle. c) By a continuous deformation, the spurious handle manifestly connects the face to itself,

showing it is not a consistent tiling.

Similar comments apply to the case of the F0 theory, for which the correct global recipe

for backreaction was implemented in figure 14. The only subtlety is that the local recipe,

shown in figure 21a would seem to produce the correct theory, but there is still a spurious

handle, so it does not define a proper BFT, see figure 21b. By moving one of the legs off the

bridge, the spurious handle manifestly connects the face to itself, as shown in figure 21c.

We conclude by emphasizing that there is an unambiguous recipe for backreaction

on the dimer, described in section 3.1, namely removal of edges and recombination of

nodes in the most economic way. In the generic case where the instanton has no repeated

neighboring faces, this agrees with the local recipe, which therefore provides a simple

surgery prescription for the generic theory. In most of the remainder of this paper, we

focus on this generic situation.

3.4 Extension to general BFTs

In the previous section we introduced a graphic implementation of the backreaction of a

D-brane instanton on a face of a dimer. It is natural to extend this operation to the case in

which the starting point is a general BFT, i.e. with arbitrary genus and number of bound-

aries. Physically, the initial BFT might be the result of backreacting additional instantons,

which would change the genus, with boundaries, if present, generated by flavor D7-branes

along the lines of [33]. At this point, it is unknown whether all BFTs can be obtained by

this procedure. This is an interesting question that we postpone for future work.

Regardless of whether this operation can always be associated to a D-brane instanton,

it is interesting to add it to the list of basic transformations that act on general BFTs,

together with the condensation of 2-valent nodes, the square move and bubble reduction

(see [21] and references therein for detailed discussions of these operations and their physical

interpretation). In particular, it would be interesting to study its effect in the diverse

applications of BFTs, e.g. in the context of scattering amplitudes, where the bipartite

graphs are interpreted as on-shell diagrams [21, 29, 35, 36, 46–48].

Figure 22 illustrates this operation for a BFT on a disk. The initial graph is reducible,

namely it is possible to decrease the number of internal faces by a combination of square
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Figure 22. Instanton backreaction for a general BFT on a disk, which is left implicit in the figure.
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Figure 23. Backreaction of an instanton on an octagonal face of the dimer, i.e. k = 4.

moves and bubble reductions [21, 29]. The resulting non-planarity is reminiscent to the one

that is necessary to capture the full matroid stratification of the Grassmannian in terms of

on-shell diagrams, as discussed in [35].

3.5 BFT genus and instanton backreaction

Let us try to understand the change in genus on the BFT side in more detail, in the generic

case with no global identifications. The discussion below builds on and extends section 3.1.

It is phrased in a way that it easily applies to instantons on a 2k-sided face of the tiling,

for general k. For concreteness, we will focus on a k = 4 example.

Figure 23 shows the backreaction of the instanton on the dimer. This is the k = 4

analogue of figures 4 and 5. The face disappears and the nodes at its corners are recombined.

This can be achieved by introducing k − 1 bridges between white nodes (shown in blue)

and k − 1 bridges between black nodes (shown in red). We label the bridges to facilitate

their identification.

According to our earlier discussion, in the generic case the genus of the BFT Riemann

surface changes by ∆g = k − 1. We now device a simple graphical representation that

makes the topology of the extra handles manifest.

We can think about the change in the Riemann surface as the result of cutting a hole

on the original surface and gluing to it a genus k − 1 “handle” with an identical hole.4

The new edges associated with the bridges responsible for recombining the corners of the

instanton face are the only ones living on the handle. The rest of the bipartite graph

remains on the original Riemann surface.

4For brevity, we will use the term handle even for genus greater than 1.
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Figure 24. Change in the Riemann surface by gluing a ∆g = k − 1 = 3 handle.

Figure 24 shows the change in the Riemann surface for k = 4.

Figure 24 should be interpreted as follows.

• The green dashed loop indicates the cut at which the handle is glued to the Riemann

surface. It is very natural to place this cut at the boundary of the original face.

• A genus g Riemann surface can be represented by a 4g-gon with pairwise identification

of edges. Each of this pairs corresponds to one of the 2g fundamental cycles. In

figure 24, the handle has genus 3, so it is presented by the 12-sided dashed purple

polygon. This handle has a hole, whose boundary is the green loop, along which it

is glued to the original Riemann surface.

• As shown in figure 24, each of the fundamental cycles is used exclusively by one of

the new bridges. Thus it is natural to label the corresponding pair of sides in the

4g-gon with the same name of the corresponding bridge. These labels are shown in

purple in the figure. It becomes clear how this configuration avoids crossings between

bridges and how it is generalized to arbitrary k.

• The fact that each fundamental cycle is used by a single bridge makes the computation

of the toric diagram for the new BFT straightforward, as we will explain in the

coming section.

Figure 25 is identical to figure 24, but shows the original Riemann surface and the

handle, both with matching holes, separately.

4 The toric geometry of backreacted dimers

Since the backreacted theory is a BFT, its moduli space of vacua is a toric CY. This

geometry encodes important information about the gauge theory. Following the general
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Figure 25. a) Part of the dimer that remains on the original Riemann surface. b) The new edges

live on the genus k − 1 = 3 handle. Both surfaces have matching holes. They are glued along the

boundaries, which are shown in green.

discussion in [21], the moduli space of a genus g BFT is a CY (2g + 1)-fold, which has a

2g-dimensional toric diagram.5 Points in the toric diagram correspond to (collections of)

perfect matchings of the bipartite graph.

It is certainly straightforward to directly determine the toric diagram for the resulting

BFT (see e.g. [21]). However, it is instructive to understand how the new toric CY relates

to the original one. Below we do this in two steps: we first find the perfect matchings of

the final theory and then we determine their positions in the toric diagram.

4.1 Perfect matchings

In order to identify the new perfect matchings, it is convenient to condense all the bridges,

i.e. the corresponding 2-valent nodes. We will later reintroduce them to determine the final

toric diagram.

Let us decompose every perfect matching as pµ = pintµ + pextµ , where pintµ contains the

edges in pµ that belong to the instanton face, while pextµ contains all the other edges. After

backreacting the instanton and integrating out bridges, all internal edges disappear and

pµ → pextµ . Below we will study the conditions under which pextµ is a perfect matching of

the backreacted dimer. It is important to remark that since only external edges survive

backreaction, the pextµ ’s contain all possible perfect matchings of the final theory.

Removed perfect matchings. We refer to the perfect matchings that do not survive

this process as removed perfect matchings. It is possible to identify them as follows.

Condensing all bridges, the number of superpotential terms is reduced by (2k − 2).

Consequently, the number of edges in a perfect matching is reduced by (k − 1). Since all

surviving edges are external to the instanton face and the exterior content of the perfect

5Here we assume the BFT has no boundaries. It is straightforward to incorporate them to our discussion.
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matching remains unchanged, we conclude that this change must correspond to internal

edges in the perfect matching. Denoting the number of internal edges in pµ as E(pintµ ), we

conclude that iff

E(pintµ ) 6= k − 1 (4.1)

the perfect matching is removed, i.e. pextµ is not a perfect matching after backreaction.

It is straightforward to show that an equivalent condition is that perfect matchings

are removed iff pextµ contains more than one corner of the instanton face of a given color.

In such a case, pextµ is not a perfect matching after corner identification, since it contains

more than one edge terminating on some of the nodes.

4.2 The new toric diagram

In order to assign coordinates in the toric diagram to the surviving perfect matchings, it is

convenient to reintroduce the bridges, i.e. to integrate in the corresponding massive pairs

of edges.6 Our prescription will generate coordinates in Z2g.

For concreteness, let us assume we start from a dimer, i.e. from a BFT on T2.7 By

convention, we will identify the first two coordinates with those in the original toric di-

agram. They remain unchanged, provided that the instanton face does not intersect the

boundaries of the original unit cell. If the parent dimer is sufficiently large, it is always

possible to define the unit cell to avoid such crossings. This condition is satisfied in all the

explicit examples that we consider below. The remaining 2∆g coordinates are related to

the new cycles introduced with the handle, as discussed in section 3.5.

After reintroducing the bridges, we complete every surviving pextµ into a perfect match-

ing. This completion is unique. Given such a completion, there are two standard ap-

proaches for establishing its position in the toric diagram:

• Method 1 : each coordinate is given by the net intersection number between the edges

in the perfect matching, counted with orientation, and the corresponding cycle.8

• Method 2 : perfect matchings are mapped to oriented cycles by subtracting an arbi-

trary reference perfect matching. Coordinates correspond to winding numbers of the

resulting cycles or, equivalently, to the monodromies of the height function.

In the coming section, we will illustrate both of them in an explicit example. In practice,

the first approach is typically simpler to implement.

Figure 26 shows an example for phase 1 of dP3. The instanton is located at the

top-left face, which is a square, so it has k = 2. In figure 26a, we show the original

perfect matching under consideration. It survives in the final BFT because it satisfies

the condition that the number of edges in pintµ is equal to k − 1 = 1. In figure 26b we

add the bridges and the corresponding edges to form a perfect matching. In figure 26c,

6Of course, as already mentioned, it is also possible to directly find these coordinates, without introducing

the bridges [21].
7In the absence of global identifications, the new BFT has genus g = 1 + ∆g = k, and the toric diagram

lives in Z2k.
8By convention, we orient edges in the graph from white to black nodes.
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Figure 26. An example in phase 1 of dP3. a) The original perfect matching. b) Backreaction

including bridges. c) Explicit introduction of the corresponding genus 1 handle.

we implement the backreaction of the Riemann surface using the approach outlined in

section 3.5, introducing the genus k − 1 = 1 handle.9 We determine the corresponding

coordinates in the toric diagram from the intersections between the perfect matching and

the various fundamental cycles.

4.3 Coordinates from bridges

We discussed a detailed visualization of the new genus (k−1) handle in terms of a 4(k−1)-

gon and explained how to use this construction for determining the new coordinates of

perfect matchings. It is however desirable to introduce a simpler prescription in which the

coordinates can be directly read from the bridges. This is straightforward, since bridges are

in one-to-one correspondence with the new cycles/coordinates. To do so, we draw bridges

with the intermediate 2-valent nodes. By convention, we associate 0 and 1 contributions

to the corresponding coordinate to the two edges on each bridge. It is always possible to

avoid (−1) contributions, which can certainly be generated by the prescription introduced

in the previous section, by an appropriate choice of the relative position of the middle point

of bridges with respect to the corresponding boundaries of the fundamental domain of the

handle. Equivalently, this simply translates into a choice of the positive direction for each

of the cycles. In figure 27 we illustrate this rule for the example in figure 26.

The fact that new coordinates can only take values 0 and 1 constraints the BFTs that

can be generated by instantons. In particular, we cannot obtain BFTs with toric diagrams

that are “too wide” in more than two directions (the ones for the original dimer). This

argument applies even for multiple instantons.

4.4 Example: dP3

We now illustrate the ideas introduced in the previous section in an explicit example. Let

us consider phase 1 of dP3. Figure 28 presents the perfect matchings for this theory and

their positions in the toric diagram, computed from their intersections with the boundaries

of the unit cell. We also identify the removed perfect matchings with a cross. In this case,

9For genus 1 handles, we label the boundaries of the handle’s fundamental domain according to the

transverse axes. For k > 2 it is convenient to label them according to the corresponding bridges, as in

figure 25.
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x4 
1 0 

1 

p1 , (1,1,1,0) 

x3 

0 

(a) (b) 

Figure 27. a) Prescription for assigning new coordinates to the edges on the bridges. b) The

perfect matching of figure 26 and the resulting coordinates.

p1 , (1,1) p2 , (0,1) p3 , (-1,0) p4 , (-1,-1) 

p5 , (0,-1) p6 , (1,0) p7 , (0,0) p8 , (0,0) 

p9 , (0,0) × p10 , (0,0) × p11 , (0,0) × p12 , (0,0) × 

Figure 28. The 12 perfect matchings for phase 1 of dP3.

perfect matchings for all points in the original toric diagram survive.10 However, different

perfect matchings for a given point, in this case p7 and p8, have different lifts.

Figure 29 presents the surviving perfect matchings, p1, . . . , p8, in the backreacted

dimer. This example illustrates how to proceed in general: in order to complete per-

fect matchings we must include edges on the bridges, which in turn determine the new

coordinates in the final toric diagram.

The same perfect matchings are presented in figure 30, this time explicitly showing the

k − 1 = 1 handle in purple.

In figure 31 we map the perfect matchings to cycles, using p8 as reference. Since the

coordinates for p8 are (0, 0, 0, 0), the winding numbers agree with the coordinates previously

10Generically, however, there can be cases in which all the perfect matchings for a given point in the

original toric diagram disappear.
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p1 , (1,1,1,0) p2 , (0,1,0,0) p3 , (-1,0,0,0) p4 , (-1,-1,0,1) 

p5 , (0,-1,0,1) p6 , (1,0,1,1) p7 , (0,0,0,1) p8 , (0,0,0,0) 

Figure 29. Surviving perfect matchings. The new coordinates are determined by the edge content

on the bridges, using the convention in figure 27.

p1 , (1,1,1,0) p2 , (0,1,0,0) p3 , (-1,0,0,0) p4 , (-1,-1,0,1) 

p5 , (0,-1,0,1) p6 , (1,0,1,1) p7 , (0,0,0,1) p8 , (0,0,0,0) 

x
1 

x
2 

x
3 

x
4 

Figure 30. Surviving perfect matchings with the bridges and the genus 1 handle.

computed from the intersection numbers. Otherwise, they would simply differ by a constant

shift, given by the coordinates of the reference perfect matching.

The resulting toric diagram is given by the following matrix


p1 p2 p3 p4 p5 p6 p7 p8

1 0 −1 −1 0 1 0 0

1 1 0 −1 −1 0 0 0

1 0 0 0 0 1 0 0

0 0 0 1 1 1 1 0

 →


p1 p2 p3 p4 p5 p6 p7 p8

1 0 0 0 0 1 0 0

0 1 0 0 0 0 1 0

0 0 1 0 −1 −1 −1 0

0 0 0 1 1 1 1 0

 ,

(4.2)

where on the right hand side we have row-reduced it to give it a simpler form and verify

that all coordinates are indeed independent. We conclude the toric diagram is 4d, i.e. it

corresponds to a CY 5-fold.
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p1 , (1,1,1,0) p2 , (0,1,0,0) p3 , (-1,0,0,0) p4 , (-1,-1,0,1) 

p5 , (0,-1,0,1) p6 , (1,0,1,1) p7 , (0,0,0,1) p8 , (0,0,0,0) 

x
1 

x
2 

x
3 

x
4 

Figure 31. Cycles for the surviving perfect matchings using p8 as reference.

5 Seiberg duality

Seiberg duality admits a simple graphical implementation for BFTs (see [14] for the original

discussion for dimers and [21, 22] for general BFTs). More precisely, Seiberg duality acting

on a gauge group associated to a 4-sided face of a BFT corresponds to the so-called square

move, which is shown in figure 32, and generates a new theory which is also of BFT

type.11 It is natural to investigate the interplay between Seiberg duality and instanton

backreaction. There are three distinct possibilities, depending on whether Seiberg duality

acts on:

a) The instanton face. Since we do not wrap regular D-branes on the face occupied

by an instanton, there is no corresponding gauge group. By Seiberg dualizing the

instanton face, we mean performing a square move on it.

b) A face that is adjacent to the instanton one, i.e. which have some common edge(s)

with it.

c) A non-adjacent face.

Below we discuss the first two possibilities, comparing the results of backreaction in the

original and in the Seiberg dual theories. Case (c) is straightforward: since both instan-

ton backreaction and Seiberg duality are local operations in the BFT that at most affect

neighboring faces, it is clear that the two operations commute in this case.

5.1 Seiberg duality on the instanton face

Consider a theory with an instanton on a 4-sided face producing a (possibly higher genus)

BFT via its backreaction, as illustrated in figure 33. (a) and (b) show the backreaction

from the BFT perspective. (c) and (d) show the same process from the mirror viewpoint.

11Acting with Seiberg duality on a face with more than 4 sides leads to a dual theory that is not a BFT,

namely that is not described by a bipartite graph. While we will not consider this possibility in this paper,

it is perfectly fine and interesting from a physical standpoint.
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Figure 32. Square move implementing Seiberg duality on a 4-sided face of a BFT.

a) b) 

c) d) 

Figure 33. a) Local piece of a BFT with an instanton on a 4-sided face. b) Backreacted BFT, with

the identification of corner nodes indicated by bridges. c) The initial configuration in the mirror.

The instanton wraps the length 4 blue 1-cycle. d) Effect of backreaction in the mirror.

Let us now compare it with the theory obtained by first Seiberg dualizing the node

on which the instanton sits and then backreacting the instanton. This process is shown

in figure 34. The result is the same as the one obtained by backreacting the instanton on

the original theory. From the BFT point of view, we see that figure 34c is identical to

figure 33b. The field theory analysis is straightforward and can be directly inferred from

the bipartite graph, so we skip it.

5.2 Seiberg duality on an adjacent face

Let us now consider Seiberg dualizing a face that is adjacent to the one with an instanton,

as illustrated in figure 35. We indicate the dualized and instanton faces in green and blue,

respectively. We restrict the green face to be a square, so that we remain within the BFT

class of theories. The instanton face can have an arbitrary number of edges. Without loss

of generality, we take it to be an hexagon in this example.

On the first row of figure 35, we backreact the instanton on the original BFT. On the

second row, instead, we Seiberg dualize the green face before backreacting the instanton.
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a) b) c) 

c) d) d) e) 

Figure 34. a) Seiberg dual of the local configuration in figure 33a. b) Backreacted BFT, with

the identification of corner nodes indicated by bridges. c) After integrating out massive fields we

obtain figure 33b. d) The Seiberg dual configuration in the mirror. The instanton wraps the length

4 blue 1-cycle. e) Effect of backreaction in the mirror.

Backreaction 

SD 

Backreaction 

Figure 35. Seiberg duality on a face (green) adjacent to a D-brane instanton (blue). On the first

row we show the instanton backreaction on the original theory. On the second row, we first apply

Seiberg duality and then backreact the face originally occupied by the instanton.
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Phase 2
 

1
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Figure 36. Toric diagram for dP2 and quivers for its two toric phases. The two phases are

connected by Seiberg duality on node 2.

1 

2 

3 

5 

4 

Figure 37. Phase 2 of dP2. We will consider an instanton on face 4 (blue) and Seiberg duality on

face 2 (green).

More specifically, what we mean by this is that in the Seiberg dual we backreact an instan-

ton that occupies the same face as the original one. In section 5.2.3 we will elaborate on the

relation between the cycles wrapped by the instantons in both theories. While the details

of the final result are example dependent and not so important, a lesson from figure 35 is

that these two procedures generically lead to different BFTs. As illustrated below in an

example, such BFTs are in general not even Seiberg dual.

5.2.1 Different results: dP2

We first consider an example in which, as generically expected, the two operations produce

different BFTs. Figure 36 shows the toric diagram for dP2 and the quivers for its two

toric phases.

Let us start from phase 2, whose dimer is shown in figure 37. We will consider an

instanton on node 4 (blue) and Seiberg duality on node 2 (green). Notice that these two

faces are adjacent once the periodicity of T2 is taken into account. Below we study carefully

what happens when these two operations are implemented in different orders.

Backreaction first. Let us first backreact the instanton on face 4. The result is shown

in figure 38b.
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(a)  (b)  

Figure 38. Backreaction of an instanton on face 4 of phase 2 of dP2.

Figure 39. Quiver for the genus 2 BFT obtained by backreacting an instanton on face 4 of phase

2 of dP2.

It is impossible to avoid the crossing of bridges and we have ∆g = 1. It is a rather

straightforward, albeit tedious, exercise to explicitly embed the final BFT into a genus 2

Riemann surface. This is not very illuminating, so let us exploit the information at hand.

After integrating out massive fields in figure 38b we are left with 4 nodes and 7 edges.

Combined with the knowledge that this is a genus 2 BFT, we conclude it has a single face.

The 5 faces of the original theory get combined into a single one wrapped over the genus 2

Riemann surface. The corresponding quiver consists of a single gauge group and 7 chirals

transforming in the adjoint representation, as shown in figure 39. Its superpotential can be

read from the bipartite graph and contains two cubic and two quartic terms. This theory

is Model 7.4 in the classification of [27].

Seiberg duality first. Starting from phase 2 of dP2 and acting with Seiberg duality on

node 2 first, we obtain phase 1, whose quiver is shown in figure 36.

The corresponding dimer, with an instanton on face 4, is presented in figure 40 (a).

The instanton backreaction is shown in (b). Face 4 has six sides, i.e. k = 3, so we would

naively expect the genus of the BFT to change by ∆g = 2. Interestingly, as shown in

the figure, global identifications make it possible to pick bridges such that there are no

crossings. As a result, we obtain a new genus 1 BFT. Integrating out massive chiral fields

and rearranging the graph, we obtain (c), which is the dimer model for the suspended pinch

point (SPP) [14]. The quiver and toric diagram for the SPP are shown in figure 41.

It is clear that this theory is different from the one obtained by backreacting the

instanton first. In fact it is not even Seiberg dual to it, since the number of gauge groups,

BFT genus and moduli space (even its dimension) are different.
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dP2 phase 1 SPP 

(c)  

Figure 40. Instanton backreaction from phase 1 of dP2 to SPP.

(b)  

1 

2 3 

(a)  

Figure 41. a) Toric diagram and b) quiver for the SPP.

5.2.2 Same result: F0

While generically backreaction in the original and the Seiberg dual theories do not lead to

the same BFT, this can occur in simple models. This is the case for F0, as we now explain.

As shown in figure 42, we will start from phase 1 and consider an instanton on face 1 and

Seiberg duality on face 4. Backreaction of the instanton leads to the conifold, as discussed

in section 3.3.1 and summarized in the top row of the figure. Dualizing face 4 first, we

obtain phase 2 of F0. In this case, backreaction of the instanton on face 1 also leads to

the conifold.

5.2.3 Seiberg duality and D-brane charges

We can understand in further detail why instanton backreaction and Seiberg duality on an

adjacent face generically do not commute by considering how Seiberg duality transforms

the cycles wrapped by different stack of D-branes or, equivalently, their D-brane charges.

Figure 43 shows the local configuration we are interested in. Seiberg duality will act

on face a. The four adjacent faces are labeled b, c d and e, with the D-brane instanton

located on face e. We also explicitly show the arrows representing the bifundamental chiral

fields connecting a to the four adjacent faces. Without loss of generality, we assume that

the chiral field connecting a and e goes from a to e.12

12As usual, the orientation of all the arrows can be inverted by flipping the convention for fundamental

and antifundamental representations.
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Figure 42. Starting from phase 1 of F0, we compare the backreaction of an instanton on face 1

before and after Seiberg duality on the adjacent face 4.

a d e 

b 

c 

Figure 43. Local configuration showing a face to be Seiberg dualized (green) which is adjacent to

a D-brane instanton (blue).

The intersection numbers between branes indicate the number of arrows connecting

them, with their orientation determined by the sign. In this case, we have

([b] · [a]) = 1 ([d] · [a]) = −1

([c] · [a]) = 1 ([e] · [a]) = −1
(5.1)

Acting with Seiberg duality on [a], the different branes transform as follows (see

e.g. [49, 50]):

[a′] = − [a]

[b′] = [b] + ([b] · [a]) [a] = [b] + [a]

[c′] = [c] + ([c] · [a]) [a] = [c] + [a]

[d′] = [d]

[e′] = [e]

(5.2)

The orientation of the brane for the dualized gauge group is reversed. The branes connected

to incoming flavors pick a contribution proportional to [a] and the relative intersection num-
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bers. Finally, the branes connected to outgoing flavors remain unchanged. In particular,

the instanton [e] is invariant.13

Let us now consider the new intersection numbers between the instanton and other

D-branes. From (5.2),

(
[
e′
]
·
[
a′
]
) = −([e] · [a]) (5.3)

and
([e′] · [b′]) = ([e] · [b]) + ([e] · [a]) = ([e] · [b])− 1

([e′] · [c′]) = ([e] · [c]) + ([e] · [a]) = ([e] · [c])− 1
(5.4)

As a consequence of these new intersections, the instanton on the dual theory breaks a

different U(1) subgroup of the global symmetry. Hence, as expected, after introducing the

instanton generated field theory operator we do not obtain the Seiberg dual of the original

theory plus instanton.

6 Multi-instantons and complex deformations

Our previous discussion has focused on the case of single instantons, namely those asso-

ciated to a single face in the original theory. Although the discussion of the richer class

of general multiple instantons is left for future work, we would now like to delve into a

particularly interesting class, corresponding to (generically) multiple instantons triggering

complex deformations of the original geometry.

The effect of backreaction is to pinch off the cycle in the mirror Riemann surface Σ

wrapped by the D-brane instanton, which in turn triggers the recombination of the D-

branes that intersect it. Interestingly, it is sometimes possible to wrap the instanton on

a cycle such that shrinking it to zero size splits Σ into two disconnected components Σ1

and Σ2.
14

Since backreaction preserves the original punctures, whenever such decomposition oc-

curs, the punctures get distributed between Σ1 and Σ2. The mirror Riemann surface cor-

responds to thickening the (p, q)-web dual to the toric diagram. Hence, the Σ → Σ1 + Σ2

splitting corresponds to decomposing the web into two subwebs in equilibrium, i.e. webs

for which the (p, q) charges of external legs sum up to zero. Such decomposition of the

web represents a complex deformation of the underlying CY3 [51, 52], which generalizes

the well-known deformation of the conifold [53]. Generalizing the conifold case, such de-

formations can be triggered by the so-called deformation fractional branes in the general

classification of [54]. From a quiver perspective, fractional branes correspond to anomaly

free modifications of the ranks of gauge groups, i.e. of faces in the dimer. Deformation

fractional branes are such that, at low energies, the dynamics of the gauge theory on them

is (possibly partial) confinement, which translates into the complex deformation of the

associated CY3.

13In the convention that inverts all the arrows in the quiver, the roles of (b, c) and (d, e) are exchanged.

In particular, d and e are transformed while b and c stay the same. The final results are independent of

this choice.
14This is the simplest possibility. Splitting Σ into more components is also possible.
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Figure 44. Web diagrams of the two possible complex deformations of dP3. The dashed segments

indicate S3’s.

Recently, it was noted that precisely the same deformation is achieved if the fractional

branes are replaced by D-brane instantons, namely if we wrap D-brane instantons over the

corresponding cycle [17]. Equivalently, this corresponds to locating the instanton on the

faces of the dimer associated to the fractional branes. This is perhaps not surprising, since

D-brane instanton effects in various CY 3-folds can be understood as the IR dynamics of

theories with duality cascades generated by fractional branes [55–57].

In order to illustrate these ideas, let us consider the dP3 theory. This geometry ad-

mits two independent complex deformations, which are shown in figure 44 in terms of

(p, q)-webs. In the context of deformation fractional branes, these two deformations were

considered in [51]. When generated by D-brane instanton backreaction, they were studied

in [17], focusing on the mirror perspective. Below we discuss how they are captured by

implementing instanton backreaction directly at the level of the dimer.

It would be interesting to investigate whether D-brane instantons that start from BFTs

of genus different from 1 can lead to similar deformations of the corresponding toric CYs.

From dP3 to the conifold. Let us first consider the deformation in figure 44b, that

goes from dP3 to the conifold. Figure 45 goes through the process step by step. In order to

achieve this deformation, the D-brane instanton must wrap a cycle that covers faces 2 and

5 of the dimer, as shown in (a). The instanton backreaction is shown in (b). Interestingly,

the blue bridges form a “necklace” that is disconnected from the rest of the graph and that

disappears at low energies since it consists entirely of massive fields. Removing the blue

bridges we obtain (c). After integrating out the massive fields in the red bridges, we obtain

(d), which is the dimer for the conifold.

From dP3 to C3. We now consider the deformation from dP3 to C3 of figure 44c. In this

case, the instanton must be placed on faces 2, 4 and 6 as shown in (a). The backreaction

is presented in (b). The red bridges form a hexagonal lattice of massive fields, which is

decoupled from the rest of the graph and disappears at low energies, leaving the configura-

tion in (c). Blue bridges form triangles that collapse into single white nodes when massive

fields are integrated out. The final result (d) is the dimer for C3.
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Figure 45. Instanton backreaction from phase 1 of dP3 to the conifold.
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Figure 46. Instanton backreaction from phase 1 of dP3 to C3.
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dP2 phase 2 SPP 

Figure 47. Instanton backreaction from phase 2 of dP2 to SPP.

7 The inverse problem

We have seen that starting from a BFT and a choice of instanton we generate a second

BFT. It is interesting to consider the inverse problem, namely: given a BFT and assuming

it arises from an instanton backreaction on a parent BFT, can we reconstruct the latter?

In general, two different BFTs with two different instantons can produce the same BFT

upon backreaction.15 The underlying toric geometries can be used as a guide, following the

transformation of the toric diagrams discussed in section 4. Below we present an explicit

example, in which the same BFT is obtained in two different ways.

dP2 to SPP. Let us first consider phase 2 of dP2, which we already discussed in the

previous section. Its toric diagram and quiver were given in figure 36. Let us now consider

an instanton on face 2, as shown in figure 47a. The backreaction of this instanton is

presented in figure 47b, where we have eliminated the instanton face, added the bridges

and given new labels to the resulting faces. Interestingly, as shown in the figure, global

identifications in this model make it possible to avoid bridge crossings and remain on genus

1. Integrating out massive chiral fields and rearranging the graph, we obtain figure 47c,

the dimer for the SPP.

PdP2 to SPP. Let us now consider PdP2, whose toric diagram and quiver were presented

in figure 7. Comparing figures 7 and 36, we see that the quivers for this theory and for

the phase 2 of dP2 we have just considered are very similar, differing only by a pair of

chiral fields associated to a bidirectional arrow connecting nodes 2 and 5. However, the

superpotentials are rather different, as encoded in the corresponding dimer models.

In section 3.2.1 we considered the effect of an instanton on face 4. Let us now study,

instead, an instanton on face 2, as shown in figure 48. (a) shows the dimer with the

instanton. In (b), we show the instanton backreaction and have relabeled the surviving

faces of the dimer. Unlike what happens for an instanton on face 4, when the instanton is

on face 2 global identifications make it possible to avoid bridge crossing without increasing

the genus of the BFT. After integrating out massive fields we obtain (c), which is the dimer

for the SPP.

15For simplicity, we restrict to single instantons. Our discussion extends straightforwardly to multi-

instantons and even theories with different numbers of instantons.
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Figure 48. Instanton backreaction from PdP2 to SPP.
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Figure 49. The SPP can be obtained from backreaction of instantons on dP2 and PdP2.

We conclude that, as summarized in figure 49, we can reach the BFT for the SPP by

backreacting D-brane instantons on either dP2 or PdP2.

We have deliberately made the similarities between phase 2 of dP2 and PdP2, and

between the instantons we considered, as manifest as possible. However, it is important to

emphasize that, in general, instantons on significantly different theories can produce the

same BFT.

8 Conclusions

In this paper we have provided a simple description of the effect of D-brane instantons in

systems of D3-branes at toric CY3 singularities, in terms of a combinatorial recipe in the

corresponding bipartite dimer diagram. Interestingly, the prescription brings generically

higher-genus BFTs into the game. In this sense, it provides a new physical interpretation

for the latter, which adds to those already in the literature, and in fact the first directly

relating BFTs to realizations in string theory.

The combinatorial recipe can be generalized to arbitrary BFTs, and provides a new

operation relating BFTs on Riemann surfaces generically of different genus. It would be

interesting to explore the implications of this operation in the interpretation of bipartite

graphs as describing on-shell scattering amplitudes.

Further interesting directions for future work include:

• Backreaction effects of non-compact instantons, corresponding to Euclidean D3-

branes on non-compact 4-cycles. Their proper understanding should connect with
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the general considerations in [58].

• Systematic study of instanton effects on the D3-brane systems with flavor D7-branes.

Since the latter provide the natural arena for the string theory embedding of (low-

genus) BFTs with boundaries [33], the introduction of handles via D-brane instan-

ton backreaction presumably allows the embedding of the general class of BFTs in

string theory.

• We have taken first steps towards the discussion of multi-instanton backreaction,

recovering and explaining earlier results in the case of complex deformations. We

expect a systematic discussion of general multi-instanton backreaction to reveal other

interesting geometric operations.

• The higher-dimensional toric data obtained for the higher-genus BFT resulting from

instanton backreaction on a CY 3-fold D-brane gauge theory corresponds to a higher-

dimensional geometry, whose physical realization is still lacking. It would be interest-

ing to identify physical objects potentially related to this higher-dimensional variety,

and its role in the non-perturbative dynamics of the D-brane system.

We hope to come back to these and other related questions in future work.
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