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1 Introduction

Recent advances in the understanding of massive spin-2 fields has lead to a renewed inter-

est in their study [1–4] (for a recent review, see [5]). It is now well-understood that there

exists a tree-level, ghost-free Lagrangian description of a Lorentz-invariant, self-interacting,

massive spin-2 field. This Lagrangian has connections to exotic scalar field theories, known

as Galileons, that modify the intermediate IR behavior of the theory [6]. There are many

interesting features of massive spin-2 fields, but it is not yet known if they are consistent
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above their intrinsic strong-coupling scale. Methods for addressing the quantum consis-

tency of these theories, if possible, are only just beginning to be developed [7–10], and

it is an open question of whether these theories admit a standard local UV completion,

or some alternative. For the purposes of this paper, we will remain agnostic to their UV

consistency, and work at the level of the consistency of the low energy effective theories.

A standard question in field theory is to ask whether it is possible to enhance the

symmetries of the theory to include supersymmetry. Since massive gravity is an interact-

ing theory of a single massless spin 2 field, this amounts to asking whether it is possible

to have an interacting theory of a single supermultiplet containing a single spin 2 field.

Incorporating supersymmetry into physical theories has a history of leading to deep in-

sights, many of which seem difficult to discover any other way. The quantum structure of

supersymmetric theories are simplified because quantum corrections are required to obey

the non-anomalous symmetries of the action. While internal symmetries reduce some com-

plexity, the true simplifications come from the spacetime symmetries from which the repre-

sentations of particles descend (e.g. the massive spin-2 representation). Enhancing massive

gravity to include supersymmetry may provide some insight into its quantum consistency.

This paper contributes to this program by identifying the correct linearized massive

supermultiplet, that previously found by Zinoviev [11], and expanding the dimensional

deconstruction program to preserve a single 4-D supercharge from a 5-D theory. In the

introduction, we review the salient features of supersymmetry and massive gravity. In

the second section, we discuss our conjectured non-linear theory and explore constraints

coming from SUSY and the Vainshtein philosophy, and derive that the Zinoviev theory [11],

of a massive superspin- 3
2 multiplet is the correct candidate linear theory. We conclude the

second section by reviewing the Zinoviev theory. In the third section, we develop an

extension of the deconstruction program that works to produce the correct fermion mass

terms fpr N = 1 SUSY. As a proof of principle, we use deconstruction to generate the

D = 4, N = 1 super-Proca theory from D = 5, N = 2 super-Maxwell theory, whose

supercharge explicitly descends from the higher dimensional supercharge. In the fourth

section, we use deconstruction on the case of linearized D = 5, N = 2 supergravity to obtain

the N = 1 Zinoviev theory. This sets up a concrete method for deriving candidate non-

linear Lagrangians for the self-interacting, supersymmetric spin-2 fields, but we leave their

explicit construction for future work. Finally let us comment on the relation of this work to

earlier approaches. References [12] and [13] give a proposal for a supersymmetric version of

massive gravity. However, the bosonic theory is not the one considered here, but rather that

of [14] which nonlinearly contains ghosts. Reference [15] gives a superfield generalization

of the ghost-free massive gravity Lagrangian. While this maintains local sypersymmetry,

it does not necessarily ensure a vacuum with global supersymmetry, which is necessary to

be viewed as an interacting theory of a single spin 2 supermultiplet. A more recent work

uses a constructive point of view to attempt to construct the leading interactions for the

supermultiplet considered here [16]. In closely related work [17] performs an analysis of

the supersymmetric partially massless spin states that arise on anti-de Sitter which are

effectively special limits of the massive spin supermultiplets with enhanced symmetries.
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1.1 Massive spin-2 fields and the Vainshtein philosophy

Massive spin-2 fields have a long history in physics, with the linear theory going back to

the 1939 paper by Fierz and Pauli [18, 19]. This theory consists of supplementing the

linearized Einstein-Hilbert action with a specific, tuned mass term:

Lmass =
1

2
m2
(
hµνh

µν − (hµ
µ)2
)

=
1

2
m2δµναβhµ

αhν
β , (1.1)

where in the last equality we have employed generalized Kronecker delta notation (see ap-

pendix C for details). This specific combination of the mass terms comes from imposing the

absence of ghosts in the linear theory, which is easiest to see in generalized Kronecker delta

form because the crucial anti-symmetry is made manifest. In accordance with Wigner’s

classification, this theory propagates 5 healthy propagating degrees of freedom, which one

may juxtapose to the 2 propagating degrees of freedom of GR.

It was discovered later in the 70’s that there was a peculiar feature of this theory,

namely that if one used massive gravitons to propagate a gravitational force between two

sources, one discovers an enhanced gravitational force even in the limit that m→ 0 [20, 21].

This can be seen, for instance, if one computes the graviton exchange amplitude from a

point source of mass M to generate a potential for a test mass. One finds two distinct

gravitational potentials for linearized GR and for massive gravity as m→ 0:

VFP(r) = −4

3

M

M2
Pl

1

8πr
(1.2)

VLin EH(r) = − M

M2
Pl

1

8πr
(1.3)

This discontinuity exists because of the extra degrees of freedom of the massive spin-2 field,

which do not disappear in the limit m→ 0. The five degrees of freedom can be decomposed

into helicity states: two helicity-2 modes that cause their normal amount of gravitational

force, two helicity-1 states that decouple from the point source, and finally a single helicity-

0 mode that is directly responsible to the additional exchanged force between the two point

sources. From this, one might guess that massive gravity could never be relevant to the

real world because of solar system tests implications of this fifth force.

The resolution –which comes for free– to this problem was noted by Vainshtein: this

analysis is linear, and does not take into account the self-interactions for the massive

graviton. Vainshtein noticed that adding any self-interactions for the graviton would cause

the linear theory to never be valid in the limit that r � m−1 (Using natural units, ~ =

c = 1). The specific breakdown occurs at a scale, called the Vainshtein radius, which is a

theory-dependent function of the graviton mass, MPl, and the mass of the point source.

This perspective, that non-linear, strong-coupling physics comes into the theory to restore

continuity with (linearized) General Relativity forms the basis of the modern perspective

on massive gravity [22] (for a recent review, see [5, 23]).

It was pointed out by Boulware and Deser, however, that one is not allowed to add in

generic mass terms and self-interactions to Fierz-Pauli without reintroducing the ghostly

6th degree of freedom even if it was removed by the Fierz-Pauli tuning at linear level [24]
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(also see related issues [25–27]). This does not preclude, however, that a specific set of

mass terms with a non-linear analog of the Fierz-Pauli tuning to remove the non-linear

Boulware-Deser ghost. Such a theory for a self-interacting, ghost-free massive spin-2 field

was recently discovered in [2, 3] and robustly proven to be free of the BD ghost [28–30].

1.2 Deconstruction and ghost-free, self-interacting massive spin-2 fields

The dimensional deconstruction program [31–34] exploits the expectation that lower dimen-

sional massless and massive representations can be made to sit inside a higher dimensional

representation, and is a procedure for deforming higher dimensional theories into lower

dimensional massive theories according to the decomposition of the representations.

The procedure is very similar to 5-D Kaluza-Klein compactification [35–37], and repre-

sents a specific kind of dimensional reduction (although the resulting theory has no higher

dimensional interpretation). In dimensional reduction, there is an extra dimension, y, iso-

lated from the 4 other directions xµ which has an inverse length scale M . Compactification

proceeds by treating the derivatives/integrals of a 5-D field Φ involving the fifth dimension

through Fourier transformations:

Φ(x, y) =

∞∑
n=−∞

ei2πnyMΦn(x) ,

∂yΦ(x, y) = M
∞∑

n=−∞
i2πneinyMΦn(x) ,

∫
dyΦ(x, y)Ψ(x, y) =

1

M

∞∑
n=−∞

Φn(x)Ψ−n(x) . (1.4)

Instead of keeping the extra dimension as a physical dimension, deconstruction outright

deforms the derivative in the extra dimension to some linear operator in some new ‘site’

basis, and abandons the interpretation of being a higher dimensional theory. Thus, the

deformation is a substitution of the form [31, 38–41]

Φ(x, y)→ ΦI(x) ,

∂yΦ(x, y)→M

N∑
J=1

∆IJΦJ(x) ,

∫
dyΦ(x, y)Ψ(x, y)→ 1

M

N∑
I=1

ΦI(x)ΨI(x) , (1.5)

where the null eigenspace of ∆ represents the massless modes and the non-null eigenspace

yields the massive modes where the eigenvalues yield the mass of the modes. In other words

deconstruction considers the 5th dimension to be a lattice. The deconstructed theory is

then fundamentally a set of interacting 4 dimensional theories that may retain a number of

properties of its five dimensional starting point. The price one generically pays, is the lack

of a Leibniz rule and an integration by parts identity, which could break nice or necessary

properties of the higher dimensional theory –usually symmetries. The most commonly used
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deconstructed derivative is simply, ∆Φ1 ∼ M(Φ2 − Φ1). This will be discussed further in

section 3, but for now we take it as an ansatz.

It was recently shown that the ghost-free, self-interacting theory of massive gravity

may be obtained via the deconstruction procedure applied to 5-D General Relativity [41].

We briefly review this here. Consider the special case of 5-D pure gravity to 4-D massive

gravity (or generically multi-gravity). Pure 5-D General Relativity, here in the Einstein-

Cartan formulation has the following action:1

SEC[E,Ω] =
M3

5

6

∫
εABCDERABECEDEE , (1.6)

where EA is the vielbein (fünfbein) and ΩAB is the 5-D spin connection, which sits inside

the Riemann tensor as

RAB = dΩAB + ΩA
•Ω
•B . (1.7)

Upon integrating out the auxiliary field ΩAB, we obtain the torsion condition

dEA + ΩA
BE

B = 0 . (1.8)

The simplest form of deconstruction proceeds by exhausting all gauge symmetries; we

gauge fix2 such that

Eµ
a = eµ

a , Ey
a = Eµ

4 = 0 ,

Ey
4 = 1 , Ωy

ab = 0 ,
(1.9)

which when substituted into (1.8), imposes the following conditions on the spin connection

Ωy
a4 = 0 , (1.10)

Ωµ
a4 = Kµ

a = ∂yeµ
a , (1.11)

Ωµ
ab = ωµ

ab , (1.12)

where in the last line, ωµ
ab is the usual 4-D spin connection, and is a function of the 4-D

vierbein in the usual manner. Substituting this into the action, we obtain

SDec =
M3

5

4

∫
dy

∫ (
Rab[ω] +m2KaKb

)
ecedεabcd . (1.13)

Applying a simple 2-site model, i.e. two vielbein ea and fa, with the discretization operator

as the replacement for the y derivative, which is

∂ye
a → m

(
ea − fa

)
, (1.14)

1Here we are using p-forms where the wedge product is implied, i.e. A ∧B ≡ AB.
2This gauge choice assumes that the proper size of the extra dimension (the radion) is fixed. Turning on

the radion would correspond to the less restrictive choice E4
y = eφ(x). This is an additional global constraint

that appears to be an essential part of the deconstruction procedure. Beyond this, the remaining gauge

choices may always be chosen locally, and for a sufficiently small extra dimension would also be expected

to be valid globally. It remains an open question whether the deconstruction procedure can be applied

successfully with a less restrictive gauge choice.
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and taking fa to be non-dynamically (by sending its Planck mass to infinity), so that

fa = δa is the Minkowski vacuum, we obtain the ghost-free, self-interacting massive gravity:

SdRGT =
M2

Pl

4

∫ [
Rabeced +m2

(
ea − fa

)(
eb − f b

)
eced

]
εabcd , (1.15)

subject to a constraint arising from gauge-fixing

Ωy
ab = Kaeb = 0⇒ eafa = 0 , (1.16)

which is the Deser-van Nieuwenhuizen condition (aka “symmetric vielbein” condition) [42–

44]. For a full discussion of how to restore diffeomorphisms and local Lorentz symmetries

and how to obtain to the metric formulation of the theory, see [45, 46].

This demonstrates cleanly that a ghost-free, non-linear extension of massive gravity

can be obtained from deforming an ordinary 5-D Einstein gravity theory, which suggests

a surprising relationship between ghost-free massive gravity and GR. This surprising cor-

respondence suggests that a non-linear theory of self-interacting, massive supermultiplet

may be obtainable from a similar procedure.

2 Survey of massive supermultiplets containing spin-2 fields

2.1 Supersymmetry and supergravity

We begin this section with a brief discussion of supergravity; note that our conventions for

fermions are given in the appendix A. It is well-known from the Coleman-Mandula theo-

rem that the kinds of linearly-realized symmetries present in a QFT are very restricted.

Although standard QFT only makes use of the Poincaré group and internal groups, the sym-

metries of field theories may be extended to include fermionic generators (supercharges),

Qi, and R-symmetry charges R (which rotate the supercharges). Together they must obey

the super-Poincaré algebra:

{Qi, Q̄j} = 2iγaPa δ
ij , (2.1)

[Qi, R] = iγ5Q
i , (2.2)

in addition to the usual Poincaré commutation relations and all other (anti-)commutation

relations vanishing (for recent references on supersymmetry and supergravity, see [47–49]).

It is well-known that GR is the unique interacting theory of a massless spin-2 field [50–54],

and in Einstein-Cartan formulation the vielbein and spin connection can be viewed as

the gauge fields for a local Poincaré group [55, 56]. Unlike normal gauge theories, the

Einstein-Hilbert action is manifestly invariant under the local Lorentz group, but realizes

the translations as diffeomorphisms, rather than as standard gauge transformations.

In the same way ‘supergravity’ theories may be viewed as interacting theories of mass-

less supermultiplets, or gauge theories of a local super-Poincaré group. The local super-

Poincaré group has fermionic generators, which form the gauge redundancies for the mass-

less spin-3
2 fields, and the remaining bosonic generators form the gauge redundencies of

– 6 –
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its massless bosonic superpartners [57–59]. To linear order, the action for supergravity is

given by the kinetic terms for the graviton, hµν and it’s superpartner the gravitino, ψµ, i.e.

S[h, ψ] =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − i

2
ψ̄µγ

µνρ ∂νψρ

]
. (2.3)

This is invariant under N = 1 supersymmetry transformations

δhµν = iε̄γ(µψν) ,

δψµ = γab∂ahbµε . (2.4)

There are some immediate structural changes to the Lagrangian for the supermultiplet

if the graviton is given a mass, most notably in the form of change to the superspin-Y

representations of the super-Poincaré algebra. While in four dimensions, massless repre-

sentations always come in pairs of 2, the massive representations always come in pairs

of 4, i.e.  Y + 1
2

Y Ŷ

Y − 1
2

 , (2.5)

because there are twice as many helicity mixing operators in the supercharge (for reviews,

see [49] and [47]). One operator increments and the other decrements the helicity by 1/2

to build the full super representation, and they transform oppositely under the axial U(1)

R-symmetry. Thus, Y and Ŷ transform oppositely under R-symmetry.

2.2 A survey of the candidate N = 1 supermultiplets

There are precisely three supermultiplets that contain a massive spin-2 field 2

3/2 3/2

1

 ,

 5/2

2 2

3/2

 ,

 3

5/2 5/2

2

 . (2.6)

There is only one supermultiplet which does not contain higher spin fields and thus

will not require higher spin interactions, which is the superspin- 3
2 multiplet containing

(2, 3/2, 3/2 , 1). Therefore, assuming that we do not want an infinite tower, we are looking

for the largest spin being 2. Thus we are lead to conjecturing a theory with one massive

spin-2 field, two massive Majorana spin- 3
2 fields, and one massive spin-1 field. The dof

counting then goes 4 + 4 = 5 + 3, since a massive Majorana spin- 3
2 has 4 dof, a massive

spin-2 has 5 dof, and a massive spin-1 has 3 dof in four dimensions. The question we would

like to address is whether there is a consistent interacting theory of a single superspin- 3
2

multiplet.

2.3 Properties of the conjectured fully non-linear theory

Although we shall only be concerned here with the linear theory, looking ahead one may

understand a large amount about the conjectured non-linear theory merely by analyzing

– 7 –
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various scaling limits of the theory, and derive consistency conditions from this. The

theory without matter couplings is expected to have only two scales, the first being the

gravitational coupling constant MPl and the second scale being the mass of the graviton

itself m. The Vainshtein interactions prohibit a direct scaling m → 0, since this limit is

divergent due to interactions in the Lagrangian scaling as(
1

MPlm2

)n
O4+3n . (2.7)

Thus from the perspective of the bosonic theory, there are only two limits of the theory

that we have good reason to believe that we understand, illustrated in figure 1. The first

is the decoupling limit:

m→ 0 , MPl →∞ ,

MPlm
2 = Λ3

3 , finite . (2.8)

In the case of pure massive gravity, this limit leads to a massless spin 2 field decoupled from

an interacting theory of a massless vector field and a massless scalar Galileon theory [1–

3, 6, 45, 60]. In the supersymmetric case, we expect a similar limit to exist. Since a massive

spin-2 supermuliplet decomposes in the massless limit into one massless N = 2 spin-2

supermultiplet, one massless spin-1 N = 2 supermultiplet; we expect that at least one of

the spin-0 and spin-1 fields that arise in the later to have ‘Galileon’ interactions similar to

the non-supersymmetric case. The pair of spin- 3
2 fields, being massless in this limit, must

propagate two full local supersymmetries, which gives rise to supersymmetry uplifting in

the m → 0 limit. We anticipate that as in the non supersymmetric case, the massless

spin-2 supermultiplet decouples, and simply gives a copy of linearized N = 2 supergravity.

The remaining vector-scalar theory may be viewed as an N = 2 Supersymmetric extension

of a Galileon theory (coupled to a Maxwell field). This will be an interesting limit of the

non-linear theory, but until there is a method to construct the fully non-linear theory and

take this limit, not much else can be said, thus we move onto the second limit.

The second important limit is the where we drop all gravitational self-interactions:

MPl →∞ , (2.9)

but we keep the mass as a free parameter. This limit simply linearizes the theory, and we

will be led to a linear N = 1 supersymmetric theory of a massive spin 2 supermultiplet

whose form will be outlined below.

In this paper, we will construct a method for deriving the N = 1 linearized massive

theory through deconstruction, which we hope to be generalizable to the non-linear theory.

Before finishing off this section, we will mention an important point regarding the fully non-

linear theory, which is that it has a pair of spontaneously broken supersymmetries. To take

the massless limit, these local symmetries must be reintroduced as Stückelberg fields. The

situation is an extension of the fact that massive gravity on Minkowski respects a global

Poincare symmetry but breaks local diffeomorphisms. In the massive case, to make the

N = 1 symmetry local we will need to introduce an additional vielbein and gravitino which

– 8 –
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Interacting Mas-

sive superspin-
3
2 multiplet

N = 2 Linear SUGRA+

N = 2 SUSY Galileon

N = 1 Zinoviev

N = 2 Linear SUGRA+

N = 2 spin-1 supermultiplet

m → 0

Mpl → ∞
Λ3 = m2Mpl

Mpl → ∞
m → 0

Λ3 → ∞

Figure 1. The scaling limits of the conjectured interacting theory of a massive supermultiplet.

Notice that each limit of the theory ends (when m = 0) with N = 2 SUSY, even though the

original massive theory only has N = 1.

act as the gauge fields for this symmetry. This will lead to a locally supersymmetric theory

of bigravity describing a massive supermultiplet interacting with a massless supermultiplet.

In principle this is straightforward to accommodate in the non-linear theory through the

deconstruction framework, just as it is know that we can obtain multi-vielbein gravity

models from deconstruction [41, 42].

2.4 The Zinoviev theory of massive N = 1, Y = 3
2

supermultiplets

The second scaling limit is the linearized limit, i.e. MPl →∞. The appropriate supersym-

metric quadratic Lagrangian describing this limit has been given explicitly by Zinoviev [11],

hence we will refer to it as the N = 1 Zinoviev theory. Since we expect to have a super-

multiplet containing 1 massive spin-2 field, 2 massive spin- 3
2 fields, and 1 massive spin-1

field, several key things must be specified in the linear theory:

1.) The fermions can have different kinds of mass terms, i.e. Dirac or Majorana.

2.) SUSY mandates that certain spins in the supermultiplet must be PT -odd.

We will address these issues in reverse order. Although there are group-theory based

arguments for the PT -charge assignments in the supermultiplet, we will make a simple

– 9 –
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observation which will gives the correct answer. The observation is to perform a helicity

decomposition on the massive spin states (i.e. the decoupling limit), noting that all of the

helicities from the massive state must share the same PT -charge assignment. The massive

spin-2 field h̃µν decomposes into the helicity-(±2) states, the helicity-(±1) states, and a

helicity-0 state (i.e. hµν , Bν , π). The two massive spin- 3
2 fields ψ̃µ

i decompose into two

helicity-(±3
2) states and two separate helicity-(±1

2) states (i.e. ψiµ, χ
i, where i labels the

two massive spins). Finally, the massive spin-1 field Ãµ decomposes into the helicity-(±1)

states and a helicity-0 state (i.e. Aµ, ϕ).

Then in this limit, we know that one of the χi along with π and ϕ must form a

Wess-Zumino multiplet, and therefore one of the scalars must be a pseudo-scalar. This

means that either the massive spin-2 state or the massive spin-1 state must be PT -odd.

Supergravity maintains that the helicity-2 states are not axial. Therefore, Aµ must be an

axial, massive spin-1 field.

As for the first question, we know that each fermion is oppositely charged under R-

symmetry, thus the R-symmetry transformation is

(
ψµ

1

ψµ
2

)
→

(
eiθγ5 ψµ

1

e−iθγ5 ψµ
2

)
, (2.10)

⇒ ψµ
i →

(
eiθγ5η

)i
j ψµ

j . (2.11)

Then, the task becomes to find mass terms consistent with R-symmetry invariance; we find

we have only one correct mass term. Structurally at quadratic order, the only allowed (i.e.

a Fierz-Pauli tuning to remove ghosts) form of the mass terms are:

∫
d4x

(
1

2
mψ̄µ

iγµνAijψν
j

)
, (2.12)

where the antisymmetric γµν projects out the ghost. Of the two potential mass terms,

the Majorana mass term and the Dirac mass term, are expressed through different choices

of Aij :3

SDirac =

∫
d4x

(
1

2
ψ̄µ

iγµν∆ijψν
j

)
, (2.13)

SMajorana =

∫
d4x

(
1

2
ψ̄µ

iγµνψν
i

)
, (2.14)

where ∆ij is the 2×2 matrix described in the appendix. The ∆ij structure makes the

action manifestly invariant under (2.10), including the kinetic terms. Thus, we must take

the Dirac mass.

3The other two choices are εij which is identically zero, and ηij which is field redefinable to the Dirac

mass ∆ij .
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2.4.1 The Zinoviev Lagrangian and Stückelberg symmetries

Collecting these results of the previous section, we have the Zinoviev Lagrangian:

S[h, ψ,A] =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ +
1

2
m2hµ

αδµναβhν
β

− i

2
ψ̄µ

iγµνρ ∂νψρ
i +

1

2
mψ̄µ

iγµν∆ijψν
j

−1

4
FµνFµν −

1

2
m2AµA

µ

]
, (2.15)

which is the combined Fierz-Pauli, Rarita-Schwinger-Dirac, and Proca actions, respectively.

While this action is a valid formulation of the N = 1 Zinoviev Lagrangian, it is much better

to introduce all of the Stückelberg symmetries for all of the massive fields which become

in the massless limit the usual gauge symmetries of the massless fields. To do this we

introduce the Stückelberg fields, Bµ, π, φ, and χi as follows:

hµ
α → hµ

α − 1

2m
(∂µB

α + ∂αBµ) +
1

m2
∂µ∂

απ , (2.16)

ψµ
i → ψµ

i − 1

m
∂µχ

i , (2.17)

ψ̄µ
i → ψ̄µ

i − 1

m
∂µχ̄

i , (2.18)

Aµ → Aµ −
1

m
∂µϕ , (2.19)

which will restore linearized diffeomorphism invariance, the U(1) invariance for the diff vec-

tor Stückelberg field, invariance under both of the supergauge symmetries of the two Rarita-

Schwinger fields, and finally the U(1) of the axial vector. This leads to the Stückelberg

formulation of the Zinoviev action, where here we zoom in to the mass terms (since the

kinetic terms are gauge invariant), ignoring total derivatives:

Smass =

∫
d4x

[
1

2
m2δµναβ

(
hµ

αhν
β − 2

m
∂µB

αhν
β +

2

m2
∂µ∂

απhν
β − 1

m2
∂µBν∂

αBβ

)
+

1

2
mψ̄µ

iγµν∆ijψν
j − ψ̄µ iγµν∆ij∂νχ

j

−1

2
m2AµA

µ +mAµ∂
µϕ− 1

2
∂µϕ∂

µϕ

]
. (2.20)

As it stands the Stückelberg fields do not have canonical kinetic terms (except for ϕ, which

does have a kinetic term), but they obtain kinetic terms via kinetic mixing. To make the

kinetic terms manifest we perform the field redefinitions

π →
√

2

3
π , (2.21)

Bµ →
1√
2
Bµ , (2.22)

χi →
√

2

3
χi , (2.23)
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and then diagonalize the fields as

hµ
α → hµ

α − 1√
6
πδαµ ,

ψµ
i → ψµ

i − i√
6
γµ∆ijχj ,

ψ̄µ
i → ψ̄µ

i +
i√
6
χ̄j∆jiγµ . (2.24)

This leads to the canonically normalized Zinoviev action, which we split up order by order

into powers of mass S = S0 +mS1 +m2S2:

S0 =

∫
d4x

[
−1

2
hµ

αδµνραβγ∂ν∂
βhρ

γ − i

2
ψ̄µ

iγµνρ ∂νψρ
i

− 1

4
FµνFµν −

1

4
GµνGµν +

i

2
χ̄iγµ∂µχ

i

−1

2
∂µπ∂

µπ − 1

2
∂µϕ∂

µϕ

]
, (2.25)

mS1 =

∫
d4x

[
−m
√

2δµναβhµ
α∂νB

β +m
√

3π∂µB
µ ,

+
1

2
mψ̄µ

iγµν∆ijψν
j + im

√
3

2
ψ̄µ

iγµχi +mχ̄i∆ijχj +mAµ∂
µϕ

]
(2.26)

m2S2 =

∫
d4x

[
−1

2
m2AµA

µ +
1

2
m2hµ

αδµναβhν
β +m2

(
π2 −

√
3

2
πhµ

µ

)]
. (2.27)

2.4.2 Symmetries of the Zinoviev Lagrangian

This leads to an action with many abelian gauge symmetries. There are four linearized

diffeomorphism symmetries (with bosonic group parameter ξµ),

δhµν = ∂(µξν) , δBµ = m
√

2ξµ , δπ = 0 , (2.28)

and two supergauge symmetries (fermionic Majorana group parameter ηi),

δψµ
i = ∂µη

i + i
m

2
γµ∆ijηj ,

δχi = m

√
3

2
ηi , (2.29)

and 2 U(1) gauge symmetries (bosonic group parameter ξ). The first is U(1) from the

vector mode of the spin-2 field

δhµν =
m

2
ηµνξ ,

δBµ = ∂µξ ,

δπ = m

√
3

2
ξ , (2.30)
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and the last is the original Stückelberg symmetry for the massive axial vector

δAµ = ∂µθ , δφ = mθ .

Finally, there are the crucial global symmetries. In addition to the Poincaré sym-

metries, there is an additional N = 1 supersymmetry, given by the following super-

transformations

δhµν = αi iε̄γ(µψν)
i ,

δψi = αi γαβ∂αhβµε−
m√

2

[
γµγ

αBα + i
√

3γ5Aµ

]
αiε

− i

4
√

2
γαβγµ

[
Gαβ −

√
3iγ5Fαβ

]
βiε+ im

[
γαhαµ + γµπ

]
βiε ,

δBµ = βi
1√
2
ε̄ψi + αi i

√
3

2
ε̄γµχ

i ,

δAµ = βi
√

3

2
ε̄γ5ψµ

i + αi
1

2
ε̄γµγ5χ

i ,

δχi = −1

4
γαβ

[√
3Gαβ + iγ5Fαβ

]
εαi

− iγα
[
∂απ + γ5∂αϕ

]
βiε+ imγα

[√
3Bα − iγ5Aα

]
βiε ,

δπ = iβiε̄χi ,

δϕ = βi iε̄γ5χ
i , (2.31)

where

αi =

(
0

1

)
= −ηijαj , (2.32)

βi =

(
−1

0

)
= εijαj = −∆ijαj . (2.33)

The i indices are a product of N = 2 R-symmetry, and thus since we work with an

N = 1 theory, this must be broken. The kinetic terms are invariant under arbitrary αi,

with βi still subject to βi = −εijαj . But once the mass terms are added, the N = 2

R-symmetry is broken down to the N = 1 R-symmetry. This can be seen at the level of

the Lagrangian, where the transformations (2.31) on the action only cancel the mass terms

if the conditions (2.33) are applied. Thus, as expected, when the Stückelberg fields are

included, the kinetic terms have an N = 2 structure, but the mass terms break half of the

SUSY down to an N = 1 algebra.

Now that we know what theory needs to be reproduced by the deconstruction of the

massless 5-D theory, we now turn to the issue of how to extend the deconstruction procedure

to include fermions.

3 Deconstructing fermions

For the purposes of this paper, we restrict our interest to 1-site deconstruction, since we are

only interested in having a single massive mode and this is the simplest form of dimensional
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deconstruction with a single mode. As stated in the introduction, the deconstruction

procedure works as follows

Φ(x, y)→ φ(x) , (3.1)

∂yΦ(x, y)→ mφ(x) , (3.2)∫
dyΦ(x, y)Ψ(x, y)→ 1

m
φ(x)ψ(x) . (3.3)

Note that there exist several variants of the deconstruction procedure, based upon how

one wishes to discretize the extra dimension y. The correct choice depends upon what one

wants to use the deconstruction procedure for. The discretization operator is often chosen

to reflect a discretized compact dimension, in which case it reflects a truncated Kaluza-Klein

tower, as has been described in the literature before, and has been generalized in a number

of ways [61–63]. None of these theories, however, result in the N = 1 Zinoviev theory.

3.1 Group-theoretic interpretation of deconstruction

We now quickly review the bosonic deconstruction procedure. While most efforts in the

deconstruction program have emphasized the geometrical interpretation of deconstruction,

our interest will largely lie in the group-theoretic interpretation. Thus, the purpose of

deconstruction will be to explicate the massive D = d spin-J subrepresentation of the

massless D = (d+1) helicity-J representation. This will generate an ansätz for a candidate

ghost-free Lagrangian in one lower dimension.

To illustrate schematically how 1-site deconstruction works, let us analyze the decon-

struction procedure for the trivial case of the (d + 1)-dimensional Lagrangian of a free

bosonic field, Φ and its second-order differential operator �. Although this looks exclu-

sively tailored for scalar fields, this argument will follow generically for all non-zero spin-J

bosonic fields as well, since the only mathematical property needed is that the differential

operator is symmetric, i.e. A�B = B�A in the integrand. Deconstruction proceeds as

follows, beginning with the (d+ 1)-split of the action:

Sd+1 =

∫
d(d+1)x

(
1

2
Φ�d+1Φ

)
, (3.4)

=

∫
ddx dy

(
1

2
Φ�Φ− 1

2
∂yΦO2∂yΦ

)
. (3.5)

Here the operator O2 holds the tensor indices (for scalars, it is 1), and because of the

higher dimensional structure, the Lagrangian is ghost-free (for the same essential reasons

that compactification produces ghost-free Lagrangians). Although in general, the spin-J

field contains components in the y direction, we may use the gauge freedoms of the massless

theory to set these to zero. Then when one performs the 1-site deconstruction, we see that

we explicitly yields the mass terms

SDec =

∫
ddx

1

2
ϕ�ϕ− 1

2
m2ϕO2ϕ , (3.6)
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where ϕ is a four dimensional tensor constructed from only the four dimensional compo-

nents of Φ. Thus, from one spin-J field in (d+ 1)-dimensions, we have extracted a massive

spin-J field in d dimensions. It can be verified that this creates a massive Klein-Gordon,

Proca, and Fierz-Pauli from one higher dimensional massless Klein-Gordon, Maxwell, and

linearized Einstein-Hilbert Lagrangians, respectively. If one gauge-fixes first, we obtain

the above so-called unitary gauge Lagrangian. If we do not gauge-fix, there will be addi-

tional fields arising from the various y-components of the original spin-J field, and these

additional fields will have the interpretation as the Stückelberg fields in the Stückelberg

formulation of the massive theory. The Stückelberg formulation is defined as the one on

which the massless theory exhibits the same symmetries as the massless one.

3.2 Fermionic deconstruction

We now restrict our interest to deconstructing massless 5-D fermion theories into massive

4-D fermion theories; as one would expect, this case will be more subtle than the bosonic

deconstruction procedure. There have been many proposed methods for obtaining super-

symmetric theories via deconstruction in the literature. [61–63]. However, these methods

are generally focused on obtaining D = 4, N = 2 supermultiplets from D = 5 supermul-

tiplets. As we are not here interested in obtaining BPS representations,4 and instead our

interest is in extracting massive N = 1 representations, so these methods will not suffice

for our purposes.

3.2.1 Engineering the Dirac mass

We begin by using the simplest fermion, the spin- 1
2 symplectic-Majorana fermion in 5-D:

S =

∫
d5x

(
i

2
Ψ̄i ΓM∂MΨi

)
, (3.7)

=

∫
d4xdy

(
i

2
Ψ̄i γµ∂µΨi +

i

2
Ψ̄i (iγ5)∂5 Ψi

)
, (3.8)

to build the desired D = 4 action. A simple application of the deconstruction procedure

will not result in the desired Dirac masses, which were required for the massive U(1)R
symmetry in the Zinoviev theory. To see this, we apply the fermionic descending relations

to (3.7). This yields an action of the form

SDec =

∫
d4xdy

(
i

2
ψ̄i γµ∂µψ

i +
1

2
εijψ̄i∂5ψ

j

)
. (3.9)

It is clear then that we need to modify how the y-derivative operates on fermionic

objects. It is crucial that the linear fermion theory obeys the Klein-Gordon dispersion

4Even supposing that we were, the deconstruction procedure imposed by 3.1 explicitly breaks the decon-

structed action’s invariance under the BPS operator, Z = ∂5; i.e. δZX = θ∂yX is no longer a symmetry of

the action, which is important because the massive states come from the D = 5 massless state (M, 0, 0, 0,M),

which maintained Z2X = ∂2
yX = M2X for BPS state X. The breaking of the y-translation and the need

to freeze the vector mode is discussed in [64] .
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relation when the differential operator is “squared.” At the level of the field equations in

D = 4 for state |F 〉, this is (
i/∂ + ε∂5

)
|F 〉 = 0

=⇒
(
kµkµ +M2

)
|F 〉 = 0 .

Thus, if we wish to maintain the massive dispersion relation when the fermionic states

descend down one dimension, the only crucial thing that the deconstruction substitution

must obey is:

ε∂5ψ → m∆ψ , such that m2(∆)2 = m2 ,

where now ∆ is not just a matrix on the site basis, but additionally carries indices for the

fermionic flavor basis. Thus, if we make use of the fermion flavor indices, we can avoid

the disappearance of our fermionic mass terms. This approach is very much analogous to

the original derivation of the Dirac equation where one allows the differential operators to

be deformed by matrices, but keep the desired eigenvalues of the squared operations fixed.

This can be predicted merely from trying to get the correct Dirac term for the Zinoviev

theory, however, which we explore next. Since we want a mass term of the form (2.13),

and knowing that

∆ij = εikηkj ,

tells us that the obvious matrix to deform our derivative by is η. Note that crucially η2 = I,

as needed. In other words our proposed deconstruction procedure is:

ψi(x, y)→ ψi(x) ,

∂yψ
i(x, y)→ mηijψj(x) , (3.10)

or, equivalently, in terms of 5-D fermions,

∂yΨ
i(x, y)→ m∆ijΨj(x) (3.11)

with the same integral rule as bosons, where integrals are converted to sums. Note, these

rules can also be established for the symplectic-Majorana variables, but it is more conve-

nient to place them in the 4-D Majorana variables, so we keep to this formulation.

Once these rules are obeyed, the Lagrangian is

SDec =

∫
d4x

(
i
1

2
ψ̄iγµ∂µψ

i +
1

2
m∆ijψ̄iψj

)
, (3.12)

which is the Lagrangian for pair of massive Majorana fermions with a Dirac mass.

3.3 Super-Proca Theory a lá deconstruction

As a proof of principle for how our deconstruction procedure works for supersymmetric

cases, we begin by showing how the super-Proca theory is obtained. In this, one can

illustrate how the deconstruction procedure which preserves a single D = 4 supersymmetry

that explicitly descends from a linear combination of the D = 5 supersymmetries.
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3.3.1 The D = 5 Lagrangian and super-transformation rules

The supersymmetric Maxwell theory in five dimensions is given by a supermultiplet con-

taining one spin-1 field Aµ, a symplectic-Majorana fermion Ψi, and one scalar φ. In our

conventions, the Lagrangian is given by

S =

∫
d5x

[
−1

4
FMNF

MN + i
1

2
Ψ̄iΓM∂MΨi − 1

2
(∂Mφ)2

]
, (3.13)

and the supersymmetry transformations with global fermionic parameter εi that leave the

action invariant are:

δAM = iε̄iΓMΨi ,

δΨi = −1

2
ΓABFABε

i − ΓM∂Mφε
i , (3.14)

δφ = iε̄iΨi . (3.15)

One can verify that they obey the super-Poincaré commutation relations

[δ1, δ2]AM = 2iε̄i2ΓAεi1∂AAM − ∂M (2iε̄i2ΓAεi1AA) ,

[δ1, δ2]Ψi = 2iε̄j2ΓAεj1∂AΨi + (E.O.M.) ,

[δ1, δ2]φ = 2iε̄i2ΓAεi1∂Aφ . (3.16)

We need to recast this into manifestly 4-D variables, so we perform a (4 + 1)-split on the

action and supertransformations. Beginning with the spin-1 mode, we decompose it into

AM =

(
Aµ
π

)
, (3.17)

and use the fermion descending relations (B.8) in appendix B for the fermionic modes.

After applying the (4+1)-split and the descending relations, this translates the 5-D action

into the form

S5-D sMaxwell =

∫
d4xdy

[
−1

4
FµνFµν −

1

2
(∂yAµ − ∂µπ)2

+ i
1

2
ψ̄iγµ∂µψ

i +
1

2
εijψ̄i∂yψ

j

−1

2
(∂µφ)2 − 1

2
(∂yφ)2

]
(3.18)

and, given εi = P ijεj , places the supertransformations into the form

δAµ = iε̄iγµψ
i ,

δψi = −1

2
γαβFαβεi − iγα(∂yAα − ∂απ)εijεj ,

+ γµγ5∂µφ ε
ijεj − iγ5∂yφε

i ,

δφ = −iεij ε̄iγ5ψ
j ,

δπ = εij ε̄iψj . (3.19)
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Notice, crucially, that π must enter into the theory as a pseudo spin-0 field if it were a zero

mode (e.g. an axion), but since it is going to enter 1-site deconstruction as a Stückelberg

field, we shall see the parity-reversal of the lowest bosonic modes. Thus it will be PT -even,

not odd, which can be read off in the above supertransformations.

3.3.2 Deconstructing the action and transformations

We now perform deconstruction by applying the 1-site procedures outlined in the previous

two sections. The integral deformation for 1-site deconstruction is trivial, so the complexity

is in the derivatives. The procedure amounts to deforming the derivatives as

∂yAµ = mAµ ,

∂yψ
i = mηijψj ,

∂yφ = mφ . (3.20)

Applied to the action, this leads to

S =

∫
d4x

[
−1

4
FµνFµν −

1

2
m2AµA

µ +mAµ∂µπ

+ i
1

2
ψ̄iγµ∂µψ

i +
1

2
m∆ijψ̄iψj

−1

2
(∂µπ)2 − 1

2
(∂µφ)2 − 1

2
m2φ2

]
(3.21)

which obeys a U(1) Stückelberg symmetry, it has a Dirac mass term for the fermions,

and with a comparison to the N = 2 vector multiplet action, the helicity decoupling limit

m→ 0 obeys manifest N = 2 SUSY, which is only possible because of the parity reversal

amongst the scalars.

Next, we see that the deconstructed transformation laws are

δAµ = iε̄iγµψ
i ,

δψi = −1

2
γαβFαβεi − iγµ∂µ

(
π − iγ5φ

)
εijεj ,

−m
(
iγαAαε

ij + iγ5φδ
ij
)
εj ,

δφ = −iεij ε̄iγ5ψ
j ,

δπ = εij ε̄iψi , (3.22)

which also are manifestly invariant under the U(1) Stückelberg symmetry. Additionally,

we see that the transformations split up into a pattern δ0 + mδ1 on the fields. Since the

mass corrections to the transformations exist only for fermions (since they were the only

transformations with derivatives), δ1 acts trivially on everything but the fermions.

Superficially, these transformations appear to indicate an N = 2 amount of SUSY,

but we know at least one supercharge must have been broken by the procedure. This will

become apparent in checking the closure (super-Lie algebra) of the transformations. We

now turn to the issue of finding the surviving supercharge.
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3.3.3 Deconstructing the supercharges

We can see that the maximal amount of supersymmetry coming from a deconstructed

theory must be half of the original higher-dimensional supersymmetry. This follows from

the super-Poincaré algebra and the fact that we have broken the generator Py:

[ε̄i1Q
i, Q̄jεj2] = 2iε̄i2ΓAεj1 PA ε

ij

= 2iε̄i2
(
ΓaPa + Γ5Py︸ ︷︷ ︸

=0, must be imposed

)
εj1ε

ij

⇒ ε̄i2ε
ikηkjγ5ε

j
1 = 0 = ∆ij ε̄i2ε

j
1 (3.23)

⇒ εi = αiε and ∆ijαiαj = 0 . (3.24)

In the above we have made use of our modified fermionic derivative Pyε
i = −i∂yεi →

−imηijεj .
We must find the linear combination of supercharges whose anti-commutation alge-

bra does not generate a term proportional to Py since this generator is broken by the

deconstruction procedure, but it must simultaneously leave the action invariant under the

transformation. This linear combination must be such that ∆ijαiαj = 0. To connect

with earlier notation, we define βi = ∆ijαj so that αiβi = 0 which in two dimensions is

equivalent to

βi = cεijαj , (3.25)

with c being an unknown coefficient. This imposes the condition that

∆ijαj = cεijαj . (3.26)

Since we can absorb the overall scale of αi in the SUSY parameter ε, we can additionally

impose αiαi = 1. Together these imply

c = ±1 , αi =

(
1

0

)
, βi =

(
0

1

)
. (3.27)

One can verify that upon making this restriction on the supersymmetry transformation,

then the supersymmetry variations (3.22) do indeed leave the action invariant provided we

choose c = +1. The invariance can be split up into cases by power counting in m:

δS = δ0S0︸︷︷︸
=0

+m
(
δ0S1 + δ1S0︸ ︷︷ ︸
∝(∆ij−εij)αj

)
+m2

(
δ1S1 + δ0S2︸ ︷︷ ︸
∝(∆ij−εij)αj

)
+m3 δ1S2︸︷︷︸

=0

. (3.28)

The case δ0S0 is trivially zero, since the kinetic terms and δ0 are N = 2 invariant, and δ1S2

is trivially zero the reason outlined. In this way, we see that a theory for a massive N = 1

supermultiplet will arise from a massless N = 2 theory. Since this argument is in essence

algebraic, it leaves hope that a nonlinear version of this procedure may exist.
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4 Deconstructing linearized D = 5 SUGRA to the Zinoviev theory

4.1 Reviewing linearized D = 5, N = 2 supergravity

The minimal supermultiplet containing a spin-2 field in 5-D contains one massless spin-2

field HMN , one symplectic-Majorana, spin- 3
2 field ΨM

i, and one spin-1 field AM [35, 65–

67]. The action for linearized D = 5 supergravity is given by the canonical kinetic terms

for each of these fields

S =

∫
d5x

[
−1

2
HM

AδMNR
ABC ∂N∂

BHR
C − i1

2
Ψ̄M

iΓMNR∂NΨR
i − 1

4
FMNF

MN

]
. (4.1)

The SUSY transformations that leave the action invariant, with group parameter εi which

is a symplectic-Majorana fermionic variable, are

δHM
A = i

1

2
ε̄i
(
ΓMΨA i + ΓAΨM

i
)
,

δΨM
i = ΓAB∂AHBMε

i +
1

2
√

6

(
ΓAB M − 4ΓAδBM

)
FABε

i ,

δAM = −i
√

3

2
ε̄iΨM

i . (4.2)

4.2 Deconstructing to the N = 1 Zinoviev action

Deconstructing the bosonic fields is well understood, and a straightforward application

of the deconstruction procedure leads to the bosonic actions outlined in (2.25), (2.26),

and (2.27). Thus we turn to the deconstruction procedure outlined in the previous section

applied to the 5-D Rarita-Schwinger action with symplectic-Majorana fermions in order to

obtain the appropriate fermionic portion of the action. We begin by separating the action

into its components, and then apply the descending relations to convert it into manifestly

4-D Majorana form:

SRS =

∫
d5x

[
−i1

2
Ψ̄M

iΓMNR∂NΨR
i

]
, (4.3)

=

∫
d4xdy

[
−i1

2
Ψ̄µ

iγµνρ∂νΨρ
i − i1

2
Ψ̄µ

iγµν(iγ5)
[
2∂νΨy

i − ∂yΨµ
i
]]
, (4.4)

=

∫
d4xdy

[
−i1

2
ψ̄µ

iγµνρ∂νψρ
i − εijψ̄µ iγµν∂νψy i +

1

2
εijψ̄µ

iγµν∂yψν
i

]
. (4.5)

Next, we apply the fermionic deconstruction prescription outlined in (3.10), which yields

SDex =

∫
d4x

[
−i1

2
ψ̄µ

iγµνρ∂νψρ
i +

1

2
mψ̄µ

iγµν∆ijψν
j − ψ̄µ iγµνεij∂νψy j

]
, (4.6)

and one can cf. to (2.20) to see that this is the undiagonalized Stückelberg form of the

Rarita-Schwinger-Dirac action, provided that

ψy
i = ηijχj , (4.7)

before rescaling. Thus we have successfully reproduced the full bosonic and fermionic

portions of the N = 1 Zinoviev action. The lingering question is if we are able to see

the preserved copy of the supertransformations immediately descending from the broken

N = 2 supertransformations.
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4.3 Verifying the Zinoviev super-transformation rules

We immediately use the unmixing transformations (2.24) in the definition of the 5-D fields.

This then shows explicitly how the lower dimensional helicity substates of the massive spin

fields sit inside of the higher dimensional helicity states.5 Then when one deconstructs, one

is immediately lead to the canonically normalized massive modes with all helicity states

and gauge symmetries made manifest. We split up the fields into the following 4-D fields,

which encode the manifest helicity states of the massive fields:

HM
A =

hµ α − 1√
6
πδαµ

1√
2
Bα

1√
2
Bµ

√
2
3π

 , (4.8)

P̄ ijΨM
j =

ψµ i − i√
6
γµ∆ijχj√

2
3η

ijχj

 , (4.9)

AM =

(
Aµ
ϕ

)
. (4.10)

We will apply this decomposition on the transformations. First we split the indices into

manifestly 4-D Lorentz covariant objects, and then apply the fermionic descending relations

to obtain manifestly 4-D spinor objects. We will begin with the deconstructed spin-2 field’s

transformations

δHy
y = −ε̄iγ5Ψy

i = εij ε̄i

(√
2

3
ηjkχk

)
,

=

√
2

3
δπ ,

=⇒ δπ = iβiε̄χi , (4.11)

δHµ
y =

1

2
ε̄i
(
γµΨy

i + iγ5Ψµ
i
)
,

=
1√
2
δBµ ,

=⇒ δBµ = βi
1√
2
ε̄ψi + αi i

√
3

2
ε̄γµχ

i , (4.12)

δHµ
α = iε̄iγ(µΨν)

i = iε̄iγ(µ

(
ψν)

i − i√
6
γν)∆

ijχj
)
,

= δhµ
α − 1√

6
δπδαµ ,

=⇒ δhµ
α = αi iε̄γ(µψν)

i . (4.13)

5A similar kinetic mixing occurs in the slighlty different context for KK compactifications [35, 66].

Afterwords, all degrees of freedom have canonical kinetic terms. Here, the Stückelberg fields play the role

of the lower spin zero-modes, but in massive states they enter as pure gauge modes.
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In the final lines, we made use of εi = αiε and related identities (2.33). Next we move onto

the case for the spin-1 transformations,

δAy = −i
√

3

2
ε̄iΨy

i = −i
√

3

2
εij ε̄iγ5

(√
2

3
ηjkχk

)
,

=⇒ δϕ = βi iε̄γ5χ
i , (4.14)

δAµ = −i
√

3

2
ε̄iΨµ

i = −i
√

3

2
εij ε̄iγ5

(
ψµ

i − i√
6
γµ∆ijχj

)
,

=⇒ δAµ = βi
√

3

2
ε̄γ5ψµ

i +
1

2
ε̄γµγ5χ

i . (4.15)

One may then check that the bosonic transformations are indeed reproduced, with the

correct portion of the supercharges broken; cf. (2.31).

Finally, the fermionic superpartner’s transformations must be checked. This is a more

laborious calculation involving repeated use of identities outlined in C. We give some the

intermediate parts of the calculation here:

P̄ ijδΨ5
j =

1√
2
γαβ∂αBβ − iγα

(√
2

3
∂απ −

1√
2
∂yBα

)
εijεj ,

− 1

2
√

6
γαβγ5Fαβεi +

√
2

3
γαγ5 (∂yAα − ∂αϕ) εijεj ,

=

√
2

3
ηijδχj , (4.16)

and finally the spin- 3
2 field:

P̄ ijδΨµ
j = γαβ∂α

(
hβµ −

1√
6
πηβµ

)
εi + iγα

[
∂y

(
hµα −

1√
6
ηµα
)
− 1√

2
Bα

]
εijεj ,

+
1

2
√

6

[
γαβ µ − 4γαδβµ

]
Fαβεijεj −

i√
6

[γα µ − 4δαµ ]γ5(∂yAα − ∂αϕ)εi ,

= δψµ
i − i√

6
γµ∆ijδχj . (4.17)

To directly compare these transformations to Zinoviev, we must modify the supersym-

metry transformations with compensating supergauge transformations of gauge parameter

(− 1√
6
παiε+ i 1√

2
γαBαβ

iε). Once performed, one can easily read off that the deconstructed

super-transformation rules –crucially broken appropriately down the correct N = 1 sub-

superalgebra– yields the final, correct super-transformation rules for the fermions:

δψµ
i = αi γαβ∂αhβµε−

m√
2

[
γµγ

αBα + i
√

3γ5Aµ

]
αiε ,

− i

4
√

2
γαβγµ

[
Gαβ −

√
3iγ5Fαβ

]
βiε+ im

[
γαhαµ + γµπ

]
βiε ,

δχi = −1

4
γαβ

[√
3Gαβ + iγ5Fαβ

]
εαi ,

− iγα∂α
[
π + γ5ϕ

]
βiε+ imγα

[√
3Bα − iγ5Aα

]
βiε , (4.18)
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as promised. Thus we see that not only is the supersymmetric Lagrangian recovered after

deconstruction, but so too can we directly see how and where the supercharge breaks such

that a copy of the N = 1 massive super-transformations directly descends from the higher

dimensional N = 2 super-transformations.

5 Discussion

By proposing a modified deconstruction procedure for fermionic derivatives, we have shown

how at the linear level, a theory of an N = 1 massive spin 2 supermuliplet emerges from

deconstruction of linearized N = 2 supergravity in 5 dimensions. At an algebraic level,

this procedure works because when y-translations are broken (Py), which is automatically

the case in deconstruction, the N = 2 SUSY algebra in 5 dimensions is broken down to

the N = 1 super-Poincaré algebra in 4 dimensions. As an example of this we also show

how the 4-D N = 1 super-Proca theory arises from 5-D N = 2 super-Maxwell theory.

This algebraic picture suggests that it may be possible to generalize this to the nonlinear

level, and if so it would allow us to give a description of a conjectured interacting theory of

a massive spin-2 supermultiplet, in effect a globally supersymmetric extension of massive

gravity. If this does indeed generalize to the non-linear theory, an important question is:

does the decoupling limit of the theory uphold the global supersymmetry? Since the usual

massive gravity decoupling limit gives a Galileon theory, this suggests the existence of some

super-Galileon theory which necessarily includes spin-1 degrees of freedom, [45, 60] (and

hence is not necessarily connected with other proposed super-Galileon theories [68, 69]).

The massless limit, taken after appropriately canonically normalizing the kinetic terms

for all the scalar fields, gives a copy of N = 2 linearized supergravity. Just as Lorentz

invariant massive gravity breaks the local Diffeomorphism symmetry of GR down to the

global Poincaré group, the conjectured supersymmetric theory will break local N = 2

SUSY down to a global N = 1 subgroup. This halving of the global supersymmetry is

necessary to account for the larger size of the massive supermultiplet. The question of

whether such a nonlinear theory exists will be considered in a future work.

What about a locally supersymmetric theory? Since local supersymmetry requires a

corresponding massless spin- 3
2 gauge field, this in turn necessitates an additional spin-2 field

for its superpartner, and thus the fully locally supersymmetric theory must contain two

massive spin-2 fields, i.e. it must be a supersymmetric version of a Bi-gravity theory. Since

the deconstruction procedure may be easily generalized to give multi-gravity theories, this

suggests this may be the most fruitful way to approach the conjectured supersymmetric

theories. We leave this to future work.

It is natural to ask where this procedure generalize to higher supersymmetries. The

maximal supersymmetry in a massive supergravity theory, subject to the largest state being

spin-2, means that after the breaking, the theory will have N = 4 supersymmetry in D = 4.

The linearized limit, the N = 4 Zinoviev theory [11], is already known as a generalization of

theN = 1 case. Therefore, one suspects that if one wanted to generate massive supergravity

theories with more supersymmetries, one should start by deconstructing N = 1 D = 11
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supergravity into a “master” N = (1, 1) D = 10 theory of massive supergravity and then

dimensionally reducing to 4 dimensions. We will leave such conjectures for future work.
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A Conventions and notations

Our conventions are:

1.) The same as Srednicki [70] (of specific interest are sections 33 through 43).

2.) Therefore, we use the (– + . . . +) signature, but our gamma matrices obey

{ΓA,ΓA} = −2ηAB. Grassman numbers obey (ab)† = b†a†.

3.) Our Majorana fermions can easily be converted to Weyl fermions by following the

recipe outlined in the above sections of Srednicki.

4.) All 5-D fermions are given by capital Greek characters (e.g. Λ, Ψ), whereas all 4-D

fermions are given by lower case characters (e.g. λ, ψ). This will also be true of our

bosonic variables, the only exceptions being the vector fields Aµ and Bµ.

5.) Gamma matrices in each dimension are also (un)capitalized respectively, and obey

Γa = γa and Γ5 = iγ5. Note that (γ5)2 = +1.

6.) ΓA1···An ≡ 1
n!

(
ΓA1 · · ·ΓAn + (Perms)

)
.

7.) We make extensive use of the generalized Kronecker delta tensors, e.g. δA1···AD
B1···BD ≡

εA1···ADεB1···BD and δABMN = δAMδ
B
N − δANδ

B
M . Note that we always have weight 1

(anti)-symmetrization, e.g. ΓABC = Γ[AΓBΓC] = 1
3!δ

ABC
MNRΓMΓMΓR

We also note that in contrast to many supersymmetry sources in 4 and 5 dimensions, our

ψ̄ will always refer to the Dirac conjugate and never the Majorana conjugate, and the

placement of symplectic indices i do not indicate chirality in 4-D. As such, the height of

the symplectic index does not signify anything, and as a convention will always be written

upstairs to unclutter notation.
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For clarity, we assemble a list of useful 4x4 spinor matrices:

γ0 =

(
0 I

I 0

)
, γi =

(
0 σi

−σi 0

)
, (A.1)

γ5 = iγ0γ1γ2γ3 =

(
−I 0

0 I

)
, (A.2)

C4 = −iγ0γ2 =

(
−ε 0

0 ε

)
, (A.3)

C5 = C4γ5 =

(
ε 0

0 ε

)
, (A.4)

L =
1

2
(1− γ5) =

(
I 0

0 0

)
, (A.5)

R =
1

2
(1 + γ5) =

(
0 0

0 I

)
, (A.6)

and additionally there are useful 2×2 matrices

I = δ =

(
1 0

0 1

)
, σ1 = ∆ =

(
0 1

1 0

)
, (A.7)

σ2 = iε =

(
0 −i
i 0

)
, σ3 = η =

(
1 0

0 −1

)
, (A.8)

ε = −iσ3 =

(
0 −1

1 0

)
. (A.9)

Note that we will need 2 kinds of two-by-two Hermitian matrices for both the Weyl spinor

basis (i.e. (σi)α β , I
α
β) and the symplectic basis (i.e. δij , ηij ,∆ij). We choose to use two

different symbols to indicate which basis the matrices are operating on, even though they

are equivalent as numerical matrices.

B A review of 5-D symplectic-Majorana spinors

Although some useful sources exist on the matter, 5-D fermions are generally less well

known than their 2, 4, 6, and 10 dimensional counterparts. Therefore, we pause for a

moment to list our conventions for 5-D fermions.

In 4-D, as is well-known, there are 3 distinct kinds of fermions: Weyl fermions, Dirac

fermions, and Majorana fermions. The irreducible representation is Weyl, thus the other

two can always be recast as Weyl fermions. Majorana spinors are Dirac spinors subject to

the Majorana constraint:

ψ̄ = ψTC4 ,

=⇒ ψ†γ0 = ψTC4 , (B.1)
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where C4 is the 4-D charge conjugation matrix. This kills half of the degrees of freedom of

the Dirac fermion, making it a ‘real’ spinor.

By contrast, in 5-D, the only kind of fermions allowed are Dirac. This means it has 4

degrees of freedom and has no nice Majorana properties to aid calculations. For this reason,

it has become popular in 5-D (and 6-D) supersymmetric theories to make use of an equiva-

lent fermion structure, called a symplectic-Majorana fermion.6 These fermions are created

by taking two Dirac fermions, labeled with an index i, and applying the following condition

(in analogy to (B.1)) to reduce the information back to a single Dirac fermion. Thus this

map must operate on both the symplectic and the spinor basis, which we express as

Ψ̄i ≡ (Ψi)†Γ0 = (Ψj)T εjiC5 , (B.2)

where C5 is the 5-D charge conjugation matrix.

Since in 4-D, we are interested in Majorana fermions and in 5-D we are interested in

symplectic-Majorana fermions, an important question is how the 4-D Majorana fermions

sit inside their higher dimensional representations. We therefore construct a map between

the two 4-D states, which are labeled by a symplectic index, and the 5-D states:

Ψi = P ijψj . (B.3)

Plugging this relation into (B.2) and using (B.1), we see that one solution (and a useful

one) is to set:

P ij =
1√
2

[
Iδij − γ5ε

ij
]
, (B.4)

recalling that I and γ5 operate on the spinor basis, but δ and ε operate on the symplectic

indices. Then the inverse is given by

ψi = P̄ ijΨj =
1√
2

[
Iδij + γ5ε

ij
]
Ψj . (B.5)

The following formulas can be verified from the previous matrices, and are useful:

Ψ̄i = ψ̄jP ji , (B.6)

Ψ̄iNΨi =

{
ψ̄iNψi if {N, γ5} = 0 ,

−εijψ̄iNγ5ψ
j if [N, γ5] = 0 ,

(B.7)

P ijΨj = −γ5ε
ijψj , (B.8)

P̄ ijΨj = ψi , (B.9)

where N is taken to be an arbitrary spinor matrix. Note that bispinor products are CP-odd,

because they will couple to CP-odd fields after deconstruction.

6The details are described in [48, 71]. The appearance of an εij is due to the fact that in 5-D, the failure

to have a Majorana fermion is because without it the conjugate is not a star operator, ¯̄ΨM = −Ψ, not the

crucial ¯̄ΨM = Ψ. The ε fixes this problem, but requires the fermion to have an index.
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C Useful formulas

Here we assemble some useful bosonic relations, recalling that XM = (xµ, y). We make

copious use of the generalized Kronecker delta tensors, which are the tensor formulation of

weighted, anti-syummetric permutations of indices, i.e.

T[µ1···µn] =
1

n!
δ
µ′1···µ′n
µ1···µnTµ′1···µ′n . (C.1)

We begin with needed recursion relations for the generalized Kronecker delta (they are

dimension independent, these hold true for D-dim generalized Kronecker deltas):

δµνραβγ = δµαδ
νρ
βγ + δµβδ

νρ
γα + δµγ δ

νρ
αβ , (C.2)

δµναβ = δµαδ
ν
β + δµβδ

ν
α . (C.3)

The contraction identities in dimension D, i.e. δ
A1···Ad−nC1···Ck
B1···Bd−nC1···Ck = k! δ

A1···Ad−n
B1···Bd−n , follow simple

a simple pattern:
5-D 4-D

δMNRS•
ABCD• = (1)δMNRS

ABCD

δMNR•
ABC• = (2)δMNR

ABC

...

δM•A• = (4)δMA

δMM = 5

δµνρ•αβγ• = (1)δµνραβγ

δµν•αβ• = (2)δµναβ

δµ•α• = (3)δµα

δµµ = 4

Next we write down some useful gamma matrix relations, where again these relations hold

true in any dimension. We begin with a few simple recursion relations:

ΓABC =
1

3!
δABCMNRΓMΓMΓR

=
1

3

(
ΓAΓBC + ΓBΓCA + ΓCΓAB

)
= ΓAΓBΓC + ΓAηBC − ΓBηCA + ΓCηAB , (C.4)

ΓAB =
1

2!

(
ΓAΓB − ΓBΓA

)
= ΓAΓB + ηAB . (C.5)

Then the dimension-dependent contraction identities are given by

5-D 4-D

ΓABCΓC = −3ΓAB

ΓABΓB = −4ΓA

ΓAΓA = −5

γabcγc = −2γab

γabγb = −3γa

γaγa = −4

Noting that this holds true for contractions on either side (i.e. γa•γ• = γ•γ
•a). Some useful

identities of the flavor matrices follow from them being a representation of spin(3):

∆ijηjk = εik = −ηij∆jk , (C.6)

εijηjk = ∆ik = −ηijεjk , (C.7)

∆ijεjk = ηik = −εij∆jk . (C.8)
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