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1 Introduction

Gauge theories with interfaces exhibit degrees of freedom living exclusively on the bound-

ary, the so-called edge states. While this phenomenon has been known for quite a while

in topological theories (e.g. 3d Chern-Simons theories exhibit a chiral 2d WZW conformal

theory on their boundary), it is only relatively recent that this has been studied for gauge

theories with propagating degrees of freedom. Edge states have been extensively studied

recently in e.g. [1–21].

This field of study is intimately linked with the mysterious contact contribution to the

thermal entropy of gauge fields in Rindler space, found by Kabat in [22–24] using replica

trick methods. Donnelly and Wall found an explanation for this term as a Euclidean path

integral over static horizon radial electric fields E(x) weighted by the on-shell Euclidean

action [4, 5]:

Zedge =

∫
[DE(x)] e−S[E(x)]|on-shell ≡ “ Tre−βH ”, (1.1)

which should be read as implementing the thermal trace, with S|on-shell = βH and the

trace running over all static configurations E(x). This procedure identifies the origin of

the contact term as counting electrostatic configurations (or surface charges) on the horizon,

but does not reveal the underlying canonical structure associated with these electrostatic

boundary degrees of freedom. In a different work [25], Donnelly and Freidel used the

requirement of (large) gauge invariance to write down a presymplectic potential for Maxwell

degrees of freedom on a generic boundary: a new scalar field φ compensates for the large

gauge transformation, and becomes a new dynamical field conjugate to the surface charges.

Recently in [26], using canonical quantization of the Maxwell action, we presented an

alternative procedure that gives rise to a canonical structure on the boundary of Maxwell:

instead of saving large gauge-invariance by introducing a new variable, we abandon it com-

pletely and promote the large gauge degrees of freedom φ themselves to physical variables,

conjugate to the boundary charges E(x). This promotion of large gauge parameters to

physical boundary variables is a key ingredient in topological theories such as 3d Chern-

Simons, where they make up the boundary theory dual to the entire bulk theory.

The question arises whether there is a boundary action that gives rise to this canonical

structure.1 Given such an action, it would be possible to study boundary correlation

functions and real-time dynamics. In this work, we derive this boundary edge action for

Maxwell and Yang-Mills theory. The result is a Lorentzian action that depends on the

boundary gauge field g and the boundary current density J :

Sbdy [J , g] =

∫
dd−1x Tr

(
1

2
J αgA[J ]αg

−1 − J α∂αgg−1

)
, (1.2)

where A[J ] denotes the on-shell evaluation of the gauge field sourced by the boundary

current J .

This action is put to the test in several applications. After briefly discussing Maxwell

edge states in flat space, we study the Maxwell edge action in Rindler space where we

1A similar goal is being pursued by Geiller and Jai-akson (private communication).
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recover the results of [4, 5, 26], now placed in a dynamical canonical context. One partic-

ularly interesting aspect of this calculation is that it incorporates a natural proof for the

absence of horizon degrees of freedom associated with the spatial currents.

Having an action allows us to describe dynamics of edge modes and to compute various

correlation functions. We will do this explicitly for the example of 2d Yang-Mills theory on

a disk. 2d Yang-Mills has been studied extensively in the past (see e.g. [27–29] for some of

the foundational results and [30] for a particularly nice review and references therein). The

boundary edge theory of 2d Yang-Mills on a disk is found to be the particle-on-a-group

model. Next to the partition function, also the correlators of this model are known [31].

We identify the bulk duals of generic boundary correlators as boundary-anchored Wilson

lines. This effectively solves the boundary edge theory of 2d Yang-Mills: in principle we

are able to study an arbitrary dynamical process in the boundary.

The paper is organized as follows. In section 2 we consider Maxwell theory before

generalizing in section 3 to non-abelian Yang-Mills theories. Applications to flat space

(section 2.2), Rindler space (sections 2.3 and 3.3), 2d Maxwell (section 2.4) and 2d Yang-

Mills (section 3.2) are discussed in the process. Correlators of the boundary edge theory

of 2d Yang-Mills are discussed in 4. Throughout this work, indices α, β, . . . live on the

boundary ∂M and indices µ, ν, . . . live on M.

2 Maxwell

In this section, we present the derivation of the boundary action (1.2) for Maxwell theory,

and put it to the test in two applications: Maxwell in Rindler, and 2d Maxwell which is a

quasi-topological theory.

2.1 Boundary action for Maxwell

Consider Maxwell theory on the d-dimensional Lorentzian manifold M ∪ M̄ without

boundaries:

S = −1

4

∫
M∪M̄

F ∧ ?F = −1

4

∫
M∪M̄

ddx
√
−g FµνFµν . (2.1)

Defining separate fields A and Ā, restricted to respectivelyM and M̄, we can split the full

path integral into two pieces, glued together along the boundary ∂M using a functional

delta-constraint: ∫
[DAµ]

[
DĀµ

] ∏
x∈∂M

δ
(
Aµ − Āµ

)
eiSAeiSĀ . (2.2)

We introduce a boundary current density J µ as a Lagrange multiplier field that ensures

continuity of A over the boundary:2∏
x∈∂M

δ
(
Aµ − Āµ

)
=

∫
[DJ µ] ei

∫
∂M dd−1xJ µ(Aµ−Āµ) (2.3)

2Note that J α is a contravariant tensor density of weight +1, as with our definition it already includes

the metric pullback
√
−h factor on ∂M. We use this definition to match more naturally with the canonical

formalism in curved space, where conjugate momenta are tensor densities.
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Figure 1. Cartoon of the A functional space. The blue lines are the physical fields. The bulk field

is gauge-fixed to a single copy per gauge orbit. At the boundary the full would-be gauge orbit is

rendered physical, parametrized by the gauge parameter φ.

The total action is then:

S = SA + SĀ =− 1

4

∫
M
ddx
√
−g FµνFµν

+

∫
∂M

dd−1xJ µ(Aµ − Āµ)− 1

4

∫
M̄
ddx
√
−g F̄µνF̄µν , (2.4)

and the path integral is now over Aµ, Āµ and J µ.

We obtain Maxwell theory in the submanifold M by getting rid of all the Ā contribu-

tions. The current J is then to be interpreted as an external boundary source for Maxwell

theory that is summed over.

From the perspective of either side, the presence of the boundary breaks (large) gauge

invariance, as the surface current J µ is introduced merely as a Lagrange multiplier, and is a

priori not conserved. Large gauge transformations hence become dynamical (physical) fields

on the boundary. To implement this restoration of degrees of freedom on the boundary,

we write the gauge field as Aµ + ∂µφ, where Aµ is considered fully gauge-fixed in the bulk

M and where the only physical part of the field φ is living on the boundary surface ∂M
(figure 1).3 The glued theory obtained by reintroducing Ā and integrating over J obviously

restores gauge-invariance on ∂M. An alternative perspective on this construction can be

found in appendix A.1, where we comment further on re-gluing the left- and right-sector.

Making this decomposition and acknowledging that on the boundary surface ∂M the

would-be (large) gauge transformation φ becomes a physical degree of freedom, we are led

to the action:

SA = −1

4

∫
M
ddx
√
−g FµνFµν +

∫
∂M
J µ(Aµ + ∂µφ) + Sgf, (2.5)

to be inserted into the path integral:

Z =

∫
[DAµ]

vol G

[Dφ]

vol G∂
[DJ ] eiSA (2.6)

The path integral measure over the gauge field is divided by the volume of the gauge group

G. From the perspective of either side of the boundary, the path integral also contains a

3We will show further on that ∂nφ does not figure in the action, and hence only the variables φ|∂M and

∂αφ|∂M appear.
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division by the volume of the would-be gauge group at the boundary to ensure a proper

gluing is made when recombining both sides. The volume of the gauge group at the

boundary is:

vol G∂ =

∫
[Dφ] = δ(0), (2.7)

which is just the functional generalization of limk→0 δ(k) = limk→0
1

2π

∫ +∞
−∞ dx eikx. We

will encounter it in this way later on.

For completeness we introduced the possibility of a gauge-fixing term Sgf in the action

arising from the Faddeev-Popov procedure, which will be irrelevant for our purposes (it

vanishes on-shell).

The large gauge field φ that was introduced in (2.5) is only defined modulo constant

shifts: φ ∼ φ + constant, as its only goal in life is to parametrize the full would-be gauge

orbit. For the U(1) gauge group at hand these constant shifts are the global group G = U(1)

itself. This will be generalized to arbitrary compact groups in section 3 below.

To proceed, we path integrate the system with action (2.5) over the bulk A-field. As

the theory is quadratic, one evaluates the path integral by multiplying the determinant

of quadratic fluctuations by the exponential of the on-shell classical action. The first is

identified with the bulk photon degrees of freedom and the latter with the contribution

from the boundary:

Z[J , φ] =

∫
[DAµ] eiSA = (detO)−

1
2 × eiSA|on-shell = Zbulk × Zbdy[J , φ]. (2.8)

The determinant of the operator O might be difficult to evaluate explicitly in a curved

spacetime, but it is associated to the d − 2 bulk photon degrees of freedom, and not of

interest for our purposes. It represents the bulk photon subject to perfectly magnetic

conducting (PMC) boundary conditions:

Zbulk =

∫
PMC

[DAµ] eiSA = (detO)−
1
2 , nµF

µν |∂M = 0, nµA
µ|∂M = 0 (2.9)

To isolate the boundary theory, we now simply strip off the fluctuation determinant. The

result is an action where A [J ] is evaluated on-shell and where it represents the particular

solution to the boundary conditions(√
−gnµFµν

)∣∣
bdy

= J ν , (2.10)

and the equations of motion

∇µFµν = 0, (2.11)

that is orthogonal to the bulk photon. Notice that (2.10) is inconsistent if Jn 6= 0, project-

ing the path integral on the Jn = 0 sector only.

There is now a linear isomorphism between J and A. Indeed, the boundary condi-

tion (2.10) determines F |bdy in terms of J . Since A is completely gauge-fixed, this implies

a linear isomorphism between A|bdy and J . Evolving A|bdy into the bulk using the equa-

tions of motion (2.11) uniquely determines A in the bulk: we denote the solution as A[J ].

– 5 –
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This procedure is unambiguous since A decouples from the bulk photon because Maxwell

theory is linear.

It is now straightforward to read off an action for the boundary variables: one evaluates

the total action (2.5) on-shell using the procedure described above:

Sbdy [J , φ] = SA [J , φ, A]|on-shell . (2.12)

The result is an action quadratic in the boundary currents supplemented with a term

coupling J to the large would-be gauge field φ. On-shell evaluation of the first part

of (2.5) using integration by parts and the boundary condition (2.10) results in

− 1

2

∫
ddx
√
−g Fµν∂µAν = −1

2

∫
ddx ∂µ

(√
−gFµνAν

)
= −1

2

∫
∂M

dd−1xJ αA[J ]α,

(2.13)

where we already used the fact that on-shell J n = 0. Obviously this only depends on the

completely gauge-fixed part of A, since F is manifestly gauge-invariant. The second part

of (2.5) is: ∫
∂M

dd−1xJ α (A[J ]α + ∂αφ) . (2.14)

In both these contributions, A(J ) is to be understood as an explicit linear function of J ob-

tained by on-shell evaluation. Summing these one obtains the Lorentzian boundary action:4

Sbdy [J , φ] =

∫
dd−1x

(
1

2
J αA[J ]α + J α∂αφ

)
. (2.15)

Writing down this action makes manifest that the large gauge field φ has been promoted to

a dynamical (physical) field variable living on the boundary, that is path-integrated over.5

This action is in general higher-derivative. We initiate a canonical analysis in ap-

pendix B.6 For all examples we will discuss further in the main text though, we will not

need the generic case. From (2.15) one reads off the canonically conjugate field of φ as

πφ = J t = Q, reminiscent of the analysis at the level of the presymplectic potential

4A technicality is due here. The solution of the classical equations of motion enforces current conserva-

tion, so there is secretly a delta-functional present in a path integral over (2.15) enforcing this. However, this

delta-functional is equally written as δ(0) without changing the value of the path integral as path-integrating

over φ imposes the same constraint. In the notation of (2.8):

Zbdy[J , φ] = δ(0)e−S
bdy[J ,φ].

This δ(0) then is canceled in the boundary path integral with the volume of the boundary gauge group

vol G∂ as mentioned above in (2.6). The result is (2.18).
5Small gauge transformations are irrelevant; they are captured by the bulk theory and are still being

modded out of the physical Hilbert space by the usual Faddeev-Popov procedure.
6In detail, one solves the Maxwell problem (2.11), (2.10) with a delta-source on the boundary to obtain

the relevant Green function Gαβ(y, x). One can then write the action explicitly:

Sbdy [J , φ] =

∫
dd−1x

(
1

2

∫
dd−1yJ α(x)Gαβ(y, x)J β(y) + J α∂αφ

)
, (2.16)

which is non-local, but Gaussian.
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of [25]. In other words Q and φ have a nonvanishing Poisson bracket (or commutator in

the quantum theory): [φ,Q] = i, or

[Q, g] = −ig, (2.17)

where we exponentiated the element φ of the U(1) algebra to obtain an element g = eφ

of the gauge group U(1). The fact that we obtained the correct canonical structure of the

theory directly at the level of the action was one of our main motivations.

The thermal partition function of the edge degrees of freedom is obtained by path-

integrating the Euclidean version of (2.15) over the variables J and φ:

Zbdy =

∫
[DJ α] [Dφ] e−S

bdy[J ,φ], (2.18)

where now the thermal action has been used:

Sbdy [J , φ] = −
∫ β

0
dτ

∫
dd−2x

(
1

2
J αA[J ]α + J α∂αφ

)
, (2.19)

with τ the coordinate along the thermal circle of circumference β and the fields constrained

to be periodic in β. In light of (2.17), (part of) this partition function is just a phase space

path integral. We will come back to this further on.

The integration space of φ is all fields φ satisfying φ(τ) = φ(τ + β) + 2π
e n modulo

φ ∼ φ + constant and n ∈ Z. This is the loop group modulo the global group: LG/G.7

This observation will be generalized to arbitrary compact groups later on.

There are two conjugate perspectives on computing the resulting phase space path

integral. Firstly, the path integral over φ can be performed explicitly and results in a

delta-functional on current conservation:

Zbdy =

∫
[DJ α] δ(∂αJ α)e−S

bdy[J ], (2.20)

with the quadratic action for J just the first part of (2.19). This immediately demonstrates

the edge partition function is a summation over all possible current distributions on the

boundary surfaces, weighted by a suitable action.

Alternatively, since A[J ] is linear in J we can perform the Gaussian path integral over

J in (2.19) to obtain a quadratic action for the dynamical field φ:8

Zbdy =

∫
[Dφ] e−S

bdy[φ]. (2.21)

This is probably the most interesting view on the boundary edge theory: we obtain the

action that governs the dynamics of the large would-be gauge degrees of freedom φ.

7The quantity e denotes the fundamental charge, and the group element g = eieφ requires only peri-

odicity of φ mod 2π
e

. This causes charge quantization, the charges being proportional to φ̇. For practical

computations, we will ignore this by effectively setting e→ 0, leading to only φ̇(τ) = φ̇(τ + β). The results

can be readily adjusted to incorporate charge quantization. In effect, we take the gauge group to be R
instead of U(1).

8Formally, this can be done very explicitly using (2.16).
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Figure 2. Plane dividing space in two halves. Surface charges and currents source bulk electric

and magnetic fields.

How to re-obtain the full result by gluing back both theories with boundary is an

interesting question but it is logically distinct from our main story. We provide details on

this in appendix A, with 2d examples that will be studied in the main text as well.

The remainder of this section consists of applications of these formulas to interesting

examples. In sections 2.2 and 2.3, we will discuss the evaluation of the edge partition func-

tion by explicitly evaluating (2.20). We will first apply it to an infinite plane in cartesian

coordinates, and then take the specific example of Rindler space with the boundary at the

horizon, a surface of infinite redshift. These two cases are interesting to compare, and we

will confirm that this procedure produces the correct edge partition function.

In section 2.4 we specialize to 2d, as an example where the path integral over J can

be performed explicitly and one obtains a boundary theory with an explicit action for the

pure gauge degrees of freedom. By comparing with the known literature, we show that the

resulting boundary path integral produces the correct partition function.

2.2 Application I: Maxwell edge states in flat space

As a warm-up and a first application, we consider an infinite plane in flat space and

evaluate (2.20) directly. We look for Maxwell solutions solving the bulk homogeneous

equation �Aµ = 0 and Lorenz gauge ∂µAµ = 0, with boundary condition (2.10):

∂nAα − ∂αAn|xn=0 = Jα =
∑
k

J kα eik·x. (2.22)

This classical Maxwell problem is solved by

A[J ]α =
∑
k

eik·x

ikn
J kα , An = 0, (2.23)

with the sum over k restricted by �Aµ = 0 to k2 = 0 = k2
0 − k2 − k2

n. As such, the sum is

only over k0 and k⊥ with k2
n = k2

0 − k2
⊥. One readily checks Lorenz gauge is satisfied due

to boundary current conservation ∂αJ α = 0.

– 8 –
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This combined gauge ∇µAµ = 0 and An = 0 for the particular solutions A[J ] will

be used for all computations in this work. It is a close relative to the standard radiation

gauge, and it is particularly suited for our specific situation.

The on-shell Lagrangian is expanded as

1

2
J αA[J ]α =

1

2
J α 1

∂n
Jα =

1

2

∑
k,k′

ηαβJ kαJ k
′

β

ikn
ei(k−k

′)·x. (2.24)

Note that the sector kn = 0 does not contribute to the boundary partition function, because

it carries an infinite energy. The boundary partition function is then

Zbdy =

∫
[DJ α] δ(∂αJ α)e−β(2π)d−2

∑
k

(Jkα )2

2ikn =

∫
[DJ α] δ(∂αJ α)e

−β(2π)d−2
∑
k

Im(Jkα )2√
k2
0−k2
⊥ ,

(2.25)

where the last equality is found by rewriting the sum only over kn > 0.9 We path integrate

over all charges J0 and currents Ji on the boundary surface, respecting boundary current

conservation.

Note though that this is not a manifest state counting interpretation of the Hilbert

space, unlike (1.1), but just the thermal manifold evaluation of the partition function. This

will be different in the next section 2.3 when we discuss the Rindler case. We perform a

preliminary canonical analysis of this system in appendix B.2.

2.3 Application II. Maxwell edge states in Rindler

As a second explicit example, we consider Maxwell theory in Rindler space: M is the

R-wedge of R1,d−1 and the boundary ∂M is the null Rindler horizon. We shall explicitly

construct the boundary path integral (2.18). A first consistency check on the action (2.15)

follows from a precise quantitative agreement with the edge partition function first obtained

by Donnelly and Wall in [4, 5]. As a bonus, the boundary action is shown to provide

a convincing argument for the absence of static tangential magnetic fields (i.e. spatial

boundary currents Ji) on the horizon as edge states, in contrast to (2.25).

Since the horizon is an infinite redshift surface, all fields living on it are necessarily

static. One could for example infer this by demanding uniqueness of an arbitrary field at

the horizon from the Euclidean perspective. This constrains the allowed currents in (2.19)

to be static.

To obtain an explicit boundary action (2.15) one searches for the bulk fields F [J ]

and A[J ] which are isomorphic to the boundary current J . This is merely the equivalent

of solving a Laplace equation with boundary conditions. At this point it is necessary to

9In the case that k0 < k⊥, the integrand should be interpreted as

e
−β(2π)d−2 ∑

k
Re(Jkα)2√

k2
⊥−k

2
0 , (2.26)

where in this case kn > 0 which corresponds to an evanescent wave damped in the xn-direction away from

the boundary plane.

– 9 –
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Figure 3. Rindler space embedded in Minkowski space. The dashed blue line represents the

regularized horizon (as a brick wall) that is taken in the limit to the actual null horizon.

specify the the gauge: the isomorphism between J and A only holds when A is completely

gauge-fixed. We choose to implement the covariant Lorenz gauge:

∇µAµ = 0. (2.27)

The Rindler coordinate system in d dimensions is the metric:

ds2 = −ρ2dt2 + dρ2 + dx2 = e2r(−dt2 + dr2) + dx2, (2.28)

where ρ = er, and x = {xi} denotes the coordinates parallel to the horizon i.e. the d − 2

spectator dimensions. The boundary is chosen at ρ = ε→ 0+ as in figure 3.

The details of the calculation are exiled to appendix C, not to distract from the main

story. One obtains:

J tA[J ]t|bdy = Q 1

s∆
Q, (2.29)

where s ≡ − ln ε is a large positive regulator equal to (minus) the tortoise coordinate of

the horizon that ultimately is to be taken to infinity, and ∆ is the Laplacian on the d− 2

spectator dimensions with negative eigenvalues −k2. In addition one finds:

J iA[J ]i|bdy = sJ iJ i, (2.30)

with summation implied. Inserting these into the action (2.15) one obtains:

S [J , φ] =

∫
dt

∫
dd−2x

(
Jα∂αφ−Q

1

2s(−∆)
Q+

s

2
J iJ i

)
. (2.31)

In the thermal partition function, the last term will contribute as es
J iJ i

2 . Taking s→∞,

the path integral will hence localize at the saddlepoint J i = 0. Notice that this J i = 0

localization proves unambiguously that there are no electromagnetic edge states associated

with magnetic field configurations on the boundary, and the reason is the infinite horizon

redshift. We are left with a phase space path integral over φ and πφ = Q:

Z =

∫
[Dφ] [Dπφ] exp

{
−
∫
dτ

∫
dd−2x

(
πφ

1

2s(−∆)
πφ − iπφ∂τφ

)}
. (2.32)
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The path integral over φ results in a factor δ(π̇φ) and one obtains:

Z =

∫
[DQ(x)] exp

{
−β
∫
dd−2xQ 1

2s(−∆)
Q
}
. (2.33)

Due to the δ(Q̇), this becomes a Gaussian functional integral over time-independent distri-

butions Q(x) on the boundary. This path integral is precisely the edge partition function

as first obtained by Donnelly and Wall in [4, 5], and studied in a canonical quantization

context in [26].

Further enforcing the limit s→∞ takes the action to zero, and we are left with:10

Z =

∫
[DQ(x)] . (2.34)

The boundary partition function is a simple counting of all electric charge configurations

on the boundary with weight one; these are the electromagnetic microstates of the black

hole, as pointed out in [26].

Of similar interest is the dual picture, where we obtain a boundary action for the large

would-be gauge field φ. Performing the path integral over πφ in (2.32) results in a quadratic

boundary action for φ:

S [φ] =
s

2

∫
dd−1x ∂τφ(−∆)∂τφ. (2.35)

Enforcing s → ∞ results in a localization on configurations for which φ̇ = 0. We are

left with:11

Z =

∫
[Dφ(x)] . (2.36)

The boundary partition function is a simple counting of all time-independent large gauge

transformations with weight one. This is the dual picture of (2.34).

The states of interest have zero energy as the above expressions demonstrate. This

implies, in the canonical ensemble, that the entropy S and partition function Z are related

as S = lnZ, which is interpreted microcanonically as Z = Ω, the number of states.

Both of the above formulas (2.34) and (2.36) can be rewritten in an alternative sug-

gestive way, by using our old friend:∫
[DQ(x)] =

∏
x

∫
dqx =

∏
x

δ(0), (2.37)

to write

S = lnZ =

∫
dx ln δ(0) = AH ln δ(0) (2.38)

which has manifest scaling with the area of the horizon AH . The divergence ln δ(0) reflects

the UV-incompleteness of QFT near horizons.

10An exception occurs when ∆ = 0, i.e. when the charge distribution contains a spatial Fourier zero-mode,

this is a spatial offset Q(x) = Q+ δQ. Such configurations have infinite action and are not counted.
11As stated earlier, the large gauge transformation φ is identified φ ∼ φ+ constant, so the counting that

appears here is only over fields φ that have no overall spatial offset, matching the counting stated above

in (2.34).
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The resulting entropy S can be viewed as residual entropy from the perspective of the

Rindler thermal photon gas: the total energy of the photon gas is just the bulk piece (the

thermal atmosphere of the black hole), but the total entropy contains both a bulk and an

edge piece.

The fact that the on-shell evaluation only considers static configurations implies

that (2.33) coincides manifestly with a Hilbert space state-counting interpretation as men-

tioned in the Introduction. We elaborate on this, and the canonical structure of such a

system in appendix B.1.

This result actually has a much wider applicability than expected. As usual, Rindler

space is the near-horizon approximation to any black hole. So if the dynamics is confined

to a region close to the horizon, Rindler space is a good approximation. For the edge theory

however, the modes are stuck at the horizon: their wavefunction has no spread outside the

horizon. This was illustrated in our earlier work [26] (see e.g. figure 10 therein), and implies

that the Rindler approximation is exact to describe the edge sector for any non-extremal

black hole.

2.4 Application III. 2d Maxwell

As our next application and as a warm-up for what follows in section 3.2, we consider

the special case of 2d Maxwell. The partition function of 2d Maxwell theory on a disk is

well-known. Denoting by A the area of the disk one obtains the integral

Z =

∫
dEe−A

E2

2 , (2.39)

where E is the electric field normalized as E2 = −1
2F

µνFµν . We can write this equivalently

as a path integral over E with a delta-constraint on static configurations:∫
dEe−A

E2

2 =

∫
[DE] δ(Ė) exp

{
−
∫ β

0
dτ
a

2
E2

}
, (2.40)

where we introduced a as βa = A. Introducing a Lagrange multiplier φ to replace the

delta-functional, and replacing E = Q, one obtains:

Z =

∫
[DQ] [Dφ] exp

{
−
∫ β

0
dτ
(a

2
Q2 − iQ∂τφ

)}
. (2.41)

This is just the phase space path integral of a free particle, with πφ = Q:

Z =

∫
[Dπφ] [Dφ] exp

{
−
∫ β

0
dτ
(a

2
π2
φ − iπφ∂τφ

)}
. (2.42)

This is made explicit by integrating out πφ, which results in the partition function of a

particle on U(1) with coupling a:

Z =

∫
dQe−ACQ =

∫
[Dφ] exp

{
− 1

2a

∫
dτ∂τφ∂τφ

}
, (2.43)
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where CQ = Q2/2 is just the Casimir of U(1), and the charge Q is the continuous parameter

labeling the representations of U(1). This label may become discrete due to charge quan-

tization when additional matter fields are present, but we will not bother with this here.

Note that a particle on U(1) is just a 1d massless scalar.

It is no coincidence that the partition function of the particle on U(1) (with appropriate

coupling) is precisely the partition function of 2d Maxwell on a disk. Indeed, using the

logic of section 2.1 we can directly reduce Maxwell on a disk to a particle on U(1) living

on the boundary of the disk.

Consider 2d Maxwell on a Euclidean disk in polar coordinates (τ, ρ) with
∫
dρρ = a.

The bulk partition function of 2d Maxwell is just unity: the PMC boundary conditions

restrict the theory to F = 0, i.e. pure (small) gauge solutions, which are modded out. The

boundary partition function is obtained as described above. With the boundary current

just a chargeQ, the classical gauge field A solution depends on the charge as A[Q]t = −ρ2

2 Q.

The Lorentzian boundary action (2.15) reduces to12

S [Q, φ] =

∫
dt

(
− a

2
Q2 + ∂tφQ

)
. (2.44)

The thermal boundary partition function hence becomes the phase space path integral:

Z =

∫
[DQ] [Dφ] exp

{
−
∫ β

0
dτ

(
a

2
Q2 − iQ∂τφ

)}
, (2.45)

which becomes a particle on U(1) by integrating over Q. This completes the proof.

3 Yang-Mills

It is not too hard to extend the discussion of section 2.1 to Yang-Mills gauge theories

with an arbitrary gauge group G. There is one important difference though: non-Abelian

Yang-Mills theory is not free, as the field strength F is nonlinear in A:

F aµν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν . (3.1)

This shows that there is no clean way to split bulk and boundary theories for non-Abelian

Yang-Mills theory in general. Indeed, the theory is interacting and there will always be

communication between different sectors.

This being said, it’s still interesting to investigate this boundary theory on its own. One

reason for this is that the Yang-Mills boundary edge action will allow us to determine the

canonical structure for the boundary, analogous to (2.17). A second reason is the special

case of two-dimensional Yang-Mills discussed in section 3.2. This has no propagating bulk

degrees of freedom and as such the theory is to a large extent determined by the edge

theory. It is one of our goals to understand to which extent.

12As before, there is secretly a δ(Q̇) present in the resulting path integral in order to solve the classical

equations of motion. But φ also imposes this, so we replace it by δ(0) which cancels the volume of the

boundary gauge group G∂ as before. The result is (2.45).
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3.1 Boundary action for Yang-Mills

We denote the generators of the Lie algebra g as τa, satisfying the algebra
[
τa, τ b

]
= fabc τ

c

and normalized as Tr
(
τaτ b

)
= δab. Following the same procedure as in section 2, we intro-

duce again a Lagrange multiplier field J in the Lie algebra, and get the Lorentzian action:

S = −1

4

∫
M

Tr(F ∧ ?F ) +

∫
∂M

dd−1x Tr(J µAµ). (3.2)

Under a generic large gauge transformation with group element g = eφ
aτa ∈ G, the second

part of the action transforms to∫
∂M

dd−1x Tr
(
J µ
(
gAµg

−1 − ∂µgg−1
))
, (3.3)

and the bulk action is gauge-invariant as usual. This formula is the analogue of (2.14).

Following the Maxwell discussion, to obtain the boundary action we will continue to use the

form (3.3) where it is now understood that A is completely gauge-fixed, and g represents

the large gauge degrees of freedom: these have become physical (dynamical) degrees of

freedom on the boundary.13

One needs to be careful when splitting the field into a gauge-fixed piece Aµ and a large

gauge transformation g. Due to the fact that Aµ and hAµh
−1 for a global (constant) gauge

transformation h are gauge-inequivalent, when writing the gauge field as gAµg
−1−∂µgg−1,

the global transformations h are already included as part of the gauge-fixed Aµ itself, and

are not to be included in the g-integration. Such transformations would be obtained for

g when multiplying it on the right with h, so the path integral over the physical variable

g is over the right coset of the (product at every spatial point x of the) loop group:

(
∏

x LGx) /G and excludes global transformations. This is the same conclusion as for the

U(1) case. Notice that the Lagrange multiplier current J did not transform under the

action of g.

As for Maxwell, we will emulate the path integration over the bulk gauge field A by

plugging in the classical equations of motion. Here however, as the action is quartic, there

is no sensible splitting of bulk and edge degrees of freedom. The procedure we employ

severs the interactions between bulk and boundary: the resulting theory will be interacting

but only includes edge-edge interactions. Quantitatively, we only consider quadratic fluctu-

ations around each non-perturbative saddle. As 2d Yang-Mills theory is by itself one-loop

exact [29], this covers the entire theory, as we show extensively in section 3.2 further on.

The Yang-Mills bulk equations of motion read:

(DµF
µν)a = 0, (3.4)

where D is the covariant derivative including both the Christoffel connection Γ and the

gauge connection A. Variation of A using the action (3.6) results in the boundary condi-

13As a consistency check, note that transferring between two different gauges for Aµ is contained within

the field redefinition g → gh for a given specific field h(x). The Jacobian of this transformation is trivial

due to the left-invariance of the path-integral measure. For U(1), the Jacobian of the transition φ→ φ+ χ

for a given χ(x) is even more quickly seen to be unity.
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tions:

g
(√
−gnµFµν

)∣∣
bdy

g−1 = J ν , (3.5)

which implies J n = 0. This last constraint can be used to reduce the boundary action to:∫
dd−1x Tr

(
J α
(
gAαg

−1 − ∂αgg−1
))
, (3.6)

which is now internal to the boundary. The current J can thus again be interpreted as a

genuine boundary current sourcing the Yang-Mills equations. Notice that equation (3.5)

demonstrates the transformation behavior of F under g → gh: J is invariant and hence F

transforms in the adjoint representation F → h−1Fh.

The boundary action is the on-shell evaluation of the bulk action in the sense of (2.12):

Sbdy [J , φ] = SA [J , φ, A]|on-shell . (3.7)

Evaluation of the first term of the action (3.2) is analogous to the Maxwell evaluation (2.13).

One obtains the Lorentzian boundary action:

Sbdy [J , g] =

∫
dd−1x Tr

(
1

2
J αgA[J ]αg

−1 − J α∂αgg−1

)
. (3.8)

The boundary thermal partition function of Yang-Mills is thus:

Zbdy =

∫
[DJ α] [Dg] e−S

bdy[J ,g], (3.9)

with the Euclidean boundary action

Sbdy [J , g] = −
∫ β

0
dτ

∫
dd−2x Tr

(
1

2
J αgA[J ]αg

−1 − J α∂αgg−1

)
, (3.10)

and where gA[J ]g−1 is now an explicit function of J on account of the boundary con-

dition (3.5). Notice that in general this action will not be quadratic in J since F is

nonlinear in A. One way to obtain a boundary action quadratic in J is to adopt radial

gauge for the gauge field: An = 0. On account of (3.1), one now obtains a linear relation

gA[J ]αg
−1 ∼ Jα and hence a quadratic action (3.8). Formally one could again path in-

tegrate out J to obtain a boundary action Sbdy [g] quadratic in the Maurer-Cartan one

form ω = g−1dg. In section 3.2 we will do this explicitly for 2d Yang Mills and obtain the

action of a particle on G.

From (3.8), one reads off the conjugate momentum of the group element g as πg =

g−1J t. More particularly, element per element one defines

πij =
∂L
∂ġji

, (3.11)

The gauge-invariant chromo-electric charges are defined using this conjugate momentum

as Q = Qaτa = gπg = J t, or in components:

Qa = (gπg)
a = Tr(gπgτ

a) = (gπg)ij(τ
a)ji. (3.12)
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From the canonical algebra [gij , πkl] = iδilδjk, inferred from (3.11), we deduce the algebra

of the charges (3.12). For example:

[Qa, gkl] = [(gπg)ij(τ
a)ji, gkl] = (τa)jigim[πmj , gkl] = −i(τa)kigil = −i(τag)kl, (3.13)

or in short:

[Qa, g] = −iτag. (3.14)

Likewise we deduce:14 [
Qa,Qb

]
= fabcQc. (3.16)

The relations (3.14) and (3.16) confirm that the Lie algebra valued charges Q generate

large would-be gauge transformations which are physical fields on the boundary.

This is precisely the canonical boundary algebra obtained by Donnelly and Freidel from

an analysis of a necessary boundary contribution to the presymplectic potential [25].15 The

recovery of the correct boundary canonical structure (3.14) and (3.16) directly from the

boundary action (3.8) is an important consistency check on the validity of this construction.

As in section 2, we provide examples to illustrate this construction.

3.2 Application IV. 2d Yang-Mills

An especially interesting application of the boundary partition function (3.9) is to consider

theories where there are no propagating bulk degrees of freedom. In these cases, one expects

to be able to cleanly pinpoint the edge sector of the theory. As the simplest example, the

edge construction of a purely topological theory is well-known, as the theory fully reduces

to just this piece. A somewhat less trivial example is two-dimensional Yang-Mills theory:

the theory is quasi-topological in the sense that generic correlators not only depend on the

topology of the manifold, but also on the areas enclosed by Wilson lines on the manifold.

The logic of this work provides us with a way to associate a 1d boundary action to 2d

Yang Mills with gauge group G. We will show this boundary theory to be a particle on the

group G. We will match the partition function of a particle on a group on the boundary of

a disk with that of 2d Yang Mills in the interior of the disk, thereby providing an important

14Some intermediate steps: [
Qa,Qb

]
=
[
(gπg)ij(τ

a)ji, (gπg)kl(τ
b)lk
]

= (τa)ji(τ
b)lk[gimπmj , gksπsl]

= gksπsj
(

(τa)ji(τ
b)ik − (τa)ik(τ b)ji

)
= fabc (gπg)kj(τ

c)jk = fabcQc. (3.15)

15In [25], the field g is introduced as an external field that transforms under a large gauge transformation

with element h ∈ G as g → gh−1, and A in (3.6) transforms under h in the usual manner A→ hAh−1−dhh−1

. The coupling of the gauge field to the external current J in (3.6) is then completely gauge-invariant. The

action (3.6) would thus be the one that goes with their analysis and reproduces their canonical boundary

structure. We are led instead to the interpretation that the field g is the gauge freedom on the boundary,

which has become dynamical. Large gauge invariance is only restored upon gluing.
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check on our methods.16 Correlators of these theories are of particular interest and are

discussed separately in section 4.

As in section 2.4, we will first rewrite the known results of 2d Yang-Mills theory in a

suggestive way. Afterwards we will provide the direct derivation of the edge action using

our procedure from the previous section.

The Euclidean path integral of 2d Yang-Mills on a disk with area A and monodromy

U ≡ P exp
{∮
C A
}

around the boundary C is:

Z(U) =
∑
R

dimRχR(U) e−ACR , (3.17)

where the sum ranges over all irreps R of G, χR is the character in R, and CR is the

Casimir in the irrep R. Choosing the trivial monodromy U = 1 one obtains:

Z =
∑
R

(dimR)2e−ACR . (3.18)

Using techniques well-known within the coadjoint orbit literature [32, 33], this can be

rewritten as a double phase space path integral over g ∈ LG/G and a Lie-algebra valued

field Q:

Z =

∫
[DQ] [Dg] exp

{
−
∫ β

0
dτ Tr

(
a

2
Q2 + iQ∂τgg−1

)}
. (3.19)

We provide details in appendix D.17 Integrating out Q results in:

Z =

∫
LG/G

[Dg] exp

{
− 1

2a

∫
dτ Tr

(
g−1∂τgg

−1∂τg
)}
, (3.20)

which is the partition function of a particle on the group G with coupling a.

As for the Maxwell case, this equality can alternatively be obtained directly using the

boundary action (3.8). The goal is to find the analogue of (2.29) for 2d Yang-Mills. The

Lorentzian boundary action (3.8) is:

S [Q, g] =

∫
dtTr

(
1

2
QgA(Q)tg

−1 −Q∂tgg−1

)
. (3.21)

The boundary conditions relate F and Q by(√
−gnµFµt

)∣∣
bdy

= g−1Qg, (3.22)

or

g
(√
−gnµFµt

)∣∣
bdy

g−1 = Q. (3.23)

In general, F depends nonlinearly on A through F aµν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν , and as

such a linear relation between gA(Q)g−1 and Q is not guaranteed by (3.23). Fortunately,

16It is not difficult to generalize this to arbitrary Riemann surfaces.
17Such an action was written down in the past in [34] in a different context as a toy model for canonical

quantization in systems with Poisson-Lie symmetry.
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we can obtain a particular solution that ensures precisely such a linear relationship which

makes it possible to integrate out Q.

The required solution is the precise equivalent of the Maxwell solution: Aat = −ρ2

2 Q
a.

Indeed, this field is a solution of the bulk equations of motion (DµF
µν)a = 0 and it satisfies

the boundary conditions (3.23). It also satisfies the Lorenz gauge condition: (DµAµ)a =

∇µAaµ = 0. Some details are presented in appendix E. Inserting this solution in (3.21)

results in the Lorentzian boundary action:

S [Q, g] = −
∫
dtTr

(
a

2
Q2 +Q∂tgg−1

)
, (3.24)

which is the precise equivalent of (2.44). The thermal boundary partition function be-

comes just:

Z =

∫
[DQ] [Dg] exp

{
−
∫ β

0
dτ Tr

(
a

2
Q2 + iQ∂τgg−1

)}
, (3.25)

which becomes a particle on G by integrating over Q.

We comment on gluing two such systems back together in appendix A.3.

It is relatively straightforward to observe that the more general situation of 2d Yang-

Mills on a disk with monodromy U around the boundary curve (3.17) is obtained by

imposing twisted boundary conditions on the group element g: g(τ + β) = Ug(τ). Indeed,

the twisted partition function of the particle on a group:∫
dgK(Ug, g;β) = Tr(e−βHU) =

∑
R

dim(R) χR(U)e−βaCR , (3.26)

becomes precisely (3.17).

The partition function of 2d Yang-Mills (3.20) is that of a particle on G. The same

is not true for an arbitrary correlation function; 2d Yang-mills is only quasi-topological: a

closed Wilson line inserted deep in the 2d bulk affects the path integral of 2d Yang Mills,

but not the edge theory. As we will highlight in section 4 though, the link between both

theories goes much further than a mere equivalence on the level of partition functions: disk

expectation values in 2d Yang Mills of a large subclass of boundary-anchored Wilson lines

can all be calculated using particle-on-a-group correlators.

3.3 Application V. Yang-Mills edge states in Rindler

The non-Abelian generalization of section 2.3 is straightforward. On-shell evaluation A[J ]

is identical to the Maxwell example because we can resort to Aρ = 0 gauge for the particular

solutions in the ω = 0 sector. As explained below equation (3.8), this results in a linear

relation A[J ] ∼ J making the edge action again quadratic in J , effectively reducing the

Yang-Mills on-shell evaluation to dim G copies of the Maxwell case. We obtain the analogue

of (2.31):

S [J , g] =

∫
dtdd−2x Tr

(
Jα∂αgg

−1 −Q 1

2s(−∆)
Q+

s

2
J iJ i

)
. (3.27)

– 18 –



J
H
E
P
1
1
(
2
0
1
8
)
0
8
0

Taking s→∞, the path integral again localizes on J i = 0 and we are left with

Z =

∫
[Dg] [DQ] exp

{
i

∫
dτdx Tr

(
Q∂τgg−1

)}
. (3.28)

Path integrating over Q results in a sum with unit weight over configurations ∂τgg
−1 = 0

or time-independent g(x):

Z =

∫
[Dg(x)] . (3.29)

This is just summing static large gauge configurations on the boundary.

An interesting perspective is obtained by integrating out g and Q directly in (3.28)

using the techniques of appendix D. We obtain the analogue of (D.4) but now integrating

over the angular variables results in space-dependent solutions mk
i (x), with zero Hamilto-

nian. The result is a sum over all states in all representations of G at each spatial point x

on the horizon:

Z =
∏
x

∑
R(x)

(dimR(x))2, (3.30)

which is UV-divergent. Denoting the divergent dimension of the total state space for G as

ΩG =
∑

R(dimR)2, the residual entropy is

S = AH ln ΩG = AH ln

∫
dg̃, (3.31)

where one has the formal equality of
∑

R(dimR)2 =
∫
dg̃, the volume of G̃, the universal

cover of G.

Both here as in section 2.3, our final result looks like the 2d theory result taken at

every point of the Rindler horizon in the zero-temperature limit β →∞, cfr. (2.39) for the

Maxwell case, and (3.18) for the YM case, where A = aβ. Both the fact that β →∞ and

the transverse decoupling are due to infinite redshift. Firstly, every finite energy excitation

at the horizon is redshifted to zero energy at the location of the Rindler (or Schwarzschild)

observer. Secondly, separate points on the horizon cannot communicate with each other,

and the edge computation effectively reduces to a 1+1d computation. We can see this

explicitly when going from (3.27) to (3.28): the limit removes all x-derivatives in the

Lagrangian, making the theory ultralocal in the transverse x-directions, and removing all

correlation between different locations on the horizon.

This is an additional motivation for studying the quasi-topological two-

dimensional cases.

4 Edge correlators in 2d Yang-Mills

The edge theory of 2d Yang-Mills on a disk describes a particle on a group on the boundary

circle. In recent work [31], one of the authors calculated the correlators of the particle-on-

a-group model by dimensionally reducing 2d Wess-Zumino-Witten (WZW) conformal field

theory between vacuum branes.
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In this section we relate these results to computations within 2d Yang-Mills and answer

which aspects of the bulk YM theory are captured by correlators in just the boundary

theory. More in particular we will show which YM correlators can be calculated using

particle-on-a-group correlators, and which can’t. For the technical computations, we have

in mind the gauge group G = SU(2), but our expressions can equally be interpreted directly

for any compact gauge group.

4.1 Particle on a group correlation functions

Particle-on-a-group correlators can be obtained from WZW correlators by dimensionally

reducing WZW between two vacuum branes, each characterized by a vacuum state that

can be expanded in Ishibashi states. The details can be found in [31], we will only review

the final results for the correlation functions that this procedure leads to.

The first thing to consider is which operator insertions to include in the particle-

on-a-group path integral. As discussed in [31] from the 2d WZW perspective, using the

Peter-Weyl theorem, one can write the most generic local primary operator in WZW (in

lightcone (u, v) coordinates) as a linear combination of the elementary operators:18

OR,mm̄(u, v) = R(g(u, v))mm̄, (4.1)

where R is a certain irrep of G and m, m̄ are two labels in the irrep each ranging over dimR

values. For example, for G = SU(2) and R = j this is just m ∈ {−j,−j+1, . . . , j}. Dimen-

sional reduction from 2d WZW to 1d particle-on-a-group results in the bilocal operator:

OR,mm̄(τ1, τ2) = R(g(τ2)g−1(τ1))mm̄. (4.2)

Note that this bilocal operator is invariant under global G transformations g → gh. As the

particle-on-a-group path integral (3.20) has global G transformations as a gauge symmetry,

this means this bilocal operator is on its own already gauge-invariant, and an interesting

observable to consider.

A 2d-1d holographic intuition into why these bilocals are so natural was not provided

previously though. We will point out in what follows that they have a bulk interpretation

in terms of Wilson lines in 2d Yang-Mills. As the theory is only quasi-topological, not

all features of 2d YM are captured by these edge correlators. A more direct link between

the particle-on-a-group model and its topological holographic dual: 2d BF theory, can

also be given in terms of boundary-anchored Wilson lines in the BF bulk and is discussed

elsewhere [35].

Combining 2d CFT techniques with a doubled version of the Wigner-Eckart theorem,

correlation functions of such bilocal operator insertions were determined [31]. We next

summarize the results of this computation.

18Primary operators are constructed as functions of g(u, v), but not its derivatives.
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The two-point function is the expectation value of a single bilocal operator

OR,mm̄(τ1, τ2):

〈OR,mm̄(τ1, τ2)〉 =
∑
R1,R2

dimR1 dimR2 e
−a(τ2−τ1)CR2e−a(β−τ2+τ1)CR1

×
∑
m1,m2

(
R1 R R2

m1 m m2

)(
R1 R R2

m1 m̄ m2

)
, (4.3)

where the 3j-symbols of the group have been introduced. Using the identity

∑
m1,m2

(
R1 R R2

m1 m m2

)(
R1 R R2

m1 m̄ m2

)
=

1

dimR
δmm̄NR1RR2 , (4.4)

we can simplify (4.3) into:

〈OR,mm̄(τ1, τ2)〉 =
∑
R1,R2

dimR1 dimR2 e
−a(τ2−τ1)CR2e−a(β−τ2+τ1)CR1

NR1RR2

dimR
δmm̄, (4.5)

which is diagonal in m and m̄: only the diagonal bilocals are non-zero. From the 2d

WZW CFT perspective, the m and m̄ labels are associated to respectively holomorphic

and antiholomorphic sectors; the diagonal operators are spinless in 2d CFT.

The time-ordered four-point function is the expectation value of two bilocal operators,

with τ1 < τ2 < τ3 < τ4:〈
T ORA,mAm̄A(τ1, τ2)ORB ,mBm̄B (τ3, τ4)

〉
=

∑
R1,R2,R3

∏
i

(
dimRie

−aLiCRi
)

×
∑

m1,m2,m3,m̃3

(
R1 RA R3

m1 mA m3

)(
R1 RA R3

m1 m̄A m̃3

)(
R2 RB R3

m2 mB m̃3

)(
R2 RB R3

m2 m̄B m3

)
,

(4.6)

which is not necessarily diagonal. Here Li are the respective lengths of the boundary

segments.

It is clear at this point that the exact answers for the correlators such as (4.6) are

highly structured. As mentioned in [31], a diagrammatic decomposition can be used to

write down the general amplitude.

• The starting point is the oriented thermal circle. A bilocal operator OR,mm̄(τi, τf )

becomes an oriented line from τi to τf with label R. The starting point τi receives a

label m, the endpoint receives the label m̄.

• Each region in the resulting diagram is assigned an irrep Ri, and contributes a weight

dimRi. Assign a mi label to each boundary segment. Eventually these labels Ri and

mi are to be summed over.

• Each boundary segment carries a propagation factor e−aLiCRi , proportional to the

length Li of the relevant segment i. Each intersection of an endpoint of an internal
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line with the boundary has associated with it 3 irreps and 3 labels and is weighed

with the 3j-symbol associated with these labels.

τ1τ2

m

R = e−CR(τ2−τ1)

m2

m1

mR

R1

R2

=

(
R1 R2 R

m1 m2 m

)
.

(4.7)

• Each crossing of two internal lines is associated with 6 irreps and is weighed with the

appropriate 6j-symbol, by the rule:

R4R2

RA RB

R1

R3

=

{
RB R1 R4

RA R3 R2

}
(4.8)

As an example, the above two-point function (4.3) and four-point function (4.6) are dia-

grammatically:

m1

mm̄

m2

τ2 τ1
R

R1

R2

R3

RA

RB

R1

R2

m1

m2

m3m̃3

mAm̄A

m̄BmB

τ3

τ2

τ4

τ1

(4.9)

A further example is the four-point function with crossed connections into bilocals. Then

the lines associated with the bilocals cross in the bulk of the diagram. The expectation

value of the product of two bilocal operators ORA,mAm̄A(τ1, τ3) and ORB ,mBm̄B (τ2, τ4), with

time-ordering τ1 < τ2 < τ3 < τ4, is given by

R3

R1

R2 R4

RA RB
τ1

τ2 τ3

τ4

m1

m3

m4

m̄B

mB

mA

m̄Am2

(4.10)
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Using the diagrammatic rules, one writes:

〈
T ORA,mAm̄A(τ1, τ3)ORB ,mBm̄B (τ2, τ4)

〉
=

∑
R1,R2,R3,R4

∏
i

(
dimRie

−aLiCRi
){RB R1 R4

RA R3 R2

}

×
∑

m1,m2,m3,m4

(
R1 RA R2

m1 mA m2

)(
R1 RB R4

m1 m̄B m4

)(
R2 RB R3

m2 mB m3

)(
R3 RA R4

m3 m̄A m4

)
.

(4.11)

Such a configuration is closely related to, but not equal to an out-of-time ordered (OTO)

correlator.19

4.2 Boundary anchored Wilson lines in 2d Yang-Mills

In the above, the diagrams were merely tools to write down a general amplitude. Our goal

now is to demonstrate that the interior of the diagram can be interpreted as the 2d Yang-

Mills bulk, with the internal lines interpretable as bulk Wilson lines: we want to prove

here that the above correlators encode 2d YM correlation functions of boundary-anchored

Wilson lines in the interior of the disk.

This specific subset of correlation functions has not been deduced in the literature

yet, but can be obtained from it by suitable manipulations. In this section, we resort to

a deconstructive method by cutting open known YM sphere path integrals into two disks,

where the cutting line crosses a suitable number of Wilson loops (figure 4).20 This leads to

disk correlation functions of boundary-anchored Wilson lines. We heavily draw upon the

results of 2d YM, which can e.g. be found in the review [30].

Cutting open the path integral on the sphere along a certain line is achieved naturally

by inserting an identity Wilson loop along this cut, as we will show by example. Consider

the path integral of YM on a sphere with a Wilson line WR in irrep R inserted:〈
WR

〉
=
∑
R1,R2

dimR1 dimR2 e
−A1CR1e−A2CR2

∫
dUχR1(U)χR(U)χR2(U−1), (4.14)

19Schematically, imagine we can write out the bilocals as the product of local operators. Then what we

computed above is

〈O1O2O3O4〉 , (4.12)

whereas the genuine OTO-correlator obtained by swapping operators in a time-ordered correlator using

the braiding R-matrix, would be

〈O1O2O3O4〉
R

=⇒ 〈O1O3O2O4〉. (4.13)

The resulting expressions are very closely related though: putting operators out of time order is effectively

forcing the bilocal lines (to be identified as Wilson lines in the bulk theory) to cross, in the end reproducing

the same computation. The appearance of the 6j-symbol for the holographic SL(2,R) BF-theory from

crossing Wilson lines is indeed related to the OTO correlation functions of the boundary Schwarzian theory,

which is discussed elsewhere [35]. Such an investigation is also being pursued independently [36].
20A constructive method similar to the original calculation of Wilson line correlators in YM [28] is given

in [35].
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R1

R2 0

R

R3

m1

m1

m3

m3

R4

m

mR1
0

R2

0
RA

RB
m2

m2

m4

m4

Figure 4. Left: cutting a sphere along an identity Wilson loop causes a decomposition into two

disks. Middle: cutting a sphere through an additional Wilson loop produces two disks with single

boundary-anchored Wilson lines. Right: two additional intersecting Wilson loops leads to two disks

that each contain two crossing boundary-anchored Wilson lines.

where χ(R) denotes the character in representation R and U = P exp
(∮
A
)

is the holonomy

along the spatial slice of interest. The integral over U is readily evaluated explicitly using:∫
dUχR1(U)χR(U)χR2(U) = NR1RR2 , χR̄(U) = χR(U−1) (4.15)

Consider now the special case where R = 0 i.e. the identity representation, depicted in

figure 4 (left). The l.h.s. of (4.14) becomes just the sphere partition function
〈
1
〉

= Z,

and (4.14) decomposes as:

Z =

∫
dUZtop(U)Zbot(U

−1), (4.16)

where Ztop(U) is the disk amplitude with boundary holonomy U (3.17).

A second, more illustrative example is obtained by considering the sphere path integral

of two crossing Wilson lines of which one is in the identity representation, as depicted in

the middle figure 4. The diagrammatic rules for calculating such a diagram in YM are well-

known, and were established by Witten [28]. Each of the crossings contains a 6j-symbol,

which arises as summing the product of four 3j-symbols over all relevant mi labels, each

representing three adjacent irreps. Two of those four 3j-symbols then contain the identity

irrep from the separating Wilson loop. These can be written as:(
R1 0 R3

m1 0 m3

)(
R1 0 R3

m̄1 0 m̄3

)
=

∫
dWR1(W )m1m̄1R3(W )m3m̄3 ,(

R2 0 R4

m2 0 m4

)(
R2 0 R4

m̄2 0 m̄4

)
=

∫
dV R2(V )m2m̄2R4(V )m4m̄4 (4.17)

where we introduce the boundary group elements W and V along the relevant segments.

This orthonormality relation of the representation matrices is a special case of the more

general formula∫
dU R1(U)n1m1R2(U)n2m2R3(U)n3m3 =

(
R1 R2 R3

m1 m2 m3

)(
R1 R2 R3

n1 n2 n3

)
, (4.18)
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The sphere amplitude with the Wilson line insertion is found to decompose as:〈
WR

〉
=
∑
m̄n̄

∫
dV dWZtop(V,W )Zbot(V,W ), (4.19)

where

Ztop(V,W ) =
∑
R1,R2

dimR1 dimR2

∑
m1,m̄1,m2,m̄2

R(W )m1m̄1R(V )m2m̄2e
−A1CR1e−A2CR2

×

(
R1 R2 R

m1 m2 m

)(
R1 R2 R

m̄1 m̄2 m̄

)
. (4.20)

It is not hard to check that performing the integrals over V and W in (4.19) results back

in (4.14). We identify this as the disk path integral of a boundary-anchored Wilson line,

with boundary holonomy W resp. V on the two relevant open boundary intervals. Setting

V = W = 1, to obtain a disk with a boundary, we enforce mi = m̄i and obtain (4.3), with

a suitable choice of the parameters a and Li.

As a final example we can consider three crossing Wilson loops (in the sense of Olympic

rings, not Audi rings) of which one is in the identity representation (figure 4 right). To

each segment of the identity line we apply (4.17). The sphere amplitude is observed to

decompose as:〈
WRAWRB

〉
crossing

=
∑

mA,m̄A,mB ,m̄B

(∏
i

∫
dVi

)
Ztop(Vj)Zbot(Vj), (4.21)

where there are now four distinct integration variables V1, V2, V3, V4. The disk partition

function is given by a lengthy expression similar to (4.20), now with a product of 4 rep-

resentation matrices, 4 3j symbols and a 6j symbol. Setting the holonomies equal to 1:

Vi = 1, we reproduce (4.11) with a suitable choice of a and Li.

4.3 Wilson lines as boundary bilocals

The purpose of this section is to make explicit to which extent there is a 1-to-1 mapping of

particle-on-a-group correlators to 2d Yang-Mills correlators. Correlators for the particle-

on-a-group model are characterized by time differences between operator insertions. Two-

dimensional Yang-Mills theory on the other hand would claim these time diferences are

unphysical: they are associated to parts of the area-preserving diffeomorphism and are

hence gauge-variant: only areas have meaning in 2d YM.

There is though, a 1-to-1 mapping from the parameters Li labeling correlators on the

boundary theory, to parameters of bulk correlators (the areas Ai): aLi = Ai. In light of

the above observations, this formula immediately implies a direct identification between

correlators in both theories.

Not every bulk correlator is contained within our edge theory though (figure 5). The

red regions in figure 5 are examples of bulk-boundary interactions, that are not captured

by the edge action. An example of bulk-bulk interactions is a configuration of Wilson loops

that doesn’t reach the boundary. As mentioned at the beginning of section 3.1 and made
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Figure 5. Three examples of a Wilson line network in 2d YM. The red regions cannot be reproduced

from the edge theory perspective.

?

Figure 6. Area-preserving deformation of Wilson line network into disk wedges. This is only

possible if there is no enclosed area in the bulk.

explicit here, the boundary action by construction does not capture these interactions. This

perspective neatly interpolates between fully topological theories (such as 2d BF theory,

which is entirely holographically dual to the particle-on-a-group model) where Wilson lines

can be deformed entirely to the boundary and the edge theory contains everything, and

non-topological theories (such as d > 2 YM) where the edge theory only contains the

punctures of the Wilson lines with the boundary [26]. For the quasi-topological 2d YM

theory, the edge theory does reproduce many aspects of the bulk, but not everything.

There is an interesting explicit way of visualizing the mapping of only this class of

Wilson lines to the boundary correlation functions. Consider performing an area-preserving

diffeomorphism to deform the bulk Wilson line network into one that only contains wedges

of the disk (figure 6). Such a procedure is only possible when there is no area contained

fully within the bulk.

Imagine now we insert such a boundary-anchored Wilson line in irrep R into our edge

computation of section 3. We need to perform an on-shell evaluation of the Wilson line:

WR(τi, τf ) = P exp

{∫
C
A

}
= R(g(τf ))P exp

{∫
C
A(Q)

}
R(g−1(τi)), (4.22)

where A = gA(Q)g−1 − dgg−1 and A(Q) is the particular solution of section 3.2. The

Wilson lines in figure 6 runs along constant τ lines everywhere, except for a sharp turn

near ρ = 0. Because of our (residual) gauge choice Aρ(Q) = 0 in section 3.2, the Wilson

line is just:

WR(τi, τf )mm̄ = R(g(τf )g−1(τi))mm̄, (4.23)

and, crucially, does not influence the path integral over the gauge-fixed field Aµ. This

formula is precisely the definition of the bilocal operators (4.2) we identified earlier from

the 2d WZW perspective. These wedge-diagrams make explicit the mapping of particle-on-
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a-group correlators to (area-preserving equivalence classes of) boundary anchored Wilson

lines in YM which completes the proof.

One should not attach too much significance to this precise geometric form of the wedge

Wilson lines: their apparent importance hinges on the gauge choice Aρ = 0 and the area-

preserving diffeomorphism of figure 6 is tailored to this gauge choice. The important part is

that, within this gauge choice, we understand why the class of boundary-anchored Wilson

lines without bulk area enclosures are being computed by boundary bilocal correlators.

This entire construction can of course also be done for Maxwell. This is an instructive

exercise, and we refer the reader to appendix F for some details.

4.4 The horizon theory as topological quantum mechanics

We mentioned earlier that the edge theories on the Rindler horizon can be viewed as arising

from decoupled 2d Maxwell and YM edge theories: this statement was made explicitly in

section 3.3 where we noticed that the edge theory becomes ultralocal in the transverse

x-directions. The path integral was that of (3.28):

Z =

∫
[Dg] [DQ] exp

{
i

∫
dτdx Tr

(
Q∂τgg−1

)}
. (4.24)

Correlators of this Rindler edge theory can be obtained directly from the 2d results de-

scribed above. In particular, the decoupling argument implies that correlators of bilocals

at distinct x-points factorize:〈
R(g(τ2,x2))mnR(g−1(τ1,x1))nm̄

〉
= 〈R(g(τ2,x2))mn〉

〈
R(g−1(τ1,x1))nm̄

〉
, (4.25)

where both expectation values are generally non-zero and could in principle be computed

within the particle-on-a-group model. This requires knowledge of local, but gauge-variant

correlation functions.21

A bilocal expectation value at the same spatial point x can be computed and is given by:

〈OR,mm̄(τ1, τ2,x)〉 =
∑
R1,R2

dimR1 dimR2

∑
m1,m2

(
R1 R R2

m1 m m2

)(
R1 R R2

m1 m̄ m2

)
= 〈1〉 δmm̄,

(4.26)

which can be checked explicitly by using
∑

R2
NR1RR2dim R2 = dim R1 dim R. As the

bilocal operator can be neutralized by taking τ2 → τ1 (the correlator is independent of

the time parameter τ21), any uncrossed correlator evaluates to just the partition function

Z = 〈1〉 itself, which is manifestly UV-divergent. Ultimately, the divergence arises from the

infinite dimensionality of the 1d particle-on-a-group Hilbert space. The only non-trivial

correlators to be computed are crossed correlators, where the crossed operator ordering

leads as before to the 6j-symbol as the only non-trivial feature.

The resulting edge theory, while severely UV-divergent, can be viewed as topological

quantum mechanics.22 In 1d, this also means the edge theory is conformally invariant.

21For the Schwarzian theory, which is the irrational cousin of the particle-on-a-group model, such corre-

lators were computed using the Knizhnik-Zamolodchikov equations in [37].
22Similar theories were studied in different contexts in [38–40].
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This is due to the well-known dimensional argument that a 1d CFT has the density of

states ρ(E) = Aδ(E) + B/E, where B = 0 to have any meaningful low-energy theory. So

ρ(E) ∼ δ(E) i.e. a theory of ground states. The Hamiltonian is identically zero H ≡ 0,

which can be seen as well by noting that (4.24) is time-reparametrization invariant. Its

excitations contain no energy, and correlators do not depend on time differences, but only

on the ordering of the operators. The horizon correlators can be obtained by taking the

e → 0 limit of 2d YM. Introducing the coupling constant e in the 2d Yang-Mills action,

and introducing a Lagrange multiplier ψ, it can be rewritten as [29]:

− 1

2e

∫
d2x
√
−g TrF 2 → e

2

∫
d2x
√
−g Trψ2 +

∫
TrψF. (4.27)

In the limit e→ 0 the above action reduces to just

S [A,ψ] =

∫
TrψF, (4.28)

which is the topological BF theory, in this case without boundary dynamics.

A somewhat tantalizing but highly speculative idea might be that a UV-complete the-

ory (such as string theory), could lead to a replacement of the group G with its quantum

extension Gq. The latter is known to include only a finite number of irreducible represen-

tations, and hence allows the possibility of a UV-complete horizon theory. This is indeed a

known strategy to get rid of divergences within the spinfoam formulation of loop quantum

gravity [41, 42].

5 Discussion

The centerpiece of this work has been the construction of a boundary action describing edge

mode dynamics in Maxwell and non-Abelian Yang-Mills theory. One obtains this bound-

ary action by explicitly sourcing the Yang-Mills theory on the boundary, and then path

integrating out the bulk degrees of freedom. The resulting boundary action is the on-shell

evaluated sourced action. The boundary degrees of freedom are the current (the source)

and the large would-be gauge degrees of freedom which have become dynamical fields.

This procedure is rigorous for the free abelian case. For the non-abelian case (with a

quartic action) we choose to focus on the boundary action only and neglect bulk-boundary

and bulk-bulk interactions. Though this does not capture the full Yang-Mills theory, we

claim that it is a sensible procedure. As evidence of this, the correct boundary commutators

were obtained from our edge action. Also, our analysis in 2d led to a full solution of this

question: one can clearly identify which part of the full Yang-Mills theory is captured by

the boundary theory, and which part is not. This has been discussed in section 4.

The edge action we constructed (1.2) is in general a higher-derivative theory, and we

gave a preliminary analysis of these specific theories in appendix B. It would be useful

to obtain a more complete understanding of the canonical structure, an analysis that we

postpone to possible future work.
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The procedure is in many ways identical to how boundary actions arise in topolog-

ical gauge theories such as 3d Chern-Simons [43, 44] and 2d BF [31, 45], and gravita-

tional theories such as AdS3 gravity [46, 47] and 2d Jackiw-Teitelboim [48–50] and its

flat limit [51, 52].

For example, one obtains the 2d WZW action from 3d Chern-Simons by evaluating

the Chern-Simons action on-shell after imposing appropriate boundary conditions. This

on-shell evaluation stems from a path integral over the bulk degrees of freedom; in this

topological example the determinant of quadratic fluctuations is simply the identity and

one is left directly with the WZW path integral. Large gauge fields in Chern-Simons are

the physical degrees of freedom of the boundary WZW theory. Within Chern-Simons, the

boundary edge perspective has already been useful to think about entanglement entropy

(see e.g. [53–56]).

There is though, at least one difference with the procedure to obtain the Yang-Mills

boundary action: the origin of the boundary action is different. For Yang-Mills, the bound-

ary JA-coupling term is manifestly gauge-variant and splits up as

JA = J gA[J ]g−1 − J dgg−1. (5.1)

Within Chern-Simons, introducing a boundary current as in (3.2), the boundary condi-

tions become: J µ = εµνσnνAσ|bdy, such that the on-shell evaluation of the boundary

contribution to the action vanishes:

Tr(JA) = nν
∑
a

εµνσAaσA
a
µ = 0. (5.2)

The bulk CS action is explicitly gauge-variant, and the WZW action stems completely

from the on-shell evaluation of this bulk action.

Several applications of the boundary action (1.2) have been discussed. These serve as

consistency checks, but are also interesting in their own rights.

From the boundary path integral for Maxwell in Rindler we recover the full Maxwell

thermal partition function including the Kabat contact term. The edge states are identi-

fied as electric charges on the boundary, or (dual) large gauge degrees of freedom on the

boundary. Infinite redshift leads to a localization of the boundary path integral, proving

the absence of magnetostatic edge states. This calculation embeds the discussion of [26]

in a more generic context. In [26], we recovered the Maxwell edge partition function by

directly quantizing the static sector of Maxwell theory; which supplies the calculation of

Donnelly and Wall [3] with an underlying canonical structure. The canonical algebra of

the edge degrees of freedom was inferred from the usual Maxwell canonical structure, iden-

tifying Wilson line punctures on the boundary (large gauge transformations) as canonical

conjugates to electric flux through the boundary. The same interpretation follows from the

path-integral perspective of this work.

In a different context [57–59], Strominger et al. identified configurations labeled by

different large gauge configurations, or equivalently by boundary charge configurations, at

asymptotic null infinity as inequivalent vacua associated with different soft photon con-

figurations. The identification of these soft photons as the Maxwell edge modes has been
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highlighted in [26]. It would be interesting to perform the computation of this work di-

rectly at future and past null infinity, generalizing it from a spacelike surface and a null

horizon surface.

Our generalization of this computation to Yang-Mills on the Rindler horizon in sec-

tion 3.3 is new, and provided us with an additional motivation: the edge theory of any

horizon is directly related to a 2d Yang-Mills computation.

The edge action on the Rindler horizon (4.24) was identified as a version of topological

quantum mechanics, and it would be interesting to pursue this line of thought further.

As a second application, we discussed 2d Yang-Mills on a disk: a quasi-topological

theory that has been completely solved [28]. The boundary edge theory was shown to be a

particle on a group whose worldline is the boundary of the disk. It is in this specific example

that our boundary action shows its true colors. We go far beyond calculating the partition

function, and identify correlators of boundary-anchored Wilson lines in 2d Yang-Mills as

correlators of bilocal operators in the particle-on-a-group model. For d > 2, we expect the

edge theory to contain only information of the Wilson line punctures. For a topological

theory, the entire Wilson line is contained within its endpoints only and the edge theory

becomes the entire theory. The 2d Yang-Mills example is a non-trivial intermediate case

where the edge theory contains more than just the boundary surface, but it does not carry

all information about the bulk.

There is reason to assume that the range of application of the boundary path integral

of this work extends beyond spin-1 gauge theories. There is at least one particular example

we know of where this line of reasoning works. Repeating the construction of section 2.3

in Rindler space for linearized gravity - where the boundary current is a rank-2 tensor T

representing energy-momentum in the boundary - we show elsewhere [60] that one obtains

the analogue of formulas (2.34) and (2.36):

Zbdy =

∫ ∏
j

[DPj ]

 δ
(
∂iPi

)
=

∫ ∏
j

[DAj ]

 δ
(
∂iAi

)
, (5.3)

where Pj are just the spatial charges associated with T , generating diffeomorphisms in the

boundary surface. The large diffeomorphisms consist of a massless divergence-free vector

field A. As before, we expect the Rindler edge action to be described by a topological

field theory; perhaps the irrational analogue of the e → 0 limit of the particle-on-a-group

model, which is Schwarzian QM with Lagrangian L ∼ 1
GN

∫
dx {f(x, τ), τ} where GN → 0

to obtain the topological version. It would be interesting to understand this.

In [60] we will show that this boundary contribution amounts to the correct graviton

partition function, including the Kabat contact term, a result that can be checked directly

by identifying the contribution of the graviton to the bosonic string partition function.

It should be possible to apply this construction directly to the action of open string

field theory. It is natural to expect that the large BRST exact fields will become dynamical

boundary fields. That these large gauge fields contain the boundary degrees of freedom was

recently suggested in [61] from the perspective of the presymplectic potential. We hope to

be more specific about these stringy boundary degrees of freedom in [60]. It would in any
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case be interesting to understand better the role of edge states within string theory and its

relation to the old Susskind-Uglum picture of horizon-piercing strings (see e.g. [62] for a 2d

example, and [63–66] for a variety of results in this direction using Euclidean techniques).
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A Gluing

The question arises on how to recover the partition function of a theory on M∪ M̄ from

the separate theory on M and M̄.

A.1 Gauge bundle view on gluing

As an alternative to the procedure sketched in section 2, we can glue the two halves together

using gauge-fixed fields A and Ā instead. Then the gluing only requires these fields to be

equal up to a gauge transformation: (2.3) is replaced by

1

volG∂

∫
[Dψ]

volG∂
[DJ µ] ei

∫
∂M dd−1xJ µ(Aµ−Āµ+∂µψ), (A.1)

where analogous to (2.7)

volG∂ =

∫
[Dψ] = δ(0). (A.2)

In (A.1) it is understood that A and Ā are the gauge-fixed fields as in e.g. (2.5). This

gluing is along the lines of the construction of a gauge/fiber bundle, where the two halves

correspond to two patches with the boundary the common region. The compatibility

condition of fiber bundle theory then indeed requires the fields A and Ā on the boundary

to be linked by a gauge transformation.

After on-shell evaluation, (A.1) can be expanded, and one obtains the gluing formula:∫
[DJ α]

[
DJ̄ α

]
[Dφ]

[
Dφ̄
]
δ(J + J̄ )δ(φ+ φ̄)e−S[J ,φ]e−S[J̄ ,φ̄], (A.3)

where distinct currents and would-be gauge fields have been introduced for the left and

right regions and where S [J , φ] is the thermal boundary action (2.19):

Sbdy [J , φ] = −
∫ β

0
dτ

∫
dd−2x

(
1

2
J αA[J ]α + J α∂αφ

)
. (A.4)

From the gluing perspective, the only physical combination of φ and φ̄ is ψ. The other

independent combination of φ and φ̄ is unphysical, and is removed by the δ(φ + φ̄)

delta-functional.
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Integrating out φ and φ̄ and path integrating over J̄ to enforce the gluing constraint,

one obtains

Z =

∫
[DJ α] δ(∂αJ α) exp

{∫ β

0
dτ

∫
dd−2x

1

2
J α
(
A(J )α − Ā(−J )α

)}
. (A.5)

Assuming the action is quadratic in J , one can alternatively write the gluing fully in terms

of the large gauge transformations as:

Z =

∫
[DφL] [DφR] δ(J (φL) + J̄ (φR)) exp

{
−Sbdy[φL]− Sbdy[φR]

}
, (A.6)

in terms of the individual actions Sbdy[φ] (2.21) for each side. An explicit example provides

further clarification.

A.2 Example I. 2d Maxwell

As an explicit example we investigate 2d Maxwell, already discussed in section 2.4. The

currents reduce to charges Q. Gluing two disks of areas A and B together, following (A.5),

one obtains:

Z =

∫
dQdQ̄δ(Q+ Q̄) exp

{
−AC(Q)

2

}
exp

{
−BC(Q̄)

2

}
=

∫
dQ exp

{
−(A+B)

C(Q)

2

}
, (A.7)

which is just the partition function of 2d Maxwell on a sphere of total area A+B.

In our language, gluing the two partition functions together can also be written as

Z =

∫
[DQ]

[
DQ̄

]
[Dφ]

[
Dφ̄
]
δ(Q+ Q̄)δ(φ+ φ̄)

× exp

{
−
∫ β

0
dτ
(a

2
Q2 − iQ∂τφ

)}
exp

{
−
∫ β

0
dτ

(
b

2
Q̄2 − iQ̄∂τ φ̄

)}
. (A.8)

Path integrating over Q̄ and introducing a new field

ψ = φ− φ̄, (A.9)

the path integral reduces to just

Z =

∫
[DQ] [Dψ] exp

{
−
∫ β

0
dτ

(
a+ b

2
Q2 − iQ∂τψ

)}
, (A.10)

Integrating out ψ in (A.10) on obtains the partition function of 2d Maxwell on a

sphere (A.7). On the other hand, integrating out Q, one obtains a quadratic boundary

action for ψ that is a particle on U(1) with coupling a+ b:

Z =

∫
[Dψ] exp

{
−1

2

1

a+ b

∫
dτ(∂τψ)2

}
. (A.11)

The latter can be rewritten as

Z =

∫
[DφL] [DφR] δ

(
1

a
∂τφL +

1

b
∂τφR

)
× exp

{
− 1

2a

∫
dτ(∂τφL)2

}
exp

{
− 1

2b

∫
dτ(∂τφR)2

}
, (A.12)

realizing equation (A.6) in this explicit example.
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A.3 Example II. 2d Yang-Mills

2d Yang-Mills theory has two conjugate basis of the Hilbert space: the holonomy basis

|U〉 and the representation basis |R〉. These two bases correspond to our two possible

perspectives on the evaluation of the boundary action as presented in section 3.

Sewing two disks together in 2d YM is achieved by taking the trace in the holonomy

basis [30]:

Z =

∫
dUZ(U)Z̄(U−1), (A.13)

where Z(U) is (3.17) the partition function on the first disk with boundary state U , and

Z̄(U−1) is the partition function on the second disk. Equivalently we can omit the holonomy

basis and glue directly in the irrep basis. One writes

Z(U) =
∑
R

χR(U)Z(R), (A.14)

as in (3.17). The characters χR(U) = TrR(U) = 〈U |R〉 are just the Fourier expansion coef-

ficients transforming between the irrep basis and the holonomy basis. They are orthogonal:∫
dUχR(U)χR′(U

−1) = δRR′ . (A.15)

Therefore by applying Parseval’s theorem for Fourier transforms, we can rewrite (A.13)

and glue directly in the irrep basis:

Z =
∑
R

Z(R)Z̄(R). (A.16)

Explicitly, gluing a disk of area A to a second disk of area B, one gets:

Z =
∑
R

(dimR)2 exp

{
−(A+B)

C(R)

2

}
, (A.17)

the partition function of 2d Yang-Mills on a sphere of total area A+B.

B Canonical structure and constrained quantization

In this appendix, we initiate a canonical treatment of the boundary action. The analysis in

general will be quite complicated due to the non-locality inherent in the boundary action,

and we postpone a more elaborate treatment to possible future work. We only focus on

the Maxwell action and leave the Yang-Mills analysis as an exercise for the reader.

Consider the Maxwell boundary action:

Sbdy [J , φ] =

∫
dd−1x

(
1

2
J αA[J ]α + J α∂αφ

)
. (B.1)

The on-shell evaluation A[J ] is linear for Maxwell, and we can write it generally as Aα =

QαβJ
β for some operator Qαβ . As the classical sourced solution is found by inverting

a differential operator, Qαβ is generally the inverse of some (possibly non-local) linear
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differential operator. E.g. in flat space it is given by (2.24). In Rindler space, it is given

by (2.29). So let’s write Qαβ = 1
Oαβ . Then we can write

1

Oαβ
Jβ := χα ⇒ Oαβχα = Jβ ⇒ χα =

∫
dyGαβ(y, x)Jβ , (B.2)

in terms of the Green function G(y, x) of the differential operator, that can in principle be

computed directly for any given situation. So

J αA[J ]α =

∫
dyJ α(x)Gαβ(y, x)J β(y) (B.3)

The above integral contains generally also time y0, making the resulting action highly non-

local in space as well as in time. This makes the canonical interpretation much more subtle.

We proceed as follows. Taylor-expanding Qαβ as a series in higher powers of deriva-

tive operators, and only tracking the temporal derivatives, we can view this as a higher-

derivative field theory. This can be put in the standard canonical framework by identifying

each derivative as a new canonical variable, e.g. q̈ = q2 etc, each with their own conjugate

momentum. The resulting system is highly constrained with relations of the type pi ∼ qi+1.

There is one simple aspect of this system: the φ-field does not figure in the non-local

term, and as such we have πφ = J 0, irrespective of the non-locality of the remainder.

This justifies our statement made in the main text around equation (2.17).

The equations of motion associated to the above system are:

δφ ⇒ ∂αJ α = 0 (B.4)

δJ α ⇒ ∂αφ(x) +

∫
dyGαβ(y, x)Jβ(y) = 0 (B.5)

To further deal with this system, we will follow two perpendicular lines of thought. In sub-

section B.1, we assume the operator Oαβ does not contain time-derivatives. This simplifies

things enormously and just requires the analysis of a spatially non-local theory, which can

be done by standard techniques.

In subsection B.2, we discuss the flat space example of section 2.2, for which the bracket{
φ(x, t),J 0(y, t)

}
= δ(x− y) (B.6)

and the equations of motion are sufficient to allow a full construction of the Hilbert space.

B.1 Time-independent kernel Gαβ

Assuming the operator Oαβ contains no time-derivatives, G only depends on the spatial

coordinates x and y. The Hamiltonian density can be computed using standard techniques,

and is given by

H = −J i∂iφ−
1

2
Jα

1

Oαβ
Jβ = −J i∂iφ−

∫
dy

1

2
Jα(x, t)Gαβ(y,x)Jβ(y, t), (B.7)

with canonical momenta:

πφ = J 0, πJ i = 0. (B.8)
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The last set of (B.8) are primary constraints on the system. The total Hamiltonian density

(in Dirac’s language) is given by

HT = −J i∂iφ−
1

2
Jα

1

Oαβ
Jβ + λiπJ i , (B.9)

for multipliers λi that are determined by Dirac’s formalism. The constraints (B.8) lead to

the secondary constraints:

˙πJ i ≡ χ2 ∼ ∂iφ+

∫
dyJ α(y, t)Gαi(y,x) ≈ 0, (B.10)

which are just the J i equations of motion (B.5) themselves. The tertiary constraint leads

to a determination of λj :

χ̇2 ∼ −
∫
dyJ α(y, t)∂ixGα0(y,x) + λj

∫
dyGji(y,x) ≈ 0, (B.11)

so

λj =

∫
dxOji

∫
dyJ α(y, t)∂ixGα0(y,x). (B.12)

This ends the procedure, and we have two constraints (B.8) and (B.10).

Using
[
πJ i(x, t),

∫
dzJ α(z, t)Gαj(z,y)

]
= Gij(x,y), the Dirac matrix can now be

computed as a 2× 2 block matrix:

Cab(x,y) =

[
0 Gij(x,y)

−Gij(x,y) 0

]
, Cab(x,y) =

[
0 −Oij(x,y)

Oij(x,y) 0

]
, (B.13)

where the inverse is computed using
∫
dyCab(x,y)Cbc(y, z) = δacδ(x − z). The two con-

straints are hence second-class. The resulting Dirac brackets can now be computed:

{φ(x, t), πφ(y, t)}D = δ(x− y), (B.14){
J i(x, t), πJ i(y, t)

}
D

= 0, (B.15){
J i(x, t), πφ(y, t)

}
D

= −Oij(x,y)∂jxδ(x− y), (B.16)

and all other brackets vanishing. The last bracket above indeed corresponds to just sub-

stituting the eom (B.5) in the first bracket. These can be used to quantize the system.

The J i variables are not independent observables, and only the φ and πφ ≡ J 0 will

become the fundamental quantum operators.

One way of writing the Hilbert space is the set of all spatial large gauge transformations

|φ(x)〉 or in terms of its conjugate
∣∣J 0(x)

〉
, the boundary charge distribution. Fourier

expanding both fields, the canonical algebra is written as[
φk,J 0

−k′
]

= iδkk′ , (B.17)

which is the structure we found in [26] for Rindler space.

In this case, the thermal path integral computed in (2.33) can be directly read as a

thermal trace. This is generally so in the case that only static field configurations on the
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thermal manifold contribute (e.g. due to infinite redshift in Rindler spacetime). Then the

thermal path integral is manifestly equal to the Lorentzian thermal partition function, with

the state space identifiable directly as the static field configurations:∫
φ(x,τ)=φ(x,τ+β)

[Dφ(x, τ)] e−
∫ β
0 dt

∫
dxL →

∫
[Dφ(x)] e−βV ≡ Tr e−βH , (B.18)

where only the potential energy V remains in the static case.

As an instructive example of the canonical treatment of higher-derivative theories,

consider the higher-derivative Lagrangian of (2.35):

L =
1

2
φ̇s∆φ̇. (B.19)

Its equations of motion are given by

δφ ⇒ ∂τ (s∆∂τφ) = 0, (B.20)

which can be solved in general as

φ =
1

s∆
f(x)t+ g(x), (B.21)

using the uniqueness of solutions of elliptic differential equations, and introducing two

arbitrary spatial functions f and g. Quantization is done by elevating these functions to

quantum operators. This expression is a generalization of the 2d case, where φ̇ is just the

charge. We will see that it holds here as well.

As the Lagrangian is only second-order in time-derivatives, we can write:

πφ = s∆φ̇ = f(x), (B.22)

H =
1

2
φ̇s∆φ̇ =

1

2
f(x)

1

s∆
f(x). (B.23)

Fourier-expanding f(x), we immediately match with (2.33), identifying f(x) ≡ Q(x) with

the spatial charge distribution on the horizon. The equal-time CCR boil down to

[φ(x, t), πφ(y, t)] = [g(x), f(y)] = iδ(x− y). (B.24)

Time-evolution of φ is generated by H as

δφ = iε

[∫
dyH(y), φ(x, 0)

]
= ε

∫
dy δ(x− y)

1

s∆
f(y) = ε

1

s∆
f(y), (B.25)

which indeed matches with (B.21).

B.2 Flat space

Let us now specify to a planar boundary surface in flat space as in section 2.2. In this case,

the kernel is not time-independent, and we have to resort to a more complicated analysis.

However, the CCR between φ and J 0 together with the equations of motion is enough to

determine the structure of the Hilbert space.
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The classical phase space can be identified as the set of all initial conditions for the

equations of motion, or the set of all integration constants. Acting with ∂α on (B.5), we get:

�φ+

∫
dy∂αxG

αβ(y − x)Jβ = 0, (B.26)

using translation invariance in flat space to write G(y, x) = G(y − x). Changing the

derivative into one that acts on y instead, integrating by parts, and using (B.4), one finds

�φ = 0. So the field φ satisfies the massless Klein-Gordon equation �φ = 0 and can be

expanded in the standard normal mode expansion on the boundary. The fields J i do not

introduce new integration constants, as they are fully determined from those of φ by (B.5):

they arise as constraint equations.

The resulting Fourier modes φk can be used to construct the Hilbert space, in combi-

nation with its conjugate J 0
k . The equal-time commutation relation implies[

φ(x, t),J 0(y, t)
]

= iδ(x− y) ⇒
[
φk,J 0

−k′
]

= iδkk′ . (B.27)

The modes are linked by (B.5) as

k0knφk = J 0
k , (B.28)

satisfying the algebras
[
J 0
k ,J 0

−k′
]

= ik0knδkk′ and [φk, φ−k′ ] = i
k0kn

δkk′ . Raising and

lowering operators are obtained by the Hermiticity requirement:

φ†k = φ−k. (B.29)

A much more convenient normalization of the oscillators is found by setting

φ̃k =
√
k0knφk, J̃ 0

k =
1√
k0kn

J 0
k , (B.30)

which satisfy standard commutation relations and are equal: φk = J 0
k .

As before, the Hilbert space can be seen as {|φ(x)〉} or
{∣∣J 0(x)

〉}
.

This picture is in agreement with the conclusion of Donnelly and Freidel that only this

set of variables is added. In particular, spatial currents J i are not canonical variables. In

our framework, we explain this due to their role as constraints instead of dynamical degrees

of freedom.

C Maxwell in Rindler

The purpose of this appendix is to derive formulas (2.29) and (2.30) i.e. to find the linear

relation A[J ]α for the specific case of Maxwell theory in Rindler space with the horizon as

boundary. In Lorentz gauge

∇µAµ = 0, (C.1)

the Maxwell equations of motion ∇µFµν = 0 reduce to

∇µ∇µAν = 0. (C.2)
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The Rindler coordinate system in d dimensions is the metric:

ds2 = −ρ2dt2 + dρ2 + dx2 = e2r(−dt2 + dr2), (C.3)

where ρ = er and x = {xi} denotes all coordinates parallel to the horizon i.e. the d − 2

spectator dimensions. The only non-vanishing Christoffel symbols are Γttρ = 1/ρ and

Γρtt = −ρ. The boundary of the theory is placed close to the horizon at ρ = ε → 0 or

r = r∗ → −∞. Upon Wick rotating this becomes the tensor product of flat space in polar

coordinates with the d− 2 spectator dimensions:

ds2 = ρ2dτ2 + dρ2 + dx2. (C.4)

Introducing elementary scalar modes:

φω,k =

√
sinh(πω)

(2π)
D−2

2 π
Kiω(kρ)eik·xe−iωt, (C.5)

solving �φω,k = 1
ρ2

(
−∂2

t + (ρ∂ρ)
2 − k2ρ2

)
φ = 0 with k = |k|, and introducing a basis of

unit vectors along the d− 2 trivial directions as:

e(k)
µ =

(
0, 0,n(k)

)
, e(a)

µ =
(

0, 0,n(a)
)
, (C.6)

with n(a) short for an orthonormal d− 3 dimensional basis orthogonal to n(k) = k/k, one

can solve the bulk equations of motion ∇µ∇µAν = 0 by the complete set of modes:

A
(1)
µ,ωk =

1

k

(
ρ∂ρ,

1

ρ
∂t,0

)
φω,k

A
(0)
µ,ωk =

1

k
∂µφω,k

A
(a)
µ,ωk = e(a)

µ φω,k,

(C.7)

and

A
(k)
µ,ωk = e(k)

µ φω,k. (C.8)

This last solution though, does not satisfy Lorenz gauge (2.27) and is thus not to be

considered.

The residual gauge freedom of Maxwell theory in Lorenz gauge is Aµ ∼ Aµ+∂µφ, with

φ satisfying �φ = 0. This residual gauge freedom is precisely captured by the modes A
(0)
ωk.

To obtain an isomorphism between A and J one has to completely gauge-fix A i.e. choose

one representative in each gauge orbit. We will take the most natural choice to construct

the field A out of only the modes A
(1)
ωk and A

(a)
ωk, so we turn off the modes A

(0)
ωk.

The next step is to split the bulk field from the edge field. The bulk photon obeys

PMC boundary conditions nµF
µν = 0. This constrains the allowed range of ω and k in the

solution space (C.7). More in particular this constrains the field φ to be Dirichlet φ|bdy = 0

in the expression for the modes A
(1)
ωk and Neumann ρ∂ρφ|bdy = 0 for the modes A

(a)
ωk. The

result is the bulk photon with d− 2 polarizations that satisfies PMC boundary conditions.
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Now for the interesting part. The edge field is obtained by finding a particular solution

that satisfies the boundary conditions (2.10):(√
−gnµFµν

)∣∣
bdy

= J ν . (C.9)

Specified to Rindler these read23

−gααρ (∂ρAα − ∂αAρ)|bdy = J α. (C.10)

Since J is necessarily static (it lives on the boundary), the same goes for the edge field A[J ]

isomorphic to it. It is useful to decompose J into Fourier components and polarizations as:

J =
∑
k

(
J (k)
k e(k) + J (a)

k e(a) +Qke(0)
)
eik·x, (C.11)

where we introduced the notation J t = Q =
∑

kQke
ik·x and e

(0)
µ = gtt(1, 0,0). Notice

that for J to be an acceptable source for Maxwell theory; it must be conserved: ∂αJ α=0.

For the static current (C.11) this becomes just ∂iJ i = 0. This enforces through (C.11)

J (k)
k = 0, and indeed clearly no k component of J can be created using the bulk solutions

A
(1)
k and A

(a)
k . We introduced here the convention that when the ω subscript is dropped,

the zero modes ω = 0 of (C.7) are implied. More in particular the zero mode sector of

Maxwell theory is

A =
∑
k

(
c

(a)
k A

(a)
k + c

(1)
k A

(1)
k

)
eik·x, (C.12)

with

A
(a)
µ,k = e(a)

µ φk, A
(1)
µ,k = (ρ∂ρ, 0,0)φk (C.13)

the zero modes of (C.7) and φk the ω = 0 solution of �
(
φke

ik·x) = 0 which reduces

to (ρ∂ρ)
2φk = ρ2k2φk = −ρ2∆φk. We conveniently choose the normalization such that

φk|bdy = 1:24

φk =
K0(kρ)

K0(kε)
. (C.14)

For future reference we introduce a notation for the normal derivative of φk at the boundary:

ρ∂ρφk|bdy = −K−1
0 (kε) = ln−1 kε

2
→ r∗

−1 = −s−1, (C.15)

where r∗ is the regulator for the location of the boundary in tortoise coordinates and where

we used the small argument expansion of the Bessel function K0. The limit ε→ 0 can be

equivalently enforced as s→∞.

The task at hand has been reduced to finding a relation between the expansion coeffi-

cients c in (C.12) and the expansion coefficients of the current in (C.11). The t component

of the boundary condition (C.10) reduces to −ρ∂ρAt|bdy = Jt = gtt|bdyQ, or inserting the

mode expansions:

c
(1)
k (ρ∂ρ)

2φk

∣∣∣
bdy

= − gtt|bdyQk. (C.16)

23The vector n is the outwards normal to M and hence points to decreasing values of ρ.
24This is a choice, with no influence on what follows.
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Using the equations of motion and normalization of φk, and the Rindler metric (C.3) one

obtains the desired relation:

c
(1)
k =

1

k2
Qk. (C.17)

In terms of the full field component At this becomes

A[J ]t =
∑
k

1

k2
Qkρ∂ρφke

ik·x. (C.18)

Evaluation at the boundary using (C.15) results in

J tA[J ]t
∣∣
bdy

= Q 1

s∆
Q, (C.19)

which is (2.29) in the main body.

A similar analysis relates c
(a)
k to J (a)

k . The spatial part of the boundary condi-

tion (C.10) is −ρ∂ρAi|bdy = Ji = J i, where we already used the triviality of the Rindler

metric for the spectator dimensions. We obtain

−c(a)
k ρ∂ρφk

∣∣∣
bdy

= J (a)
k , (C.20)

or using (C.15):

c
(a)
k = sJ (a)

k . (C.21)

In terms of the spatial field components Ai this becomes

A[J ]i =
∑
k

sJ (a)
k e

(a)
i φke

ik·x. (C.22)

Evaluation at the boundary results in

J iA[J ]i
∣∣
bdy

= sJ iJ i, (C.23)

which is (2.30) in the main body.

D Evaluation of path integral

The evaluation of the following path integral

Z =

∫
[DQ] [Dg] exp

{
−
∫ β

0
dτ Tr

(
a

2
Q2 + iQ∂τgg−1

)}
(D.1)

was largely done by Alekseev, Faddeev and Shatashvili in [32, 33], which we review here.

The main difference is our choice of Hamiltonian as the Casimir, instead of a Cartan

element. We focus on SU(n), with g(τ) ∈ SU(n) and Q(τ) ∈ su(n) and the trace in the

defining representation.

Diagonalizing the matrix Q = fQ0f
−1 into a diagonal matrix Q0 and the basis of

eigenvectors f , and writing the path-integral measure as [DQ] → [DQ0] [Df ], one can

write the above path-integral (D.1) as (redefining g → fg):

Z =

∫
[DQ0] [Df ] [Dg] exp

{
−
∫ β

0
dτ Tr

(
a

2
Q2

0 + iQ0∂τgg
−1 + iQ0f

−1∂τf

)}
. (D.2)
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Denoting the diagonal elements of Q0 as m0
i , ordered as m0

1 ≥ m0
2 ≥ . . . ≥ m0

n, and using

the decomposition [32, 33]

TrQ0∂τgg
−1 =

n∑
i=1

m0
i dφ

0
i +

∑
i,k

mk
i dφ

k
i , TrQ0f

−1∂τf =
∑
i,k

nki dφ̄
k
i , (D.3)

in terms of 2π-periodic angular variables φ0
i , φ

k
i and φ̄ki , and with mk−1

i ≥ mk
i ≥ m

k−1
i+1 and

nk−1
i ≥ nki ≥ n

k−1
i+1 , we find

Z =

∫
[D∆i][Dφ0

i ][D∆k
i ][Dφki ][D∆̄k

i ][Dφ̄0
i ]

× exp

{
−
∫ β

0
dτ
∑
m

a

2
(m0

i )
2 + i

r∑
i=1

∆idφ
0
i + i

∑
i,k

∆k
i dφ

k
i + i

∑
i,k

∆̄k
i dφ̄

k
i

}
, (D.4)

where ∆i = m0
i − m0

n, ∆k
i = mk

i − m0
n and ∆̄k

i = nki + m0
n; this shift arising from the

constraint of tracelessness of su(N).

The expression (D.4) is interpretable as a phase space path integral of multiple free

particles on independent circles with coordinates φ0
i , φ

k
i , φ̄

k
i (φ ∼ φ+ 2π), generalizing this

interpretation from U(1) where
∮
A and E are conjugate variables that, upon charge quan-

tization, are phase-space coordinates on a circle (see e.g. [3]). As a result, the “momenta”

∆i,∆
k
i , ∆̄

k
i are quantized.

The path integral over the φ0
i gives a sum over an r-dimensional (non-negative) integer-

valued vector with components ∆i that labels the lowest-weight state underlying the repre-

sentation: it is the first row of the Gelfand-Tsetlin table. The Dynkin labels are then found

as λi = ∆i−∆i−1. Path-integrating over the φki - and φ̄ki -variables, yields a (non-negative)

integer-valued distribution of ∆k
i ’s and ∆̄k

i ’s forming two separate Gelfand-Tsetlin tables,

that count all weights in the representation.

The first term in the action of (D.4) depends only on the lowest-weight parameters m0
i

and evaluates to the Casimir of the irrep, in the end giving

Z =
∑
R

(dimR)2e−ACR . (D.5)

One of the dim R factors arises from the g-path integral, the other roughly from the off-

diagonal elements of Q (the eigenvector basis f). Taking e.g. a fixed diagonal Q results

in the coadjoint orbit action of the element Q, and the path integral evaluates to a single

character of the irrep labeled by the diagonal matrix Q [32].

Take as an example SU(2), where only one Cartan element exists. Due to tracelessness,

the 2 × 2 Q0-matrix eigenvalues are then +b and −b for some real number b. ∆ is a non-

negative integer, requiring 2b = 0, 1, 2 . . ., so we can set b = j for j = 0, 1/2, 1, . . .. The

Dynkin label of the irrep is λ = ∆ = 2j. The Gelfand-Tsetlin table is then

2j 0

∆1 (D.6)
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for ∆1 = 0 . . . 2j, forming a 2j + 1-dimensional representation. The first term in the

action of (D.4) is proportional to b2 = j2, which is the classical value of the Casimir.

This is different from the (quantum) Casimir: Cj = j2 + j. Classically, one can set

Jx = Jy = 0 and Jz = ±j with hence J2 = J2
x+J2

y +J2
z = j2, which is of course impossible

quantum-mechanically. The mismatch can be understood as a quantum renormalization

effect, arising from the path integral measure as a regularization artifact of functional

determinants, that should be taken into account. This is quite standard when evaluating

coadjoint orbit path integrals [67, 68]: it is the famous Weyl shift problem λ→ λ+ρ, with

ρ the Weyl vector.

E Classical solution of 2d Yang-Mills on a disk

We provide details on the statement that the field Aat = −ρ2

2 Q
a and Aaρ = 0 solves the 2d

Yang-Mills equations of motion (DµFµν)a = 0 and satisfies Lorenz gauge (DµAµ)a = 0.

By construction, it satisfies the correct boundary condition.

Writing out the derivative explicitly in terms of the Christoffel and Yang-Mills con-

nections, one obtains the equations of motion:

gµα
(
∂αF

a
µν − ΓβαµF

a
βν − ΓβανF

a
µβ

)
+ fabcA

µbF cµν = 0. (E.1)

Inserting the proposed particular solution, and taking the component ν = t, the fabc -part

drops out. The Rindler Christoffel symbols are Γttρ = 1/ρ and Γρtt = −ρ with all others

vanishing. One arrives at

∂ρF
a
ρt −

1

ρ
F aρt = −Qa +Qa = 0. (E.2)

The particular solution satisfies ∇tF atρ = 0 and∇ρF aρρ = 0 since it is static, and because

F is anti-symmetric. The ν = ρ component of the equations of motion hence reduces to

only the fabc -part, which reads:
ρ

2
fabcQbQc = 0, (E.3)

since fabc is also anti-symmetric.

Using fabc g
µνAbµA

c
ν = 0, and writing out the Lorenz gauge constraint by inserting the

particular solution, we obtain:

∇µAaµ + fabc g
µνAbµA

c
ν = ∇µAaµ = 0, (E.4)

where the last equality is trivial: the particular solution reduces to just the Maxwell par-

ticular solution which we know to be divergence-free with respect to only the Christoffel

connection. This completes the proof.

F Boundary correlators in 2d Maxwell

As a specific application of the discussion on boundary-anchored Wilson lines in Yang-Mills,

it is instructive to return to the Maxwell case. As all integrals are Gaussian, both in the
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Maxwell bulk as on the boundary particle-on-U(1) theory, we can calculate the boundary

correlators directly without resorting to a dimensional reduction of 2d WZW correlators.

The relevant bilocal operators on the boundary of 2d Maxwell are:

Oq(τi, τf ) = exp{iqφ(τf )− iqφ(τi)} = exp

{
iq

∫ τf

τi

dτ∂τφ

}
≡ Wq(τi, τf ). (F.1)

As an illustration, we explicitly match the bulk and boundary calculation of both the

two-point function and the crossed four-point function.

Consider first the two-point function. The bulk calculation follows from the diagram:

q

q2

q1
τi τf

I1

=
〈
Wq(τi, τf )

〉
. (F.2)

Explicitly this is: 〈
Wq(τi, τf )

〉
=

∫
dq1dq2e

−A1Cq1e−A2Cq2 δ(q1 + q − q2) (F.3)

=

∫
dq1e

−A1Cq1e−A2Cq1+q . (F.4)

The boundary calculation is just the path integral〈
Oq(τi, τf )

〉
=

∫
[Dφ] exp

{
iq

∫ τf

τi

dτ∂τφ

}
exp

{
− 1

2a

∫
dτ∂τφ∂τφ

}
. (F.5)

The inserted bilocal operator acts as a source term in the boundary action extracting a

charge q at τi, and re-injecting this same charge at τf . This Gaussian path integral can be

computed directly by solving the sourced equations of motion and inserting the solution

into the action: one recovers (F.4).

It is possible to go from (F.5) directly to the diagrammatic expression (F.3) without

passing through (F.4). Splitting the path integral (F.5), using∫
I1

[Dq] exp

{
−
∫
I1

dτ
(a

2
q2

1 − iq1∂τφ
)}

= exp

{
− 1

2a

∫
I1

dτ∂τφ∂τφ

}
, (F.6)

with I1 shorthand for the interval from τi to τf and doing the same for I2, one obtains:〈
Oq(τi, τf )

〉
=

∫
[Dq1] [Dq2] [Dφ] exp

{
−
∫
I2

dτ
(a

2
q2

2 − iq2∂τφ
)}

× exp

{
−
∫
I1

dτ
(a

2
q2

1 − i(q + q1)∂τφ
)}

. (F.7)
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At this point φ is just a Lagrange multiplier field; its path integral enforces charge conserva-

tion. Within the interval Ii this results in δ(∂τqi). On the boundary ∂I1 the φ path integral

results in δ(q1 + q − q2). Using the dictionary Ai = aLi as before completes the proof.

As a second example consider the crossed four point function. The bulk calculation

follows from the diagram

q3

q1

q2 q4

qA qBτ1

τ2 τ3

τ4

I2 I4

I3

=
〈
WqA(τ1, τ3)WqB (τ2, τ4)

〉
. (F.8)

Explicitly using the 2d Maxwell diagrammatic rules this is:〈
WqA(τ1, τ3)WqB (τ2, τ4)

〉
=
∏
i

(∫
dqie

−AiCqi

)
δ(q1 + qA− q2)δ(q2 + qB− q3)δ(q3− qA− q4).

(F.9)

The boundary calculation is the path integral〈
OqA(τ1, τ3)OqB (τ2, τ4)

〉
=

∫
[Dφ] exp

{
− 1

2a

∫
dτ∂τφ∂τφ

}
exp

{
i

∫
I2

qAdτ∂τφ

}
× exp

{
i

∫
I3

(qA + qB)dτ∂τφ

}
exp

{
i

∫
I4

qBdτ∂τφ

}
.

Splitting up this path integral using (F.6), one obtains the analogue of (F.7). Path in-

tegration over the Lagrange multiplier φ enforces current conservation, resulting in the

four ordinary integrals over the qi’s and the three delta functions of (F.9). The dictionary

Ai = aLi does the rest.
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[45] H.A. González, D. Grumiller and J. Salzer, Towards a bulk description of higher spin SYK,

JHEP 05 (2018) 083 [arXiv:1802.01562] [INSPIRE].

– 46 –

https://doi.org/10.1007/JHEP08(2018)196
https://arxiv.org/abs/1801.09910
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09910
https://inspirehep.net/search?p=find+J+%22Sov.Phys.JETP,42,413%22
https://doi.org/10.1007/BF02100009
https://doi.org/10.1007/BF02100009
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,141,153%22
https://doi.org/10.1016/0393-0440(92)90034-X
https://arxiv.org/abs/hep-th/9204083
https://inspirehep.net/search?p=find+EPRINT+hep-th/9204083
https://doi.org/10.1016/0920-5632(95)00434-B
https://arxiv.org/abs/hep-th/9411210
https://inspirehep.net/search?p=find+EPRINT+hep-th/9411210
https://doi.org/10.1007/JHEP05(2018)036
https://arxiv.org/abs/1801.09605
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.09605
https://doi.org/10.1007/BF02097053
https://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,128,197%22
https://doi.org/10.1016/0393-0440(88)90031-9
https://inspirehep.net/search?p=find+J+%22J.Geom.Phys.,5,391%22
https://doi.org/10.1016/0550-3213(94)90334-4
https://doi.org/10.1016/0550-3213(94)90334-4
https://arxiv.org/abs/hep-th/9307026
https://inspirehep.net/search?p=find+EPRINT+hep-th/9307026
https://arxiv.org/abs/1806.07765
https://inspirehep.net/search?p=find+EPRINT+arXiv:1806.07765
https://doi.org/10.1007/JHEP08(2017)136
https://arxiv.org/abs/1705.08408
https://inspirehep.net/search?p=find+J+%22JHEP,1708,136%22
https://arxiv.org/abs/1009.6032
https://inspirehep.net/search?p=find+EPRINT+arXiv:1009.6032
https://doi.org/10.1007/JHEP03(2018)138
https://arxiv.org/abs/1610.00740
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.00740
https://arxiv.org/abs/1703.08749
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.08749
https://doi.org/10.1016/0040-9383(92)90015-A
https://inspirehep.net/search?p=find+J+%22Topology,31,865%22
https://arxiv.org/abs/hep-th/9409167
https://inspirehep.net/search?p=find+EPRINT+hep-th/9409167
https://doi.org/10.1016/0550-3213(89)90436-7
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B326,108%22
https://doi.org/10.1016/0550-3213(91)90558-F
https://doi.org/10.1016/0550-3213(91)90558-F
https://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B362,111%22
https://doi.org/10.1007/JHEP05(2018)083
https://arxiv.org/abs/1802.01562
https://inspirehep.net/search?p=find+EPRINT+arXiv:1802.01562


J
H
E
P
1
1
(
2
0
1
8
)
0
8
0

[46] O. Coussaert, M. Henneaux and P. van Driel, The asymptotic dynamics of three-dimensional

Einstein gravity with a negative cosmological constant, Class. Quant. Grav. 12 (1995) 2961

[gr-qc/9506019] [INSPIRE].

[47] S. Carlip, Dynamics of asymptotic diffeomorphisms in (2 + 1)-dimensional gravity, Class.

Quant. Grav. 22 (2005) 3055 [gr-qc/0501033] [INSPIRE].

[48] K. Jensen, Chaos in AdS2 holography, Phys. Rev. Lett. 117 (2016) 111601

[arXiv:1605.06098] [INSPIRE].

[49] J. Maldacena, D. Stanford and Z. Yang, Conformal symmetry and its breaking in two

dimensional nearly Anti-de-Sitter space, PTEP 2016 (2016) 12C104 [arXiv:1606.01857]

[INSPIRE].

[50] J. Engelsoy, T.G. Mertens and H. Verlinde, An investigation of AdS2 backreaction and

holography, JHEP 07 (2016) 139 [arXiv:1606.03438] [INSPIRE].

[51] H.L. Verlinde and E.P. Verlinde, Scattering at Planckian energies, Nucl. Phys. B 371 (1992)

246 [hep-th/9110017] [INSPIRE].

[52] S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography

and TT , JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].

[53] X.L. Qi, H. Katsura, and A.W. Ludwig, General relationship between the entanglement

spectrum and the edge state spectrum of topological quantum states, Phys. Rev. Lett. 108

(2012) 196402.

[54] M. Geiller, Edge modes and corner ambiguities in 3d Chern-Simons theory and gravity, Nucl.

Phys. B 924 (2017) 312 [arXiv:1703.04748] [INSPIRE].

[55] J.R. Fliss et al., Interface contributions to topological entanglement in abelian Chern-Simons

theory, JHEP 09 (2017) 056 [arXiv:1705.09611] [INSPIRE].

[56] G. Wong, A note on entanglement edge modes in Chern Simons theory, JHEP 08 (2018) 020

[arXiv:1706.04666] [INSPIRE].

[57] A. Strominger, Lectures on the infrared structure of gravity and gauge theory,

arXiv:1703.05448 [INSPIRE].

[58] S.W. Hawking, M.J. Perry and A. Strominger, Soft hair on black holes, Phys. Rev. Lett. 116

(2016) 231301 [arXiv:1601.00921] [INSPIRE].

[59] S.W. Hawking, M.J. Perry and A. Strominger, Superrotation charge and supertranslation

hair on black holes, JHEP 05 (2017) 161 [arXiv:1611.09175] [INSPIRE].

[60] A. Blommaert, T.G. Mertens and H. Verschelde, in preparation.

[61] V. Balasubramanian and O. Parrikar, Remarks on entanglement entropy in string theory,

Phys. Rev. D 97 (2018) 066025 [arXiv:1801.03517] [INSPIRE].

[62] W. Donnelly and G. Wong, Entanglement branes in a two-dimensional string theory, JHEP

09 (2017) 097 [arXiv:1610.01719] [INSPIRE].

[63] L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring

theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

[64] S. He, T. Numasawa, T. Takayanagi and K. Watanabe, Notes on entanglement entropy in

string theory, JHEP 05 (2015) 106 [arXiv:1412.5606] [INSPIRE].

– 47 –

https://doi.org/10.1088/0264-9381/12/12/012
https://arxiv.org/abs/gr-qc/9506019
https://inspirehep.net/search?p=find+EPRINT+gr-qc/9506019
https://doi.org/10.1088/0264-9381/22/14/014
https://doi.org/10.1088/0264-9381/22/14/014
https://arxiv.org/abs/gr-qc/0501033
https://inspirehep.net/search?p=find+EPRINT+gr-qc/0501033
https://doi.org/10.1103/PhysRevLett.117.111601
https://arxiv.org/abs/1605.06098
https://inspirehep.net/search?p=find+EPRINT+arXiv:1605.06098
https://doi.org/10.1093/ptep/ptw124
https://arxiv.org/abs/1606.01857
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.01857
https://doi.org/10.1007/JHEP07(2016)139
https://arxiv.org/abs/1606.03438
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.03438
https://doi.org/10.1016/0550-3213(92)90236-5
https://doi.org/10.1016/0550-3213(92)90236-5
https://arxiv.org/abs/hep-th/9110017
https://inspirehep.net/search?p=find+EPRINT+hep-th/9110017
https://doi.org/10.1007/JHEP09(2017)136
https://arxiv.org/abs/1706.06604
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.06604
https://doi.org/10.1016/j.nuclphysb.2017.09.010
https://doi.org/10.1016/j.nuclphysb.2017.09.010
https://arxiv.org/abs/1703.04748
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.04748
https://doi.org/10.1007/JHEP09(2017)056
https://arxiv.org/abs/1705.09611
https://inspirehep.net/search?p=find+EPRINT+arXiv:1705.09611
https://doi.org/10.1007/JHEP08(2018)020
https://arxiv.org/abs/1706.04666
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.04666
https://arxiv.org/abs/1703.05448
https://inspirehep.net/search?p=find+EPRINT+arXiv:1703.05448
https://doi.org/10.1103/PhysRevLett.116.231301
https://doi.org/10.1103/PhysRevLett.116.231301
https://arxiv.org/abs/1601.00921
https://inspirehep.net/search?p=find+EPRINT+arXiv:1601.00921
https://doi.org/10.1007/JHEP05(2017)161
https://arxiv.org/abs/1611.09175
https://inspirehep.net/search?p=find+EPRINT+arXiv:1611.09175
https://doi.org/10.1103/PhysRevD.97.066025
https://arxiv.org/abs/1801.03517
https://inspirehep.net/search?p=find+EPRINT+arXiv:1801.03517
https://doi.org/10.1007/JHEP09(2017)097
https://doi.org/10.1007/JHEP09(2017)097
https://arxiv.org/abs/1610.01719
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.01719
https://doi.org/10.1103/PhysRevD.50.2700
https://arxiv.org/abs/hep-th/9401070
https://inspirehep.net/search?p=find+EPRINT+hep-th/9401070
https://doi.org/10.1007/JHEP05(2015)106
https://arxiv.org/abs/1412.5606
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5606


J
H
E
P
1
1
(
2
0
1
8
)
0
8
0

[65] T.G. Mertens, H. Verschelde and V.I. Zakharov, Revisiting noninteracting string partition

functions in Rindler space, Phys. Rev. D 93 (2016) 104028 [arXiv:1511.00560] [INSPIRE].

[66] T.G. Mertens, H. Verschelde and V.I. Zakharov, String theory in polar coordinates and the

vanishing of the one-loop Rindler entropy, JHEP 08 (2016) 113 [arXiv:1606.06632]

[INSPIRE].

[67] B. Oblak, BMS particles in three dimensions, arXiv:1610.08526 [INSPIRE].

[68] S. Gukov and E. Witten, Branes and quantization, Adv. Theor. Math. Phys. 13 (2009) 1445

[arXiv:0809.0305] [INSPIRE].

– 48 –

https://doi.org/10.1103/PhysRevD.93.104028
https://arxiv.org/abs/1511.00560
https://inspirehep.net/search?p=find+EPRINT+arXiv:1511.00560
https://doi.org/10.1007/JHEP08(2016)113
https://arxiv.org/abs/1606.06632
https://inspirehep.net/search?p=find+EPRINT+arXiv:1606.06632
https://arxiv.org/abs/1610.08526
https://inspirehep.net/search?p=find+EPRINT+arXiv:1610.08526
https://doi.org/10.4310/ATMP.2009.v13.n5.a5
https://arxiv.org/abs/0809.0305
https://inspirehep.net/search?p=find+EPRINT+arXiv:0809.0305

	Introduction
	Maxwell
	Boundary action for Maxwell
	Application I: Maxwell edge states in flat space
	Application II. Maxwell edge states in Rindler
	Application III. 2d Maxwell

	Yang-Mills
	Boundary action for Yang-Mills
	Application IV. 2d Yang-Mills
	Application V. Yang-Mills edge states in Rindler

	Edge correlators in 2d Yang-Mills
	Particle on a group correlation functions
	Boundary anchored Wilson lines in 2d Yang-Mills
	Wilson lines as boundary bilocals
	The horizon theory as topological quantum mechanics

	Discussion
	Gluing
	Gauge bundle view on gluing
	Example I. 2d Maxwell
	Example II. 2d Yang-Mills

	Canonical structure and constrained quantization
	Time-independent kernel G(alpha beta)
	Flat space

	Maxwell in Rindler
	Evaluation of path integral
	Classical solution of 2d Yang-Mills on a disk
	Boundary correlators in 2d Maxwell

