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1 Introduction

Correlation functions of local operators are among the most interesting observables to be
studied in a CFT. They encode nontrivial physics of the theory that can be accessed using
different limits of the correlation functions (large spin, bulk point or Regge limit [1-3]). Of
all CFTs known, N' = 4 SYM stands at a special point where symmetries of the theory
might allow to completely solve it. It is then possible to study the effects of finite coupling
in a four-dimensional gauge theory, which might lead to better strategies in the study of
other quantum field theories.

The most powerful method in A/ = 4 SYM that exploits these symmetries is integrabil-
ity, which started with the understanding of two-point functions of single-trace operators
in the planar limit [4-6]. More recently it was understood how to use integrability to
compute higher-point correlators of local operators [7-10] and even to obtain non-planar
quantities [11, 12]. This proposal, known as the hexagon approach, has now passed many
non-trivial checks both at weak and strong coupling [13-19]. However, despite being a
finite-coupling proposal this program is taking its first steps and there are still aspects
that need to be better understood, so it is essential to obtain field-theoretic results which
provide further checks and clarify subtleties within the integrability framework.



Correlators of half-BPS scalar operators are probably the simplest objects in N' = 4
SYM, and the fact that they are finite and do not need infinite renormalization makes
them ideal objects to study. While two- and three-point functions are protected, higher-
point functions have an explicit coupling dependence, which motivated their study in the
early days of AdS/CFT correspondence, both at weak and strong coupling [20-23]. More
recently, the discovery of a symmetry enhancement [24] has been combined with a light-
cone OPE analysis, which allowed to fix the correlator of four Oy operators to very high
loop order [25]. This OPE constraint is very powerful, as it implies exponentiation of the
correlator in the light-cone limit, therefore providing recursive relations between different
orders in the perturbative expansion of the four-point function. Let us remark that some
correlators have also been obtained using bootstrap methods [26-32].

The goal of this paper is to compute the four-point correlation functions of half-BPS
operators with higher R-charge weights, up to five loops. In these generic configurations
the symmetry mentioned above is not as strong and the light-cone OPE not as constrain-
ing, which means that the integrand cannot be completely determined with these methods.
In this work we combine the light-cone OPE analysis with OPE data extracted from inte-
grability, and successfully fix all four-point functions at four and five loops. We want to
emphasize that we only needed OPE coefficients that are quite easy to obtain from the
integrability point of view, while the data extracted from the four-point functions allows
us to make highly non-trivial predictions for finite-size corrections of hexagon form factors.
The most important result is the leading five-loop order of the triple wrapping correction,
which was originally expected to contribute only from six loops.

In section 2 we describe the symmetries of the correlator’s integrand, which allow us
to construct an ansatz given in terms of conformal integrals. In section 3 we show how to
fix most coefficients in the ansatz by relating the light-cone OPE limit of correlators with
different weights. We follow with section 4 where we explain how one can use input from in-
tegrability to fix the remaining coefficients. We then present our results for the correlators
at four and five loops in section 5, where we also elaborate on the predictions for finite-size
correction of hexagon form factors that we can extract from the euclidean OPE limit of the
four-point functions. We end in section 6 with our conclusions and future research direc-
tions. Finally, appendix A contains a short review on asymptotic expansions of conformal
integrals. We also provide an auxiliary file with all four- and five-loop four-point functions,
as well as the leading asymptotic expansions for all relevant integrals at that loop order.

2 Four-point correlation functions and integrands

We consider gauge-invariant operators at the bottom of half-BPS supermultiplets of N' = 4
SYM theory. The operator of weight L is realized as a single trace of the product of L > 2
fundamental scalars ®!(z), I =1,...,6,

Or(z,y) =y, ...yr, Tr (<I>Il...<I>IL) (x). (2.1)

The traceless symmetrization over R-symmetry indices is provided by the auxiliary so(6)
harmonic variables yr: y -y = 0. Half-BPS operators are protected — they do not un-



dergo infinite renormalization, so their conformal dimension exactly equals to L and the
correlation functions of these operators are finite quantities in D = 4. Also the classical
(super)conformal symmetry of the N'= 4 SYM Lagrangian is inherited by these dynam-
ical quantities. The two- and three-point correlation functions are completely fixed by
the conformal symmetry, and their tree-level approximation is exact. For more points the
correlators receive quantum corrections. We study the four-point correlators

(Or,(21,91)OL, (22, y2)OLs (73, y3)OL, (T4, Y4)) - (2.2)

They are highly nontrivial functions containing useful information about dynamics of the
theory. At the same time the symmetry constraints considerably simplify their form that
makes them more manageable as compared with higher-point correlators.

In the tree approximation the correlators are given by the sum of products of free prop-

2
agators d;; = —3- stretched between scalar fields ®. Here y” =y; -y; and :1: = (z; — xj)Q.
ZJ

The perturbative expansion of the correlators in the ‘t Hooft coupling )\ = g2NC /(47?)
contains a huge number of Feynman diagrams which have to be added together to obtain
a gauge-invariant quantity. Thus, prior to any loop integrations, just finding the gauge-
invariant integrand of correlator (2.2) constitutes a nontrivial problem. In this paper we
solve this problem up to the five-loop order for arbitrary BPS weights using the integrability
methods.

The Lagrangian insertion formula [20] provides a neat expression for the integrand
of (2.2)

(01,01,01,0L,) 1) N/d4335...d4:c4+g (Op,...00,L(x5) ... L(T44¢))Born,  (2.3)

as the correlation function of 4 + ¢ operators — four operators Or,, and ¢ chiral Lagrangian
densities £ — calculated in the Born approximation, which is the lowest nontrivial pertur-
bative approximation. Let us stress that the Born level (4 + ¢)-point correlator

G L n =00 (x1,91) . Oy (€4, ya) £(@5) - .. L(2446))Born (2.4)

is of order X, and familiar Feynman diagrams representing this correlator involve the
interaction vertices. Nevertheless, GG is a rational function of 4+ ¢ space-time coordinates x
and it is polynomial in harmonic variables y. G carries conformal weight L; and harmonic
weight L; at external points &€ = {1,2,3,4}, and zero harmonic weight and conformal
weight (4+4) at internal points Z = {5,...,4 + ¢}. G is a particular component of the
supercorrelator of 4 4+ £ half-BPS multiplets. The super-conformal symmetry of the latter
implies [24, 33-35] that G is proportional to the rational factor R(1,2,3,4),

2
R(1,2,3,4) = diyd3,2T0a5, + disds,atsnyy + disdisat o3
2 2
+ d12d23d34d14($13$24 - 55129534 - 1‘141'23)
2 2 2 2 2 2
+ diad13doad3a(T14 53 — T12T54 — TU3T5)

+ di3diadasdos (27503, — 214255 — 235734 - (2.5)



This factor absorbs harmonic weight (42) and conformal weight (+1) at external points
£. The complementary harmonic weights, i.e. L; — 2 at point ¢ € £, can be absorbed by
propagator factors, that leads to the following generic form of the Born-level correlator

prY (T1,...,Tqyp)

(Z) o\ bis {bz} 1, y L4440
G porars =N Criorsn, R(1,2,3,4) > [ ] (di)® 1—7[ 21 a2 (2.6)

{bis} \ i<y pee Tl psg M
Ljc€ g€ pa€l
The summation in eq. (2.6) is over tuples {bw}ﬁég satisfying constraints Zj# bij =L;—2
for each ¢ € £. The tuples represent different ways to distribute harmonic weights. Then
the conformal weight counting shows that P{(f?_} carries weight (1 — ¢) at each point EUZ.
ij

The numerical normalization factor C' in (2.6) is chosen for the sake of convenience,

(2.7)

LiLoLsLy (Nc>§ZLi‘2
CriLoLsl, = -

2(4%2)% SLi\ 2

A simple short-distance OPE analysis reveals that G ~ 1/22, + O(1) at z, — 2, if p € £
and g € T or p,q € Z. This implies that P{(Z?_} in eq. (2.6) is polynomial in space-time
ij

coordinates. The polynomial P{(fi)j} has certain discrete symmetries. E.g. the integrand of
the four-point function of Og¢s operators (L1 = ... = L4 = 2) is specified by one conformal
polynomial with {b;;} = {0,0,0,0,0,0} which is invariant under all permutations Sy,
of (4 + ¢) space-time points [24]. In the case of generic half-BPS weights the conformal
polynomial P{(li)]_} has the reduced discrete symmetry. It is invariant with respect to the
same subgroup & C Sy4¢, acting on points £ UZ, as the accompanying factor

H (di;)" . (2.8)
1<]
1,j€E
Obviously & contains Sy as a subgroup, S¢ C & , which acts on the Lagrangian points.
Thus the construction of the correlator integrand boils down to fixing a number of
conformal polynomials P{(li?j} with given discrete symmetries. There is a finite number of
them at each loop order ¢ and they can be enumerated. Therefore the remaining freedom
reduces to a number of numerical constants.
Integrating out /¢ internal points Z according to (2.3) we rewrite the contribution of each
SU(4) harmonic structure in (2.6) as a linear combination of ¢-loop four-point conformally
covariant integrals 1(9(1,2,3,4),

4
P«Ebi)j}(xl’ ey Lhqy

2 2
H Lpq H Lpq
peE p<q
qeT P,q€L

(k)

where the numerical coefficients Clp,,} Are the same as in monomials of the conformal
ij

) k 4
[ dton - ;Cgbg} 19(1,2,3,4) (2.9)

polynomials P{(g?,}. An integral I(1,2,3,4) carries weights (+1) at all four external points,
ij



looporder ¢ | 1|2 |3]| 4 5
# of integrals | 1 | 1| 3| 19 | 141

Table 1. The number of ¢-loop integrals I“)(u,v) contributing to the correlators (2.13). For the
sake of simipicity we mode out: 1). integrals, which factorize in a product of lower-loop integrals;
2). permutations of external points; 3). rational factors in cross-ratios u, v accompanying conformal
integrals.

so it can be represented as

1
Ti3Lo4

where I(u,v) is a conformally invariant function and, consequently, it depends on conformal
cross-ratios

2 .2 2 .2
_ L1273y _ T14 %23 211
=32 2 V=35 35 - (2.11)
xT xT X xT
13 24 13 24

Several examples of five-loop conformally covariant integrals are given in eq. (5.2).

The number of linear independent conformal integrals is smaller than one could naively
expect on the basis of the discrete symmetries of their integrands. The conformal symmetry
implies nontrivial relations among them, e.g.

I(1,2,3,4) = I(3,4,1,2) (2.12)

immediately follows from (2.10). The latter relation reduces the number of independent
orientations of the given integral. Applying (2.12) to the conformal ¢'-loop subintegrals
(¢ < 0) of the ¢-loop integrals we generate ‘magic’ identities [36] among ¢-loop integrals of
the different topology. Also some of the /-loop integrals trivially factorize in a product of
several lower-loop conformal integrals, and some of the integrals differ only by a rational
factor in cross-ratios u,v. These observations enable us to reduce the number of conformal
integrals we have to deal with. The number of non-trivially distinct ¢-loop integrals is
given in table 1. The asymptotic expansion of the integrals at « — 0,v — 1 is discussed in
appendix A and the results are collected in an ancillary file.

In the following we denote (2.9) — the integrated contribution of the {b;;} harmonic
structure to the r.h.s. of eq. (2.6) — by % As we discussed above it is given by a

Ti3Toy
linear combination of the conformal integrals

{b }u v) Zc{b y O (u,v), (2.13)

(m) (k)

where numerical coefficients E{b“} are linear combinations of Clbi} originating from con-
(%] ]

(£)

formal polynomials P{b__}. Let us stress that the integrated expression (2.13) contains
ij

less coefficients than the integrand. Thus we obtain the following representation for the



looporder ¢ | 1| 2 | 3 4 5
# of {b;;} | 1|11 |66 | 276 | 900

Table 2. The number of different harmonic structures (modulo permutation of the external points)
specified by {b;;} in the set of all ¢-loop correlators assuming that the saturation bound in (2.15)
1S K = Kmin-

four-point correlator

g b | Fiony (00)
(00, 00,01,0L,) ) = X' CryLyrars R(1,2,3,4) > | [] (i) | =2 5— (2.14)
oy \ i<i T13%24
1,jJEE

The correlator is specified by weights {L; };c¢ of the half-BPS operators, and correlators
of different weights do not have to coincide. However in each given loop order ¢ there is
only a finite number of different correlators. This is rather obvious from the point of view of
Feynman graphs. Indeed, there is no more than 2¢ interaction vertices in the corresponding
Feynman graphs, consequently for sufficiently large weights {L;} some propagators are
spectators. They are stretched between pairs of operators Or,; and Of,; like in tree graphs.

()

Thus there is a finite number of functions F{g 4 at any given loop order ¢. More precisely,
ij
there is a saturation bound x = k(¢) such that

) )

= > - > .
{b12,b13,b14,b23,b24,b34 } {k,b13,b14,b23,b24,b34 } at biz > K, bia, 1034 >0 (2 15)

and similar relations also hold for any other index b;; instead of bj2. We expect that
minimal value of the saturation bound is

FEmin({) = min k({) = ¢ — 1. (2.16)

Previously it has been proven to be true up to the three-loop order. We argue that it

should hold up to the five-loop order. Choosing the saturation bound x in (2.15) higher

than Ky, and implementing the correlator bootstrap we find that relations (2.15) hold
(0

with K = Kpin. In table 2 we show the number of functions F{fij} for K = Kmin modding
out permutations of the external points.

3 Correlator bootstrap with light-cone OPE

Up to now we have not used planarity restrictions. In order to make use of some dynamical
constraints on coefficients of polynomials P{(fzj} we consider the planar approximation. In
particular we imply that the graphs representing the integrand G, eq. (2.6), have planar
topology. In this way we considerably reduce the number of admissible polynomials P{(Q;‘}'
Then we can try to fix the remaining numerical coefficients by means of the OPE analysis.

We would like to impose OPE constraints directly on the integrands. Obviously it is
preferable to deal with the rational integrands than with unknown multi-loop integrals. In



this way we try to pin down as many coefficients in the ansatz (2.6) as possible. Then we
fix the remaining coefficients by extracting more detailed dynamical information from the
OPEs of the integrated quantities.

In [37] the four-point correlator (O O20: O2¢:O2¢/) of weights Ly = Ly = Ly = Ly = 2
was considered, and constraints on the asymptotic behavior of its integrand were found in
the light-cone limit x2,, 23,5, 2%,, 22, — 0. The correlator exponentiates in this limit that
implies relations among different orders of the perturbative expansion, so the correlator can
be recursively constrained order by order. Using this approach the integrands have been
fixed up to three loops at generic N, [37] and up to ten loops in the planar limit [25, 37-39).

For higher-weight correlators a similar exponentiation property does not seem to hold.
Nonetheless some useful OPE constraints for the integrands are known. In [40] studying
the light-cone OPE 22, — 0 of higher-weight Born-level correlators (2.4) in the planar
approximation the following relation was obtained

0 O

G
. L1+1,Lo+41,L3L L1LoLsL
lim 1+1,Lo+1,L3L4 _d12 % 1L2L3L4 :O(dlg) (3'1)
z7,—0 CL1+1,L2+17L3L4 CL1L2L3L4
Y1—Yy2
di2 fixed

where C' is defined in (2.7). It compares the leading light-cone singularities of a pair of
integrands with different BPS weights. Using (3.1) the correlator integrands of all weights
have been fixed up to the three-loop order in the planar approximation.

Let us briefly explain the origin of eq. (3.1) following [40]. We consider the contribution
of a non-protected operator Oy, s of twist L, spin .S, which belongs to some representation
of SU(4), in the OPE of two half-BPS operators at z3, — 0, i.e. schematically O, x

Or, — O s. This contribution is proportional to the structure constant CL1,L2,(9L,5()‘) ~

(Or,01,01 5), so inserting it in the Born-level correlator (2.4) we obtain G(Lel) LoLala ™

CrLy,15,0,5(OLsL ... L) at 22, — 0. The tree-level structure constants in the planar
approximation satisfy the following relation
CL1+17L2+1,OL,S CL1+1,L2+1,L3,L4

= . (3.2)
CLLLz,OL,s CLl,Lz,Ls,Lz;

Consequently, if we could use the tree-level approximation for Cr, 1, 0, s then the OPE
contribution of Op, g cancels in the difference of correlators G(Lgl) 1.Ly+1.LsL, a0d G(L? Lo.LsLs
from eq. (3.1). In particular it is true for the operators from sl(2) sector (see section 4.2).
In order to isolate the appropriate OPE channels we take the limit in (3.1). If we could
use the tree-level approximation for the structure constants of generic operators Oy, s then
a stronger version of (3.1) should hold

0) o)
fed G 1
Li1+1,Lo+1,L3L
1+1,Lo+1,L3Ly dio X LiLoL3lLy _ O( . ) at 17%2 ~0, (3.3)
CL1+1,L2+1,L3L4 CL1L2L3L4 T1g

which was conjectured in [40]. At ¢ < 3 loop order it is equivalent to (3.1), but starting
from four loops (3.3) is more restrictive. Let us remark that the strong criterion implies
the saturation bound k = Ky (2.16) at least up to five loops.



loop order ¢ | bound & | planar 4+ sym | weak | strong | OPE (3322)
1 0 0
2 1 14 0 0
3 2 347 1 1 -1
3 8543 37
4 4 24749 7 6 -3
) 59234 149
5 4 191372 614 33 19
) 459549 1229

Table 3. Number of free coefficients in the ansatz for the set of all ¢-loop correlator integrands (2.6)
after imposing planarity and discrete symmetry constraints, weak (3.1) and strong (3.3) light-cone
OPE constraints for different values of the saturation bound « in (2.15). We assume the correlator
(02020505) is already known. In the last column we show the number of additional constraints
coming from exponentiation property of the Euclidean OPE for the correlator (O2020303) in the
channel (14) — (23); they are independent from the light-cone OPE constraints.

We are going to constraint all higher-weight correlators at four- and five-loops in the
planar approximation. For the bootstrap procedure it is essential to consider correlators of
all weights simultaneously rather than their subset, since relations (3.1) are more restrictive
in the former case. We use the weight-two correlator integrands G(ngg from [37] as an input
and constrain higher-weight correlators. Also we make use of additional constraints on the
integrand Gf(igﬂﬂ following from exponentiation property of the short-distance OPE z; —
x3 [37, 40] for the corresponding four-point correlator. Neither weak (3.1) nor strong (3.3)
criteria are enough to fix all coefficients starting from the four-loop order. Nevertheless,
they considerably reduce the number of unknowns, see table 3. In the following we apply the
weak criterion to partially fix the integrand and then we use integrability of the three-point
functions to pin down the remaining coefficients. The obtained results are in agreement
with the strong criterion (3.3).

4 Constraints on integrated correlators

Using the light-cone OPE relations from the previous section we have greatly simplified
the integrands of correlation functions at four and five loops. Meanwhile the integrated
four-point functions are given as combinations of four-point conformal integrals. By taking
into account their symmetries and relations through magic identities [36], we can see that
there is a smaller number of degrees of freedom. For example, while the weak ansatz for the
five-loop integrand has 1217 unknown coefficients at bound k = 5, the five-loop correlators
are labeled by 791 independent coefficients, which we now want to determine using input
from integrability.

Henceforth, we will be considering the euclidean OPE limit of the four-point functions,
where u — 0 and v — 1. We will assume for simplicity that the lengths of the external



operators are such that Ly < Lo, Ly < Ly and Ly — Ly > L4 — L3, since all other cases
can be obtained easily with a transformation of the cross-ratios. The OPE decomposition
of this correlator is [35]
(0,01,01,01,) = (ngg)LLrEz(x%DEi_Lg g(y%Q_)E(y%)LS_
(F5) L1 (25,) lrTle=E (yf) B (yg, ) B L2
X Z C120 C340 QA,S(U, v) Yn(fﬁfE’IQfE) (o,7), (4.1)
Owith A,Sn,m

where 2F = Ly + Loy + L3z — Ly, Y,Sm E.L:=E) are the R-charge blocks for the SU(4)

representation [n —m, Ly — L3 4+ 2m,n — m] and the conformal block takes the following

form in the OPE limit [41]

A+S—L1+L2 A+S+L3—L4
2 ’ 2

A+ ST —w

(4.2)
The OPE limit is therefore dominated by operators of lowest twist A — S and the SU(4)
numbers are restricted such that we have polynomial dependence on the R-charge cross-

Ga,s(u,v) ~ uAfS(v — 1)52F1 <

ratios o, T
n e [E — Ll,min(E, L3)] s
m € [E — Ly,n]. (4.3)

Meanwhile, from the point of view of the four-point function, we have to sum over
a number of R-charge structures, each accompanied by a function of the two spacetime
cross-ratios

Z Qi
(01,01,00,01,)") = NCri1arans ) F{(a”} o) [ [ (i), (4.4)
{ai;} i<j
where we sum over all a;; such that Z#j a;j = Lj. Not surprisingly, the number of SU(4)
representations in (4.3) equals the number of allowed tuples {a;;}, and one can easily relate

them. Notice that there are relations between the functions F{(i)__} as the correlator must
ij

be of the form (2.14)
Rig, 5,3 Y
=0 {aij=bij} {b;;}
F{an} - Z ) =, (4.5)
{b:j} 18

where the non-vanishing Ry, are the components of R(1,2,3,4) from (2.5)

_ .22 .2 .2 2 2 2 .2
R{2,0,0,0,0,2} = L1234, R{1,0,1,1,0,1} = T13%2q — Ti2T34 — L14X23 5
2.2 2.2 2 .2 2 .2
R{0,2,0,0,2,0} = T13%T24 R{1,1,0,0,1,1} = L1423 — L12L34 — L13T24 5
_ 2.2 .2 .2 2 2 2 .2
R0,0,2,2,0,0) = T14223 5 R0,1,1,1,1,0) = T12%34 — T14%53 — T13T24 - (4.6)

9
integrals (see eq. (2.13)), which are evaluated in the OPE limit with the method of asymp-

Each conformally invariant function Ff,’ , is given by a linear combination of conformal

totic expansions, and they are given as

4
F{(li?j} ~ Z o logh (u) . (4.7)

k=0



Figure 1. The asymptotic three point function should be suplemented with finite size corrections
from the three mirror edges. Following the procedure from [7] one is instructed to insert resolution
of the identity in each of the edges. The states can have any number of particles on them however
the higher the particle number the more surpressed the contribution is.

The unknown coefficients of the integrand enter the functions F' {(5?_} as in (2.13), and each
ij

conformal integral can in principle contribute to all powers of log¥(u), which means that
all a in (4.7) will in principle depend on those unknown coefficients. If we look back
at the OPE limit of the conformal blocks (4.2), we see that the coefficients multiplying
the higher powers of log(u) contain only lower-loop OPE data. This simple observation
has non-trivial consequences, as it implies that those terms can be constrained without
difficulty by computing the required lower-loop OPE data with integrability.

4.1 Constraints from integrability

In order to put constraints on the functions F{(fzj} which enter (4.4), we must understand
what we can say about the equivalent picture of conformal block decomposition. Thanks
to integrability, we know a lot about the structure of the spectrum [4, 5] and structure
constants that enter (4.1). For both quantities the prescriptions are especially tailored for
decompactification limits. If an operator has large spin-chain length L, then its anomalous
dimension is computed with the asymptotic Bethe ansatz. However, when we make L small
the prescription needs to be corrected with finite-size effects, which are given by Luscher
corrections.

Meanwhile, the OPE coefficients can be computed with Hexagon form factors [7].
This method follows a similar expansion, where the decompactification limit is achieved by
cutting the pair of pants. This regime is controlled by three parameters, the numbers of
tree level Wick contractions between each pair of operators

1
lij = 5(Li+ Lj — Ly). (4.8)
The asymptotic piece is valid when all [;; are large, but as we decrease the bridge lengths,
it must be complemented with hexagon form factors dressed by n;; virtual excitations in

the bridge of length [;;, as depicted in figure 1. For simplicity, let us consider the structure

~10 -



constant between the external operators of length L, and Ls and an unprotected operator
of length Lo that appears in their OPE. It was shown in [14] that the contribution of
nig virtual excitations in the bottom bridge /12 (opposite to the unprotected operator) is

suppressed by a factor of
92(7112l12+n%2) ) (4.9)

This means that even if we put a single virtual excitation in a bridge of length I12, the
wrapping correction appears at best at l12 + 1 loops.

We can now use this knowledge when we evaluate the correlator (O, Or,,0r,0r,)®.
If we pick the contribution of operators O with SU(4) charges [M, Lo — 2M, M] and spins
[S, 5], at leading twist A — S = Lg the structure constant of those unprotected operators
with Op, and Op, is described by hexagons with an opposed bridge of length 110 = 1/2(L1+
Ly — Ly). If we increase the lengths of the external operators to L; +n and Lo +n and pick
again the contribution of the operators Oy, then we know the structure constants must agree
up to l12 loops. Or in other words, the OPE limit of the correlators (O, Or, OLSOL4>(£)
and (OL1+H(9L2+nOL3(’)L4>(Z) must agree for all powers of logk(u) with k > ¢ — [45.

We can implement these conditions individually for all different representations in
the OPE decomposition of the four-point functions, or equivalently, we can impose them
individually on the euclidean OPE limit of the functions F’ {(2_]_ } from (4.5). At the end of
the day we have

£ (6) £ (6) _
< {n,a13,a14,a23,ag4,m} - {E,a137a14,a23,a24,m}) logkzefn =0 for n,m > 0, (410)
£ (6) £ (6) _ ; _
< {n,a13,a14,a23,a24,m} {E,alg,a14,a23,ag4,m}> log! =0 for mln(n,m) =0. (411)

The reason we treat the case min(n,m) = 0 separately is because it corresponds to OPE
channels with extremal three-point functions, where there is mixing with double-trace
operators. In that case it is not known how to evaluate the OPE coefficients using the
integrability methods, so we restrict the constraint to an obvious tree-level statement.
There is still another set of equations we can impose on the F {a;}» Which relates to the
fact that opposed wrapping corrections factorize. Apart from a normalization factor N,

the computation of the structure constant requires the evaluation of hexagon form factors
{tis}
(no1,m12,n02

explicit dependence on some of the bridge lengths {l;;}. It turns out that the contribution

) for different numbers n;; of virtual excitations, where the superscript denotes

of wrapping on the bottom bridge is always of the form

(loz,l12) _ A(IOQ) B2) (4.12)

(no1,m12,m02) — ¥ (n01,0,m02) 112
which means that the expansion over wrapping corrections factorizes in the following way
A= .A (lo2) + A (lo2,l12) + .A (lo2) + .A (lo2) + .A (lo2) + A (lo2,l12) + A(loz,lu) +
(0,0,0) (0,1,0) (1,0,0) (0,0,1) (1,0,1) (1,1,0) (0,1,1)
_ (lo2) (lo2) (lo2) lo2) (li2)
— (A + Al + A+ A ) (1B )
= Alo2)glli2) (4.13)
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This has important implications for the four-point functions. For example, if the
lengths of the external operators are such that Lo — Ly > L4 — L3, then the splittings Iy
and lp4 in the structure constants Chaop and Cs40 must be distinct. However, thanks to
the factorization property (4.13), we have!

C(l027l12)c:§l047l34) :NQA(IOQ)B(llz)A(l04)B(l34) :N2A(log)B(l34)A(lo4)B(llg) — C(l027l34)0(l04,l12)

120 40 r2o Y340 s
(4.14)
where we define new external operators with lengths
Ly = lor + 4, Ly = log + 34,
Lé = lo3 + l12, Lﬁl =lgq + l12. (4.15)

Using this insight in the OPE decomposition we can see that the functions F{aij} must
obey the following property

() () _
F{n7a137al47a237a247m} o F{m,a13,a14,a23,a247n} =0 for n,m > 0, (4'16)
() () _ : _
( {n,a13,a14,a23,a24,m} {m7a137a14,a237a247n}) log” =0 for mln(n,m) =0. (4‘17)

For the non-extremal case when both n and m are strictly positive, we can impose the
equality for all powers of log(u). Meanwhile, for extremal configurations (4.13) might not
be valid so we restrict the equation to a tree-level statement.?

Let us remark that even though we used knowledge from integrability to formulate
equations (4.10), (4.11), (4.16) and (4.17), they require absolutely no numerical input
from integrable machinery, and yet they introduce powerful constraints on the four-point
functions.

4.2 OPE data in the sl(2) sector
(0)

In the previous subsection we derived constraints on the functions F {fij} by looking at the
integrability description of three-point functions and using the knowledge of when opposed
wrapping corrections first start to kick in. This nice exercise allows us to fix many of the
unknown coefficients without having to do any actual computation with the integrability
machinery. In this section we explain how to further constrain the integrand by computing
the simplest components of three-point functions in the s[(2) sector.

By choosing specific polarization vectors y; for the external protected operators, we
can single out the OPE channel in (4.1) with SU(4) charges [0, L, 0], twist L and spin S.
These are operators of the form

Te[ZD5ZL 1) + ... (4.18)

1A naive power counting would imply that A(1,1,1) shows up at six loops, but we will prove later that
the contribution must be present already at five loops. This must happen through the regularization
prescription that is introduced to fix the divergences in A(1,0,1), which could in principle invalidate the
factorization property. However, at five loops this affects only operators with symmetric splitting, in which
case (4.14) is trivially satisfied.

Interestingly enough, once we fix all four-point functions we observe that both (4.11) and (4.17) would
be valid if applied to the same log(u) powers of (4.10) and (4.16).

- 12 —



and correspond to spin-chain excitations in the sl(2) sector. This is an especially easy sector
within the integrability framework, where we can find all solutions to the Bethe equations
without difficulty. Since this is a rank-one sector, it is also a relatively easy setup for the
computation of structure constants.

In order to pick such an OPE channel we should analyze correlators of the form

(Te[ X112 2100 (21 ) Te[ X112 2192 (a9 Te[Y 124 Z009] () Te[ V124 2104 () (4.19)

at the leading power of « =12, In terms of the polarization vectors this can be achieved by
choosing [42]

(1,’i,0&1,i0[1,0,0), Y2 = (1,i,0&2,-i0&2,0,0),

1
yl—ﬁ
1

ySZE

and then taking derivatives of the correlator

(1,—14,0,0,as3,ia3), Yq = (1,—1,0,0, a4, —iay), (4.20)

S-Sl

L (0 0N® (0 N 0 (12)0m () On () (4.21)
(l12134!)% \ Dy Doz dag day L R L aizo. .

In terms of the four-point function (4.4), we are picking the contribution of a subset
of the functions F {((ll) 3 which are of the form
ij

lon 0 loi—1 (1 _ N2 7170

Z F{lu,oul()l—047103—067102—l03+a,l34} _ Z (1-v) F{ZIQ_1757l01_1_57103_1_ﬁyl02_l03+57l34_1}
yhizgloz—a o yhizglos—B8 '

a=0 £=0

(4.22)
Notice that only two elements of R contribute for the right-hand side of (4.22), namely
Ry11,00,1,1y and Ry 01.1,0,1)- This happens because R30,0,0,2) is always subleading in u,
while the other three terms Ry o) happen to be subleading for the specific polarizations
chosen.

In this way we are able to extract sum rules for operators in the s[(2) sector, which we
now want to match with sum rules obtained from integrability. By equating them we will
be able to determine many of the unknown coefficients in the functions F {(ﬁzj}.

The required three-point functions are obtained by a finite-volume correlator of two
hexagon operators. This is a hard object to obtain and so one considers the two-point
function of the hexagon operators as an expansion around the infinite-volume limit. This
is particularly useful at a perturbative level where the finite-volume effects can be tamed
order by order in the coupling. Each non-protected operator is represented by its Bethe
roots, which are distributed among the two hexagons.? The infinite-volume expansion
corresponds to inserting a resolution of the identity in each unphysical edge of the hexagon,
which in practice is written as an infinite sum of virtual excitations (including the term
with zero particles). A schematic representation of this proposal is portrayed in figure 2.

3Notice that one should sum over all possible ways of distributing the Bethe roots among the two
hexagons.
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Figure 2. As we cut the pair of pants in two hexagons, we must partition the Bethe roots u into
the sets @ and & which populate the physical edge of each of the hexagon form factors. Finite-size
corrections are obtained by inserting particle/anti-particle pairs in the mirror edges of the hexagons,
denoted here by ;;.

The creation and propagation of the virtual excitations costs energy, so their contribution
appears at higher orders in perturbation theory. The explicit coupling dependence of
different finite-size corrections can be found in [14].

We will consider a ratio of structure constants, where the numerator is the OPE co-
efficient for a non-protected operator of length Ly in the s[(2) sector with two protected
operators of lengths L; and Lo, while the denominator corresponds to the structure con-
stant for three protected operators of lengths Ly, L1 and Lo

e _ [T ()
Coes = \/ () ey Sury) 7 (423

where ({u}[{u}) is the Gaudin norm, g is the measure which controls the asymptotic
normalization of one-particle states, S is the s[(2) S-matrix and A is the two-point function
of hexagon operators. In this work it was sufficient to consider the asymptotic hexagon form
factors A(g,0,0) and the single-particle wrapping correction in the opposed mirror channel
A(0,1,0), which we now review.

Asymptotic contribution. The leading asymptotic contribution to the hexagon form
factors is [7]

Avony = Y. ()¥w(e,a)h(a)h(a), (4.24)

aUa={u}
where w(a, @) is the splitting factor
w(a,a) = I_Ieip(“i)l02 H S(ui,uy) (4.25)
[<tet JEQ,i>]
and h(u) the hexagon form factor for a set of excitations {u} in a single physical edge

v (w) — o~ () L ~ ey 1
i) — i x~ (ug)xt (uy

, (4.26)

1<j

where 2% are the Zhukowsky variables and o is the BES dressing phase.
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Finite-size corrections. The computation of the hexagon with a single virtual excita-
tion in the mirror edge opposed to the unprotected operator boils down to the evaluation
of the following integral [7]

To(u™
A(O,]_’O) A(OOO Z//’La u"/) Zpa(u’Y)l12h ( )

a>1 1a(u7u ’Y)

where [ is the length of the opposed bridge, T, is the transfer matrix, hi, the hexagon
form factor and p,(u”) the mirror measure for a bound state of a derivatives, see [15] for
the precise definition of each of these factors. It is instructive to show the leading order
expansion of the integral at weak coupling

a Q(u[a+1]) 4 Q(u[—a—l]) _ Q(u[a—l}) _ Q(u[—a+1])
(u? + )2t Q(i/2) )

(4.28)

where Q(u) = [[;(u—w;) is a polynomial of degree M and u; are the M Bethe roots for the
state under consideration. Notice that the integral in u is divergent for small /12 and large
enough M. As explained in [14], the sum over bound states a cures this divergence, but
it is technically hard to perform the sum before the integration in u. It was then shown
that (4.27) can be evaluated efficiently with the following method:

e Consider the function Q(u) = e®;

e Do the integral in u by residues;

e Write the result of the integration in terms of nested harmonic sums;

e Perform the remaining sums by identifying it with harmonic polylogarithms.

The original polynomial can be recovered by acting with Q(—i9;) in the final result. The
advantage of using the plane-wave e’ is that it makes the integral more convergent,
allowing the evaluation of the integral in w by residues. The sum over bound states is
trivialized once one identifies the sum as harmonic polylogarithms. Another advantage is
that this method gives at once the finite-size contribution for any state.

4.3 Consistency conditions

While the data from asymptotic hexagons and opposed wrapping can introduce strong
constraints on the undetermined coefficients, there are certainly many configurations in
the sl[(2) sector which also require the evaluation of adjacent wrappings. It is however pos-
sible to fix coefficients that appear in such configurations without evaluating any adjacent
wrapping explicitly, and we will also see how the input of the opposed wrapping correction
to (¢ — 2) loops will help constrain the ¢-loop four-point functions.

Once we take the OPE limit of the correlators it is simple to extract sum rules P
which are defined by

o ¢
Z 012(9(/\)034@ eVo Z Z Aé aP (t.a) N (4.29)
@

£=0 a=0
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Figure 3. Example of a four-point correlator where blue lines denote contraction between X and X,
red lines connect Y and Y and all other lines correspond to Z and Z fields. The leading operators
in the OPE limit have twist 4, and we get a product of distinct structure constants. The OPE
coefficient in the top has equal splitting between adjacent bridges and opposed bridge of length
4, so that virtual excitations in those lines do not contribute at four loops. Meanwhile the OPE
coefficient in the bottom half has an assymetric split between left and right adjacent bridges, and
the opposed bridge has length one, which implies the appearance of opposed wrapping at two loops.

where 7o are the anomalous dimensions and we sum over all operators O with given dimen-
sion, spin and SU(4) charges. For simplicity, let us now focus on a four-loop example. If we
look at correlators with different weights then we can extract sum rules for configurations
where the unprotected operator has different splittings lyp; and lps and the opposed bridge
lengths have values l15 and 34

(4,0) _ (0) (4) (1) (3) (2) (2)
P(1127l34,l01,l03) - Z Cl127l01,fcl347l03 rt Clu,l()h Cl34,l03,f + Cl12y101» Cl34,los,f
I
(3) (1) (4) (0)
0112 101,101347103 0112 1017101347103,1 ) (4'30)

with C (¢ ) il the ¢-loop OPE coefficient for opposed bridge of length I;;, adjacent bridge
length l0;.C and operator Oy with the correct dimension, spin and SU(4) charges. This
type of sum rule can be extracted from the analysis of correlators like the one depicted in
figure 3.

As explained above, the opposed wrapping contributions factorize in the computation
of the structure constant, so we can rewrite it as

4 A (t—k,l kli-)
Cl(ij),lOk,I = ( adJO;C + Z‘Aadjl Ok) ’ > s (431)

where N7 denotes the normalization factor from (4.23), Agﬁ;o}c ) is the sum of the asymptotic

and adjacent wrapping contributions at ¢ loops for adjacent bridge of length lgx, and
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B(é Lii) § is the f-loop single-particle opposed wrapping for opposed bridge length [;;. For the

Conﬁguratlon when both opposed bridges have length four, in which case there are only
adjacent wrappings, we have

E : 2 (0 101 (4,l03) (Llo1) 4(3,l03) (2,l01) 4(2,l03)
N ( adj,! adJ I + ‘AadJ I 'Aadj I + Aadj I ‘Aadj,l

1017103
3,001) 4(1, (4,001) 5(0
+A§Ldj,011)"4adjols +Aadj011)AadJOI?) ) : (4.32)

As we lower the length of the opposed bridge to l34 < 4, we must add contributions from
opposed wrapping, which starts at two loops, so we have

(4,0) p40) 2 ( 4(2do1) (0 (1,1 (1,1 (0,1 (2,003)\ 12(2,134)
P(4,l34,l01,l(]3) 4 4 l01 103 + ZN ( adj 011 ad_] 03 + Aadj 011 Aadj OI3 + Aadj OII Aadj OI3 ) Bl,[ .
TN (A AR + A;%f%l A ) B ZN%A;%JZO; A B (4.33)

Notice that the adjacent wrapping corrections can only start at three loops, which means
that A,qj,; always simplifies to the asymptotic contribution in (4.33). Therefore the only
(

unknowns are the opposed wrappings B, ¢ l34) , but we obtain an overconstrained system of
equations because they appear in sum rules for different splittings lo; and loz. In the sl(2)
sector there are | L/2] operators of twist L and spin 2, while there are 1/2(| L/2] + | L/2]?)
configurations for the splitting of the twist L operator in the four-point function. This
poses non-trivial constraints on the undetermined coefficients of the four-point correlators.
Furthermore, if we let both opposed bridges become smaller, with ly9, 34 < 4, then the

sum rule is

(4,0) _ pl(40) p20)  p(4,0)

(I12,034,l01,l03) (4,134,l01,l03) (112,4,l01,l03) (4,4,l01,l03)

+ZN2 oy Aes  BEDBE. (4.34)

We can see that it is related to the sum rules in (4.32) and (4.33), and these relations can
be easily implemented with the knowledge of relatively simple objects: asymptotic hexagon
form factors and opposed wrapping at two loops. Moreover, if any of the opposed bridges
has length bigger than one, then the last term in (4.34) is identically zero. The fact that
sum rules for different opposed bridge lengths respect such relations imposes non-trivial
constraints on the four-point correlators. Finally, at higher loops the arguments are very
similar, with the only difference being that at ¢ loops the last term in (4.34) will include
opposed wrapping corrections up to (£ — 2) loops and A,gj 7 in (4.33) might include the
contribution of adjacent wrapping corrections.

5 Results

In this section we apply the methods described above in order to fix all four- and five-loop
four-point functions of protected operators. Since we could not prove the validity of the
stronger version of the light-cone OPE relations (3.3) above three loops, we shall always
start from the integrand constrained only by the weak relations of (3.1).
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We need to obtain the functions F' {(2]_} for all indices b;; ranging between 0 and (£ —1).
While this bound was proved up to three loops, we do not have a direct proof at higher
loops, but its existence is natural from the point of view of Feynman diagrams. At any
loop order there is a maximum number of fields that can be involved in a given interaction
vertex, which means that for large enough operators there will always be a number of
spectator fields. Furthermore, our results seem to indicate that the strong light-cone OPE
relations (3.3) are valid at four and five loops, and the strong version of the integrand is
the same for all values of the bound larger or equal than rmi,(¢), which seems to indicate
that is the correct bound.

5.1 Four loops

At four loops we expect the bound on the {b;;} in eq. (2.15) to be k = 3, but in order to test
this we start with functions F {(;i)j} whose indices are bounded at x = 5. The weak ansatz
fixes all 2451 functions up to 149 undetermined coefficients, which is also the number of
degrees of freedom in the integrated correlators.

If we impose the equations from section 4.1, we are able to fix 130 of the 149 coefficients.
Then we consider correlators in the sl(2) sector by analyzing the configurations from (4.19).
If the adjacent bridge length is ly; and the opposed bridges have lengths l1o and l34, then
the asymptotic hexagons are the only contribution up to min(ly2,l34,lo1 + 1) loops. That
means that we can compare the data obtained with all log®(u) terms of the correlator for
k > 4 —min(ly2, 34,101 + 1). There is a remarkable amount of information and we are able
to determine 18 coefficients in this way. At this point the integrand is completely fixed
up to a single coefficient, which we determine using the consistency conditions presented
in section 4.3. We need to evaluate opposed wrapping up to two loops, and by comparing
sum rules for different opposed bridge lengths we are able to fix the last coefficient.

In the end, we are able to fix all planar four-loop four-point functions with striking
ease. Regarding the result obtained, it is very interesting to observe that the bound on the
indices {b;;} does turn out to reduce to x = 3. Moreover, we find that the solution to the
weak version of light-cone OPE (3.1) is consistent with the strong criterion (3.3). We also
evaluated all three- and four-loop opposed wrapping corrections for spin 2 operators up to
twist 20 and obtained a perfect match with the data extracted from the four-point function.

5.2 Five loops

At five loops we expect the bound on the {b;;} from eq. (2.15) to be k = 4, but once
again we test this conjecture by starting with the bound x = 5. We need to consider
2451 functions F (g) , which contain 1217 undetermined coefficients, but when we consider
symmetries of the conformal integral and magic identities between them we can show that
the integrated correlator depends only on 791 coefficients.

At five loops it is quite difficult to take the OPE limit of the conformal integrals, so
only the order (1 —v)? of the expansions is available. That means that if we naively take
v to one in the conditions of section 4.1 then we might lose some important information.

This happens because the SU(4) representations [M, Ly — 2M, M| that appear in a given

~ 18 —



correlator at twist Ly are combinations of the functions

£ (5.1)

{l12,a,l01—a,los—a,lo2—loz+a,lza}

for 0 < a < lp;. It is easy to see that the numbers match if one remembers that only
representation with Lo — 2M > Lo — L; are allowed, or equivalently, M < ly;. Since the
representation [0, Lo, 0] corresponds to operators in the sl(2) sector, we know that the first
non-protected operator has spin two and therefore the representation must come with a
factor of (1 —v)2. Analogously, the representation [1, Lo — 2,1] will always come with a
factor of (1 —v), which means that there are two linear combinations of the functions (5.1)
that will be vanishing at v = 1. In order to obtain a maximum number of constraints
from (4.10), (4.11), (4.16) and (4.17) we must then find what those linear combinations
are and substitute the expansions of the conformal integrals at the leading non-vanishing
order of those equations. Once we take this into consideration, we are able to fix 578 of
the 791 undetermined coefficients.

Then, just like at four loops, we can consider the data from asymptotic hexagon form
factors and compare with the logk(u) terms of the correlator for k > 5 — min(ly2, l34, lo1 +
1), which fixes 70 more coefficients. At this point we use the technique introduced in
section 4.3, where we extract adjacent wrapping corrections by looking at correlators with
opposed bridges of length 5, and then look for consistent conditions on the data of lower
opposed bridge lengths. This proves very effective, and we are able to fix a further 120
coefficients by inputing only two- and three-loop opposed wrapping effects.

At this point we have fixed all correlators up to 23 coefficients. In order to fix those last
degrees of freedom, we look again at equations (4.10) and (4.16), but in terms of conformal
integrals and not their OPE expansions. For each equation we must consider only the con-
formal integrals which can contribute at the relevant powers of log(u), and once we do that
we notice that all equations at this point depend only on four distinct conformal integrals

L15L16L25%26L27L2gL35L37L39L s Lyg LagL57L g L9 L8
Iz:/ 2 2 d;x52d4€6dzx7§l4x§d42x92mi@%x%x%x% 2 .2
L15T17L19L25L26 L7 L8 T36L38L39L 5L 46 L 19T 56T 78L79L 89

4, 24, 34, 4, 14 2,.2,2,.2 .2 .2 2
= 2,2 .2,.2.2,.2.2,9,95,9 .9 .92 92 9 95,9 9 92
L15L16L18% 1925 L7 L2g 293536 L37 L6 L 7L 49X 5658 L79Lg

4, 4. 14, 14, 14 4 4

[4:/ d*zsd zed z7d 2gd xg 27579,

2.2 .2.2 .2 .9 .2, 9.2, 9 92, 9 2 95 92 95 °
L15L16L18%25L26L27L35L37L39 L 5 Lyg L9 L7 Leg L9 L8

(5.2)

Since I» and I are products of one- and four-loop conformal integrals, we can easily obtain

their expansions to order (1 — v)*. Meanwhile I; and I3 are genuine five-loop integrals

but luckily they are some of the simpler ones and we were able to perform the asymptotic

expansions to order (1 —v)!. By plugging these new expansions back in the equations we

were able to obtain new constraints corresponding to higher spin contributions in the OPE

decomposition of the four-point correlators, which fixed all but one of the coefficients.
Finally, we consider the correlator

G = (w13) (234)* (Te[ZY P} (1) Tr[Y P XP] (22) Ty [ 2] (3) Te[ 27 X 7] (4)) (5:3)
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which we evaluate with equation (4.4), leading to

I (5) (5) -
GO — P (F{pyp_zo,o,p—z,p} + (v — 1)F{p_17p_170707p_17p_1}) + O(u P+1) . (5.4)

If p > 7, then both functions on the right-hand side of (5.4) saturate the bound and we
have at leading order in u

5 _ YU (5
g( )= JF{5,5,0,0,5,5}’ (5.5)

for which all orders of log(u) depend on the last undetermined coefficient. Thankfully this
correlator has been evaluated in the regime of large p through hexagonalization* [43] and
we can in this way fix all planar five-loop four-point functions.

It is interesting to note that the solution to the weak ansatz of the integrand is compat-
ible with the strong light-cone OPE relations (3.3) and the bound on the indices {b;;} does
reduce to k = 4 as expected. We also evaluated all four-loop opposed wrapping corrections
for spin 2 operators up to twist 20 and once again obtained a perfect match with the data
extracted from the five-loop four-point function.

5.3 Triple wrapping

As mentioned above, the integrability approach to the computation of three-point func-
tions depends on an asymptotic contribution and finite-size corrections. By considering
specific polarizations and/or large enough external operators, one can postpone some of
the wrapping corrections to higher loops and in some cases even isolate specific finite-size
corrections.

A simple example where this happens comes from considering the following family of
four-point functions

(O2(21)O2(22)Op (23) O (24)) (5.6)

where n > 2. Looking at the singlet SU(4) representation in the OPE limit of small u
and (1 — v) probes the product of structure constants CooxCrpic where K represents the
Konishi operator. As we increase the length n of the operators, the wrapping corrections in
the adjacent bridges remain the same, but the contribution of the virtual excitation in the
opposed bridge is delayed to n loops. For example, by looking at the configuration where
n is six we are able to extract the contribution of adjacent wrappings Aaqj = A(1,0,0) +
A(0,0,1) T Ag1,0,1) to the structure constant

Aadj = \? (324 + 864¢3 — 1440¢5) — A* (9801 + 648¢3 + 93605 + 3888¢5 — 27720¢7) (5.7)
+ A7 (217080 — 154224¢5 + 139536¢5 — 103683 + 91980¢7 + 116640¢3¢s — 435456() -

Perhaps more interestingly, we can now evaluate the difference of sum rules introduced
in (4.33)

(5,a) (5,a)
P(l,l34,1,1) N P(1,5,1,1) (5.8)

4We thank Frank Coronado for sharing this result prior to publication.
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which probe the one-particle contribution to the bottom edge. For opposed bridge lengths
2 < l34 < 4 these correlators exactly match the opposed wrapping contributions (we use
the notation introduced earlier A%ﬁ?o) = A(0,070)B§l34))

B = X3 (120¢5) + A* (2405 — 216¢2 — 2100¢7)
+ A% (—2400¢5 + 432¢5 — 3507¢7 + 5400(5¢3 + 31752(y)
B = X (420¢7) + A® (840¢7 — 1080C3Cs — 10584y |
B = \° (1512¢) . (5.9)

On the other hand, at l34 = 1 there is a mismatch with the wrapping correction

B = A2 (36¢3) + A (72¢3 — 360C5) + A* (—720C3 + 432¢Z + 4200¢7) +
+ A5 (62283 + 19805 + 1728¢2 + 2667¢; — 7560C3¢5 — 5292000) - (5.10)

This mismatch occurs when all bridges in the three-point function have length one. The
triple wrapping Ay 1,1} was originally expected at six loops, but our results seem to indicate
that it contributes already at five loops with

Aqin = A° (11016¢3 — 16200¢5 — 5184¢3 + 32130(7 — 14256(3¢5 — 9072¢o) . (5.11)

This is not unexpected, as the two virtual excitations in the adjacent bridges make the orig-
inal proposal for the triple wrapping divergent. We expect that the required regularization
of this term, along the lines of [15], will anticipate its contribution to five loops.

In order to test that the mismatch is indeed due to a triple wrapping, we also studied
the OPE limit of the following correlators

(O2(21)O03(22) O24m(23) O3 1m(T4)) - (5.12)

We isolated the twist three contributions for all values of m and showed that in this case the
results are perfectly compatible with the contribution of opposed wrapping for all bridge
lengths, proving in that way that the mismatch occurs only when all bridges have length
one.

6 Conclusions

We have obtained all four-point functions of protected operators in N'=4 SYM up to the
five-loop order. Our method relies on a combination of two techniques: first we consider
light-cone OPE relations between integrands of different correlators, and then we take the
euclidean OPE limit of the integrated four-point functions and compare with data obtained
from integrability. We extract a myriad of OPE coefficients and check that they perfectly
agree with OPE data obtained with integrability (which we did not have to use to fix the
correlators).

While we have found convincing evidence that the saturation bound in the R-charge
structures of four-point functions at ¢ loops is (£ — 1), it would be interesting to prove this
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statement. Our results also seem to indicate that the strong version of the light-cone OPE
relations is valid in N/ = 4 SYM. This fact should be examined in more detail, as a proof
of its validity would tremendously simplify the study of four-point functions of protected
operators at higher loops.

By focusing on the correlator of four Oy operators, we have shown that new wrapping
effects appear in the hexagon approach to three-point functions at five loops. This is an
example of a fruitful interplay between the integrability machinery and the more standard
perturbative quantum field theory methods, and it would now be important to obtain this
result from the integrability point of view. Since the regularization of hexagon form factors
seems to anticipate wrapping corrections, one should study what are the implications on
the positivity of the hexagon perturbation theory [44].

It is also possible to employ integrability in the study of four-point functions, by using
the method of hexagonalization. It would be interesting to evaluate the observables ob-
tained in this work with such methods, as there is now a point of comparison. Furthermore,
by picking specific polarizations for the external operators one can probe different finite-
size corrections of the four-point functions. In principle, this could lead to integrability
representations of higher-point conformal integrals, in the spirit of [45].

In this work we considered the euclidean OPE limit of the four-point functions, which
was obtained at leading order with the method of asymptotic expansions. However, it
would be extremely helpful to evaluate exactly all conformal integrals that appear in the
correlators, since that would allow us to take other relevant limits which cannot be accessed
by asymptotic expansions.
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A Asymptotic expansions

The integrals appearing in the four-point function at four and five loops are hard to compute
for generic values of the cross ratios u and v.°> However, for our purposes it is sufficient to
extract the values of these integrals in the euclidean OPE limit © — 0 and v — 1, which can
be done with the method of asymptotic expansions. This method was introduced in [18, 48]
and has been applied recently to compute five-loop p-integrals and structure constants in
N =4 SYM [16, 49].

The {¢-loop correlator depends on four external points {1, x9,x3, 24} and ¢ internal
points which we integrate over, and all propagators are differences of the form

ZEij = X; — .%'j . (Al)

5The interested reader can find the most recent advances in the evaluation of conformal integrals
in [45-47].
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Conformal symmetry can be used to send x; to the origin and x4 to infinity, and the final
result is naturally expressed in terms of the ratios

2 2
x x
u:—;, v:iz?’. (A.2)
x x
3 3

The structure of the four-point function is not arbitrary since the short-distance singulari-
ties are constrained by the OPE data of the theory. We are interested in the short-distance
limit of the integrals, or in other words we want to study the behavior of the integral when
xo approaches the origin. The main idea behind the method of asymptotic expansions is
to divide each integration domain in several regions, so that it is possible to take the short-
distance limit inside the integral. In practice we divide the integration over each internal
point z; in two different regions: one where the integration point is close to x5 and one where
it is close to x3. In each of these regions we can expand the propagators in the following way:

1 B 2z -z — r3)" . 2
(a2 ngzo @2y (if x5 < x7), (A.3)
1 > (21‘3 c T — $2)n o 2 2
— L f o . A4
(23 — 2;)2 7;) (22)n+1 (if 27 < a3) (A.4)

There are 2¢ regions corresponding to the ¢ integration points and in each of these regions
the original integral is expressed as a product of two-point integrals. If k integration vari-
ables are in the region close to x2, then the k-loop integral with external points x; and x9
multiplies an (¢ — k)-loop integral with external points x; and x3.

Then we use the fact that integrals are not all independent since they satisfy IBP
identities. In particular this makes it possible to express any two-point integral as a linear
combination of master integrals. These identities can be obtained using a computer imple-
mentation of the Laporta algorithm such as FIRE [50]. The values of the master integrals
used for this computation were evaluated in [51].

The integrals used here might be useful for other studies and for this reason we include
them in an auxiliary file. We have computed the four-loop integrals up to u° and (1 — v)*,
while the expansions of the five-loop integrals are at «? and for v = 1.
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