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theories and the Young diagram basis for SO(N) (and Sp(N)) half-BPS operators. We
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1 Introduction

The AdS/CFT correspondence [1–3] allows us to use the physics of N = 4 U(N) super

Yang-Mills to find new properties of type IIB string theory on AdS5 × S5. Following the

association of sub-determinant operators with single giant graviton branes in S5 [4], the

construction of the Young diagram basis for the half-BPS sector of U(N) gauge theory [5],

which diagonalizes the CFT 2-point functions, has led to an explicit correspondence be-

tween the half-BPS operators and non-perturbative states in the AdS space. These states
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include general giant gravitons [6–8] as well as LLM geometries arising from the backreac-

tion of giant gravitons on the space-time [9]. The finite N cut-off in the diagrams is dual

to the stringy exclusion principle [10]. Progress towards Young diagram bases for multi-

matrix systems was made in [11–13], motivated by the study of open strings attached to

giant gravitons. The diagonalisation property for two-point functions of Young diagram

bases in multi-matrix systems was proved in [14–18]. The U(N) Young diagram basis was

extended in [19–21] to more general quiver gauge theories.

In a different direction, the dual description of different gauge groups was considered

in [22]. A Z2 orientifold operation, acting as a Z2 orbifold in space-time, takes the S5

factor of AdS5×S5 to RP 5. This operation can produce, depending on topological factors,

a theory with either an orthogonal or symplectic gauge group. Following earlier work

by [23], recently a Young diagram basis of the half-BPS sector was found for these groups

and was used to compute exact correlators for elements of this basis, and for certain

traces [24, 25]. These considerations were extended to the free field quarter-BPS sector

in [26, 27]. These results involve significant extensions of the U(N) story, where wreath

products of symmetric groups play an interesting role. These wreath products are described

in more detail in section 2.

In this paper we revisit the construction and counting of operators in the half and

quarter-BPS sectors of N = 4 SYM with SO(N) and Sp(N) gauge groups. In the orthogo-

nal case, these operators are of two types, which we call mesonic and baryonic. Essentially,

the mesonic operators are constructed by contracting indices of matrices with Kronecker δ

invariants common to SO(N) and U(N) theories (the Sp(N) equivalent is the symplectic

form). The baryonic operators are constructed using ε invariants which are specific to

SO(N) theories (Sp(N) theories also contain such operators, but they are linearly depen-

dent on the mesonic ones). These two types of operators are described in more detail in

section 3. A natural question is: how are the mesonic Young diagram operators of U(N)

theories related to the mesonic Young diagram operators of the SO(N) (or Sp(N) theories)?

From the physical perspective, the relation is given by the orientifold map. So the question

we are asking can be posed as: how does the orientifold projection operation of string

theory act on the Young diagram operators of the U(N) half-BPS sector (and quarter-BPS

sector) to produce the Young diagram operators of the SO(N) theory? Surprisingly, we

find that this question, in the case of the half-BPS sector, has a simple and elegant answer

in terms of a classic concept in the combinatorics of Young diagrams, called plethysms of

Young diagrams.

Consider a Young diagram t with m boxes and a positive integer k. There is a rep-

resentation Vt of U(N) corresponding to t. We take N to be large here, more precisely

N ≥ mk. Now consider the tensor product V ⊗kt . This is a representation of U(N) under

the diagonal action where the group element U ∈ U(N) acts as U⊗U⊗· · ·U . This diagonal

action of U(N) commutes with the Sk permutation group acting on V ⊗kt by permuting the

different factors of the tensor product. So we can decompose V ⊗kt according to irreps of

U(N) × Sk which correspond to pair (R,Λ) where R is a Young diagram with km boxes

and Λ is a Young diagram with k boxes. The multiplicity of (R,Λ), denoted P(t,Λ, R) is

known as a plethysm coefficient. They were defined by D. E. Littlewood [28] and remain
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the subject of important questions in combinatorics [29]. The sum over Λ of P(t,Λ, R) can

be expressed in terms of Littlewood-Richardson coefficients. For the case where k = 2, the

Young diagram Λ can be either the symmetric with a row of length 2, denoted as Λ = [2],

or it can be anti-symmetric, denoted as Λ = [1, 1] for two rows of length 1. The sum

P(t, [2], R) + P(t, [1, 1], R) is a Littlewood-Richardson coefficient: the number of times R

appears in V ⊗2
t when this is decomposed into irreps of the diagonal U(N). Thus P(t, [2], R)

and P(t, [1, 1], R) are plethystic refinements of the Littlewood-Richardson coefficients. It

turns out that the orientifold projection map can be expressed in terms of the plethysm

coefficients P(t, [2], R) and P(t, [1, 1], R). A combinatorial rule for finding these coeffi-

cients was given in [30], refining the Littlewood-Richardson rule by replacing the standard

Littlewood-Richardson tableaux with Yamanouchi domino tableaux. The derivation of this

connection between the orientifold operation of string theory and the plethysm coefficients

is the first main result of this paper.

It has been recognized for a while that connections between the combinatorics of words

and the classification of gauge invariant operators form an important pillar of gauge-string

duality [31–33]. This has seen the application of Polya theory in the study of the thermo-

dynamics of N = 4 SYM theory. Another aspect of word combinatorics, underlying the

structure of counting functions for gauge invariants in general quiver gauge theories, was

highlighted in [20]. These were free monoids of words, which are sets of words obtained by

multiplying a few generating letters in arbitrary order without assuming any commutativ-

ity of the multiplication. Words can be composed by concatenation, giving rise to a monoid

structure. There is no explicit mention of cyclicity in these free monoids, which makes it a

little surprising that these have anything to do with counting gauge invariants, which are

traces of one kind or another. Nevertheless the counting of gauge invariants built from two

matrices X,Y at large N has an interesting connection with the free monoid generated by

two letters x, y. The key to understanding this relation is to think about the organisation

of traces of two letters according to the number of periods. For example Tr(XYXY ) has

2 periods, while Tr(X2Y 2) has only 1. Figure 7 gives a glimpse of the importance of ape-

riodic single traces. They lie at the apex of this diagram. To the right of the diagram,

are multi-traces of aperiodic traces. To the left, are single traces of all periodicities. At

the bottom of the diagram is the full space of gauge-invariant operators made from two

matrices. As we explain in section 5.1, aperiodic multi-traces (appearing in the right box

of the figure) are in one to one correspondence with the free monoid generated by two

letters x, y. This builds on known results concerning Lyndon words [34], which play an

important role in the field of “combinatorics on words”, an area with diverse applications

in mathematics [35, 36]. As we further explain, there are counting functions for each of

these boxes, and there are relations between them, involving the plethystic exponential and

the Möbius map. The plethystic exponential has been emphasised and its applications in

many problems of counting chiral operators in supersymmetric gauge theories have been

developed in [37] and subsequent literature.

The second main result of this paper is to develop the analogous picture for the counting

of SO(N) gauge invariant operators made from two matrices, i.e. the free field quarter-BPS

sector of N = 4 SYM. This involves defining an analogue of the notion of Lyndon words,
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appropriate for mesonic operators in the large N limit of SO(N) groups, which we call

orthogonal Lyndon words. These are defined by a minimally periodic condition which

replaces the aperiodic condition on traces for U(N) theories. Figure 8 shows the SO(N)

analogue: the minimally periodic words are at the apex, and there are maps leading to

the counting of all the multi-traces. As we will see, the minimally periodic words can

have either one or two periods. Consequently, there is a different organization of SO(N)

two-matrix multi-traces which respects the number of periods. This is shown in figure 9.

Alongside demonstrating the structure of the space of two-matrix multi-traces, the di-

agrams in figures 7, 8 and 9 give different forms for the generating function of the quarter-

BPS sector. For the U(N) theory this function is already well known [16], and can also

be written as the sum of squares of Littlewood-Richardson coefficients. The SO(N) gen-

erating function has been given previously [26] as a linear sum of Littlewood-Richardson

coefficients, but to the best of our knowledge, the explicit expression we derive here is a

new mathematical result, of interest to mathematicians [38] as well as physicists.

The paper is organised as follows. Section 2 gives a brief summary of our notation and

conventions. In particular it introduces the wreath product group Sn[S2], which is one of

the key mathematical structures in analysing SO(N) invariants. In section 3 we explicitly

construct a Fourier basis for the quarter-BPS sector. This is done by studying the group

invariances of the different methods of contracting the SO(N) indices and then using Young

diagrams to build operators that align with these invariances. The two SO(N) invariant

tensors δij and εi1...iN lead to two types of operators, which we call mesonic and baryonic.

We also review the quarter-BPS sector of the U(N) theory.

In section 4 we specialise these operators to the half-BPS sector and look in detail at

how Young diagram operators in the U(N) theory behave when projected to the SO(N)

theory. This leads to surprising connections with the combinatorics of domino tableaux.

In sections 5 and 6, we study the vector spaces spanned by U(N) traces (multi-traces

of two arbitrary complex matrices) and SO(N) traces (multi-traces of two anti-symmetric

complex matrices) respectively in the large N limit. In particular we look at how the

structure of these spaces reflects the factorisation of multi-traces into single traces and

the classification of traces by the number of periods/repetitions. We also study how this

structure is exhibited in the respective Hilbert series. This leads to many different counting

formulae, and an associated list of number sequences is given in appendix C.

Having studied the half-BPS projection in section 4, we proceed to the quarter-BPS

case in section 7. Much of the difficulty here is in finding a suitable labelling set for generic

2-matrix multi-traces. For the U(N) theory this set is provided by partitions labelled by

Lyndon words, while for SO(N), the partitions are labelled by orthogonal Lyndon words.

The projection coefficients can be expressed as a sum over these labelling sets, where the

summand is given in terms of restricted characters. Finding a combinatoric interpretation

of the projection coefficients, generalising the domino combinatorics of the half-BPS case,

is an interesting problem for the future.

Correlators of the mesonic operators have been studied before in [26]. In section 8

we complete the quarter-BPS picture by giving the correlator of baryonic operators. We

give two methods for this calculation. The first uses Schur-Weyl duality to connect the
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baryonic calculation with the mesonic result. The second is given in appendix E, and goes

via a nice generalisation of the result (D.6).

It is well known that invariants of the symplectic and orthogonal groups are connected.

In section 9 we repeat all of the above, but with a symplectic gauge group instead of an

orthogonal one. All the results follow along similar lines, and in many cases are entirely

identical.

Finally, section 10 gives a brief overview of questions arising from and future research

directions related to the results of this paper.

2 Notation and conventions

In this paper, we will make extensive use of the symmetric group Sn, made up of permu-

tations of n distinct objects, usually taken to be {1, 2, · · · , n}. Permutations σ ∈ Sn are

maps σ : {1, 2, · · · , n} 7→ {1, 2, · · · , n} which are one to one and invertible. The image of i

is denoted σ(i) and the product is defined by (στ)(i) = τ(σ(i)). The group algebra C(Sn)

is the space of linear combinations
∑

σ∈Sn aσσ where aσ ∈ C. The product on this space is

inherited from the product on the group. We define (−1)σ = sgn(σ) to be the sign of the

permutation σ.

Conjugacy classes in Sn are labelled by partitions p of n, for which we use the standard

notation p ` n. We write partitions in two distinct ways, depending on which is more

suitable for the situation. Firstly, we write p = [λ1, λ2, . . .], where the λi are just the

components of p in (weakly) decreasing order. Secondly, we use p = (1p1 , 2p2 , 3p3 , . . .),

where pi is the multiplicity of i as a component of p. So p1 is the number of λs equal to

1, p2 is the number of λs equal to 2, and similarly for p3, p4 etc. When speaking about

partitions in general (so for example when considering the set of all partitions), we normally

use multiplicities, but when giving specific examples of partitions, we will typically work

with components. To avoid confusion between the two notations, we will use Greek letters

for the components of a partition and Latin ones for the multiplicities. Since we use the

multiplicities more often for named partitions, we will generally give partitions Latin names

(p, q, etc).

As an example of the two notations, the partition p = [5, 3, 3, 2, 1] ` 14 has components

λ1 = 5, . . . , λ5 = 1 and multiplicities p1 = p2 = p5 = 1 and p3 = 2.

We denote the sum of a partition p by

|p| =
∑
i

λi =
∑
i

ipi = n

and the number of components by

l(p) = # of non-zero λi =
∑
i

pi

Since all permutations of cycle type p have the same sign, we define the sign of a partition

to be the sign of any permutation with that cycle type. Explicitly

(−1)p =
∏
i

(−1)λi+1 =
∏
i even

(−1)pi

– 5 –
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Given two partitions p ` n and q ` m, there are two ways of ‘adding’ them together to create

a partition of n+m. Firstly, we can add the components together, which we denote by p+q.

So given q = [µ1, µ2, . . .], we have p+ q = [λ1 + µ1, λ2 + µ2, . . .]. Secondly, we can add the

multiplicities together, which we denote by p∪q. So p∪q = (1p1+q1 , 2p2+q2 , . . .). Intuitively,

+ corresponds to concatenating Young diagram left to right, while ∪ concatenates them

top to bottom. This notation was used in [39].

It will be useful to define the partitions 2p = p+ p, 3p = p+ p+ p and so on. In terms

of components and multiplicities, kp = [kλ1, kλ2, . . .] = (kp1 , (2k)p2 , . . .).

An important quantity for p ` n is given by

zp =
∏
i

ipipi! (2.1)

For σ ∈ Sn of cycle type p, zp gives the size of the centraliser of σ, that is the subgroup

of Sn that commutes with σ. Using the orbit-stabiliser theorem [40] then tells us that the

size of the conjugacy class (number of elements in Sn with cycle type p) is n!
zp

.

The definition (2.1) interacts nicely with the definition of kp

zkp = kl(p)zp (2.2)

As is standard, we define the number of distinct partitions of n to be p(n).

For a partition p ` n, we denote the conjugate (transposed) partition by pc. The

operations ∪ and + are conjugate to each other:

(p+ q)c = pc ∪ qc (2.3)

The irreducible representations (irreps) of Sn are also labelled by partitions. For various

purposes, it is useful to think of these visually in terms of Young diagrams. These are

arrangements of boxes such that the number of boxes in each row corresponds to the com-

ponents of the partition. So for example the partition R = [4, 4, 2] has the Young diagram

R =

We will use the terms Young diagram and partition interchangeably, and we denote them

in the same way, R ` n.

It is well known that Sn representations are real and that the representation space can

be given an inner product so as to make them orthogonal. We denote the dimension of

R by dR.

The matrix representatives of group or group algebra elements are denoted by DR(σ).

These matrices satisfy the orthogonality relations∑
σ∈Sn

DR
ij(σ)DS

kl(σ
−1) =

n!

dR
δRSδilδjk (2.4)
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For each irrep R we can define a projector in C(Sn)

PR =
dR
n!

∑
σ∈Sn

χR(σ)σ (2.5)

These satisfy the multiplication identity

PRPS = δRSPR

They are represented by the identity matrix in the corresponding irrep and the zero matrix

in all other irreps

DS(PR) = δRS

Therefore in any direct sum representation PR projects to the R subspace (or subspaces).

The character of a permutation in an irrep R depends only on its cycle type, so taking

σ ∈ Sn to be of cycle type p we have

χR(p) = χR(σ)

The definition of zp (2.1) allows us to neatly write down the orthogonality relations for

characters. They are∑
p`n

1

zp
χR(p)χS(p) = δRS

∑
R`n

χR(p)χR(q) = zpδpq (2.6)

For a Young diagram R ` n, the irrep Rc is isomorphic to the tensor product of R with

the sign (anti-symmetric) representation, so

χRc(p) = (−1)pχR(p) (2.7)

2.1 The wreath product Sn[S2]

We will have particular use for a certain subgroup of S2n, called Sn[S2]. This can be thought

of as the permutations of n pairs of objects. Each pair can be individually switched, and

the n pairs can be permuted among themselves, so we have |Sn[S2]| = 2nn!. By labelling

the 2n objects as {1, 2}, {3, 4}, . . . , {2n − 1, 2n}, where the brackets denote the pairings,

we see that Sn[S2] is a subgroup of S2n as claimed. It is simple to check that it is the

centraliser of the permutation (1, 2)(3, 4) . . . (2n− 1, 2n). Figure 1 shows the set on which

Sn[S2] acts.

More formally, Sn[S2] is defined as the wreath product of Sn with S2, or equivalently

as the semi-direct product of Sn with (S2)n, where the Sn acts on (S2)n by permutation of

the factors.

As with (2.5), we can define projection operators onto irreps of Sn[S2]. For [r] an irrep

(we use square brackets to denote that this is an irrep of Sn[S2] rather than S2n) we define

P[r] =
d[r]

2nn!

∑
σ∈Sn[S2]

χ[r](σ)σ

– 7 –
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1

2

3

4

5

6

. . .

2n− 1

2n

Figure 1. The set on which Sn[S2] acts. A group element can permute the n pairs, while switching

or not switching each individual pair.

There are two one-dimensional irreps of Sn[S2] that we will use. The trivial (symmetric)

representation takes σ to 1, and the anti-symmetric (sign) representation takes σ to (−1)σ,

which is defined by considering σ ∈ Sn[S2] ≤ S2n. We denote these two representations by

[S]n and [A]n respectively. We will sometimes write these without the subscript when it is

clear which n we are referring to. The projectors of [S]n and [A]n are given by

P[S]n =
1

2nn!

∑
σ∈Sn[S2]

σ P[A]n =
1

2nn!

∑
σ∈Sn[S2]

(−1)σσ (2.8)

2.2 Tensor space

Let V be the (complex) carrier space for the N -dimensional fundamental representation of

U(N) and SO(N). Then V has two distinct inner products corresponding to the two gauge

groups. The U(N) inner product is a hermitian form, and therefore the dual space to V

(with this inner product) is V ∗, which is defined as the conjugate space to V . These two

spaces are non-isomorphic. The SO(N) inner product is a symmetric form, and therefore

the dual space is just V itself. Hence U(N) (or u(N)) matrices U acting on V have indices

U ij while SO(N) (or so(N)) matrices O acting on V can be given indices Oij . In general,

upstairs indices will correspond to objects in V while downstairs indices will correspond to

objects in the conjugate space V ∗.

We will be constructing invariants from multiple copies of two matrices, X and Y .

Depending on context, these will belong to u(N) or so(N). In any particular instance, it

should be clear which is the case from the index structure. For compactness we will use

the notation

(
X⊗nY ⊗m

)I
J

= Xi1
j1
Xi2
j2
. . . X in

jn
Y
in+1

jn+1
Y
in+2

jn+2
. . . Y

in+m

jn+m(
X⊗nY ⊗m

)I
= Xi1i2 . . . X i2n−1i2nY i2n+1i2n+2 . . . Y i2n+2m−1i2n+2m

for u(N) and so(N) respectively.
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Sn acts on V ⊗n by permutation of the factors. Explicitly, on a pure product state

we have

σ (v1 ⊗ v2 ⊗ . . .⊗ vn) = vσ(1) ⊗ vσ(2) ⊗ . . .⊗ vσ(n)

and the action is extended linearly to the whole of V ⊗n. In index notation, it is simple to

check that this corresponds to

σIJ = σi1i2...inj1j2...jn
= δi1jσ(1)

δi2jσ(2)
. . . δinjσ(n)

(2.9)

This definition can then be extended linearly to the symmetric algebra C(Sn). Note that

since we use the convention (στ)(i) = τ(σ(i)), we have σIJτ
J
K = (στ)IK .

For U(N), tracing these permutations with the tensor product of X over V ⊗n provides

a nice way of generating multi-traces of X. Consider σ ∈ Sn with just a single cycle, e.g.

σ = (1, 2, 3, . . . , n). Then

Tr
(
σX⊗n

)
= σIJ

(
X⊗n

)J
I

= Xi1
i2
Xi2
i3
. . . X

in−1

in
Xin
i1

= (Xn)ii = TrXn

By doing this for each cycle, we see that if σ has cycle type p, we have

Tr
(
σX⊗n

)
=
∏
i

(
TrXi

)pi (2.10)

The equivalent statement for SO(N) is

Xi1iσ(1)Xi2iσ(2) . . . X iniσ(n) =
∏
i

(
TrXi

)pi (2.11)

Using (2.9), we can let permutations in S2n act on (X⊗n)
I
. The relation between this

action and the Sn permutations in (2.11) is explained in section 4.2.2.

Note that in (2.10) we have used an unadorned trace to mean traces over two different

spaces. On the left-hand side the trace is over V ⊗n while on the right it is over V . In

this paper we consider traces over various different vector spaces, so wherever there is the

potential for confusion we will add a subscript of the appropriate vector space (e.g. TrR
for a trace over the irrep R). Traces over V and V ⊗n will generally be left unadorned.

Since Sn[S2] is a subgroup of S2n it acts on V ⊗2n. The properties of this action are

easiest to see if we label the indices slightly differently. Consider A ∈ V ⊗2n with the indices

labelled as follows

AI = Ai1,1i1,2i2,1i2,2...in,1in,2

Then the Sn part of Sn[S2] act on the first index (j in ij,k) while the n copies of S2 acts on

the second index (k). Therefore if M is a symmetric (anti-symmetric) matrix, (M⊗n)
I

will

be invariant (anti-invariant) under the action of Sn[S2]. More formally, it will transform

in the [S]n ([A]n) representation of Sn[S2].
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3 Construction and counting of SO(N) quarter-BPS operators

N = 4 super Yang-Mills contains 3 complex (or 6 real) scalar fields in the adjoint of the Lie

algebra of the gauge group. For u(N), the adjoint is the real vector space of anti-Hermitian

matrices, so the complex scalar fields are arbitrary complex matrices. In contrast, so(N)

contains anti-symmetric matrices, which is a linear condition under complexification, and

therefore the orthogonal complex scalar fields are anti-symmetric complex matrices. The

quarter-BPS sector of the theory consists of gauge-invariant combinations of two of these

three fields, while the half-BPS sectors uses just one.

With a U(N) gauge group, both these sectors have been studied extensively for infinite

N and at finite N . A basis for the half-BPS sector was constructed in [5] and used to find

exact correlators of giant gravitons in the AdS dual theory. This basis was labelled by

Young diagrams, and has two important properties that we will look to emulate in the

SO(N) theory. Firstly it is orthogonal under the two-point function, and secondly it allows

a simple description of the finite N cut-off. Going from the infinite N theory to the finite

N corresponds to the vanishing of those operators whose Young diagrams have more than

N rows.

This basis was extended to the quarter-BPS sector, via various methods, in [14–18].

Similarly to the half-BPS basis, these bases are labelled by Young diagrams, are orthogonal

under the two-point function, and have a nice description of the finite N cut-off.

Considering an SO(N) gauge group instead, there is a similar story of bases labelled

by Young diagrams. The half-BPS sector was studied in [24, 25], and the quarter-BPS

in [26, 27]. In this section we construct the same operators as found in these papers. Our

perspective is focused on the description of gauge invariant operators in terms of permu-

tations and their equivalences, where the key features of the construction are described

as consequences of these equivalences. Properties of correlators are developed at a second

stage of the discussion (see section 8). This perspective is close to that of [15, 18] and also,

in the context where SO(N) appears as a flavour group, in [41].

We start by reviewing the approach taken in [24, 25] and how that differs from the

arguments presented here. We then construct our basis, and in the process find the clas-

sification into mesonic and baryonic operators. As a by-product of constructing the basis,

we obtain an expression for the counting of gauge-invariant operators. A quick review of

the U(N) quarter-BPS operators allows us to make some nice connections between the

permutation algebras relevant for the construction of SO(N) and U(N) operators.

3.1 Half-BPS sector

In [24], the starting point was the Wick contractions of the scalar field Xij . The authors

noticed that these could be described by the projector onto the symmetric representation

of Sn[S2]. 〈(
X⊗n

)I (
X⊗n

)
J

〉
= 2nn!

(
P[S]n

)I
J

where Xij is the conjugate matrix (X∗)ij . This allowed them to construct operators

(TR)I = (PR)IJ (X⊗n)
J

labelled by R ` 2n that diagonalised the Wick contractions. Fi-
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nally they contracted the indices to create gauge-invariant operators that (by construction)

diagonalised the inner product.

OR = (TR)i1i2i2i1i3i4i4i3...in−1ininin−1 (3.1)

Although the TR were labelled by any Young diagram R ` 2n, this contraction was found

to be identically zero for any R not constructed from 2×2 blocks (note that this implies n

is even).

The OR (for R constructed from 2×2 blocks) form a basis of the space of gauge-

invariant operators. There are p
(
n
2

)
such R. The generating function for these numbers is

known, and is given by
∞∏
n=1

1

(1− x2n)

To compare with the approach developed here, we rewrite (3.1) in a different form

O = CIβ
I
J

(
X⊗n

)J
(3.2)

where CI , which we call a contractor, is given by

CI = δi1i2δi3i4 . . . δi2n−1i2n

and β ∈ C(S2n) is given by

β = ρPR , ρ = (1, 3)(5, 7) . . . (2n− 3, 2n− 1) (3.3)

The permutation ρ is needed to change the contraction pattern of CI , which contracts

indices in the pairs (1, 2), (3, 4), . . . , (2n− 1, 2n), to the contraction pattern in (3.1), which

has pairs (1, 4), (2, 3), (5, 8), (6, 7), . . . , (2n− 3, 2n), (2n− 2, 2n− 1).

We will approach the problem in the opposite direction to the above, and also generalise

it to the 2-matrix setting. We start with the expression (3.2), but with β ∈ C(S2n)

arbitrary and study the invariance properties of O as a function of β. Since CI is invariant

under Sn[S2] permutations and X⊗n is anti-invariant under Sn[S2] permutations, O remains

unchanged under the transformation

β 7→ (−1)γαβγ−1 , α, γ ∈ Sn[S2] (3.4)

We consider the subspace of C(S2n) defined by those elements which are invariant un-

der (3.4) and derive a basis for this subspace, labelled by the same Young diagrams as seen

in (3.1). The basis of operators then follows by contracting the subspace basis, and the

operators we define differ from (3.1) only by a factor.

3.2 Quarter-BPS set-up

In the quarter-BPS sector we consider operators constructed from 2 complex anti-symmetric

matrices Xij and Y ij . The most general gauge-invariant operator constructed from n copies

of X and m copies of Y is:

O = Ci1i2...i2nj1j2...j2mX
i1i2Xi3i4 . . . X i2n−1i2nY j1j2Y j3j4 . . . Y j2m−1j2m

= CI
(
X⊗nY ⊗m

)I
(3.5)
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β

. . . . . .

. . . . . .

δ δ δ δ δ

X X X Y Y

Figure 2. A diagrammatic representation of the index contraction in a mesonic operator, where

each line represents an index. There are n Xs and m Y s, and β ∈ C(S2n+2m).

where CI is constructed from SO(N) invariant tensors. We have two such tensors to choose

between, namely δij and εi1i2...iN , and their tensor products. Since two εs can be expressed

as a sum of (N -fold tensor products of) δs, there are two linearly independent possibilities

for CI . Either it is made of n+m δs or (if N is even) n+m− N
2 δs and an ε. In analogy

with SU(N) terminology, we call these mesonic and baryonic operators respectively.

Among mesonic (or baryonic) operators, there are many different ways to arrange the

indices on the n+m δs. However, all the different arrangements are related by permutations.

We saw an example of this already in (3.3) where we introduced the permutation ρ to change

the contraction from one index arrangement to another.

A mesonic contractor could be composed of a linear combination of all different in-

dex arrangements. Using permutations we can absorb all of these into a single element

β ∈ C(S2n+2m) and a contractor with the standard index arrangement (defined below). The

exact same process applies for the baryonic operators. We call the contractors with the stan-

dard index arrangement C(δ) and C(ε) respectively. Explicitly, the mesonic operators are:

O(δ)
β = C

(δ)
I βIJ

(
X⊗nY ⊗m

)J
=
(
δi1i2δi3i4 . . . δi2n+2m−1i2n+2m

)
β
i1 ... i2n+2m

j1...j2nk1...k2m

(Xj1j2 . . . Xj2n−1j2n)(Y k1k2 . . . Y k2m−1k2m) (3.6)

Figure 2 shows a diagrammatic representation of this contraction. The baryonic operators

are:

O(ε)
β = C

(ε)
I βIJ

(
X⊗nY ⊗m

)J
=
(
εi1...iN δiN+1iN+2 . . . δi2n+2m−1i2n+2m

)
β
i1 ... i2n+2m

j1...j2nk1...k2m

(Xj1j2 . . . Xj2n−1j2n)(Y k1k2 . . . Y k2m−1k2m) (3.7)

Figure 3 shows this contraction.

The most general gauge-invariant operator is then a sum of (3.6) and (3.7) (clearly

β will in general differ between the two). We now look in more detail at the two types

of operator.
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β

. . .

δ δ

. . . . . .

X X X Y Y

. . .

ε

Figure 3. A diagrammatic representation of the index contraction in a baryonic operator. The

ε vertex has N legs and there are n Xs, m Y s and q
(
= n+m− N

2

)
δs. For convenience, this

diagram shows N = 2n, but in general this does not have to be the case.

3.3 Mesonic operators

3.3.1 Mesonic operators as multi-traces

Examine the definition (3.6) with β = σ ∈ S2n+2m (so we consider a single permutation

rather than a linear combination). We have

Oσ = δi1i2δi3i4 . . . δi2n+2m−1i2n+2mδ
i1
jσ(1)

δi2jσ(2)
. . . δ

i2n+2m

jσ(2n+2m)
Xj1j2 . . . Y j2n+2m−1j2n+2m

By evaluating the δs and then rearranging and renaming indices this becomes

Oσ = ±Xi1iτ(1) . . . X iniτ(n)Y in+1iτ(n+1) . . . Y in+miτ(n+m) (3.8)

where τ ∈ Sn+m is a permutation related to σ in a non-trivial way that we will study

in detail in section 7.3. The ± arises from the anti-symmetry of X and Y , since dur-

ing the rearranging of indices to arrive at this expression, some of the Xs and Y s may

be transposed.

We can see that (3.8) is a multi-trace of X and Y (the one-matrix version is given

in (2.11)). The more general form (3.6) is therefore a linear combination of multi-traces.

Clearly any multi-trace can be generated from (3.8) given the appropriate τ , and we prove

in (7.4) that any τ ∈ Sn+m can be induced from the appropriate σ. Therefore we can

generate all multi-traces of X and Y from the formula (3.6).

Thus the space of mesonic operators is exactly the space of multi-traces. An obvious

basis is therefore just the distinct multi-traces. In the large N limit, this basis is orthogonal

under the two-point function. However at finite N this is no longer the case, and we will

find an exactly orthogonal basis at all N .
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3.3.2 Construction and counting

Since X and Y are anti-symmetric, X⊗n ⊗ Y ⊗m is anti-invariant under Sn[S2] × Sm[S2]

permutations, while the contractor C(δ) is invariant under Sn+m[S2]. Combining this anti-

invariance and invariance means that Oβ is invariant under

β 7→ (−1)γ αβγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (3.9)

We have used γ−1 rather than γ so that this forms an action of the direct product group

Sn+m[S2]× (Sn[S2]× Sm[S2]), but the statement would have been entirely equivalent had

we used just γ instead. For simplicity, we will use γ for the remainder of this section. Using

this invariance and the fact that Oβ is linear in β, we have

Oβ =
1

2(n+m)(n+m)!

∑
α∈Sn+m[S2]

1

2nn!2mm!

∑
γ∈Sn[S2]×Sm[S2]

Osgn(γ)αβγ

= Oβ̄ (3.10)

where

β̄ =
1

22n+2m(n+m)!n!m!

∑
α∈Sn+m[S2]

∑
γ∈Sn[S2]×Sm[S2]

(−1)γαβγ (3.11)

The elements which are invariant under (3.9) form a subspace of C(S2n+2m) that we call

ASO
n,m. Since β̄ is invariant under this transformation, we see that without loss of generality,

mesonic operators are labelled by ASO
n,m rather than the full algebra C(S2n+2m). Note that

we have put SO in the superscript rather than SO(N) because this subspace depends only

on the invariance (3.9) and is therefore independent of N .

It is well known that the group algebra C(Sn) is isomorphic to the algebra of complex

functions on the group (with multiplication defined by convolution). Explicitly, given a

function f : Sn → C, we can define a corresponding algebra element β =
∑

σ∈Sn f(σ)σ.

Conversely, given an algebra element β, the coefficients in its linear expansion give us a

function f .

Under this isomorphism, ASO
n,m maps to a subspace of the full space of functions. This

subspace consists of functions satisfying the equivalent (anti-)invariance to (3.9), given by

f(σ) = (−1)γf(ασγ)

We call this space Fn,m.

To find a basis of gauge-invariant operators we want to find a basis for ASO
n,m. Since

this is isomorphic to Fn,m, we can equivalently find a basis for the function space.

Given an arbitrary function f on the group, we can project it to Fn,m by averaging

over the double coset, just as we did in (3.11). This mapping from an arbitrary function

to an (anti-)invariant one is surjective since if f is already (anti-)invariant, we have f̄ = f .

Thus we can produce a spanning set for Fn,m by averaging a basis of ordinary functions.

An obvious choice for a basis would be the functions {fσ : σ ∈ S2n+2m}, where fσ
evaluates to 1 on σ and 0 on any other permutation. These would lead to the basis of

multi-traces that we already considered at the end of section 3.3.1. Since we want an
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exactly orthogonal basis for the Fn,m, we instead consider the matrix elements of the

irreducible representations

DT
IJ(σ) = 〈I, T |DT (σ)|J, T 〉 (3.12)

where T ` 2n + 2m is a Young diagram, and {|T, I〉}, {|T, J〉} are two bases, not nec-

essarily the same, for the carrier space of T . Clearly I and J must take dT different

values each, but these values may have more structure than just the numbers 1, 2, . . . , dT .

Averaging (3.12) gives

D̄T
IJ(σ) =

1

22n+2m(n+m)!n!m!

∑
α∈Sn+m[S2]

∑
γ∈Sn[S2]×Sm[S2]

(−1)γDT
IJ(ασγ)

= DT
IJ

(
P[S]n+m

σP[A]n⊗[A]m

)
= DT

IJ

(
P[S]n+m

σ
[
P[A]n ⊗ I2m

] [
I2n ⊗ P[A]m

])
where we have used the projectors defined in (2.8).

Now we see that a convenient choice for the bases {|T, I〉} and {|T, J〉} will be ones

that align nicely with the projectors P[S]n+m
and P[A]n⊗[A]m respectively. This is most easily

done by aligning the bases with arbitrary representations of Sn+m[S2] and Sn[S2]×Sm[S2].

By restricting the representation T of S2n+2m to Sn+m[S2], we get the decomposition

T =
⊕
[t]

νT,[t][t]

Where [t] runs over the irreps of Sn+m[S2] and [t] occurs with multiplicity νT,[t]. So the

new basis is ∣∣T, [t], µT,[t], I[t]

〉
Where 1 ≤ µT,[t] ≤ νT,[t] counts which copy of [t] we are in and 1 ≤ I[t] ≤dim[t] indexes the

basis vectors of [t].

For Sn[S2]× Sm[S2], we first decompose the representation T of S2n+2m into a direct

sum of representations of S2n × S2m

T =
⊕
R,S

gR,S;TR⊗ S

where R runs over Young diagrams with 2n boxes, S runs over Young diagrams with 2m

boxes and the gR,S;T are the Littlewood-Richardson coefficients. Then R and S can be

decomposed into Sn[S2] and Sm[S2] representations as we did above with T . Doing this,

we get the basis∣∣T,R, S, λ, [r], µR,[r], I[r], [s], µS,[s], I[s]

〉
=
∣∣R, λ, [r], µR,[r], I[r]

〉
⊗
∣∣S, λ, [s], µS,[s], I[s]

〉
where 1 ≤ λ ≤ gR,S;T indexes which copy of R ⊗ S we are in inside T . More formally,

λ indexes the basis vectors of the multiplicity space for R ⊗ S inside T . Choosing this

basis requires the use of an algebra defined in section 3.5, so we delay reviewing this until

section 3.6.
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Therefore we can construct a spanning set for Fn,m by considering the matrix

elements of

DT
(
P[S]n+m

σP[A]n⊗[A]m

)
with respect to the Sn+m[S2] basis on the left and the Sn[S2]× Sm[S2] basis on the right.

Explicitly, they are

FT,[t],µT,[t],I[t],R,S,λ,[r],µR,[r],I[r],[s],µS,[s],I[s](σ)

=
〈
T, [t], µT,[t], I[t]

∣∣DT
(
P[S]n+m

σP[A]n⊗[A]m

)( ∣∣R, λ, [r], µR,[r], I[r]

〉
⊗
∣∣S, λ, [s], µS,[s], I[s]

〉 )
(3.13)

It is a result from the representation theory of the wreath product [39, chapter VII.2]

that when an irrep R of S2n is restricted to be a representation of Sn[S2], the completely

symmetric representation of Sn[S2] appears in the direct sum decomposition if and only if

R has an even number of boxes in each row, and then it appears with multiplicity 1. By

transposing the Young diagrams, the completely anti-symmetric representation of Sn[S2]

appears in the direct sum decomposition if and only if R has an even number of boxes in

each column, and then it appears with multiplicity 1. Therefore, using the adapted bases,

we can write the representatives of the projectors as

DT
(
P[S]n+m

)
=

{
|T, [S]〉〈T, [S]| if T has rows of even length

0 otherwise

DT
(
P[A]n⊗[A]m

)
=

∑
R`2n
S`2m

R,S have columns
of even length

gR,S;T∑
λ=1

|R, λ, [A]〉〈R, λ, [A]| ⊗ |S, λ, [A]〉〈S, λ, [A]|

Where we have dropped the µT,[S]n+m
and I[S]n+m

indices because the multiplicity and

dimension of [S]n+m are 1 (similarly for [A]n and [A]m). Now we see that the vast majority

of the functions (3.13) vanish. They are only non-zero when

T ` 2n+ 2m has even row lengths

[t] = [S]n+m

R ` 2n and S ` 2m have even column lengths

[r] = [A]n

[s] = [A]m

As we already noticed, the µ multiplicities and I dimension indices have become trivial,

so we can drop those. Since [t], [r] and [s] are predetermined, we can also drop them.

Therefore the non-zero functions are indexed only by T,R, S, λ, with 1 ≤ λ ≤ gR,S;T

FT,R,S,λ(σ) =
dT

(2n+ 2m)!
〈T, [S]|DT (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(3.14)
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where T,R, S satisfy the appropriate conditions. Note we have introduced a normalisation

factor for later convenience.

Since FT,R,S,λ are different matrix elements of different irreps of S2n+2m, they are

linearly independent in the full algebra of functions, and therefore they are linearly inde-

pendent in Fn,m. Hence they form a basis.

There is an ambiguity in (3.14), stemming from the choice of basis vectors. We chose

|T, [S]〉 to be the invariant basis vector, but we could equally well have chosen |T, [S]〉′ =

−|T, [S]〉 (since representations of S2n+2m are real, we cannot have a complex phase) and

followed the exact same process. There is a similar ambiguity in the vectors |R, λ, [A]〉 and

|S, λ, [A]〉. Since we are concerned with the function F , it is only the total sign of the matrix

element that needs to be determined. This can be done by selecting a permutation σ and

setting its matrix element to be positive (or negative). Note that this requires the matrix

element to be non-zero. FT,R,S,λ is then determined on the whole of S2n+2m. Unfortunately

finding a permutation with guaranteed non-zero matrix element for a given T,R, S, λ is not

easy, so for now we leave FT,R,S,λ defined up to a sign.

From the basis (3.14) for Fn,m, we get a basis for ASO
n,m

βT,R,S,λ =
∑

σ∈S2n+2m

F T,R,S,λ(σ)σ

=
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ (3.15)

There is a caveat before we proceed to a basis of gauge-invariant operators. Since N is finite,

an SO(N) vector index can only take a maximum of N distinct values. The construction

of Young diagram representations in V ⊗2n+2m involves anti-symmetrising down each of the

columns. Thus if T has more than N rows (l(T ) > N), the associated operator will vanish.

This extra condition gives a subspace of ASO
n,m (similarly for Fn,m) relevant for constructing

operators at finite N , although the space remains unchanged if N ≥ n+m. Incorporating

the restriction l(T ) ≤ N in addition to those already in place on R,S and T , the basis of

operators is

OT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
C

(δ)
I σIJ

(
X⊗nY ⊗m

)J
(3.16)

In this section we have only proved that these operators span the space of (mesonic)

gauge-invariant observables. In section 8 we prove they are orthogonal under the two point

function, and therefore they are also linearly independent. Thus they do form a basis,

as claimed.

The operators (3.16) were presented in [26]. The normalisation there differs from (3.16)

by a factor of (2n+2m)!
dT (2n)!(2m)! .
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From the labelling in (3.16), we know the number of linearly independent mesonic

operators for n X fields and m Y fields is

NSO(N);δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T )≤N

gR,S;T (3.17)

This counting of operators (and the baryonic counting (3.24)) can be obtained directly

from group integral formulae for the generating function of the quarter-BPS sector. This

calculation is given explicitly in [26].

We now check that (3.16) and (3.17) agree with the half-BPS results presented in [24].

To reduce the quarter-BPS objects to half-BPS ones, we set m = 0.

Since S ` 2m, it must now be the empty Young diagram. Therefore R and T must be

the same, and the Littlewood-Richardson coefficient gR,S;T is just 1, so λ is fixed as well.

Hence the half-BPS operators are labelled only by T , which must be a Young diagram with

even column and row lengths. Thus it must be constructed from 2×2 blocks, just as found

in [24]. Since T ` 2n, this can only occur when n is even.

Define t ` n
2 to be the Young diagram defined by replacing each 2× 2 block in T with

a single box. More formally, we have T = 2t ∪ 2t. Since t is unconstrained as a partition

of n
2 , there are p

(
n
2

)
half-BPS operators when n is even, and none when n is odd.

Explicitly, by setting m = 0 in (3.16), the half-BPS operators are

OT =
dT

(2n)!

∑
σ∈S2n

〈T, [S]|DT (σ)|T, [A]〉C(δ)
I σIJ

(
X⊗n

)J
(3.18)

It can be shown that the operators in [24] differ from this by a factor of

1

dT
〈T, [S]|DT (ρ)|T, [A]〉

where ρ = (1, 3)(5, 7) . . . (2n− 3, 2n− 1) is the same permutation we saw in (3.3).

This matrix element was calculated in [42], and is given by

〈T, [S]|DT (ρ)|T, [A]〉 =
dt

2
n
2 n!

√
(2n)!

dT
(3.19)

This is just a special case of the full result in [42], which gives this matrix element for any

permutation σ ∈ S2n. We need to develop several ideas before we can present this, and it

is given in (4.24).

3.3.3 Resolving sign ambiguity

We noted earlier that (3.14) contained an ambiguity in the choice of basis vectors that

meant the functions FT,R,S,λ (and therefore OT,R,S,λ) were only defined up to a minus sign.

The equality (3.19) allows us to resolve this ambiguity in the half-BPS sector. Since this

matrix element is always non-zero, for any T , we can choose it to be positive (and have

already done so implicitly in (3.19)).
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When plugged into (3.6), the permutation ρ produces the multi-trace
(
TrX2

)n
2 , so

this gives us another way of determining the sign of OT . Rather than decreeing that the

matrix element be positive, we could instead choose the coefficient of
(
TrX2

)n
2 in OT to

be positive. These two methods are entirely equivalent. However, the latter allows us to

more easily express a proposed resolution for the quarter-BPS ambiguity. Note that this

second approach relies on all multi-traces being linearly independent, so that the coefficient

of
(
TrX2

)n
2 is uniquely defined. This is true provided n+m ≤ N .

To resolve the sign ambiguity in the quarter-BPS case, we can use a similar technique.

Simply choose an ordering for the multi-traces of order n,m. Then if the coefficient of the

first multi-trace is non-zero, set it to be positive. If the first coefficient is zero, use the

second, and so on.

In the second appendix of [26], Kemp gives explicit expressions for OT,R,S,λ (up to con-

stants of proportionality) for n = m = 1, n = m = 2 and n = 3,m = 1. He finds that the co-

efficients for TrXY , (TrXY )2 and TrXY TrX2 are non-zero for all the appropriate T,R, S.

Therefore at these low orders, only a single multi-trace is needed, independent of T,R, S, λ

(the λ index is trivial for low orders). In general this may not be possible and instead

two or more traces will be required. Numerical experiments at higher orders are difficult

because of the size of the permutation groups involved, and we leave these to the future.

At even higher orders we can have gR,S;T > 1 (the first case of this occurs at n+m =

11), so the λ index becomes important. At this point the exact method of choosing the

basis for the Littlewood-Richardson multiplicity space becomes relevant, and we would

have to be more specific about how this is done (see section 3.6).

3.4 Baryonic operators

The construction of the baryonic operators follows in exactly the same way as the mesonic

case, just with a different group invariance. The contractor C(ε) involves a single ε and

q = n+m− N
2 δs, so the symmetry transformations on the left are now controlled by the

group SN × Sq[S2], where C(ε) is anti-invariant under the SN factor and invariant under

the Sq[S2] part. The invariances on the right are unchanged compared to the mesonic case,

so β in (3.7) is invariant under

β 7→ (−1)α1(−1)γ(α1α2)βγ−1 (α1, α2) ∈ SN × Sq[S2] , γ ∈ Sn[S2]× Sm[S2] (3.20)

Elements of C(S2n+2m) that are invariant under (3.20) define a subspace that we call

ASO(N);ε
n,m . Note that this space, unlike ASO

n,m, depends on N , and so we include N in the

superscript. As for the mesonic case, we have an equivalent space of invariant functions on

the group which we call FN ;ε
n,m. Running through the same argument, we find a basis for FN ;ε

n,m

FN ;ε
P,T,µ,R,S,λ(σ) =

dP
(2n+ 2m)!

(
〈[1N ], µ| ⊗ 〈T, µ, [S]|

)
DP (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
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With the constraints

P is a Young diagram with 2n+ 2m boxes

T is Young diagram with 2q = 2n+ 2m−N boxes and even row lengths

µ is multiplicity index between 1 and g[1N ],T ;P

R is a Young diagram with 2n boxes and even column lengths

S is a Young diagram with 2m boxes and even column lengths

λ is a multiplicity index between 1 and gR,S;P

where [1N ] is the Young diagram with N rows, each consisting of a single box, i.e. it is

the completely anti-symmetric representation of SN . We see that P is a Young diagram

found in the tensor product [1N ]⊗T , so imposing the constraint that P must have at most

N rows means it must be formed of a single column of N boxes with the Young diagram

T attached to the right of that column. Using the notation defined in section 2, this is

[1N ] + T . For example if N = 6 and

T =

Then we must have

P = [1N ] + T =

Note that the Littlewood-Richardson coefficient for the triple
(
[1N ], T, [1N ] + T

)
is just one,

so in the basis of gauge-invariant operators we can drop both P and µ. For convenience

we also drop the square brackets from [1N ].

As in the mesonic case, this restriction defines a subspace of ASO(N);ε
n,m that contributes

to making operators.

So the bases of the subspaces of FN ;ε
n,m and ASO(N);ε

n,m relevant for operator construc-

tion are

FN ;ε
T,R,S,λ(σ) =

d1N+T

(2n+2m)!

(
〈1N |⊗〈T, [S]|

)
D1N+T (σ)

(
|R,λ, [A]〉⊗|S,λ, [A]〉

)
(3.21)

βN ;ε
T,R,S,λ =

d1N+T

(2n+2m)!

∑
σ∈S2n+2m

(
〈1N |⊗〈T, [S]|

)
D1N+T (σ)

(
|R,λ, [A]〉⊗|S,λ, [A]〉

)
σ (3.22)

and the operators themselves are given by

OεT,R,S,λ =
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

(
〈1N |⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
C

(ε)
I σIJ

(
X⊗nY ⊗m

)J
(3.23)
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From the labelling set of the above, the number of linearly independent baryonic operators

using n X fields and m Y fields is

NSO(N);ε
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths

T`2n+2m−N with even row lengths
l(T )≤N

gR,S;1N+T (3.24)

Setting m = 0, we see that the gauge-invariant operators are labelled by T only, where

T ` 2q = 2n − N has an even number of boxes in each row and column. This confirms

conjectures made in [25]. Similarly to the mesonic case, the operators (3.23) differ from

those defined in [25] by a factor of

1

d1N+T

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (ρ)|1N + T, [A]〉

where ρ = (N + 1, N + 3)(N + 5, N + 7) . . . (2n− 3, 2n− 1). This matrix element is harder

to evaluate than the mesonic equivalent, and we have not managed to find a simpler

expression.

As with the mesonic case, there is a sign ambiguity in (3.21), (3.22) and (3.23) relating

to the choice of basis vectors. It is more difficult to make suggestions for a resolution, as the

baryonic operators are intrinsically a finite N object, and therefore different multi-traces

have linear dependencies among themselves. This means that coefficients of multi-traces

are not necessarily well-defined, and so we cannot base our positivity condition on the

coefficient of a particular multi-trace as we did in section 3.3.3.

3.5 U(N) construction

We briefly review the construction of the quarter-BPS operators in the U(N) gauge theory.

The basis we use was first constructed in [16, 17] following earlier work in [11, 12]. The

notation we use was developed in [43].

As explained in section 2.2, the complex scalar fields are now generic matrices, and

have index structure Xi
j and Y i

j . We start with an expression for the most general gauge-

invariant operator

OU(N) = βJI
(
X⊗nY ⊗m

)I
J

= β
j1j2...jn+m

i1i2...in+m
Xi1
j1
. . . X in

jn
Y
in+1

jn+1
. . . Y

in+m

jn+m
(3.25)

where βIJ is constructed from n+m copies of the only U(N) invariant tensor, δij . Since this

is the only available tensor, βIJ must be formed of N -fold tensor products of δij . In general

it will be a linear combination of the different possible index arrangements. Noting the

definition (2.9), each term in this linear combination is just a permutation acting on the

tensor space, and therefore βIJ is an element of C(Sn+m). Figure 4 gives a diagrammatic

description of the index contraction in (3.25).

Following the example of section 3.3, we look at the group invariances of (3.25). In

this case OU(N) is invariant under the transformation

β 7→ αβα−1 α ∈ Sn × Sm (3.26)
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β

. . . . . .

. . . . . .

X X X X Y Y Y Y

Figure 4. Diagrammatic representation of the U(N) contraction. Each vertical line represents

an index, while the horizontal lines at the top and bottom indicate that we have traced over

these indices.

Elements of C(Sn+m) invariant under (3.26) define a sub-algebra that we call AU
n,m. A

similar process to that in section 3.3 leads us to a basis for AU
n,m, given by

β
U(N)
T,R,S,µ,ν =

dT
(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]
σ

where the labels are T ` n+m, R ` n, S ` m and 1 ≤ µ, ν ≤ gR,S;T and the P TR,S;µ→ν are

defined as operators on the representation space of T that take a vector in the µth copy

of R ⊗ S to the equivalent vector in the νth copy (and act as 0 on all other vectors). We

can write these explicitly by introducing orthonormal bases {|R, I〉}, {|S, J〉} for R and S

(1 ≤ I ≤ dR, 1 ≤ J ≤ dS). Using these, we denote the bases for the µth and νth copies of

R⊗ S by {
|R,µ, I〉 ⊗ |S, µ, J〉

} {
|R, ν, I〉 ⊗ |S, ν, J〉

}
Then we can write

P TR,S;µ→ν =
∑
I,J

(
|R, ν, I〉 ⊗ |S, ν, J〉

)(
〈R,µ, I| ⊗ 〈S, µ, J |

)
It is simple to show that this is independent of the basis used. Note that these satisfy

P TR,S;µ→νP
T
R′,S′;µ′→ν′ = δRR′δSS′δµν′P

T
R,S;µ′→ν

The trace

TrT
[
P TR,S;µ→νD

T (σ)
]

is called the restricted character of σ, and reduces to the standard character if we set one

of n,m = 0.

At finite N (N < n+m), only a subspace of AU
n,m is relevant for constructing operators.

This is spanned by those basis elements with l(T ) ≤ N . Adding this restriction to the
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existing conditions on R,S, T, µ, ν, the corresponding basis for operators is

OU(N)
T,R,S,µ,ν =

dT
(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]
σIJ
(
X⊗nY ⊗m

)J
I

=
dT

(n+m)!

∑
σ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]

Tr
(
σX⊗nY ⊗m

)
(3.27)

From the labelling in (3.27) we can see that the counting of quarter-BPS operators in the

U(N) gauge theory is given by

NU(N)
n,m =

∑
R`n
S`m

T`n+m
l(T )≤N

g2
R,S;T (3.28)

If we set m = 0 to reduce to the half-BPS case, as studied in [5], the operators are labelled

only by a Young diagram R ` n, and are given by

OU(N)
R =

dR
n!

∑
σ∈Sn

χR(σ)σIJ
(
X⊗n

)J
I

= Tr
(
PRX

⊗n) (3.29)

3.6 Basis of Littlewood-Richardson multiplicity space

In sections 3.3 and 3.4 we consider the Littlewood-Richardson decomposition of a Sn+m

representation T into Sn×Sm representations R⊗S. These come with a multiplicity given

by the Littlewood-Richardson coefficients gR,S;T . More formally, we have

VT =
⊕
R`n
S`m

VR ⊗ VS ⊗ V mult
R,S;T

where V mult
R,S;T is the multiplicity space and has dimension gR,S;T .

Now consider the algebra AU
n,m defined in section 3.5. For each pair R ` n, S ` m, we

define a sub-algebra by projecting onto the R⊗ S representation of Sn × Sm. Explicitly,

AU
R,S = PR⊗SAU

n,m = Span
{
β

U(N)
T,R,S,µ,ν : 1 ≤ µ, ν ≤ gR,S;T

}
Since AU

R,S is a sub-algebra of C(Sn+m), it acts on VT . The projection onto R ⊗ S means

it acts only on the R,S subspace and annihilates all others. As it is invariant under (3.26),

and PR⊗S is a central element of C(Sn × Sm), it commutes with Sn and Sm, and therefore

acts proportional to the identity operator on VR ⊗ VS . Therefore AU
R,S acts purely on the

multiplicity space V mult
R,S;T .

One can then use the behaviour of vectors in V mult
R,S;T under AU

R,S to choose an orthogonal

basis. Simply choose a maximal commuting set of operators, and use the eigenbasis. This is

the standard procedure in many representation theory contexts, including the Young basis

for representations of Sn, for which the Jucys-Murphy elements form a maximal commuting

set (see appendix D).

For a more complete description of how one chooses these operators, or the maximal

commuting sub-algebra they span, see [44].
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3.7 SO(N) states (ASO
n,m) as a module over U(N) states (AU

2n,2m)

For the SO(N) and U(N) gauge theories, the gauge-invariant operators arise from sub-

algebras ASO
n,m and AU

n,m of C(S2n+2m) and C(Sn+m), defined by the respective invariance

properties (3.9) and (3.26). Both sub-algebras, inherit multiplication from the full sym-

metric group algebra, and in this section we study this structure. Multi-matrix operators,

and specifically their classification, complexity and correlators, have been discussed from

the perspective of these algebras in [44] (for a related discussion see [45]).

For the SO(N) case, the minus sign in (3.9) means multiplication is identically zero.

The U(N) case is more interesting. Using the definition (3.27), we have

β
U(N)
T,R,S,µ,νβ

U(N)
T ′,R′,S′,µ′,ν′

=
dTdT ′

(n+m)!2

∑
σ,ρ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σ)
]

TrT ′
[
P T

′
R′,S′;µ′→ν′D

T ′(ρ)
]
σρ

=
dTdT ′

(n+m)!2

∑
σ,ρ∈Sn+m

TrT
[
P TR,S;µ→νD

T (σρ−1)
]

TrT ′
[
P T

′
R′,S′;µ′→ν′D

T ′(ρ)
]
σ

=
dT

(n+m)!
δTT ′

∑
σ∈Sn+m

TrT
[
P TR′,S′;µ′→ν′P

T
R,S;µ→νD

T (σ)
]
σ

= δTT ′δRR′δSS′δνµ′β
U(N)
T,R,S,µ,ν′ (3.30)

where in going from the second line to the third we have used the orthogonality of matrix

elements, (2.4).

From (3.30) we see that we can represent the β
U(N)
T,R,S,µ,ν as block diagonal matrices.

There is a block for each trio (T,R, S), of size gR,S;T . Explicitly, the representative of

β
U(N)
T,R,S,µ,ν is the matrix containing only zeroes in each block except the (T,R, S) block, in

which there is a single 1 in the (µ, ν)th position.

A basis for ASO
n,m is given by (3.15). Although they give 0 when multiplied with each

other, we can multiply them on the right by elements of AU
2n,2m

β
SO(N);δ
T,R,S,λ β

U(N)
T ′,R′,S′,µ,ν

=
dTdT ′

(2n+ 2m)!2

∑
σ,ρ∈S2n+2m

〈T, [S]|DT (σ) (|R, λ, [A]〉 ⊗ |S, λ, [A]〉)

TrT ′
[
P T

′
R′,S′;µ→νD

T ′(ρ)
]
σρ

=
dTdT ′

(2n+ 2m)!2

∑
σ,ρ∈S2n+2m

〈T, [S]|DT (σρ−1)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
TrT ′

[
P T

′
R′,S′;µ→νD

T ′(ρ)
]
σ

=
δTT ′dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)P TR′,S′;µ→ν

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
σ

=
δTT ′δRR′δSS′δµλdT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, ν, [A]〉 ⊗ |S, ν, [A]〉

)
σ

= δTT ′δRR′δSS′δµλβ
SO(N);δ
T,R,S,ν (3.31)

– 24 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

So ASO
n,m forms a right-module over AU

2n,2m. Thinking of the U(N) elements as block

diagonal matrices, β
SO(N);δ
T,R,S,λ form row vectors with zero entries in all sections except that

corresponding to (T,R, S), in which it has a single 1 at the λth position.

This gives a nice interpretation of the SO(N) counting (3.17) and its U(N) equiv-

alent (3.28). The U(N) counting contains squares of Littlewood-Richardson coefficients

because it is composed of block diagonal matrices of size gR,S;T , while the SO(N) count-

ing contains Littlewood-Richardson coefficients to the first power because it lies in the

fundamental (of a subset of the blocks) of the U(N) algebra.

Similarly, ASO(N);ε
n,m also forms a module of AU

2n,2m. The algebra elements are given

by (3.22) and they satisfy

β
SO(N);ε
T,R,S,λ β

U(N)
T ′,R′,S′,µ,ν = δ1N+T,T ′δRR′δSS′δλµβ

SO(N);ε
T,R,S,ν

So the baryonic elements lie in the fundamental of a different set of blocks.

4 The orientifold quotient from U(N) to SO(N) in the half-BPS sector:

plethysms, dominoes and branes

In [22], the SO(N) (and Sp(N)) gauge theory was considered as the dual of type IIB string

theory on AdS5 × RP 5. This string theory was obtained from the standard AdS5 × S5

theory by performing an orientifold operation on the S5 factor. Depending on topological

considerations, the orientifold quotient can lead to either a SO(N) or a Sp(N) dual theory.

We now study this quotient in the half-BPS sector from the field theory point of view.

The distinction between the orthogonal and symplectic quotient is much less subtle here,

we either put the scalar field X in the adjoint of so(N) or sp(N). Here we only study the

orthogonal quotient, and leave the symplectic case until section 9.

In [5] a basis of the half-BPS sector of the U(N) theory was discussed, while in [24] an

equivalent was found for the SO(N) theory. When we perform the orientifold quotient on

an arbitrary U(N) state, it becomes a linear combination of the SO(N) basis. This section

focuses on finding the coefficients in this expansion. They have a surprising interpretation

in terms of plethysms of Young diagrams, which in turn are related to the combinatorics

of domino tableaux.

Explicitly, the quotient takes the matrix X, unconstrained in the U(N) theory, and

makes it anti-symmetric.

This section concerns only the mesonic sector of the SO(N) theory, since the U(N)

operators are all multi-traces, and the Z2 quotient takes multi-traces to multi-traces. The

baryonic operators do not arise from the quotient in this way.

4.1 An example: n = 4

As an example of the quotient we look at the case n = 4, so the U(N) diagrams have

4 boxes while the SO(N) diagrams have 8. Using the definitions (3.18) and (3.29), the
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operators are

OU(N)
=

1

4
TrX4 +

1

8

(
TrX2

)2
+

1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

OU(N)
= −3

4
TrX4 −3

8

(
TrX2

)2
+

3

4

(
TrX2

)
(TrX)2 +

3

8
(TrX)4

OU(N)
=

1

2

(
TrX2

)2 −2

3

(
TrX3

)
(TrX) +

1

6
(TrX)4

OU(N)
=

3

4
TrX4 −3

8

(
TrX2

)2 − 3

4

(
TrX2

)
(TrX)2 +

3

8
(TrX)4

OU(N)
= ︸ ︷︷ ︸

Survive the Z2 quotient

− 1

4
TrX4 +

1

8

(
TrX2

)2 ︸ ︷︷ ︸
Annihilated by the Z2 quotient

− 1

4

(
TrX2

)
(TrX)2 +

1

3

(
TrX3

)
(TrX) +

1

24
(TrX)4

OSO(N)
=

4√
5

TrX4 +
2√
5

(
TrX2

)2
OSO(N)

= − 4√
5

TrX4 +
2√
5

(
TrX2

)2
We can see that

OU(N) Z2−→
√

5

16
OSO(N)

(4.1)

OU(N) Z2−→ −3
√

5

16
OSO(N)

(4.2)

OU(N) Z2−→
√

5

8

OSO(N)
+OSO(N)

 (4.3)

OU(N) Z2−→ −3
√

5

16
OSO(N)

(4.4)

OU(N) Z2−→
√

5

16
OSO(N)

(4.5)

In order to perform this projection for larger n, we will need to have an expression for the

operators in terms of multi-traces. Since the operators are defined by sums over Sn and

S2n, this leads us to study how permutations produce multi-traces.

4.2 From permutations to traces

In (3.5) and (3.25) we saw two different ways of contracting the indices of the scalar fields

using the action of permutations on the tensor space. The former is more general: it allows

the construction of arbitrary multi-traces of X,XT , Y and Y T (as well as Pfaffian type

objects if we use the baryonic contractor) and allows us to encode the anti-symmetry of X
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and Y into an invariance of C(S2n+2m). However in the U(N) theory a trace made from

X and XT is not gauge invariant, so we instead use the simpler formulation (3.25), which

only admits multi-traces of X and Y . Clearly all SO(N) multi-traces can be constructed

using either approach. We now investigate how different permutations lead to different

traces, and the relation between the two contraction types, in the simpler case when we

only have X matrices and no Y s. The full two-matrix version is studied in section 7.3.

Once we have relations between permutations and traces, we will use these to turn the

sums over permutations in (3.18) and (3.29) into sums over traces (or more accurately their

labelling sets, which will be partitions). To do this, we will also need to know the size of the

set of permutations that lead to a particular multi-trace. These sets are the orbits of group

actions on Sn and S2n, so we devote much of the coming section to studying these actions.

4.2.1 U(N)

U(N) multi-traces of order n are indexed by partitions of n. For a partition p=[1p1 , 2p2 , . . .],

the corresponding trace is ∏
i

(
TrXi

)pi (4.6)

This is related to permutations in Sn by (2.10). The set of permutations producing (4.6)

is just the conjugacy class labelled by p. To convert sums over permutations into sums

over partitions, we will need the size of the conjugacy class, which can be found using the

orbit-stabiliser theorem. With the conjugation action, the stabiliser of a permutation σ is

just all elements which commute with it.

For a single cycle, the centraliser is just the cyclic group generated by the cycle. We

think of these as a rotation group, since when they conjugate the cycle they cyclically

rotate the elements. For multiple cycles, we have the direct product of these individual

rotation groups, and then additionally a permutation group factor (incorporated via a

semi-direct product) arising from permuting multiple cycles of the same length. Explicitly,

for a permutation of cycle type p the stabiliser group is isomorphic to

×
i

(
Spi n (Zi)pi

)
=×

i

Spi [Zi] (4.7)

where the notation of the right denotes the wreath product of Spi with Zi, as seen in

section 2.1. From the explicit form above, we see the stabiliser has size zp, defined in (2.1).

Applying the orbit-stabiliser theorem, the size of the conjugacy classes is

n!

zp
(4.8)

4.2.2 SO(N)

For SO(N), X is anti-symmetric, so TrX =TrX3 =TrX5 . . . = 0, and hence we only

consider n even. Since the odd single traces vanish, the non-zero multi-traces are indexed

by a partition q ` n
2 . The trace corresponding to q is∏

i

(
TrX2i

)qi (4.9)
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The relation to permutations in S2n is more complicated. Taking m = 0 in (3.9) we see

that for β ∈ C(S2n) the SO(N) contraction is invariant under

β 7→ (−1)γαβγ−1 α, γ ∈ Sn[S2] (4.10)

We wish to consider individual permutations, so we look at just the group theory part of

this action. In particular we are interested in the orbits of σ ∈ S2n under the action

σ 7→ ασγ−1 α, γ ∈ Sn[S2] (4.11)

These orbits are called the double cosets of S2n over Sn[S2] and have been well studied. It

was shown in [39, chapter VII.2] that the double cosets are indexed by partitions of n. For

a partition p ` n, we choose the double coset representative to be any permutation σ ∈ S2n

that fixes {2, 4, 6, . . . , 2n} and acts with cycle type p on the set {1, 3, 5, . . . , 2n−1}. Clearly

σ is a member of the subgroup S
(odd)
n ≤ S2n defined by acting only on {1, 3, 5, . . . , 2n− 1}

(for later convenience, we also define S
(even)
n in the analogous way). When thinking of σ

just as an element of Sn ≡ S(odd)
n , we call it τ . Using this notation, we have

C
(δ)
I σIJ

(
X⊗n

)J
= δi1j1δi2j2 . . . δinjnσ

i1j1i2j2...injn
k1l1k2l2...knln

Xk1l1Xk2l2 . . . Xknln

= δi1j1 . . . δinjnτ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnlnX

k1l1Xk2l2 . . . Xknln

= τ i1i2...ink1k2...kn
Xk1i1Xk2i2 . . . Xknin

= Xk1kτ(1)Xk2kτ(2) . . . Xknkτ(n)

=
∏
i

(
TrXi

)pi (4.12)

where for the last line we recall (2.11). Figure 5 shows a diagrammatic expression of this

equality (excluding the last line). Since odd order single traces vanish, this tells us that

if the partition p has any odd components, the SO(N) contraction of any member of the

corresponding double coset will vanish, as the trace is zero. We are only interested in those

double cosets whose partition p has only even components. From the invariance (4.10) we

know that permutations in the same double coset will produce the same trace up to a sign.

We now give another characterisation, in more group theoretic language, of the double

cosets on which the contraction vanishes. The crucial characteristic is whether we can use

the transformation (4.10) to take σ 7→ −σ. If we can do so, then we have

C
(δ)
I σIJ

(
X⊗n

)J
= −C(δ)

I σIJ
(
X⊗n

)J
= 0 (4.13)

and similarly

〈T, [S]|DT (σ)|T, [A]〉 = −〈T, [S]|DT (σ)|T, [A]〉 = 0 (4.14)

Clearly this occurs if we can find α, γ ∈ Sn[S2] such that ασγ−1 = σ and γ odd. Consider

Stab(σ), the stabiliser group of σ. This is the subgroup of Sn[S2]× Sn[S2] defined by

Stab(σ) =
{

(α, γ) : ασγ−1 = σ
}

Those elements with γ even define a subgroup of Stab(σ)

G(σ) =
{

(α, γ) : ασγ−1 = σ, (−1)γ = 1
}
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σ

. . .

. . .

δ

X X

δ

X

δ

=
τ

. . .

. . .XX X

= τ

. . .

. . .XX X

Figure 5. A diagrammatic version of (4.12). The dotted lines represent the fact that σ fixes all

even numbers. The first row keeps the index positions in X constant, while the second b+reaks our

index conventions and uses the index structure Xi
j = Xij to illustrate that using σ ∈ S(odd)

n has

changed the SO(N) type contraction into the U(N) type contraction (see figures 2 and 4).

Note that since ασγ−1 = σ, α and γ must have the same sign. We could therefore have

defined G(σ) with α even instead of γ. This means the analysis done here, and in particular

the split into even and odd double cosets (defined below), applies to the symplectic case,

where the invariance and anti-invariance have switched sides (see section 9).

There are two possibilities for G(σ). Firstly, we could have G(σ) = Stab(σ). In this

case, (4.13) and (4.14) do not hold and we cannot conclude anything further.

Secondly, suppose G(σ) 6= Stab(σ). Therefore there exists a pair (α̂, γ̂) ∈ Stab(σ) with

γ̂ odd. It is easy to prove that the coset (α̂, γ̂)G(σ) is the set of permutations with an odd

right hand factor

(α̂, γ̂)G(σ) =
{

(α, γ) : ασγ−1 = σ, (−1)γ = −1
}

Since γ must be even or odd, this implies G(σ) ∪ (α̂, γ̂)G(σ) = Stab(σ). So in this case

G(σ) makes up exactly half of Stab(σ).

Suppose we take σ, τ to be in the same double coset. Then we have τ = ασγ−1 for some

α, γ ∈ Sn[S2]. The stabiliser of τ is given by (α, γ)Stab(σ)(α, γ)−1, and therefore G(τ) is

the same size as G(σ). Thus the behaviour of G(σ) (whether it is the whole stabiliser or
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half of it) is a property of the double coset. If a double coset has G(σ) = Stab(σ), we call

it an even double coset, while if G(σ) 6= Stab(σ) we call it an odd double coset.

From (4.13) and (4.14) we know that odd double cosets have vanishing contraction and

matrix element. From (4.12), we also know that a double coset has vanishing contraction

if the corresponding partition has one or more odd component. We now prove that these

two conditions are equivalent.

To do this we study the stabiliser of a coset representative in more detail. Take

σ ∈ S(odd)
n of cycle type p ` n (when discussing the cycle type of σ, we will always ignore

the n 1-cycles arising from the fixed even numbers). This is a representative of the double

coset labelled by p. We want to find (α, γ) ∈ Sn[S2]× Sn[S2] such that

ασγ−1 = σ

Note that this is equivalent to

α = σγσ−1

Therefore rather than searching for the pair (α, γ), we instead look for γ ∈ Sn[S2] such that

σγσ−1 ∈ Sn[S2] (4.15)

It is simple to show that γ satisfying (4.15) form a subgroup of Sn[S2]. This subgroup is

isomorphic to Stab(σ) via the bijection

γ ←→ (σγσ−1, γ)

Technically, Stab(σ) is a subgroup of Sn[S2]× Sn[S2], but for convenience we will refer to

the subgroup of Sn[S2] defined by (4.15) as Stab(σ). It will be clear from context which

we are talking about, and since the two are isomorphic it makes sense to identify them.

Under this bijection, G(σ) maps to the subgroup of Sn[S2] defined by (4.15) with the

additional condition that γ is an even permutation. Again, we will refer to this subgroup

of Sn[S2] as G(σ).

It is clear from (4.15) that any γ ∈ Sn[S2] that commutes with σ will automatically be

in Stab(σ). Consider a permutation τ (odd) ∈ S(odd)
n . There is an equivalent permutation

τ (even) ∈ S
(even)
n which acts exactly the same as τ (odd) but permutes the even numbers

instead of the odd ones. Then the combination τ = τ (odd)τ (even) lies in Sn[S2]. This

embedding of Sn into Sn[S2] (the diagonal subgroup of S
(odd)
n × S(even)

n ) is exactly the Sn
subgroup in the definition of Sn[S2], since it moves the n pairs around without any swaps.

If we take τ (odd) to be a member of the centraliser of σ in S
(odd)
n , then τ will commute with

σ, and hence τ ∈ Stab(σ). Therefore the centraliser of σ in S
(odd)
n , see (4.7), is a subgroup

of Stab(σ). In particular, we have a rotation subgroup corresponding to each cycle. Note

that all τ produced in this way are even permutations, and are therefore in G(σ).

In addition to these rotations, there are reflection-type elements for each cycle. For

example, if we consider σ = (1, 3, 5, . . . , 2n − 1) with just a single cycle, one possible

reflection is γ = (1, 2n)(3, 2n − 2) . . . (2n − 3, 4)(2n − 1, 2). One can check that both γ

and σγσ−1 are in Sn[S2], and therefore γ is a member of Stab(σ). The generator of the
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rotations is τ = (1, 3, 5, . . . , 2n − 1)(2, 4, 6, . . . , 2n), and we see that γτγ−1 = τ−1. This

(along with τn = γ2 = 1) is the defining relation between the generators of the dihedral

group Dn, and therefore Stab(σ) contains a dihedral subgroup.

Note that the sign of γ is (−1)n, so γ ∈ G(σ) if and only if n, the length of the cycle,

is even. In particular, G(σ) 6= Stab(σ) when n is odd.

Recall that Sn[S2] is the centraliser of the permutation π = (1, 2)(3, 4) . . . (2n− 1, 2n),

and therefore γ ∈ Sn[S2] if and only if

γ = πγπ (4.16)

Defining π′ = σ−1πσ = (2, 3)(4, 5) . . . (2n− 2, 2n− 1)(2n, 1), (4.15) is equivalent to

γ = π′γπ′ (4.17)

Therefore γ ∈ Stab(σ) if and only if γ is invariant under conjugation by π and π′.

Now suppose γ ∈ Stab(σ) with γ(1) = i for some 1 ≤ i ≤ 2n. Then (4.16) implies

that γ(2) = (πγπ) (2) = π(i). Plugging this into (4.17) implies γ(3) = π′(π(i)). We can

now repeat to find γ(4) = π(π′(π(i))) and so on. Therefore the value of γ(1) determines

γ completely, and hence Stab(σ) can have at most 2n members. Since we already know it

contains Dn, of size 2n, we must have Stab(σ) = Dn.

If σ has multiple cycles, the above can be repeated for each one. Therefore the stabiliser

contains a direct product of dihedral groups. There are permutation group factors arising

from permuting cycles of the same length, just as in the U(N) case (4.7). Explicitly, for σ

in the double coset labelled by p ` n, we have

Stab(σ) ∼=×
i

(
Spi n (Di)

pi
)

=×
i

Spi [Di] (4.18)

From the construction of the stabiliser group, we see that G(σ) 6= Stab(σ) exactly when

there is one or more cycle of odd length in σ. Since σ is of cycle type p, this corresponds

exactly to p containing one or more odd component, as claimed.

The dihedral group Dk is defined as the symmetry group of a k-gon, made up of k

rotations and k reflections. It therefore has size |Dk| = 2k. Hence the size of the Stab(σ)

is given by ∏
i

(2i)pi(pi)! = z2p

where the partition 2p is defined in section 2. It has components that are double those of

p. The factor of two appears here because the cyclic group in (4.7) has been replaced by a

dihedral group in (4.18).

Applying the orbit-stabiliser theorem, the size of a double coset is

|Sn[S2]× Sn[S2]|
|stabiliser|

=
22n(n!)2

z2p
(4.19)

The even double cosets are of the form p = 2q, where q ` n
2 . In terms of q, the size of an

even double coset is
22n(n!)2

z4q
(4.20)
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The above proof of this result was intended to provide intuition in preparation for the

more complicated two-matrix version in section 7.3. It is a well known result, and a more

rigorous treatment can be found in [39, chapter VII.2].

4.3 Projection coefficients

Let R ` n (n even, otherwise all U(N) operators project to 0) index a U(N) operator, then

we know that

OU(N)
R

Z2−→
∑
T

αTRO
SO(N)
T (4.21)

where T runs over the set of Young diagrams with 2n boxes made from 2×2 blocks. When

defining the coefficients αTR, we take N to be infinite (equivalently, N ≥ n) so that all

the OSO(N)
T are linearly independent. This means the αTR are defined uniquely and are

independent of N .

The single matrix U(N) and SO(N) operators are defined in (3.29) and (3.18) respec-

tively, and both contain sums over permutations. Using the results of the previous section,

we can re-express these as sums over partitions of n and n
2 . In the U(N) case this is simply

summing over conjugacy classes, and is possible as the summand of (3.29) is invariant

under conjugation of σ. Similarly, the summand of (3.18) is invariant under pre- or post-

multiplication of σ by Sn[S2], and so we can reduce the sum to one over the double cosets.

Using (4.8) and (4.20) for the sizes of the conjugacy classes and double cosets respectively

and recalling from section 4.2 how permutations get contracted with tensor products of X

to produce traces, we have

OU(N)
R = dR

∑
p`n

χR(p)

zp

∏
i

(
TrXi

)pi (4.22)

OSO(N)
T =

dT 22n (n!)2

(2n)!

∑
q`n

2

1

z4q
〈T, [S]|DT (σ2q) |T, [A]〉

∏
i

(
TrX2i

)qi (4.23)

where σ2q ∈ S(odd)
n is of cycle type 2q.

The matrix element 〈T, [S]|DT (σ2q) |T, [A]〉 was calculated in [42]. A different repre-

sentative of the double coset was used there, but it is simple to show that this differs by

left multiplication only from an element of the form σ2q, and therefore the matrix element

is the same. Explicitly

〈T, [S]|DT (σ2q) |T, [A]〉 =
2l(q)

2nn!

√
(2n)!

dT
χt(q) (4.24)

where t ` n
2 is the Young diagram defined by taking each 2× 2 block in T and replacing it

with a single square, so that T = 2t ∪ 2t.

Recalling (2.2), we find that

OSO(N)
T = 2nn!

√
dT

(2n)!

∑
q`n

2

1

z2q
χt(q)

∏
i

(
TrX2i

)qi (4.25)
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We can use the character orthogonality relations (2.6) to invert this, and find the multi-

trace in terms of OSO(N)
T . We see that for a partition p ` n

2

∏
i

(
TrX2i

)pi =
2l(p)

2nn!

∑
t`n

2

√
(2n)!

dT
χt(p)OSO(N)

T (4.26)

Now we consider the projection of the U(N) operators to the SO(N) theory. This sets

TrXi = 0 if i odd, so the sum is restricted to only run over partitions with even parts.

Reparameterising (4.22) in terms of partitions of n
2 , we get

OU(N)
R

Z2−→ dR
∑
p`n

2

1

z2p
χR(2p)

∏
i

(
TrX2i

)pi (4.27)

Substituting in (4.26) gives

OU(N)
R

Z2−→ dR
∑
t`n

2

1

2nn!

√
(2n)!

dT

∑
p`n

2

1

zp
χR(2p)χt(p)OSO(N)

T

Then by comparison with (4.21), we find

αTR =
dR

2nn!

√
(2n)!

dT

∑
p`n

2

1

zp
χR(2p)χt(p) (4.28)

The sum in this expression is particularly interesting, so we drop the normalisation factor

to get

ᾱTR =
∑
p`n

2

1

zp
χR (2p)χt(p) (4.29)

which we call reduced projection coefficients. Note that if we normalise O
U(N)
R and O

SO(N)
T

to have identical two-point functions in the leading large N limit (see (4.49) and the m = 0

simplification of (8.5)), the projection coefficients are exactly ᾱTR.

We give some low n examples of ᾱTR in tables 1 and 2, calculated in GAP using the above

formula. The n = 4 coefficients can be read off from (4.1), (4.2), (4.3), (4.4), (4.5). We

see that the reduced projection coefficients are integers, and further numerical exploration

gives many nice relations between the different coefficients. Since they are integers, we

hope to find some combinatoric interpretation that will shed light on these relations. We

find two combinatoric rules involving domino tableaux of shape R and T respectively, given

in (4.37) and (4.38).

Note that one pattern we see in tables 1 and 2 that does not generalise is
∣∣ᾱTR∣∣ ≤ 1.

The first coefficient that breaks this pattern has is found at n = 12, with R = [4, 4, 2, 2]

and t = [3, 2, 1]. For this R, t we have ᾱTR = 2.

We now manipulate (4.29) into a suitable form to relate the coefficients to the combi-

natorics of domino tableaux.
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[3] [2,1] [1,1,1]

[6] 1 0 0

[5,1] -1 0 0

[4,2] 1 1 0

[4,1,1] 0 -1 0

[3,3] -1 -1 0

[3,2,1] 0 0 0

[3,1,1,1] 0 1 0

[2,2,2] 0 1 1

[2,2,1,1] 0 -1 -1

[2,1,1,1,1] 0 0 1

[1,1,1,1,1,1] 0 0 -1

Table 1. Reduced projection coefficients ᾱT
R at n = 6. The leftmost column indexes R ` n while

the top row indexes t ` n
2 . The T in ᾱT

R is constructed from t by replacing each individual square

in the Young diagram with a 2× 2 block.

Using (4.8), we see we can replace the sum over partitions of n
2 by a sum over Sn

2
.

ᾱTR =
1(
n
2

)
!

∑
σ∈Sn

2

χR (στ)χt(σ) (4.30)

Where τ ∈ Sn is defined by

τ =
(

1, 1 +
n

2

)(
2, 2 +

n

2

)
. . .
(n

2
, n
)

(4.31)

and we have embedded Sn
2

in Sn by having it act on {1, 2, . . . , n2 }. It is then easy to check

that if σ ∈ Sn
2

has cycle type p, στ will have cycle type 2p.

The sum over Sn
2

in (4.30) is proportional to the projector onto irrep t of Sn
2
, defined

in (2.5). So we have

ᾱTR =
1

dt
TrR (Ptτ)

From the definition (4.31), we see that τ switches the sets {1, 2, . . . , n2 } and {n2 + 1, n2 + 2,

. . . , n}. So for σ ∈ Sn
2
, conjugating by τ takes σ to the equivalent element of a different

embedding of Sn
2
, namely that defined by acting on {n2 + 1, n2 + 2, . . . , n}. Therefore

conjugating Pt by τ gives the projector onto the t irrep of this different embedding of Sn
2
.

We call this P̂t.

Then using properties of projectors and traces

ᾱTR =
1

dt
TrR (PtPtτ)

=
1

dt
TrR

(
PtP̂tτ

)
=

1

dt
TrR (Pt⊗tτ)
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[4] [3,1] [2,2] [2,1,1] [1,1,1,1]

[8] 1 0 0 0 0

[7,1] -1 0 0 0 0

[6,2] 1 1 0 0 0

[6,1,1] 0 -1 0 0 0

[5,3] -1 -1 0 0 0

[5,2,1] 0 0 0 0 0

[5,1,1,1] 0 1 0 0 0

[4,4] 1 1 1 0 0

[4,3,1] 0 0 -1 0 0

[4,2,2] 0 1 1 1 0

[4,2,1,1] 0 -1 0 -1 0

[4,1,1,1,1] 0 0 0 1 0

[3,3,2] 0 -1 0 -1 0

[3,3,1,1] 0 1 1 1 0

[3,2,2,1] 0 0 -1 0 0

[3,2,1,1,1] 0 0 0 0 0

[3,1,1,1,1,1] 0 0 0 -1 0

[2,2,2,2] 0 0 1 1 1

[2,2,2,1,1] 0 0 0 -1 -1

[2,2,1,1,1,1] 0 0 0 1 1

[2,1,1,1,1,1,1] 0 0 0 0 -1

[1,1,1,1,1,1,1,1] 0 0 0 0 1

Table 2. Reduced projection coefficients ᾱT
R at n = 8. The leftmost column indexes R ` n while

the top row indexes t ` n
2 .The T in ᾱT

R is constructed from t by replacing each individual square in

the Young diagram with a 2× 2 block.

where Pt⊗t = PtP̂t = P̂tPt is the projector onto the irrep t ⊗ t of Sn
2
× Sn

2
. From this

expression we can see that ᾱTR is related to the Littlewood-Richardson coefficient gt,t;R,

since this keeps track of the number of distinct copies of t⊗t contained in R. One immediate

consequence is that if gt,t;R = 0, we must have ᾱTR = 0.

To go further in evaluating ᾱTR, we use Schur-Weyl duality to change the trace from

one over an irrep of Sn to one over an irrep of U(N).

Let V be the vector space for the fundamental of U(N). Then by the standard rules of

tensor product representations, V ⊗n carries a representation of U(N). We can also define

an action of Sn by permutation of the tensor factors. Schur-Weyl duality states that these

two actions commute and that the tensor product space can be decomposed as

V ⊗n =
⊕
R`n

l(R)≤N

V
U(N)
R ⊗ V Sn

R (4.32)
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where V
U(N)
R and V Sn

R are the representation spaces for the irreps of U(N) and Sn labelled

by R. We denote the dimensions of the U(N) representations by d
U(N)
R and keep the

notation dR for the Sn representations. On the right hand side of this identification, U(N)

acts only on the U(N) tensor factor, and similarly for Sn. Note the restriction l(R) ≤ N .

This means the following arguments only apply when l(R) ≤ N . However, since αTR are

independent of N , the conclusion (4.34) holds true for all N .

The structure (4.32) means that traces over V ⊗n can be decomposed into traces over

U(N) and Sn irreps

TrV ⊗n (σU) =
∑
R`n

(
Tr

V
U(N)
R

U
)(

Tr
V SnR

σ
)

σ ∈ Sn, U ∈ U(N)

In direct analogy to the projector (2.5) we can define an operator that projects onto the R

irrep of U(N). Since U(N) is a compact Lie group, the sum is replaced by an integral over

the Haar measure (normalised so that the volume of the group is 1).

P
U(N)
R =

∫
dU χ

U(N)
R

(
U−1

)
U

We can use this to express ᾱTR as a trace over the whole of V ⊗n

ᾱTR =
1

dt
Tr

V SnR
(Pt⊗t τ)

=
1

d
U(N)
R dt

Tr
V

U(N)
R ⊗V SnR

(Pt⊗t τ)

=
1

d
U(N)
R dt

TrV ⊗n
(
P

U(N)
R Pt⊗t τ

)
To reduce this to a trace over a U(N) representation, we now decompose V ⊗n in a way

that will allow us to use Pt⊗t in the same manner that P
U(N)
R was used above.

Trivially, we have V ⊗n = V ⊗
n
2 ⊗ V ⊗

n
2 , so we can do a Schur-Weyl decomposition on

each of the two factors

V ⊗n =

⊕
r`n

2

V U(N)
r ⊗ V

Sn
2

r

⊗
⊕
t`n

2

V
U(N)
t ⊗ V

Sn
2

t


=
⊕
r,t`n

2

V U(N)
r ⊗ V U(N)

t ⊗ V
Sn

2
r ⊗ V

Sn
2

t (4.33)

The permutation τ acts on V ⊗
n
2 ⊗ V ⊗

n
2 by exchanging the two factors

τ (u, v) = (v, u) u, v ∈ V ⊗
n
2

After decomposing the two copies of V ⊗
n
2 , (4.33), we see that for r 6= t, τ exchanges the

spaces labelled by (r, t) and (t, r). However, on the spaces with r = t, τ splits into a tensor

product operator

τ = τU(N) ⊗ τSn
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where τU(N) acts on V
U(N)
t ⊗ V U(N)

t and τSn acts on V
Sn

2
t ⊗ V

Sn
2

t , both by exchanging the

factors. This allows us to go further in evaluating ᾱTR

ᾱTR =
1

d
U(N)
R dt

TrV ⊗n
(
Pt⊗tP

U(N)
R τ

)
=

1

d
U(N)
R dt

Tr
V

U(N)
t ⊗V U(N)

t ⊗V
Sn

2
t ⊗V

Sn
2

t

(
P

U(N)
R τ

)
=

1

d
U(N)
R dt

Tr
V

U(N)
t ⊗V U(N)

t

(
P

U(N)
R τU(N)

)
Tr

V
Sn

2
t ⊗V

Sn
2

t

(
τSn
)

We can split V
Sn

2
t ⊗ V

Sn
2

t into its symmetric part and its anti-symmetric part, on which

τSn acts as 1 and −1 respectively. This gives us

Tr
V
Sn

2
t ⊗V

Sn
2

t

(
τSn
)

= Dim

[
S2

(
V
Sn

2
t

)]
−Dim

[
Λ2

(
V
Sn

2
t

)]
=
dt (dt + 1)

2
− dt (dt − 1)

2

= dt

We can apply the same process to V
U(N)
t ⊗ V U(N)

t , giving

ᾱTR =
1

d
U(N)
R

[
Tr

S2
(
V

U(N)
t

) (PU(N)
R

)
− Tr

Λ2
(
V

U(N)
t

) (PU(N)
R

)]

Each of the two terms is just the multiplicity of the R irrep of U(N) in S2
(
V

U(N)
t

)
and

Λ2
(
V

U(N)
t

)
respectively. So we have

ᾱTR = Mult
[
R,S2

(
V

U(N)
t

)]
−Mult

[
R,Λ2

(
V

U(N)
t

)]
= P(t, [2], R)− P(t, [1, 1], R) (4.34)

where the plethysm coefficients P(t,Λ, R) were defined in the introduction.

The Littlewood-Richardson coefficient is

gt,t;R = Mult
(
R, V

U(N)
t ⊗ V U(N)

t

)
= P(t, [2], R) + P(t, [1, 1], R) (4.35)

so again we see that gt,t;R = 0 is a sufficient condition for αTR = 0. Additionally, this shows

that the parity of gt,t;R is the same as the parity of ᾱTR.

The plethysm coefficients P(t, [2], R) and P(t, [1, 1], R) were the subject of the pa-

per [30]. They present two combinatorial rules, the first gives the difference P(t, [2], R) −
P(t, [1, 1], R) = ᾱTR directly, while the second gives the two plethysm coefficients individu-

ally. Both rules involve Yamanouchi domino tableaux, which we now define.
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4.4 Domino tableaux and combinatorics of plethysms

A domino tiling of shape R ` n (n even) is a tiling of the shape R with 2 × 1 or 1 × 2

rectangles, which are called dominoes. A domino tableau is a tiling where each domino

contains a positive integer, such that the numbers increase weakly along the rows and

strictly down the columns. Note that each domino occupies 2 rows and 1 column (or 2

columns and 1 row), and the integers contained within the dominoes must be correctly

ordered in both rows (columns).

Each column in a domino tableau defines a word by reading the numbers in the column

from bottom to top, where horizontal dominoes, which span two columns, only contribute

to the leftmost column. The column reading of the tableau is then defined by concatenating

these words, starting on the left and ending on the right.

A Yamanouchi word is a word on the alphabet of positive integers such that each suffix

contains at least as many 1s as 2s, at least as many 2s as 3s, and, more generally, at least

as many is as i + 1s for every i. A Yamanouchi domino tableau is a domino tableau for

which the column reading is a Yamanouhci word.

For a given Yamanouchi domino tableau, let the number of integers i in the tableau

be given by λi. We define the evaluation of the tableau to be λ = [λ1, λ2, . . .]. Clearly∑
i λi = n

2 , and the Yamanouchi condition ensures that λ is a partition of n
2 , i.e. the λi are

weakly decreasing.

As an example of the above definitions, figure 6 gives the ten Yamanouchi domino

tableaux of shape [4, 4, 3, 3, 1, 1] along with their evaluations.

A key property of a domino tiling is the number of horizontal or vertical dominoes.

Take R ` n, with components R1, R2, . . . , Rk. Assume that R admits a domino tiling, and

let r be such a tiling. Then define hi(r) to be the number of horizontal dominoes in row i

of r, vi(r) be the number of vertical dominoes with their uppermost box in row i, and h(r)

and v(r) be the total number of horizontal and vertical dominoes. Then we have

R1 = 2h1(r) + v1(r)

R2 = 2h2(r) + v1(r) + v2(r)

R3 = 2h3(r) + v2(r) + v3(r)

...

Rk−1 = 2hk−1(r) + vk−2(r) + vk−1(r)

Rk = 2hk(r) + vk−1(r)

Therefore

(−1)R1+R3+... = (−1)2(h1(r)+h3(r)+...)+v1(r)+v2(r)+...+vk−1(r) = (−1)v(r) (4.36)

Crucially, if a domino tiling of shape R exists, the parity of v(r) (and therefore the parity

of h(r)) depends only on R, and not on how the dominoes are arranged. In light of this, we

define ε2(R), the 2-sign of R, to be (−1)v(r) if R admits a domino tiling, and 0 otherwise.

This allows us to give the first combinatorial rule, proved in [30], for finding ᾱTR.

Defining DR
λ to be the number of Yamanouchi domino tableau of shape R and evaluation
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3

2 2 2

1 1 1 1

[4, 3, 1]

3

2
3

2

1 1 1 1

[4, 2, 2]

4

2
3

2

1 1 1 1

[4, 2, 1, 1]

3

2 2 3

1 1
2

1

[3, 3, 2]

4

2 2 3

1 1
2

1

[3, 3, 1, 1]

3

2
3

4

1 1
2

1

[3, 2, 2, 1]

4

3

2
3

1 1
2

1

[3, 2, 2, 1]

5

2
3

4

1 1
2

1

[3, 2, 1, 1, 1]

4

3
3

4

2

1

2

1

[2, 2, 2, 2]

5

3
3

4

2

1

2

1

[2, 2, 2, 1, 1]

Figure 6. The possible Yamanouchi domino tableaux of shape [4,4,3,3,1,1]. The evaluation of each

tableau is given beneath.

λ, we have

ᾱTR = P(t, [2], R)− P(t, [1, 1], R) = ε2(R)DR
t (4.37)

Note this means the sign of the non-zero ᾱTR depends only on R and not T , since DR
t ≥ 0.

This can be seen in tables 1 and 2, where each row consists only of zeroes and positive

numbers, or zeroes and negative numbers.

For the second rule, consider T ` 2n, constructed from 2×2 blocks. Clearly we can tile

T with dominoes by putting 2 horizontal dominoes in each 2 × 2 block. Therefore in any

domino tableau of T , there must be an even number of horizontal (and vertical) dominoes.

We split the domino tableau of shape T into two classes, based on the number of pairs of

horizontal dominoes. If a tableau has an even number of pairs, we say it has spin 1, while

if it has an odd number of pairs it has spin −1. So for T of this type, we define DT
+,R and

DT
−,R to be the number of Yamanouchi domino tableaux of evaluation R and positive and

negative spin respectively. The second combinatorial rule, which gives the two plethysm

coefficients individually, is

P (t, [2], R) = DT
+,R P (t, [1, 1], R) = DT

−,R (4.38)

This leads to a second expression for (4.34)

ᾱTR = DT
+,R −DT

−,R (4.39)

Note that DT
+,R +DT

−,R = DT
R, so from (4.35) we have

gt,t;R = DT
R
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The two combinatoric methods of finding ᾱTR are independent of each other. For example if

we take R = [3, 2, 1], then there are no domino tableau of shape R, so (4.37) gives 0 trivially.

However if we look at Yamanouchi domino tableau of shape T = [4, 4, 2, 2] (corresponding

to t = [2, 1]) and evaluation R, we find two such tableaux, one contributing to each of the

two plehtysm coefficients. These two tableaux are

3

2

1 1
1

2

2 3

1 1
1

2
(4.40)

We see that the first tableau has spin +1 while the second has spin −1. Using (4.38), we

get P(t, [2], R) = P(t, [1, 1], R) = 1, and therefore ᾱTR = 0 as claimed.

The two tableaux in (4.40) can also be interpreted with the roles of T and R switched.

If we take R = [4, 2, 2] and t = [3, 2, 1] then these tableaux contribute to DR
t , and by (4.37)

we find ᾱTR = 2. This is the lowest n example of a reduced projection coefficient taking a

value with modulus greater than 1.

For most Young diagrams, it is hard to be more explicit that the two rules (4.37)

and (4.38). However for two large families, namely Hook diagrams and ‘staircases + domi-

noes’, we can evaluate these rules in general and provide explicit formulae for the projection

coefficients.

In tables 1 and 2 we gave some low n (n = 6, 8) examples of ᾱTR, calculated using (4.29).

In addition, the n = 4 coefficients can be read off (4.1), (4.2), (4.3), (4.4), (4.5). We have

then checked these tables against the two combinatorial rules (4.37) and (4.38). In all cases

the results match.

4.5 Hook diagrams

For R a hook diagram, we can use the rules (4.37) and (4.38) to find αTR explicitly. Consider

R = c

r

...

. . .

where n = r+c−1. For gt,t;R to be non-zero, t must be contained within R, and therefore it

must also be a hook diagram. By considering possible Littlewood-Richardson tableaux, we
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see that there is only one possible hook t (and corresponding T ) for which gt,t;R 6= 0, namely

t =
⌈
c
2

⌉

⌈
r
2

⌉

...

. . .

T = 2
⌈
c
2

⌉

2
⌈
r
2

⌉

...
...

. . .

. . .

The dimension of a Young diagram representation of Sn is given by the hook length formula.

dR =
n!

HR
(4.41)

where HR is defined to be the product of the hook lengths of each box in R. Therefore we

can rewrite the normalisation in (4.28) as

αTR =
1

2n

√
HT

HR
ᾱTR

It is simple to find HT and HR

HR = n(r − 1)!(c− 1)!

HT = [n (dre2 − 2)! (dce2 − 2)!]2 (n+ 1)(n− 1) (dre2 − 1) (dce2 − 1)

where we have defined dre2 = 2
⌈
r
2

⌉
to be r rounded up to the nearest multiple of 2. Then

splitting into cases for r even and odd (and recalling that c = n + 1 − r, so c and r have

opposite parity)
√
HT

HR
=
√
n2 − 1


√

c
r−1 r even√
r
c−1 r odd

To evaluate ᾱTR we can use either (4.37) and (4.38). Clearly both methods give the same

answer, so we give the tableaux for both as an example of their use. In either case we only

have one tableau to consider.

The form of the tableaux depend on the parity of r. We look at r even first. In this

case the relevant tableaux are

c

r

c+1
2

...

3

2

1 1 . . . 1

c+ 1

r

c

...

3

2

1 1 1 . . . 1
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The tableau on the left has c−1
2 vertical dominoes, so its 2-sign is ε(R) = (−1)

c−1
2 . The

tableau on the right has c − 1 horizontal dominoes, so its spin is (−1)
c−1

2 . So with either

method we find ᾱTR = (−1)
c−1

2 .

For r odd we have

c

r

c
2

...

2

1
1 . . . 1

c

r + 1

c

...

4

3

1 1 1 . . . 1
1

2

The tableau on the left has c
2 vertical dominoes, so its 2-sign is ε(R) = (−1)

c
2 , while the

tableau on the right has c horizontal dominoes, and therefore the spin is (−1)
c
2 . Either

way ᾱTR = (−1)
c
2 .

Putting together the results for r even and odd, we get

αTR =

√
n2 − 1

2n
(−1)b

c
2c

√

c
r−1 r even√
r
c−1 r odd

(4.42)

One can check that this formula agrees with the coefficients in (4.1), (4.2), (4.3), (4.4), (4.5)

and tables 1 and 2.

4.6 Vanishing coefficients

From equation (4.37) we see that there is a family of R for which the projection coefficient

αTR vanishes for all T , or equivalently, a family for which OU(N)
R vanishes under the Z2

projection. These R are characterised by not admitting a domino tiling. We already saw,

at the end of section 4.4, that R = [3, 2, 1] has this property.

As is standard when considering whether a shape can be tiled by dominoes, we colour

R in a chessboard pattern, starting with a white square in the top left. Let ∆R be the

number of white squares in R minus the number of black squares. Then clearly if ∆R 6= 0,

R can’t be tiled by dominoes and all the αTR vanish. We now prove that the converse holds;

if ∆R = 0 then R can be tiled by dominoes.

The key point in the proof is to note that in any Young diagram except staircase

diagrams (those of the form [k, k − 1, k − 2, . . . , 2, 1]), a domino can be removed to obtain

a smaller Young diagram.1 To see this, note that a vertical domino can be removed if two

rows have the same length, while a horizontal domino can be removed if consecutive rows

differ by two or more.

1The authors would like to thank the referee for pointing this out.
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Staircase diagrams can be assembled by adding diagonals of increasing length. Each

diagonal alternates in colour, and it is simple to see that the staircase of height k has

∆ = k+1
2 if k is odd and ∆ = −k

2 if k is even. In particular a Young diagram with ∆ = 0

cannot be a staircase, and therefore it must be possible to remove a domino and obtain a

smaller Young diagram (provided the original is not the empty diagram).

Therefore given any R with ∆R = 0, we can remove a domino to obtain R̄, a Young

diagram with two fewer boxes. Clearly R̄ also has ∆R̄ = 0, and therefore we can repeat this

process, inductively removing another domino each time to obtain a still smaller Young

diagram. Since R has finite size, this process terminates when we reach the empty Young

diagram. Hence there is sequence of domino removals that takes R to the empty Young

diagram, which is exactly a domino tiling of R. We therefore have a complete, simple

characterisation of the R which vanish under the Z2 projection, namely ∆R 6= 0.

A similar process allows us to give a domino description of Young diagrams R with

∆R 6= 0. If ∆R is positive, then R can be constructed by adding dominoes to the staircase

of height k = 2∆− 1. If ∆R is negative, R is obtained by adding dominoes to the staircase

of height k = −2∆.

We can give an another characterisation of the vanishing R using the Murnaghan-

Nakayama rule (for a mathematical description of the rule see [46], and see [47] for a free

fermion description). Consider the character χR (p), where R ` n and p is the partition[
2
n
2

]
. For this p, border strip tableaux are just standard domino tableaux (standard means

that each positive integer from 1 to n
2 appears once in the tableau) of shape R, and the

sign of the border strip tableaux is given by the parity of the number of vertical dominoes.

Since this parity depends only on R (it is just the 2-sign of R), all of the border strip

tableaux contribute to χR (p) with the same sign. Therefore

χR (p) = ε(R) ( # of standard domino tableau of shape R)

Clearly R admits a domino tiling if and only if it admits a standard domino tableau.

Therefore αTR vanishes for all T if and only if χR(p) vanishes.

One can confirm these results in tables 1 and 2 and our numerical experiments match

up to n = 16.

4.7 Conjugation

To examine how αTR behaves under conjugation of its arguments, we return to the for-

mula (4.28). For S an arbitrary Young diagram, we have Sc =sgn⊗S, so dSc = dS
and χSc(p) = (−1)pχS(p). Therefore the summand in (4.28) changes by a factor of

(−1)p(−1)2p. By definition we have (−1)p = (−1)p2+p4+p6+.... The doubled partition

2p has (−1)2p = (−1)p1+p2+p3+.... The product is

(−1)p(−1)2p = (−1)p1+2p2+3p3+... = (−1)|p| = (−1)
n
2

Therefore

αT
c

Rc = (−1)
n
2 αTR (4.43)

By comparing the coefficients in (4.1), (4.2), (4.3), (4.4), (4.5), one can see this relation for

n = 4. Similarly, tables 1 and 2 exhibit the relation at n = 6 and 8 respectively.
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4.8 Semi-classical giant graviton regimes and brane interpretation of domino

algorithm

Half-BPS operators labelled by Young diagrams R with a single column of length compara-

ble to N are dual to single giant gravitons which are S3 expanding in S5. Multiple column

Young diagrams with a number of columns of order 1 and column lengths comparable to

N , are dual to multi-giants having S3 expanding in the AdS5. It is instructive to consider

the domino algorithm for ᾱTR in these regimes and develop a heuristic interpretation in

terms of branes and orientifolds.

A natural first postulate is that the analogous picture for the connection between

branes and rows or columns of the Young diagram works for t in the SO(N) theory. A single

column t, with length comparable to N , is a single giant graviton with a large S3 world-

volume in the directions inside RP 5 of AdS5 × RP 5. Multiple long columns correspond

to multi-giants of this type. A single long row with length of order N corresponds to a

single giant, with large spatial world-volume in AdS5. Multiple long rows correspond to

multiple giants of this type. Note that among the giants which are large in the RP 5 we

also have those with worldvolume RP 3 [48] corresponding to baryonic operators involving

the ε-invariant. Since our focus here is on the projection to mesonic operators, these will

not be part of the discussion that follows here.

One simple qualitative property which can be anticipated from the brane interpretation

of R and t is an inequality constraining the number of rows/columns in t by the number

of rows/columns in R. A brane state which survives the orientifold projection can consist

of pairs of branes in spacetime related as mirror images under the Z2 action. At the other

extreme, we can have a single brane state which is Z2 invariant. Focusing on a regime of

long-rowed Young diagrams corresponding to AdS giants, the number of rows, equivalently

the length of the first column, is the number of giant gravitons. Allowing for the two types

of Z2 invariant states, we expect

c1(R)

2
≤ c1(t) ≤ c1(R) (4.44)

Similar reasoning in the regime of sphere giants suggests

r1(R)

2
≤ r1(t) ≤ r1(R) (4.45)

The last inequality is easy to derive from the domino algorithm. To maximise r1(t), we

need to maximise the number of dominoes in the first row of R. This maximum is achieved

if all the dominoes involved in the first row are vertical (this requires that r2(R) = r1(R)),

and leads to r1(t) = r1(R). The minimum is achieved when all the dominoes in the first

row of R are horizontal. This leads to r1(t) = r1(R)/2. This prove the inequality. By

applying the conjugation property of the projection coefficients, (4.43), we obtain (4.45).

We can also formulate a more detailed brane interpretation of the domino algorithm.

For a single column Young diagram R, a domino tiling exists only if the length of the first

column is even. Single giant gravitons with L units of angular momentum can be usefully

thought of as composites of L quanta. Pairs of quanta are invariant under the orientifold
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action, consistent with the fact that only single column Young diagrams of even length

survive the projection. The projection of these single column Young diagrams R are single

column Young diagrams t, which should therefore also be interpreted as single giants in

the orientifold theory. Similarly the quanta of angular momentum forming a single long

row (AdS giant) are paired by the domino algorithm into Z2 invariant pairs, resulting in a

single giant in the quotient.

Now consider 2-row Young diagrams with row lengths (r1, r2), in the regime where

r1, r2 are comparable to N and their difference is also comparable to N , e.g. (r1, r2) =

(2N,N). Consider a domino tiling with a number s1 < r2 of vertical dominoes, with the

remaining boxes (r1 − s1, r2 − s1) occupied by horizontal dominoes. This results in t =

((r1 +s1)/2, (r2−s2)/2). The vertical dominoes stretch across boxes in the first and second

row, which can be viewed as quanta constituting the two branes described by the Young

diagram R. The horizontal dominoes are constituents of the same brane. A horizontal

domino in row one or two of R contributes a box to the first or second row of t. The

vertical dominoes, even though they span row one and two of R, contribute to the first row

of t. The domino combinatorics thus encodes, in a precise way, a recombination of angular

momentum quanta between the two branes of angular momenta r1, r2 described by R,

which accompanies the orientifold procedure. For multi-row Young diagrams, the domino

algorithm pairs quanta of angular momentum in adjacent rows, equivalently adjacent giant

gravitons in the LLM plane. An analogous discussion holds for multi-column states, where

horizontally tiled dominoes pair quanta from distinct giants and vertically tiled dominoes

pair quanta within a giant worldvolume.

It would be interesting to deduce connections between the brane interpretation of

the orientifold projection coefficients discussed heuristically above, from more general

frameworks for brane dynamics in the presence of orientifolds, as developed for example

in [49, 50]. In the AdS/CFT context, a useful discussion of orientifolds is in [48].

4.9 Inverse projection coefficients and U(N) correlators of SO(N) operator

In section 4.2, we saw that the U(N) half-BPS sector is spanned by multi-traces of the

form (4.6), while the SO(N) half-BPS sector is spanned by multi-traces of the form (4.9).

Therefore one can consider half-BPS sector of the SO(N) theory as a subspace of the

equivalent in the U(N) theory.

This leads to the question, what does the U(N) inner product look like on this sub-

space? Clearly the SO(N) theory has its own inner product (studied in detail in section 8),

but this is a different pairing which will have a different structure. In this paper, we have

made extensive use of permutations as a way to describe bases of gauge-invariant opera-

tors in different theories (U(N), SO(N), Sp(N)). They give us a uniform way of talking

about operators in different gauge theories, namely about how the indices of matrices X,Y

are contracted without being specific about whether these are generic matrices in the Lie

algebra u(N), anti-symmetric matrices in so(N), or matrices in sp(N). These different

theories, via AdS/CFT duality, correspond to different string theory backgrounds. In this

sense, permutations are background independent structures, while the pairings we put on

them are theory-dependent. Here we will see that exploring the U(N) inner product which
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survive the projection to SO(N) has interesting relations to an appropriately defined inverse

of the plethysm coefficients we encountered earlier.

Consider the SO(N) operators (4.25), but where X is an arbitrary complex matrix

rather than anti-symmetric. We can express this as a sum of U(N) operators

OSO(N)
T =

∑
R`n

βRTO
U(N)
R (4.46)

If we consider taking the Z2 quotient of this expression, clearly the left hand side remains

unchanged, while we can evaluate the right hand side using definition (4.21). This leads to

OSO(N)
T =

∑
R`n

∑
T ′

βRT α
T ′
R O

SO(N)
T ′

Since this holds for all T , we have ∑
R`n

βRT α
T ′
R = δT

′
T (4.47)

so we call βRT inverse projection coefficients. Clearly they are not true inverses to αTR, since

R has more degrees of freedom than T , and so summing over T will not lead to δRR′ , as one

would expect for true inverses. For the same reason, the relation (4.47) does not uniquely

define the βRT (note that they are well defined by (4.46)).

To find βRT , we can use the orthogonality relation (2.6) to invert (4.22) to give traces

in terms of Young diagram operators∏
i

(
TrXi

)pi =
∑
R`n

1

dR
χR(p)OU(N)

R

Plugging this into (4.25), we have

OSO(N)
T = 2nn!

√
dT

(2n)!

∑
p`n

2

1

z2p
χt(p)

∑
R`n

1

dR
χR(2p)OU(N)

R

and therefore

βRT =
2nn!

dR

√
dT

(2n)!

∑
p`n

2

1

z2p
χR(2p)χt(p) (4.48)

Notice the similarities between (4.48) and (4.28). The normalisation factor is upside down

and we have an extra factor of 2l(p) inside the sum over partitions (turning zp into z2p).

We have not managed to find a combinatoric interpretation of βRT .

We can now give the U(N) correlators of the SO(N) operators. The correlators of

OU(N)
R were given in [5] (their operators differ in normalisation by a factor of dR) and are

given by 〈
OU(N)
R OU(N)

S

〉
= δRSdRn!d

U(N)
R (4.49)

where d
U(N)
R is the dimension of the U(N) representation labelled by R.
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It is then simple to show that〈
OSO(N)
T OSO(N)

T ′

〉
=
∑
R`n

βRT β
R
T ′dRn!d

U(N)
R

So the SO(N) orthogonal basis operators are not orthogonal under the U(N) inner product,

even at large N .

5 Periodicities of traces and integer-graded word combinatorics in U(N)

quarter-BPS counting

The counting of quarter-BPS operators in the free limit N = 4 SYM for U(N) gauge group

(at large N) was given in terms of an infinite product generating function in [33].

FU(N)(x, y) =

∞∏
k=1

1

1− xk − yk
(5.1)

The factors are obtained from the substitutions (x, y) → (xi, yi) in what we will call the

root function (1−x−y)−1. In [20], an interpretation of the root function in terms of word

counting was given and this interpretation was extended to the generating function for the

counting of gauge-invariants in free quiver gauge theories with U(N) gauge groups, derived

in [19]. This combinatorics of gauge invariants is closely related to paths on graphs, which

have interesting number theoretic aspects studied recently [51].

Consider, for the 2-matrix case, the root function

1

1− x− y

The coefficient of xnym is
(
n+m
n

)
, which counts the number of different ways of ordering

n xs and m ys, or equivalently the number of different words that can be made from n

x̂s and m ŷs, in the space of words generated freely by two generators x̂, ŷ. This space of

words form a monoid, where the product is given by concatenation. In this paper, we will

consider the implications of interpretaing the whole infinite product FU(N)(x, y) in terms of

words. The coefficient of xnym in (1−x2− y2)−1 counts the number of words formed from

n x̂s and m ŷs, but now the letters have weight 2. We denote the x̂s and ŷs with weight

one by x̂1 and ŷ1 and those with weight 2 by x̂2 and ŷ2. Multiplying the two generating

functions then counts words made from all four available letters, where the weight 1 letters

commute with weight 2 letters. So the coefficient of xnym in

1

(1− x− y)(1− x2 − y2)

counts words constructed from n1 x̂1s, m1 ŷ1s, n2 x̂2s and m2 ŷ2s such that n1+2n2 = n and

m1 +2m2 = m and the (x̂1, ŷ1)s always precede the (x̂2, ŷ2)s. Equivalently, we can take the

x̂1, ŷ1 to commute with the x̂2, ŷ2. Repeating this process, we see that FU(N)(x, y) counts

words constructed from x̂s and ŷs of all weights (i.e. x̂k, ŷk with k any positive integer),

where within each level, x̂k and ŷk are non-commutative, but different levels commute with
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each other. We will refer to this kind of word counting problem as an integrally-graded

word combinatorics. A natural problem is to give a bijection between the words in this

counting and the traces of two matrices X,Y in the large N limit. In this section, we

will describe such a bijection. The analogous results for gauge invariants in SO(N) gauge

theory will be developed in section 6.

5.1 Structure of the space of U(N) gauge-invariant functions of two matrices

First we consider the global structure of the set of multi-traces, as well as how this structure

is reflected in (5.1). We find it is simplest to express this in the language of vector spaces,

so we consider T , the space spanned by the U(N) multi-traces.

The generating function (5.1) is then the Hilbert series of T , where T is graded by how

many Xs and Y s appear in each multi-trace. More explicitly, we can split T into a direct

sum of subspaces T(n,m) spanned by those multi-traces composed of n Xs and m Y s. Then

the Hilbert series is defined by

HT (x, y) =
∑
n,m

xnymdimT(n,m)

When studying the structure of T , we will need to keep track of how this interacts with

the grading.

Note that we use the term ‘Hilbert Series’ only with reference to graded vector spaces.

When the vector space also has the structure of an algebra, the Hilbert series imparts

information about the relations between the generating elements of the algebra. While

many of the vector spaces we consider do have an algebra structure, we will not focus on

this aspect.

To describe the factorisation of multi-traces into single traces, we divide the full space

T into subspaces Tr spanned by multi-traces formed from r single traces.

T =

∞⊕
r=0

Tr

Then T0 is the one-dimensional space spanned by 1, thought of as the trivial multi-trace

(the multi-trace containing no single traces). We define TST to be the space spanned by

the single traces, so that T1 is just TST. T2 contains multi-traces with two single traces

in their factorisation. Initially we might think this space is simply TST ⊗ TST, but this is

not quite right. In this space there is a distinction between t1 ⊗ t2 and t2 ⊗ t1, but given

the two traces t1 and t2, clearly there is a unique multi-trace formed from their product.

Instead we have T2 = Sym2 (TST), defined to be the symmetric part of TST⊗TST. Similarly,

Tr = Symr (TST), defined to be the completely symmetric part of (TST)⊗r. So we have

T = C⊕ TST ⊕ Sym2 (TST)⊕ . . .

=

∞⊕
r=0

Symr (TST)

:= Sym (TST)
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Clearly TST is graded by how many Xs and Y s appear in a single trace, and so has its

own Hilbert series, which is the generating function for the counting of single traces. The

counting of single traces is obviously related to the counting of multi-traces. This relation

is made explicit in the plethystic exponential. Given the generating function

f(x, y) =
∑
n,m

An,mx
nym

for the single traces, the generating function for the multi-traces is given by

F (x, y) = PExp(f)(x, y) = exp

( ∞∑
k=1

f(xk, yk)

k

)

=
∏
n,m

1

(1− xnym)An,m
(5.2)

Note that this diverges if f(0, 0) = A0,0 6= 0. This is expected, since a single trace operator

of weight 0 would lead to an infinity of multi-trace operators of weight 0. Clearly there is

no single trace operator containing no matrices, and hence this is not a problem.

For an explanation of why the plethystic exponential takes the single trace counting to

the multi-trace counting, and for more details on the interesting properties of the plethystic

exponential, see [37, 52].

The plethystic exponential can be inverted, up to the arbitrary constant already dis-

cussed, using the plethystic logarithm

f(x, y) = PLog(F )(x, y) =
∞∑
k=1

µ(k)

k
logF (xk, yk) (5.3)

where µ is the Möbius function defined in (A.3). The proof that these two are inverses of

each other comes from the identity (A.4). See appendix A for a more detailed description

of the useful properties of the Möbius function.

So the Hilbert series for T and TST are related by

HT = PExp (HTST
) HTST

= PLog (HT ) (5.4)

Now we look at the structure of TST. A single trace can be written as Tr(. . .)k, where the

interior of the brackets is an aperiodic matrix word, and k is the number of periods. So

for example TrXY has 1 period while TrXYXY =Tr(XY )2 has 2. Clearly the number

of periods and the aperiodic matrix word (which is only defined up to cyclic rotations)

identify the trace. Therefore we have

TST = K ⊗ T (1)
ST

where T
(1)
ST is spanned by the aperiodic single traces and K is spanned by the positive

integers. Consider an element k ⊗w, where w is an aperiodic single trace of weight (n,m)

(i.e. contains n Xs and m Y s), then the weight of k ⊗ w is (kn, km). So the two tensor
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factors interact non-trivially with respect to the weightings. Taking account of this, the

Hilbert series of TST and T
(1)
ST are related by

HTST
(x, y) =

∞∑
k=1

H
T

(1)
ST

(xk, yk) (5.5)

where the kth term in the sum corresponds to the subspace k ⊗ T (1)
ST of TST = K ⊗ T (1)

ST .

Defining the coefficients of the two Hilbert series by

HTST
(x, y) =

∑
n,m

An,mx
nym H

T
(1)
ST

(x, y) =
∑
n,m

an,mx
nym (5.6)

the relation (5.5) becomes

An,m =
∑
d|n,m

an
d
,m
d

(5.7)

where d|n,m means d is a divisor of both n and m.

We can invert this relation using the Möbius inversion formula (A.8) to get

an,m =
∑
d|n,m

µ(d)An
d
,m
d

(5.8)

In terms of the Hilbert series, this becomes

H
T

(1)
ST

(x, y) =
∞∑
k=1

µ(k)HTST
(xk, yk) (5.9)

We call H
T

(1)
ST

the Möbius transform of HTST

H
T

(1)
ST

=M (HTST
) HTST

=M−1
(
H
T

(1)
ST

)
In full, T can be decomposed as

T = Sym
(
K ⊗ T (1)

ST

)
(5.10)

and the corresponding decomposition in the generating function is

HT = PExp
[
M−1

(
H
T

(1)
ST

)]
= PExp

[ ∞∑
k=1

H
T

(1)
ST

(xk, yk)

]

=

∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (5.11)

So far, we have split the multi-traces into single traces, and then decomposed the single

traces by the number of periods. We could have done this the other way round. A multi-

trace can be split into factors, where each factor is a multi-trace with a specified number of
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peroids. We can then decompose these factors into single traces with the specified number

of periods. Doing things in this order gives the structure

T =
[
T (1)

]⊗K
:=
[
Sym

(
T

(1)
ST

)]⊗K
(5.12)

where by V ⊗K , we mean

V ⊗K = V1 ⊗ V2 ⊗ V3 ⊗ . . . =
∞⊗
k=1

Vk

and each Vk is a copy of V but with all weights multiplied by k. The Hilbert series of V ⊗K

is then given by

HV ⊗K (x, y) =

∞∏
k=1

HV (xk, yk)

Just as for the sum (5.5), we can invert this

HV (x, y) =

∞∏
k=1

HV ⊗K (xk, yk)µ(k)

The proof of this inversion relies on the multiplicative version of the Möbius inversion

formula, (A.6). We say HV is the multiplicative Möbius transform of HV ⊗K

HV =Mmult (HV ⊗K ) HV ⊗K =M−1
mult (HV )

So the generating function version of (5.12) is

HT =M−1
mult (HT (1)) =M−1

mult

[
PExp

(
H
T

(1)
ST

)]
HT (x, y) =

∞∏
k=1

HT (1)(xk, yk) =

∞∏
k=1

PExp
[
H
T

(1)
ST

]
(xk, yk) (5.13)

which matches (5.11). So we see that the (not immediately obvious) result

Sym (K ⊗ V ) = (SymV )⊗K

corresponds to the trivial result

PExp

( ∞∑
k=1

HV

)
=
∞∏
k=1

PExp (HV )

Comparing (5.13) with (5.1) we see that HT (1) is what we called the root function. Addi-

tionally, we find the root function is not the most fundamental object. It is the plethystic

exponential of H
T

(1)
ST

, and we should think of this Hilbert series as the fundamental object

of interest. It would be interesting to see whether this additional structure of the root

function has an analogue in the general quiver theory explored in [20].

The structure described above, both for the vector spaces and their associated Hilbert

series, is summarised in figure 7.
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T
(1)
ST

H
T

(1)
ST

Counts aperiodic single traces

TST = K ⊗ T (1)
ST

HTST
=M−1

(
H
T

(1)
ST

)
Counts single traces

T (1) = Sym
(
T

(1)
ST

)
HT (1) = PExp

(
H
T

(1)
ST

)
Counts aperiodic multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
= Sym

(
T

(1)
ST

)⊗K
HT = PExp

[
M−1

(
H
T

(1)
ST

)]
=M−1

mult

[
PExp

(
H
T

(1)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 7. Diagram summarising the structure of T , the space of U(N) multi-traces, and its relation

to T
(1)
ST , the space of U(N) aperiodic single traces.

5.2 Explicit Hilbert series (generating functions)

In the above (and summarised in figure 7), we explained the relations between the Hilbert

series associated to T , TST, T (1) and T
(1)
ST . Since these relations are invertible, we can find

all the Hilbert series from just one of them. We know HT counts U(N) multi-traces, as

does (5.1), so we have

HT (x, y) = FU(N)(x, y) =

∞∏
k=1

1

1− xk − yk
(5.14)

Comparing with (5.13), we see that

HT (1)(x, y) =
1

1− x− y
(5.15)

which counts aperiodic multi-traces. This allows us to interpret the product in (5.14).

The factor (1− x− y)−1 counts multi-traces constructed only from aperiodic single traces.
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Similarly the factor (1−xk− yk)−1 counts multi-traces constructed only from single traces

with k periods.

Applying the plethystic logarithm to (5.14) and (5.15) gives

HTST
(x, y) =

∞∑
l=1

µ(l)

l
log

( ∞∏
k=1

1

1− xkl − ykl

)

= −
∞∑

k,l=1

µ(l)

l
log
(

1− xkl − ykl
)

= −
∞∑
d=1

log
(

1− xd − yd
)∑

l|d

µ(l)

l

= −
∞∑
d=1

φ(d)

d
log
(

1− xd − yd
)

(5.16)

H
T

(1)
ST

(x, y) = −
∞∑
d=1

µ(d)

d
log
(

1− xd − yd
)

(5.17)

where in the first calculation we have changed variables from (k, l : 1 ≤ k, l ≤ ∞) to

(d, l : 1 ≤ l ≤ ∞, l|d) by setting d = kl. We have also used the identity (A.10), and φ(d) is

the Euler totient function defined in (A.9).

These two series count single traces and aperiodic single traces respectively. Later it

will be important to have explicit formulae for the counting of these traces.

Expanding the logarithm in (5.16), we get

HTST
(x, y) =

∞∑
d,k=1

φ(d)

dk
(xd + yd)k =

∞∑
d,k=1

φ(d)

dk

k∑
r=0

(
k

r

)
xdryd(k−r)

We wish to find an expression for the coefficient of xnym, so reparameterise r and k in

terms of n = dr and m = d(k − r)

HTST
(x, y) =

∑
n,m

xnym
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
(5.18)

where the sum excludes n = m = 0. Similarly we find

H
T

(1)
ST

(x, y) =
∑
n,m

xnym
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)

Comparing with (5.6), we see that, for (n,m) 6= (0, 0)

An,m =
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
(5.19)

an,m =
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)
(5.20)
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and A0,0 = a0,0 = 0. The counting interpretation of these sequences is as follows: an,m is

the number of aperiodic single traces that can be constructed from n Xs and m Y s, while

An,m is the number of single traces (with any number of periods) that can be constructed

from n Xs and m Y s. Tables of values for these sequences are given in appendix C. Note

that they are related by (5.7) and (5.8).

5.3 Bijection between words and traces

Since FU(N)(x, y) counts both multi-traces and words, we hope to find some kind of natural

bijection between the two. Before we can describe the bijection, we need to define Lyndon

words. For simplicity, we will use the alphabet {0, 1} in the definition, and then replace

this with {x̂, ŷ} when constructing the bijection.

A Lyndon word is an aperiodic word which is smallest among cyclic rotations of its

letters. For example the word 000101 is aperiodic and is smaller than its cyclic rotations

001010, 010100, 101000, 010001,100010, and is therefore a Lyndon word. The Lyndon

words of length ≤ 5 are

0 , 1

01

001 , 011

0001 , 0011 , 0111

00001 , 00011 , 00101 , 00111 , 01011 , 01111

The usefulness of Lyndon words comes from the Chen-Fox-Lyndon theorem [36, Theorem,

5.1.5] which states that all words can be uniquely factorised as a sequence of ‘non-increasing’

Lyndon words.

Before going further, we must define the ordering on Lyndon words (and indeed all

other words), so that ‘non-increasing’ makes sense. With the binary alphabet, this is

particularly easy. View the strings as being the binary expansions of numbers between 0

and 1. Then the ordering we want (called the lexicographic ordering) is just the same as

the ordinary ordering of numbers between 0 and 1. If two words would form the same

number (for example 01, 010, 0100, etc), then the longer word is larger. This last provision

gives the set of words a total ordering, but is not needed for Lyndon words as they cannot

end in a 0 (with the exception of 0 itself).

We provide some factorisations as an example

100101 = 1 ◦ 00101

110010 = 1 ◦ 1 ◦ 001 ◦ 0

011010 = 011 ◦ 01 ◦ 0

where we have used ◦ as the binary operation in the free monoid on 0 and 1. Note that we

require the restriction to non-increasing sequences of Lyndon words, otherwise for example

we could also factorise the first word as 1 ◦ 001 ◦ 01, or even 1 ◦ 0 ◦ 0 ◦ 1 ◦ 0 ◦ 1.
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We need to consider words constructed not just from x̂1, ŷ1, but also x̂2, ŷ2, x̂3, ŷ3, . . ..

To deal with this we consider the set of Lyndon words for each level. The factorisation

of a multi-level word then consists of the factorisation of its level one component, the

factorisation of its level two component, and so on.

In section 5.1 we saw the structure of the vector space of traces. Clearly for a bijection

to exist between traces and words, the vector space of words must also have the same

structure. Define W to be the space spanned by the multi-level words. As argued in

section 5.1, the factorisation of words into (multi-level) Lyndon words corresponds to

W = Sym (WLW )

where WLW is the space spanned by the Lyndon words of all levels. Clearly a Lyndon word

is identified by its level and an un-levelled Lyndon word. As before, this corresponds to

WLW = K ⊗W (1)
LW

where the weight of a levelled Lyndon word k ⊗ l is given by k times the weight of the

un-levelled Lyndon word l. This is exactly the structure we saw in T .

So to find a bijection between the bases of W and T (i.e. between words and traces),

we only need to find a bijection between W
(1)
LW and T

(1)
ST . Intuitively, what we have done

is matched the two factorisations (words into Lyndon words and multi-traces into single

traces) and the two level structures (periodicities and word level). Therefore we only need

to find a bijection between level 1 Lyndon words and aperiodic single traces to find a

bijection between all multi-level words and all multi-traces.

The final ingredient is now clear. An aperiodic trace is equivalent to an aperiodic

word constructed from X and Y , up to cyclic rotations. In particular we can choose

a representative from the orbit of cyclic rotations as that which is smallest (where the

ordering is as defined earlier with X replaced by 0 and Y by 1). Then the aperiodic word,

by definition, is just a Lyndon word on the two letters X and Y . Replacing those letters

with x̂1 and ŷ1 gives us a bijection.

5.4 SO(2, 1) representation

The structure found in section 5.1 carries a representation of the algebra so(2, 1). Let ek
(k = 1, 2, 3, . . .) be the basis vectors for K. The generators for so(2, 1) are J+, J−, J3. We

define their action on K by

J+ek = k ek+1

J3ek = k ek

J−ek =

{
kek−1 k > 1

0 k = 1

The commutation relations for these are

[J3, J+] = J+

[J3, J−] = −J−
[J+, J−] = −2J3

Which are indeed the commutation relations for so(2, 1).
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Using the standard rules of tensor product representations, we can use this to show

TST = K ⊗ T
(1)
ST carries a representation of so(2, 1), where T

(1)
ST is given the trivial

representation.

Let V be the carrier space for an arbitrary representation of so(2, 1). We note that

Symr (V ) is an invariant subspace of V ⊗r with the standard tensor product representation.

Therefore Symr (V ) is also the carrier space for a representation of so(2, 1). Using this fact,

it is easy to see that T = Sym (TST) carries a representation of so(2, 1).

It will be interesting to investigate whether this so(2, 1) can be interpreted geomet-

rically in terms of spectrum generating algebras (SGAs) in the dual space-time, in the

context of gauge-string duality for the zero coupling quarter BPS sector. SGAs of the form

SO(p, 1) were discussed in the context of AdS/CFT in [53].

6 SO(N) generating functions at infinite N and SO(N) analogues of

Lyndon words

In section 5 we investigated the structure of the space of U(N) gauge-invariant functions

of two matrices in the large N limit. In particular we looked at the level structure cor-

responding to the number of periods in a trace, and the factorisation arising from the

decomposition of multi-traces into their single trace constituents. These two processes

were reflected in the Hilbert series by the inverse Möbius transform M−1, defined in (5.5),

and the plethystic exponential. This structure, for both vector space and Hilbert series,

is summarised in figure 7. Furthermore, we found a bijection between U(N) aperiodic

single traces and Lyndon words, which generalised to a bijection between the full space of

multi-traces and a levelled word monoid.

In this section we find the analogue picture for the SO(N) theory. Let T̃ be the space of

SO(N) gauge-invariant functions of two matrices in the large N limit (note this means there

are no baryonic operators). We find that the structure exhibited in figure 7 also applies to

T̃ , with the aperiodic single traces of the U(N) theory being replaced by minimally periodic

traces in the SO(N). These correspond to a transformed set of Lyndon words that we call

orthogonal Lyndon words. As suggested by the change in name, the minimally periodic

traces can have one or two periods. This leads to an alternate structure of T̃ which respects

the absolute number of periods, rather than the number of repetitions of the minimally

periodic units. The two different structures of T̃ are summarised in figures 8 and 9.

These two structures give relations between the Hilbert series for the relevant vectors

spaces. However, unlike the U(N) case, we do not already have the Hilbert series for T̃ . In

appendix B we present an argument that derives it directly from the formula (3.17). Here

we will give a shorter, more direct approach to finding the function that gives more insight

into its structure. This generating function is of interest to mathematicians [38], and we

believe that our explicit evaluation of it is a new mathematical result.

6.1 Structure of the space of SO(N) multi-traces

As in section 5, we will consider various different vector spaces in addition to T̃ . In general,

those relating to SO(N) traces will have a tilde on top, whereas those primarily to do with
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U(N) objects will not. Some vector spaces we define will be relevant to both, so the divide

is not a sharp one. Similarly to the notation used in section 5.1, we use superscripts in

brackets to refer to a space with a specified number of periods, and subscripts to add extra

information on the type of traces being considered.

To get from the U(N) theory to the SO(N) theory, we replace the generic complex

matrices of the U(N) theory with the anti-symmetric complex matrices of the SO(N)

theory. This is a Z2 quotient on the space of traces.

We examine the effect of the Z2 quotient by looking at an arbitrary U(N) single trace.

It is specified by k, the number of periods, and an aperiodic matrix word W . Since a trace

is invariant under transposition, we have

TrW k = Tr
(
W T

)k
After the quotient, X and Y are related to their transposes, so this relation reduces the

number of independent single traces. The transpose reverses the matrix word - we call the

reversed word W (r) - and introduces a factor of (−1)k l(W ), where l(W ) is the length of W .

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(6.1)

There are now two sets of two possibilities: either W and W (r) are the same (up to cyclic

rotations), or they are not, and k l(W ) is either even or odd.

If W 6= W (r), then (6.1) tells us that two distinct traces that were previously unrelated

are no longer independent. This is true whether k l(W ) is even or odd.

If W = W (r), then (6.1) does depend on whether k l(W ) is even or odd. If it is even,

then (6.1) is trivial, and gives us no new information. If it is odd, then (6.1) implies that

the trace vanishes. So for example, TrX, TrY 3, TrX2Y and Tr(X4Y )5 all vanish.

To encode this structure into the U(N) vector space T we split T
(1)
ST into three distinct

subspaces

T
(1)
ST = T

(1)
ST;inv;even ⊕ T

(1)
ST;inv;odd ⊕ T

(1)
ST;var (6.2)

The first space is spanned by those traces of even length with W = W (r) (‘inv’ stands for

invariant); the second space is spanned by traces of odd length with W = W (r); the third

space is spanned by traces of any length with W 6= W (r) (‘var’ stands for variant). From

previous arguments, T
(1)
ST;inv;even is unchanged under the Z2 quotient. The other two spaces

are more complex.

We saw that for reversal-invariant W of odd length, the determining factor between

whether the trace vanishes or not is whether k is odd or even respectively. If k is even,

T
(1)
ST;inv;odd is unchanged by the quotient, while if k is odd, it vanishes. So we have

K ⊗ T (1)
ST;inv;odd −→Z2

Keven ⊗ T (1)
ST;inv;odd (6.3)

where Keven is the space spanned by the even integers. Clearly this is isomorphic to K,

but we cannot just replace Keven with K as then we lose information about the weight

of a given trace. Formally, they are isomorphic as vector spaces but not as graded vector

– 57 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

spaces. However, we can recover K as a tensor factor of the graded vector space if we

double the weight of the space TST;inv;odd to make up for halving the weight of the Keven

factor. So we have

Keven ⊗ T (1)
ST;inv;odd = K ⊗

(
T

(2)
ST;inv;odd

)
(6.4)

Effectively what we have done here is say rather than consider X (or Y , X2Y , X4Y , . . . ) as

the aperiodic word identifying the trace, instead we consider X2 (or Y 2, (X2Y )2, (X4Y )2,

. . . ) as the ‘aperiodic word’. Since these are the lowest order at which the aperiodic words

appear, we call the doubled versions minimally periodic words.

Finally we consider T
(1)
ST;var. It is spanned by aperiodic matrix words (up to cyclic

rotations) which change under reversal. So we can split the spanning set into orbits (of size

2) under reversal. Then defining T̃
(1)
ST;var to be the space spanned by these orbits, we have

T
(1)
ST;var −→Z2

T̃
(1)
ST;var (6.5)

It will be useful later to note that T
(1)
ST;var is just two copies of T̃

(1)
ST;var

T
(1)
ST;var = T̃

(1)
ST;var ⊕ T̃

(1)
ST;var (6.6)

In full, the Z2 quotient of TST is

TST = K ⊗ T (1)
ST −→Z2

T̃ST = K ⊗ T̃ (min)
ST = K ⊗

(
T

(1)
ST;inv;even ⊕ T

(2)
ST;inv;odd ⊕ T̃

(1)
ST;var

)
(6.7)

where the ‘min’ superscript refers to the words being minimally periodic, as opposed to

aperiodic. Extrapolating to the full space of multi-traces

T = Sym
(
K ⊗ T (1)

ST

)
−→
Z2

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
(6.8)

We see this has the same structure as (5.10), but with a base space T̃
(min)
ST . This allows us

to reproduce figure 7, but with the new base space, shown in figure 8.

Furthermore, we saw in section 5.4 that the structure (5.10) allowed T to carry a

representation of so(2, 1). By the same argument, T̃ will also carry such a representation.

In section 5.3 we saw that Lyndon words on x and y give a good description of the

spanning set for T
(1)
ST . The definition of T̃

(min)
ST (implicit in (6.7)) allows us to give it a

similar description in terms of ‘orthogonal’ Lyndon words.

These orthogonal Lyndon words fall into one of three categories, depending on whether

the corresponding trace comes from the spanning set for T
(1)
ST;inv;even, T

(2)
ST;inv;odd or T̃

(1)
ST;var.

We say the orthogonal Lyndon words are of types 1A,1B or 2 respectively. Type 1A

orthogonal Lyndon words are normal Lyndon words of even length that are invariant under

reversal (up to cyclic rotations). A type 1B word is the square of a normal Lyndon word of

odd length that is invariant under reversal. A type 2 word is the first (lexicographically) of

a pair of normal Lyndon words that transform into each other when reversed. The lowest

order examples of the three types are shown in table 3.
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xy

Type 1A x3y , x2y2 , xy3

x5y, x4y2, x3yxy, x3y3, x2y4, xyxy3, xy5

x2, y2

Type 1B x2yx2y, xy2xy2

x4yx4y, x3y2x3y2, x2yxyx2yxy, x2y3x2y3, xyxy2xyxy2, xy4xy4

x2yxy2

Type 2 x3yxy2, x2yxy3

x3yx2y2, x4yxy2, x3yxy3, x2yxyxy2, x2yxy4, x2y2xy3

Table 3. Lowest order examples of the three distinct types of ‘orthogonal’ Lyndon words.

T̃
(min)
ST

H
T̃

(min)
ST

Counts minimally periodic single traces

T̃ST = K ⊗ T̃ (min)
ST

H
T̃ST

=M−1
(
H
T̃

(min)
ST

)
Counts single traces

T̃ (min) = Sym
(
T̃

(min)
ST

)
H
T̃ (min) = PExp

(
H
T̃

(min)
ST

)
Counts minimally periodic multi-traces

T̃ = Sym
(
K ⊗ T̃ (min)

ST

)
= Sym

(
T̃

(min)
ST

)⊗K
H
T̃

= PExp
[
M−1

(
H
T̃

(min)
ST

)]
=M−1

mult

[
PExp

(
H
T̃

(min)
ST

)]
Counts all multi-traces

Tensor with K

M−1

Sym

PExp

Sym

PExp

Tensor power of K

M−1
mult

Figure 8. Diagram summarising the structure of T̃ , the space of SO(N) multi-traces, and its

relation to T̃
(min)
ST , the space of SO(N) minimally periodic single traces.
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6.2 Periodicity structure

We now briefly return to the description of the U(N) single trace space TST. We had

TST = K ⊗ T (1)
ST =

(
1⊗ T (1)

ST

)
⊕
(

2⊗ T (1)
ST

)
⊕
(

3⊗ T (1)
ST

)
⊕ . . .

We know that T̃ST also has this structure, but there is a difference in interpretation. The

subspace k ⊗ T (1)
ST of TST corresponds to the traces with k periods, whereas the subspace

k ⊗ T̃ (min)
ST of T̃ST does not, instead it contains traces with k repetitions of the minimally

periodic words. Since these words can contain two periods (if they are of type 1B), k⊗T̃ (min)
ST

contains traces with k or 2k periods. We now decompose T̃ST into subspaces corresponding

to the number of periods rather than the number of repetitions. Explicitly, we want to find

Vk such that

T̃ST = (1⊗ V1)⊕ (2⊗ V2)⊕ (3⊗ V3)⊕ . . .

and k ⊗ Vk is the vector space of single traces with k periods.

We saw in (6.3) that for odd length, reversal invariant aperiodic matrix words, only

the even periodicities survive the Z2 projection. For all other aperiodic matrix words,

there is no distinction between even and odd periodicities. Therefore Vk will depend only

on whether k is even or odd. From the discussions in section 6.3, we can write down the

appropriate vector spaces. They are

T̃
(odd)
ST = T

(1)
ST;inv;even ⊕ T̃

(1)
ST;var (6.9)

T̃
(even)
ST = T

(1)
ST;inv ⊕ T̃

(1)
ST;var

= T
(1)
ST;inv;even ⊕ T

(1)
ST;inv;odd ⊕ T̃

(1)
ST;var (6.10)

Note that the odd and even superscripts refer to periodicities, while the odd and even

subscripts refer to the length of the aperiodic trace/matrix word. Splitting K = Kodd ⊕
Keven in the obvious way, we have

T̃ST =
(
Kodd ⊗ T̃

(odd)
ST

)
⊕
(
Keven ⊗ T̃ (even)

ST

)
Now the combination of Kodd and Keven keeps track of the true periodicities of the traces.

Doing a analysis of the Hilbert series associated with these vector spaces, similar to

that done in section 5.1, we arrive at the relations shown in figure 9. The transformations

S and Smult are defined by

S [f, g] (x, y) =
∑
k odd

f(xk, yk) +
∑
k even

g(xk, yk)

Smult [f, g] (x, y) =

( ∏
k odd

f(xk, yk)

)( ∏
k even

g(xk, yk)

)

Note that S, while being similar to M−1, has a distinct disadvantage to it’s analogue,

namely it is not invertible. Given S[f, g], there are multiple f, g which would produce the

same S. This means we cannot instantly find the Hilbert series for T̃
(odd)
ST and T̃

(even)
ST just

from the Hilbert series for T̃ . Instead we need to investigate the structures (6.9) and (6.10).
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T̃
(odd)
ST

H
T̃

(odd)
ST

Counts single traces of a specified periodicity

T̃ST = Kodd ⊗ T̃
(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

H
T̃ST

= S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)
Counts all single traces

T̃ (odd) = Sym
(
T̃

(odd)
ST

)
H
T̃ (odd) = PExp

(
H
T̃

(odd)
ST

)
Counts multi-traces of a specified periodicity

T̃ = Sym
(
Kodd ⊗ T̃

(odd)
ST ⊕Keven ⊗ T̃ (even)

ST

)

H
T̃

= PExp
[
S
(
H
T̃

(odd)
ST

, H
T̃

(even)
ST

)]
= Smult

[
PExp

(
H
T̃

(odd)
ST

)
,PExp

(
H
T̃

(even)
ST

)]
Counts all multi-traces

Tensor with Kodd and

S

Sym

PExp

Sym

PExp

Smult

T̃
(even)
ST

H
T̃

(even)
ST

T̃ (even) = Sym
(
T̃

(even)
ST

)
H
T̃ (even) = PExp

(
H
T̃

(even)
ST

)

Keven respectively

Tensor power of Kodd
and Keven respectively

= Sym
(
T̃

(odd)
ST

)⊗Kodd

⊗ Sym
(
T̃

(even)
ST

)⊗Keven

Figure 9. Diagram summarising the structure of T̃ , the space of SO(N) multi-traces, and its

relation to T̃
(odd)
ST , the space of SO(N) single traces with a specified odd number of periods, and

T̃
(even)
ST , the space of SO(N) single traces with a specified even number of periods.

In order to do this, we introduce names for the coefficients of various Hilbert series.

These are shown in table 4, along with a description of which set of traces these coefficients

count. Tables of values are given in appendix C. Note that since the coefficients listed

all count single traces, they all vanish when n = m = 0. Therefore in the later explicit

expressions for these sequences, we implicitly set the n = m = 0 term to be 0.
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Hilbert series Vector space Counting interpretation

coefficients

bn,m T̃
(min)
ST minimally periodic SO(N) single traces

Bn,m T̃ST all SO(N) single traces

ainv
n,m T

(1)
ST;inv

aperiodic, reversal invariant

U(N) single traces

avar
n,m T̃

(1)
ST;var

aperiodic pairs of U(N) single traces

that reverse into each other

Ainv
n,m TST;inv = K ⊗ T (1)

ST;inv all reversal invariant U(N) single traces

Avar
n,m T̃ST;var = K ⊗ T̃ (1)

ST;var

all pairs of U(N) single traces

that reverse into each other

b
(odd)
n,m T̃

(odd)
ST

SO(N) single traces with a

specified odd number of periods

b
(even)
n,m T̃

(even)
ST

SO(N) single traces with a

specified even number of periods

Table 4. Definition of various single trace counting sequences. Formally, they are defined as the

coefficients of Hilbert series for certain vector spaces. We also give the counting interpretation.

Recall that an,m are the coefficients in the Hilbert series for T
(1)
ST . Then from defini-

tion (6.2), and recalling (6.6), we have

an,m = ainv
n,m + 2avar

n,m

The lower case sequences count aperiodic single traces, while the upper case ones count

single traces of all periodicities. This leads to relations (5.7) and (5.8) between the as and As

(although shown only for the undecorated versions, this is also true for both superscripts).

Using these, we have

An,m = Ainv
n,m + 2Avar

n,m

From the definitions (6.9) and (6.10), we also get

b(even)
n,m = avar

n,m + ainv
n,m

=
1

2

[
an,m + ainv

n,m

]
(6.11)

b(odd)
n,m =

{
avar
n,m + ainv

n,m n+m even

avar
n,m n+m odd

=
1

2

[
an,m + (−1)n+mainv

n,m

]
(6.12)

So to find the desired Hilbert series, we first need to find the generating function for the

ainv
n,m, or equivalently the Ainv

n,m, since they are related by (5.7) and (5.8).

– 62 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

In (6.2) we decomposed T
(1)
ST into subspaces that were invariant or variant under re-

versal. We now do the same to TST.

TST = TST;inv ⊕ TST;var = (TST;inv;odd ⊕ TST;inv;even)⊕ TST;var

where the odd and even parts refer to the length of the entire single trace, not (as before)

the length of the aperiodic matrix word which, along with the number of periods, defined

the single trace. We have

TST;inv = K ⊗ T (1)
ST;inv TST;var = K ⊗ T (1)

ST;var

but the split into odd and even parts does not respect the K tensor product. Instead,

we have

TST;inv;even =
(
K ⊗ T (1)

ST;inv;even

)
⊕
(
Keven ⊗ T (1)

ST;inv;odd

)
(6.13)

TST;inv;odd = Kodd ⊗ T
(1)
ST;inv;odd (6.14)

By repeating the earlier analysis, or by comparing (6.13) and (6.14) with (6.3), (6.4)

and (6.5), we see that under the Z2 quotient, TST;inv;odd disappears, TST;inv;even is un-

changed, and TST;var is ‘halved’ to T̃ST;var as before. So looking at all single traces, rather

than just aperiodic single traces, we have

TST −→
Z2

T̃ST = TST;inv;even ⊕ T̃ST;var (6.15)

The coefficients of H
T̃ST

are Bn,m, and therefore

Bn,m =

{
Avar
n,m +Ainv

n,m n+m even

Avar
n,m n+m odd

=
1

2

[
An,m + (−1)n+mAinv

n,m

]
(6.16)

We previously found a formula for An,m, (5.19), and in the next section we find an expres-

sion for Bn,m, (6.25). Comparing these with (6.16) allows us to find Ainv
n,m. Since ainv

n,m are

related to Ainv
n,m via the Möbius transform, we can then use (6.11) and (6.12) to find the

Hilbert series for T̃
(even)
ST and T̃

(odd)
ST .

6.3 Derivation of Hilbert series

The previous two sections have found the structure of T̃ and how this structure is made

manifest in the Hilbert series H
T̃

. We now find the various related Hilbert series explicitly.

As explained in section 5.2, any of the Hilbert series in figure 8 determines all others,

and from the argument in the previous section, we know finding the Bn,m (or equivalently

H
T̃ST

) will give all the series in figure 9. It is therefore sufficient to find just the series H
T̃ST

.

To find the Bn,m, think about the matrix words contained inside the traces. These

words are constructed from n Xs and m Y s. In the U(N) gauge theory, they are equivalent

up to cyclic rotations only, but in the SO(N) gauge theory, we also have to consider the
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effect of transposition. As seen in (6.1), this reverses the word and also multiplies by a

factor of (−1)M (M = n + m is the total number of matrices in the trace). The cyclic

rotations and the reversal act as DM on the matrix word. Note that we already encountered

a dihedral group in section 4.2.2, where it arose in the stabiliser group of an individual

cycle. Since single cycles correspond to single traces, this is the same dihedral group as

appears here.

The factors of −1 mean this dihedral group action on its own is not sufficient to describe

the effect of the anti-symmetry. Rather than consider DM acting on the set of words, we

consider it acting on the vector space spanned by the set of words. Explicitly, let V be the

vector space spanned by two vectors, eX and eY . Then a basis for V ⊗M is clearly labelled

by the set of words of length M constructed from X and Y . Let σ be the generator of

rotations in DM and τ the reflection/transposition. Then they act as

σ [ei1 ⊗ ei2 ⊗ . . .⊗ eiM ] = ei2 ⊗ ei3 ⊗ . . .⊗ eiM ⊗ ei1
τ [ei1 ⊗ ei2 ⊗ . . .⊗ eiM ] = (−1)MeiM ⊗ . . .⊗ ei2 ⊗ ei1 (6.17)

where ij ∈ {X,Y }. This action of the dihedral group on the space of matrix words was

considered in [54].

To get the vector space spanned by traces of anti-symmetric matrices, we project down

to those states which are invariant under this action of DM . This is done using the projector

P =
1

2M

∑
ρ∈DM

ρ =
1

2M

M∑
i=1

σi(1 + τ)

At this point, we’ve only sorted the words by their length, as opposed to how many Xs

and Y s they contain. To do this more refined sorting, we define an operator Q on V by

QeX = xeX QeY = yeY

Let Q̂ = Q⊗ . . .⊗Q be the equivalent on V ⊗M . Then words constructed from n Xs and m

Y s have eigenvalue xnym under Q̂, so it is the action of P on the eigenspaces of Q̂ that we

are interested in (clearly the number of Xs and Y s in a word is not changed by the action

of DM , and therefore Q̂ and P commute, or equivalently, P acts on each of the eigenspaces

of Q̂ independently of the other eigenspaces). The Bn,m are then the dimension of the

projected eigenspaces. To find these we consider

Tr (Q̂P ) =
∑

n+m=M

xnymBn,m (6.18)

This can be calculated explicitly by noting that if we take ρ ∈ SM to be a permutation on

the factors of V ⊗M (note that if we forget about the factor of (−1)M in (6.17) briefly, our

elements of DM are permutations), we have

Tr (ρQ̂) = ( Tr Q)c1(ρ)( Tr Q2)c2(ρ)( Tr Q3)c3(ρ) . . . .

= (x+ y)c1(ρ)(x2 + y2)c2(ρ)(x3 + y3)c3(ρ) . . .

– 64 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

where ci(ρ) is the number of i-cycles in the cycle decomposition of ρ. We have already seen

the above statement in (2.10). Now restoring the (−1)M and using (6.18), we have

∑
n+m=M

xnymBn,m =
1

2M

[
M∑
i=1

(x+ y)c1(σi)(x2 + y2)c2(σi)(x3 + y3)c3(σi) . . .

+ (−1)M
M∑
i=1

(x+ y)c1(σiτ)(x2 + y2)c2(σiτ)(x3 + y3)c3(σiτ) . . .

]
(6.19)

We can evaluate this using the cycle index polynomial of DM . For a subgroup H of the

symmetric group SM , the cycle index polynomial of H is defined to be

ZH(t1, t2, . . .) =
1

|H|
∑
ρ∈H

t
c1(ρ)
1 t

c2(ρ)
2 t

c3(ρ)
3 . . .

=
∑
p`M

ZHp
∏
i

tpii (6.20)

where ZHp is the number of elements of H with cycle type p divided by |H|.
Were it not for the (−1)M in (6.19), we could just replace ti with xi+yi in ZDM to get

the order M part of the generating function for the Bn,m. As it is, we need to know slightly

more about the structure of the ZDM polynomials. Fortunately they are well known

ZDM (t1, t2, . . .) =
1

2M

∑
d|M

φ(d)t
M
d
d +

1
2 t1t

M−1
2

2 M odd

1
4 t

M−2
2

2

(
t21 + t2

)
M even (and ≥ 2)

where φ(d) is the Euler totient function defined in (A.9). The first part of the polynomials

is just half the cycle index polynomial of the cyclic group CM . This corresponds to the

rotations in DM . The second part is the reflections, where the differences between M

odd and even come from the fact that odd-sided polygons only have one type of line of

symmetry, those going through a vertex and bisecting the opposite side; while even-sided

polygons have two types of lines of symmetry, those going through pairs of opposite vertices

and those bisecting pairs of opposite lines. Now we know which part of ZDM comes from

reflections, we can see that (6.19) is∑
n+m=M

xnymBn,m =
1

2M

∑
d|M

φ(d)(xd+yd)
M
d

+

{
−1

2(x+y)(x2+y2)
M−1

2 M odd
1
4(x2+y2)

M−2
2

[
(x+y)2+(x2+y2)

]
M even

(6.21)

To find Bn,m explicitly we binomially expand the above. The first half of the expression

was already expanded in (5.18), and is just (half) the order M generating function for the

An,m, so we focus on the second half. For M odd, we have

(x+ y)
(
x2 + y2

)M−1
2 =

M−1
2∑

r=0

(M−1
2

r

)(
x2r+1yM−2r−1 + x2ryM−2r

)
(6.22)
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and

(x2+xy+y2)
(
x2+y2

)M−2
2 =

M−2
2∑

r=0

(M−2
2

r

)(
x2r+2yM−2r−2+x2r+1yM−2r−1+x2ryM−2r

)
(6.23)

for M even.

Consider the coefficient of xnym if both n and m are even. Two of the three terms

in (6.23) can contribute. Provided n,m ≥ 2, we get contributions from r = n
2 ,

n
2 − 1. This

leads to the coefficient (n+m
2 − 1
n
2

)
+

(n+m
2 − 1
n
2 − 1

)
=

(n
2 + m

2
n
2

)
(6.24)

Checking the cases where n = 0 or m = 0, we get 1 as a coefficient, which agrees with (6.24).

Performing similar analyses for the other possible parity combinations leads to the

coefficients (n
2 + m−1

2
n
2

)
n even,m odd(n−1

2 + m
2

n−1
2

)
n odd,m even(n−1

2 + m−1
2

n−1
2

)
n odd,m odd

All four cases can be summarised by the coefficient(
bn2 c+ bm2 c
bn2 c

)
Taking account of the signs and factors of a half in (6.21), we have

Bn,m =
1

2
An,m +

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
=

1

2n+ 2m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
+

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
(6.25)

To find the full generating function for Bn,m, we sum (6.21) from M = 1 to∞. We already

know how to sum the first half of this expression from (5.16) (it is just the generating

function for An,m), and the second half is simple to evaluate directly. Explicitly, we get

fSO(N)(x,y) =H
T̃ST

(x,y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1−xd−yd)+

x2+xy+y2−x−y
1−x2−y2

]
(6.26)

We can now take the plethystic exponential, given in (5.2), to get the multi-trace generating

function

FSO(N)(x, y) = H
T̃

(x, y) =

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(6.27)
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where to evaluate the infinite products/sums we have used a change of variables similar

to those in (5.17) and (5.18) as well as the identity (A.9). After completion of this paper

we became aware of [55], which gives a similar counting formula in the context of SO(N)

superconformal indices.

As a sanity check, we can set y = 0 and check that we recover the generating function

for single matrix operators found in [25]. Using (5.2), this gives us

FSO(N)(x, 0) =
∞∏
n=1

1

(1− xn)Bn,0
(6.28)

Setting m = 0 in (6.25) and using (A.9) we get

Bn,0 =
1

2
(1 + (−1)n) =

{
1 n even

0 n odd

Plugging this into (6.28) gives us

FSO(N)(x, 0) =
∞∏
n=1

1

1− x2n

which matches the result found in [25].

We can now use the relations given in figure 8 to find H
T̃ (min) and H

T̃
(min)
ST

. Taking the

Möbius transform (see (5.9)) of (6.26) gives

H
T̃

(min)
ST

(x, y) =
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]
(6.29)

where we have used the identity (A.11). Expanding to find the coefficients gives

bn,m =
1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+ (−1)

n+m
d

(
b n2dc+ bm2dc
b n2dc

)]
Taking the plethystic exponential of (6.29), we get

H
T̃ (min)(x, y) =

1√
1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


where we have used the identity (A.4).

The numbers appearing in the exponential here, ck =
∑

d|k dµ(d), form an interesting

mathematical sequence. It is sequence A023900 in the OEIS [56], and has the alternative

expression

ck =
∏
p|k

p prime

(1− p)

To find the Hilbert series for the vector spaces shown in figure 9, we first compare (6.16)

with (6.25) and (5.19) to find

Ainv
n,m =

(
bn2 c+ bm2 c
bn2 c

)
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Summing over n,m gives the Hilbert series for TST;inv

HTST;inv
(x, y) =

(1 + x)(1 + y)

1− x2 − y2
− 1 =

x2 + xy + y2 + x+ y

1− x2 − y2
(6.30)

where the −1 comes from setting Ainv
0,0 = 0. Note that we already saw this, up to a change

in sign of x and y, as the second half of the generating function (6.26).

Since Ainv
n,m and ainv

n,m are related by a Möbius transform, we have

H
T

(1)
ST;inv

(x, y) =M
(
HTST;inv

)
(x, y) =

∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d
(6.31)

Then using the Hilbert series equivalents of the formulae (6.11) and (6.12), we have

H
T̃

(odd)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +H
T

(1)
ST;inv

(−x,−y)

]
=

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
H
T̃

(even)
ST

(x, y) =
1

2

[
H
T

(1)
ST

(x, y) +H
T

(1)
ST;inv

(x, y)

]
=

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]
Note the similarities between these series, which count single traces with odd and even

numbers of periods, and the minimally periodic version (6.29). The only difference between

the three series is in the sign of the last two terms.

From these three Hilbert series we can derive explicit expressions for the coefficients

ainv
n,m, b

(odd)
n,m and b

(even)
n,m . These are given in appendix C.

Finally, taking the plethystic exponential gives

H
T̃ (odd)(x, y) =

1√
1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


H
T̃ (even)(x, y) =

1√
1− x− y

∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

2k(1− x2k − y2k)

∑
d|k

dµ(d)


where we have used the identity (A.4). This gives us all the Hilbert series featured in

figure 9.

7 The orientifold quotient in the quarter-BPS sector

In section 4 we looked at the orientifold quotient that takes the U(N) theory to the SO(N)

theory in the half-BPS sector. This map had remarkable connections to plethysms of Young

diagrams and the combinatorics of domino tableaux. The key result that enabled us to

link these together was the matrix element (4.24), proved in [42].
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We now generalise to the quarter-BPS sector. As with the half-BPS sector, the quo-

tient simply takes the matrices X and Y and makes them anti-symmetric. Since the U(N)

operators are multi-traces, their quotient must also be multi-traces, and therefore (sim-

ilarly to half-BPS) the baryonic operators do not feature. However, as demonstrated in

sections 5.1 and 6.1, the set of two-matrix traces is significantly more complicated than the

one-matrix version. Our first task is to give a labelling set for generic multi-traces in both

the U(N) and SO(N) theories. These make use of Lyndon words and orthogonal Lyndon

words respectively.

After establishing a notation for generic multi-traces, we investigate how an individual

U(N) multi-trace behaves under the quotient. This is more complicated than the half-BPS

case since two distinct U(N) multi-traces can now give the same (non-zero) SO(N) multi-

trace. For example TrX2Y XY 2 and TrX2Y 2XY are distinct in the U(N) theory but when

X and Y are made anti-symmetric, they reduce to the same object.

Both the U(N) basis (3.27) and the mesonic SO(N) basis (3.16) are defined in terms

of sums over permutations. Following the route in 4.2, we investigate how these reduce to

sums over (the labelling sets of) multi-traces. To do this, we study the group action which

leaves the mesonic contraction invariant, (3.9), and in particular we find the stabiliser group

for a representative of a double coset.

We then put all the pieces together to find the coefficients involved in the quotient of

a U(N) operator to a linear combination of SO(N) operators. Unfortunately we have not

found an analogue of (4.24), so the simplifications of the half-BPS do not occur here and

we have not been able to find a combinatoric interpretation of our results.

7.1 Labelling of traces

A U(N) single trace is described by a Lyndon word w and the number of periods, while a

multi-trace is defined by a collection of these single traces. Consider a generic U(N) multi-

trace, and let the number of constituent single traces with Lyndon word w and number of

periods i be pw,i, then the multi-trace can be written

T
U(N)
P =

∏
w,i

(
TrW i

)pw,i
where W is the matrix word equivalent of the Lyndon word w. This trace is characterised

by the set of numbers {pw,i}. A convenient way to package these numbers is to define a

partition pw for each Lyndon word

pw = (1pw,1 , 2pw,2 , . . .)

Then the label for a U(N) multi-trace is

P = {pw : w a Lyndon word} =
{
px, py, pxy, px2y, pxy2 , . . .

}
Define lx(w), ly(w) and l(w) be the number of xs, the number of ys and the total length

of w respectively. Then clearly l(w) = lx(w) + ly(w), and the number of Xs and Y s in a

multi-trace is

n =
∑
w

lx(w)|pw| m =
∑
w

ly(w)|pw|

We summarise this with P 
 (n,m).
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P T
U(N)
P

px = [1, 1] , py = [1, 1] (TrX)2 (TrY )2

px = [1, 1] , py = [2] (TrX)2 (TrY 2
)

px = [2] , py = [1, 1]
(
TrX2

)
(TrY )2

px = [1] , py = [1] , pxy = [1] (TrX) (TrXY ) (TrY )

px = [2] , py = [2]
(
TrX2

) (
TrY 2

)
pxy = [1, 1] (TrXY )2

px2y = [1] , py = [1]
(
TrX2Y

)
(TrY )

pxy2 = [1] , px = [1] (TrX)
(
TrXY 2

)
pxy = [2] Tr(XY )2

px2y2 = [1] TrX2Y 2

Table 5. The 10 different U(N) multi-traces at n = m = 2 along with their labels. Any constituent

partitions of P that are not explicitly listed are set to zero.

As an example of this labelling, table 5 lists the 10 different P 
 (2, 2) and their

associated multi-traces.

A SO(N) single trace is described by an orthogonal Lyndon word w̃ (as defined in

section 6.1) and the number of repetitions i (note this is not the number of periods).

Consider a SO(N) multi-trace, and let pw̃,i be the number of constituent single traces

with orthogonal Lyndon word w̃ and number of repetitions i. Then we have a partition

pw̃ = (1pw̃,1 , 2pw̃,2 , . . .) for each orthogonal Lyndon word and we denote the combination by

P̃ = {pw̃ : w̃ an orthogonal Lyndon word}
=
{
px2 , pxy, py2 , px3y, px2y2 , pxy3 , . . . , px2yxy2 , . . .

}
The multi-trace corresponding to P̃ is

T
SO(N)

P̃
=
∏
w̃,i

(
TrW̃ i

)pw̃,i
(7.1)

where W̃ is the matrix word corresponding to the orthogonal Lyndon word w̃. As for the

normal Lyndon words, let lx(w̃), ly(w̃) and l(w̃) be the number of xs, number of ys and

total length of w̃ respectively. Then

n =
∑
w̃

lx(w̃)|pw̃| m =
∑
w̃

ly(w̃)|pw̃|

We use the same notation P̃ 
 (n,m) as for the U(N) traces. It will always be clear

whether we are referring to a SO(N) or U(N) trace.

We give the 9 different P̃ 
 (3, 3) in table 6.

It will also be helpful to consider traces of symmetric matrices X and Y . A single trace

will be labelled by a Lyndon word up to reversal, w̄, and the number of periods. This means
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P̃ T
SO(N)

P̃

px2 = [1] , pxy = [1] , py2 = [1]
(
TrX2

)
(TrXY )

(
TrY 2

)
pxy = [1, 1, 1] (TrXY )3

px3y = [1] , py2 = [1]
(
TrX3Y

) (
TrY 2

)
px2y2 = [1] , pxy = [1]

(
TrX2Y 2

)
(TrXY )

pxy3 = [1] , px2 = [1]
(
TrXY 3

) (
TrX2

)
pxy = [2, 1] Tr (XY )2 (TrXY )

px3y3 = [1] TrX3Y 3

px2yxy2 = [1] TrX2Y XY 2

pxy = [3] Tr(XY )3

Table 6. The 9 different SO(N) multi-traces at n = m = 3 along with their labels. Any constituent

partitions of P̃ that are not explicitly listed are set to zero.

w̄ can be split into two types; either it is a Lyndon word that is invariant under reversal

(type 1), or it is the first (lexicographically) of a pair of Lyndon words that transform

into each other under reversal (type 2). This differs from the SO(N) case (anti-symmetric

matrices) in that there is no distinction between odd and even length words. We define

pw̄, P̄, W̄ , lx(w̄), ly(w̄), l(w̄) and 
 in an analogous way to the U(N) and SO(N) traces.

7.2 Projection of a trace

Consider a U(N) multi-trace T
U(N)
P and project it to the SO(N) theory by turning each of

the Xs and Y s into anti-symmetric matrices. If any of the constituent single traces vanish

when X and Y are anti-symmetric, then clearly the projection is zero. In section 6.1 we

studied how the single traces behave under the projection. In the language of this section,

T
U(N)
P will vanish if pw,i 6= 0 for a pair (w, i) such that i is odd and w is reversal-invariant

and of odd length. Equivalently, if P contains a partition pw (where w is reversal-invariant

and of odd length) which has an odd component.

For the remaining P, T
U(N)
P projects to a non-zero SO(N) multi-trace, whose con-

stituent single traces fall into 4 categories. They are (powers of) type 1A orthogonal

Lyndon words, type 1B words, type 2 words or the reversal of type 2 words. To turn the

trace into the form T
SO(N)

Q̃
for some Q̃ we transpose the traces in the last category. For a

single trace with Lyndon word w = w̃(r) and number of periods i (in this case the number

of periods and repetitions match), this introduces a factor of (−1)i l(w), as shown in (6.1).

Multiplying up all the sign factors from the constituent single traces gives

OrthSign(P) =
∏
w,i

where w=w̃(r) for
w̃ an orthogonal Lyndon

word of type 2

(−1)i l(w)pw,i =
∏
w

where w=w̃(r) for
w̃ an orthogonal Lyndon

word of type 2

(−1)l(w)|pw|
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U(N) multi-trace Image after projection(
TrX2Y XY 2

)2 (
TrX2Y XY 2

)2(
TrX2Y XY 2

) (
TrX2Y 2XY

) (
TrX2Y XY 2

)2(
TrX2Y 2XY

)2 (
TrX2Y XY 2

)2(
TrX3Y XY 2

)2 (
TrX3Y XY 2

)2(
TrX3Y XY 2

) (
TrX3Y 2XY

)
−
(
TrX3Y XY 2

)2(
TrX3Y 2XY

)2 (
TrX3Y XY 2

)2
Table 7. Examples of projections of individual U(N) multi-traces.

U(N) Permutation SO(N) Permutation Corresponding trace

(1, 2, n+ 1, n+ 2) (1, 3, 2n+ 1, 2n+ 3) TrX2Y 2

(1, n+ 1, 2, n+ 2) (1, 2n+ 1, 3, 2n+ 3) Tr(XY )2

(1, 2, 3, n+ 1, 4, n+ 2) (1, 3, 5, 2n+ 1, 7, 2n+ 3) TrX3Y XY

(1, 2, n+ 1, 3, 4, n+ 2) (1, 3, 2n+ 1, 5, 7, 2n+ 3) Tr
(
X2Y

)2
Table 8. Examples of multi-traces and the permutations which produce them via the SO(N)

contraction (3.6) and the U(N) contraction (3.25).

So for those T
U(N)
P which don’t vanish under the projection, we have

T
U(N)
P

Z2−→ OrthSign(P)T
SO(N)
Orth(P) (7.2)

where Orth(P) is the SO(N) multi-partition composed of qw̃,i, defined by

qw̃,i =


pw̃,i w̃ of type 1A

p√w̃,2i w̃ of type 1B

pw̃,i + pw̃(r),i w̃ of type 2

and for w̃ of type 1B, we define
√
w̃ to be the Lyndon word that, when repeated, gives w̃.

So for example
√
x2 = x and

√
x2yx2y = x2y.

We give a few examples of the full projection in table 7.

7.3 From permutations to traces

7.3.1 U(N)

Permutations σ ∈ Sn+m produce multi-traces via the formula (3.25). As in the half-BPS

case, each cycle in the permutation corresponds to a single trace, but we can now have two

cycles of the same length producing different traces. We give a few examples in the first

column of table 8.

These examples make it clear how a permutation produces a trace. Writing out the

permutation in cycle notation, a number in {1, 2, . . . , n} corresponds to an X while a
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number in {n+ 1, n+ 2, . . . , n+m} corresponds to a Y . From (3.26), we see that the set

of permutations producing the same multi-trace is no longer a standard conjugacy class,

but is instead the orbit under conjugation by Sn × Sm.

Each different conjugacy class produces a different multi-trace, and conversely each

multi-trace corresponds to a conjugacy class. Therefore the labelling set for the conjugacy

classes is exactly the same as that for the traces, given by the P defined in section 7.1.

The size of these conjugacy classes is found using the orbit-stabiliser theorem. Take σ

to be a representative member of the conjugacy class labelled by P. The stabiliser of σ is

composed of the elements of Sn×Sm that commute with σ. As in the half-BPS, each cycle

has a rotation subgroup attached to it. However, conjugation by Sn × Sm rather than by

Sn+m means we can only rotate the numbers 1, 2, . . . , n amongst themselves (and similarly

for n + 1, n + 2, . . . , n + m). Therefore for a single cycle labelled by Lyndon word w and

number of repetitions i (remember cycles correspond to single traces), the rotation group

has size i (rather than il(w), which is the length of the cycle). As in the half-BPS case,

different cycles with the same labels can be permuted, and therefore the stabiliser is given by

Stab(σ) ∼=×
w,i

Spw,i [Zi]

which has size

ZP =
∏
w,i

ipw,i (pw,i)! =
∏
w

zpw

So by the orbit-stabiliser theorem, the size of Sn × Sm conjugacy classes is

n!m!

ZP

7.3.2 SO(N)

Permutations σ ∈ S2n+2m, or elements of C(S2n+2m), produce traces via the formula (3.6).

This contraction is invariant under the algebra transformation (3.9). Following the route

we took in section 4.2.2, we study the orbits of σ ∈ S2n+2m under the action

σ 7→ ασγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (7.3)

These orbits are called double cosets, but in contrast to the half-BPS case, the groups are

different on the left and right. If we took X and Y to be symmetric matrices in (3.6), then

it would be invariant under (7.3). Therefore the orbits under this action correspond to

multi-traces of symmetric matrices. Thus the P̄, defined in section 7.1, form the labelling

set for the orbits.

We can repeat the steps in (4.12) and figure 5, but including copies of both X and Y , to

show that if σ ∈ S(odd)
n+m ≤ S2n+2m, the SO(N)-style contraction reduces to the U(N)-style

contraction. Explicitly, let τ ∈ Sn+m be the equivalent permutation to σ, then

C
(δ)
I σIJ

(
X⊗nY ⊗m

)J
= Xk1kτ(1) . . . Xknkτ(n)Y kn+1kτ(n+1) . . . Y kn+mkτ(n+m) (7.4)

So by comparison with the U(N), if we write out σ ∈ S
(odd)
n+m in cycle notation, an odd

number in {1, 3, 5, . . . , 2n − 1} will correspond to an X, while an odd number in {2n +
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1, 2n+3, . . . , 2n+2m−1} will correspond to a Y . Examples are given in the second column

of table 8. From (7.4), we can see that any multi-trace can be produced by permutations

in S
(odd)
n+m , and therefore we can take the double coset representatives to be in S

(odd)
n+m .

As with their half-BPS equivalents, the double cosets can be split into two categories,

odd and even, depending on whether the stabilisers of a representative element can have an

odd permutation in their right hand factor. By analogous reasoning to (4.13) and (4.14),

the odd double cosets produce vanishing traces and matrix elements. Just as in the half-

BPS case, the even double cosets are those which produce non-zero traces, so we expect

(and prove below) that they will be labelled by P̃ (defined in section 7.1).

With the half-BPS even/odd double cosets we were able to characterise them more

simply by whether the corresponding partition had all even components or not. We now find

the corresponding characterisation for the quarter-BPS double cosets, for which purpose

we study the detailed structure of the stabiliser.

Take σ ∈ S
(odd)
n+m to be a representative of the double coset labelled by P̄. The pair

(α, γ) ∈ Sn+m[S2] × (Sn[S2]× Sm[S2]) is in the stabiliser of σ if ασγ−1 = σ. This is

equivalent to α = σγσ−1, so we look for γ ∈ Sn[S2]× Sm[S2] such that

σγσ−1 ∈ Sn+m[S2] (7.5)

Similarly to the half-BPS case, this is trivially true if γ commutes with σ. By following

the same argument as given in section 4.2.2, we can embed Sn×Sm into S2n+2m in such a

way that the conjugation (by S
(odd)
n × S(odd)

m ) stabiliser of σ in S
(odd)
n+m is a subgroup of the

SO(N) stabiliser. This is exactly the group we already found in section 7.3.1. Note that

the form of this embedding means that all members of this subgroup are even in S2n+2m.

This tells us that for each individual cycle of type (w̄, i) we have a corresponding

rotation group of order i. Just as for half-BPS, the SO(N) stabiliser differs from the U(N)

one in that it has reflections as well these rotations. However, unlike the half-BPS case, this

does not occur for all cycles. To see why, we explain how these reflections are constructed

by giving examples and then explain the general case.

If we take c = (1, 2n+ 1, 3, 2n+ 3, 5, 2n+ 5) (this is labelled by w̄ = xy and i = 3), a

reflection is given by γ = (1, 2)(2n + 1, 2n + 6)(3, 6)(2n + 3, 2n + 4)(5, 4)(2n + 5, 2n + 2).

Given c = (1, 3, 2n + 1, 5, 7, 2n + 3) (labelled by w̄ = x2y and i = 2), a reflection is

γ = (1, 8)(3, 6)(2n+ 1, 2n+ 2)(5, 4)(7, 2)(2n+ 3, 2n+ 4).

In general, for a cycle c ∈ S(odd)
n+m labelled by w̄ and i, the reflections γ can be constructed

from i l(w̄) transpositions, each consisting of one odd and one even number. Order the

transpositions so that the odd numbers appear in the same order as they do in c. Then

the even numbers should appear in the reverse order. This produces a γ ∈ Sn+m[S2]

satisfying (7.5), but for γ ∈ Stab(c) we need γ ∈ Sn[S2]×Sm[S2]. This can only be done if

it is possible to match the even and odd numbers so that each transposition only consists

of numbers ≤ 2n or ≥ 2n+ 1. Since the ordering of the numbers is governed by the word

w̄, this can only be done if w̄ is invariant under reversal (up to cyclic rotations).

Therefore w̄ of type 1 do have a reflection symmetry in their stabiliser group, while w̄

of type 2 do not. The sign of the reflections is given by (−1)i l(w̄), so if σ contains a cycle

labelled by an odd length w̄ of type 1 with an odd number of repetitions, σ represents an
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odd double coset. In terms of P̄, the double coset is odd if any of the constituent partitions

pw̄, for reversal-invariant (type 1) w̄ of odd length, has an odd component.

Therefore for even double cosets, the partitions pw̄ (type 1 w̄ of odd length) must

have even components, and we can therefore give a more streamlined parameterisation by

setting pw̄ = 2pw̄w̄ for pw̄w̄ ` 1
2 |pw̄|. Note that w̄w̄ is exactly a type 1B orthogonal Lyndon

word. Replacing all such constituent partitions of P̄ with their ‘halved’ counterparts, we

see that the even double cosets are indeed labelled by P̃.

Consider an even double coset P̃ and a representative member σ. The contraction (3.6)

will produce the trace T
SO(N)

P̃
, up to a possible sign. We call σ a positive or negative

representative depending on this sign.

From the above analysis of the stabiliser, we see that for σ a representative for the

double coset P̄, we have

Stab(σ) ∼=

 ×
w̄ of type 1

i

Spw̄,i [Di]

×
 ×
w̄ of type 2

i

Spw̄,i [Zi]


which has size

Z̄P̄ =

 ∏
w̄ of type 1

z2pw̄

 ∏
w̄ of type 2

zpw̄


Since we are only interested in even double cosets, we can re-express these for P̃

Stab(σ) ∼=

 ×
w̃ of type 1A

i

Spw̃,i [Di]

×
 ×
w̃ of type 1B

i

Spw̃,i [D2i]

×
 ×
w̃ of type 2

i

Spw̃,i [Zi]


(7.6)

and

Z̃P̃ =

 ∏
w̃ of type 1A

z2pw̃

 ∏
w̃ of type 1B

z4pw̃

 ∏
w̃ of type 2

zpw̃


In this formula the 2pw̃ in the first factor has come from the dihedral group replacing the

cyclic group in the first factor of (7.6), while the 4pw̃ in the type 1B factor has come from

the dihedral group combined with the doubled number of periods for even double cosets

(since traces with an odd number of periods vanish).

By the orbit-stabiliser theorem, the size of an even double coset is

|Sn+m[S2]× (Sn[S2]× Sm[S2])|
|stabiliser|

=
22n+2mn!m!(n+m)!

Z̃P̃
(7.7)

As well as the abstract interpretation of Z̃P̃ as the size of an orbit, it has a physical

interpretation. Using the quarter-BPS correlators in section 8, one can show that Nn+mZ̃P̃
is the large N normalisation of the two point function for multi-traces.
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In this section we have described the equivalence classes in S2n+2m that lead, via the

contraction (3.6), to the different SO(N) traces. These classes were orbits under the group

action (7.3), and we separated the orbits into two types (odd/even) depending on whether

they produced non-vanishing traces.

The U(N)-type contraction, (3.25), also produces SO(N) traces if we treat X and

Y as antisymmetric matrices, and therefore we can give an equivalent description using

equivalence classes in Sn+m. Explicitly, given σ ∈ Sn+m, we have

σ ∼ ασα−1 α ∈ Sn × Sm (7.8)

and in addition, σ is related to any permutation that can be obtained by inverting some

subset of the cycles of σ. Explicitly, if the cycle decomposition of σ is σ = c1c2 . . . cr then

σ ∼ ci11 c
i2
2 . . . c

ir
r ij ∈ {−1, 1} (7.9)

As before, we can split these equivalence classes into those that produce non-zero traces

and those whose contraction vanishes. If σ contains a cycle c of odd length such that c is

conjugate (under Sn × Sm) to c−1, then the contraction vanishes. If σ contains no such

cycle, then it and the corresponding equivalence class produce a non-vanishing trace.

The combination of (7.8) and (7.9) in Sn+m is equivalent to (7.3) in S2n+2m. We see

that the Sn+m version is more complicated, and explicitly depends on the cycle structure

of σ. It therefore cannot be described as a group action on Sn+m, unlike (7.3).

7.4 Projection coefficients

The quarter-BPS operators are given in (3.16) and (3.27) for SO(N) and U(N) respectively.

Using the results of the previous section we can turn these into sums over traces

OU(N)
T,R,S,µ,ν =

dTn!m!

(n+m)!

∑
P
(n,m)

1

ZP
TrT 00

[
P TR,S;µ→νD

T (σP)
]
T

U(N)
P (7.10)

OSO(N)
T,R,S,λ =

dT 22n+2mn!m!(n+m)!

(2n+ 2m)!

∑
P̃
(n,m)

1

Z̃P̃
〈T, [S]|DT

(
σP̃

)
|R,S, λ, [A]〉T SO(N)

P̃

(7.11)

where σP ∈ Sn+m is a representative member of the conjugacy class labelled by P and

σP̃ ∈ S2n+2m is a positive representative member of the even double coset labelled by P̃.

Note that for convenience we have introduced |R,S, λ, [A]〉 = |R, λ, [A]〉 ⊗ |S, λ, [A]〉.
To evaluate the projection coefficients, we would like to invert (7.11) and write the

traces in terms of the operators. We do this by finding an orthogonality relation for the

coefficients

CP̃T,R,S,λ =
dT

(2n+ 2m)!

22n+2mn!m!(n+m)!

Z̃P̃
〈T, [S]|DT

(
σP̃

)
|R,S, λ, [A]〉

These are just change of basis coefficients taking us from the basis of multi-traces to the

orthogonal Young diagram basis, so there must be an inverse set of coefficients DT,R,S,λ

P̃
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satisfying∑
T,R,S,λ

CP̃T,R,S,λD
T,R,S,λ

Q̃
= δP̃Q̃

∑
P̃

CP̃T,R,S,λD
T ′,R′,S′,λ′

P̃
= δT

′
T δ

R′
R δ

S′
S δ

λ′
λ (7.12)

Note that proving either of these two relations is sufficient. We define the inverse coefficients

to be

DT,R,S,λ

P̃
= 〈R,S, λ, [A]|DT

(
σ−1

P̃

)
|T, [S]〉 (7.13)

and prove the second relation in (7.12).

Plugging C and D in gives∑
P̃

CP̃T,R,S,λD
T ′,R′,S′,λ′

P̃

=
dT 22n+2mn!m!(n+m)!

(2n+ 2m)!

∑
P̃

1

Z̃P̃
〈R′, S′, λ′, [A]|DT ′

(
σ−1

P̃

)
|T ′, [S]〉

〈T, [S]|DT
(
σP̃

)
|R,S, λ, [A]〉

=
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈R′, S′, λ′, [A]|DT ′
(
σ−1

)
|T ′, [S]〉〈T, [S]|DT (σ) |R,S, λ, [A]〉

= δTT ′〈T, [S]|T ′, [S]〉〈R′, S′, λ′|R,S, λ〉

= δT
′

T δ
R′
R δ

S′
S δ

λ′
λ

where to augment the sum to one over S2n+2m we have used the invariance of the summand

under (7.3), the size of the even double cosets (given in (7.7)) and the fact that these matrix

elements vanish on odd double cosets. To evaluate the sum over S2n+2m, we have then

used the orthogonality relation for matrix elements of an irreducible representation, (2.4).

Using (7.12) to invert (7.11) gives

T
SO(N)

P̃
=

∑
T,R,S,λ

〈R,S, λ, [A]|DT
(
σ−1

P̃

)
|T, [S]〉OSO(N)

T,R,S,λ

We can now use (7.2) to project the U(N) operators (7.10) to the SO(N) theory, and then

use the above inversion to express this in terms of the SO(N) operators

OU(N)
T,R,S,µ,ν

Z2−→ dTn!m!

(n+m)!

∑
Q̃

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]T

SO(N)

Q̃

=
dTn!m!

(n+m)!

∑
Q̃

∑
T ′,R′,S′,λ′

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]

〈R′, S′, λ′, [A]|DT ′
(
σ−1

Q̃

)
|T ′, [S]〉OSO(N)

T ′,R′,S′,λ′

=
∑

T ′,R′,S′,λ′

αT
′,R′,S′,λ′

T,R,S,µ,ν O
SO(N)
T ′,R′,S′,λ′
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where the projection coefficients are

αT
′,R′,S′,λ′

T,R,S,µ,ν =
dTn!m!

(n+m)!

∑
Q̃

 ∑
P:Orth(P)=Q̃

1

ZP
OrthSign(P)TrT

[
P TR,S;µ→νD

T (σP)
]

〈R′, S′, λ′, [A]|DT ′
(
σ−1

Q̃

)
|T ′, [S]〉 (7.14)

8 Correlators

The mesonic operators (3.16) were presented in [26], where the author calculated their

correlators using techniques from [24]. The conventions here will differ in two important

ways, but these do not affect the calculation of the correlator and we can quote the result

in order to find the mesonic two-point function.

In contrast, the baryonic operators (3.23) have not been studied in detail before, and

their correlator (in the half-BPS sector) was left unevaluated in [24]. The methods of [26]

can be simply extended to prove that the mesonic and baryonic operators are orthogonal

to each other, as well as giving an expression for the baryonic correlator in terms of index

contractions over the tensor space. We then proceed in two ways. In appendix E we

evaluate this intermediate expression directly by generalising the methods of [24].

Alternatively, in this section, we partially contract this expression while leaving some

indices free. We can then use Schur-Weyl duality on the free indices to relate it to the

equivalent expression for the mesonic correlator, and then use the mesonic result to give

the baryonic version. Before we begin, we first define the complex conjugate of the op-

erators (3.16) and (3.23) and explain how the conventions here differ from those in [26]

and [24].

The complex conjugate of Xij is (X∗)ij = Xij , where this defines Xij , and similarly

for Y ij and Yij . Therefore the complex conjugate of (X⊗nY ⊗m)
I

is (X⊗nY ⊗m)I . Noting

that σIJ =
(
σ−1

)J
I

and C
(δ)
I = C(δ) I (and both are real), we see that[

C
(δ)
I σIJ

(
X⊗nY ⊗m

)J]∗
=
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(δ) J

Therefore the complex conjugate of the mesonic operator OδT,R,S,λ (defined in (3.16)) is

OδT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [S]|DT (σ)
(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(δ) J (8.1)

and similarly, the complex conjugate of the baryonic operator OεT,R,S,λ (defined in (3.23)) is

OεT,R,S,λ =
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

(
〈1N | ⊗ 〈T, [S]|

)
D1N+T (σ)

(
|R, λ, [A]〉 ⊗ |S, λ, [A]〉

)
(
X⊗nY ⊗m

)
I

(
σ−1

)I
J
C(ε) J (8.2)
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Note that the relations between T and n + m are different in these two formulae. In the

mesonic operators, T ` 2n+2m, whereas in the baryonic operators T ` 2q = 2n+2m−N .

The two point function of Xij with Xkl and Y ij with Ykl is

〈XijXkl〉 = δikδ
j
l − δ

i
lδ
j
k = 〈Y ijYkl〉 (8.3)

Initially, this appears to be the same as the two point function used in [24] and [26], however

they have used the definition Xij =
(
X†
)ij

= − (X∗)ij , so there is actually a relative minus

sign. The convention (8.3) ensures the positivity of the two point function between Xij

and its conjugate Xij .

We can follow the arguments in [24] and [26] (keeping track of the implicit minus sign),

to show that 〈(
X⊗nY ⊗m

)I (
X⊗nY ⊗m

)
J

〉
=

∑
σ∈Sn[S2]×Sm[S2]

(−1)σσIJ

= 2n+mn!m!
(
P[A]n⊗[A]m

)I
J

(8.4)

This differs from the answer in [24] and [26] by a factor of (−1)n+m.

Both [24] and [26] define their conjugate operators, (8.1) and (8.2), in terms of
(
X†
)ij

rather than (X∗)ij , and hence there is also a (−1)n+m factor difference in their definition

of conjugate operators compared with (8.1) and (8.2). This cancels with the minus sign

in (8.4), and we can use their results to give the mesonic correlators directly.

In [26], Kemp presented the mesonic operators and calculated their correlators. The

normalisation in (3.16) differs from his by a factor of dT (2n)!(2m)!
(2n+2m)! , so rescaling his result gives

〈OδT,R,S,λO
δ
T ′,R′,S′,λ′〉= δTT ′δRR′δSS′δλ,λ′

dT 22n+2m(n+m)!n!m!

(2n+2m)!

∏
i∈ odd

columns of T

(N+ci) (8.5)

Where ci is the content of a box, as defined in (D.1), and i runs over the boxes in the

Young diagram T that are in the odd numbered columns of T . So for example, i would

run over the starred boxes in the following

∗ ∗
∗ ∗
∗
∗

∗ ∗ ∗ ∗
∗ ∗
∗

∗
∗
∗
∗
∗
∗

The calculation of the mesonic correlators goes via the intermediate result

〈OδT,R,S,λO
δ
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′

dT 2n+mn!m!

(2n+ 2m)!

∑
σ∈S2n+2m

〈T |DT (σ)|T 〉C(δ)
I σIJC

(δ) J

= δTT ′δRR′δSS′δλλ′2
n+mn!m!C

(δ)
I (AT )IJC

(δ) J (8.6)
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where for notational simplicity we have used |T 〉 = |T, [S]〉, and AT ∈ C(S2n+2m), given by

AT =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T |DT (σ)|T 〉σ

The method used to acquire this intermediate result works just as well for the correlators of

baryonic operators, as well as the two-point function of a baryonic operator with a mesonic

one. As expected, the mesonic and baryonic operators are orthogonal

〈OεT,R,S,λO
δ
T ′,R′,S′,λ′〉 = 0

while in the purely baryonic case, we find

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉

= δTT ′δRR′δSS′δλλ′
d1N+T 2n+mn!m!

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉C(ε)
I σIJC

(ε) J

(8.7)

where we have used |1N + T 〉 =
∣∣1N〉⊗ |T, [S]〉.

In appendix E we evaluate (8.7) explicitly. Here, we relate the baryonic correlator to

the mesonic case by introducing

(
B1N+T

)I
J

=
d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉σIJ (8.8)

(BT )
i1i2...i2q
j1j2...j2q

=
1

N !
εk1k2...kN ε

l1l2...lN
(
B1N+T

)k1k2...kN i1i2...i2q
l1l2...lN j1j2...j2q

(8.9)

so that

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+mn!m!C
(ε)
I

(
B1N+T

)I
J
C(ε) J

= δTT ′δRR′δSS′δλλ′2
n+mn!m!N !C

(δ)
I (BT )IJ C

(δ) J (8.10)

Note that BT has fewer indices than the permutations from which it is constructed. Since

the permutations are partially contracted, we cannot (immediately) state that BT is in

C(S2q). Instead it is just an endomorphism on V ⊗2q.

We now want to compare AT and BT for the same Young diagram T . As noted earlier,

the relations between T and n,m are different for mesonic and baryonic operators, so to

avoid confusion, for the rest of the section we will use the baryonic relations. Explicitly,

T ` 2q = 2n + 2m − N . This means the coefficient in front of AT (and the operators

in (3.16) and (8.1)) is dT
(2q)! rather than dT

(2n+2m)! .

In (4.32) we saw one statement of Schur-Weyl duality. We now use a different ver-

sion. The group algebra of S2q and the diagonal action of U(N) are sub-algebras of the

endomorphism algebra of V ⊗2q. Schur-Weyl duality states that these two sub-algebras are

each other’s centraliser within the larger endomorphism algebra. Therefore proving that

BT commutes with the diagonal action of U(N) is sufficient to show that it is in C(S2q).
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BT

B1N+T

P1N

= B1N+T=

Figure 10. BT is a partial trace of B1N+T multiplied by the projector P1N . B1N+T has N + 2q

indices, which are split into a set of N and a set of 2q. The two lines represent these two sets

respectively. The horizontal lines then indicate we trace over the first N indices, while the open

line indicates the remaining 2q indices are left free.

BT

U

B1N+T

=
U

=

B1N+T

UU

U †

=
B1N+T

UU

U †

=
B1N+T

U

BT

U

=

Figure 11. Diagrammatic proof that BT commutes with U(N). B1N+T has N + 2q indices, which

are split into a set of N and a set of 2q. The two lines represent these two sets respectively. Here U

stands for the diagonal action of U on the tensor space, so more properly we should write U⊗N on

the left hand side and U⊗2q on the right hand side. The central equality follows from Schur-Weyl

duality, which implies U⊗N+2q commutes with B1N+T , and the cyclicity of trace.

Firstly, note that

εk1k2...kN ε
l1l2...lN =

∑
τ∈SN

(−1)ττ l1l2...lNk1k2...kN
= N ! (P1N )LK (8.11)

From the definition of |1N + T 〉, given after (8.7), we know that P1N leaves it invariant.

Using the definition (8.8), it follows that B1N+T is invariant under multiplication by P1N .

This simplifies the definition (8.9), which is given diagrammatically in figure 10.

Figure 11 then uses this definition and the statement of Schur-Weyl duality to prove

that BT commutes with U(N), and hence BT ∈ C(S2q).

Note that AT is invariant under pre- or post-multiplication by Sq[S2]. This follows

from the vector |T 〉 being invariant under multiplication by Sq[S2] permutations. In fact,

the set {AT : T ` 2q with even row lengths} forms a basis of the sub-algebra of C(S2q)

defined by this invariance. One can derive this result by following a similar argument to

that in section 3.3.

Similarly, |1N + T 〉 is invariant under Sq[S2], and it follows that pre- or post-

multiplication of BT leaves it unchanged. Therefore BT must be a linear combination

of the AT .
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To determine which AT contribute to BT , consider the projector PR for R ` 2q. This

acts identically on |T 〉 if R = T and annihilates it if R 6= T . It follows that PRAT = δRTAT .

Similarly, D1N+T (PR)|1N + T 〉 = δR,T |1N + T 〉 (where PR ∈ S2q is embedded into S2n+2m

by acting on {N + 1, N + 2, . . . , N + 2q = 2n+ 2m}), and therefore PRBT = δRTBT . We

conclude that BT is proportional to AT .

To find the constant of proportionality, we look at the traces of AT and BT .

Tr (AT ) =
dT

(2q)!

∑
σ∈S2q

〈T |DT (σ)|T 〉Tr(σ)

=
dT

(2q)!

∑
σ∈S2q

〈T |DT (σ)|T 〉N c(σ)

=
dT

(2q)!
〈T |DT (Ω)|T 〉

=
dT

(2q)!

∏
i∈ boxes

of T

(N + ci)

where c(σ) is the number of cycles in σ, Ω is as defined in (D.4) and we have used (D.5)

to evaluate the matrix element 〈T |DT (Ω)|T 〉.
Since BT is just the partial trace of B1N+T , the trace of BT is just the full trace of

B1N+T

Tr (BT ) = Tr
(
B1N+T

)
=

d1N+T

(2n+ 2m)!

∑
σ∈S2n+2m

〈1N + T |D1N+T (σ)|1N + T 〉N c(σ)

=
d1N+T

(2n+ 2m)!
〈1N + T |D1N+T (Ω)|1N + T 〉

=
d1N+T

(2n+ 2m)!

∏
i∈ boxes
of 1N+T

(N + ci)

To compare the traces of AT and BT , we now find the ratio of the dimensions dT and

d1N+T and the ratio of the products of N + ci. The dimensions can be found using the

hook length formula (4.41).

Now 1N + T is the diagram T with a single column of N boxes set to the left of it.

Clearly the T part of the diagram has exactly the same hook lengths as T itself. Denote

the components (row lengths) of T by T1, T2, . . . , TN (some of the Ti may vanish). Then

the hook length of the jth box in the first column of 1N + T is N + Tj − j + 1. Therefore

H1N+T = HT

N∏
j=1

(N + Tj − j + 1) (8.12)

We can also think of 1N + T as the diagram made by adding a single box to the end of

each row of T (including empty rows if l(T ) < N). The content of the extra box added to
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the jth row is Tj − j + 1. Therefore

∏
i∈ boxes
of 1N+T

(N + ci) =

 ∏
i∈ boxes

of T

(N + ci)


 N∏
j=1

(N + Tj − j + 1)

 (8.13)

The latter factors of (8.12) and (8.13) are the same, so using (4.41), we can simplify the

ratio between BT and AT

BT =
d1N+T

(2n+ 2m)!

(2q)!

dT

 ∏
i∈ boxes
of 1N+T

(N + ci)


 ∏
i∈ boxes

of T

1

N + ci

AT
=

HT

H1N+T

 N∏
j=1

(N + Tj − j + 1)

AT
= AT

Comparing (8.5) with (8.6), and recalling the change in conventions, we see that

C
(δ)
I (AT )IJ C

(δ) J = 2qq!
dT

(2q)!

∏
i∈ odd

columns of T

(N + ci)

We can now evaluate (8.10) to get the full baryonic correlator

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+m+qn!m!q!N !
dT

(2q)!

∏
i∈ odd

columns of T

(N + ci)

In the description of baryonic operators we have chosen to use T as the label. We could

instead have used 1N + T , in which case we would want to express the correlator in terms

of this Young diagram. By performing similar manipulations on the hook lengths and

contents of T and 1N + T , one can show

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉 = δTT ′δRR′δSS′δλλ′2

n+m+qn!m!q!N !
d1N+T

(2n+ 2m)!∏
i∈ odd

columns of 1N+T

(N + ci) (8.14)

9 Symplectic gauge group

There are many connections between the orthogonal group and the symplectic group. It

was proved in [57] that dimensions of SO(N) and Sp(N) irreps (both labelled by Young

diagrams) are related by conjugation of the Young diagram and N → −N . This general

pattern of anti-symmetrisation (conjugation) and N → −N was also found in [25, 27], and

will occur repeatedly in this section.

– 83 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

Since the orthogonal group and the symplectic group are so closely related, one would

expect that repeating the working of the previous sections for the symplectic case would

involve only minor changes. This expectation is correct, and the majority of the work is

either identical or directly analogous.

We start by constructing a basis of symplectic gauge-invariant operators. As before,

we use the group invariances of the index contractions to guide us. These are similar to

the orthogonal versions encountered in (3.9), but the invariance and anti-invariance have

switched places. This time there is no distinct sector of baryonic operators. While we can

use ε to contract indices, the operators this produces are within the mesonic sector. The

symplectic operators are labelled by a trio of Young diagrams conjugate to those labelling

the orthogonal mesonic operators. As conjugation of Young diagrams corresponds to anti-

symmetrisation, we find that the two sets of operators are related by anti-symmetrisation.

In the large N limit, we prove that symplectic and orthogonal multi-traces have exactly

the same form, and therefore the structures given in figure 8 and 9 apply to the space of

Sp(N) two-matrix multi-traces.

Replacing the unconstrained U(N) matrices X and Y with matrices satisfying the

symplectic condition (9.1), we find that the half-BPS symplectic projection coefficients are

exactly the same as their orthogonal equivalents. For the quarter-BPS sector they are

related by a change of sign inside the sum.

Finally we review symplectic correlators. These were calculated already in [27], and

as the symplectic theory has no baryonic sector, this completed the story for symplectic

operators.

9.1 Symplectic operators

The Lie algebra sp(N) is composed of N by N (N even) matrices X satisfying

XT = ΩXΩ (9.1)

where

Ω =

(
0 I

−I 0

)
and I is the N

2 by N
2 identity matrix.

Note that the condition (9.1) is equivalent to saying that ΩX (or XΩ) is a symmetric

matrix.

In the Sp(N) gauge theory, the quarter-BPS sector is made up of two scalar fields X

and Y lying in the adjoint of sp(N). Gauge invariant operators can then be constructed in

much the same way as in section 3. Rather than using the matrices X and Y directly, we

use the symmetric combinations ΩX and ΩY . Clearly this is an equivalent approach, as Ω

is an invertible matrix, but it has the advantage that the symmetry properties of ΩX and

ΩY allow us to use the same techniques as we employed for the special orthogonal group.

In analogy to (3.5), the most general gauge-invariant operator in the Sp(N) theory

can be written as

O = CI
[
(ΩX)⊗n (ΩY )⊗m

]I
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β

. . . . . .

. . . . . .

ΩX ΩX ΩX ΩY ΩY

Ω Ω Ω ΩΩ

Figure 12. Diagrammatic representation of the contraction pattern for symplectic mesonic

operators.

where CI is a contractor constructed from Sp(N) invariant tensors. For the orthogonal

group we had two such tensors, which split operators into mesonic and baryonic sectors.

Here, there is only one independent invariant tensor, namely Ωij . We could also consider

the ε tensor, but it is not independent of Ω. At N = 2, 4 we have

εij = Ωij

εijkl = ΩijΩkl + ΩikΩlj + ΩilΩjk

while more generally we have

εi1i2...iN =
1

2
N
2

(
N
2

)
!

∑
σ∈SN

Ωiσ(1)iσ(2)
Ωiσ(3)iσ(4)

. . .Ωiσ(N−1)iσ(N)
(9.2)

The normalisation factor of 2
N
2

(
N
2

)
! comes from the SN

2
[S2] stabiliser group of the index

structure Ωi1i2Ωi3i4 . . .ΩiN−1iN . After removing this redundancy, we are left with (N − 1)!!

terms, corresponding to the different ways of splitting {1, 2, . . . , N} up into N
2 pairs.

So, unlike SO(N), we need only consider one type of contractor, the mesonic ones

containing n+m Ωs. As argued in section 3.2, different index arrangements can be absorbed

into an element β of C (S2n+2m). Therefore the most general mesonic operator is

O(Ω)
β = C

(Ω)
I βIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.3)

where the standard index arrangement on the contractor is

C
(Ω)
I = Ωi1i2Ωi3i4 . . .Ωi2n+2m−1i2n+2m

The contraction (9.3) is given diagrammatically in figure 12.

This time, β is invariant under the transformation

β 7→ (−1)ααβγ−1 α ∈ Sn+m[S2] , γ ∈ Sn[S2]× Sm[S2] (9.4)
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which has the same group structure as the (3.9), but the invariance and anti-invariance

have swapped sides. This is the first example of the orthogonal and symplectic groups

being related by anti-symmetrisation.

The invariance (9.4) defines a subspace ASp
n,m of C(S2n+2m). As in section 3.3, we can

find a basis for this space. Imposing the finite N restriction, that all Young diagrams

must have at most N rows, reduces this basis (and the space it spans) to that relevant for

constructing operators. Explicitly, we have

βT,R,S,λ =
dT

(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
σ (9.5)

where the constraints on T,R, S, λ are

T ` 2n+ 2m with even column lengths

l(T ) ≤ N
R ` 2n with even row lengths

S ` 2m with even row lengths

1 ≤ λ ≤ gR,S;T

(9.6)

Just as in the SO(N) case, the space ASp
n,m forms a right module of AU

2n,2m. By following

the same argument as (3.31), we have the multiplication relation

β
Sp(N)
T,R,S,λβ

U(N)
T ′,R′,S′,µ,ν = δTT ′δRR′δSS′δµλβ

Sp(N)
T,R,S,ν

From the basis (9.5) we proceed to find the bases of gauge-invariant operators

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
C

(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.7)

The labelling for this basis allows us to give the number of gauge-invariant operators of

order n,m

NΩ
n,m =

∑
R`2n with even row lengths
S`2m with even row lengths

T`2n+2m with even column lengths
l(T )≤N

gR,S;T (9.8)

We can make (9.7) and (9.8) look more similar to their SO(N) equivalents (3.16) and (3.17)

by making use of the conjugate partitions Rc, Sc and T c.

Let VT be the representation space for T . Then since T c =sgn⊗T , we have an orthog-

onal map ρ from VT to VT c satisfying

DT c(σ) = (−1)σρDT (σ)ρ−1 (9.9)

Now |T, [A]〉 and is defined by its behaviour under Sn+m[S2] in the T representation.

Similarly |R,S, λ, [S]〉 = |R, λ, [S]〉 ⊗ |S, λ, [S]〉 is defined by its behaviour under PR⊗S and
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Sn[S2]×Sm[S2] (as well as a choice of basis vector in the Littlewood-Richardson multiplicity

space). Explicitly, these behaviours are

DT (σ)|T, [A]〉 = (−1)σ|T, [A]〉
DT (τ) |R,S, λ, [S]〉 = DT (PR⊗S) |R,S, λ, [S]〉 = |R,S, λ, [S]〉

for σ ∈ Sn+m[S2] and τ ∈ Sn[S2]× Sm[S2]. So from (9.9), the equivalent actions in the T c

representation are

DT c(σ)ρ|T, [A]〉 = ρ|T, [A]〉
DT c (τ) ρ|R,S, λ, [S]〉 = (−1)τρ|R,S, λ, [S]〉

DT c (PRc⊗Sc) ρ|R,S, λ, [S]〉 = ρ|R,S, λ, [S]〉

Therefore ρ|T, [A]〉 lies in the [S] subspace of T c, and ρ|R,S, λ, [S]〉 lies in the [A] subspace

of Rc ⊗ Sc, which is itself a subspace of T c. Note that gR,S;T = gRc,Sc;T c , and therefore

Rc ⊗ Sc is indeed a subspace of T c. This means we can choose the multiplicity index λ to

be the same before and after conjugation. Therefore we have

|T c, [S]〉 ∝ ρ|T, [A]〉 |Rc, Sc, λ, [A]〉 ∝ ρ|R,S, λ, [S]〉 (9.10)

Since ρ is orthogonal and S2n+2m representations are real, the constants of proportionality

must be ±1. It is only the relative sign of the two which is important, but without a

positivity condition (similar to (3.19), but for the quarter-BPS sector) we cannot determine

what this should be. We discussed such conditions in section 3.3.3, and suggested a possible

candidate for the orthogonal case.

Using (9.10) and the orthogonality of ρ, we can rewrite (9.7) in terms of T c, Rc and Sc

OΩ
T,R,S,λ =

dT c

(2n+ 2m)!

∑
σ∈S2n+2m

(−1)σ〈T c, [S]|DT c(σ)|Rc, Sc, λ, [A]〉

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.11)

Clearly a partition with even row lengths is conjugate to a partition with even column

lengths and vice versa. Therefore, rather than labelling the symplectic operators with the

conditions (9.6) we can instead use the conditions

T ` 2n+ 2m with even row lengths

l(T c) ≤ N
R ` 2n with even column lengths

S ` 2m with even column lengths

1 ≤ λ ≤ gR,S;T

(9.12)

where the corresponding operator is

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

(−1)σ〈T, [S]|DT (σ)|R,S, λ, [A]〉

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
(9.13)
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Therefore the labelling set for symplectic operators is exactly the same as the orthogonal

mesonic ones, except for the finite N condition imposes a limit on the length of the rows

instead of the length of the columns.

Note that the matrix element in (9.13) is the same as that in (3.16). The only differ-

ences are the factor of (−1)σ and the different contractions.

In section 9.2 we prove that the Sp(N) contraction produces exactly the same multi-

trace as the SO(N) equivalent when using the same double coset representative (com-

pare equations (9.22) and (7.4)). So by restricting the sums in (9.13) and (3.16) to run

over traces (or equivalently even double cosets) rather than permutations (as done in

sections 4 and 7), we see that symplectic operators and orthogonal mesonic operators

are just anti-symmetrisations of each other. By this we mean that if a symplectic op-

erator contains a term of the form cTrW1TrW2 . . .TrWk for some constant c and matrix

words W1,W2, . . .Wk, then the orthogonal mesonic operator with the same labels (or con-

jugate labels, depending on the labelling set being used) will contain a term of the form

(−1)l(W )cTrW1TrW2 . . .TrWk. Note that the matrices X and Y that make up the matrix

words satisfy different conditions in the orthogonal and symplectic theories, so one cannot

compare these two operators directly, only their form.

The result of this conjugation argument for the counting of operators is that we may

rewrite (9.8) as

NΩ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T c)≤N

gR,S;T

This is now identical to the SO(N) formula (3.17) except for the restriction l(T c) ≤ N

instead of l(T ) ≤ N . Note that in the large N limit, both of these restrictions disappear,

so the counting is the same in either group. In particular we have the same generating

function (6.27) for N δ
n,m and NΩ

n,m.

For the remainder of this section we will use the labelling set (9.6) as standard, and

will refer to (9.12) as the conjugate labels.

9.2 Symplectic projection

In section 4 we looked at projecting from the U(N) theory into the SO(N) theory in

the half-BPS sector by replacing the generic matrix X with an anti-symmetric one. We

now study the equivalent in the Sp(N) setting. This replaces the generic X with one

satisfying (9.1). This implies

TrXn = Tr(XT )n

= Tr (ΩXΩ)n

= Tr
(
Ω2X

)n
= Tr (−X)n

= (−1)nTrXn (9.14)
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where we have used Ω2 = −1. So, just as in the SO(N) case, the odd order single traces

vanish while the even ones remain unchanged.

Applying the same logic to the quarter-BPS case, we again find the Sp(N) relations

between traces are the same as those for SO(N). For a trace with k periods and aperiodic

matrix word W , we have

TrW k = (−1)k l(W )Tr
(
W (r)

)k
(9.15)

As claimed, this is identical to (6.1).

Returning to the half-BPS sector, (9.14) means the symplectic quotient of a half-BPS

U(N) operator (defined in (3.29)) vanishes if n odd, and if n even we have

OU(N)
R

Z2−→ dR
∑
p`n

2

1

z2p
χR(2p)

∏
i

(
TrX2i

)pi
=
∑
T

α
Sp(N);T
R OΩ

T (9.16)

where the second line defines the projection coefficients α
Sp(N);T
R . While the first line

appears identical to (4.27), X satisfies different conditions here.

We now study how these multi-traces relate to the Sp(N) operators (9.7). In the

half-BPS sector (m = 0), these reduce to

OΩ
T =

dT
(2n)!

∑
σ∈S2n

〈T, [A]|DT (σ)|T, [S]〉C(Ω)
I σIJ

[
(ΩX)⊗n

]J
(9.17)

Since the contractor C(Ω) is constructed from Ωs, the contraction C
(Ω)
I σIJ

[
(ΩX)⊗n

]J
will

be some multi-trace of Ω and X. We know the contraction is invariant under

σ 7→ (−1)αασγ−1 α, γ ∈ Sn[S2] (9.18)

(this is just the m = 0 version of (9.4)). If we ignore the minus sign for a moment, we

have exactly the same action that we saw in (4.11). We studied the orbits of this action,

called double cosets, in detail. In particular, they were labelled by partitions p ` n, with

representatives σ ∈ S(odd)
n , where σ acts with cycle type p on the odd numbers. We split the

double cosets into two categories, even and odd, and gave two different characterisations of

this split. Firstly, a double coset was odd if one or more components of the corresponding

partition were odd. Secondly, a double coset was odd if the stabiliser of a representative

element contained at least one odd permutation in either factor of the direct product

(Stab(σ) ≤ Sn[S2] × Sn[S2]). This second condition is equivalent to saying that it is

possible to use the action (9.18) to take σ to −σ. Therefore we can repeat the arguments

in (4.13) and (4.14) to show the Sp(N) contraction and matrix elements vanish for odd

double cosets.

– 89 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

Consider σ ∈ S
(odd)
n the representative of some double coset labelled by p ` n. Let

τ ∈ Sn be the equivalent permutation in Sn (so τ has cycle type p). Then we have

C
(Ω)
I σIJ

[
(ΩX)⊗n

]J
= Ωi1j1Ωi2j2 . . .Ωinjnσ

i1j1i2j2...injn
k1l1k2l2...knln

(ΩX)k1l1 (ΩX)k2l2 . . . (ΩX)knln

= Ωi1j1Ωi2j2 . . .Ωinjnτ
i1i2...in
k1k2...kn

δj1l1 δ
j2
l2
. . . δjnln

(ΩX)k1l1 (ΩX)k2l2 . . . (ΩX)knln

= Ωi1j1 (ΩX)j1k1 Ωi2j2 (ΩX)j2k2 . . .Ωinjn (ΩX)jnkn τ i1i2...ink1k2...kn

= τ i1i2...ink1k2...kn

(
Ω2X

)i1k1
(
Ω2X

)i2k2 . . .
(
Ω2X

)inkn
= (−1)nτ i1i2...ink1k2...kn

Xi1k1Xi2k2 . . . X inkn

= (−1)nX
i1iτ−1(1)X

i2iτ−1(2) . . . X
iniτ−1(n)

=
∏
i

(
TrXi

)pi (9.19)

where for the last line we have used (2.11), noting that τ and τ−1 have the same cycle

type. The same calculation (excluding the last line) is shown diagrammatically in figure 13.

Therefore, just as with SO(N), the double coset labelled by p leads to the expected trace.

So using results from section 4.2.2 we can re-express (9.17) in terms of multi-traces

OΩ
T =

dT 22n(n!)2

(2n)!

∑
p`n

2

1

z4p
〈T, [A]|DT (σ2p)|T, [S]〉

∏
i

(
TrX2i

)pi (9.20)

where σ2p ∈ S
(odd)
n is a representative of the even double coset with partition 2p. Now

since representations of S2n are orthogonal we have

〈T, [A]|DT (σ2p)|T, [S]〉 = 〈T, [S]|DT (σ−1
2p )|T, [A]〉

Then as σ−1
2p is also in S

(odd)
n with cycle type 2p, we could equally well have chosen this

to be our double coset representative. So we can apply the formula (4.24) to the symplec-

tic matrix element in exactly the same way as we could for the special orthogonal case.

Plugging this into (9.20) we have

OΩ
T = 2nn!

√
dT

(2n)!

∑
p`n

2

1

z2p
χt(p)

∏
i

(
TrX2i

)pi (9.21)

We see that (9.16) and (9.21) are exactly the same as (4.27) and (4.25) respectively, so the

projection coefficients α
Sp(N);T
R are exactly the same as the αTR we found in section 4.3.

Note that the equality of (9.21) and (4.25) does not contradict the earlier statement

that orthogonal and symplectic operators are anti-symmetrisations of each other. This

result stated that OΩ
T was an anti-symmetrisation of OδT c , while the above states that

OΩ
T ≈ OδT (where ≈ denotes the fact that the symplectic and orthogonal operators have

the exact same form in terms of traces, but the matrix X satisfies different conditions, so

they are not strictly equal). One can check that OΩ
T is the anti-symmetrisation of OΩ

T c , and

therefore the two statements agree with each other.
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σ

Ω

Ω X

Ω

Ω X

Ω

Ω X. . .

. . .

= (−1)n
τ

. . .

. . .X X X

= (−1)n τ−1
. . .

. . .X X X

Figure 13. A diagrammatic version of (9.19). The dotted lines represent the fact that σ fixes all

even numbers. By following the index contractions on the left, we see that τ should be contracted

with n copies of the matrix ΩXΩT . Using the condition (9.1), this is just −XT . We have pulled out

the factors of −1 and the transpose means the X indices switch roles (compare with figure 5). In the

second row, we convert this result into a U(N) type contraction by breaking our index conventions

and setting Xi
j = Xij . Note that the role switch of the X indices on the first line means τ is

inverted on the second line.

We could also consider the projection to the symplectic theory in the quarter-BPS

sector. The logic in (9.19) can be extended, and gives

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
= (−1)n+m

(
X⊗nY ⊗m

)i1iτ−1(1)i2iτ−1(2)...in+miτ−1(n+m)

= (−1)n+mX
i1iτ−1(1) . . . X

iniτ−1(n)

Y
in+1iτ−1(n+1) . . . Y

in+miτ−1(n+m)

From (9.15) we know that we can reverse a single trace at the expense of a minus sign

corresponding to the length of the trace. Since reversing a single trace corresponds to

inverting a cycle in the permutation τ , we can invert τ at the expense of a factor of

(−1)n+m. Therefore we have

C
(Ω)
I σIJ

[
(ΩX)⊗n (ΩY )⊗m

]J
=Xk1kτ(1) . . .Xknkτ(n)Y kn+1kτ(n+1) . . .Y kn+mkτ(n+m) (9.22)

which is the Sp(N) equivalent of (7.4).

Following the procedures in section 7, we can use (9.22) to find the symplectic quarter-

BPS projection coefficients. The expression is exactly as in (7.14) but with the [A] and
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[S] swapped (and the implicit difference in constraints on Young diagrams). Using the

conjugate labels for symplectic operators swaps the [A] and [S] and removes the difference

in constraints at the cost of introducing a factor of (−1)σQ̃ . So using these labels, the

symplectic quarter-BPS projection coefficients differ from the orthogonal ones only by a

sign in the summation over Q̃.

9.3 Structure of symplectic space of gauge-invariant operators

In section 6, we showed that the large N generating function for N δ
n,m had a lot of structure,

associated with corresponding structures in the space of SO(N) multi-traces. Since NΩ
n,m =

N δ
n,m, the generating function for Sp(N) is the same, and we therefore expect the vector

space of Sp(N) traces at large N to share this structure.

For SO(N), the structures shown in figure 8 and 9 are derived from the relation (6.1),

and we have the exact same statement for Sp(N) in (9.15). Therefore, at large N , the

structures of the Sp(N) and SO(N) quarter-BPS sectors are identical.

9.4 Symplectic correlators

As for SO(N), we define the complex conjugate of Xij to be (X∗)ij = Xij , and similarly

for Y ij . This leads to the conjugate operators

OΩ
T,R,S,λ =

dT
(2n+ 2m)!

∑
σ∈S2n+2m

〈T, [A]|DT (σ)
(
|R, λ, [S]〉 ⊗ |S, λ, [S]〉

)
[
(ΩX)⊗n (ΩY )⊗m

]
I

(
σ−1

)I
J
C(Ω) J

The two point function for symplectic matrices is

〈XijXkl〉 = δikδ
j
l − Ωi

lΩ
j
k = 〈Y ijYkl〉 (9.23)

which is equivalent to〈
(ΩX)ij (ΩX)kl

〉
= δikδ

j
l + δilδ

j
k =

〈
(ΩY )ij (ΩY )kl

〉
(9.24)

Again the definition (9.23) looks the same as that in [25], but they used the definition

Xij =
(
X†
)ij

, so there is a distinction. The convention used here ensures the positivity of

the two point function of Xij with its conjugate Xij .

The definition (9.24) leads to〈[
(ΩX)⊗n (ΩY )⊗m

]I [
(ΩX)⊗n (ΩY )⊗m

]
J

〉
=

∑
σ∈Sn[S2]×Sm[S2]

σIJ

= 2n+mn!m!
(
P[S]n⊗[S]m

)I
J

(9.25)

In [27], Kemp presented the symplectic operators and calculated their two point functions.

He used the same conventions, (9.25), for the two point function, so we can directly quote his
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result, taking into account the normalisation difference of dT
(2n+2m)22n+2m

√
n!m!(n+m)!

relative to (9.7).〈
OΩ
T,R,S,λO

Ω
T ′,R′,S′,λ′

〉
= δTT ′δRR′δSS′δλλ′2

2n+2mn!m!(n+m)!
dT

(2n+2m)!

∏
i∈ odd

rows of T

(N+ci)

(9.26)

This is very similar to the correlator (8.5), except for the product running over rows rather

than columns (and the implicit differences due to different conditions on T,R, S).

It is not difficult to show that∏
i∈ odd

rows of T

(N + ci) = (−1)n+m
∏

i∈ odd
columns of T c

(−N + ci)

therefore the symplectic correlator (9.26) evaluated with N → −N is the same (up to a

factor of (−1)n+m) as the orthogonal mesonic correlator (8.5) with conjugate labels.

10 Discussion

We discuss here a selection of interesting questions raised by the results of this paper.

10.1 Giant graviton branes and plethyms

The classification of half BPS operators in terms of Young diagrams allows an elegant

map between these operators and quantum states obtained from semi-classical giant gravi-

tons [4, 5]. Young diagrams with order 1 long columns, and column lengths of order N ,

were proposed to be dual to giant gravitons which are three-spheres expanded in S5 of

AdS5 × S5. Single giant states are dual to single column Young diagrams, and multiple

giants are dual to multiple-column Young diagrams. A similar picture holds for giant

gravitons which are three-spheres in the AdS5 directions. This map receives confirma-

tion from a number of directions: holographic comparison of correlators of two Young

diagrams with a trace [58–61], moduli space quantisation [62, 63] and strings attached to

giants [11–13, 64–67].

In AdS/CFT, the AdS background dual to SO(N) gauge theories is obtained from the

AdS dual of U(N) by an orientifold operation, which acts as a Z2 in space-time accompanied

by an orientation reversal on the string worldsheet. Analogously to the map between branes

and states in U(N) theories, we expect, for the SO(N) theories, a similar detailed map

between Young diagram states and branes in the dual AdS5 × RP 5 background. This

motivated us to conduct a study of the orientifold projection operation on the Young

diagram bases.

The projection is captured by integer coefficients ᾱTR, which were found to be related

to a plethystic refinement of Littlewood-Richardson coefficients

ᾱTR = Mult[R,S2(t)]−Mult[R,Λ2(t)]

= P(t, [2], R)− P(t, [1, 1], R) (10.1)
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The sum of these is the LR coefficient

gt,t;R = Mult[R,S2(t)] + Mult[R,Λ2(t)]

= P(t, [2], R) + P(t, [1, 1], R) (10.2)

As we have seen in section 4, ᾱTR has an interpretation in terms of the combinatorics

of domino tilings, and we have discussed a brane interpretation of this combinatorics in

section 4.8. Here we will discuss another approach to physically understand the nature of

the projection coefficient.

Interestingly, the LR coefficient gt,t;R appears in the extremal correlator in the U(N)

theory 〈χtχtχ†R〉 [5]. Given the correspondence between Young diagrams and branes, this

extremal correlator is naturally interpreted as the amplitude for the overlap between the

composite system consisting of the pair of branes (t, t) and the brane R. The effect of the

orientifold operation is to change the amplitude of interaction t ⊗ t → R by introducing

the sign in (10.1).

A very interesting problem is to derive this relative sign from the point of view of strings

propagating in AdS5 × S5 and the orientifold of this background. The argument above,

which says that the effect of the orientifold is to change the sign of the anti-symmetric

part of the interaction, is based on assuming AdS/CFT and using the relation about gauge

invariant operators corresponding to branes. The problem is to explain this sign without

using facts about the dual CFT. This is not straightforward. The consistency of brane

physics in spacetime with the formula in terms of LR coefficients has been tested in various

limits e.g. [58–61, 68]. However a general understanding, directly from the spacetime per-

spective, of why the interaction of branes is given by the Littlewood-Richardson coeffients

is not currently available. Understanding the sign from the physics of orientifolds would

probably also shed light on this question of why, based purely on the physics of strings in

the AdS spacetime without assuming AdS/CFT duality, LR coefficients appear in the in-

teractions of branes. Insights from discussions of signs in orientifolds, such as those in [69]

may be useful. We will leave this as a very interesting question for the future.

10.2 Weak coupling

The quarter BPS sector undergoes a step change when going from zero to weak coupling:

for a review with extensive references to the previous litereture see [70]. In the U(N) theory

this change is equivalent to allowing the matrices to commute inside the trace. These states

are related to the quantisation of moduli spaces of giant gravitons [71]. An analogous

discussion for the SO(N) theory, and the relation of these states to the quantisation of

giant graviton moduli spaces would be interesting to develop.

10.3 General quivers

The generating function (5.1) has been generalised to arbitrary U(N) quivers [19, 20]. The

structure of the function, with its infinite product of a root function, was found to be very

general, and the root function had an interpretation in terms of counting words made from

loops in the quiver. Is there an analogous generalization of (6.27) for SO(N) (or Sp(N))

gauge theory?
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10.4 Permutations as background independent structures in string theory

In this paper, we have made extensive use of permutations as tools for understanding gauge

invariant operators. The formula for the orientifold projection map in the half-BPS sector,

which made contact with domino combinatorics, was given as a sum of permutation group

characters. The projection map relates different backgrounds of string theory. We also ex-

plored (section 4.9) the U(N) inner product of gauge invariant operators which survive the

orientifold projection to SO(N), and observed a connection to an appropriately defined in-

verse of the plethysm coefficients. The U(N) and SO(N) inner products for the same opera-

tors can be viewed as different (background-dependent) pairings on permutations which are

background independent characterizations of gauge invariants. Other diverse applications

of permutations in gauge invariant operators (for a short review see [72]) have seen applica-

tions of Littlewood-Richardson coefficients as well as Kronecker coefficients in multi-matrix

bases and correlators. An interesting exercise is to revisit these applications and disentangle

the aspects of permutations and associated representation theory which contain informa-

tion about specific backgrounds, and those that are common to different backgrounds, or

relate different backgrounds. The integrally-graded word combinatorics (involving Lyndon

words and their orthogonal generalisations) which we have here identified as key structures

in understanding the space of gauge invariant operators in both U(N) and SO/Sp gauge

theories may well be structures which contain background independent information. In

this connection, it is interesting that another recent physics application of Lyndon words

is in connection with knot invariants associated with intersections of M2-branes and M5-

branes [73, 74]. It would be interesting to seek a background-independent characterization

of how word combinatorics appears in the physics of BPS states in string theory.
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A Möbius inversion

Proposition (The Möbius inversion formula). Let {an} and {bn} be two sequences indexed

by the positive integers. If an can be expressed as

an =
∑
d|n

bd =
∑
d|n

bn
d

(A.1)

where d runs over all divisors of n, denoted by d|n, then

bn =
∑
d|n

µ
(n
d

)
ad =

∑
d|n

µ(d)an
d

(A.2)
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where µ is the Möbius function defined by

µ(d) =


1 d = 1

(−1)n d a product of n distinct prime factors

0 d has a repeated prime in its prime factorisation

(A.3)

The proof of this proposition relies on

Lemma. ∑
d|n

µ(d) =

{
1 n = 1

0 n > 1
(A.4)

Proof of Lemma. This is obvious for n = 1, so we will only prove the case n > 1. Writing

n in terms of its prime factors, we have

n = pr11 p
r2
2 . . . prkk

where ri ≥ 1 for each i. The divisors of n which contribute to the sum (A.4) are those

which are square free. Explicitly, they can be written

d = ps11 p
s2
2 . . . pskk

where si ∈ {0, 1} for each i.

We define S to be the set of distinct prime factors of n: S = {p1, p2, . . . pk}. Then

subsets of S correspond exactly to the divisors d defined above

d = ps11 p
s2
2 . . . pskk ←→ {pi : si = 1} ≤ S (A.5)

From the definition (A.3), we see that

µ(d) = (−1)|subset of S corresponding to d|

So ∑
d|n

µ(d) = # of subsets of S with even size−# of subsets of S with odd size

But we have a bijective map between even subsets and odd subsets given by

A −→

{
A ∪ {p1} p1 6∈ A
A/{p1} p1 ∈ A

and therefore ∑
d|n

µ(d) = 0
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Proof of Proposition. The first step in the proof is to note that the an determine the

bn uniquely via the relation (A.1). Indeed, we have b1 = a1, b2 = a2− a1, b3 = a3− a1. To

prove it in general, we use strong induction with these three as the base cases. Assuming

bn is determined by the sequences of as for all n ≤ k, we can rearrange (A.1) to get

bk+1 = ak+1 −
∑

d|(k+1)
d 6=k+1

bd

Then since the sum over d only includes d ≤ k, we know inductively that bd is determined

by the as, and hence bk+1 is also determined by the as.

We now notice that the bn, as defined in (A.2), satisfy (A.1):

∑
d|n

bd =
∑
d|n

∑
e|d

µ

(
d

e

)
ae

=
∑
e|n

ae
∑
f |n
e

µ(f)

= an

In going from the 1st to the 2nd line we have reordered the sums and reparameterised by

f = d
e , and in going from the 2nd to the 3rd we have used the lemma (A.4).

Since the bn have a unique solution, (A.2) must therefore be the correct formula for

the bn, as claimed.

Note that in this proposition, there was nothing special about addition, the result and proof

follow exactly the same way if we replace the addition by multiplication. Explicitly, given

bn =
∏
d|n

ad =
∏
d|n

an
d

we can invert uniquely to get

an =
∏
d|n

b
µ(nd )
d =

∏
d|n

b
µ(d)
n
d

(A.6)

In this paper, we come across relations of the form

an,m =
∑
d|n,m

bn
d
,m
d

(A.7)

so we would like a generalisation of the Möbius inversion formula for two variables. This

generalisation is

Lemma. The bn,m are determined uniquely by (A.7), with

bn,m =
∑
d|n,m

µ(d)an
d
,m
d

(A.8)

– 97 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

Proof. To prove this, consider fixing n̄, m̄ to be coprime. We then define

āk = akn̄,km̄ b̄k = bkn̄,km̄

In terms of these sequences (A.7) reads

āk =
∑

d|kn̄,km̄

b k
d
n̄, k
d
m̄

=
∑
d|k

b̄ k
d

where we have used the fact that n̄, m̄ are coprime to conclude that d|kn̄, km̄ is equivalent

to d|k. Then by the standard Möbius inversion formula, we have

b̄k =
∑
d|k

µ(d)ā k
d

or in terms of as and bs

bkn̄,km̄ =
∑

d|kn̄,km̄

µ(d)a kn̄
d
, km̄
d

This is true for all k, and coprime n̄, m̄. So to prove (A.8) for an arbitrary n,m we pick

k = gcd(n,m), n̄ = n
k , m̄ = m

k .

The Möbius inversion formula can be used to prove some useful identities. We start with

the well known identity ∑
d|n

φ(d) = n (A.9)

where φ(n) is the Euler totient function that counts the number of numbers less than n

that are coprime to n. Applying the Möbius inversion formula gives

φ(n)

n
=
∑
d|n

µ(d)

d
(A.10)

and applying it again gives

µ(n) =
∑
d|n

dµ(d)φ
(n
d

)
=
∑
d|n

n

d
µ
(n
d

)
φ(d) (A.11)

B Alternative derivation of SO(N) infinite N generating function

We now derive the generating function (6.27) directly from (3.17), ignoring the finite N

constraint l(T ) ≤ N .

The first step is to find an alternative formula for (3.17) that lends itself more easily to

explicit calculation of the generating function. This is done using results from the theory

of symmetric functions, and gives an expression involving the coefficients of the cycle index

polynomial of Sn[S2].

Using this alternative formula we can express the generating function as a product of

integrals, each of which can be explicitly evaluated.
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B.1 An alternative counting formula

Expanding gR,S;T in terms of characters gives

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

1

(2n)!(2m)!

∑
σ∈S2n
τ∈S2m

χR(σ)χS(τ)χT (σ ◦ τ)

where σ ◦ τ means the permutation in S2n+2m that acts as σ on the first 2n objects and

τ on the last 2m. Since the characters only depend on the cycle type of σ and τ , we can

rewrite this as

N δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

∑
p`2n
q`2m

χR(p)χS(q)χT (p ∪ q)
zpzq

(B.1)

where p∪q was defined in section 2, and zp and zq arise because the number of permutations

in S2n with cycle type p is given by (2n)!
zp

.

Now we’d like to evaluate ∑
R`2n with even

row/column lengths

χR(q) (B.2)

To do this we need to review some facts from the theory of symmetric functions. These

are defined as formal polynomials in an infinite number of variables t1, t2, . . . which are

completely symmetric under permutations of the ti. We will use two different bases for the

order n symmetric functions. The power sum polynomials are defined for integer r by

Pr(t1, t2, . . .) =
∑
i

tri

and for a partition q = [λ1, λ2, . . .] by

Pq = Pλ1Pλ2 . . .

The Pλ for λ ` n are a basis for the order n symmetric functions.

Schur polynomials, also indexed by partitions (Young diagrams) R ` n, are defined by

sR(t1, t2, . . .) =
∑
q`n

1

zq
χR(q)Pq(t1, t2, . . .)

From the orthogonality of characters, (2.6), we can invert this definition to write the power

sum polynomials in terms of the Schur polynomials. Therefore the Schur polynomials also

form a basis.

We now introduce the Hall inner product on the space of symmetric functions. It is

defined by

〈Pp, Pq〉 = δpqzp
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This enables us to extract the coefficient of the power sum polynomials from sR. Explicitly

χR(q) = 〈sR, Pq〉

So ∑
R`2n with even

row lengths

χR(q) =

〈 ∑
R with even
row lengths

sR , Pq

〉

Note that on the right hand side, R can range over all partitions with even row length,

not just those with |R| = 2n, since the inner product with Pq is non-zero only for those R

with |R| = 2n.

In MacDonald’s book [39, chapter I.5] he shows that

s(t1, t2, . . .) =
∑

R with even
row lengths

sR =
∏
i

1

1− t2i

∏
i<j

1

1− titj

To find the inner product of s with Pq we need to express s in terms of the Pq. It turns

out to be easier to look at logs

log s = −
∑
i

log(1− t2i )−
∑
i<j

log(1− titj)

=

∞∑
r=1

1

2r

∑
i,j

tri t
r
j +

∑
i

t2ri


=
∞∑
r=1

1

2r

(
P 2
r + P2r

)
=

∞∑
r=1

1

r
ZS2(Pr, P2r)

where ZS2 is the cycle index polynomial of the group S2 as defined in (6.20). Therefore

s = exp

[ ∞∑
r=1

1

r
ZS2(Pr, P2r)

]
(B.3)

Before we proceed further, we recall two useful facts. Firstly, the generating function for

the cycle index polynomials of Sn is [40, chapter 5.13]

∞∑
n=0

xnZSn(t1, t2, . . .) = exp

[ ∞∑
m=1

1

m
xmtm

]
(B.4)

and secondly, the cycle index polynomial of a wreath product group is [75, chapter 15.5]

ZG[H](t1, t2, . . .) = ZG(r1, r2, . . .) (B.5)

where

ri = ZH(ti, t2i, t3i, . . .)
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Combining (B.4) and (B.5) tells us that the generating function for the cycle index poly-

nomials of Sn[S2] is

∞∑
n=0

xnZSn[S2](t1, t2, . . .) =
∞∑
n=0

xn
∑
q`2n

ZSn[S2]
q

∏
i

tqii = exp

[ ∞∑
r=1

1

r
xrZS2(tr, t2r)

]
(B.6)

Putting together (B.6) and (B.3)

s =
∞∑
n=0

ZSn[S2](P1, P2, . . .)

=

∞∑
n=0

∑
q`2n

ZSn[S2]
q Pq

Therefore the inner product with Pq gives∑
R`2n with even

row lengths

χR(q) = 〈s, Pq〉 = ZSn[S2]
q zq (B.7)

Clearly a Young diagram has even row lengths if and only if its conjugate has even column

lengths, so to evaluate the column version of (B.2), we just conjugate the summation

variable R. Now Rc =sgn⊗R, so the characters are related by

χRc(q) = (−1)qχR(q)

Therefore ∑
R`2n with even
column lengths

χR(q) = (−1)qZSn[S2]
q zq (B.8)

Plugging (B.7) and (B.8) into (B.1) gives

N δ
n,m =

∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q (B.9)

B.2 The generating function

We now want to find the function

F (x, y) =
∑
n,m

xnymN δ
n,m =

∑
n,m

xnym
∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q (B.10)

Our approach is to build candidate generating functions by introducing the terms on the

right hand side one by one. We begin by using (B.6) twice

exp

[ ∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=
∑
n,m

xnym
∑
p`2n
q`2m

ZSn[S2]
p ZSn[S2]

q

∏
i

tpi+qii
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The third cycle index in (B.9) comes with a factor of (−1)p∪q. To introduce this into (B.6),

we just replace tk with −tk for n even. Multiplying through by this modified version with

a new set of variables sk and no overall level (no equivalent to x, y) gives

exp

[ ∞∑
k=1

1

2k
(s2
k − s2k) +

∞∑
k=1

1

2k
(xk + yk)(t2k + t2k)

]
=
∑
n,m,o

xnym
∑
p`2n
q`2m
r`2o

(−1)rZSn[S2]
p ZSm[S2]

q ZSo[S2]
r

∏
i

tpi+qii srii

This looks similar to (B.10), but we need to introduce a factor of zp∪q and enforce r = p∪q
(and hence o = n+m). We do this in two steps, corresponding to the two parts of

zp∪q =
∏
i

ipi+qi(pi + qi)!

To get the powers of i, we can just replace tk and sk with
√
ksk and

√
ktk.

exp

[ ∞∑
k=1

(
1

2
s2
k −

1√
2k
s2k

)]
exp

[ ∞∑
k=1

(xk + yk)

(
1

2
t2k +

1√
2k
t2k

)]
=
∑
n,m,o

xnym
∑
p`2n
q`2m
r`2o

(−1)p(−1)qZSn[S2]
p ZSm[S2]

q ZSo[S2]
r

∏
i

i
1
2

(pi+qi+ri)tpi+qii srii

Now getting the powers of i in zp∪q just reduces to the same condition we already needed,

r = p ∪ q. So now we just need to replace
∏
i t
pi+qi
i srii with δri,pi+qi(pi + qi)!. This can be

done via the integral ∫
C

dzdz̄

2π
e−zz̄zpz̄r = δp,rp!

So replacing tk with zk, sk with z̄k, multiplying by e−
∑
k zk z̄k , and integrating over a copy

of C for each k gives us

F (x,y) =
∑
n,m

xnym
∑
p`2n
q`2m

(−1)p∪qZSn[S2]
p ZSm[S2]

q Z
Sn+m[S2]
p∪q zp∪q

=

∫ ( ∞∏
k=1

dzkdz̄k
2π

)
exp

[ ∞∑
k=1

(
1

2
z̄2
k−

1√
2k
z̄2k

)]

exp

[ ∞∑
k=1

(xk+yk)

(
1

2
z2
k+

1√
2k
z2k

)]
exp

[
−
∞∑
k=1

zkz̄k

]

=
∏
k odd

∫
dzdz̄

2π
exp

[
1

2
(z̄2−2zz̄+(xk+yk)z2)

]
∏
k even

∫
dzdz̄

2π
exp

[
1

2

(
z̄2−2zz̄+(xk+yk)z2− 2√

k

(
z̄−
(
x
k
2 +y

k
2

)
z
))]

(B.11)
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So we have two integrals to compute. To do them we split z into its real and imaginary

parts. Using z = u+ iv, z̄ = u− iv, and for simplicity writing λ = xk + yk, µ = x
k
2 + y

k
2 ,

we have

z̄2 − 2zz̄ + λz2 = −(1− λ)(u+ iv)2 − 4v2

z̄2 − 2zz̄ + λz2 − 2√
k

(z̄ − µz) = −(1− λ)

(
u+ iv +

1− µ√
k(1− λ)

)2

− 4

(
v − i

2
√
k

)2

+
λ− 2µ+ µ2

k(1− λ)

So by changing variables from (z, z̄) to (u, v) (and remembering that dzdz̄ = 2dudv), both

odd and even integrals can be evaluated using the standard Gaussian integral∫ ∞
−∞

du e−a(u+b)2
=

√
π

a
(B.12)

where a, b are complex numbers with Re(a) > 0. Explicitly, the integrals are∫
dzdz̄

2π
exp

[
1

2
(z̄2 − 2zz̄ + λz2)

]
=

1√
1− λ

and ∫
dzdz̄

2π
exp

[
1

2

(
z̄2 − 2zz̄ + λz2 −

√
2

k
(z̄ − µz)

)]
=

1√
1− λ

exp

[
λ− 2µ+ µ2

2k(1− λ)

]
Plugging these into (B.11) gives

F (x, y) =

( ∏
k odd

1√
1− xk − yk

)
( ∏
k even

1√
1− xk − yk

exp

[
xk + x

k
2 y

k
2 + yk − x

k
2 − y

k
2

k(1− xk − yk)

])

=
∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
which matches the result (6.27), as expected.

C List of sequences and generating functions

We introduce a lot of different single and multi-trace counting sequences in this paper.

Here we present all of them in one place. For each sequence we give the definition of

the (n,m)th term, the first few terms, the generating function and (for the single trace

sequences) the plethystic exponential of the generating function. We also give the vector

spaces which have these functions as Hilbert series.

Many of the results here can be found together with their derivations in sections 5

and 6. The single trace sequences are only considered at infinite N , while the multi-trace
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sequences are defined for finite N , but we have only found their generating functions at

infinite N .

After listing the sequences, we give the relations between them and their generating

functions.

C.1 Single trace sequences

All of the following definitions are valid provided we have one of n,m 6= 0. For all single-

trace sequences, we implicitly set the n = m = 0 term to 0.

C.1.1 An,m

The An,m count single traces of generic matrices (U(N) single traces). They are defined by

An,m =
1

n+m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
Their generating function is

fU(N)(x, y) = −
∞∑
d=1

φ(d)

d
log(1− xd − yd)

which is the Hilbert series for the vector space TST. The plethystic exponential is

FU(N)(x, y) =
∏
n,m

1

(1− xnym)An,m
=

∞∏
k=1

1

1− xk − yk
(C.1)

which is the Hilbert series for the vector space T = Sym (TST).

The values of An,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6

3 1 1 2 4 5 7 10 12 15 19 22

4 1 1 3 5 10 14 22 30 43 55 73

5 1 1 3 7 14 26 42 66 99 143 201

6 1 1 4 10 22 42 80 132 217 335 504

7 1 1 4 12 30 66 132 246 429 715 1144

8 1 1 5 15 43 99 217 429 810 1430 2438

9 1 1 5 19 55 143 335 715 1430 2704 4862

10 1 1 6 22 73 201 504 1144 2438 4862 9252

C.1.2 an,m

The an,m count aperiodic single traces of generic matrices (U(N) aperiodic single traces),

or equivalently Lyndon words. They are defined by

an,m =
1

n+m

∑
d|n,m

µ(d)

(n+m
d
n
d

)
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Their generating function is

f̄U(N)(x, y) = −
∞∑
d=1

µ(d)

d
log(1− xd − yd)

which is the Hilbert series for the vector space T
(1)
ST . The plethystic exponential is

FU(N)(x, y) =
∏
n,m

1

(1− xnym)an,m
=

1

1− x− y

which is the Hilbert series for the vector space T (1) = Sym
(
T

(1)
ST

)
.

The values of an,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 3 5 7 9 12 15 18 22

4 0 1 2 5 8 14 20 30 40 55 70

5 0 1 3 7 14 25 42 66 99 143 200

6 0 1 3 9 20 42 75 132 212 333 497

7 0 1 4 12 30 66 132 245 429 715 1144

8 0 1 4 15 40 99 212 429 800 1430 2424

9 0 1 5 18 55 143 333 715 1430 2700 4862

10 0 1 5 22 70 200 497 1144 2424 4862 9225

C.1.3 Ainv
n,m

The Ainv
n,m count matrix words (up to cyclic rotations) which don’t change when reversed

(up to cyclic rotations). They are defined by

Ainv
n,m =

(
bn2 c+ bm2 c
bn2 c

)
Their generating function is

finv(x, y) =
x2 + xy + y2 + x+ y

1− x2 − y2

which is the Hilbert series for the vector space TST;inv. The plethystic exponential is

Finv(x, y) =
∏
n,m

1

(1− xnym)A
inv
n,m

=

∞∏
k=1

exp

[
x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

]

which is the Hilbert series for the vector space Tinv = Sym (TST;inv)
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The values of Ainv
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1

2 1 1 2 2 3 3 4 4 5 5 6

3 1 1 2 2 3 3 4 4 5 5 6

4 1 1 3 3 6 6 10 10 15 15 21

5 1 1 3 3 6 6 10 10 15 15 21

6 1 1 4 4 10 10 20 20 35 35 56

7 1 1 4 4 10 10 20 20 35 35 56

8 1 1 5 5 15 15 35 35 70 70 126

9 1 1 5 5 15 15 35 35 70 70 126

10 1 1 6 6 21 21 56 56 126 126 252

C.1.4 ainv
n,m

The ainv
n,m count aperiodic matrix words (up to cyclic rotations) which don’t change (up to

cyclic rotations) when reversed. They are defined by

ainv
n,m =

∑
d|n,m

µ(d)

(
b n2dc+ bm2dc
b n2dc

)
Their generating function is

f̄inv(x, y) =

∞∑
d=1

µ(d)
x2d + xdyd + y2d + xd + yd

1− x2d − y2d

which is the Hilbert series for the vector space T
(1)
ST;inv. The plethystic exponential is

F̄inv(x, y) =
∏
n,m

1

(1− xnym)a
inv
n,m

=

∞∏
k=1

exp

x2k + xkyk + y2k + xk + yk

k(1− x2k − y2k)

∑
d|k

dµ(d)


which is the Hilbert series for the vector space T

(1)
inv = Sym

(
T

(1)
ST;inv

)
The values of ainv

n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 1 3 3 3 4 5 4 6

4 0 1 2 3 4 6 8 10 12 15 18

5 0 1 3 3 6 5 10 10 15 15 20

6 0 1 3 3 8 10 17 20 32 33 53

7 0 1 4 4 10 10 20 19 35 35 56

8 0 1 4 5 12 15 32 35 64 70 120

9 0 1 5 4 15 15 33 35 70 68 126

10 0 1 5 6 18 20 53 56 120 126 245
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C.1.5 Bn,m

The Bn,m count single traces of anti-symmetric matrices (SO(N) single traces). They are

defined by

Bn,m =
1

2n+ 2m

∑
d|n,m

φ(d)

(n+m
d
n
d

)
+

(−1)n+m

2

(
bn2 c+ bm2 c
bn2 c

)
Their generating function is

fSO(N)(x, y) =
1

2

[
−
∞∑
d=1

φ(d)

d
log(1− xd − yd) +

x2 + xy + y2 − x− y
1− x2 − y2

]

which is the Hilbert series for the vector space T̃ST = TST;inv;even ⊕ T̃ST;var. The plethystic

exponential is

FSO(N)(x, y) =
∏
n,m

1

(1− xnym)Bn,m

=

∞∏
k=1

1√
1− xk − yk

exp

[
x2k + xkyk + y2k − xk − yk

2k(1− x2k − y2k)

]
(C.2)

which is the Hilbert series for the vector space T̃ = Sym
(
T̃ST

)
.

The values of Bn,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 1 0 1 0 1 0 1

1 0 1 0 1 0 1 0 1 0 1 0

2 1 0 2 0 3 0 4 0 5 0 6

3 0 1 0 3 1 5 3 8 5 12 8

4 1 0 3 1 8 4 16 10 29 20 47

5 0 1 0 5 4 16 16 38 42 79 90

6 1 0 4 3 16 16 50 56 126 150 280

7 0 1 0 8 10 38 56 133 197 375 544

8 1 0 5 5 29 42 126 197 440 680 1282

9 0 1 0 12 20 79 150 375 680 1387 2368

10 1 0 6 8 47 90 280 544 1282 2368 4752

C.1.6 bn,m

The bn,m count minimally periodic single traces of anti-symmetric matrices, or equivalently

orthogonal Lyndon words. They are defined by

bn,m =
1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+ (−1)

n+m
d

(
b n2dc+ bm2dc
b n2dc

)]
Their generating function is

f̄SO(N)(x, y) ==
1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d − xd − yd

1− x2d − y2d

]

– 107 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
5

which is the Hilbert series for the vector space T̃
(min)
ST = T

(1)
ST;inv;even ⊕ T

(2)
ST;inv;odd ⊕ T̃

(1)
ST;var.

The plethystic exponential is

F̄SO(N)(x, y) =
∏
n,m

1

(1− xnym)bn,m

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2k − xk − yk

1− x2k − y2k

∑
d|k

dµ(d)


which is the Hilbert series for the vector space T̃ (min) = Sym

(
T̃

(min)
ST

)
.

The values of bn,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 1 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0

2 1 0 1 0 3 0 3 0 5 0 5

3 0 1 0 2 1 5 3 8 5 11 8

4 0 0 3 1 6 4 16 10 26 20 47

5 0 1 0 5 4 15 16 38 42 79 90

6 0 0 3 3 16 16 46 56 125 150 275

7 0 1 0 8 10 38 56 132 197 375 544

8 0 0 5 5 26 42 125 197 432 680 1278

9 0 1 0 11 20 79 150 375 680 1384 2368

10 0 0 5 8 47 90 275 544 1278 2368 4735

C.1.7 b(odd)n,m

The b
(odd)
n,m count single traces of anti-symmetric matrices with a specified odd number of

periods. Note that n,m refer to the number of Xs and Y s contained in the aperiodic root

of the trace, rather than in the whole trace. They are defined by

b(odd)
n,m =

1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+ (−1)n+m

(
b n2dc+ bm2dc
b n2dc

)]
Their generating function is

f̄
(odd)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + (−x)d + (−y)d

1− x2d − y2d

]
which is the Hilbert series for the vector space T̃

(odd)
ST = T

(1)
ST;inv;even⊕T̃

(1)
ST;var. The plethystic

exponential is

F̄
(odd)
SO(N)(x, y) =

∏
n,m

1

(1− xnym)b
(odd)
n,m

=
1√

1− x− y

∞∏
k=1

exp

∑
d|k

dµ(d)

2k

x2k + xkyk + y2k + (−1)d(xk + yk)

1− x2k − y2k


which is the Hilbert series for the vector space T̃ (odd) = Sym

(
T̃

(odd)
ST

)
.
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The values of b
(odd)
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 1 0 1 0 1 0

2 0 0 1 0 2 0 3 0 4 0 5

3 0 1 0 2 1 5 3 8 5 11 8

4 0 0 2 1 6 4 14 10 26 20 44

5 0 1 0 5 4 15 16 38 42 79 90

6 0 0 3 3 14 16 46 56 122 150 275

7 0 1 0 8 10 38 56 132 197 375 544

8 0 0 4 5 26 42 122 197 432 680 1272

9 0 1 0 11 20 79 150 375 680 1384 2368

10 0 0 5 8 44 90 275 544 1272 2368 4735

C.1.8 b(even)n,m

The b
(even)
n,m count single traces of anti-symmetric matrices with a specified even number of

periods. Note that n,m refer to the number of Xs and Y s contained in the aperiodic root

of the trace, rather than in the whole trace. They are defined by

b(even)
n,m =

1

2

∑
d|n,m

µ(d)

[
1

n+m

(n+m
d
n
d

)
+

(
b n2dc+ bm2dc
b n2dc

)]

Their generating function is

f̄
(even)
SO(N)(x, y) =

1

2

∞∑
d=1

µ(d)

[
−1

d
log(1− xd − yd) +

x2d + xdyd + y2d + xd + yd

1− x2d − y2d

]

which is the Hilbert series for the vector space T̃
(even)
ST = T

(1)
ST;inv;even ⊕ T

(1)
ST;inv;odd ⊕ T̃

(1)
ST;var.

The plethystic exponential is

F̄
(even)
SO(N)(x, y) =

∏
n,m

1

(1− xnym)b
(even)
n,m

=
1√

1− x− y

∞∏
k=1

exp

 1

2k

x2k + xkyk + y2n + xk + yk

1− x2k − y2k

∑
d|k

dµ(d)



which is the Hilbert series for the vector space T̃ (even) = Sym
(
T̃

(even)
ST

)
.
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The values of b
(even)
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1

2 0 1 1 2 2 3 3 4 4 5 5

3 0 1 2 2 4 5 6 8 10 11 14

4 0 1 2 4 6 10 14 20 26 35 44

5 0 1 3 5 10 15 26 38 57 79 110

6 0 1 3 6 14 26 46 76 122 183 275

7 0 1 4 8 20 38 76 132 232 375 600

8 0 1 4 10 26 57 122 232 432 750 1272

9 0 1 5 11 35 79 183 375 750 1384 2494

10 0 1 5 14 44 110 275 600 1272 2494 4735

C.2 Multi-trace sequences

C.2.1 NU(N)
n,m

The N
U(N)
n,m count the multi-traces of generic N × N matrices, where N can be finite or

infinite. They are defined by

NU(N)
n,m =

∑
R`n
S`m

T`n+m
l(T )≤N

g2
R,S;T

At infinite N , An,m and N
U(N)
n,m are related by the plethystic exponential, so the generating

function is given by (C.1), which is the Hilbert series for T .

The values of N
U(∞)
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 1 1 2 3 5 7 11 15 22 30 42

1 1 2 4 7 12 19 30 45 67 97 139

2 2 4 10 18 34 56 94 146 228 340 506

3 3 7 18 38 74 133 233 385 623 977 1501

4 5 12 34 74 158 297 550 951 1614 2627 4202

5 7 19 56 133 297 602 1166 2133 3775 6437 10692

6 11 30 94 233 550 1166 2382 4551 8424 14953 25835

7 15 45 146 385 951 2133 4551 9142 17639 32680 58659

8 22 67 228 623 1614 3775 8424 17639 35492 68356 127443

9 30 97 340 977 2627 6437 14953 32680 68356 136936 264747

10 42 139 506 1501 4202 10692 25835 58659 127443 264747 530404
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C.2.2 NSO(N);δ
n,m

The N
SO(N);δ
n,m count the multi-traces of anti-symmetric N ×N matrices, where N can be

finite or infinite. They are defined by

NSO(N);δ
n,m =

∑
R`2n with even column lengths
S`2m with even column lengths
T`2n+2m with even row lengths

l(T )≤N

gR,S;T

At infinite N , Bn,m and N
SO(N);δ
n,m are related by the plethystic exponential, so the gener-

ating function is given by (C.2), which is the Hilbert series for T̃ .

The values of N
SO(∞);δ
n,m for n,m ≤ 10 are shown below

0 1 2 3 4 5 6 7 8 9 10

0 1 0 1 0 2 0 3 0 5 0 7

1 0 1 0 2 0 4 0 7 0 12 0

2 1 0 4 0 9 0 19 0 35 0 62

3 0 2 0 9 1 23 4 52 10 105 22

4 2 0 9 1 33 6 85 21 198 56 410

5 0 4 0 23 6 86 33 243 114 600 313

6 3 0 19 4 85 33 297 152 845 512 2137

7 0 7 0 52 21 243 152 879 664 2646 2227

8 5 0 35 10 198 114 845 664 3003 2742 9168

9 0 12 0 105 56 600 512 2646 2742 9702 11033

10 7 0 62 22 410 313 2137 2227 9168 11033 33704

C.3 Relations between different sequences

The an,m are the Möbius transform of the An,m.

An,m =
∑
d|n,m

an
d
,m
d

an,m =
∑
d|n,m

µ(d)An
d
,m
d

fU(N)(x, y) =

∞∑
k=1

f̄U(N)(x
k, yk) f̄U(N)(x, y) =

∞∑
k=1

µ(k)fU(N)(x
k, yk)

FU(N)(x, y) =

∞∏
k=1

F̄U(N)(x
k, yk) F̄U(N)(x, y) =

∞∏
k=1

FU(N)(x
k, yk)µ(k)

The ainv
n,m are the Möbius transform of the Ainv

n,m.

Ainv
n,m =

∑
d|n,m

ainv
n
d
,m
d

ainv
n,m =

∑
d|n,m

µ(d)Ainv
n
d
,m
d

finv(x, y) =

∞∑
k=1

f̄inv(xk, yk) f̄inv(x, y) =

∞∑
k=1

µ(k)finv(xk, yk)

Finv(x, y) =
∞∏
k=1

F̄inv(xk, yk) F̄inv(x, y) =
∞∏
k=1

Finv(xk, yk)µ(k)
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The Bn,m can be expressed in terms of the An,m and the Ainv
n,m.

Bn,m =
1

2

[
An,m + (−1)n+mAinv

n,m

]
fSO(N)(x, y) =

1

2

[
fU(N)(x, y) + finv(−x,−y)

]
The bn,m are the Möbius transform of the Bn,m.

Bn,m =
∑
d|n,m

bn
d
,m
d

bn,m =
∑
d|n,m

µ(d)Bn
d
,m
d

fSO(N)(x, y) =
∞∑
k=1

f̄SO(N)(x
k, yk) f̄SO(N)(x, y) =

∞∑
k=1

µ(k)fSO(N)(x
k, yk)

FSO(N)(x, y) =

∞∏
k=1

F̄SO(N)(x
k, yk) F̄SO(N)(x, y) =

∞∏
k=1

FSO(N)(x
k, yk)µ(k)

The b
(odd)
n,m and b

(even)
n,m can be expressed in terms of the an,m and the ainv

n,m.

b(odd)
n,m =

1

2

[
an,m+(−1)n+mainv

n,m

]
b(even)
n,m =

1

2

[
an,m+ainv

n,m

]
f̄

(odd)
SO(N)(x,y) =

1

2

[
f̄U(N)(x,y)+f̄inv(−x,−y)

]
f̄

(even)
SO(N)(x,y) =

1

2

[
f̄U(N)(x,y)+f̄inv(x,y)

]
D Jucys-Murphy elements

Take a Young diagram R ` n, and label each box by their row and column number, where

the top left box is (1, 1) and numbers increase to the right and downwards. Then for the

box i = (r, c), we define the content of that box to be ci = c− r. For example, the contents

of R = [4, 4, 2, 2], [8, 4, 2] and [2, 2, 2, 2, 2, 2] are shown below

0 1 2 3

−1 0 1 2

−2 −1

−3 −2

0 1 2 3 4 5 6 7

−1 0 1 2

−2 −1

0 1

−1 0

−2 −1

−3 −2

−4 −3

−5 −4

(D.1)

The contents of a box relate to the eigenvalues of a certain set elements of C(Sn) called

the Jucys-Murphy elements, defined by

Jk =
k−1∑
i=1

(i, k) (D.2)

These span a maximal commuting sub-algebra of C(Sn), and therefore one can choose a

basis of any irreducible representation to be eigenvectors of the Jk. To describe this basis,

we first recall the definition of a standard Young tableaux.
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For a Young diagram R ` n, a Young tableaux of shape R is produced by placing a

positive integer into each box of R. The tableaux is called semi-standard if the numbers

increase weakly along the rows and strictly down the columns. It is called standard if in

addition the n integers are the numbers 1 to n. For example, the possible standard Young

tableaux of shape R = [3, 2] are

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4

In an irrep R ` n of Sn, the basis of eigenvectors for the Jucys-Murphy elements are

labelled by the standard Young tableaux of shape R. Consider such a tableau r. Then the

eigenvalue of |r〉 under Jk is the content of the box containing k in r. So for example if we

have R = [3, 2, 1] the contents of the cells are

0 1 2

−1 0

−2

so the eigenvalues of the Jucys-Murphy elements on 4 of the 16 different standard Young

tableaux are

1 2 3

4 5

6

1 3 5

2 6

4

1 2 6

3 4

5

1 4 6

2 5

3

J2 1 -1 1 -1

J3 2 1 -1 -2

J4 -1 -2 0 1

J5 0 2 -2 0

J6 -2 0 2 2

We will be particularly interested in the product

Ω =
n∏
i=1

(N + Ji) (D.3)

It is a standard result, see for example [76], that this can also be written

Ω =

n∏
i=1

(N + Ji) =
∑
σ∈Sn

N c(σ)σ (D.4)

where c(σ) is the number of cycles in σ. From this second expression we can see that Ω is

in the centre of the C(Sn).

αΩα−1 =
∑
σ∈Sn

N c(σ)ασα−1

=
∑
σ∈Sn

N c(α−1σα)σ

= Ω
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Therefore, by Schur’s lemma, in any irrep of Sn the representative of Ω is proportional

to the identity. To find the constant of proportionality, consider Ω acting on a standard

Young tableaux r of shape R ` n. Since the product in (D.3) includes all the Jucys-Murphy

elements, the content of every box will be picked up. Therefore

DR (Ω) |r〉 =

 ∏
i∈ boxes

of R

(N + ci)

 |r〉
As expected, the eigenvalue of Ω on r does not depend on r, only on the irrep R. So we have

DR (Ω) =
∏

i∈ boxes
of R

(N + ci) (D.5)

Another important result, similar in spirit to (D.4), is as follows: consider Sn[S2] as a sub-

group of S2n. Then one can choose the left coset representatives of this subgroup such that

∑
β left coset

representatives

C
(δ)
I βIJC

(δ) Jβ =

n∏
i=1

(N + J2i−1) (D.6)

This is the key result behind the evaluation of the mesonic correlator in [24, 26], and is

proved inductively in [76].

E Alternative derivation of baryonic correlator

To evaluate (8.7) explicitly, we first look at how the equivalent mesonic calculation was

performed in [26]. The mesonic starting point is (8.6), and the first step is to split the

sum over S2n+2m into two, one over the subgroup Sn+m[S2] and the other over the (left)

coset representatives of said subgroup. The invariance properties of |T 〉 and C
(δ)
I mean

the subgroup sum becomes trivial and merely contributes a normalisation factor. The sum

over the coset representatives is evaluated using (D.6). Finally the correlator is found by

evaluating the product of Jucys-Murphy elements on the vector |T 〉.
This process works for the baryonic case, but with subgroup SN × Sq[S2] (where q =

n+m− N
2 ) instead of Sn+m[S2]. Splitting the sum as before, we see that both |1N +T 〉 and

C(ε) are invariant (up to minus signs, which cancel) under SN × Sq[S2], so the subgroup

sum becomes trivial and just produces a factor of N !2qq!. Writing C(β) for C
(ε)
I βIJC

(ε)J ,

the sum we are left with is

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉

= δTT ′δRR′δSS′δλλ′
d1N+T 2n+m+qn!m!N !q!

(2n+ 2m)!
〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

(E.1)
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Since β are the coset representatives of SN × Sq[S2], we cannot use (D.6). Instead we

prove a generalisation, (E.3), that performs the same role, expressing the sum over coset

representatives in terms of Jucys-Murphy elements. The majority of this section is taken

up by proving this result, following the methods used by [76] in proving (D.4) and (D.6).

After the proof, we then determine how the product of Jucys-Murphy elements acts on the

vector |1N + T 〉.
Since we are using left coset representatives, a generic element σ ∈ S2n+2m can be

written σ = βτ where β is the coset rep and τ ∈ SN × Sq[S2]. The cosets are labelled by a

choice of q pairs from {1, 2, . . . , N + 2q}. Let the set of all such choices be Pq. An element

of p ∈ Pq then has the form

p =
{
{i1,1, i1,2}, {i2,1, i2,2}, . . . , {iq,1, iq,2}

}
The coset representative for p could be any permutation βp satisfying

βp(p) =
{
{N + 1, N + 2}, {N + 3, N + 4}, . . . , {N + 2q − 1, N + 2q}

}
(E.2)

Using this notation for the cosets, we propose

Proposition. The coset representatives βp can be chosen such that

∑
p∈Pq

C(βp)βp =N !

q∏
i=1

N+
N∑
j=1

(j,N+2i−1)+
N∑
j=1

(j,N+2i)+
2i−2∑
j=1

(N+j,N+2i−1)


=N !

q∏
i=1

[N+JN+2i−1+(N+1,N+2i)JN+1(N+1,N+2i)] (E.3)

where the product is ordered [i = 1][i = 2] . . . [i = q].

Proof. We prove this by induction on q at fixed N , following the example of [76]. First

we consider the base case with q = 1. The possible p, along with the associated βp and

C(βp) are

p {N + 1, N + 2} {k,N + 1} {k,N + 2} {l1, l2}
βp 1 (k,N + 2) (k,N + 1) (l1, N + 1)(l2, N + 2)

C(βp) N !N N ! N ! 0

where 1 ≤ k, l1, l2 ≤ N and l1, l2 are distinct. It is simple to check that these βp satisfy

the conditions in (E.2) and therefore serve as coset representatives. The calculations for

C(βp) are shown diagrammatically in figure 14. For simplicity the figure shows k = N in

the pairings p = {k,N + 1}, {k,N + 2} and l1 = N − 1, l2 = N in the pairing p = {k1, k2},
but it is clear that the results hold for all k, l1, l2.

So we have

∑
p∈P1

C(βp)βp = N !

N +

N∑
j=1

(j,N + 1) +

N∑
j=1

(j,N + 2)


as claimed in (E.3).
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ε

ε

. . .

ε

ε

. . .

ε

ε

. . .

ε

ε

. . .

Figure 14. Diagrammatic calculation of C(β) for β = 1, (N,N + 1), (N,N + 2) and (N − 1, N +

1)(N,N + 2) respectively. Two εs fully contracted contribute εi1...iN ε
i1...iN = N ! while a loop gives

δijδ
ij = N . Since ε is anti-symmetric and δ is symmetric, a contraction between the two gives 0.

Now assume the claim is true for q − 1. In particular this means that there is a map

from Pq−1 → SN+2q−2, namely p→ βp, such that for each p, βp satisfies (E.2), and the βp
combine so as to satisfy (E.3).

Now we consider the case at q. The pairings p ∈ Pq fall into 5 categories depending

on how N + 2q − 1 and N + 2q pair (or don’t pair) up with the first N + 2q − 2 numbers.

1. {N + 2q − 1, N + 2q} is a pair

2. {k1, N + 2q − 1} and {k2, N + 2q} are pairs, for some k1, k2 < N + 2q − 1, k1 6= k2

3. N + 2q is unpaired and {k,N + 2q − 1} is a pair, for some k < N + 2q − 1

4. N + 2q − 1 is unpaired and {k,N + 2q} is a pair, for some k < N + 2q − 1

5. N + 2q − 1 and N + 2q are both unpaired

We now split up the sum over Pq into five sums, one for each type of pairing.

Type 1. Let Pq;1 be the set of pairings that are of type 1. Given p ∈ Pq,1, first note that

p reduces uniquely to a p̄ ∈ Pq−1 given by p̄ = p\{N + 2q − 1, N + 2q}. Using this p̄, we

choose the coset representative of p to be

βp = βp̄

By which we mean that βp acts as βp̄ on {1, 2, . . . , N + 2q − 2} and as the identity on

{N + 2q − 1, N + 2q}. It is simple to check that this satisfies the conditions (E.2).

To calculate C(βp), add an extra label q onto the contractor C(ε) to record how many

indices it has. So C(ε;q) will have N + 2q indices, the first N in an ε and the remaining 2q

in q δs. Then we can write C
(ε;q)
i1...iN+2q

= C
(ε;q−1)
i1...iN+2q−2

δiN+2q−1iN+2q . Since C
(ε;q)
i1...iN+2q

is the

contractor used in C(βp), while C
(ε;q−1)
i1...iN+2q

is used in C(βp̄), this allows us to relate C(βp)

and C(βp̄). This calculation is shown diagrammatically at the top left of figure 15. In

particular we find

C(βp) = NC(βp̄)

Given a p̄ ∈ Pq−1, there is a unique p ∈ Pq;1 which reduces to p̄, namely p = p̄∪ {N + 2q−
1, N + 2q}. Therefore ∑

p∈Pq;1

C(βp)βp = N
∑

p̄∈Pq−1

C(βp̄)βp̄ (E.4)
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Type 2. We follow the same route as for type 1. Let Pq;2 be the set of pairings that

are of type 2. Given p ∈ Pq,2, we define p̄ ∈ Pq−1 by p̄ = (p ∪ {k1, k2}) \{{k1, N + 2q −
1}, {k2, N + 2q}}. We then choose the coset representative of p to be

βp = βp̄ (βp̄(k2), N + 2q − 1) = (k2, N + 2q − 1)βp̄

Again, one can check that this satisfies the conditions (E.2).

The calculation for C(βp) is shown diagrammatically in figure 15 in the middle of the

top row. For simplicity, the calculation shown has k2 = N + 2q− 2, but it is clear that for

any k2 we arrive at the relation

C(βp) = C(βp̄)

Consider p̄ ∈ Pq−1. We can explicitly write this out as

p̄ =
{
{l1,1, l1,2}, {l2,1, l2,2}, . . . , {lq−1,1, lq−1,2}

}
Now consider the different p which reduce to p̄. For each pair {li,1, li,2}, we obtain 2 possible

p by setting k1 = li,1 and k2 = li,2 or k1 = li,2 and k2 = li,1. Therefore we can specify

a p ∈ Pq;2 by the trio (p̄, i, j), where the two cases above correspond to j = 2 and j = 1

respectively (so p has k2 = li,j). Changing variables in this way, we have

∑
p∈Pq;2

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

q−1∑
i=1

2∑
j=1

(βp̄(li,j), N + 2q − 1)

From (E.2) we know that βp̄({li,j}) = {N + 1, N + 2, . . . , N + 2q − 2}, so we can simplify

this to ∑
p∈Pq;2

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

2q−2∑
j=1

(N + j,N + 2q − 1) (E.5)

Types 3 and 4. Let Pq;3 be the set of pairings that are of type 3. Given p ∈ Pq,3, we

define p̄ ∈ Pq−1 by p̄ = p\{k,N+2q−1}. We then choose the coset representative of p to be

βp = βp̄ (βp̄(k), N + 2q) = (k,N + 2q)βp̄

The calculation for C(βp) is shown diagrammatically at the top right of figure 15, and

demonstrates that

C(βp) = C(βp̄)

For simplicity, the calculation shown has k = N + 2q − 2, but clearly k can be arbitrary

and we still arrive at the same result.

Take p̄ ∈ Pq−1. This contains q − 1 pairs from the set {1, 2, . . . N + 2q − 2}, so there

are N numbers that are omitted. Let these be {l1, . . . , lN}. The different p which reduce

to p̄ are then given by p̄ ∪ {li, N + 2q − 1} for i = 1, 2, . . . , N . Therefore a p ∈ Pq;3 can be

specified by the pair (p̄, i). Changing to these variables, we have

∑
p∈Pq;3

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
i=1

(βp̄(li), N + 2q)
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C(ε;q−1)

. . .

ε

ε

C(ε;q−1)

. . .

βp̄

C(ε;q−1)

. . .

C(ε;q−1)

. . .

βp̄

C(ε;q−1)

. . .

C(ε;q−1)

. . .

βp̄

. . .

. . .
. . .

Figure 15. Diagrammatic calculation of C(β) for various β ∈ SN+2q. The top row shows β =

βp̄, (N + 2q − 2, N + 2q − 1)βp̄ and (N + 2q − 2, N + 2q)βp̄ respectively, where βp̄ ∈ SN+2q−2. The

bottom row shows a β with β(N + 2q − 1) = 1 and β(N + 2q) = 2. These two values of β are

enough to ensure C(β) = 0, so the remaining parts of β are not included in the diagram.

From (E.2) we know that βp̄({li}) = {1, 2, . . . , N}, therefore this simplifies to

∑
p∈Pq;3

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
j=1

(j,N + 2q) (E.6)

We can repeat the above process with N + 2q − 1 and N + 2q swapped to give the sum

over type 4 pairings

∑
p∈Pq;4

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N∑
j=1

(j,N + 2q − 1) (E.7)

Type 5. Let Pq;5 be the set of pairings that are of type 5. Given p ∈ Pq,5, we can choose

the coset representative βp such that

βp(N + 2q − 1) = 1, βp(N + 2q) = 2

We do not need to specify the remaining values of βp as this is enough to show that C(βp)

vanishes. The calculation is shown diagrammatically on the bottom row of figure 15.

This means ∑
p∈Pq;5

C(βp)βp = 0 (E.8)
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Adding together (E.4), (E.5), (E.6), (E.7) and (E.8), we get

∑
p∈Pq

C(βp)βp =
∑

p̄∈Pq−1

C(βp̄)βp̄

N +

N∑
j=1

(j,N + 2q − 1) +

N∑
j=1

(j,N + 2q)

+

2q−2∑
j=1

(N + j,N + 2q − 1)


The factor on the right is just the i = q factor in (E.3), so plugging in the inductive

assumption proves the proposition.

We now study how the two Jucys-Murphy elements in (E.3), JN+2i−1 and the conjugate

of JN+1, act on |1N + T 〉 and its constituents. We start with JN+1.

The vector |1N + T 〉 is a linear combination of various standard Young tableaux of

shape 1N +T . Let r be one of these tableaux. Since |1N +T 〉 is completely anti-symmetric

under the SN acting on {1, 2, . . . , N}, the first column of r must consist of the numbers

1, 2, . . . , N . Then as |1N +T 〉 is invariant under the Sq[S2] acting on the pairs {{N+1, N+

2}, . . . , {N+2q−1, N+2q}}, the numbers {N+1, N+2, . . . , N+2q−1, N+2q}must appear

in pairs, with each even number appearing directly to the right of the preceding odd number

(this is proved in [76]). This means that the odd numbers greater than N occupy the 2nd,

4th, 6th, . . . columns of r while the even numbers greater than N occupy the 3rd, 5th, 7th,

. . . columns. So for example, given T = [4, 4, 2], the possible r are displayed in figure 16.

Since the numbers 1, 2, . . . , N take up the first column of r, the number N + 1 must

in the first box of the second column (one can see that this is the case for all the tableaux

shown in figure 16). The content of this box is 1, and therefore JN+1 has eigenvalue 1

when acting on r:

D1N+T (JN+1) |r〉 = |r〉

We are interested in the conjugate of JN+1, where the conjugating element is (N+1, N+2i),

1 ≤ i ≤ q. Since SN commutes with (N+1, N+2i), we know that D1N+T [(N+1, N+2i)]|r〉
is still anti-symmetric under SN , and hence, by the same argument as above, it is made up

of standard Young tableaux with N + 1 in the first box of the second column. Therefore

D1N+T [JN+1(N + 1, N + 2i)] |r〉 = D1N+T [(N + 1, N + 2i)]|r〉

Multiplying by D1N+T [(N + 1, N + 2i)] gives

D1N+T

 N∑
j=1

(j,N + 2i)

 |r〉 = D1N+T [(N + 1, N + 2i)JN+1(N + 1, N + 2i)] |r〉 = |r〉

This gives the behaviour of the second term in each factor of (E.3). We now look at the

other term, of the form JN+2i−1.

Denote the contents of the cell labelled by k in r by c(r, k). Then

D1N+T (JN+2i−1) |r〉 = c(r,N + 2i− 1)|r〉
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1 N+1 N+2 N+3 N+4

2 N+5 N+6 N+7 N+8

3 N+9 N+10

4

...

N

1 N+1 N+2 N+3 N+4

2 N+5 N+6 N+9 N+10

3 N+7 N+8

4

...

N

1 N+1 N+2 N+5 N+6

2 N+3 N+4 N+7 N+8

3 N+9 N+10

4

...

N

1 N+1 N+2 N+5 N+6

2 N+3 N+4 N+9 N+10

3 N+7 N+8

4

...

N

1 N+1 N+2 N+7 N+8

2 N+3 N+4 N+9 N+10

3 N+5 N+6

4

...

N

Figure 16. The standard Young tableaux that contribute to the vector |1N +T 〉 for T = [4,4,2].
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Decomposing |1N + T 〉 into its constituent standard Young tableaux, we have

|1N + T 〉 =
∑
r

αr|r〉

for some coefficients αr. Therefore

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

= N !〈1N + T |
q∏
i=1

[N + JN+2i−1 + (N + 1, N + 2i)JN+1(N + 1, N + 2i)]
∑
r

αr|r〉

= N !〈1N + T |
∑
r

αr

q∏
i=1

[N + 1 + c(r,N + 2i− 1)] |r〉 (E.9)

As we noted earlier, the odd numbers greater than N occupy the even numbered columns

of r, so the set {c(r,N+2i−1) : 1 ≤ i ≤ q} is just the contents of these columns. Therefore

the product in (E.9) does not depend on r, just on the shape of 1N + T , and we can pull

it out of the sum. Using the same notation as for the mesonic correlator, we have

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉

= N !
∏

i∈ even
columns of 1N+T

(N + 1 + ci)〈1N + T |1N + T 〉

= N !
∏

i∈ even
columns of 1N+T

(N + 1 + ci)

Now we note that ∏
i∈ even

columns of 1N+T

(N + 1 + ci) =
∏

i∈ odd
columns of 1N+T

excluding first column

(N + ci)

and

N ! =
∏

i∈ first
column of 1N+T

(N + ci)

Therefore

〈1N + T |D1N+T

 ∑
β left coset

representatives

C(β)β

 |1N + T 〉 =
∏

i∈ odd
columns of 1N+T

(N + ci)
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Reinstating the normalisation factor from (E.1), the full baryonic correlator is

〈OεT,R,S,λO
ε
T ′,R′,S′,λ′〉= δTT ′δRR′δSS′δλλ′2

n+m+qn!m!N !q!
d1N+T

(2n+2m)!

∏
i∈ odd

columns of 1N+T

(N+ci)

which, as expected, agrees with (8.14).
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