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1 Introduction

It is a well known fact that electroweak corrections to hard processes at proton or elec-

tron colliders contain logarithmically enhanced contributions of the form αnL2n, where

L = ln(q/mV ), q being the hard process scale and mV ∼ mW/Z . This is the case even

for observables that are completely inclusive over the final state, and can be traced back

to the fact that the initial state protons are not singlets under the SU(2) gauge group.

Due to this double-logarithmic scaling, the convergence of electroweak perturbation the-

ory becomes worse as the center-of-mass energy increases, and ultimately breaks down

completely, namely when αL2 ∼ 1. To obtain reliable predictions at these energy scales

requires a reorganization of the perturbative expansion such that these large logarithms

are resummed to all orders in perturbation theory.

Most of the studies of electroweak logarithms have considered completely exclusive

observables, such that the final state is fixed. In this case the only contributions to log-

arithmically enhanced electroweak corrections arise from the virtual exchange of massive
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gauge bosons. The mass of the gauge boson regulates the IR divergences present in mass-

less gauge theories, giving rise to the logarithmic sensitivity on mV . These electroweak

Sudakov logarithms have been studied for a long time [1–17], and a systematic way to

resum them using soft-collinear effective theory (SCET) [18–21] was developed in [15, 16].

Just as for massless theories, the real radiation of gauge bosons leads to infrared sensitivity,

and therefore logarithmic sensitivity to mV is present in such real emission contributions as

well. An analogy with parton showers allowed the resummation of the enhanced corrections

to leading logarithmic (LL) accuracy [22].

As already discussed, even fully inclusive observables contain double logarithmic sen-

sitivity to the ratio q/mV , due to the fact that the initial state is not an SU(2) singlet. For

an observable that is completely inclusive over the final state, all logarithmically enhanced

terms arise from initial-state radiation of W bosons. To LL accuracy, the large logarithms

arise from emissions of heavy gauge bosons that are both collinear and soft, and are de-

scribed by the DGLAP evolution of parton distribution functions [23–37], where one needs

the full set of particles in the Standard Model. These DGLAP equations were first derived

in [31], and the phenomenology of this DGLAP evolution in the complete SM was studied

in [38, 39]. As will be shown in this paper, while the DGLAP evolution presented in [38, 39]

was only accurate to double-logarithmic level, the full LL structure can be obtained for

such completely inclusive observables through an appropriate scale choice in the SU(2)

coupling constant.

Most realistic observables, however, contain a final state which is neither fully inclusive

nor fully exclusive. The results of [40] allow one to obtain NLL predictions where a subset

of the final state particles is fixed, while being inclusive over the emission of additional

particles. So for example, they allow one to compute the cross section of the process

pp→ e+e−+X, whereX denotes additional particles in the final state. For the most general

case, where one wants to include additional final state particles only partially (for example

only in a given kinematic range, or only those that decay in a particular way) one needs to

use an electroweak parton shower, which generates an arbitrary final state. If formulated

correctly, such a parton shower will resum all LL electroweak Sudakov logarithms, and

furthermore include many (but not all) of the NLL logarithms. A final-state parton shower

including emissions from all interactions in the Standard Model was developed [41], which

also paid special attention to important threshold effects for longitudinal gauge bosons.

To obtain the full NLL accuracy of [40] requires four types of input: the hard cross sec-

tions evaluated at the partonic center-of-mass energy in the unbroken SU(3)⊗SU(2)⊗U(1)

Standard Model, the parton distributions functions (PDFs) describing the collinear evolu-

tion of the initial-state particles, the fragmentation functions (FFs) describing the collinear

evolution of the final-state particles, and a soft function describing the wide-angle soft

radiation. The collinear evolution needs to be performed with the full gauge structure

SU(3) ⊗ SU(2) ⊗ U(1) and was discussed for the PDFs in detail in [38, 39]. In this paper

we will perform a similar analysis for the FFs, including numerical results showing the im-

pact of the logarithmic terms. Our results can be used as one of the inputs to [40], which

allows full NLL accuracy. When used on their own, one relies on the scaling αL� 1 being

sufficient to assume that LL accuracy, matched with fixed-order electroweak corrections as
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discussed in [39], will be sufficient. Under this assumption, one can omit the soft functions

and use the hard cross sections only in combination with the collinear evolution of PDFs

and FFs, but one has to keep in mind that large factors in the NLL terms could invalidate

this naive logarithmic counting.1

This paper is organized as follows: in section 2 we discuss the form of the fragmen-

tation function and their DGLAP evolution with q. This discussion is correct to double

logarithmic accuracy, and we discuss in section 3 how the results can be modified to achieve

full leading-logarithmic accuracy through an appropriate scale choice of the SU(2) coupling

α2. After a brief discussion of some implementation details in section 4, we present the

results for the fragmentation functions in section 5. Our conclusions are given in section 6,

and in appendix A and B we give details of an isospin and CP basis that decouples parts

of the DGLAP evolution and the equations used in the forward evolution.

2 Resummation of collinear final-state logarithms

Electroweak logarithms arise from the exchange of massive gauge bosons in loops, or from

the real radiation of massive gauge bosons. To LL accuracy, the only contributions are from

gauge bosons that are collinear to one of the initial- or final-state particles. These are pre-

cisely the contributions that are contained in the DGLAP evolution of PDFs (for emissions

collinear to initial-state particles) and FFs (for emissions collinear to final-state particles).

In the strong sector, the DGLAP equations only give rise to single logarithmic terms.

This is because the limits where emissions are simultaneously soft and collinear cancel

between virtual and real contributions to the DGLAP equations. This fact is easy to un-

derstand, since an arbitrarily soft emission of a gluon cannot be observed experimentally,

so the divergence associated with this emission needs to cancel against the virtual contri-

bution. This is different from the case of the soft emission of a W boson, which can always

be observed through the change of flavor (or SU(2) quantum numbers) of the emitting par-

ticle. Thus, as long as a process is sensitive to the SU(2) quantum numbers of the external

particles, soft radiation of W bosons from these particles gives rise to double logarithms.

Any observable at hadron or lepton colliders is sensitive to the SU(2) quantum num-

bers of the initial state, since the particles being collided are not SU(2) singlets. This

leads to the important prediction that electroweak double logarithms are present for any

observable, even if they are completely inclusive over the final state. For observables where

one identifies the SU(2) properties of the final state (for example by demanding to find two

leptons of given flavors), additional double logarithms arise from the collinear radiation off

final state particles (even if one is completely inclusive over the momenta of said particles,

and also over extra particles being radiated). These collinear logarithms can be resummed

by solving the DGLAP evolution of FFs, as we will now discuss.

DGLAP equations for FFs are very similar to those for PDFs, and the discussion of

them closely follows [38, 39]. We will therefore be relatively brief in this work, and refer

the reader to the previous papers for more discussion.

1An analysis of the size of various contributions to the full NLL resummation in exclusive processes was

performed in [42].
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Our solutions to the SM evolution equations are obtained in the approximation of exact

SU(3)×SU(2)×U(1) symmetry. That is, we neglect fermion and Higgs masses and the Higgs

vacuum expectation value, the effects of these being power-suppressed at high scales. We

impose an infra-red cutoff mV on interactions that involve the emission of an electroweak

vector boson, V = W i for SU(2) or B for U(1).2 Leading-order evolution kernels and

one-loop running couplings are used. All the electroweak FFs are generated dynamically

by evolving upwards from a scale q0 ∼ mV . In practice we take q0 = mV = 100 GeV. More

details of the input FFs will be given in section 4.

2.1 Definition of the fragmentation functions

The fragmentation function Dk
i (x, q) gives the distribution of the momentum fraction x

for particle species k in a jet initiated by a parton of type i produced in a hard process

at momentum scale q. As in the case of PDFs, it is convenient to define the momentum-

weighted FFs,

dki (x, q) = xDk
i (x, q) . (2.1)

Note that when we omit one of the labels i or k, our expressions apply independent of its

value. One important thing to realize is that only particles in the broken-symmetry phase

(or the products of their decay or hadronization) can be observed with a given momentum

in the detector, and the index k therefore only runs over the particles in the broken basis,

that is, the fermions, photon, gluon, Higgs, W± and Z0 bosons. Furthermore, one typically

does not distinguish between left- and right-handed particles, or the different polarizations

of the vector bosons, in a detector. Thus, the total number of fermions is 6 quarks and

anti-quarks, and 6 leptons and anti-leptons, giving 24 fermions. There are a total of 5

vector bosons and one Higgs, giving a total of 30 particles we need to consider for k.

Since the index i denotes the object produced at a high scale that initiates the jet,

we define it in the unbroken-symmetry phase. When i is a fermion, one needs to separate

left- and right-handed chirality states, which evolve differently as they belong to different

representations of the SU(2) ⊗ U(1) symmetry. This gives a total of 12 quarks and anti-

quarks, and 9 leptons and anti-leptons, making 42 fermions.

For each transversely-polarized SM vector boson, we need separate positive and nega-

tive helicity FFs, dkV± , since boson polarization is generated during evolution and transmit-

ted to the fermions.3 Interference between different helicity states cancels upon azimuthal

integration of transverse momenta in successive parton splittings, so there are no mixed-

helicity boson FFs.

Since SU(3) is unbroken, we need only a single gluon FF of each helicity for each frag-

mentation product, dkg+ and dkg− . For the SU(2) ⊗ U(1) symmetry, there are 8 transversely-

polarized gauge bosons (W+
± , W−± , W 3

± and B±), For the neutral bosons B and W 3, one

also needs to take into account the two mixed BW± FFs, representing the interference

2The cutoff is not strictly necessary for B emission, but we keep it because the B and W 3 are mixed in

the physical Z0 boson.
3The original version of [38] did not discuss the effects of polarized vector bosons, the importance of

which for electroweak evolution was first pointed out in [40, 43].
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i

k
flight V H sum

f 42× 24 42× 5 42 42× 30

g± 2× 24 2× 5 2 2× 30

W±± 4× 24 4× 5 4 4× 30

V 0
± 6× 24 6× 5 6 6× 30

H± 2× 24 2× 5 2 2× 30

H0 2× 24 2× 5 2 2× 30

H0/H
0

2× 24 2× 5 2 2× 30

sum 60× 24 60× 5 60 60× 30

Table 1. Total number of fragmentation functions required. For a given final-state particle k, one

requires a total of 60 FFs, which is the same as the number of PDFs needed for the initial state.

Each object i can fragment into 30 particles k (the total number of particles and antiparticles in

the Standard Model). Thus, in general 60 × 30 = 1800 FFs are required.

contribution when i could have been either of them. Such mixed FFs arise from the fact

that the left-handed fermions and Higgs carry both isospin and hypercharge, such that

an interference between two amplitudes, one with a B± and one with a W 3
± boson in the

final state, can arise. This is the very similar to the case of mixed PDFs when such an

interference arises in the initial state [31, 38]. Thus there are a total of 12 gauge boson

labels required. There are 4 unmixed Higgs bosons H±, H0 and H
0

and 2 mixed H0/H
0

FFs in the unbroken phase. This brings the total to 60, the same number as for PDFs, as

summarized in table 1.

Instead of using the unbroken basis, where all particles have definite quantum num-

bers under the SU(3) ⊗ SU(2) ⊗ U(1), one can also work in the broken basis, where

instead of H0 and H
0

one has the Higgs boson h and the longitudinally-polarized Z0,

and instead of the neutral gauge bosons B and W3, one has the photon and transversely-

polarized Z0. In the latter case, one can construct the FFs for the photon, the Z0 and their

mixed γZ state as transformations of the FFs for the B, the W3 and their mixed state.

This is anyway necessary at the electroweak scale, below which the symmetry is broken.

Using A = cWB + sWW3 and Z0 = −sWB + cWW3, the relation between FFs containing

i = γ, Z, γZ and those with i = B,W3, BW is dγ
dZ
dγZ

 =

 c2
W s2

W cW sW
s2
W c2

W −cW sW
−2cW sW 2cW sW c2

W − s2
W


 dB
dW3

dBW

 , (2.2)

and thus  dB
dW3

dBW

 =

 c2
W s2

W −cW sW
s2
W c2

W cW sW
2cW sW −2cW sW c2

W − s2
W


 dγ
dZ
dγZ

 , (2.3)
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where the weak mixing parameters are given by

sW ≡ sW (q) =

√
α1(q)

α1(q) + α2(q)

cW ≡ cW (q) =

√
α2(q)

α1(q) + α2(q)
. (2.4)

In the neutral Higgs sector, the relation between the broken and unbroken fields is

H0 =
(h− iZL)√

2
, H̄0 =

(h+ iZL)√
2

, (2.5)

where h and ZL represent the Higgs and the longitudinal Z0 fields, respectively. The

corresponding FFs are

dH0 =
1

2
[dh + dZL

+ i (dhZL
− dZLh)] , (2.6)

dH̄0 =
1

2
[dh + dZL

− i (dhZL
− dZLh)] . (2.7)

There are also the mixed FFs

dH0H̄0 =
1

2
[dh − dZL

− i (dhZL
+ dZLh)] , (2.8)

dH̄0H0 =
1

2
[dh − dZL

+ i (dhZL
+ dZLh)] , (2.9)

which describe the difference between the Higgs and longitudinal Z0 FFs:

dh =
1

2
(dH0 + dH̄0 + dH0H̄0 + dH̄0H0) , (2.10)

dZL
=

1

2
(dH0 + dH̄0 − dH0H̄0 − dH̄0H0) . (2.11)

Although the flavor basis chosen above is the most intuitive, the fact that many of the

60 FFs are coupled to one another makes it quite difficult to solve the evolution equations.

To decouple some of the equations, it helps to change the basis such that the ingredients

have definite total isospin T and CP quantum numbers, which (neglecting the tiny CP

violation) are conserved in the Standard Model. Then only FFs with the same quantum

numbers can mix. The FFs for each set of quantum numbers required are shown in table 2.

In the case of the vector bosons, the unpolarized FFs dkV+ + dkV− can have {T,CP} =

{0,+}, {1,−} or {2,+}, while the helicity asymmetries dkV+ − d
k
V−

have {0,−}, {1,+} or

{2,−}. The mixed Higgs FFs have unit isospin and we can form the combinations with

definite CP:

d1±
HH =

1

2
(dH0H̄0 ± dH̄0H0) , (2.12)

where only the {1,+} state contributes to the physical Higgs and Z0
L FFs. Further details

of the isospin and CP basis are given in appendix A.
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{T,CP} fields

{0,±} 2ng × qR , ng × `R , ng × qL , ng × `L , g ,W ,B ,H

{1,±} ng × qL , ng × `L ,W ,BW,H,HH

{2,±} W

Table 2. The 60 FFs required for the SM evolution can written in a basis with definite conserved

quantum numbers. 2(5ng + 4) FFs contribute to the {0,±} states, 2(2ng + 4) to each to the {1,±}
and 2 to the {2,±}, where ng = 3 stands for the number of generations.

Note that in general there can be additional mixed FFs, which however are zero in

our matching conditions at scale q0 and are not generated in the evolution. In particular,

there can be states mixing left-and right-handed fermions, but they are not present when

we consider only the FFs dki for unpolarized particles k.

2.2 General evolution equations

We consider the x-weighted FFs of parton species i at momentum fraction x and scale

q, di(x, q). In leading order they satisfy evolution equations of the following approximate

form:4

q
∂

∂q
dki (x, q) =

∑
I

αI(q)

π

P Vi,I(q) dki (x, q) +
∑
j

Cji,I

∫ zji,Imax(q)

x
dz PRji,I(z)dkj (x/z, q)


≡
∑
I

[
q
∂

∂q
dki (x, q)

]
I

. (2.13)

Here, the sum over I goes over the different interactions in the Standard Model and the

notation
[
q ∂/∂q dki (x, q)

]
I

implies that we only keep the terms proportional to the coupling

αI when taking the derivative.5 We denote by I = 1, 2, 3 the pure U(1), SU(2) and SU(3)

gauge interactions, by I = Y the Yukawa interactions, and by I = M the mixed interaction

proportional to

αM (q) =
√
α1(q)α2(q) . (2.14)

The first contribution in eq. (2.13), proportional to P Vi,I , denotes the virtual contribution to

the FF evolution, while the second contribution is the real contribution from the splitting

of parton i into parton j. Notice that i and j are interchanged here relative to the PDF

evolution equations, because dkj represents the fragmentation of the outgoing parton from

the splitting, rather than the distribution of the incoming one. The maximum value of z

in the integration of the real contribution depends on the type of splitting and interaction,

4In section 3 we present a modification of the evolution equations to achieve full leading-logarithmic

accuracy.
5Note that [. . .]I is only introduced for notational convenience and should not be interpreted as setting

all other couplings to zero. In particular, the FFs appearing on the right-hand side of eq. (2.13) still depend

on the values of all coupling constants.
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and we choose

zji,Imax(q) =

 1− mV

q
for I = 1, 2, and i, j /∈ V or i, j ∈ V

1 otherwise
, (2.15)

that is, we apply an infrared cutoff mV , of the order of the electroweak scale, when a B or W

boson is emitted. This regulates the divergence of the splitting function for those emissions

as z → 1. Such a cutoff is mandatory for I = 2 because there are FF contributions that

are SU(2) non-singlets. The evolution equations for SU(3) are regular in the absence of a

cutoff, as hadron FFs are color singlets. Similarly for U(1), the unpolarized FFs have zero

hypercharge,6 but we include the same cutoff for I = 1, since the B and W3 are mixed in

the physical Z and γ states.

It was shown in [38] that the virtual corrections for the fermion, unmixed scalar and

unmixed, unpolarized vector boson PDFs, which are the same for the corresponding FFs,

are given by

P Vi,I(q) = −
∑
j

Cji,I

∫ zji,Imax(q)

0
z dz PRji,I(z) for i 6= BW,HH . (2.16)

The virtual corrections for the individual vector boson helicity states are the same as the

unpolarized ones. For the mixed vector boson FFs one has

P VBW,1(q) =
1

2
P VB,1(q) , P VBW,2(q) =

1

2
P VW,2(q) , (2.17)

while the virtual contribution for i = BW is zero for the other interactions. The virtual

contributions for the mixed Higgs FFs are the same as those for the unmixed states:

P VHH,I(q) = P VH,I(q) . (2.18)

Thus for the unmixed FFs we have simply

[
q
∂

∂q
dki (x, q)

]
I

=
αI(q)

π

∑
j

Cji,I

∫ zji,Imax(q)

0
dz PRji,I(z)

[
dkj (x/z, q)− z dki (x, q)

]
. (2.19)

This implies that the DGLAP equations are defined by the splitting functions PRji,I(z) and

the coefficients Cji,I .

Most of the splitting functions can be obtained from the seminal paper of Altarelli and

Parisi [44]. For the gauge interactions of the Standard Model, I = 1, 2, 3 and the mixed

6Although there can be contributions with non-zero hypercharge for transversely polarized fermions [31].
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interaction M , which we denoted collectively by I = G, one finds

PRfLfL,G(z) = PRfRfR,G(z) =
2

1− z
− (1 + z) , (2.20)

PRV+fL,G(z) = PRV−fR,G(z) =
(1− z)2

z
, (2.21)

PRV−fL,G(z) = PRV+fR,G(z) =
1

z
, (2.22)

PRfLV+,G(z) = PRfRV−,G(z) =
1

2
(1− z)2 , (2.23)

PRfLV−,G(z) = PRfRV+,G(z) =
1

2
z2 , (2.24)

PRV+V+,G(z) = PRV−V−,G(z) =
2

1− z
+

1

z
− 1− z(1 + z) , (2.25)

PRV+V−,G(z) = PRV−V+,G(z) =
(1− z)3

z
, (2.26)

PRHH,G(z) =
2

1− z
− 2 , (2.27)

PRV±H,G(z) =
1

z
− 1 , (2.28)

PRHV±,G(z) =
1

2
z(1− z) . (2.29)

The factor of 1/2 in PRfV has to be included since we are considering fermions with definite

chirality. For splitting to and from antifermions we have, from CP invariance,

PRf̄LV+,G(z) = PRfLV−,G(z) , PRf̄RV+,G(z) = PRfRV−,G(z) , (2.30)

PRV+f̄L,G(z) = PRV−fL,G(z) , PRV+f̄R,G(z) = PRV−fR,G(z) . (2.31)

Finally for the Yukawa interaction (Y ), one has

PRff,Y (z) =
1− z

2
, (2.32)

PRHf,Y (z) = PRff,Y (1− z) , (2.33)

PRfH,Y (z) =
1

2
. (2.34)

We now give the necessary coefficients Cij,I for the five interactions.

I=3: SU(3) interaction. We start by considering the well known case of SU(3) inter-

actions. The relevant degrees of freedom are the gluon, as well as left and right-handed

quarks. The coupling coefficients are

Cqq,3 = Cgq,3 = CF , Cqg,3 = TR , Cgg,3 = CA , (2.35)

where CF = 4/3, CA = 3, TR = 1/2. Note that since SU(3) has the same coupling to

left- and right-handed quarks, it does not produce a polarization asymmetry on its own,

unless an initial asymmetry is present due to polarized initial states. However, due to the

different electroweak evolution of the left- and right-handed fermions, even the gluon FFs

develop a polarization asymmetry above the electroweak scale.
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I=1: U(1) interaction. For U(1) the relevant degrees of freedom are left- and right-

handed fermions (denoted by the subscript f), as well as the U(1) gauge boson B. The

coefficients involving fermions and gauge bosons are

Cff,1 = CBf,1 = Y 2
f , CfB,1 = Nf Y

2
f , CBB,1 = 0 , (2.36)

where the hypercharges of the different fermions are given by YqL = 1/6, YuR = 2/3,

YdR = −1/3, Y`L = −1/2 and YeR = −1. The color factor Nf is equal to Nc = 3 for quarks

and 1 for leptons. The coefficients involving the Higgs bosons are

Chh,1 = CBh,1 = ChB,1 =
1

4
, (2.37)

where h here stands for any of the four Higgs boson FFs.

I=2: SU(2) interaction. Denoting by uL and dL any up- and down-type left-handed

fermion, one finds

CuLdL,2 = CdLuL,2 = CW+uL,2 = CW−dL,2 =
1

2
, (2.38)

CuLuL,2 = CW3uL,2 = CdLdL,2 = CW3dL,2 =
1

4
, (2.39)

CuLW+,2 = CdLW−,2 = Nf
1

2
, (2.40)

CuLW3,2 = CdLW3,2 = Nf
1

4
, (2.41)

CW±W±,2 = CW±W3,2 = CW3W±,2 = 1 , (2.42)

where as before the color factor Nf = 3 for quarks, 1 for leptons. The coupling coefficients

of the Higgs bosons are given by

CH+H+,2 = CH0H0,2 = CW3H+,2 = CW3H0,2 ,

= CH+W3,2 = CH0W3,2 =
1

4
, (2.43)

CH+H0,2 = CH0H+,2 = CH+W+,2 = CW+H+,2 ,

= CH0W−,2 = CW−H0,2 =
1

2
. (2.44)

The couplings for the charge-conjugate states are the same.

I=Y: Yukawa interaction. In this work we only keep the top Yukawa coupling, setting

all others to zero. This gives the following coefficients:

Cq3LtR,Y
= CH0tR,Y = CH+tR,Y = CtRq3L,Y

= CH̄0tL,Y
= CH−bL,Y = 1 , (2.45)

where q3
L denotes either the left-handed top or bottom quark. We furthermore need

CtRH0,Y = CtRH+,Y = CtLH̄0,Y = CbLH−,Y = Nc . (2.46)
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I=M: mixed B−W3 interaction. Finally, we need to consider the evolution involving

the mixed BW boson FF. The non-vanishing couplings are

CBWfu,M = −CBWfd,M = 2
Yf
2
, (2.47)

CfuBW,M = −CfdBW,M = Nf
Yf
2
, (2.48)

where fu and fd represent the up- and down-type left-handed fermions and anti-fermions

of all generations. Since Yf̄ = −Yf and T3f̄ = −T3f , the couplings for fermions and anti-

fermions are identical. The factor of 2 in the first line comes from our definition of fBW
as the sum of BW and WB contributions. The diagonal coefficients Cfufu,M and Cfdfd,M
are zero because there is no vector boson with both U(1) and SU(2) interactions. The

couplings involving the Higgs bosons are

CBWH+,M = −CBWH0,M =
1

2
, (2.49)

CH+BW,M = −CH0BW,M =
1

4
, (2.50)

where, as for the fermions, the same relations hold for the charge-conjugate states.

The resulting evolution equations in the {T,CP} basis are given in full in appendix B.

2.3 Double logarithmic evolution

Any combination of FFs that is not SU(2)-symmetric has a component that evolves double-

logarithmically. For example, from eqs. (2.19) and (2.38)–(2.42), the combination of left-

handed quark FFs that has {T,CP} = {1,−},

d1−
q =

1

4

(
duL − ddL − dūL + dd̄L

)
, (2.51)

satisfies the evolution equation[
q
∂

∂q
d1−
q (x, q)

]
2

=
α2(q)

π

{∫ 1−mV /q

0
dz PRff,G(z)

[
−1

4
d1−
q (x/z, q)− 3

4
z d1−

q (x, q)

]

+

∫ 1

0
dz PRV f,G(z)

[
1

2
d1−
W (x/z, q)− 3

4
z d1−

q (x, q)

]}
, (2.52)

where

d1−
W =

1

2

(
dW+

+
− dW−+ + dW+

−
− dW−−

)
. (2.53)

The mismatch between the coefficients of d1−
q (x/z, q) and d1−

q (x, q) on the right-hand side

of eq. (2.52) induces a logarithmic sensitivity to mV and hence a double-logarithmic term in

the evolution. In fact, noting that the SU(2) contribution to the fermion Sudakov factor is

∆f,2(q) = exp

{
−3

4

∫ q

mV

dq′

q′
α2(q′)

π

[∫ 1−mV /q
′

0
dz z PRff,G(z) +

∫ 1

0
dz z PRV f,G(z)

]}

= exp

{
−3

4

∫ q

mV

dq′

q′
α2(q′)

π

[∫ 1−mV /q
′

0
dz PRff,G(z) +O(mV /q

′)

]}
, (2.54)
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we have[
q
∂

∂q
d1−
q (x,q)

]
2

=
α2(q)

π

{
−1

4

∫ 1

0
dzPRff,G(z)

[
d1−
q (x/z,q)−d1−

q (x,q)
]

+
1

2

∫ 1

0
dzPRV f,G(z)d1−

W (x/z,q)+
4

3
d1−
q (x,q)q

d

dq
ln∆f,2(q)+O(mV /q)

}
.

(2.55)

The integrals are now independent of mV and therefore only produce single-logarithmic

evolution. All the double-logarithmic dependence comes from the Sudakov factor and we

can write

d1−
q (x, q) = d̃1−

q (x, q) [∆f,2(q)]4/3 (2.56)

where d̃1−
q has only single-logarithmic evolution. Similarly, all other FF combinations that

are not SU(2)-symmetric are suppressed at high energy by powers of the corresponding

SU(2) Sudakov factor [31].

While for fermions there are only isospin 0 and 1 combinations possible, for vector

bosons one can also form combinations with T = 2:

d2±
W =

1

6

[(
dW+

+
+ dW−+

− 2dW 3
+

)
±
(
dW+
−

+ dW−−
− 2dW 3

−

)]
. (2.57)

The double-logarithmic dependence in fact only depends on the value of the isospin, and

in general one finds

dT±i (x, q) = d̃T±i (x, q) ∆
(T )
i (q) (2.58)

where in double-logarithmic approximation

∆
(T )
i (q) ' exp

[
−T (T + 1)

∫ q

mV

dq′

q′
α2

π

∫ 1−mV /q
′

0

dz

1− z

]
= exp

[
−T (T + 1)

α2

2π
ln2

(
q

mV

)]
.

(2.59)

2.4 Momentum conservation

The total momentum fraction carried by particle species k in a jet initiated by a parton of

type i at scale q is given by

〈dki (q)〉 ≡
∫ 1

0
dx dki (x, q) . (2.60)

Noting that ∫ 1

0
dxPRji,I ⊗ dkj = Qji,I(q) 〈dkj (q)〉 , (2.61)

where

Qji,I(q) =

∫ zji,Imax(q)

0
dz z PRji,I(z) , (2.62)

we have from the evolution equation (2.19) for unmixed FFs[
q

d

dq
〈dki (q)〉

]
I

=
αI(q)

π

∑
j

Cji,IQji,I(q)
[
〈dkj (q)〉 − 〈dki (q)〉

]
. (2.63)
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Writing

Fij(q) =
∑
I

αI(q)

π

[
Cji,IQji,I(q)− δij

∑
l

Cli,IQli,I(q)

]
(2.64)

this gives

q
d

dq
〈dki (q)〉 =

∑
j

Fij(q) 〈dkj (q)〉 . (2.65)

This is a set of ordinary differential equations that can be solved by finding the eigenvalues

and eigenvectors of the matrix Fij(q). One of the eigenvalues, corresponding to the eigen-

vector (1, 1, . . . , 1), is zero, so for every species k and unmixed interaction I there is a linear

combination of the momentum fractions 〈dki 〉 that is scale-independent. Furthermore, since

the sum of momenta of all species k in the jet must equal that of the initial parton i, for

the unmixed FFs we have ∑
k

〈dki (q)〉 = 1 (2.66)

for every value of i, and thus [
q

d

dq

∑
k

〈dki (q)〉

]
I

= 0 , (2.67)

so the momentum sum is conserved by each interaction separately.

For the mixed vector boson FF, i = BW , of either helicity, the real emission term

involves the difference between the momentum sums for up- and down-type fermions and

scalars, which vanishes, so that, from eq. (2.17),

q
d

dq

∑
k

〈dkBW 〉 =
1

2π

[
α1(q)P VB,1(q) + α2(q)P VW,2(q)

]∑
k

〈dkBW 〉 (2.68)

and hence∑
k

〈dkBW (q)〉 = exp

{∫ q

q0

1

2π

dq′

q′
[
α1(q′)P VB,1(q′) + α2(q′)P VW,2(q′)

]}∑
k

〈dkBW (q0)〉

= ∆BW (q)
∑
k

〈dkBW (q0)〉 , (2.69)

where ∆BW (q) is the BW Sudakov factor. Now from eq. (2.3) we have∑
k

〈dkBW 〉 =
∑
k

[
2cW sW

(
〈dkγ〉 − 〈dkZ〉

)
+
(
c2
W − s2

W

)
〈dkγZ〉

]
=
(
c2
W − s2

W

)∑
k

〈dkγZ〉 , (2.70)

and, as will be discussed in section 4, the mixed γZ FFs dkγZ all vanish at the electroweak

scale q = q0. Hence the momentum sum for the mixed FF, of either helicity, vanishes at

all scales: ∑
k

〈dkBW (q)〉 ≡ 0 . (2.71)

Similarly the mixed Higgs FFs (2.12) make equal and opposite contributions to the

Higgs and Z0
L, and do not mix with other FFs, so they also do not contribute to the

momentum sum.
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3 Achieving full (next-to-) leading-logarithmic accuracy

We have seen in section 2.3 that fragmentation functions that are not iso-singlets experience

double-logarithmic evolution. This is due to the fact that the soft singularity as z → 1 in

the splitting functions PRii,G(z) do not cancel between the virtual and real contributions.

This is the origin of the SU(2) Sudakov factor, which according to eq. (2.16) is given by

∆i,2(q) = exp

[∫ q

mV

dq′

q′
α2(q′)

π
P Vi,2(q′)

]

= exp

− ∫ q

mV

dq′

q′
α2(q′)

π

∑
j

Cji,I

∫ zji,Imax(q′)

0
z dz PRji,I(z)

 . (3.1)

The leading logarithmic contribution arises from the term in the splitting function that is

divergent as z → 1 and one can write

Cji,I

∫ zji,Imax(q′)

0
z dz PRji,I(z) ∼ 2Ci,2

∫ 1−mV /q
′

0

dz

1− z
= 2Ci,2 ln

(
q′

mV

)
, (3.2)

where Cf,2 = CH,2 = 3/4 and CW,2 = 2. For a fixed coupling α2 we then obtain the

double-logarithmic (DL) approximation to the Sudakov factor,

∆DL
i,2 (q) = exp

[
−Ci,2

α2

π
ln2

(
q

mV

)]
≡ exp

[
−Ci,2

π
α2L

2

]
. (3.3)

However, it is well known that in general, Sudakov factors take the form

∆i,2(q) = exp [Lg1(αL) + g2(αL) + α g3(αL) + . . .] (3.4)

where in the case at hand α ≡ α2(q). The functions gi(x) are polynomial functions satis-

fying gi(0) = 0 and determine the logarithmic terms necessary in the expansion when the

size of the log is such that αL ∼ 1. The DL approximation amounts to only keeping the

O(α) term of the g1 function. It is only sufficient if the size of the log satisfies αL2 ∼ 1

but αL � 1. The leading logarithmic (LL) approximation amounts to keeping the whole

function g1, which sums all terms of order αnLn+1 while the next-to-leading logarithmic

(NLL) approximation requires keeping in addition the function g2, which sums logs of order

αnLn and so on.

At the highest energies reachable at the LHC and a future 100 TeV collider the log-

arithm can be as large 5 and 7, respectively. Given that α2 ∼ 0.03, this means that

α2L
2 ∼ 1, but one still has α2L� 1. In [38, 39] and so far in this paper we have given DL

accurate results that only reproduce the term of order αL2 in the exponent, even though

they also produce an incomplete set of subleading terms. In the absence of large numerical

factors, which can spoil the naive scaling of the logarithmic terms, DL accurate results

would be sufficient to describe the physics at these energies. However, it is known [11]

that for fermion scattering processes the single logarithmic coefficient is about a factor of

3 larger that the double logarithmic coefficient, such that these simple scaling rules might

not provide reliable answers. In the following we will therefore only specify the dominant
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DL LL NLL

no match match no match match no match match

missed term α2L α2
2L

3 α2L α2
2L

3 α2 α2
2L

2

Table 3. Scaling of the dominant missed term in the perturbative expansion, for the double log

expansion, where only the leading αL2 term in the exponent is kept, the LL expansion, where the

whole function g1(αL) is kept, and the NLL expansion, where the functions g1(αL) and g2(αL)

are kept. For each of these, we show the scaling of the first missed term if just the logarithmic

resummation is used, and also the scaling if the resummed result is matched with the fixed order

NLO calculation (such that the full α dependence is reproduced).

term missed in a given logarithmic expansion (assuming αL � 1), without discussing the

actual size of the effect.

In table 3 we show the dominant term missed when using DL, LL and NLL resumma-

tion. For each we also give the first missed term if the resummed results are matched to

the full O(α) calculation. One can see that using the full LL resummation vs DL accurate

results [using the complete function g1(αL), rather than just its O(α) term] does not im-

prove the situation, since one is still missing a term of order αL or α2L3 if the result is

matched with the fixed order calculation at NLO, as described in [39]. The α2L3 in the

matched calculation comes from the missed αL term of the function g2(αL) multiplying

the αL2 term of Lg1(αL). This term is only reproduced once the complete NLL resum-

mation is taken into account. This of course makes sense, since the full LL resummation

is only formally improving the accuracy of the DL resummation when counting αL ∼ 1.

In that limit, however, the NLL resummation provides an O(1) effect, which needs to be

included as well. Note that the two different choices for the scaling of the logarithm were

already discussed in some detail in [16]. From this pure logarithmic counting, one expects

DL accuracy to be the same as LL accuracy, and NLL effects to be subdominant as long

as αL � 1. But as mentioned before, large numerical coefficients can spoil this behavior,

with the details depending on the process being studied.

Even though the full LL resummation does not improve the situation over matched

DL resummation for feasible collider energies, we will show how it can be obtained in

the DGLAP formalism by choosing the scale of the running SU(2) coupling appropriately.

It is well known in standard QCD resummation and parton shower algorithms, that for

double logarithmically sensitive observables the evolution should be angular-ordered and

the running coupling should be evaluated at the transverse momentum of gauge boson

emission [45, 46]. This means that instead of using α2(q) as we have been doing in the

DGLAP evolution, one should use α2(q(1− z)). Then since

α2(q′) =
α2(q)

1 + β
(2)
0

α2(q)
π ln q′

q

, (3.5)

with β
(2)
0 = 19/12, the ratio of these two scale choices is given by the expansion

α2(q(1− z))

α2(q)
= 1− α2(q)

π
β

(2)
0 ln(1− z) +

[
α2(q)

π
β

(2)
0 ln(1− z)

]2

+ . . . . (3.6)
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Note that these logarithmic terms in 1 − z only give rise to large logarithms if integrated

against a singular function f(z) ∼ 1/(1−z). Thus, in standard DGLAP evolution in QCD,

where the soft divergence as z → 1 cancels between the virtual and real contributions,

the difference between these two scales do not lead to logarithmic terms that need to be

resummed. For the case of SU(2) DGLAP evolution of PDFs or FFs that are not iso-

singlets, however, this cancelation does not happen, and one finds∫ 1−m
q

0
dz
α2(q(1− z))

π

1

1− z
=
α2(q)

π
L+

α2
2(q)

π2

β
(2)
0

2
L2 + . . . , (3.7)

which generates the LL function g1(α2L). The full LL resummation is therefore obtained

by changing the SU(2) splitting functions that are singular as z → 1 as

PRff,2(z)→ PRff,2(z, q) =
α2[q(1− z)]

α2(q)

2

1− z
− (1 + z) , (3.8)

PRV+V+,2(z)→ PRV V,2(z, q) =
α2[q(1− z)]

α2(q)

2

1− z
+

1

z
− 1− z(1 + z) , (3.9)

PRHH,G(z)→ PRHH,G(z, q) =
α2[q(1− z)]

α2(q)

2

1− z
− 2 . (3.10)

By making one more change one can in fact also reproduce the full NLL resummation

of the collinear evolution. The only missing term is the 2-loop cusp anomalous dimension,

which can be included using the CMW prescription [47] for the coupling constant. This

amounts to changing

α2[q(1− z)]→ αCMW
2 [q(1− z)] (3.11)

in eqs. (3.8)–(3.10), where

αCMW
2 [q(1− z)] ≡ α2[q(1− z)]

1 +
Γ

(2)
cusp,f

Γ
(1)
cusp,f

α2[q(1− z)]

π

 ' α2[kCMWq(1− z)] , (3.12)

kCMW = exp

− 1

β
(2)
0

Γ
(2)
cusp,f

Γ
(1)
cusp,f

 , (3.13)

and Γ
(n)
cusp,f and Γ

(n)
cusp,a denote the cusp anomalous dimension in the fundamental and adjoint

representations at n-loop order. For ng fermion generations and nH Higgs doublets [48]

Γ
(2)
cusp,f

Γ
(1)
cusp,f

=
Γ

(2)
cusp,a

Γ
(1)
cusp,a

=
67

18
− π2

6
− 5

9
ng −

1

9
nH =

35

18
− π2

6
, (3.14)

which gives

kCMW = exp

(
6π2 − 70

57

)
= 0.828 . (3.15)

One can verify that this reproduces the complete NLL resummation in the collinear sec-

tor by comparing directly against the results of [40]. For observables that are completely
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inclusive over the final state, where no soft function is required, this therefore reproduces

the full NLL resummation. For less inclusive observables, it misses the logarithmic resum-

mation coming from the evolution of the soft function, which was discussed in [40] and is

not included here.

As we have explained, including the full LL resummation, compared with only the DL

resummation, does not improve the formal accuracy of the calculation, unless the full NLL

effects are included at the same time. Since the NLL contributions that were obtained above

by including the 2-loop cusp anomalous dimension only include the NLL effects from the

collinear evolution, but miss the NLL contributions from the soft evolution from [40], their

inclusion does not raise the formal accuracy either. Nevertheless, we compare the results

from the collinear NLL resummation discussed above with DL accurate results obtained in

previous work when presenting results in section 5.

4 Implementation details and input FFs

For simplicity we start the evolution of all FFs at the electroweak breaking scale q0 ∼ mV ,

which in practice we take to be 100 GeV. Each value of the fragmentation product k

requires a separate run of the evolution code. For a quark or charged lepton, k = f ,

assuming that the helicity of the fragmentation product is not detected, we take as input

dffL(x, q0) = dffR(x, q0) = δ(1− x) , (4.1)

setting all other initial FFs to zero. Then the FFs for all 60 SM states i fragmenting into f

are generated by evolving these input FFs to higher scales using the SM DGLAP equations

given in section 3. To obtain FFs at scales below q0, the resulting FFs dfi (x, q > q0) should

be convoluted with the SU(3) ⊗ U(1)em-evolved and hadronized FF of a jet of flavor f

produced at scale q0. The neutrinos k = ν have no right-handed states, so the initial

condition becomes

dννL(x, q0) = δ(1− x) , dνi (x, q0) = 0 otherwise , (4.2)

for evolution from scale q0. The resulting FFs can be interpreted directly as neu-

trino momentum fraction distributions, since the neutrinos do not evolve below the elec-

troweak scale.

For fragmentation into a gauge boson V we again assume the helicity is not detected,

so the input is

dVV+(x, q0) = dVV−(x, q0) = δ(1− x) , dVi (x, q0) = 0 otherwise . (4.3)

For the gluon, the SM-evolved FFs at higher scales then need to be convoluted with the FFs

of a gluon jet produced at scale q0. For the W±, on the other hand, the boson can simply

be allowed to decay at scale q0. For the neutral gauge bosons V = γ, Z0 we resolve them

into the unbroken B, W 3 and BW states according to eq. (2.2) at scale q0 and evolve these

upwards. Again, the heavy bosons can then decay directly at scale q0, while the photon

can either be treated as a stable particle or fragmented by U(1)em evolution at lower scales.

Similarly the Higgs and longitudinal gauge boson FFs are resolved as in equations (2.10)

and (2.11), and the unbroken FFs are evolved to higher scales using the unbroken SM.
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The DGLAP evolution equations were solved directly in x-space using a two-stage

Runge-Kutta method (Heun’s method). Evaluations were on a grid of (501,71) points

in (x, q) for each FF. The x-grid was uniform in log x from 10−7 to 0.5 and uniform in

log(1− x) above 0.5:

xi = 0.5
(
2× 10−7

)1− i
250 for 0 ≤ i ≤ 250

= 1− 0.5
(
2× 10−7

) i
250
−1

for 251 ≤ i ≤ 500. (4.4)

The q-grid was uniform in log q:

qi = 101+ i
10 GeV for 0 ≤ i ≤ 70. (4.5)

The input FFs at the matching scale are proportional to δ(1−x), which was approximated

by the following smooth function of x:

fδ(x) =


1

4a4
(a+ 1− x)(2a− 1 + x)2 for x > 1− 2a

0 otherwise,

, (4.6)

with a = 10−3. Results were confirmed to be stable for this value of a. Integrals were evalu-

ated to relative precision 10−6 by adaptive gaussian integration with five-point polynomial

interpolation in the x-grid.

Notice that the momentum conservation relations (2.66) and (2.71) involve sums over

independent runs of the evolution code for the 30 possible fragmentation products k, and

must hold for each one of the 60 fragmenting objects i, which provides a valuable check on

the correctness and precision of the code.

5 Results

As already mentioned, there are a total of 60× 30 = 1800 distinct FFs, and we can clearly

only show a small subset of all possible results. We therefore choose a few illustrative

choices of i (left-and right-handed down quarks, the left- and right-handed electron, the

SU(2) bosons W+ and W3, the U(1) boson B and the gluon), and for each i group the 30

possible values of k into a few representative sets. Readers interested in more details can

request all data as LHAPDF files from the authors. The main results use the full NLL

accuracy of the DGLAP evolution that was discussed in section 3. Note that to obtain

full NLL accuracy for a cross section prediction requires the inclusion of single logarithms

arising from the evolution of the soft function that were computed in [40].

We begin by showing in figure 1 the results for the momentum fractions 〈dki (q)〉 defined

in eq. (2.60). For each species i, we show how the total momentum is shared between

fragmentation particles k at scales q ranging from 100 to 106 GeV. We stack the various

sets for k on top of each other, such that momentum conservation implies that each plot

sums to unity for all values of q once all particles are included. To show the size of the

difference between DL and NLL accuracy, we show in dashed lines also the results obtained

using DL accuracy. The reason that for several curves the DL result is not visible is because
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Figure 1. The momentum averaged fragmentation functions 〈dki 〉 for (a,b) i = dL, dR, (c,d) eL, eR,

(e,f) W+, B, (g,h) W3, g. The different values of k are stacked on top of each other, such that the

total equals one, as demanded by the sum rule. Dashed/solid lines show DL/NLL resummed results.

– 19 –



J
H
E
P
1
1
(
2
0
1
8
)
0
3
0

it is indistinguishable from the NLL result.7 One can also clearly see that at q = 100 GeV,

the only contribution is for i = k. Since i and k are chosen in the unbroken and broken

basis, respectively, for the W3 and B the relative probability of Z0 and γ are given by the

weak mixing angle. As we evolve to larger values of q, other flavors k are generated.

In the first row we show the fragmentation of left- and right-handed down quarks,

i = dL, dR. In the left-handed case (a) one can see that the SU(2) interaction has a sig-

nificant effect. Left-handed up quarks are generated with double logarithmic probability,

such that at large enough values of q the amount of uL and dL become of the same order of

magnitude, and SU(2) bosons are produced at an appreciable rate. Gluons are produced

at a larger rate, which is obviously due to the relative strength of the SU(3) and SU(2)

interactions. For the right handed down quark (b), the fragmentation is completely dom-

inated by QCD evolution, such that a large fraction of gluons and a smaller fraction of

quarks other than dR get generated. Other particles, shown by the remaining contribution

in cyan, only make up a tiny fraction, even at q = 106 GeV.

The fragmentation of left- and right-handed electrons is shown in the second row

of figure 1. In the left-handed case (c) one can again see the importance of the SU(2)

interactions at large values of q, and for q ∼ 106 GeV the relative fraction of electrons and

neutrinos becomes comparable, with the momentum fraction contained in gauge bosons

at the 10% level. For the right-handed electron (d), the evolution is only given by the

U(1) interaction, such that one generates only a small fraction of U(1) bosons, and an even

smaller fraction of other particles.

Gauge boson fragmentation is shown in the third and fourth rows of figure 1. For the

W+ boson (e), one sees that the other SU(2) gauge bosons are generated quite rapidly as

q becomes larger than 100 GeV. Asymptotically, for q →∞, the three SU(2) gauge bosons

will evolve to have equal momentum fractions, and while one can see the trend for them

to become equal, one needs to go to much higher values than are shown here. Quarks and

leptons are also produced at an appreciable rate, with more quarks owing to the colour

factor. For the U(1) boson (f), the only non-vanishing fragmentation at q = 100 GeV is

into Z bosons and photons, with relative fraction tan−2 θW . Since the coupling constant

α1 is smaller than α2, quarks and leptons are produced at a lower rate than for the W+

boson. However, the quark and lepton rates are more equal, because the colour factor of

the quarks is largely compensated by the higher hypercharges of the leptons. For an initial

W3 boson, shown in (g), one again starts off with only Z bosons and photons, with relative

fraction tan2 θW . Quickly the neutral SU(2) boson evolves into charged W s, and also into

quarks and leptons. Finally, we show in (h) the evolution of the gluon. As expected, it is

completely dominated by the strong interaction, such that it mostly evolves into quarks.

While figure 1 illustrates the evolution of the total momentum fractions carried by

various particles in a given species of jet, it does not show how the evolution looks for fixed

values of x. This is shown in figures 2 and 3 for the same set of particles as before, and

7However, given that the results with DL accuracy include an incomplete set of higher logarithmic terms,

these results do not allow the conclusion that NLL terms are numerically subdominant to the DL terms.

Rather, one can only conclude that the NLL terms that arise from the improved scale setting procedure in

the SU(2) running coupling are subdominant.
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Figure 2. The fragmentation functions at (left) x = 0.9 and (right) x = 0.1 for (a,b) i = dL, (c,d)

dR, (e,f) eL, (g,h) eR. The different values of k are stacked on top of each other. Dashed/solid lines

show DL/NLL resummed results.
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Figure 3. The fragmentation functions for (left) x = 0.9 and (right) x = 0.1 for (a,b) i = W+,

(c,d) W 3, (e,f) B, (g,h) g. The different values of k are stacked on top of each other. Dashed/solid

lines show DL/NLL resummed results.
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Figure 4. The absolute value of the polarization asymmetry, defined as A(V ) = (〈dkV+
〉 −

〈dkV−
〉)/(〈dkV+

〉+ 〈dkV−
〉), for fragmentation into (left) u and (right) d quarks, for the vector bosons

W±, W3, B and the gluon. Note that the gluon asymmetry is scaled by a factor of 50, and that

for the SU(2) bosons the negative of the asymmetry is shown. The results use the NLL accuracy

as discussed in section 3.

using the values x = 0.9 (shown on the left) and x = 0.1 (on the right). As in figure 1, solid

(dashed) lines correspond to NLL (DL) evolution. As explained in section 4, the initial

condition at q = 100 GeV is a δ-function at x = 1 for i = k, such that the fragmentation

at x = 0.9 is overall much more dominated by k = i than at lower values of x. Notice that

the constraint x < 1 −mV /q for emission of a heavy vector boson means that at x = 0.9

no such emission can occur below q = mV /(1 − x) ∼ 1 TeV, depressing the evolution

of leptons and heavy bosons below that scale. At x = 0.1, fragmentation into vector

bosons is dominant at all scales, because of the low-z enhancement of the corresponding

splitting functions.

In figure 4 we show some results on the polarization asymmetry of vector bosons frag-

menting into up and down quarks. For W+,W3 → u and W−,W3 → d the asymmetry

is large and negative, due to the dominance of the V− → fL splitting function. The

W− → u and W+ → d asymmetries are also negative but increase from zero as they start

at higher order. The B asymmetries are positive because of the dominance of fragmen-

tation into the right-handed quarks in that case. The gluon asymmetry is a secondary

effect of the different evolution of left- and right-handed quarks, the latter evolving more

slowly and so remaining at higher x. Notice that there is even a slight difference between

the gluon asymmetries for fragmentation into up and down quarks, due to their different

electroweak evolution.

Although substantial vector bosons polarizations are generated by electroweak evolu-

tion, their effects on fragmentation into fermions and unpolarized bosons are negligible.

The boson helicity asymmetries dkV+ − d
k
V−

start from zero at the electroweak scale and

cannot affect the unpolarized bosons at all, as they have opposite CP quantum numbers.

They can indirectly affect only the {T,CP} = {0,−} and {1,+} fermion FFs, generally

producing effects at the 10−4 level or less in the momentum-averaged FFs of individ-

ual fermions.
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6 Conclusions

In this paper we have discussed the evolution of fragmentation functions in the full Standard

Model, which requires resummation of leading logarithms arising from final-state radiation

and the associated virtual corrections.

At energy scales far above the electroweak symmetry breaking scale, short distance

processes can be described in terms of 60 objects in the unbroken Standard Model: 12 left-

handed quarks, 12 right-handed quarks, 12 left-handed leptons, 6 right-handed leptons, 2

transversely polarized gluons, 2 transversely polarized U(1) gauge bosons, 6 transversely

polarized SU(2) bosons, 4 Higgs fields, 2 mixed neutral Higgs states and 2 transversely

polarized states that mix the U(1) and neutral SU(2) boson. In hard interactions at such

energies, any subsequent radiation is dominated by emissions that are either soft or collinear

to the colliding or produced particles.

Processes that only depend on the flavor of one particle in each of these “jets” of radi-

ation can be described solely in terms of parton distributions and fragmentation functions,

which have to be evaluated at the short-distance scale of the hard interaction. The DGLAP

evolution of the PDFs and FFs from the electroweak symmetry breaking scale to the hard

scale q resums the logarithmic dependence on the ratio mV /q. If the observed particles are

not SU(2) singlets, one encounters double logarithms in the evolution.

We have presented the evolution of FFs in the complete Standard Model, where all

three gauge interactions and the Yukawa interaction of the third generation contribute

significantly to the DGLAP evolution. Together with the evolution of the PDFs, which was

presented in [22], this provides all details necessary to resum the dominant logarithms for all

cases where one is inclusive over the kinematics of the final state particles. Combining this

with the running of soft functions presented in [40], full NLL accuracy of the electroweak

evolution can be obtained.

While the dominant terms are of double logarithmic origin (scaling as αnL2n in a cross

section), we also showed how the complete LL resummation (terms scaling as αnLn+1 in

the logarithm of a cross section) may be achieved by an appropriate choice for the scale

of the running SU(2) coupling in the singular terms of the evolution. While this does not

improve the accuracy in the relevant limit α2L
2 ∼ 1, and has a small numerical effect on

the resulting FFs, it is necessary when the results from the DGLAP evolution are combined

with the soft function evolution to obtain full NLL accuracy.

Numerically, the electroweak logarithms lead to appreciable effects at the highest en-

ergy scales that can be reached at the LHC and a future 100 TeV pp collider, but they still

tend to be slightly smaller than what might be expected from the naive scaling of α2L
2.

For example, a left handed lepton produced at 3 TeV (30 TeV) has a 6% (15%) probability

to fragment into a different particle defined at the electroweak scale q0 ∼ 100 GeV. The

effect is larger for SU(2) bosons produced at the high scale. A charged W boson produced

at 3 TeV (30 TeV) has a 14% (30%) probability to fragment into a different particle defined

at 100 GeV.

We have also studied for the first time the phenomenology of electroweak boson polar-

ization in the FFs. Although large polarizations are generated, they have minimal effects

as long as the polarization of fragmentation products is not detected.
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A Isospin and CP basis

As already explained in section 1, the set of 60 evolution equations can be decoupled to

some degree by switching to a basis of well-defined isospin T and CP. Writing a fermion

FF with given {T,CP} as dTCP
i , the left-handed fermion FFs are

d0±
fL

=
1

4

[
(duL + ddL)±

(
dūL + dd̄L

)]
, (A.1)

d1±
fL

=
1

4

[
(duL − ddL)±

(
dūL − dd̄L

)]
, (A.2)

where uL and dL refer to left-handed up- and down-type fermions. Right-handed fermion

FFs are given by

d0±
fR

=
1

2

(
dfR ± df̄R

)
. (A.3)

The SU(3) and U(1) boson FFs have T = 0, with the unpolarized and helicity asymmetry

combinations having CP = + and −, respectively:

d0±
g = dg+ ± dg− , d0±

B = dB+ ± dB− . (A.4)

The SU(2) bosons can have {T,CP} = {0,+}, {1,−}, {2,+} for the unpolarized FFs and

{0,−}, {1,+}, {2,−} for the asymmetries:

d0±
W =

1

3

[(
dW+

+
+ dW−+

+ dW 3
+

)
±
(
dW+
−

+ dW−−
+ dW 3

−

)]
, (A.5)

d1±
W =

1

2

[(
dW+

+
− dW−+

)
∓
(
dW+
−
− dW−−

)]
, (A.6)

d2±
W =

1

6

[(
dW+

+
+ dW−+

− 2dW 3
+

)
±
(
dW+
−

+ dW−−
− 2dW 3

−

)]
. (A.7)

The mixed BW boson FFs are a combination of 0− and 1− states, and therefore they have

the opposite CP to the corresponding W boson FFs:

d1±
BW = dBW+ ± dBW− . (A.8)

For the Higgs boson, one writes similarly to the fermions

d0±
H =

1

4
[(dH+ + dH0)± (dH− + dH̄0)] , (A.9)

d1±
H =

1

4
[(dH+ − dH0)± (dH− − dH̄0)] . (A.10)
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There are also the mixed H0/H̄0 FFs, which carry non-zero hypercharge and have unit

isospin:

d1±
HH =

1

2
(dH0H̄0 ± dH̄0H0) . (A.11)

The even-CP mixed FF d1+
HH represents the difference between the Higgs and longitudinal

Z0 FFs. The longitudinal vector boson and Higgs FFs are given by

dW+
L

= d0+
H + d1+

H + d0−
H + d1−

H , (A.12)

dW−L
= d0+

H + d1+
H − d

0−
H − d

1−
H , (A.13)

dZL
= d0+

H − d
1+
H − d

1+
HH , (A.14)

dh = d0+
H − d

1+
H + d1+

HH . (A.15)

The odd-CP mixed FF d1−
HH does not contribute to any physical states and does not mix

with any other FFs, so it remains zero and we do not consider it further.

The resulting evolution equations are collected in appendix B.

B Equations used in the forward evolution

As in [38], we define

PRji,I ⊗ dkj =

∫ zji,Imax(q)

x
dz PRji,I(z)dkj (x/z, q) . (B.1)

For splittings involving gauge bosons, we define

PRV V,I ⊗ di ≡
(
PRV+V+,I + PRV+V−,I

)
⊗ di , (B.2)

PRV f,I ⊗ di ≡
(
PRV+fL,I + PRV−fL,I

)
⊗ di , (B.3)

PRfV,I ⊗ di ≡
(
PRfLV+,I + PRfLV−,I

)
⊗ di . (B.4)

The ‘+’-prescription is

P+
ii,I ⊗ di ≡ P

R
ii,I ⊗ di +

P Vi,I
Ci,I

di , (B.5)

where Ci,I is the coefficient in the corresponding Sudakov factor:

∆i,I(q) = exp

[∫ q

q0

dq′

q′
αI(q

′)

π
P Vi,I(q

′)

]
= exp

[
−Ci,I

∫ q

q0

dq′

q′
αI(q

′)

π

∫ zii,Imax(q)

0
z dz PRii,I(z) + . . .

]
, (B.6)

and . . . represents less divergent terms. For convenience we also define the isospin suppres-

sion factors

∆
(T )
i (q) = [∆i,2(q)]T (T+1)/(2Ci,2) . (B.7)
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For gauge bosons we also need the helicity asymmetry splitting functions:

PAV V,I ⊗ di ≡
(
PRV+V+,I − P

R
V+V−,I

)
⊗ di +

P VV,I
CV,I

di , (B.8)

PAV f,I ⊗ di ≡
(
PRV+fL,I − P

R
V−fL,I

)
⊗ di , (B.9)

PAfV,I ⊗ di ≡
(
PRfLV+,I − P

R
fLV−,I

)
⊗ di . (B.10)

B.1 SU(3) interaction

• T = 0 and CP = ±:[
q
∂

∂q
d0+
qL,R

]
3

=
α3

π
CF

[
P+
ff,G ⊗ d

0+
qL,R

+ PRV f,G ⊗ d0+
g

]
, (B.11)[

q
∂

∂q
d0+
g

]
3

=
α3

π

[
CAP

+
V V,G ⊗ d

0+
g + TRP

R
fV,G ⊗ d0+∑

g

]
, (B.12)[

q
∂

∂q
d0−
qL,R

]
3

=
α3

π
CF

[
P+
ff,G ⊗ d

0−
qL,R
± PAV f,G ⊗ d0−

g

]
, (B.13)[

q
∂

∂q
d0−
g

]
3

=
α3

π

[
CAP

A
V V,G ⊗ d0−

g + TRP
A
fV,G ⊗ d0−∑

g

]
. (B.14)

Here

d0±∑
g

= 4
∑
qL

d0±
qL
± 2

∑
qR

d0±
qR
, (B.15)

where the sums run over all left-handed quark doublets and all right-handed quarks.

The factors of 4 and 2 are due to the different normalizations in eqs. (A.1) and (A.3).

• All other states: [
q
∂

∂q
dq

]
3

=
α3

π
CFP

+
ff,G ⊗ dq . (B.16)

B.2 U(1) interaction

• T = 0 and CP = +:[
q
∂

∂q
d0+
f

]
1

=
α1

π
Y 2
f

[
P+
ff,G ⊗ d

0+
f + PRV f,G ⊗ d0+

B

]
, (B.17)[

q
∂

∂q
d0+
B

]
1

=
α1

π

[
P VB,1d

0+
B + PRfV,G ⊗ d0+∑

B f + PRHV,G ⊗ d0+
H

]
, (B.18)[

q
∂

∂q
d0+
H

]
1

=
α1

π

1

4

[
P+
HH,G ⊗ d

0+
H + PRVH,G ⊗ d0+

B

]
, (B.19)

where

d0±∑
B f = 4

∑
fL

NfY
2
fL
d0±
fL
± 2

∑
fR

NfY
2
fR
d0±
fR
. (B.20)
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• T = 0 and CP = −:[
q
∂

∂q
d0−
fL,R

]
1

=
α1

π
Y 2
f

[
P+
ff,G ⊗ d

0−
fL,R
± PAV f,G ⊗ d0−

B

]
, (B.21)[

q
∂

∂q
d0−
B

]
1

=
α1

π

[
P VB,1d

0−
B + PAfV,G ⊗ d0−∑

B f

]
, (B.22)[

q
∂

∂q
d0−
H

]
1

=
α1

π

1

4
P+
HH,G ⊗ d

0−
H . (B.23)

• T = 1 and CP = +: [
q
∂

∂q
d1+
HH

]
1

=
α1

π

1

4
P+
HH,G ⊗ d

1+
HH , (B.24)[

q
∂

∂q
d1+
BW

]
1

=
α1

π

1

2
P VB,1d

1+
BW . (B.25)

• T = 1 and CP = −: [
q
∂

∂q
d1−
BW

]
1

=
α1

π

1

2
P VB,1d

1−
BW . (B.26)

• All other states: [
q
∂

∂q
df

]
1

=
α1

π
Y 2
f P

+
ff,G ⊗ df , (B.27)[

q
∂

∂q
dH

]
1

=
α1

π

1

4
P+
HH,G ⊗ dH . (B.28)

B.3 SU(2) interaction

• T = 0 and CP = +:[
q
∂

∂q
d0+
fL

]
2

=
α2

π

3

4

[
P+
ff,G ⊗ d

0+
fL

+ PRV f,G ⊗ d0+
W

]
, (B.29)

[
q
∂

∂q
d0+
W

]
2

=
α2

π

2P+
V V,G ⊗ d

0+
W +

∑
fL

NfP
R
fV,G ⊗ d0+

fL
+ PRHV,G ⊗ d0+

H

, (B.30)

[
q
∂

∂q
d0+
H

]
2

=
α2

π

3

4

[
P+
HH,G ⊗ d

0+
H + PRVH,G ⊗ d0+

W

]
. (B.31)

• T = 0 and CP = −:[
q
∂

∂q
d0−
fL

]
2

=
α2

π

3

4

[
P+
ff,G ⊗ d

0−
fL

+ PAV f,G ⊗ d0−
W

]
, (B.32)

[
q
∂

∂q
d0−
W

]
2

=
α2

π

2PAV V,G ⊗ d0−
W +

∑
fL

NfP
A
fV,G ⊗ d0−

fL

 , (B.33)

[
q
∂

∂q
d0−
H

]
2

=
α2

π

3

4
P+
HH,G ⊗ d

0−
H . (B.34)
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• T = 1 and CP = +:

∆
(1)
f q

∂

∂q

d1+
fL

∆
(1)
f


2

=
α2

π

[
−1

4
P+
ff,G ⊗ d

1+
fL

+
1

2
PAV f,G ⊗ d1+

W

]
, (B.35)

[
∆

(1)
V q

∂

∂q

d1+
W

∆
(1)
V

]
2

=
α2

π

PAV V,G ⊗ d1+
W +

∑
fL

NfP
A
fV,G ⊗ d1+

fL

 , (B.36)

[
∆

(1)
H q

∂

∂q

d1+
H

∆
(1)
H

]
2

=
α2

π

[
−1

4
P+
HH,G ⊗ d

1+
H

]
, (B.37)[

∆
(1)
H q

∂

∂q

d1+
HH

∆
(1)
H

]
2

=
α2

π

[
−1

4
P+
HH,G ⊗ d

1+
HH

]
, (B.38)[

∆
(1)
V q

∂

∂q

d1+
BW

∆
(1)
V

]
2

= 0 . (B.39)

• T = 1 and CP = −:

∆
(1)
f q

∂

∂q

d1−
fL

∆
(1)
f


2

=
α2

π

[
−1

4
P+
ff,G⊗d

1−
fL

+
1

2
PRV f,G⊗d1−

W

]
, (B.40)

[
∆

(1)
V q

∂

∂q

d1−
W

∆
(1)
V

]
2

=
α2

π

[
P+
V V,G⊗d

1−
W +

∑
fL

NfP
R
fV,G⊗d1−

fL
+PRHV,G⊗d1−

H

]
, (B.41)

[
∆

(1)
H q

∂

∂q

d1−
H

∆
(1)
H

]
2

=
α2

π

[
−1

4
P+
HH,G⊗d

1−
H +

1

2
PRVH,G⊗d1−

W

]
, (B.42)[

∆
(1)
V q

∂

∂q

d1−
BW

∆
(1)
V

]
2

= 0 . (B.43)

• T = 2 and CP = +:

[
∆

(2)
V q

∂

∂q

d2+
W

∆
(2)
V

]
2

= −α2

π
P+
V V,G ⊗ d

2+
W . (B.44)

• T = 2 and CP = −:

[
∆

(2)
V q

∂

∂q

d2−
W

∆
(2)
V

]
2

= −α2

π
PAV V,G ⊗ d2−

W . (B.45)
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B.4 Yukawa interaction

• T = 0 and CP = +:[
q
∂

∂q
d0+
q3L

]
Y

=
αY
π

[
P Vq3L,Y

d0+
q3L

+ PRff,Y ⊗ d0+
tR

+ PRHf,Y ⊗ d0+
H

]
, (B.46)[

q
∂

∂q
d0+
tR

]
Y

=
αY
π

2

[
P VtR,Y d

0+
tR

+ PRff,Y ⊗ d0+
q3L

+ PRHf,Y ⊗ d0+
H

]
, (B.47)[

q
∂

∂q
d0+
H

]
Y

=
αY
π

[
P VH,Y d

0+
H +NcP

R
fH,Y ⊗ d0+∑

H f

]
, (B.48)

where

d0+∑
H f = d0+

tR
+ d0+

q3L
. (B.49)

• T = 0 and CP = −:[
q
∂

∂q
d0−
q3L

]
Y

=
αY
π

[
P Vq3L,Y

d0−
q3L

+ PRff,Y ⊗ d0−
tR
− PRHf,Y ⊗ d0−

H

]
, (B.50)[

q
∂

∂q
d0−
tR

]
Y

=
αY
π

2

[
P VtR,Y d

0−
tR

+ PRff,Y ⊗ d0−
q3

+ PRHf,Y ⊗ d0−
H

]
, (B.51)[

q
∂

∂q
d0−
H

]
Y

=
αY
π

[
P VH,Y d

0−
H +NcP

R
fH,Y ⊗ d0−∑

H f

]
, (B.52)

where

d0−∑
H f = d0−

tR
− d0−

q3L
. (B.53)

• T = 1 and CP = +:[
q
∂

∂q
d1+
q3L

]
Y

=
αY
π

[
P Vq3L,Y

d1+
q3L
− PHf,Y ⊗ d1+

H

]
, (B.54)[

q
∂

∂q
d1+
H

]
Y

=
αY
π

[
P VH,Y d

1+
H −NcP

R
fH ⊗ d1+

q3L

]
, (B.55)[

q
∂

∂q
d1+
HH

]
Y

=
αY
π
P VH,Y d

1+
HH . (B.56)

• T = 1 and CP = −:[
q
∂

∂q
d1−
tL

]
Y

=
αY
π

[
P VtL,Y d

1−
tL

+ PHf,Y ⊗ d1−
H

]
, (B.57)[

q
∂

∂q
d1−
H

]
Y

=
αY
π

[
P VH,Y d

1−
H +NcP

R
fH,Y ⊗ d1−

q3L

]
. (B.58)
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B.5 Mixed interaction

• T = 1 and CP = +:[
q
∂

∂q
d1+
f

]
M

=
αM
π

Yf
2
PRV f,G ⊗ d1+

BW , (B.59)

[
q
∂

∂q
d1+
BW

]
M

=
αM
π

4
∑
fL

YfNfP
R
fV,G ⊗ d1+

f + 2PRHV,G ⊗ d1+
H

 , (B.60)

[
q
∂

∂q
d1+
H

]
M

=
αM
π

1

4
PRVH,G ⊗ d1+

BW . (B.61)

• T = 1 and CP = −: [
q
∂

∂q
d1−
fL

]
M

=
αM
π

Yf
2
PAV f,G ⊗ d1−

BW , (B.62)[
q
∂

∂q
d1−
BW

]
M

=
αM
π

4
∑
fL

YfNfP
A
fV,G ⊗ d1−

f , (B.63)

[
q
∂

∂q
d1−
H

]
M

= 0 . (B.64)

Equation (B.60) differs slightly from ref. [31] where, taking into account the definition there

of dB3 = dBW /2, an 8 would appear in place of 4 in the first term on the right-hand side.

Open Access. This article is distributed under the terms of the Creative Commons
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