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1 Introduction

1.1 Motivation

String theory has provided a variety of crucial insights into quantum field theory, opening

the way to remarkable dualities and motivating new principles to constrain effective field

theories. Nonetheless, one of the oldest insights, and perhaps the most basic one, remains

as powerful as ever: the striking rearrangement of perturbative field theory, seen as the

low-energy limit of perturbative string theory. In fact, certain scattering amplitudes in field

theory, particularly in the presence of supersymmetry, were first computed with the aid of

string theory, as in ref. [1] and many others. The appeal of this programme is that the string

theory worldsheet allows for the use of powerful techniques of two-dimensional conformal

field theory, leading to a formalism that is strikingly different from the traditional Feynman

diagram expansion of perturbative field theory. The worldsheet provides, for instance, a

picture for the scattering of closed strings as the ‘double copy’ of the scattering of open

strings [2]. This leads directly to formulae that relate scattering amplitudes in gravity and

in gauge theory, which have been explored to great effect, especially since a diagrammatic

version of this double copy was proposed [3, 4].

While the lessons from perturbative string theory are very encouraging, the calcu-

lations are challenging beyond the first few orders; at two loops, see e.g. [5–12] for the

impressive RNS superstring results and [13, 14] for recent examples of bosonic string cal-

culations. The computation of loop corrections requires higher-genus string worldsheets,

whose mathematical description is highly elaborate and not fully developed. An under-

standing of this description seems necessary or at least very helpful even if we are only

interested in the low-energy field theory limit.
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A new application of string methods to field theory has recently come to fruition,

following the understanding that at least certain massless perturbative field theories can

be described directly by a string-type theory. The spectrum of such strings coincides

with that of the corresponding field theory, and no low-energy limit is required. These

are the ambitwistor strings proposed by Mason and Skinner [15]. They are inspired by

Witten’s seminal model of a twistor string associated to four-dimensional gauge theory [16].

The twistor string leads to beautiful expressions for tree-level scattering amplitudes in

gauge theory as residue integrals in the moduli space of a Riemann sphere [17]. These

expressions were more recently extended into an elegant formalism to describe tree-level

massless scattering in any spacetime dimension, for a variety of theories, by Cachazo, He

and Yuan (CHY) [18–21]. The construction of ambitwistor strings was guided by the

requirement of reproducing the CHY formulae [15, 22, 23].

Given that ambitwistor strings are supposed to directly describe perturbative field

theories, an obvious question is what happens at loop level. In conventional string theory,

the field theory limit (α′ → 0) is associated to a degeneration limit of the moduli space;

for instance, at one loop the limit is such that α′ Im(τ) stays finite, where τ is the torus

modulus [1]. Higher-genus mathematical objects, like theta functions, give way to much

simpler expressions in that limit. How is this to happen for ambitwistor strings, which are

already field theories, and possess no α′ parameter? The answer was given in refs. [24–26],

following genus one [27, 28] and genus two [29] studies: the residue integral in moduli

space localises on a degenerate limit simply via the use of the residue theorem. The

resulting worldsheet is a Riemann sphere with nodes (pairs of identified points), through

which flow the loop momenta. This provides a new formalism that extends the CHY

representation from tree-level amplitudes to loop-level integrands. The type of formula for

the loop integrands is naturally interpreted as a forward limit of tree-level amplitudes [25,

30–37], in the spirit of the Feynman tree theorem.

In this paper, we will construct the two-loop formulae obtained from ambitwistor

strings for loop integrands in type II supergravity and in super-Yang-Mills theory. The

detailed derivation from the genus-two ambitwistor string will put into firm footing some

heuristic aspects of our earlier analysis [26], and will extend the four-point formulae pre-

sented there to any number of particles. The elaborate technical content of our analysis

indicates that the precise approach that we employ here may be too challenging at higher

loops. We hope, however, that our results will be sufficient to identify an easier general-

isation route. The long term goal is to develop a formalism based directly on the nodal

Riemann sphere, without any reference to higher-genus surfaces. The first steps of such

a formalism were accomplished at one loop in [36], where formulae previously obtained

via the degeneration of the torus were reproduced on the sphere using a ‘gluing operator’.

Moreover, we will see in this work another important advantage of the nodal sphere ap-

proach: we propose formulae for two-loop super-Yang-Mills theory amplitudes based on

the nodal sphere, without starting from a genus-two expression.

Before proceeding with a summary of our main results, we provide here a brief survey

of work on ambitwistor strings, for the benefit of the reader unfamiliar with this topic.

As we mentioned, they were proposed in [15] as worldsheet chiral conformal field theories

– 2 –
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reproducing the CHY formulae for tree-level scattering amplitudes [19]. The first examples

of ambitwistor strings described the tree-level amplitudes of type II supergravity, super-

Yang-Mills theory (in a heterotic-type model) and the bi-adjoint φ3 scalar theory. Later on,

in [22, 23], a variety of other models — distinguished by the worldsheet matter content and

symmetries — were engineered in order to reproduce CHY formulae for several interesting

theories of massless particles [21, 38], including Einstein-Yang-Mills, Dirac-Born-Infeld

and the non-linear sigma model. Other variations on the models of Mason and Skinner

include: a pure spinor version of the supergravity and super-Yang-Mills models [39, 40];

a version based on twistor variables for theories in four spacetime dimensions [41], with

preliminary work at one loop [42]; a derivation of the anomalies of the type II theory on a

curved background [43], leading to the supergravity equations of motion as the consistency

condition for the background; studies of the soft behaviour of amplitudes based on the

relation of ambitwistor space to null infinity [44–46]; an ambitwistor string field theory

construction [47]; a class of models adapted to the projective null cone, describing certain

conformal field theories [48]; models describing certain higher-derivative theories [49]; and

a calculation of the three-point amplitude for scattering on plane wave backgrounds [50].

Along with these studies, there is important work on the precise connection of ambitwistor

strings — chiral theories with a massless spectrum — to conventional string theory, in

particular to the null string [51–57].

1.2 Summary of results

We present here a summary of our final formulae for type II supergravity and super-Yang-

Mills theory at two loops. In both cases, the amplitude is expressed as1

Mn =

∫
dd`1 dd`2
`21 `

2
2

∫
M0,n+4

dn+4σA
vol SL(2,C)2

∏
A

δ̄
(
EA
)

I (2)
n , (1.1)

where σA ∈ {σ1± , σ2± , σi} are punctures on the sphere associated to loop momenta in-

sertions (±`I for σI±) and the external particles (i = 1, · · · , n). The loop integrand is

therefore written as a CHY-type integral, with the integration completely localised on the

solutions to the two-loop scattering equations:

Ei = ki ·`1
(

1

σi−σ1+

− 1

σi−σ1−

)
+ki ·`2

(
1

σi−σ2+

− 1

σi−σ2−

)
+
∑
j 6=i

ki ·kj
σi−σj

, (1.2a)

±E1± =
1

2
(`1 +`2)2

(
1

σ1±−σ2+

− 1

σ1±−σ2−

)
+
∑
j

`1 ·kj
σ1±−σj

, (1.2b)

±E2± =
1

2
(`1 +`2)2

(
1

σ2±−σ1+

− 1

σ2±−σ1−

)
+
∑
j

`2 ·kj
σ2±−σj

. (1.2c)

1In this summary of results, we have chosen to extract the form degree of I (2)
n , EA and other objects into

the overall dn+4σA in eq. (1.1). This is the most common notation in the scattering equations literature.

In the body of this paper, however, we keep the form degrees of each object, so the reader should bear this

in mind when comparing the expressions here with those in other sections.
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Figure 1. The bi-nodal Riemann sphere, with nodes parametrised by σ1± and σ2± representing

the two loops of field theory.

In the supergravity case, we derive our formula from the genus-two ambitwistor string

amplitude, which is based on the genus-two scattering equations involving the period ma-

trix. The crucial ingredient in the derivation is the residue theorem on moduli space. We

use it to turn the genus-two formula into a formula on the bi-nodal Riemann sphere; see

figure 1. The latter formula is based on what are more appropriately called the two-loop

scattering equations (1.2). The result for supergravity follows from the asymptotics of

the (maximal non-separating) degeneration limit leading to the bi-nodal Riemann sphere.

While the genus-two origin of the supergravity formula requires d = 10, the formula (1.1)

on the bi-nodal sphere can be dimensionally reduced as usual to, for example, maximal

N = 8 supergravity in d = 4. We focused on the even spin structures contribution (the

full result for d < 10), and on NS-NS external states with polarisation tensors εµi ε̃
ν
i , which

form a basis for general NS-NS states. The supergravity result is

I (2), sugra
n = I(2)

n (ε) I(2)
n (ε̃)

(1+2−)(1−2+)

(1+1−)(2+2−)
, (1.3)

where I(2)
n is the analogue of the chiral integrand in conventional superstring theory, re-

ceiving contributions from all spin structures,

I(2)
n = INS

n + IR2
n + IR1

n + IRR
n . (1.4)

The ten even spin structures are naturally grouped into contributions corresponding to

states running in the loops:

INS
n = 4J

∑
n1,n2∈{0,1}

Z(−n1,−n2)
NS Pf

(
MNS

)∣∣
q
n1
1 q

n2
2
, (1.5a)

IR2
n = 2J

(
Z(0,0)

R2 Pf
(
MR2

)∣∣
q0
1q

0
2

+ Z(−1,0)
R2 Pf

(
MR2

)∣∣
q1
1q

0
2

)
, (1.5b)

IR1
n = 2J

(
Z(0,0)

R1 Pf
(
MR1

)∣∣
q0
1q

0
2

+ Z(0,−1)
R1 Pf

(
MR1

)∣∣
q0
1q

1
2

)
, (1.5c)

IRR
n = J Z(0,0)

RR9
Pf
(
MRR9

)∣∣
q0
1q

0
2

+ J Z(0,0)
RR0

Pf
(
MRR0

)∣∣
q0
1q

0
2
, (1.5d)

where we have, respectively, NS states running in both loops, NS state in loop 1 and

Ramond state in loop 2, NS state in loop 2 and Ramond state in loop 1, and finally

Ramond states in both loops. Here, J−1 = (1+2+)(1+2−)(1−2+)(1−2−), and the partition
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function factors Z are described in section D.2. Moreover, Pf (M)|qa1 qb2 denotes the qa1q
b
2

coefficient in the Taylor expansion of the pfaffian of M around q1 = q2 = 0; the vanishing of

the modular parameters q1 and q2 is the degeneration limit corresponding to the bi-nodal

Riemann sphere. The definition of the matrices M , dependent on the states running in the

loop and on the external polarisations, is given in section 6.3. Finally, the cross ratio in

eq. (1.3) ensures the absence of certain unphysical poles that are allowed by the two-loop

scattering equations. While ref. [26] first pointed out the need for this cross ratio, here

we provide a derivation from first-principles based on the degeneration from the genus-

two surface. In particular, the introduction of the cross ratio enables the extension of

the domain of integration of the remaining genus-two modular parameter q3, allowing for

the final formula to be expressed as a moduli integral on the bi-nodal Riemann sphere,

constrained only by the two-loop scattering equations.

Apart from the cross ratio, which is a new feature at two loops, we want to emphasise

the similarity of our type II supergravity formula to the tree-level formula of CHY [19],

based on the pfaffian of a matrix analogous to our matrices, and to the one-loop formula

of ref. [24], which also includes contributions from different spin structures.

The super-Yang-Mills result is closely related to the final supergravity formula. In this

case, however, we propose an expression directly on the bi-nodal Riemann sphere, instead of

performing a delicate degeneration limit from a genus-two super-Yang-Mills formula (which

may not even exist). The colour dependence is determined from a current algebra correlator

on the sphere, in the spirit of the heterotic string, and the two nodes are represented by a

sum over the colour indices of the corresponding current algebra insertions. The formula

for the scattering of gluons with polarisation vectors εµi is

I (2), sYM
n = I(2)

n (ε) IPT(2)
n , (1.6)

where I(2)
n was introduced in eq. (1.4), and the colour dependence is carried by the two-loop

‘Parke-Taylor factor’,

IPT(2)
n =

∑
γ∈S′n+2

tr([[· · · [[[T a1+ , T aγ(1) ], T aγ(2) ], T aγ(3) ], · · · ], T aγ(n+2) ]T a1− ) δa1+ ,a1− δa2+ ,a2−(
1+ γ(1) γ(2) γ(3) · · · γ(n+ 2) 1−

) ,

(1.7)

where (ijk · · · l) ≡ (σi−σj)(σj−σk) · · · (σl−σi). The sum is over permutations of the n+2

punctures {σ2± , σi}, i.e., the punctures σ±1 are fixed. We denote the set of permutations

by S′n+2 (and not Sn+2) because we restrict the permutations to satisfy the following

ordering of the nodal punctures: (1+ · · · 2+ · · · 2− · · · 1−); there are therefore (n + 2)!/2

valid permutations. This restriction plays a role analogous to that of the cross ratio in

eq. (1.3): it ensures the absence of unphysical poles. As in the supergravity case, our

super-Yang-Mills formula is strongly reminiscent of the tree-level formula of CHY [19] and

the one-loop formula of ref. [24].

The detailed definition of the ingredients in eq. (1.4) leading to I(2)
n as described in

this paper makes use of two extra marked points, x1 and x2, which are not part of the

CHY-type integration in (1.1). These are associated with a gauge choice, the location of

the supersymmetry picture-changing operators at genus two, analogous to conventional

– 5 –
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superstring theory. We prove that our formulae do not depend on this gauge choice, but

leave for future work the possibility of simplifying the formulae with a smart choice of these

physically irrelevant marked points. In this paper, we merely check how this simplification

occurs in practice for the four-point formula.

The expressions given here describe type II supergravity and super-Yang-Mills theory

in d = 10 (except for odd spin structures, which we did not consider). Formulae for

theories in fewer spacetime dimensions are obtained via dimensional reduction as usual. In

the case of reduction on a 6-torus, the corresponding four-dimensional theories are N = 8

supergravity and N = 4 super-Yang-Mills theory. While all four-dimensional supergravities

are expected to be ultraviolet divergent in perturbation theory, and therefore do not possess

an S-matrix, one can still define a loop integrand at any loop order. Indeed, this has been

the subject of intense work that aims to study in detail the ultraviolet properties; see [58]

for recent results in N = 8 supergravity. Our ten-dimensional ‘amplitudes’ are understood

in this context — the result is the loop integrand itself.

The amplitude formulae for both supergravity and the super-Yang-Mills reproduce

known expressions for two-loop four-particle scattering amplitudes [26]. Moreover, we verify

that only physical factorisation channels contribute to the amplitude, and the amplitude is

independent of the gauge choice associated to the two extra marked points, x1 and x2, as

indicated above. However, a direct comparison of our results for n > 4 to known formulae

using factorisation is beyond the scope of this paper and left for future work. Instead, our

focus throughout the paper lies on deriving (1.1) from the ambitwistor string correlator at

genus two.

1.3 Outline of paper

The paper is organised as follows. In section 2, we review the type II ambitwistor string,

its relation to the tree-level CHY formulae for scattering amplitudes, and the one-loop

extension of this story. Section 3 is a brief introduction to Riemann surfaces, with particular

emphasis on genus two. We construct the type II ambitwistor string amplitude on a genus-

two surface in section 4. In section 5, we discuss in detail the localisation of the genus-

two amplitude on a degenerate limit of the moduli space, via the residue theorem. This

procedure leads to an expression for the type II amplitude on a bi-nodal Riemann sphere,

which we develop in full detail in section 6. Section 7 presents the analogous formula on

the bi-nodal Riemann sphere for super-Yang-Mills amplitudes. We conclude in section 8

with a discussion of future directions.

2 Review of the ambitwistor string

Ambitwistor strings are two-dimensional chiral conformal field theories, which are con-

jectured to describe the perturbative interactions of quantum field theories of massless

particles. Their construction in [15] was guided by the CHY formulae for scattering am-

plitudes [19]. For most of this work, except for a later section where we consider colour

degrees of freedom, we will focus on the RNS ambitwistor string, which is a string-like

formulation of type II supergravity.

– 6 –
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2.1 Type II ambitwistor string

The action of the type II ambitwistor string can be written as

S =
1

2π

∫
Σ
P ·∂̄X+

1

2
ψ ·∂̄ψ+

1

2
ψ̃ ·∂̄ψ̃−e

(
P ·∂X+

1

2
ψ ·∂ψ+

1

2
ψ̃ ·∂ψ̃

)
− ẽ

2
P 2−χP ·ψ−χ̃P ·ψ̃ .

(2.1)

The fields take values in the following line bundles:

X : Σ→M , e , ẽ ∈ Ω0,1
(
Σ, TΣ

)
, (2.2a)

P ∈ Ω1,0
(
Σ, T ∗M

)
, χ , χ̃ ∈ ΠΩ0,1

(
Σ, T

1/2
Σ

)
, (2.2b)

ψ, ψ̃ ∈ ΠΩ0
(
Σ,K

1/2
Σ ⊗ TM

)
. (2.2c)

In CFT language, this means that these worldsheet fields have a single component (hence

sections of line bundles) with the following conformal weight: (0, 0) for X, (1, 0) for P ,

(1/2, 0) for ψ, ψ̃, (−1, 1) for e, ẽ, and (−1/2, 1) for χ, χ̃. Moreover, ΠΩ denotes fermionic

form-fields. Notice that, in our notation, ∂̄ = dz̄∂z̄, so that each term in the action is a

top form on the Riemann surface Σ.

The bosonic fields e, ẽ (known as Beltrami differentials) and the fermionic fields χ, χ̃

are Lagrange multipliers enforcing the constraints P 2 = 0 and P · ψ = P · ψ̃ = 0 that are

associated to symmetries of the action. The constraint enforced by e is the vanishing of

the chiral stress-energy tensor, generating holomorphic diffeomorphisms,

δvX
µ=v∂Xµ , δvPµ=∂(vPµ), δve= ∂̄v+v∂e−e∂v, δv ẽ=v∂ẽ−ẽ∂v,

δvψ
µ=v∂ψµ+

1

2
ψµ∂v, δvψ̃

µ=v∂ψ̃µ+
1

2
ψ̃µ∂v, δvχ=v∂χ− 1

2
χ∂v, δvχ̃=v∂χ̃− 1

2
χ̃∂v,

On the other hand, ẽ is associated to the ‘ambitwistor gauge transformation’, affecting only

the bosonic fields,

δαX
µ = αηµνPν , δαPµ = 0 , δαe = 0 , δαẽ = ∂̄α− α∂e+ e∂α .

The fermionic symmetries are a supersymmetric extension of this ambitwistor gauge trans-

formation. In particular, the constraint P · ψ associated to χ generates

δεX
µ = εψµ δεPµ = 0 , δεψ

µ = εηµνPν , δεψ̃µ = 0 ,

δεe = 0 , δεẽ = 2εχ , δεχ = ∂̄ε+ e∂ε− 1

2
ε∂e , δεχ̃ = 0 ,

and analogously for χ̃.

Ambitwistor space is the space of null geodesics of complexified spacetime, which in

this paper is simply complexified Minkowski spacetime. The features of the action (2.1)

that effectively lead to a supersymmetrised version of ambitwistor space as the target space

are (i) the constraint P 2 = 0, together with the associated ‘ambitwistor gauge transforma-

tion’, which identifies points in the cotangent bundle that lie along the same geodesic, and

(ii) the N = 2 supersymmetric extension of the constraint P 2 = 0 and the associated trans-

formations. Notice that there is a crucial difference with respect to the conventional type

– 7 –
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II string. The ‘square’ of each supersymmetry transformation is not the transformation

generated by the stress-tensor, but the one generated by P 2,

{δε1 , δε2}Xµ = −{ε1, ε2}ηµνPν , {δε1 , δε2}ψµ = 0 , (2.5)

and analogously for ε̃. Equivalently, this can be expressed in terms of the constraint algebra

{P 2, P · ψ, P · ψ̃} as2

(
P ·ψ

)
(z)
(
P ·ψ

)
(w) ∼ P 2

z − w
,
(
P ·ψ̃

)
(z)
(
P ·ψ̃

)
(w) ∼ P 2

z − w
,
(
P ·ψ

)
(z)
(
P ·ψ̃

)
(w) ∼ 0 .

(2.6)

While this algebra of constraints strongly resembles the RNS superstring agebra, the am-

bitwistor constraint P 2/2 bears no relation to the worldsheet stress-energy tensor T .3 The

fermionic constraints P ·ψ and P · ψ̃ therefore do not generate worldsheet superdiffeomor-

phisms, but rather the supersymmetric extension of the worldsheet gauge theory constraint

P 2/2. The symmetry group of the ambitwistor string thus consists of (non-supersymmetric)

worldsheet diffeomorphisms and the worldsheet gauge supergroup PSL(1, 1|C). In contrast

to the superstring, all supersymmetries of the ambitwistor string thus reside in the gauge

supergroup, and consequently the theory is formulated over a Riemann surface, not a

super-Riemann surface.

A more obvious distinction between the action (2.1) and its string theory counterpart

is that it has no dimensionful parameter — no α′. We can therefore anticipate that the

spectrum is massless.

2.2 BRST quantization

We now proceed to quantise the ambitwistor string, according to the BRST procedure.

We follow closely the presentation in [27, 36]. We start by introducing two bc and two βγ

ghost systems for the gauge symmetries,

b, b̃ ∈ ΠΩ0
(
Σ,K2

Σ

)
, β, β̃ ∈ Ω0

(
Σ,K

3/2
Σ

)
, (2.7a)

c, c̃ ∈ ΠΩ0
(
Σ, TΣ

)
, γ, γ̃ ∈ Ω0

(
Σ, T

1/2
Σ

)
. (2.7b)

In CFT language, the conformal weights for the fermionic ghosts are (2, 0) for b, b̃, and

(−1, 0) for c, c̃, while for the bosonic ghosts we have (3/2, 0) for β, β̃, and (−1/2, 0) for γ, γ̃.

For worldsheet gravity, we proceed in a similar manner as in string theory: we simply

set e = 0 and integrate over the moduli space of the Riemann surface. Moreover, the

ghosts bc play the usual role in vertex operators. While ẽ is not the complex conjugate of

e, the gauge fixing of both e and ẽ still leads to a measure on moduli space, albeit one that

completely localises the integration, as we shall see in a moment.

After setting e = 0, the symmetry transformations associated to ẽ and χ, χ̃ vary these

fields only within a fixed Dolbeault (∂̄) cohomology class. Since these cohomology classes

2This algebra also plays an important role in the formuation of the ambitwistor string on curved back-

grounds. Requiring the algebra to remain consistent at the quantum level directly gives rise to the d = 10

supergravity equations of motion, as explained beautifully in [43].
3In contrast to the RNS superstring, where the role of P is played by ∂X.
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are finite dimensional, the functional integrations over these fields are effectively reduced

to finite-dimensional integrals after gauge fixing (apart from the ghosts). In anticipation

of the inclusion of vertex operators, we consider the cohomology classes of a Riemann

surface with n maked points {zi} at which the gauge transformations are required to

vanish. Now, since ẽ ∈ Ω0,1
(
Σ, TΣ

)
, it is ∂̄-closed. Its cohomology class is denoted as

H0,1
(
Σ, TΣ(−z1 . . .− zn)

)
and has dimension n+ 3g − 3, so we can span it with a basis of

Beltrami differentials {µr}, with r = 1, . . . , n+ 3g − 3. Similarly, the cohomology class for

χ or χ̃ is H0,1
(
Σ, T

1/2
Σ (−z1 . . .− zn)

)
and has dimension n+ 2g− 2, so we can span it with

a basis {χα}, with α = 1, . . . , n+ 2g−2. Gauge fixing the ∂̄-exact part of the fields to zero

corresponds to adding a gauge-fixing term to the action of the form

SGF =
1

2π

∫
Σ

{
Q , b̃ (ẽ− ẽ0) + β (χ− χ0) + β̃ (χ̃− χ̃0)

}
, (2.8)

where

ẽ0 =

n+3g−3∑
r=1

srµr , χ0 =

n+2g−2∑
α=1

ζαχα , χ̃0 =

n+2g−2∑
α=1

ζ̃αχα , (2.9)

where sr are bosonic parameters and ζα, ζ̃α are fermionic parameters. The gauge-fixing

procedure introduces finite-dimensional integrations over the sr and the ζα, ζ̃α, as well as

over the fermionic parameters qr = Q◦sr and the bosonic parameters % = Q◦ζα, %̃ = Q◦ζ̃α.

Moreover, it introduces functional integrations over the Nakanishi-Lautrup fields H = Q◦ b̃
and G = Q ◦ β, G̃ = Q ◦ β̃. All these parameters and fields arise from the gauge-fixing

term (2.8).4

Let us consider the parts of the path integral associated with ẽ. The important terms

in the complete action are

1

2π

∫
Σ
−1

2
ẽP 2 +Hẽ−

n+3g−3∑
r=1

(
srµrH + qrµr b̃

)
. (2.10)

Integrating out ẽ field fixes H = P 2/2. The integrations over sr and qr then lead to the

insertions of picture changing operators (PCOs)

n+3g−3∏
r=1

δ̄

(∫
Σ
µrP

2

) (∫
Σ
µr b̃

)
. (2.11)

The role of the insertions of
∫

Σ µr b̃ is similar to that in conventional string theory. In

particular, they (i) absorb the c̃ ghosts in vertex operators, for µr chosen to extract the

residue at a marked point yr, giving
∮
yr
b̃, and (ii) at higher genus, saturate the zero-modes

integration, for µr chosen to extract the value of the field at a point, giving b̃(yr). The delta

functions, for which the definition is 2πi δ̄(z) = ∂̄(1/z), are the novel feature of ambitwistor

4Alternatively, following [59], we can define the action of Q on the moduli space directly as an exterior

derivative: Q ◦ {sr, ζα, ζ̃α} = {dsr, dζα, dζ̃α}. The later differentials on moduli space already provide the

appropriate measure, since only the contributions that build up the complete moduli space measure give a

non-vanishing contribution to the path integral in view of the ghost integrations.
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strings. They impose the constraint P 2 = 0, which, as we shall see later, fully localises the

measure on the Riemann surface moduli space and leads to the scattering equations.

A comment is in order regarding the asymmetry of gauge fixing between e and ẽ.

The role played by the Beltrami differentials that span the deformation of the complex

structure e, which we will call µ̂r, is to provide the conventional measure on (the chiral

bosonic) moduli space of the Riemann surface. Therefore, the insertions of
∫

Σ µ̂rb differ

from those of
∫

Σ µr b̃ beyond the change of chirality, and this affects the measure of the

path integral, as we shall discuss in section 4.1.

The parts of the path integral associated with χ and χ̃ are treated in a similar manner

to that in type II string theory. In particular, they lead to the insertions of PCOs,

n+2g−2∏
α=1

(
δ(β)δ(β̃)P · ψ P · ψ̃

)
(xα) , (2.12)

at locations {xα} picked up by the choice of basis {χα}.
Finally, we can write down the gauge-fixed action, which is linear in all fields and

includes the kinetic terms for the ghosts,

Sg.f. =
1

2π

∫
Σ
P · ∂̄X +

1

2
ψ · ∂̄ψ +

1

2
ψ̃ · ∂̄ψ̃ + b∂̄c+ b̃∂̄c̃+ β∂̄γ + β̃∂̄γ̃ . (2.13)

We are left with the following OPEs:

Pµ(z)Xν(0) ∼ −δνµ
dz

z
, ψµ(z)ψν(0) ∼ ηµν dz

z
, b(z)c(0) ∼ dz

z
, β(z)γ(0) ∼ −dz

z
,

(2.14)

and similarly for ‘tilded’ fields. In the remainder of this paper, we will be typically drop the

differential symbols, where it should be obvious how these should be reinstated to provide

for expressions of the appropriate weight.

The central charge is computed in a similar manner as in conventional type II string

theory, giving 3(d − 10). This is twice the result in the conventional string, because it is

effectively the sum of its chiral and anti-chiral central charges. The critical dimension is

the same, d = 10. Only in d = 10 is the BRST operator nilpotent:

Q =
1

2π

∮
c

(
Tm +

1

2
T bc
)

+ c̃
P 2

2
+ γ P · ψ + γ̃ P · ψ̃ − b̃ (γ2 + γ̃2) , (2.15)

where

Tm =P ·∂X+
1

2
ψ ·∂ψ+

1

2
ψ̃ ·∂ψ̃−(∂b̃)c̃+2∂(b̃c̃)−(∂β)γ+

3

2
∂(βγ)−(∂β̃)γ̃+

3

2
∂(β̃γ̃) ,

T bc =−(∂b)c+2∂(bc) , (2.16)

2.3 Vertex operators

Vertex operators are elements of the BRST cohomology, and in an ambitwistor string

these always correspond to massless states. Notice that there is no mass scale, whereas in

standard string theory this is provided by the inverse string length. In the case of the type
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II ambitwistor string, the states (and their interactions) are those of type II supergravity.

Before we proceed, let us point out that, since all the fields are left-moving, there are more

options in the GSO projection [49]. We are only considering here the GSO projection

analogous to that in type II string theory, where the projection is applied independently

to left-moving and right-moving states; the analogue states in our case are left-moving

‘untilded’ and ‘tilded’ states.

A basis for fixed vertex operators can be built from elements

O(z) = c(z)c̃(z)U(z)Ũ(z) eik·X(z) , k2 = 0 , (2.17)

where U and Ũ take the forms familiar from conventional string theory for the Neveu-

Schwarz (NS) sector and the Ramond (R) sector. In contrast to standard string theory

however, all the operators are left-moving in the ambitwistor case. We will only consider

here the scattering of NS-NS external states, so that

UNS = δ(γ) ε · ψ , ŨNS = δ(γ̃) ε̃ · ψ̃ . (2.18)

General NS-NS polarisation tensors can be obtained from linear combinations of these εµε̃ν
states. Along with the massless condition, k2 = 0, BRST closure requires that ε · k =

ε̃ · k = 0. These constraints follow respectively from the contributions of c̃ P 2/2 and

γ P ·ψ+ γ̃ P · ψ̃ in the BRST operator Q. Gauging the worldsheet supergroup thus projects

out negative-norm states from the ambitwistor string spectrum. For the Ramond sector

vertex operators, see e.g. [27, 36]. Of course, even though we will only consider NS-NS

external states, all states run in the loops. Indeed, the Ramond vertex operators would be

crucial if we tried to reproduce the results of the present paper using a gluing operator, as

was accomplished in [36] at one loop.

The effect of the supersymmetry-related PCOs (2.12) is familiar from superstring the-

ory. For marked points xα coinciding with fixed vertex operator locations zi, we get

lim
xα→zi

(
δ(β) δ(β̃)P · ψ P · ψ̃

)
(xα) ONS-NS(zi)

= cc̃ (ε · P + k · ψ ε · ψ)(ε̃ · P + k · ψ̃ ε̃ · ψ̃)eik·X(zi) = cc̃ V (zi).

On the other hand, for the PCOs (2.11), there is a crucial difference with respect to string

theory. Let us use the notation

〈λ1λ2〉 =

∫
Σ
λ1λ2

for the standard Serre duality pairing. If a Beltrami differential µr is such that it extracts a

residue at a marked point yr, and if we take this point to coincide with the vertex operator

locations zi, we get, taking into account also the gauge fixing related to e,

lim
yr→µi

(〈
µrb
〉〈
µr b̃
〉
δ̄
(
〈µrP 2〉

)) (
cc̃ V

)
(zi) = δ̄

(
〈µiP 2〉

)
V (zi) , with 〈µiP 2〉 = ResziP

2 ,

and the integrated vertex operator is

V =

∫
Σ
δ̄
(
ResziP

2
)
V (zi) . (2.19)
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2.4 Scattering equations and CHY formulae

We discussed above how the constraint P 2 = 0 is imposed in terms of PCOs after gauge

fixing. There are n + 3g − 3 of such PCOs, and this is precisely the dimension of the

moduli space Mg,n of the genus-g Riemann surface with n marked points. Therefore, the

integration over Mg,n is fully localised at a set of critical points in moduli space. The

problem of finding the complete critical set has only been addressed at genus zero, and this

is an important motivation for turning the problem for Mg,n into one for M0,n+2g, as we

will achieve in this paper for g = 2.

In this section, let us consider the case of the Riemann sphere for illustration. The

n− 3 moduli are associated to the locations {zi} of the n− 3 integrated vertex operators,

and the basis {µr} is naturally chosen so as to extract the residues of P 2 at those points,

as in (2.19). The important observation is that Pµ is determined, up to zero modes,

by integrating out Xµ in the path integral. Suppose we have n vertex operators, each

depending on Xµ only through the plane wave factor eikiX(zi). Then we can integrate

out the PX system exactly. For the zero mode of Xµ, we get a delta function imposing

momentum conservation,
∑

i ki = 0, as in string theory. For the non-zero modes of Xµ, we

get a delta functional imposing the constraint

∂̄Pµ = 2πi
∑
i

ki µ δ̄(z − zi) dz . (2.20)

It says that Pµ is a meromorphic differential with simple poles at z = zi with residues ki.

This constraint holds at any genus, but only at genus zero does it fully determine Pµ due

to the absence of zero modes (solutions to the homogeneous equation). We get5

Pµ = dσ
n∑
i=1

ki
σ − σi

. (2.21)

Since k2
i = 0, it is clear that P 2 is a meromorphic quadratic differential with only simple

poles at σ = σi. Then the statement that P 2 = 0 on the sphere is equivalent to the

statement that ResσiP
2 = 0, ∀σi. These residues give the scattering equations,

ResσiP
2 = Ei = 2 dσ

∑
j 6=i

ki · kj
σi − σj

= 0 , ∀σi . (2.22)

There are only n − 3 linearly independent equations, due to the 3 identities
∑

i Eiσ
q
i =

0 for q = 0, 1, 2. This is consistent with the fact that {σi} is only meaningful up to

SL(2,C) coordinate transformations on the sphere. Up to these SL(2,C) transformations,

the scattering equations determine (n−3)! solutions. These are the critical points at which

the integration over M0,n in the ambitwistor string amplitude is fully localised. The direct

way of evaluating the amplitude is to sum over the contributions from each solution {σsol
i }

to the scattering equations,

Msphere
n =

∫
M0,n

(∏
i

′ δ̄(Ei)
)

I =
∑

{σi}={σsol
i }

I

J
, (2.23)

5We will use σ as a coordinate on the sphere, and z as a coordinate on a genus-g surface. This will be

useful later for clarity, when we relate a degenerate genus-g surface to a sphere with nodes.
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where, after the first equality, the delta functions factor is independent of the chosen n− 3

linearly independent equations, and, after the second equality, 1/J represents a factor

coming from the measure. This is precisely the CHY representation of the amplitude,

which motivated the construction of the ambitwistor string. For the type II ambitwistor

string, the result is the CHY formula for a gravity amplitude, presented in [19], where all

details can be found.

At tree level, i.e., on the Riemann sphere, the amplitude for NS-NS external states is the

same in type II supergravity and in the bosonic Einstein-dilaton-B-field gravity (or NS-NS

gravity). In fact, if for the external states we take linear combinations of basis states εµε̃ν
corresponding to gravitons, then the amplitude is the same as in pure Einstein gravity. For

the factorisable external states εµε̃ν , the CHY integrand factorises, INS-NS = I(εi) I(ε̃i).

The object I, dependent on the momenta ki and polarisations εi of the external states, as

well as on the marked points σi, has a beautiful expression in terms of the Pfaffian of a

matrix, and we will construct its two-loop analogue later on.

The formula for INS-NS exhibits a double copy relation between gravity and gauge

theory, since an amplitude in Yang-Mills theory has the same building block I(εi) in its

CHY integrand: IYM = I(εi) Icolour(ai), where the ai are the Lie algebra indices of the

external gluons.

Finally, notice that the CHY formula (2.23) turns out to be valid in any number of

dimensions, even though the type II ambitwistor string is only critical in d = 10 dimensions,

since this is the only dimension where the BRST operator is nilpotent.

2.5 One loop: from the torus to the nodal Riemann sphere

The scattering equations on a genus-one Riemann surface (torus) were first discussed in [27].

The main difference with respect to the genus-zero case discussed above is that the PCOs

imposing P 2 = 0 cannot all be chosen to extract the residue at a marked point. While there

are n PCOs for n vertex operator marked points, only n− 1 of the latter are associated to

the moduli space M1,n, due to translation invariance (analogous to SL(2,C) on the sphere).

Therefore, only n− 1 of the PCOs can be of the type (2.19). The remaining PCO may be

chosen to set P 2(z0) = 0 for a point z0 not coincident with the other marked points. We

get an amplitude of the form

Mtorus
n =

∫
d10`

∫
M1,n

dτ δ̄
(
P (z0)2

) n∏
i=2

δ̄
(
ResziP

2
)

I (1) , (2.24)

where we chose to deal with translation invariance by fixing z1 (due to linear dependence,

the residue of P 2 at z1 vanishes if the residues at zi>1 vanish). The relation of this formula

to (2.23) is clear, but there are new features. One is that the integration over M1,n includes

an integration over the modular parameter τ of the torus, and the new scattering equation,

P (z0)2 = 0, may be thought of as being associated to this modulus, in the same way as

the others are associated to the vertex operator locations. The other new feature is the

integration over the zero mode of Pµ, which is required in the path integral by the fact

that, on the torus, Pµ is determined by the equation (2.20) only up to a zero mode `µdz,

with `µ constant.
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1
2-1

2

τ

...

σ+ σ−∼= τ = i∞

τ
finite

Figure 2. The residue theorem on the fundamental domain.

The new type of constraint, P (z0)2 = 0, can be expressed in an alternative way, as

was also pointed out in [27]. This will be more useful for us at genus two. After imposing

the scattering equations of type ResziP
2 = 0, we are left with a holomorphic P 2, i.e., it

has no poles. The only possibility is that P 2 = u dz2, and one can show that u → `2 as

τ → i∞. Defining u in this manner, we can substitute the insertion δ̄
(
P (z0)2

)
in (2.24)

by the insertion δ̄(u dz2). At higher genus, the same argument can be used to write

P 2 = uIJωIωJ in terms of holomorphic differentials ωI , after imposing the residue-type

scattering equations.

Ref. [27] determined the type II supergravity integrand I
(1)
typeII = I(1)(εi) I(1)(ε̃i). This

is reminiscent of the tree-level result, but now I(1)(εi) is not related to a single Pfaffian,

but to a linear combination of these, since there are contributions from the four spin

structures of the torus. We will briefly discuss the spin structures of Riemann surfaces

below. Moreover, ref. [27] also checked the modular invariance of the amplitude, i.e., the

invariance under the identifications τ ∼ τ + 1 ∼ −1/τ , where the inversion identification

requires `µ → τ`µ.

While the formula (2.24) satisfies all tests, its evaluation is very hard due to the

appearance of theta functions in the genus-one scattering equations. Ref. [24] provided a

major simplification, by noticing that the integration over τ , which is part of the integration

over M1,n, can be localised at τ = i∞, or equivalently at q = 0 for q = e2πiτ . This is

accomplished via an integration by parts, moving the derivative ∂̄
(
1/P (z0)2

)
away from

this constraint. Equivalently, it can be seen as an application of the residue theorem to the

fundamental domain of τ , and it relies on the modular invariance of the original genus-one

amplitude. The localisation gives a degenerate torus, equivalent to a Riemann sphere with

a pair of identified points called a node; see figure 2 and 3 for illustration. Changing to
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Figure 3. The nodal Riemann sphere, including the labels of the node.

coordinates σ more appropriate to describe a sphere, the final result is

Mtorus
n =Mnodal sphere

n =

∫
dd`

1

`2

∫
M0,n+2

(∏
A

′ δ̄(EA)

)
I

(1)
0 , I

(1)
0 = I

(1)
q→0 , (2.25)

where {σA} = {σi, σ+, σ−}, with the two extra marked points representing loop momentum

insertions. In the limit q → 0, we have

Pµ = `µ ω + dσ

n∑
i=1

ki
σ − σi

, ω = dσ

(
1

σ − σ+
− 1

σ − σ−

)
. (2.26)

After applying the residue theorem, the original constraint P (z0)2 = 0 is no longer enforced,

and therefore P 2 does not vanish on the nodal sphere. Indeed, P 2 has double poles at

σ+ and σ−, and therefore the quadratic differential of interest with only simple poles is

P1 = P 2 − `2ω2. Using this differential, the one-loop scattering equations can be written

compactly as ResσAP1 = 0, ∀σA. The end result is a CHY-type formula of the loop

integrand. In this formula, we can actually take the loop momentum to lie in d dimensions,

whereas on the torus d = 10 was essential for modular invariance.

The type II supergravity formula on the nodal sphere takes the form I
(1)
0 typeII =

I(1)
0 (εi) I(1)

0 (ε̃i). While no ambitwistor string model for super-Yang-Mills theory has been

studied on the torus, ref. [24] took the one-loop formula (2.25) in the same spirit as the

CHY approach, and proposed a formula for super-Yang-Mills theory based on the principle

of the double copy. With a suitable one-loop generalisation of the colour part, it takes

the form I0 SYM = I(1)
0 (εi) IPT(1)(ai). Ref. [25] extended these formulae to the cases of

non-supersymmetric Yang-Mills theory and gravity.

In this paper, we shall follow the same steps, now from genus two to the bi-nodal

Riemann sphere. We leave the non-supersymmetric extension for a future publication.

To conclude, let us also mention work on an alternative approach to the loop-level

scattering equations, based on the (hyper)elliptic parametrisation of the Riemann sur-

faces [60–64].

3 The toolkit at genus two

In this section, we review the main tools used to study conformal field theories on higher-

genus Riemann surfaces: the Green’s functions and partition functions for chiral bc and

βγ systems of any conformal weight. To this end, we discuss basic objects of the theory of
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Figure 4. Homology basis of cycles at genus two. The orientation of the cycles ensures that the

intersection form is canonical.

(compact) Riemann surfaces, with particular attention to the genus-two case. This lays the

basis for the review of Szegő kernels and the Verlinde formulas for the partition function.

We refer the reader to Fay’s classic reference [65] and to the string theory references [5, 6, 66]

for detailed expositions.

3.1 The basics

For a genus-g Riemann surface, we choose a homology basis of cycles AI and BI , I =

1, . . . , g, such that the intersection form is canonical, #(AI , BJ) = δIJ = −#(BJ , AI); see

figure 4 for g = 2. The modular group Sp(2g,Z),(
a b

c d

)(
0 1
−1 0

)(
a b

c d

)T
=

(
0 1
−1 0

)
, M =

(
a b

c d

)
∈ Sp(2g,Z) , (3.1)

is a discrete group that acts on the homology basis as M
(
B
A

)
, leaving the intersection form

invariant.

There are g linearly independent holomorphic 1-forms ωI on a genus-g Riemann surface.

These are known as holomorphic Abelian differentials or as Abelian differentials of the first

kind. They can be chosen to have normalised A-periods,6∮
AI

ωJ = δIJ ,

∮
BI

ωJ = ΩIJ . (3.2)

The matrix ΩIJ defined in this manner can be proven to be symmetric, and it is known as

the period matrix. Under a modular transformation (3.1), the period matrix transforms as

Ω → Ω̃ =
(
aΩ + b

) (
cΩ + d

)−1
. (3.3)

At genus two, Ω has 3 independent components, and we will find it convenient to define

the variables7

q11 = eiπΩ11 , q22 = eiπΩ22 , q12 = e2iπΩ12 . (3.4)

6For any Riemann surface given by a hyperelliptic curve, y2 =
∏2g−2
a=1 (x−xa), a (non-normalised) basis of

holomorphic Abelian differentials is given by xI−1dx/y, with I = 1, . . . , g. All genus-two Riemann surfaces

are hyperelliptic, but this is not true at higher genus.
7We follow a standard convention, used for example in [10], where the first two q’s are defined without

a factor of 2 in the exponential. For this choice, important expansions used later depend only on integer

powers of the q’s, rather than on square roots.
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A standard choice of fundamental domain representing the genus-two moduli space is de-

fined by the following conditions:

(i) − 1

2
≤ Re(Ω11),Re(Ω12),Re(Ω22) ≤ 1

2
,

(ii) 0 < 2Im(Ω12) ≤ Im(Ω11) ≤ Im(Ω22) , (3.5)

(iii) |det(cΩ + d)| > 1 ∀

(
a b

c d

)
∈ Sp(4,Z) .

Later on, we will study in detail a singular limit of the moduli space, where both q11

and q22 vanish. This corresponds to a non-separating degeneration of the surface, with the

pinching of both AI cycles, leading to a genus-zero degenerate surface. This surface is a

Riemann sphere with two nodes (pairs of identified points), one per collapsed AI cycle.

The g holomorphic Abelian differentials ωI also define the Abel map, given a base point

z0 on the Riemann surface. For a divisor8 d1z1+d2z2+. . .+dmzm of degree d1+d2+. . .+dm,

the Abel map takes the form

d1z1 + d2z2 + . . .+ dmzm 7→
m∑
r=1

dr

∫ zr

z0

ωI ∈ Cg . (3.6)

In particular, z1 − z2 7→
∫ z1
z2
ωI . The integration is over any curve connecting the initial

and final points, and so the map is naturally thought of modulo the integration over cycles

AI and BI , otherwise it is multiple valued. Given the periods of ωI in (3.2), the Abel map

can be seen as a single-valued map from a point or a divisor on the Riemann surface Σ

into the Jacobian variety, defined as J(Σ) ≡ Cg/{Zg + ΩZg}.

3.2 Theta functions and spin structures

The theta functions are defined on ζ ∈ Cg as

ϑ[κ](ζ) ≡
∑
n∈Zg

exp
(
iπ(n+ κ′)TΩ(n+ κ′) + 2iπ(n+ κ′)T (ζ + κ′′)

)
, (3.7)

where Ω is the period matrix and κ = (κ′|κ′′) denotes the theta characteristic, with κ′, κ′′ ∈
Cg. We are interested in characteristics corresponding to spin structures, i.e., such that

κ′, κ′′ ∈ (Z/2Z)g; we will be more explicit below. The parity property of theta functions,

ϑ[κ](−ζ) = (−1)4κ′·κ′′ϑ[κ](ζ) , (3.8)

agrees with the designation of spin structures as even/odd according to whether 4κ′ · κ′′ is

even/odd.

The argument ζ ∈ Cg of interest for the theta functions is typically related to a point

or a divisor of the Riemann surface Σ via the Abel map, defined above. Throughout the

8A divisor is mainly used to represent zeros or singularities of meromorphic functions or differentials. In

particular, d1z1 + d2z2 + . . .+ dmzm denotes behaviour of order (z − zr)dr at the points zr of the surface.
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paper, we will often denote the argument directly as a divisor, with the Abel map implicit.

The theta functions are quasi-periodic on the lattice {Zg + ΩZg}. For M,N ∈ Zg, we have

ϑ[κ](ζ +M + ΩN) = exp
(
−iπNTΩN − 2iπNT (ζ + κ′) + 2iπMTκ′′

)
ϑ[κ](ζ) . (3.9)

Since the exponential factor is nowhere vanishing, the divisor of a theta function is well

defined on the Jacobian J(Σ).

An important result in the theory of theta functions is the Riemann vanishing theorem.

Let us denote ϑ(ζ) = ϑ[0](ζ). The theorem states that

ϑ(ζ) = 0 ⇔ ζ = ∆− z1 − z2 · · · − zg−1 , (3.10)

for some g − 1 points zr on Σ. The divisor −z1 − z2 · · · − zg−1 maps to Cg via the Abel

map, while ∆ ∈ Cg is the Riemann vector of constants, which is defined as

∆I =
1− ΩII

2
+
∑
J 6=I

∮
AJ

ωJ(z)

∫ z

z0

ωI , I = 1, . . . , g . (3.11)

Before proceeding, let us return to the spin structures. There exist 4g spin structures

at genus g, of which 2g−1(2g + 1) are even and 2g−1(2g − 1) are odd. They label the choice

of periodic/anti-periodic boundary conditions of a 1/2-form (world-sheet spinor) on the AI
and BI cycles. At genus two, there are 16 spin structures. We write them here explicitly

for illustration, in the form κ = (κ′|κ′′), using the conventions of [10]: the 10 even spin

structures, for which we reserve the label δ,

2δ1 =

(
0 0

0 0

)
2δ2 =

(
0 0

0 1

)
2δ3 =

(
0 1

0 0

)
2δ4 =

(
0 1

0 1

)

2δ5 =

(
0 0

1 0

)
2δ6 =

(
0 1

1 0

)
2δ7 =

(
1 0

0 0

)
2δ8 =

(
1 0

0 1

)

2δ9 =

(
1 0

1 0

)
2δ0 =

(
1 1

1 1

)
, (3.12)

and the 6 odd spin structures, for which we reserve the label ν,

2ν1 =

(
0 0

1 1

)
2ν3 =

(
0 1

1 1

)
2ν5 =

(
1 0

1 1

)

2ν2 =

(
1 1

0 0

)
2ν4 =

(
1 1

0 1

)
2ν6 =

(
1 1

1 0

)
. (3.13)

For the various relations between even and odd spin structures, see [10]. The ambitwistor

string path integral contains, just as its standard superstring counterpart, a sum over spin

structures of world-sheet spinors. Certain combinations of the spin structures correspond

to states propagating along each BI cycle: Neveu-Schwarz (NS) states for κ′I = 0 and
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Rammond (R) states for κ′I = 1. The following table shows which spin structures contribute

to the four types of states (NS/R along cycles B1/B2):

NS1 R1

NS2 δ1, δ2, δ3, δ4 δ7, δ8, ν2, ν4

R2 δ5, δ6, ν1, ν3 δ9, δ0, ν5, ν6

(3.14)

This splitting of the sum over spin structures will allow us to select the propagating states

and potentially to consider theories with or without sypersymmetry.

In the limit that will be important to us later, where both q11 and q22 vanish, it

is straightforward to extract the first few orders in q11 and q22 of the genus-two theta

functions, which will be relevant for our calculations,

ϑ[κ](ζ) =
∑

n1,n2∈Z
q

(n1+κ′1)2

11 q
(n2+κ′2)2

22 q
(n1+κ′1)(n2+κ′2)
12 (3.15)

× exp 2πi
(
(n1 + κ′1)(ζ1 + κ′′1) + (n2 + κ′2)(ζ2 + κ′′2)

)
.

3.3 Prime form, Szegő kernels and meromorphic differentials

We are now in a position to define several types of differentials on a Riemann surface that

will be useful. Let us first define the prime form. Consider an odd spin structure ν. The

1-form
∑g

I=1 ∂Iϑ[ν](0) ωI is holomorphic, its 2g−2 zeros are quadratic, and its square root

defines (up to an overall sign) a holomorphic 1/2-form hν . The prime form is defined as

E(z, w) ≡ ϑ[ν](z − w)

hν(z)hν(w)
. (3.16)

It is a holomorphic (−1/2)-form in both z and w, with a unique simple zero at z = w,

E(z, w) ≈ z − w√
dz
√

dw
for z ≈ w . (3.17)

The prime form is independent of the choice of odd spin structure ν used for its defi-

nition. We recall that the Abel map is implicit in the argument of the theta function,

z − w 7→
∫ z
w ωI .

For each even spin structure δ, the Szegő kernel is defined as

Sδ(z, w) ≡ ϑ[δ](z − w)

ϑ[δ](0)E(z, w)
. (3.18)

It is a (1/2)-form in both z and w, with a simple pole at z = w,

Sδ(z, w) ≈
√

dz
√

dw

z − w
for z ≈ w , (3.19)

and it is holomorphic elsewhere. The Szegő kernel plays the role of fermionic Green’s

function for a bc-system with weight 1/2 and even spin structure δ, and thus arises in the

correlation functions of the world-sheet spinor fields ψ and ψ̃ of the ambitwistor string. In

particular,

〈ψµ(z)ψν(w)〉δ = ηµνSδ(z, w) . (3.20)
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The prime form is single valued when z goes around an AI -cycle, but it has non-trivial

monodromy around a BI -cycle,

E(z, w) 7→ − exp

(
−iπΩII + 2πi

∫ z

w
ωI

)
E(z, w) . (3.21)

It can, however, be used to define single-valued differentials of interest.9 There is a nor-

malised Abelian differential of the second kind defined by

ω(z, w) ≡ dzdw ∂z∂w logE(z, w) = ω(w, z) . (3.22)

In this case, it is actually a 1-form in both z and w, with a double pole at z = w,

ω(z, w) ≈ dzdw

(z − w)2
for z ≈ w , (3.23)

and it is holomorphic elsewhere. Its A-periods vanish and its B-periods are 2πi ωI(w) for z

around BI , where ωI are the holomorphic (i.e., first-kind) Abelian differentials from (3.2).

The prime form also defines a class of normalised Abelian differentials of the third kind as

ωw1,w2(z) ≡ dz ∂z log
E(z, w1)

E(z, w2)
= −ωw2,w1(z) . (3.24)

This is a 1-form with a pair of simple poles with ±1 residues,

ωw1,w2(z) ≈ (−1)a
dz

z − wa
for z ≈ wa , a = 1, 2 , (3.25)

and it is holomorphic elsewhere. Again, its A-periods vanish.

Suppose that we want to solve the following equation for a differential p = p(z)dz,

∂̄p = 2πi
∑
i

qi δ̄(z − zi) dz , (3.26)

for some constants qi satisfying
∑

i qi = 0 . We recall that 2πiδ̄(z) = ∂̄(1/z) . We can

re-express the equation as

∂̄p = 2πi
∑
i

qi [δ̄(z − zi)− δ̄(z − z∗)] dz , (3.27)

where z∗ is an arbitrary point. So p is a meromorphic differential with simple poles at zi
of residue qi, and with no pole at z∗ due to

∑
i qi = 0 . On a genus-g Riemann surface, the

general solution can be written as

p = cIωI +
∑
i

qi ωi,∗ , (3.28)

9Abelian differentials are the holomorphic or meromorphic 1-forms on a Riemann surface. The Abelian

differentials of the first kind are the holomorphic differentials, and are said to be normalised if their A-

periods obey the first condition in (3.2). The Abelian differentials of the second kind are the meromorphic

differentials with only poles without residues, i.e. no simple poles. The Abelian differentials of the third

kind are the meromorphic differentials with only simple poles. The Abelian differentials of second and third

kinds are said to be normalised if their A-periods vanish.
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where the cI are the g constants of integration of the homogeneous equation, each associated

to an Abelian differential of the first kind, and the ωi,∗ are Abelian differentials of the third

kind, with residue 1 at zi and residue −1 at z∗. We will later on make use of this result, with

the ambitwistor worldsheet field Pµ playing the role of p, and with the external momenta

kiµ playing the role of the charges qi.

3.4 Zero modes and partition functions of chiral bc and βγ systems

Using the holomorphic Abelian differentials, the theta functions and the prime form, it

is possible to construct a prominent class of objects relevant to the study of conformal

field theories on Riemann surfaces, namely the partition functions of chiral fermionic bc or

bosonic βγ systems.

The number of zero modes of ∂̄λ, i.e., the operator ∂̄ acting on a worldsheet field of

integer or half-integer weight λ, is given by, for g ≥ 2,

Υ(λ) =


0 for λ < 0 or λ = 1/2 with even spin structure,

1 for λ = 0 or λ = 1/2 with odd spin structure,

g for λ = 1,

(2λ− 1)(g − 1) for λ ≥ 3/2.

(3.29)

The cases with λ ∈ {0, 1/2, 1} actually apply at any genus. For λ = 0, the zero mode is

the constant function. For λ = 1, the g zero modes correspond to the Abelian holomorphic

differentials. For even (odd) spin structures, there is no (one) zero mode of ∂̄1/2, the

worldsheet Dirac operator.

Consider a system with weights λ for b (or β) and 1 − λ for c (or γ), and denote

Q = 2λ− 1. The partition function is defined such that the zero modes are saturated. For

instance, for a bc system with λ > 1, the partition function is the determinant of ∂̄ acting

on c,10

det′ ∂̄1−λ =

∫
DbDc e−Sb,c

Q(g−1)∏
i=1

b(zi) , (3.30)

where the prime in det′ denotes the saturation of zero modes, without which the path

integral would vanish; the saturation is produced by the Q(g − 1) insertions of b, which

absorb the zero modes. The partition function therefore depends on the zi. The manner

in which the various ingredients of the amplitude will appear, among them the partition

functions of several chiral systems, leads to the cancellation of all dependences of this type.

In the case λ = 1/2, which is relevant for the Ψµ and Ψ̃µ systems of the ambitwistor string,

the partition function is (det ∂̄1/2;[κ])
1/2, where κ denotes the spin structure. For a βγ

system with λ ≥ 3/2, the partition function is (det ∂̄1−λ)−1. Each of these determinants is

‘primed’ whenever zero modes require care, for either of the conjugate fields.

With the help of bosonisation, ref. [66] computed the determinant of det ∂̄1−λ in all

these cases.11 Here, we just quote the results. For λ 6= 1, and specifying the spin structure

10Notice that, in our notation, the partition function is a differential form, whereas in some works, such

as [66], only the determinant is defined as the differential form.
11See also ref. [67] for an alternative approach.
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(only relevant for half-integer λ),

det ∂̄1−λ;[κ] = Z−1/2Ẑλ[κ] , (3.31)

with

Ẑλ[κ] = ϑ[κ]

(
Q(g−1)∑
i=1

zi −Q∆

)∏
i<j

E(zi, zj)
∏
i

σ(zi)
Q , (3.32a)

Z3/2 = ϑ

(
g∑
I=1

zI − w −∆

) ∏
I<J E(zI , zJ)

∏
I σ(zI)

det(ωI(zJ))
∏
I E(zI , w)σ(w)

, (3.32b)

where σ is a g/2-form defined by the ratio

σ(z)

σ(w)
=
ϑ(
∑g

I=1 rI − z −∆)

ϑ(
∑g

I=1 rI − w −∆)

g∏
I=1

E(rI , w)

E(rI , z)
, (3.33)

which is independent of the points rI . It follows from the Riemann vanishing theorem that

σ has neither zeroes nor poles. In the special case λ = 1, relevant for the PX system of

the ambitwistor string, the partition function is given by (det′ ∂̄0)−1 = Z−1.

3.5 Deligne-Mumford compactification and non-separating degenerations

Later on, we will see that the full two-loop amplitude localises on a singular boundary

of the moduli space, where both q11 and q22 vanish. This boundary divisor describes a

non-separating degeneration of the surface where both AI -cycles collapse to a point. The

resulting surface is a Riemann sphere with a node (pair of identified points) corresponding

to the each pinched AI -cycle.

To this end, we review briefly the Deligne-Mumford compactification of the moduli

space of Riemann surfaces, with special focus on the non-separating degenerations. More

details can be found in the original papers [65, 68].

A lightning review of the Deligne-Mumford compactification. The moduli space

Mg,n of Riemann surfaces with punctures is not compact because nodal surfaces arising

from the contraction of a homology cycle are not included. The Deligne-Mumford com-

pactification M̂g,n of the moduli space [68] is obtained by adding these nodal curves as

“divisors at infinity” [59]. These divisors correspond to the possible degenerations of the

Riemann surface Σ, and are characterised by whether the contracted homology cycle is

trivial over Mg,0 or not. In the former case, they are known as separating degenerations

Dsep
g,n, and they split Σ into two components while partitioning the punctures accordingly.

The nodal singularity adds an additional puncture on each surface, so that

Dsep
g,n
∼= M̂g1,n1+1 × M̂g2,n2+1 , (3.34)

where g = g1 + g2 and n = n1 + n2; see figure 5b for illustration. Non-separating degen-

erations, on the other hand, give rise to a surface of lower genus g − 1, while adding two

(identified) punctures corresponding to the node,

Dnon-sep
g,n

∼= M̂g−1,n+2 , (3.35)
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(a) Original genus two surface and its non-

separating degeneration Dnon-sep
2 , corresponding

to a nodal torus with two additional punctures

from the pinched A-cycle.

(b) Original genus two surface and its separating

degeneration Dsep
2 , corresponding to two tori,

each with an additional puncture corresponding

to the connecting node.

Figure 5. Separating and non-separating boundary divisors. The pinched cycles are indicated in

red.

Figure 6. The maximal non-separating degeneration Dmax
2,n at genus two, corresponding to a

bi-nodal Riemann sphere.

as illustrated in figure 5a .This behaviour of the moduli space plays a crucial role in

worldsheet theories, where it corresponds to a factorisation behaviour similar to the cut of

a Feynman diagram; see e.g. [59] for a recent review in the context of superstring theory.

For the ambitwistor string, we are most interested in the maximal non-separating

divisor Dmax
g,n , defined as the divisor degenerating g non-trivial homology cycles,

Dmax
g,n
∼= M̂0,n+2g , (3.36)

as in figure 6. In the second part of this article, we prove that the two-loop supergravity

amplitude localises on this boundary divisor, and can thus be formulated over a bi-nodal

Riemann sphere.

The non-separating degeneration. We now discuss the non-separating degeneration

of a Riemann surface in terms of its holomorphic differentials and its period matrix.

Consider the non-separating degeneration of the Ag-cycle, and denote the correspond-

ing modular parameter by qgg = exp(iπΩgg). At the boundary divisor, the cycle Ag shrinks

to a single point and forms a node, whose locations we denote by zg+ and zg− . Due to
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the relation (3.2) between the normalised holomorphic differentials and the period matrix,

the parameter qgg must tend to zero, and we can thus give the asymptotics of both the

holomorphic differentials ωI and the period matrix ΩIJ as a series expansion in qgg. In

particular, the holomorphic differentials ωI<g approach the basis of holomorphic differen-

tials ω
(g−1)
I on the lower-genus Riemann surface, while ωg turns into the normalised (on the

lower-genus surface) Abelian differential of the third kind with simple poles at the node,

ωg+,g− . The precise asymptotics are given by Fay’s degeneration formula [65],

ωI(z) =ω
(g−1)
I (z)+q2

gg

(
ω

(g−1)
I (zg+)

dzg+

−
ω

(g−1)
I (zg−)

dzg−

)(
vg+(z)−vg−(z)

)
+O(q4

gg) , (3.37a)

ωg(z) =
1

2πi
ωg+,g−(z)+q2

gg ω̂g(z)+O(q4
gg) . (3.37b)

Here, ω̂g is a meromorphic differential with poles of order three at zg+ and zg+ , and vg+ , vg−

are differentials of the second kind with a double pole at the nodal points zg+ and zg− ,

respectively; see [5, 65] for details.12 For the period matrix, the asymptotics read

Ω =

 Ω
(g−1)
IJ

∫ zg+

zg−
ωI∫ zg+

zg−
ωJ

1
iπ ln qgg + const

+O(q2
gg) . (3.38)

Just as the holomorphic differentials, the period matrix thus descends to the lower-genus

Riemann surface, while the entries ΩIg and ΩgI encode the Abel map image of the node

divisor.

When studying non-separating degenerations, it is often convenient to choose a

parametrisation of the period matrix adapted to the problem. This will be especially

important in the ambitwistor string, where non-separating boundary divisors associated

to the pinching of different A-cycles contribute. We will thus frequently make use of the

following parametrisation:

Ω =

(
τ1 + τ3 τ3

τ3 τ2 + τ3

)
. (3.39)

This parametrisation has the advantage of isolating the contribution from each non-

separating boundary divisor. In particular, the limits τ1 → i∞ or τ2 → i∞ directly

correspond, respectively, to the pinching of the A1 or A2-cycle in figure 4. Moreover,

pinching the cycle A1 + A2 implies that τ3 → i∞, as can be seen from a modular trans-

formation exchanging the roles of τ3 and τ2. In the original representation (3.4) of the

period matrix, the latter degeneration requires an additional blow-up procedure to resolve

τ1,2 remaining finite. In analogy with eq. (3.4), we may further define

q1 = eiπτ1 , q2 = eiπτ2 , q3 = e2iπτ3 . (3.40)

The benefit of this parametrisation of the moduli is that it neatly identifies the non-

separating boundary divisors as qr = 0.

12The differentials vg± are such that vg±(z) = 1
4
ω(z, zg±)/dzg± , with ω(z, w) given in (3.22). Fortunately,

we will not need the precise form of the subleading terms in (3.37) in this paper.
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4 The genus-two type II amplitude

With the tools introduced in the last section at hand, we can now return to the type II

ambitwistor string. Picking up where we left off in section 2, we calculate the n-point

correlator on a genus two Riemann surface. The calculation closely mirrors the analogous

procedure in the RNS superstring [7–12], and leads to modular invariant expressions for the

amplitude; which we prove in section 4.7. This close similarity may come as a surprise, given

the conceptual differences: the ambitwistor string is inherently chiral13 and formulated over

a bosonic — not supersymmetric — Riemann surface. We will see the details of how this

plays out throughout this section, both in general and for the simplest non-trivial example,

the four-point amplitude.

In addition to modular invariance, another feature familiar from the one-loop am-

plitude persists at genus two: the localisation of the moduli integral14 on the scattering

equations. As we will see throughout the next few sections, these two properties — modular

invariance and localisation on the scattering equations — jointly localise the amplitude on

the non-separating boundary divisor through the use of a residue theorem. The resulting

formulation on a (bi-)nodal Riemann sphere will be the focus of section 5 and section 6.

For simplicity, we will restrict ourselves to type II amplitudes with NS-NS external

states, i.e., external states corresponding to linear superpositions of graviton, dilaton and

B-field. Moreover, we will consider only the contribution from the 10 even spin structures.

The contribution from the 6 odd spin structures — that we do not consider here — will

obviously also satisfy modular invariance and localisation on the scattering equations. The

odd spin structures do not contribute to the four-point amplitude, which we will analyse

in detail. After the degeneration to the bi-nodal Riemann sphere, to be performed in later

sections, we can easily consider theories in d < 10 obtained by dimensional reduction. In

this case, the odd spin structures do not contribute for any number of external particles.

This applies to four-dimensional N = 8 supergravity and other supergravities obtained by

dimensional reduction; likewise for the study of four-dimensional N = 4 super-Yang-Mills,

from the super-Yang-Mills expressions to be constructed later. The absence of contributions

from the odd spin structures can be understood as follows. An odd spin structure contains

one zero mode of ψµ and one zero mode of ψ̃µ (for each µ), as discussed in (3.29). The

fermionic integration over these two sets of 10 zero modes leads to two 10-dimensional

Levi-Civita symbols whose indices must be contracted into external polarisations, external

momenta or loop momenta, due to the structure of the correlator (see [27] at genus one).

If the latter quantities only span 9 or fewer dimensions, then the contribution from the

odd structures to the amplitude vanishes.15 The reason why the dimensional reduction

of our amplitude formulae should be performed after the degeneration to the bi-nodal

sphere is that, at genus two, d = 10 is required by modular invariance. On the bi-nodal

13So no analogue of the chiral splitting procedure [8, 69] of the RNS superstring is necessary.
14Excluding the Pµ zero modes, whose integration corresponds to the loop integration.
15Similarly, the odd spin structures do not contribute to the four-point amplitude because the two loop

momenta, the four polarisations and the four external momenta only span 9 dimensions, due to momentum

conservation.
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sphere, however, there is no notion of modular invariance, and therefore the formulae can

be dimensionally reduced.

4.1 The correlator

The main object of this section is the n-point genus-two correlator of the ambitwistor

string. Formally, this correlator is

Mn =

∫
D
[
X,P, ψ, ψ̃, e, ẽ, χ, χ̃

]
e−S

n∏
i=1

Oi

∣∣∣∣∣
g=2

, (4.1)

where the Oi are vertex operators representing external particles. The proper BRST defi-

nition of the correlator was discussed in section 2, and the result is

Mn =

∫
d3Ω

∑
κ,κ̃

ηκ ηκ̃

〈
3∏
s=1

〈
µ̂sb
〉 3∏
r=1

〈
µr b̃
〉
δ̄
(〈
µrP

2
〉)
× (4.2)

×
2∏

α=1

δ
(〈
χαβ

〉) 〈
χαP · ψ

〉
δ
(〈
χ̃αβ̃

〉) 〈
χ̃αP · ψ̃

〉 n∏
i=1

Vi

〉
κ,κ̃

,

where the integrated vertex operators are given by

Vi =

∫
Σ
δ̄
(
ResziP

2
)

(εi · P + ki · ψ εi · ψ)(ε̃i · P + ki · ψ̃ ε̃i · ψ̃)eiki·X . (4.3)

In the following, we will focus first on three salient features of this expression: (i) the double

sum over spin structures, which incorporates the GSO projection, (ii) the distinct choice of

Beltrami differentials µ̂s and µr, which arose from the gauge fixing of e and ẽ, respectively,

and (iii) the scattering equations, both those included in the integrated vertex operators

Vi, given by (2.19), and the remaining three equations, which together impose P 2 = 0.

GSO projection. As in the conventional RNS superstring, we project onto the correct

degrees of freedom using the GSO projection, which amounts to summing over spin struc-

tures in the path integral formalism. We implement the GSO projection independently for

ψ and ψ̃, and denote the corresponding spin structures by κ and κ̃, respectively. This fixes

the amplitude up to relative phases ηκ between spin structures, which are determined by

modular invariance and unitarity [70].16 We will see later in detail for even spin structures

how modular invariance fixes the relative phases.

For simplicity, we will only discuss the contribution from the even spin structures δ

to the amplitude. This restriction is possible because modular invariance preserves the

distinction between even and odd spin structures, and thus each individual sector of spin

structures (even or odd) is modular invariant.17 Moreover, as discussed above, the odd

16In summary, modular invariance determines the relative phases among the even and among the odd

spin structures, whereas unitarity fixes the relative phase between the two sectors (NS and R) to be ±1.
17Though of course the resulting amplitudes from just the even or the odd sector are not unitary in

d = 10 [70].
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spin structures do not contribute to amplitudes in dimensions d ≤ 9, or to amplitudes with

n ≤ 4 external particles.18

Choice of Beltrami differentials. The amplitude (4.2) can be simplified further by a

judicious choice of basis for the genus-two Beltrami differentials and their fermionic counter-

parts. We recall from our discussion of PCOs in section 2 that 3g−3 Beltrami differentials,

which at genus two we denote as {µr}3r=1, can be conveniently chosen to evaluate the field

they are paired with at points yr not coincident with the particle punctures. The same

applies to the fermionic counterparts {χα}2α=1 and {χ̃α}2α=1 at points xα. That is,19

〈
µr φ

〉
= φ(yr) ,

〈
χα β

〉
= β(xα) ,

〈
χ̃α β̃

〉
= β̃(xα) . (4.4)

The full amplitude must of course be independent of the choice of xα and yr, and this will

serve as an important check for our final expressions.

Recall also that the choice of Beltrami differentials µ̂s associated to the gauge fixing of

e was distinct from that for the gauge fixing of ẽ, µr. In particular, the choice of the three

extra Beltrami differentials {µ̂s}3r=1 relates them to the genus-two period matrix, while for

{µr}3r=1 we took (4.4). Since we have reviewed the basic facts on holomorphic differentials

in the last section, we can explicitly relate the factors
〈
µ̂sb
〉

and
〈
µrb
〉

in (4.2). This will

make the correlator symmetric between the bc and the b̃c̃ systems. In particular,

3∏
s=1

〈
µ̂sb
〉

=
det
〈
µ̂sφt

〉
det
〈
µrφt

〉 3∏
r=1

〈
µrb
〉

=
det
〈
µ̂sφt

〉
detφt(yr)

3∏
r=1

b(yr) =
1

detωIωJ(yr)

3∏
r=1

b(yr) . (4.5)

Here, φt denotes a basis of holomorphic quadratic differentials, and in the last step we have

chosen φt = ωIωJ in order to simplify the expression. We conclude that20

3∏
s=1

〈
µ̂sb
〉 3∏
r=1

〈
µr b̃
〉
δ̄
(〈
µrP

2
〉) 2∏

α=1

δ
(〈
χαβ

〉) 〈
χαP · ψ

〉
δ
(〈
χ̃αβ̃

〉) 〈
χ̃αP · ψ̃

〉
= (4.6)

=
1

detωIωJ(yr)

3∏
r=1

b(yr) b̃(yr) δ̄
(
P 2(yr)

) 2∏
α=1

δ
(
β(xα)

)
δ
(
β̃(xα)

)
P · ψ(xα)P · ψ̃(xα) .

4.2 The scattering equations

Let us now focus on the scattering equations and the PX-system. The only dependence

of the correlator on X is in the kinetic term
∫
P · ∂̄X and in the plane wave factors eiki·X

of the vertex operators. Similarly to conventional string theory, the integration over the

(constant) zero mode of X leads to a delta function, which imposes the constraint of

18In the chiral ambitwistor string, there is no subtlety in reducing dimensions due to the absence of

winding modes; see [25], appendix D.
19This is a slight abuse of notation, the r.h.s. is understood to carry no form degree in this particular

instance.
20Notice that the factors on either side of eq. (4.6) have different form degrees. While on the left hand

side, every factor has form degree zero (e.g. 〈χαP ·ψ〉), on the right hand side all factors carry form degree

(χαP · ψ(xα) has form degree 3/2). The full expressions are of course equal, the form degree cancels

appropriately on the right hand side.
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momentum conservation,
∑

i ki = 0 . The integration over the non-zero modes of X leads

to another delta function that localises P to its classical value through

∂̄Pµ = 2πi
∑
i

ki µ δ̄(z − zi) dz . (4.7)

As discussed at the end of section 3.3, on a genus-two Riemann surface this is solved by

Pµ = `IµωI +
n∑
i=1

ki µωi,∗ , (4.8)

where ωi,∗ is a meromorphic differential of the third kind with residues ±1 at the point zi
and at an arbitrary reference point z∗. The residue at z∗ vanishes from eq. (4.8) due to

momentum conservation. We suggestively denote the zero mode parameters of Pµ by `1µ
and `2µ. If the meromorphic differential ωi,∗ is normalised (i.e., has vanishing A-periods),

then `Iµ =
∮
AI
Pµ. Naturally, the path integral will involve an integration over `1µ and

`2µ. Moreover, the localisation of P introduces a Jacobian factor of (det′ ∂̄0)−10 = Z−10,

as discussed in section 3.4.

The constraint P 2 = 0 is imposed in the gauge fixing procedure via n + 3g − 3 delta

functions, which are of two types, according to the choice of Beltrami differentials µr in

δ̄(〈µr P 2〉). The first is the type included in the n integrated vertex operators (2.19). In

this case, µi extracts the residue at the puncture zi, for i = 1, · · · , n,

δ̄
(〈
µi P

2
〉)

= δ̄
(
ResziP

2
)
. (4.9)

On the support of these n scattering equations, P 2 is holomorphic, and therefore it can be

expressed in terms of the holomorphic differentials ωI as P 2 = uIJωIωJ , for some uIJ . In

our choice leading to the simplification (4.6), the remaining 3g−3 = 3 scattering equations

are associated to Beltrami differentials that extract the value of the field at a point yr,

δ̄
(〈
µr P

2
〉)

= δ̄
(
P 2(yr)

)
=

1

detωIωJ(yr)

∏
I≤J

δ̄
(
uIJ
)
. (4.10)

Notice that, in the absence of vertex operators, this implies that uIJ = `I · `J = 0 for all

I, J .

Putting all this together, the amplitude is given by

Mn = δ10

(
n∑
i=1

ki

) ∫
d20` d3Ω

(detωIωJ(yr))2 Z10

∏
I≤J

δ̄
(
uIJ
)
× (4.11)

×
∑
δ,δ̃

ηδηδ̃

〈
3∏
r=1

b(yr) b̃(yr)

2∏
α=1

δ
(
β(xα)

)
δ
(
β̃(xα)

)
P · ψ(xα)P · ψ̃(xα)

n∏
i=1

Vi

〉
δ,δ̃

where we have pulled the δ̄-functions out of the path integral with the understanding that

the PX integral has been performed, and has localised P to its classical value (4.8). In the

following sections, we will evaluate the remaining correlator.
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In principle, the integration over the moduli space of the Riemann surface M2,n

in (4.11) is completely localised on the solutions to the genus-two scattering equations,

ResziP
2 = 0 , i = 1 · · · , n , uIJ = 0 , I, J = 1, 2 . (4.12)

In practice, it seems hopeless to solve these equations explicitly. The formula for the genus-

two n-point amplitude studied in this section seems, therefore, impractical. We will see

in later sections, however, how it can be turned into a much more manageable formula on

the Riemann sphere. In the meantime, we will describe several simplifications of (4.11) at

genus two.

4.3 The moduli space of the ambitwistor string at genus two

As seen in the correlator (4.11), the complete moduli space of the ambitwistor string not

only includes the moduli space of marked Riemann surfaces Mg,n, but also the moduli

corresponding to the zero modes of the field Pµ ∈ Ω0(Σ,KΣ). At genus two, the latter

consist of `1µ and `2µ, as in (4.8), which are both integrated over the full ten-dimensional

momentum space. Clearly, this should be interpreted as the loop momenta integration,

but there are two important subtleties, which we discuss now.

The first subtlety is related to the contour of integration. Since the ambitwistor string

target space is the space of complexified null geodesics, the zero mode coefficients `1µ and

`2µ are integrated over the complexified ten-dimensional momentum space. To make con-

tact with a field-theory-like loop integration, we must thus choose a reality prescription

corresponding to a contour selecting a middle-dimensional slice of C20. Clearly, the most

natural choice for this contour would be the real slice R20 ⊂ C20, with an appropriate

iε-prescription. However, the zero mode coefficients `Iµ are not unconstrained: recall that

under a modular transform, the period matrix transforms as Ω → Ω̃ =
(
aΩ+b

) (
cΩ+d

)−1
.

This implies that the normalised holomorphic differentials ωI transform as

ω → ω̃ = ω
(
cΩ + d

)−1
. (4.13)

The meromorphic differentials, however, are invariant under modular transformations, as

we will discuss in detail in section 4.7.2. In order for Pµ to transform homogeneously the

modular group, the loop momenta `Iµ must compensate21 for the transformation of the

holomorphic differentials,

`→(cΩ + d)` . (4.14)

A real loop integration contour for one fundamental domain therefore corresponds to a

different, generally complex contour for other fundamental domains. We should thus only

require the loop integration contour to be real for one fundamental domain, with its be-

haviour for other parametrisations of the moduli space determined by the modular transfor-

21The non-trivial transformation (4.14) of the loop momenta plays a crucial role for modular invariance.

In particular, it ensures that the scattering equations transform with homogeneous modular weight, see

section 4.7.2 for details.
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mation (4.14).22 Since we will consider a singular limit of the period matrix in the degener-

ation to the bi-nodal sphere, it is simpler to just take the contour as the real section for the

fundamental domain we have chosen to work with, given by (3.5). We see no obstruction

to the validity of this prescription, but it would be important to investigate it further.

Recall in this context that the ten-dimensional supergravity amplitude is of course not

defined, even if the loop integrand can be constructed — so when we talk of an “amplitude”

here, this is an abuse of language. However, as outlined in the introduction, the final

formula (1.1) for the amplitude on the bi-nodal sphere (after applying two residue theorems

on the moduli space) is valid in any dimension d ≤ 10. At this point, the structure of a field-

theory-like integrand becomes clear [24], and it is possible to use dimensional regularisation

and to define an appropriate iε-prescription [31] for the loop integration.

The second subtlety is that the way in which `1µ and `2µ, the moduli of Pµ, appear in

the correlator is asymmetric. Recall that we defined the fundamental domain of the period

matrix according to a set of inequalities in (3.5), including the condition (ii):

0 < 2Im(Ω12) ≤ Im(Ω11) ≤ Im(Ω22) . (4.15)

This leads to an asymmetry in `1µ, `2µ and `1µ + `2µ, which is unnatural from the point of

view of the field-theory loop interpretation.23 To address this, we can symmetrise over the

different parametrisations of the zero modes of Pµ, namely

P (1)
µ = `1µω1 +`2µω2 +

n∑
i=1

kiµωi,∗ , P (4)
µ = `2µω1 +

(
`1 +`2

)
µ
ω2 +

n∑
i=1

kiµωi,∗ ,

P (2)
µ = `2µω1 +`1µω2 +

n∑
i=1

kiµωi,∗ , P (5)
µ = `1µω1 +

(
`1 +`2

)
µ
ω2 +

n∑
i=1

kiµωi,∗ , (4.16)

P (3)
µ =

(
`1 +`2

)
µ
ω1 +`2ω2 +

n∑
i=1

kiµωi,∗ , P (6)
µ =

(
`1 +`2

)
µ
ω1 +`1µω2 +

n∑
i=1

kiµωi,∗ .

Effectively, we are symmetrising over the orderings of the inequalities (4.15). The full

amplitude is then

Mn =

6∑
α=1

M(α)
n , (4.17)

where each termM(α)
n is evaluated at Pµ = P

(α)
µ . To define this expression more rigorously,

we can solve Pµ by Pµ = cIµωI +
∑n

i=1 ki µωi,∗, and insert an identity of the form

1 =

∫
d20` δ

(
`Iµ −

∮
ÂI

Pµ

)
(4.18)

22In other words, there is an equivalence class of integration cycles related by modular transformations,

and the prescription is that a correct integration cycle is in the equivalence class of the real cycle (with

iε-prescription). The differential form that is integrated is modular invariant, as we check in section 4.7.
23To see this asymmetry in action, consider the subset of scattering equations uIJ = 0 and the modular

parameters (3.4). As we shall see in section 5, it is possible to show that, for the maximal non-separating

boundary divisor qII = eiπΩII → 0, we have uII = `2I + qIIFI + O(q2
II). Now, the inequality (4.15)

implies that |q22| ≤ |q11|. Therefore, in a double-degenerate limit |q22| � |q11| � 1, the existence of

solutions to the scattering equations implies that |`22| � |`21|. In a further degeneration q12 → 0, we also get

|`22| � |`21| � |(`1 + `2)2|.
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in the amplitude. The different charts are then given by different choices of cycles ÂI , with

e.g. (Â1, Â2) = (A1, A2) for the parametrisation α = 1, and (Â1, Â2) = (A2, A1) for the

parametrisation α = 2. We recover the same expressions given above after integrating out

the charges cIµ.

While this is a cumbersome prescription for the amplitude, it is actually equivalent to

a much simpler representation. To see this recall that eq. (4.16) forces the zero modes `Iµ to

transform non-trivially under modular transformations to ensure that Pµ is of homogeneous

(vanishing) modular weight. Using this, we can apply a modular transformation to relate

all six terms in the amplitude to M(1)
n with P

(α=1)
µ , but now with different inequalities

for the imaginary parts of period matrix. This is most easily established for the modular

transformation relatingM(2)
n toM(1)

n , which just exchanges the cycles (A1, B1)↔ (A2, B2).

This implies ω1 ↔ ω2, and so we conclude that this modular transformation also exchanges

`1 ↔ `2 and Ω11 ↔ Ω22. Applying these transformations to M(2)
n , we recover M(1)

n

integrated over the copy of the fundamental domain defined by 2Im(Ω12) ≤ Im(Ω22) ≤
Im(Ω11), instead of (4.15). There are suitable modular transformations relating each term

in the sum (4.17) to M(1)
n , which are described in appendix B. The reader may find it

easier to understand this discussion after taking a look at section 4.7, where modular

transformations are studied in detail. To summarise, the terms M(α)
n in (4.17) all localise

Pµ on P
(1)
µ = `IµωI +

∑n
i=1 ki µωi,∗, but are formulated over six different copies of the

fundamental domain Mg,

M(1)
n ≡M(1)

n

∣∣∣∣
0<2Im(Ω12)≤Im(Ω11)≤Im(Ω22)

M(4)
n =M(1)

n

∣∣∣∣
0<Im(Ω11)≤Im(Ω22)≤2Im(Ω12)

M(2)
n =M(1)

n

∣∣∣∣
0<2Im(Ω12)≤Im(Ω22)≤Im(Ω11)

M(5)
n =M(1)

n

∣∣∣∣
0<Im(Ω22)≤Im(Ω11)≤2Im(Ω12)

(4.19)

M(3)
n =M(1)

n

∣∣∣∣
0<Im(Ω11)≤2Im(Ω12)≤Im(Ω22)

M(6)
n =M(1)

n

∣∣∣∣
0<Im(Ω22)≤2Im(Ω12)≤Im(Ω11)

.

The sum in (4.17) now combines to the single expression, where the integration domain for

the modular parameters is simply defined by

(i) − 1

2
≤ Re(Ω11),Re(Ω12),Re(Ω22) ≤ 1

2
,

(ii) 0 < Im(ΩIJ) ∀I,J , (4.20)

(iii) |det(cΩ + d)| > 1 ∀

(
a b

c d

)
∈ Sp(4,Z) .

Since this space plays an important role for the ambitwistor string, let us denote it by

M′2, where the notation is chosen to reflect its close relation to the moduli space Mg

of Riemann surfaces. The definition (4.20) naturally extends to the surface with vertex

operators insertions, in which case the space is M′2,n. We conclude that the amplitude is

given by (4.11) with P = P (1) = `IµωI +
∑n

i=1 ki µωi,∗, but integrated over M′2,n and the

loop momenta.

Before proceeding to calculate this amplitude, let us briefly comment on two aspects

of the moduli space M′g,n. Due to its close relation to Mg,n, the compactification of M′g,n
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can be defined in full analogy to the Deligne-Mumford compactification. However, note

that a new feature emerges: instead of a single non-separating boundary divisor, M̂′g,n
contains three distinct non-separating boundary divisors, each corresponding to a different

degeneration of the Riemann surface; see figure 8 in section 5.1 for illustration. In contrast

to string theory, where all of these degenerations would be the same after a modular

transformation, they represent here genuinely different degenerations, with different loop

momenta associated to each homology cycle.

An important conclusion from our discussion here is that it would be both interesting

and fruitful to study the ambitwistor string moduli space more deeply. Important work in

this context has been done by refs. [52] and [22], but especially extensions to higher genus

remain largely an open problem, on which the treatment given here could shed some light.

We postpone this topic for future investigation.

4.4 The chiral partition function

Defining the chiral partition function. As observed in section 2, a crucial property of

the ambitwistor string action is that, after gauge fixing, it is free and linear. In particular,

this means that we can decompose the correlator in eq. (4.11) into the correlators over the

different tilded and untilded fields,

Mn =

∫
d20` d3Ω

∏
I≤J

δ̄
(
uIJ
) ∑

δ,δ̃

ηδηδ̃ Z
chi[δ] Z̃chi[δ̃]

〈
2∏

α=1

P · ψ(xα)P · ψ̃(xα)
∏
i

Vi

〉
δ,δ̃

(4.21)

where we have defined ‘chiral’ partition functions (in analogy to the RNS superstring) by

Zchi[δ] =
1

(detωIωJ(yr))Z5

〈
3∏
r=1

b(yr)

2∏
α=1

δ
(
β(xα)

)〉
δ

, (4.22a)

Z̃chi[δ̃] =
1

(detωIωJ(yr))Z5

〈
3∏
r=1

b̃(yr)

2∏
α=1

δ
(
β̃(xα)

)〉
δ̃

. (4.22b)

In particular, since both tilded and untilded fields obey the same OPEs, it is sufficient

to evaluate Zchi[δ] — the result will extend straighforwardly to Z̃chi[δ̃]. It is worth high-

lighting at this point a major difference with respect to the conventional RNS string: the

ambitwistor string is inherently chiral, and there is no sense of chiral splitting into left- and

right-moving sectors, since the latter sector does not exist. However, in analogy with the

chiral splitting in the RNS string [69], the ambitwistor string correlator exhibits a ‘chiral

contribution squared’ (not absolute squared), as we have seen in eq. (4.21). Indeed, we have

Z̃chi[δ̃] = Zchi[δ̃] . (4.23)

Since all fields in Zchi[δ] are βγ systems, the chiral partition function is easily con-

structed using the results of Verlinde & Verlinde [66] reviewed in section 3.4. We read off

λb = 2, λβ = 3/2 and λψ = 1/2 from the field definitions, and therefore

Zchi[δ] =
det′ ∂̄1−λb

(detωIωJ(yr))Z5

(
det ∂̄1−λψ ;[δ]

)5

det′ ∂̄1−λβ ;[δ]

=
Ẑ2 (Ẑ1/2[δ])5

(detωIωJ(yr))Z15/2 Ẑ3/2[δ]
. (4.24)
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Inserting explicitly eq. (3.32), the full chiral partition function is thus

Zchi[δ] =
ϑ[δ](0)5 ϑ(Db)

∏
r<sE(yr, ys)

∏
r σ(yr)

3

Z15/2 ϑ[δ](Dβ)E(x1, x2)
∏
α σ(xα) detωIωJ(yr)

, (4.25)

where we have abbreviated the ghost divisors for readability,

Db =

3∑
r=1

yr − 3∆ , Dβ =

2∑
α=1

xα − 2∆ , (4.26)

and ∆ is the vector of Riemann constants (3.11). We reiterate here that the final amplitude

is independent of the choice of xα and yr, although this is not manifest at this stage. In

fact, Zchi[δ] by itself has to be independent of yr since the rest of the partition function is

manifestly independent of these punctures. We will see this explicitly below.

Simplifying the chiral partition function. For dealing with the chiral partition func-

tion, we will rely on the simplifications achieved in [10, 12] for conventional superstring

theory, where the same object appears. In [10], it was shown that the chiral partition

function (4.25) can be written as

Zchi[δ] =
Z0E(x1, x2)ϑ[δ](0)5

ϑ[δ](Dβ)
. (4.27)

Here, Z0 is a (−1, 0) form in both x1 and x2, and is proportional to the bosonic string

partition function ZB,

Z0 =
ZB Z6

E(x1, x2)2 σ(x1)2σ(x2)2
, ZB =

1

π12Ψ10
, (4.28)

where Ψ10 ≡
∏
δ ϑ[δ](0)2 is a modular form of weight 10. While eq. (4.27) still depends on

xα (as it must — after all, the remaining correlator in eq. (4.21) depends on xα as well),

the above formula is indeed manifestly independent of yr, as advertised above.

Following [12], and in view of the calculations involved in simplifying the scattering

amplitude, it will moreover be useful to make a special choice for the two marked points

xα: we will take them to be the zeros of a holomorphic (1, 0) form $,

$(z) ≡ ωI(z)∂Iϑ(x1 −∆)e2iπκ′·(x1−∆) = −ωI(z)∂Iϑ(x2 −∆)e2iπκ′·(x2−∆) . (4.29)

As before, ∆ is the vector of Riemann constants (3.11), and 2κ is an arbitrary full period,

i.e., 2κ ∈ Z2 ⊕ ΩZ2. In fact, the condition that the marked points xα are the zeroes of

a holomorphic differential is, in terms of the Abel map, that x1 + x2 − 2∆ = 2κ. Notice

that, at genus two, a holomorphic differential is defined up to a constant multiple by the

location of its two zeros, and the normalisation used here is chosen for convenience. With

this choice for the marked points xα, the chiral partition function can be simplified to

Zchi[δ] = Z0E(x1, x2) e4iπκ′Ωκ′〈κ|δ〉ϑ[δ](0)4 . (4.30)

Using these parameters, requiring the amplitude to be independent of the choice of xα is

equivalent to requiring independence of x1 and κ. We will see in the calculation of the

four-point amplitude how $ simplifies various calculations; see e.g. section A.
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The GSO projection and the cosmological constant. To conclude the derivation

of the partition function of the type II ambitwistor string, we still need to impose the GSO

projection. As at genus one, the requirement of modular invariance fixes all relative phases

among even spin structures. Indeed, ref. [10] proved that all relative phases in the GSO

projection at genus two are unique, and equal. This amounts to

ηδ = ηδ̃ = 1 . (4.31)

We will derive these phases explicitly for the ambitwistor string in section 4.7. The vacuum

amplitude can then be evaluated easily: the remaining correlator in (4.21) over the ψ system

leads to a factor of Sδ(x1, x2)P (x1) ·P (x2), and the result for ψ̃ is analogous (with δ̃). The

GSO sum in (4.21) therefore vanishes as a consequence of the identity∑
δ

Zchi[δ]Sδ(x1, x2) = 0 , (4.32)

which is one of the identities proven in [12] and listed in our eq. (A.1a). Thus, the cos-

mological constant vanishes in the ambitwistor string. A very similar argument, and the

corresponding vanishing identities eq. (A.1b) through eq. (A.1g), imply that all n-point

amplitudes with n < 4 vanish as well.

4.5 The amplitude

We have obtained the following expression for the amplitude:

Mn = δ

(∑
i

ki

)∫
d20`d3Ω

∏
I≤J

δ̄
(
uIJ
)∑
δ,δ̃

Zchi[δ]Zchi[δ̃]

〈
2∏

α=1

P ·ψ(xα)P · ψ̃(xα)

n∏
i=1

Vi

〉
δ,δ̃

(4.33)

where we have already included the GSO projection, and condensed the partition functions

of various fields into the chiral partition functions Zchi[δ] and Zchi[δ̃]. For readability, let

us furthermore introduce the loop integrand I, such as

Mn = δ

( n∑
i=1

ki

) ∫
d10`1 d10`2 In . (4.34)

Just as we have observed for the partition function, the free ambitwistor string action

guarantees that the remaining correlator in the loop integrand I splits into tilded and

untilded systems. We can therefore evaluate each contribution independently,

In =

∫
d3Ω

∏
I≤J

δ̄
(
uIJ
) n∏
i=1

δ̄
(〈
µi P

2
〉)
Ichi
n Ĩchi

n , (4.35)

where we defined the ‘chiral’ (untilded) integrand by

Ichi
n =

∑
δ

Zchi[δ]

〈
2∏

α=1

P · ψ(xα)
n∏
i=1

(εi · P + ki · ψ ε · ψ)(zi)

〉nzms

δ

(4.36)
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and similarly for the tilded integrand with δ̃. We can evaluate the correlator to find

Ichi
n =

∑
δ

Zchi[δ] Pf
(
M

(2)
δ

)
, (4.37)

where the (2n+ 2)× (2n+ 2) matrix M
(2)
δ is given by

M
(2)
δ =

(
A −CT

C B

)
, (4.38a)

Ax1x2 = P (x1) · P (x2)Sδ(x1, x2) , Axα,j = P (xα) · kjSδ(xα, zj) , Aij = ki · kjSδ(zi, zj) ,
(4.38b)

Cxα,j = P (xα) · εjSδ(xα, zj) , Cij = εi · kjSδ(zi, zj) ,
(4.38c)

Cii = P (zi) · εi , Bij = εi · εjSδ(zi, zj) .
(4.38d)

The formula for the genus-two n-point scattering amplitude presented here is the main

result of section 4. In the remainder of this section, we will discuss the simplifications

occurring for n = 4, in section 4.6, and then we will show explicitly that the n-point

formula satisfies the stringent constraint of modular invariance, in section 4.7.

As we have already mentioned, the genus-two scattering equations, which in principle

localise the integration over the moduli space of the Riemann surface in the formula above,

are too hard to solve explicitly. We cannot, therefore, evaluate directly the genus-two

formula given in this section. We will show in section 5 how to turn it into a much simpler

formula on the Riemann sphere.

4.6 The four-particle amplitude

The formula for the genus-two n-point scattering amplitude presented above includes a

sum over spin structures. This sum builds up the contributions of particle states running

in the loops, both bosons and fermions, as we discussed in (3.14). Since we are dealing

with a supersymmetric theory, we expect that this sum provides a significant simplification.

Indeed, this is what happens in the conventional RNS superstring.

Fortunately, for our purposes, we can rely on the superstring work [12], where the

important identities for the four-particle amplitude were proven. These identities for sums

over spin structures involving the chiral partition functions and the Szegő kernels are

listed in the section A for convenience. As a consequence of the identities, the only non-

vanishing contributions to the four-point amplitude come from terms where the two picture

changing operators P · ψ(x1) and P · ψ(x2) are contracted, leading to a factor of P (x1) ·
P (x2)Sδ(x1, x2). The identities actually allow for an even stronger conclusion: since all

terms with less than five Szegő kernels vanish, the diagonal terms Cii = εi · P (zi) do not

contribute at four points. This leaves us with only two contraction cycles that both evaluate

to the same permutation-invariant result (A.2b),

I11 = I12 = −2Z0

4∏
i=1

$(zi) . (4.39)
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Since all worldsheet contractions contribute the same factor, we can extract a kinematic

prefactor K from each Pfaffian Pf
(
M

(2)
δ

)
, given by

K = tr
(
F1F2

)
tr
(
F3F4

)
+ tr

(
F1F3

)
tr
(
F2F4

)
+ tr

(
F1F4

)
tr
(
F2F3

)
(4.40)

− 4 tr
(
F1F2F3F4

)
− 4 tr

(
F1F3F2F4

)
− 4 tr

(
F1F2F4F3

)
,

where Fµνi = k
[µ
i ε

ν]
i , and similarly K̃ = K(ε → ε̃) for the tilded system. Using this, the

four-point loop integrand becomes

I4 = KK̃
∫ ∏

I≤J
dΩIJ

∏
I≤J

δ̄
(
uIJ
) n∏
i=1

δ̄
(〈
µi P

2
〉) (

2P (x1) · P (x2) Z0

4∏
i=1

$(zi)

)2

. (4.41)

We can further simplify this loop integrand by adding a judicious choice of terms that

vanish on the support of the scattering equations. Notice that this gives us considerable

freedom in the representation of the integrand: since the Beltrami differentials {µr}n+3
r=1

form a basis of H0,1(Σ, TΣ(−z1 − . . .− zn)), we are free to add any term containing〈
µP 2

〉
= 0 , (4.42)

where µ ∈ H0,1(Σ, TΣ(−z1 − . . . − zn)) is a linear combination of the Beltrami differen-

tials used in the gauge fixing. Taking inspiration from the superstring [12], a particularly

convenient choice for this differential is

µx(z) =
1

2

(
c1

c2
δ(z, x1) +

c2

c1
δ(z, x2)

)
. (4.43)

The factors cα in this definition are given by $(z) = c1∆(x1, z) = c2∆(x2, z), where we

used the (standard, though unfortunate) notation

∆(zi, zj) = ∆ij = εIJωI(zi)ωJ(zj) , (4.44)

and we stress that ∆ij is unrelated to the vector of Riemann constants ∆.

In the RNS string at genus two [12], the Beltrami differential µx plays a role in proving

that the amplitude is independent of the PCO gauge slice, i.e., the choice of χα and χ̃α
which determines the marked points xα. While the details of the calculations are quite

different in the ambitwistor string — where µx is associated to terms that vanish on the

support of the scattering equations — we will see below that µx effectively leads to similar

simplifications of the amplitude. Many useful identities involving the factors cα have been

derived in [12], and we have listed the relevant equations in section A.2 for convenience. In

particular, let us highlight the relations to the holomorphic differentials and the partition

function,

c1ωI(x1) = c2ωI(x2) , I = 1, 2 , (4.45a)

Z0c1c2∂$(x1)∂$(x2) = 1 , (4.45b)

c1ωi∗(x1)− c2ωi∗(x2) = −c2
1∂$(x1)

∆i∗
$(zi)$(z∗)

, (4.45c)
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where z∗ is an arbitrary marked point. Moreover, we find that µx obeys

2
〈
µxωIωJ

〉
=
c1

c2
ωI(x1)ωJ(x1)+

c2

c1
ωI(x2)ωJ(x2) =ωI(x1)ωJ(x2)+ωI(x2)ωJ(x1) , (4.46a)

2
〈
µxωIωi∗

〉
=ωI(x1)ωi∗(x2)+ωI(x2)ωi∗(x1) , (4.46b)

where we made use of the identity (4.45a). This implies that, on the support of the

scattering equations, we are free to add the following to the loop integrand:

0 =
〈
µx P

2
〉

= `21ω1(x1)ω1(x2) + `22ω2(x1)ω2(x2) + `1 · `2
(
ω1(x1)ω2(x2) + ω1(x2)ω2(x1)

)
+
∑
I,i

`I · ki
(
ωI(x1)ωi∗(x2) + ωI(x2)ωi∗(x1)

)
(4.47a)

+
1

2

∑
i,j

ki · kj
(
c1

c2
ωi∗(x1)ωj∗(x2) +

c2

c1
ωi∗(x2)ωj∗(x2)

)
.

We can now define a quantity that agrees with P (x1)·P (x2) on the support of the scattering

equations,
℘(x1, x2) := P (x1) · P (x2)−

〈
µx P

2
〉
, (4.48)

with the very convenient property that all dependence on the zero modes `Iµ of Pµ has

been eliminated. We can simplify ℘(x1, x2) by using the definition of c1,2 as well as the

identity (4.45c) involving the holomorphic one-form $(z),

℘(x1, x2) = −1

2

∑
i,j

ki · kj
c1c2

(
c1ωi∗(x1)− c2ωi∗(x2)

)(
c1ωj∗(x1)− c2ωj∗(x2)

)
= −1

2
c1c2∂$(x1)∂$(x2)

∑
i,j

ki · kj
∆i∗∆j∗

$(zi)$(zj)$(z∗)2
. (4.49)

Let us now revisit the integrand (4.41) and simply substitute P (x1) · P (x2) by
℘(x1, x2), since these objects agree on the support of the scattering equations. The factor

c1c2∂$(x1)∂$(x2) from ℘(x1, x2) then combines with the partition function Z0 as in the

identity (4.45b), and we can further choose the arbitrary marked point to coincide with

one of the vertex operators, z∗ = z4. This leads to the integrand

I4 = KK̃
∫

d3Ω
∏
I≤J

δ̄
(
uIJ
) n∏
i=1

δ̄
(〈
µi P

2
〉)
Y2 (4.50a)

where Y =
∑
i,j

ki · kj
∆i4∆j4

$(zi)$(zj)$(z4)2

4∏
k=1

$(zk) . (4.50b)

As a last step, we can mirror again the superstring calculation [12] and simplify Y by using

the Jacobi-like relations

$(zb)∆ac −$(za)∆bc = $(zc)∆ab . (4.51)

Repeated application of these identities leads to the following compact expression for the

integrand:

Y = s∆14∆23 − t∆12∆34 , (4.52)
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which is manifestly independent of the marked points xα and the associated holomorphic

differential $.

This concludes the derivation of the four-point amplitude from the RNS ambitwistor

string. Luckily, it has revealed some manipulations that will be useful later on, namely the

introduction of the object ℘(x1, x2) in substitution of P (x1) · P (x2), which is valid on the

support of the genus-two scattering equations.

The type II supergravity four-point amplitude was previously derived from the pure

spinor ambitwistor string in [29], following earlier results from the (non-minimal) pure

spinor superstring [71–73]. As such, it formed the basis of preliminary work on using

global residue theorems to localise genus-two supergravity amplitudes on bi-nodal Riemann

spheres [26], where the four-point loop integrand was also matched to a known for of the

integrand, thereby checking its validity. While [26] relied on factorisation arguments to

account for certain factors, we give a full derivation of the global residue theorems and the

resulting n-point amplitudes on the bi-nodal Riemann sphere in section 5 and section 6.

4.7 Modular and gauge invariance

In this section, we discuss two essential checks on the amplitude: independence of the

PCO gauge slice χα and χ̃α (i.e., of the marked points xα), and modular invariance. Both

will play a crucial role for the residue theorem applied in the next section, where only a

judicious choice of representation of the integrand and scattering equations will lead to a

localisation on the maximal non-separating degeneration.

4.7.1 Independence of xα

The amplitude — and therefore the chiral integrand Ichi
n — must be independent of the

PCO gauge slice defined by the marked points xα. This constitutes an important check

of our results and is easily proven using Liouville’s theorem. In the following, we verify

the absence of poles in xα on the support of the scattering equations, and hence that the

integrand is bounded. Liouville’s theorem then guarantees that the chiral integrand Ichi
n is

constant in xα.24

By inspection of (4.36), it is evident that there are only two types of potential poles

involving xα:

(A) when the insertions of the two PCOs coincide, x1 − x2 = ε,

(B) when one of the PCOs collides with a vertex operator, xα − zi = ε.25

Case A. Let us first consider the coefficients of poles in x1−x2 = ε. The only sources of

these poles are the measure Zchi[δ] ∼ ε−1 and the component Ax1 x2 = ε−1(P (x1)2 +O(ε))

of the Pfaffian. At order O(ε−2), the integrand therefore contains only terms proportional

to P 2(x1), which vanish on the support of the scattering equations. The subleading term

24Notice that the chiral integrand Ichi
n is a function of xα, i.e., it has form degree zero in dxα. This can be

checked from the definitions of the ingredients in (4.37). The amplitude would not be well defined otherwise.
25Throughout this section, we use ε to denote a small separation of marked points on the Riemann surface.
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at order O(ε−1) is also trivial, since the rows and columns corresponding to x1 and x2 are

identical,

M (2)
x1,a

∣∣∣
ε−1

= M (2)
x2,a

∣∣∣
ε−1

for any a 6= x1, x2 , (4.53)

and therefore the matrix M (2)
∣∣
ε−1 is degenerate.

Case B. Consider now poles in xα − zi = ε, from one of the PCOs contracting with an

integrated vertex operator. The partition functions do not contribute to this pole, and the

leading term at O(ε−2) originating from the Ai,xα vanishes trivially due to k2
i = 0. The

subleading term O(ε−1) is again given by Pf (M (2))
∣∣
ε−1 with

Axβ xα = Axβ i, Ai,xα = ε−1P (zi) · ki, Aj,xα = Aji, (4.54a)

Ci,xα = Cii, Cj,xα = Cji , (4.54b)

to leading order O(ε−1) . Similarly to the case A above, the matrix M (2)
∣∣
ε−1 becomes

degenerate, with identical rows and columns for xα and i,

M (2)
a xα

∣∣∣
ε−1

= M
(2)
a i

∣∣∣
ε−1

for any a , (4.55)

and so the coefficient of the potential pole vanishes.

Using Liouville’s theorem, the chiral integrand Ichi
n is thus independent of the choice

of the insertion points xα of the picture changing operators.

Looking ahead to the degeneration to the nodal Riemann sphere in section 5, it is worth

highlighting a fundamental difference between case A and case B. While the coefficient of

(xα − zi)−1 vanishes on the support of the vertex scattering equations 〈µiP 2〉 = 0 alone

(even off the support of the moduli scattering equations, uIJ = 0), the absence of the

pole in x1 − x2 relies on the support of all scattering equations to guarantee that P 2 = 0.

This distinction will play an important role when applying the global residue theorem to

localise on the non-separating degeneration: applying the residue theorem relaxes two of the

constraints uIJ = 0, and therefore P 2 6= 0 on the resulting lower-genus Riemann surface.

4.7.2 Modular invariance

The GSO projection plays a crucial role in the ambitwistor string by restricting to the

correct degrees of freedom for type II supergravity. In the path integral formalism, the

GSO projection is implemented via the sum over spin structures, and modular invariance

restricts the relative phases in that sum, as asserted at the end of section 4.4. After

that section, we postponed a more detailed discussion in favour of calculating the full

amplitude (4.34). Here, we return to the question of modular invariance by deriving the

phase factors explicitly, and provide a direct proof of modular invariance for the n-point

amplitude. We conclude with a discussion contrasting the modular invariance of the full

amplitudes with the loop-momenta-fixed integrands considered in [22], which explicitly

break modular invariance.

Further details on the modular properties of theta functions and chiral partition func-

tions can be found in refs. [5, 10, 65, 66].
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The basics. Recall from section 3 that the modular group Sp(4,Z) acts on the period

matrix ΩIJ and on the holomorphic Abelian differentials ωI as

Ω→ Ω̃ =
(
aΩ + b

) (
cΩ + d

)−1
, ω → ω̃ = ω

(
cΩ + d

)−1
. (4.56)

For the integrand and the scattering equations to be well-defined, the one-form Pµ given

by (4.8) must transform homogeneously under modular transformations. We will see soon

that the meromorphic differentials in Pµ are invariant under modular transformations, and

therefore the holomorphic part, `IµωI , must also be invariant. This implies in turn that the

loop momenta `Iµ must absorb the transformation of the Abelian differentials ωI :

`→ ˜̀=
(
cΩ + d

)
` . (4.57)

The integration over the loop momenta therefore has modular weight +10, and the inte-

gration over the modular parameters Ω and the localisation on the scattering equations

have weight −3 each,∏
I≤J

dΩIJ →
∏
I≤J

dΩ̃IJ = det
(
cΩ + d

)−3
∏
I≤J

dΩIJ , (4.58a)

∏
I≤J

δ̄
(
uIJ
)

→
∏
I≤J

δ̄
(
ũIJ
)

= det
(
cΩ + d

)−3
∏
I≤J

δ̄
(
uIJ
)
, (4.58b)

d20` → d20 ˜̀= det(cΩ + d)10d20` . (4.58c)

For fields of half integer weight, the transformation of the partition function further depends

on the action of the modular group on the spin structures. Following refs. [5, 10], this is most

conveniently expressed when the spin structures are assembled into a single column vector,(
κ′

κ′′

)
→

(
κ̃′

κ̃′′

)
=

(
d −c
−b a

)(
κ′

κ′′

)
︸ ︷︷ ︸+

1

2

(
diag

(
cdT
)

diag
(
abT
))︸ ︷︷ ︸ . (4.59)

κ → κ̃ = κ̂ + α

Here, diag(m) denotes the column vector containing the diagonal elements of the matrix

m. The theta functions then transform as [5, 65, 66]

ϑ[κ̃]
(
ζ̃, Ω̃

)
= ε(M) eiπϕ(κ) det

(
cΩ + d

)1/2
eiπζ

T (cΩ+d)−1c ζϑ[κ]
(
ζ,Ω) , (4.60)

with the argument ζ̃ of the theta function and the phase ϕ defined by

ζ̃ =
((
cΩ + d

)T)−1
ζ , ϕ(κ) = κ̂′ · κ̂′′ − κ′ · κ′′ + 2κ̂′ · α′′ . (4.61)

Moreover, ε(M) = ε(a, b, c, d) denotes a transformation-dependent phase factor satisfying

ε(M)8 = 1, whose specific form is not important since it will cancel out in the chiral

partition function, as we shall see below. For more details on ε(M), including detailed

tables for the generators of the modular group, the interested reader is referred to [10, 66].
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Prime form, Szegő kernels and the partition function. Proceeding in analogy to

section 2, we are now in a position to review the modular properties of the key objects

relevant for CFTs on higher-genus Riemann surfaces: the propagators and the partition

functions. In particular, the modular behaviour of the prime form follows directly from

eq. (4.60),

E(z, w)→ E(z, w) eiπζ
T (cΩ+d)−1c ζ , where ζ =

∫ z

w
ω . (4.62)

This property ensures that the Abelian differentials of the third kind ωw1,w2 are invariant

under the action of the modular group Sp(2g,Z). As for the Szegő kernels Sδ, we have a

relation among different (even) spin structures,

Sδ(z, w|Ω)→ S
δ̃
(z, w|Ω̃) = Sδ(z, w|Ω) . (4.63)

This extends immediately to the Pfaffians Pf
(
M

(2)
δ

)
after taking into account the invariance

of Pµ discussed above,

Pf
(
M

(2)
δ |Ω

)
→ Pf

(
M

(2)

δ̃
|Ω̃
)

= Pf
(
M

(2)
δ |Ω

)
. (4.64)

Since modular transformations interpolate between different even spin structures, the Pfaf-

fians are not modular forms, despite having trivial modular weight. Only the full ampli-

tude, when summed over spin structures with appropriate phase factors, will be modular

invariant.

The action of the modular group on a chiral determinant det ∂̄1−λ associated to parti-

tion functions of chiral bc and βγ systems was derived in ref. [66],

det ∂̄1−λ(Ω̃) = ε(M)2/3 det(cΩ + d)−λ det ∂̄1−λ(Ω) λ ∈ Z , (4.65a)

det ∂̄1−λ;[κ̃](Ω̃) = ε(M)2/3eiπϕ̃(κ,λ) det(cΩ + d)−λ det ∂̄1−λ;[κ](Ω) λ ∈ Z +
1

2
. (4.65b)

where the phase factor ϕ̃ depending on the weight λ is given by

ϕ̃(κ, λ) = ϕ(κ) + 2(2λ− 1)
(
κ̂′ · α′′ + κ̂′′ · α′

)
. (4.66)

We can now assemble these ingredients to study the action of modular transformations on

the ambitwistor chiral partition function (4.24),

Zchi[δ] =
1

det
(
ωIωJ(yr)

) (det′ ∂̄1−2)(det ∂̄1−1/2;[δ])
5

(det′ ∂̄1−3/2;[δ])(det ∂̄1−1)5
(4.67)

From eq. (4.65), we see that Zchi has modular weight 2 + 5 · 1
2 −

3
2 − 5 · 1 = −2. The factor

ε(M) cancels between the fermionic and the bosonic systems, and the remaining phase

simplifies to eiπδϕ with

iπδϕ = 4iπ
(
κ̂′ · κ̂′′ − κ′ · κ′′ + κ̂′ · α′′ − κ̂′′ · α′

)
. (4.68)

This is easily confirmed to be a multiple of 2iπ for all generators of the modular group

Sp(4,Z). The full chiral partition function thus has modular weight −2 and no relative

sign factors between different spin structures,

Zchi[δ̃](Ω̃) = det
(
cΩ + d

)−2Zchi[δ](Ω) . (4.69)
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It is worth highlighting again that the contribution Zchi[δ]Pf
(
M

(2)
δ

)
to the chiral integrand

for any single spin structure is not a modular form because modular transformations involve

different spin structures. Since each contribution carries no modular weight, however, it is

straighforward to construct a modular invariant object by summing over spin structures

with appropriate coefficients to absorb any relative phases, leading to the chiral integrand∑
δ Zchi[δ]Pf

(
M

(2)
δ

)
. Since all phases in eq. (4.69) are trivial, this concludes our proof of

ηδ = 1 for all even spin structures.

To summarise, the amplitude transforms under modular transformations as follows:

Mn=

∫
d10`1d10`2︸ ︷︷ ︸

+10

∏
I≤J

dΩIJ︸ ︷︷ ︸
−3

∏
I≤J

δ̄
(
uIJ
)

︸ ︷︷ ︸
−3

n∏
i=1

δ̄
(
〈µiP 2〉

)
︸ ︷︷ ︸

0

∑
δ,δ̃

Zchi[δ]︸ ︷︷ ︸
−2

Zchi[δ̃]︸ ︷︷ ︸
−2

Pf
(
M

(2)
δ

)
Pf
(
M

(2)

δ̃

)
︸ ︷︷ ︸

0

.

Modular weights of each factor are indicated in blue, and evidently sum to zero. All phase

factors cancel as discussed above, and so the full expression is modular invariant.

Modular invariance for four particles. For amplitudes with four external particles,

the analysis of modular invariance simpifies considerably. It is sufficient to observe that

due to eq. (4.56),

∆ij → ∆̃ij = det
(
CΩ +D

)−1
∆ij , (4.70a)

Y → Ỹ2 = det
(
CΩ +D

)−4Y2 . (4.70b)

The chiral integrand is therefore a modular form of weight −4, and combines with the

modular measure and the scattering equations to a modular form of weight −10, balancing

the modular weight +10 from the loop integration:

M4 =

∫
d10`1 d10`2︸ ︷︷ ︸

+10

∏
I≤J

dΩIJ︸ ︷︷ ︸
−3

∏
I≤J

δ̄
(
uIJ
)

︸ ︷︷ ︸
−3

Y4 .︸︷︷︸
−4

(4.71)

Modular transformation of the loop momenta. The non-trivial transformation

property (4.57) of the loop momenta `Iµ,

`I → ˜̀I =
(
cΩ + d

)
I
J `

J , (4.72)

plays a crucial role in the modular invariance of ambitwistor string amplitudes. It ensures

that Pµ has homogeneous (vanishing) modular weight, and is consequently responsible for

the nice transformation properties of the scattering equations,∏
I≤J

δ̄
(
uIJ
)

→
∏
I≤J

δ̄
(
ũIJ
)

= det
(
cΩ + d

)−3
∏
I≤J

δ̄
(
uIJ
)
, (4.73a)

n∏
i=1

δ̄
(〈
µiP

2
〉)

→
n∏
i=1

δ̄
(〈
µiP

2
〉)
. (4.73b)

The importance of (4.72) mirrors the situation at one loop [27], where the transformation

property `µ → (cτ+d)`µ was essential in proving modular invariance. Our discussion above

– 42 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
8

demonstrates that this feature — also observed in a different guise in the null string [52]

— persists at higher loops. To summarise, the modular invariance of the amplitude relies

on the modular transformation properties (4.72) of the loop momenta.

To highlight this point, let us contrast the above results with the loop-momenta-fixed

integrands considered in [22]. The loop-momenta-fixed integrands Îfixed
n are defined by

inserting a set of delta-functions into the correlator to localise the loop integration,

Îfixed
n (ˆ̀) = δ

( n∑
i=1

ki

) ∫
d10`1 d10`2

∏
µ,I

δ

(
ˆ̀I
µ −

∮
AI

Pµ

)
In . (4.74)

Here, we distinguish between the zero-mode coefficients `Iµ of Pµ, which transform un-

der (4.72) so that Pµ is invariant, and the loop momenta ˆ̀I
µ, which do not transform under

the modular group. If we choose to work with the loop-momenta-fixed integrands, then

the delta-functions integrand explicitly break modular invariance; notice that the cycles AI
transform. Equivalently, this can also be observed in the scattering equations: since ˆ̀I

µ do

not transform under modular transformations, different terms in the scattering equations

transform with different modular weights, and thus break the modular invariance of the

integrand.

Of course, these two approaches of understanding the amplitude are compatible. If we

take ˆ̀I
µ to transform as (4.72) under the action of the modular group (instead of considering

fixed loop momenta), then Îfixed
n (ˆ̀) is a modular form of weight −10. The fixed integrand

Îfixed
n (ˆ̀) can then be integrated against a measure d20 ˆ̀ to recover the modular invariant

amplitude

Mn =

∫
d20 ˆ̀ Îfixed

n (ˆ̀) . (4.75)

Modular invariance vs finiteness. To conclude, let us briefly comment on an impor-

tant aspect of modular invariance in the ambitwistor string. In contrast to standard string

theory, modular invariance does not restrict the ambitwistor string correlators to a compact

integration domain. This is due to the very distinct relation between the loop momenta

(which can also be introduced in conventional string theory) and the modular parameters

imposed by the scattering equations. Importantly, this means that the amplitudes are not

expected to be finite, but contain in fact the ultraviolet divergence of the loop integration

expected for maximal supergravity in ten dimensions. In our work, we only deal with the

loop integrand, for which finiteness is not an issue.

5 From genus two to the nodal Riemann sphere

As a correlator in the genus expansion of the ambitwistor string, the supergravity ampli-

tude (4.35) is the natural generalisation of lower loop orders. This higher-genus representa-

tion has many desirable aspects: it manifests both modular invariance and the localisation

on the scattering equations, and it makes a wide array of string theory techniques avail-

able due to the close similarity of the amplitudes. The underlying mathematical structure,

however, becomes increasingly challenging at higher genus, and obscures the relation to
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Figure 7. The effect of the residue theorem. The amplitude, initially localised on a genus-two Rie-

mann surface, localises on a nodal torus at an intermediate stage and finally on a bi-nodal sphere.

known rational field theory integrands. While these are expected consequences of working

with a ‘stringy’ representation, they raise the question of how a manifestly rational loop

integrand can possibly appear from the higher-genus formalism of the ambitwistor string

— especially in the absence of the string parameter α′ governing the degeneration of the

string moduli space in the field theory limit.

At one loop, a resolution of this problem was offered in [24, 25]. The ambitwistor

string amplitudes can be localised on the non-separating boundary divisor, rather than

the higher-genus scattering equations, via the residue theorem in the moduli space

M1,n. This residue theorem moves the integration contour from a pole defined by the

scattering equations to the only other simple pole in the integrand, the boundary divisor

Dnon-sep
1,n

∼= M̂0,n+2. The resulting integrand — localised on the non-separating boundary

of the moduli space — is naturally formulated over a nodal Riemann sphere, with the

loop momentum running through the node. This representation of the amplitude has

the advantage of reducing the computationally challenging ambitwistor higher-genus

expressions to simple formulae on nodal Riemann spheres that are manifestly rational,

and thus easier to match to known field theory integrands. Moreover, integrands are

known not only for supergravity, but also for super-Yang-Mills theory [24], bi-adjoint

scalar theory [30, 32], pure Yang-Mills theory and gravity [25], are valid in any dimension

d and can be obtained directly from the nodal Riemann sphere [36].

In this section, we extend this argument to genus two. We have seen above that the

two crucial properties necessary for applying a residue theorem — modular invariance and

localisation on the scattering equations — persist at two loops. Our goal is therefore to

localise the amplitudes on the maximal non-separating boundary divisor Dmax
2,n
∼= M̂0,n+4

by using the residue theorem in the moduli space M̂′2,n, reducing the genus-two surface to

a bi-nodal Riemann sphere as proposed in [26]. While higher-genus residue theorems are in

general subtle to implement, the degeneration can be achieved iteratively by two uses of the

residue theorem, each collapsing a single A-cycle. The first step is to move the integration

contour to the boundary divisor corresponding to a nodal torus Dnon-sep
2,n

∼= M̂1,n+2, while

the second step localises the amplitude on the bi-nodal Riemann sphere Dnon-sep
1,n+2

∼= M̂0,n+4.

The residue theorem approach outlined above assumes directly that the amplitude only

has poles at the scattering equations — constituting the pole at which the amplitude is

formulated on the higher-genus surface — and the non-separating boundary divisor. This

is indeed true for the genus-two integrand, so the first application of the residue theorem is

straightforward. The resulting expression on the nodal torus, however, contains in general

many poles besides the divisor Dnon-sep
1,n+2 and the scattering equations, leading to a variety
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of unwanted terms from the second application of the residue theorem. While this may

seem like an obstruction to obtaining an amplitude on a bi-nodal Riemann sphere, there

is considerable freedom in the choice of the integrand: any basis of Beltrami differentials

may be chosen to define the scattering equations (see section 4.2), and the integrand

is only defined modulo terms proportional to the scattering equations.26 In section 5.1

and section 5.2, we demonstrate that we can use this freedom to construct an integrand

containing only poles at the maximal non-separating boundary divisor and the scattering

equations. Using this representation, we can finally apply the residue theorem to localise

the amplitude on the boundary divisor Dmax
2,n .

In section 5.3, we discuss the mapping of the remaining modular parameter on Dmax
2,n

to the bi-nodal Riemann sphere. While any appropriate map could be chosen, we use a

convenient trick to simplify the calculation. By extending the domain of integration to

the full complex plane, using modular invariance, the modulus maps to a cross-ratio of the

marked points parametrising the nodes. The extension of the integral to the full complex

plane is unique if we require Dmax
2,n and the scattering equations to remain the only poles

of the integrand. Using the global residue theorem, the ambitwistor string correlator then

localises straightforwardly on the bi-nodal Riemann sphere. We conclude with a discussion

of the resulting formula for n-point two-loop amplitudes in section 6.

Given the particularly technical nature of the discussion in this section, and for the

benefit of the time-constrained reader who may want to skip on the details, we will present

a brief summary of the results at the beginning of section 6.

5.1 The scattering equations

The core idea of this section is to use the global residue theorem to localise ambitwistor

string amplitudes on the non-separating boundary divisor, rather than the higher-genus

scattering equations. A necessary prerequisite for this to work is that the only simple

pole of the integrand — besides the scattering equations, of course — is the maximal

non-separating boundary divisor Dmax
2,n ⊂ M̂′2,n. While this is certainly not true for all

representations of the integrand, we will construct a representation of the integrand for

which it holds. Since Dmax
2,n is a divisor of co-dimension two, we will analyse the global

residue theorem iteratively, considering at each step a co-dimension one divisor, Dmax
2,n
∼=

Dnon-sep
1,n+2 ⊂ Dnon-sep

2,n ⊂ M̂′2,n, where the intermediate stage Dnon-sep
2,n corresponds to the

(compactified) moduli space of the nodal torus. Fortunately, we can split the task of

finding an appropriate representation of the integrand into two parts:

1. Finding a basis of Beltrami differentials (or equivalently a linear combination of the

genus-two scattering equations uIJ = 0) such that Dmax
2,n is the unique pole of the

measure ∏
I≤J

dΩIJ

∏
I≤J

δ̄
(
uIJ
)
, (5.1)

apart from the obvious pole uIJ = 0 in which the measure is originally defined.27

26In fact, we have used this freedom to define the compact integrand (4.52) at four points.
27We recall that, given the definition 2πiδ̄(z) = ∂̄(1/z), Stokes theorem implies that the localisation on

the delta functions can be seen as a multi-dimensional residue.
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2. Finding a representation of the integrand Ichi
n = Zchi[δ] Pf

(
M

(2)
δ

)
that does not

contain any poles on the support of the scattering equations, both on M̂′2,n and on

the nodal torus Dnon-sep
2,n .

Here, we will focus on part 1 — finding the basis of Beltrami differentials — while section 5.2

tackles constructing the integrand. Since both parts are interlinked, we will assume the

existence of such an integrand for the remainder of this section.

Let us work in the parametrisation (3.39) of the period matrix adapted to studying

non-separating degenerations,

Ω =

(
τ1 + τ3 τ3

τ3 τ2 + τ3

)
. (5.2)

All non-separating degenerations are represented by τr = i∞ for some r ∈ {1, 2, 3}, and

so (5.2) parametrises the moduli space near all non-separating boundary divisors Dnon-sep
2,n

of M̂′2,n. Of particular convenience are the exponentiated variables qr, defined in analogy

with eq. (3.4) to be

q1 = eiπτ1 , q2 = eiπτ2 , q3 = e2iπτ3 . (5.3)

This leads to the following integration measure for the period matrix;

d3Ω

2(iπ)3
=

dq1 dq2 dq3

q1q2q3
, (5.4)

where the poles at the non-separating boundary divisors, now given by qr = 0, are manifest.

We will verify in section 5.2 and section 6.3 explicitly that qr = 0 and the scattering

equations are the only simple poles of the integrand.

To capture the freedom we have in representing the amplitude, let us use a generic

basis ur =
〈
µrP

2
〉

for the moduli scattering equations. In the amplitude eq. (4.34), this

comes in general at the cost of a Jacobian factor associated to the change of basis for

the Beltrami differentials. (In our case that Jacobian will turn out to be trivial.) For

the purpose of discussing the residue theorem, it will be useful to introduce the following

short-hand notation for the amplitude:

Mn ≡ R(u1, u2, u3) . (5.5)

This compact notation is designed to exhibit only the moduli scattering equations ur,

while the remaining scattering equations as well as all other dependences remain implicit.

The original representation eq. (4.34) of the two-loop amplitude corresponds to Mn =

R(u11, u22, u12) in this new notation. The goal of the remainder of section 5.1 is to express

the ur in terms of the uIJ such that the amplitude localises on the bi-nodal Riemann

sphere. The result will be given in eq. (5.24).

Let us first explore how the global residue theorem plays out with this generic set

of scattering equations, ur = 0. Since the two-loop amplitude is fully localised over the

moduli space M̂′2,n, we can use the residue theorem to move the integration contour away

– 46 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
8

+ +

Figure 8. After applying the global residue theorem, the amplitude localises on three different

nodal tori, corresponding to the boundary divisors qr = 0 for r ∈ {1, 2, 3}.

from one of the poles defined by the scattering equations, say u2 = 0. Since qr = 0 are

the only other poles, this leads to three contributions, each localised on a non-separating

boundary divisor,

R(u1, u2, u3) = −R(u1, q1, u3)−R(u1, q2, u3)−R(u1, q3, u3) , (5.6)

as illustrated in figure 8. The novel feature, compared to standard worldsheet theories,

is that all three terms on the right hand side contribute on the moduli space M′2,n of

the ambitwistor string. They represent genuinely distinct degenerations due to the differ-

ent loop momenta associated to each homology cycle, and cannot be related by modular

transformations without relabelling the loop momenta.28

All three terms in (5.6) are formulated over a nodal torus, and since the amplitude

localises over Dnon-sep
2,n

∼= M̂1,n+2, we are free to apply another residue theorem. However,

applying this second residue theorem does not localise the amplitude on the bi-nodal Rie-

mann sphere. A short calculation shows that unless two of the above terms vanish, the

amplitude receives contributions from nodal tori as well as the bi-nodal Riemann sphere,

R(u1, u2, u3) = R(q2, q1, u3) + R(q3, q1, u3) + . . .︸ ︷︷ ︸
on bi-nodal sphere

+R(u2, q1, u3) + . . .︸ ︷︷ ︸
on nodal torus

, (5.7)

where we represented explicitly only the contributions coming from the first term on the

right-hand side of eq. (5.6). This not only demonstrates that the amplitude, formulated

using a generic basis for the scattering equations, fails to localise on the bi-nodal sphere

after applying the residue theorem on moduli space, but also suggests a resolution: choose

a basis of scattering equations such that two of the terms contributing to each residue

theorem vanish.

To find this basis, let us investigate the asymptotics of the scattering equations on the

nodal tori qr = 0. Clearly, it depends on the behaviour of the holomorphic differentials and

the period matrix in the non-separating degeneration limit, reviewed in section 3.5. For

concreteness, let us focus on R(q2, u1, u3). In the limit q2 → 0, the holomorphic differential

ω2 associated to the degenerating A2-cycle develops simple poles at the node, while ω1

descends to the holomorphic differential dz on the torus. In this case, Fay’s degeneration

28Contrast this with conventional worldsheet theories formulated over M2,n, for whom the non-separating

degeneration is unique on the fundamental domain. Concretely, this implies that, for the bosonic string,

only the second term is relevant due to the definition of the fundamental domain (3.5): q2 = 0 automatically

implies q1 = 0, and similarly for q3. Both R(u1, q1, u3) and R(u1, q3, u3) vanish for generic momenta after

an appropriate blow-up procedure to regulate the limit.
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Figure 9. The non-separating boundary divisor q2 = 0, corresponding to a nodal torus. The node

is parametrised by z2+ and z2− .

formula eq. (3.37) gives the asymptotics29

ω1(z) = dz +O(q4
2) , (5.8a)

ω2(z) =
1

2πi
ω2+,2−(z) +O(q2

2) , (5.8b)

where the node is parametrised by z2+ and z2− , and ω2+,2−(z) denotes the Abelian dif-

ferential of the third kind with simple poles at the node; see figure 9. The subleading

term at O(q2
2) vanishes due to the translation invariance of the torus. The asymptotics

of the period matrix, given in eq. (3.38), imply that the component Ω11 of the period

matrix descends to the modular parameter τ of the torus, while the off-diagonal entries

Ω12 =
∫ z2+

z2−
dz = z2+ − z2− encode the moduli associated to the node,

Ω =

(
τ z2+ − z2−

z2+ − z2−
1
iπ ln q2 + const

)
+O(q2

2) . (5.9)

By fixing the translation invariance of the torus, we can align the modulus Ω12 directly

with the location of the node by fixing one of the nodal points, for example Ω12 = z2+ using

z2− = 0. Note that τ is indeed integrated over the fundamental domain, since τ = Ω11

with Re(τ) ∈ [−1
2 ,

1
2 ] by (i) of eq. (3.5), while the condition (iii) implies that |Ω11| > 1.30

We will discuss the range of the remaining modulus Ω12 = z2+−z2− in detail in section 5.3.

Fay’s degeneration formula now allows us to calculate the asymptotics of the scattering

equations on the nodal torus. Since ω2 develops simple poles at the node, u22 and u12 can

be identified as the coefficients of the second and first order pole at z2+ of P 2, respectively.

Moreover, with ω1 = dz to leading order, the remaining scattering equation u11 = u(1)

becomes the coefficient of the (single) quadratic holomorphic differential dz2 on the torus.

The scattering equations on R(q2, u1, u3) thus take the following form:

u11 = u(1)
(
q = q2

11

)
+O(q2) as q2 → 0 , (5.10a)

u12 = E(1)
2+

(
q = q2

11

)
+O(q2) as q2 → 0 , (5.10b)

u22 = `22 +O(q2) as q2 → 0 . (5.10c)

29It is clear from eq. (3.37) that the first correction to (5.8a) is of order O(q4
2), since we have ω

(1)
1 (zg±) =

dzg± for the torus. This is not important in our analysis, and a correction of order O(q2
2), which occurs at

higher genus, would suffice.

30Using the modular transformation a = d =

(
0 0

0 1

)
and c = −b =

(
1 0

0 0

)
.
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This means that u22 = `22 is associated to the pole at the node, while the other scattering

equations descend to the nodal torus: u11 = u(1) becomes the modular scattering equation

associated to q = e2iπτ , while u12 turns into a vertex scattering equation E(1)
2+ for the nodal

point z2+ with momentum `2.31 Moreover, let us highlight that the amplitude on the nodal

torus R(u1, q2, u3) does not localise on u2 = 0 — this is precisely the constraint relaxed by

applying the residue theorem — so, if we take u2 = u22, (5.10) does not imply a cut of the

loop momentum `2.

Of course, the exact same arguments can be applied to the amplitude R(u1, q1, u3) on

the nodal torus q1 = 0, but with reversed roles for the holomorphic differentials ωI . Let

us denote the node resulting from the degeneration of the A1-cycle by z1+ and z1− . Then

Fay’s degeneration formula implies that

ω1(z) =
1

2πi
ω1+,1−(z) +O(q2

1) , (5.11a)

ω2(z) = dz +O(q4
1) , (5.11b)

and likewise Ω22 = τ , Ω12 = z1+ − z1− to leading order. By identifying the coefficients of

the single and double pole of P 2 at the nodal point z1+ , we find the following asymptotics

for the scattering equations:

u11 = `21 +O(q1) as q1 → 0 , (5.12a)

u12 = E(1)
1+

(
q = q2

22

)
+O(q1) as q1 → 0 , (5.12b)

u22 = u(1)
(
q = q2

22

)
+O(q1) as q1 → 0 . (5.12c)

Again, the roles are reversed with respect to eq. (5.10), so that u11 = `21 becomes the

momentum squared flowing through the node, while u22 and u12 descend to the scattering

equations on the nodal torus.

Given these asymptotics, let us return to our objective of constructing a basis of scatter-

ing equations such that only a single term contributes to the residue theorem. From (5.12a),

it is evident how to choose the scattering equation u1 in order to make R(u1, q1, u3) vanish

for generic loop momenta,

R(u1, q1, u3) ≡ R(u11, q1, u3) = R(`21, q1, u3) = 0 . (5.13)

Strictly speaking, we have not yet seen that the choice u1 = u11 precludes contributions of

the form δ
(
`21
)

to the cut of the amplitude. We will revisit this question at the end of this

section, where we show that no additional terms contribute to the amplitude on a cut.

Having fixed u1 = u11, we also have to choose u2 = u22 in order to preserve the sym-

metry between the degenerations of the cycles A1 and A2. This is a natural requirement,

because the amplitude should be unaffected by our choice of relaxing the scattering equa-

tion u1 or u2 first. However, this implies that we require R(q3, u1, u3) = 0 to obtain a

formulation of the amplitude on the bi-nodal sphere.

31Notice that both loop momenta `1 and `2 appear linearly in E(1)

2+ .
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∣∣∣∣∣(
`1,`2

) ←→
∣∣∣∣∣(

`1+`2,`2
)

Figure 10. The form of the scattering equations at q3 = 0 can be determined from the scattering

equations at q1 = 0 by using a modular transformation to relate the degenerations. In particular,

the loop momenta transform as
(
`1, `2

)
↔
(
`1 + `2, `2

)
.

Notice that calculating the asymptotics of the scattering equations for the contribution

R(q3, u1, u3) requires an additional step, compared to (5.10) and (5.12): to use Fay’s de-

generation formula, we need to exchange the role of τ3 with e.g. τ1 via a modular transform.

We will do this below, but let us first take a look at the result. At q3 = 0, the scattering

equations become

u11 = (`1 + `2)2 + F11(q1, q2) +O(q3) as q3 → 0 , (5.14a)

u22 = F22(q1, q2) +O(q3) as q3 → 0 , (5.14b)

u12 = F12(q1, q2) +O(q3) as q3 → 0 , (5.14c)

with FIJ(q1, q2) 6= 0 but F11(q1, q2) +F22(q1, q2) +F12(q1, q2) = 0; see also figure 11. This

implies that we cannot choose u3 = u12, as we might have guessed, because R(u22, q3, u3) =

R(u22, q3, u12) 6= 0,32 and thus the amplitude would receive contributions from a nodal

torus. To see what linear combination of the uIJ we should choose instead for u3, we will

need to prove the degeneration (5.14) using modular invariance.

Proof. The main idea is to exchange the roles of τ1 and τ3 using a modular transforma-

tion. Consider therefore the modular transformation M with

a =

(
1 0

−1 1

)
, d =

(
1 1

0 1

)
, b = c = 0 . (5.15)

In terms of the basis of homology cycles, this corresponds to(
Ã1, B̃1

)
=
(
A1 +A2, B1

)
,

(
Ã2, B̃2

)
=
(
A2, B2 −B1

)
, (5.16)

so this transformation indeed exchanges the cycle A1 with A1 + A2, see figure 11. Using

eq. (4.56) for the modular transformations of the period matrix, we also confirm directly

that this exchanges τ1 and τ3,

Ω̃ =

(
τ3 + τ1 −τ1

−τ1 τ2 + τ1

)
. (5.17)

Recalling the discussion of modular invariance, eq. (4.56) and eq. (4.57) describe the be-

haviour of the holomorphic differentials, as well as the loop momenta,(
ω̃1, ω̃2

)
=
(
ω1, ω2 − ω1

)
,

(˜̀
1, ˜̀2) =

(
`1 + `2, `2

)
, (5.18)

32This term appears from a second use of the residue theorem on the last term of eq. (5.6).
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Figure 11. The homology basis
(
Ã1, B̃1

)
=
(
A1 + A2, B1

)
and

(
Ã2, B̃2

)
=
(
A2, B2 − B1

)
, after

the modular transformation (5.15). The loop momentum flowing through the cycle Ã1 is given by˜̀
1 =

∮
A1+A2

P = `1 + `2, as can be seen intuitively from the intersection of Ã1 with the original

cycles B1 and B2.

Note that ˜̀1 = `1 + `2 is the loop momentum flowing through the cycle Ã1 = A1 + A2 as

illustrated in figure 11.

With the above properties, the modular transformation maps Pµ to

Pµ(z) =
(
`1 + `2

)
µ
ω̃1 + `2,µ ω̃2 +

∑
i

ki,µωi,∗ . (5.19)

As before, we can use the support of the particle scattering equations to write P 2 as a

holomorphic quadratic differential, now in the basis ω̃I of holomorphic differentials,

P 2 = uIJ ωIωJ =
(
u11 + u12 + u22

)︸ ︷︷ ︸
≡ũ11

ω̃2
1 +

(
u12 + 2u22

)︸ ︷︷ ︸
≡ũ12

ω̃1ω̃2 + u22︸︷︷︸
≡ũ22

ω̃2
2 . (5.20)

At this stage, we are able to use Fay’s degeneration formula for the differentials
(
ω̃1, ω̃2

)
to

investigate the limit q3 = q̃1 → 0 of the scattering equations. This now mirrors exactly the

procedure from above. Denoting the locations of the node resulting from the degeneration

of the Ã1-cycle by z3+ and z3− , we find that

ω̃1(z) =
1

2πi
ω3+,3−(z) +O(q2

3) , (5.21a)

ω̃2(z) = dz +O(q4
3) , (5.21b)

By identifying the coefficients of the poles of P 2 at the nodal point z3+ , we can again

extract the asymptotics for the scattering equations;

ũ11 =
(
`1 + `2

)2
+O(q3) as q̃1 = q3 → 0 , (5.22a)

ũ12 = E(1)
3+

(
q = q̃2

22

)
+O(q3) as q̃1 = q3 → 0 , (5.22b)

ũ22 = u(1)
(
q = q̃2

22

)
+O(q3) as q̃1 = q3 → 0 . (5.22c)

We stress that this has now the same interpretation as for the nodal tori q1 = 0 or q2 = 0:

the scattering equation ũ11 = ˜̀2
1 = (`1 + `2)2 becomes the momentum squared flowing

through the node, while ũ22 and ũ12 descend to the scattering equations on the nodal

torus. In particular, these scattering equations evidently depend on the modular parameter
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q̃2
22 = q and the modulus of the node, τ̃3 = −τ1 = z3−−z3+ . In turn, this implies that all of

u22 = ũ22(q1,q2)︸ ︷︷ ︸
≡F22

, u12 = ũ12(q1,q2)−2ũ22(q1,q2)︸ ︷︷ ︸
≡F12

, u11 =
(
`1+`2

)2
+ũ22(q1,q2)−ũ12(q1,q2)︸ ︷︷ ︸

≡F11

,

depend on the modular parameters q1 and q2. We arrive therefore at (5.14),

upon identifying FIJ as given above, and comparing to (5.20) to show that

F11(q1, q2) + F22(q1, q2) + F12(q1, q2) = 0. �
This discussion now allows us to construct u3 such that R(q3, u2, u3) vanishes for

generic loop momenta. From (5.20) and in analogy with the argument for the torus q1 = 0,

we must take u3 = ũ11 = u11 + u12 + u22, because

u3 =
(
`1 + `2

)2
+O(q3) as q3 → 0 , (5.23)

so that R(u2, q3, u3) = 0 for generic loop momenta. We will discuss the cut (`1 + `2)2 = 0

shortly.

To summarise, we conclude that the residue formula (5.6) only results in a single

contribution from the non-separating boundary divisor Dnon-sep
2,n if we choose the scattering

equations

u1 = u11 , u2 = u22 , u3 = u12 + u11 + u22 . (5.24)

Note that the Jacobian associated to this basis choice is trivial, so the integrand Ichi
n of the

amplitude is unaffected. In the next section, we construct a representation of this integrand

that does not contain poles on support of the scattering equations — part 2 in our roadmap

outlined at the beginning of section 5.1. Once proven on the nodal torus, we can again

apply the residue theorem to localise the amplitude on the bi-nodal Riemann sphere,

R(u1, u2, u3) = −R(u1, q2, u3) = R(q1, q2, u3) . (5.25)

All other terms vanish due to our choice of scattering equations,

R(q1, u1, u) = R(q2, u2, u) = R(q3, u3, u) = 0 , for any u . (5.26)

Before proceeding, let us highlight briefly an interpretation of the relations (5.26).

Since the maximal non-separating boundary divisor Dmax
2,n has co-dimension two in the

(n + 3)-dimensional moduli space M̂′2,n, the full residue theorem localising on Dmax
2,n

is two-dimensional as well. However, the relations (5.26) effectively diagonalise this

two-dimensional residue theorem, reducing it to two consecutive residue theorems in

separate variables.

Contribution on a cut. While the above discussion seems to suggest that contributions

from cuts are subtle and need to be treated with care, they actually represent the simplest

scenario. To see this, let us investigate the genus-two amplitude R(u1, u2, u3) on the cut

`22 = 0. From (5.10), we see that this cut forces u2 ∝ q2, and thus trivially

R(u1, u2, u3)
∣∣∣
`22=0

= R(u1, q2, u3)
∣∣∣
`22=0

. (5.27)
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This is indeed the same result we obtained for generic loop momenta after the first use of

the residue theorem. If furthermore `21 6= 0 and (`1 + `2)2 6= 0, applying a single residue

theorem is sufficient to localise the full amplitude on R(q1, q2, u3)
∣∣
`22=0

. Note that this

exactly matches the result obtained from a cut of the amplitude (5.25) on the bi-nodal

sphere Dmax
2,n , so the cut commutes with the residue theorem.

Similarly, for a cut in one of the other loop momenta, `21 = 0 or (`1 + `2)2 = 0, we find

respectively that the amplitude is given by

R(u1, u2, u3)
∣∣∣
`21=0

= R(q1, u2, u3)
∣∣∣
`21=0

, (5.28a)

R(u1, u2, u3)
∣∣∣
(`1+`2)2=0

= R(u1, u2, q3)
∣∣∣
(`1+`2)2=0

. (5.28b)

After using the residue theorem (twice for (`1 + `2)2 = 0), the result is again the same

as taking a cut of the amplitude (5.25) on the bi-nodal sphere Dmax
2,n . This analysis ex-

tends straightforwardly to multiple cuts, and thus the two-loop amplitude localises on the

maximal non-separating degeneration irrespective of the loop momentum configuration.

5.2 The integrand

Throughout the last section, we assumed the existence of a representation of the integrand

Ichi
n that does not contain poles on the support of the scattering equations. Let us now

return to this point and explicitly construct this representation.

It is easily checked that the integrand of (4.35) does not have poles on the genus-two

Riemann surface for generic kinematics, because poles in the location of vertex operators

zi − zj correspond — via the scattering equations — to factorisation channels of the am-

plitude. Moreover, recall from section 4.7 that there are no poles associated to the PCO

gauge slice xα, so no additional poles contribute in the first residue theorem. However,

since this PCO gauge invariance relies on the support of all scattering equations, we expect

the integrand to develop poles in xα on the nodal torus Dnon-sep
2,n .

This can be made explicit. Once on the nodal torus, one of the genus-two holomorphic

differentials becomes meromorphic, ω2 = ω2+,2−(z), and the modular parameter τ3 = z2+−
z2− encodes the location of the node. The terms in the Pfaffian containing a factor of P (xα),

Ax1x2 =P (x1)·P (x2)Sδ(x1,x2), Axα,j =P (xα)·kjSδ(xα,zj), Cxα,j =P (xα)·εjSδ(xα,zj),

thus develop simple poles in the modular parameter q3. While the coefficients of Axα,j
and Cxα,j still vanish on the support of the scattering equations,33 the coefficient of Ax1 x2

is non-zero on the nodal torus. If the amplitude is represented using the integrand (4.37),

the second application of the residue theorem thus leads to a contribution from the poles

q3 = e2iπxα of P (x1) · P (x2). Of course, the full amplitude remains invariant under

different PCO gauge choices, but fails to localise on the bi-nodal sphere.

Luckily, we have already seen how to eliminate these poles when discussing the four-

particle amplitude in section 4.6. In that case, the full amplitude is proportional to Ax1 x2 ,

33The argument is completely analogous to the one presented in section 4.7.
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and we used a linear combination of the scattering equations determined by the Beltrami

differential (4.43),

µx =
1

2

(
c1

c2
δ(z, x1) +

c2

c1
δ(z, x2)

)
, (5.29)

to simplify P (x1) ·P (x2) to ℘(x1, x2). This procedure characteristically removes the terms

in P (x1) ·P (x2) proportional to the holomorphic differentials, and will thus eliminate poles

in q3 on the nodal torus. Generalising from four to n particles, we indeed find

℘(x1, x2) = P (x1) ·P (x2)−
〈
µx P

2
〉

= −1

2
c1c2∂$(x1)∂$(x2)

∑
i,j

ki ·kj
∆i∗∆j∗

$(zi)$(zj)$(z∗)2
.

(5.30)

Note that while the right hand side of (5.30) still depends on x1 and x2, the coefficient of

the pole in x1 − x2 vanishes manifestly when multiplied by the partition function due to

eq. (4.45b). Moreover, the coefficients of the poles in xα − zi vanish because the Pfaffian

matrix becomes degenerate at this order; the relevant calculation proceeds in close analogy

to the discussion in section 4.7.

We can thus use ℘(x1, x2) to define a representation of the integrand free of poles in

the modular parameters.

In summary, we will use the following representation of the amplitude for the residue

theorem:

Mn = δ

( n∑
i=1

ki

) ∫
d10`1 d10`2

∫
M2,n

d3τ

3∏
r=1

δ̄
(
ur
) n∏
i=1

δ̄
(〈
µi P

2
〉)
Ichi
n Ĩchi

n . (5.31)

Just as in eq. (4.37), the chiral integrand is defined by

Ichi
n =

∑
δ

Zchi[δ] Pf
(
M

(2)
δ

)
, (5.32)

but in contrast to the original representation, the (2n+ 2)× (2n+ 2) matrix M
(2)
δ is now

given by

M
(2)
δ =

(
A −CT

C B

)
, (5.33a)

Ax1x2 =℘(x1,x2)Sδ(x1,x2) , Axα,j =P (xα) ·kjSδ(xα,zj) , Aij = ki ·kjSδ(zi,zj) , (5.33b)

Cxα,j =P (xα) ·εjSδ(xα,zj) , Cij = εi ·kjSδ(zi,zj) , (5.33c)

Cii =P (zi) ·εi , Bij = εi ·εjSδ(zi,zj) . (5.33d)

As discussed above, Axα,j and Cxα,j do not give rise to poles in q3 because the respective

coefficients still vanish on the nodal torus on the support of the vertex scattering equations.

The integrand therefore meets our requirement of not containing poles on the nodal torus

Dnon-sep
2,n , and we can proceed with the second application of the residue theorem, (5.25)

R(u1, u2, u3) = −R(u1, q2, u3) = R(q1, q2, u3) , (5.34)
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as indicated in the previous section. Note that the discussion presented here bears a close

resemblance to the issues arising from the scattering equations in the last section: while

the degeneration to the nodal torus was straightforward, only a specific representation of

the integrand allows for a further application of the residue theorem to fully localise on the

maximal non-separating degeneration. These strong requirements on the representation

of the integrand to localise on higher non-separating degenerations seem to be a general

feature that we strongly expect to extend to higher genus.

5.3 Integration over the moduli

As discussed over the course of the last two sections, a suitable representation of the

two-loop amplitude localises on the maximal non-separating boundary divisor Dmax
2,n after

applying a global residue theorem. One last subtlety remains to be resolved: the iso-

morphism Dmax
2,n
∼= M̂0,n+4 with the bi-nodal Riemann sphere. While Fay’s degeneration

formulae (5.8) already incorporates this map to the nodal Riemann sphere, more care is

needed with the remaining modulus τ3 of the period matrix. One way to see this is as fol-

lows. Recall first that, due to modular invariance, the integration over the moduli runs over

the fundamental domain, so that |qr| < 1. On the other hand, on the bi-nodal Riemann

sphere, τ3 is expected to correspond to the location of one of the nodes upon fixing the

other nodal points using Möbius invariance (see Fays’ degeneration formula for the period

matrix (5.9)), and q3 = e2πiτ3 should thus be unconstrained.34 Evidently, this implies that

the isomorphism Dmax
2,n
∼= M̂0,n+4 is non-trivial.

There exists however a nice way to trivialise Dmax
2,n
∼= M̂0,n+4 using modular invariance:

extend the integration domain for the modular parameter q3 to the full complex plane.

This method also has the advantage of considerably simplifying the degeneration because

it obviates the construction of an explicit map from Dmax
2,n to M̂0,n+4. Let us see how this

trivialisation works in more detail.

Since we are interested in extending the domain of integration to the full complex

plane, the natural modular transformation to consider is q̃12 = 1/q12, where we recall that

q3 = q12 = e2πiΩ12 . This suggests that the extension of q3 to the full complex plane is best

seen in the parametrisation (3.4) of the period matrix, which we will use in what follows.

Explicitly, the modular transformation q̃12 = 1/q12 is given by

a = d =

(
1 0

0 −1

)
, b = c = 0 . (5.35)

At the level of the homology cycles, this means(
Ã1, B̃1

)
=
(
A1, B1

)
,

(
Ã2, B̃2

)
=
(
−A2, −B2

)
. (5.36)

Of course, we could have chosen to reverse the orientations of (A1, B1) instead, while keep-

ing (A2, B2) invariant. The period matrix transforms under this modular transformation as

Ω̃ =

(
Ω11 −Ω12

−Ω12 Ω22

)
, (5.37)

34In fact, the same argument already applies for the nodal torus. We will see below that the resolution

offered here does not impact the arguments of the preceding sections.
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confirming that the modular transformation (5.35) indeed corresponds to q̃12 = 1/q12.

The behaviour of the holomorphic differentials and the zero modes `Iµ can be read off from

eq. (4.56) and eq. (4.57),(
ω̃1, ω̃2

)
=
(
ω1, −ω2

)
,

(˜̀
1, ˜̀2) =

(
`1, −`2

)
. (5.38)

Let us schematically write the two-loop amplitude (5.31) as

Mn ≡
∫
|q12|<1

dµ2,n In =

∫
|q12|>1

dµ2,n In , (5.39)

where the second equality holds due to modular invariance, as just discussed. The

amplitude can thus be expressed as

Mn =

∫
dµ2,n In f

(
q12

)
, where f

(
q12

)
+ f

(
q−1

12

)
= 1 , (5.40)

and where the integration is unconstrained and runs over full complex plane. Of

course, there are many possible choices for f(q12) if we only require it to be subject

to f(q12) + f(1/q12) = 1. In the context of the residue theorem, however, there is an

additional natural requirement: f(q12) should not introduce poles into the integrand.

Equivalently, we can demand that the maximal non-separating boundary divisor Dmax
2,n

remains the only global residue (apart from the one that defines the original amplitude).

The simplest example f(q12) = 1/2 fails this additional requirement, because it introduces

a pole as q12 →∞. In fact, requiring the integrand to remain holomorphic on the support

of the scattering equations implies uniquely that

f
(
q12

)
=

1

1− q12
. (5.41)

While this naively introduces a pole at q12 = 1, the amplitudes of type II supergrav-

ity (5.31) vanish on the separating degeneration. This can be understood intuitively in

analogy with the superstring, where only massive poles contribute to this channel [74],

which are absent in the ambitwistor string. An explicit proof for four particles was given

in [29], and we extend this argument to all n in section C.

Having extended the domain of integration to trivialise the map to the bi-nodal sphere,

let us return to the parametrisation (3.39) of the period matrix. With q12 = q3, the

amplitude is given by

Mn =

∫
dµ2,n In

1

1− q3
. (5.42)

Since no new poles are introduced by f(q12) = f(q3), the amplitude35 localises on the max-

imal non-separating divisor Dmax
2,n, after applying the global residue theorem. At this stage,

the isomorphism Dmax
2,n
∼= M̂0,n+4 is trivial, and τ3 is determined by Fay’s degeneration

formula (5.9).

35Here, In is chosen in the representation established in the last two sections.
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6 The amplitude on the bi-nodal Riemann sphere

Let us briefly summarise our conclusions from section 5. In section 5.3, we established that

we can trivialise the isomorphism Dmax
2,n
∼= M̂0,n+4 by extending the domain of integration

for the modular parameter q3 from the fundamental domain to the full complex plane,

using modular invariance. This introduces a factor of f(q3) = (1−q3)−1 into the integrand.

We will work with the representation given in eq. (5.32) of the integrand, as well as the

basis (5.24) for the scattering equations,

Mn =

∫
dµ2,nIn

1

1− q3
≡ R(u1, u2, u3) . (6.1)

In a slight abuse of notation, we denote the amplitude again by R(u1, u2, u3), which denotes

the residue at ur = 0. Since the only simple poles of the integrand are the scattering

equations and qr = 0,36 the amplitude can be localised on the non-separating degenerations

Dnon-sep
2,n

∼= M̂1,n+2 using the residue theorem. This residue theorem moves the contour

from one of the scattering equations, e.g. u2,37 to circle the poles at qr = 0. With the

choice (5.24) for ur,

u1 = u11 , u2 = u22 , u3 = u12 + u11 + u22 , (6.2)

only one pole contributes to the residue theorem since

R(u1, q1, u3) = R(u1, q3, u3) = 0 . (6.3)

The residue theorem thus results in a single contribution Dnon-sep
2,n

∼= M̂1,n+2 on a nodal

torus,

R(u1, u2, u3) = −R(u1, q2, u3) . (6.4)

Using the representation (5.32) of the integrand, the only simple pole on the torus (apart

from the one where the amplitude is defined) sits at the non-separating boundary divisor

Dnon-sep
1,n+2

∼= M̂0,n+4. Therefore, a second application of the residue theorem localises the

amplitude onto the nodal Riemann sphere Dmax
2,n ,

R(u1, u2, u3) = −R(u1, q2, u3) = R(q1, q2, u3) , (6.5)

again using R(u2, q2, u3) = R(q3, q2, u3) = 0. Since we trivialised the isomorphism Dmax
2,n
∼=

M̂0,n+4 by extending the domain of integration for q3, the resulting amplitude is formulated

directly over the nodal Riemann sphere.

6.1 The measure on the bi-nodal Riemann sphere

Let us introduce the coordinate σ ∈ CP1 on the (bi-nodal) Riemann sphere, to distinguish

it from the previous coordinate z at higher genus. Then the σi denote the locations of the

n marked points associated to the external particles, while σ1± and σ2± denote the location

of the nodes; see figure 12 for illustration.

36In section 5.2 and section 5.3, we have seen that these are indeed the only poles. See section 6.3 for the

calculation showing that the poles qr = 0 are simple.
37Note that, in the application of the residue theorem, nothing forced us to relax the scattering equation

u2. An equivalent result would have been obtained if we chose to relax u1 or u3 instead.
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Figure 12. The bi-nodal Riemann sphere, with nodes parametrised by σ1± and σ2± .

In this notation, Fay’s degeneration formula for the holomorphic differentials (3.37)

gives the following asymptotics to order O(q2
1, q

2
2),

ω1(σ) =
1

2πi
ω1+,1−(σ) =

1

2πi

(σ1+ − σ1−)

(σ − σ1+)(σ − σ1−)
dσ , (6.6a)

ω2(σ) =
1

2πi
ω2+,2−(σ) =

1

2πi

(σ2+ − σ2−)

(σ − σ2+)(σ − σ2−)
dσ . (6.6b)

Since the isomorphism Dmax
2,n
∼= M̂0,n+4 is trivial after extending the domain of integration

for q3, Fay’s degeneration formula for the period matrix (3.38) straighforwardly determines

the asymptotics for the remaining modular parameter,

Ω12 =

∮
B2

ω1 =
1

2πi

∫ σ2+

σ2−

dσ (σ1+ − σ1−)

(σ − σ1+)(σ − σ1−)
=

1

2πi
ln

(1+2+) (1−2−)

(1+2−) (1−2+)
, (6.7)

where we introduced the notation (ij) ≡ σi−σj . The exponentiated parameter q3 = e2πiΩ12

thus becomes the cross-ratio of the location of the nodes,

q3 =
(1+2+) (1−2−)

(1+2−) (1−2+)
. (6.8)

The Möbius symmetry of the Riemann sphere allows us to fix three of the marked points.

For practical calculations, a convenient choice is given by the gauge σ1− = 1, σ2+ = 0 and

σ2− =∞, leading to q3 = σ1+ encoding the location of the remaining node. To arrive at an

SL(2,C)-invariant representation of the amplitude, however, we will not choose a specific

gauge and instead quotient by the volume of the symmetry group,

dq3

q3
=

J

vol SL(2,C)
, where J =

dσ1+dσ1−dσ2+dσ2−

(1+2+)(1+2−)(1−2+)(1−2−)
. (6.9)

Using the asymptotics for the holomorphic differentials and the moduli, we can now take

a closer look at the remaining ingredients for the amplitude. The expression (6.8) for q3

leads directly to

f(q3) =
1

1− q3
=

(1+2−)(1−2+)

(1+1−)(2+2−)
. (6.10)

Moreover, we already established the degeneration of the two scattering equations relaxed

by the residue theorems in section 5.1: the limit q1, q2 → 0 forces u1 = `21 and u2 = `22.

Therefore, the SL(2,C)-invariant representation of the amplitude on the bi-nodal Riemann

sphere is given by

Mn =

∫
d10`1 d10`2

`21`
2
2

∫
M0,n+4

1

vol SL(2,C)
δ̄
(
u3

) n∏
i=1

δ̄
(
Ei) J Ichi

n Ĩchi
n

(1+2−)(1−2+)

(1+1−)(2+2−)
, (6.11)
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where σA ∈ {σ1± , σ2± , σi}. In this expression, the scattering equations u3 and Ei ≡
〈
µi P

2
〉

as well as the chiral integrands Ichi
n are evaluated implicitly on the maximal non-separating

divisor q1 = q2 = 0. We will derive the explicit form of the scattering equations in the next

section, and discuss the asymptotics of the chiral integrand in section 6.3. Notice also that

the pre-factor (`21`
2
2)−1 of the loop integrand arises from the poles that were relaxed in the

residue theorem, (u1u2)−1; see also eq. (6.13) below.

6.2 The scattering equations on the bi-nodal Riemann sphere

Let us first focus on the asymptotics of the scattering equations on the bi-nodal Riemann

sphere. From the degeneration of the holomorphic differentials (6.6), we obtain Pµ as38

Pµ(σ) = `1µ ω1+,1−(σ) + `2µ ω2+,2−(σ) +
∑
i

ki µ ωi,∗(σ) , (6.12)

where ωi,∗ are the meromorphic differentials on the Riemann sphere. The form of Pµ

strongly resembles the forward limit of the tree-level solution P
(0)
µ , but with n + 4 legs,

two of which have been identified pairwise with equal-opposite loop momenta `I µ. Notice

that, as expected from a forward limit, the loop momenta are off-shell, `2I 6= 0.

The particle scattering equations Ei ≡
〈
µi P

2
〉
, calculated as the residue of P 2 at the

vertex operator insertions σi, degenerate straightforwardly to the bi-nodal sphere. More-

over, u1 = u11 and u2 = u22 are given respectively by the coefficients of the quadratic

differentials ω2
1+,1− and ω2

2+,2− in P 2. As discussed in section 5.1, this simply implies that

u1 = Resσ1+ (σ − σ1+)P 2(σ) = `21 , u2 = Resσ2+ (σ − σ2+)P 2(σ) = `22 . (6.13)

Following the discussion in section 5.1, we choose the remaining scattering equation to take

the form u3 = u11 +u22 +u12 = `21 + `22 +u12, so only u12 remains to be determined on the

nodal Riemann sphere. A convenient way to do so is to calculate the residue at σ1+ of the

quadratic differential P 2 − `21ω2
1+,1−− `

2
2ω

2
2+,2− ,

u12ω2(σ1+)=Resσ1+

(
P 2−`21ω2

1+,1−−`
2
2ω

2
2+,2−

)
=2`1 ·`2ω2+,2−(σ1±)+

∑
j

2`1 ·kj ωj,∗(σ1±).

(6.14)

Of course, we could have chosen alternatively to calculate u12 as the residue at any of the

other three nodal points, consistent with the SL(2,C) Möbius symmetry of the Riemann

sphere. The full set of scattering equations {u3, Ei} can thus be expressed in a manifestly

38To avoid the proliferation of 2πi factors in the pairing `IωI , we perform the redefinition `Iµ → 2πi `Iµ,

which cancels the (2πi)−1 factors in (6.6). We also redefine the normalisation of the loop integrand so that

no such factor remains.
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SL(2,C)-invariant form,

Ei = ki · `1 ω1+,1−(σi) + ki · `2 ω2+,2−(σi) +
∑
j 6=i

ki · kj ωj,∗(σi) , (6.15a)

±E1± =
1

2
(`1 + `2)2 ω2+,2−(σ1±) +

∑
j

`1 · kj ωj,∗(σ1±) , (6.15b)

±E2± =
1

2
(`1 + `2)2 ω1+,1−(σ2±) +

∑
j

`2 · kj ωj,∗(σ2±) . (6.15c)

We recover u3, dressed by a factor of ωI+,I−(σJ±), upon fixing the SL(2,C) symmetry.39

The scattering equations (6.15) can be written more compactly by introducing an auxiliary

quadratic differential

P2(σ) = P 2(σ)− `21 ω2
1+,1−(σ)− `22 ω2

2+,2−(σ) +
(
`21 + `22

)
ω1+,1−(σ)ω2+,2−(σ) . (6.16)

Both the nodal and the particle scatttering equations are then given by the residues of P2

at the marked points,

EA = ResσAP2(σ) , for σA ∈ {σ1± , σ2± , σi} . (6.17)

The three linear relations among these n+ 4 scattering equations — encoding the Möbius

invariance of the Riemann sphere — are given by∑
A

σqAEA = 0 , for q = 0, 1, 2 , (6.18)

in this notation. Both the form of these relations and the construction of the scattering

equations (6.17) are strongly reminiscent of the tree-level case, where the SL(2,C)-invariant

form of the scattering equations has been studied in [75]. Note, however, that while the

scattering equations (6.17) bear a close structural resemblance with the tree-level scattering

equations Ei = ResσiP
2 in the forward limit, the defining quadratic differential has to be

modified from P 2 (whose vanishing we relaxed in the residue theorem) to P2 at two loops.

A nice interpretation of the analogous feature at one loop was given recently in [36]: the full

amplitude can be constructed directly from the Riemann sphere by introducing a ‘gluing

operator’ that effectively creates the node. BRST invariance requires this operator to con-

tain a non-local term compensating for the off-shell state running through the node, which

in turn leads to an effective BRST operator Q ⊃
∮
c̃
2

(
P 2 − `2ω2

+,−
)
≡
∮
c̃
2 P

(1)
2 . It would

be interesting to give a similar interpretation to the quadratic differential P2 at two loops.

Using the Möbius-invariant form of the scattering equations introduces an additional

factor of the Jacobian J into the amplitude. The full two-loop integrand In is then given

by the CHY-type formula,

In =

∫
M0,n+4

1

vol SL(2,C)2

∏
A

δ̄
(
EA
)
I(2)
n Ĩ(2)

n

(1+2−)(1−2+)

(1+1−)(2+2−)
, (6.19)

39For example when gauge fixing the constraints E1− , E2+ and E2− , the remaining scattering equa-

tion E1+ becomes u3 ω2(σ1+), while the integrand picks up the usual SL(2,C) Fadeev-Popov factor

(1−2+)(2+2−)(2−1−).
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The additional quotient by SL(2,C) refers to the choice of scattering equations, and leads

to the usual Fadeev-Popov factor. Moreover, we rescaled the chiral integrands Ichi
n by a

factor of the Jacobian

I(2)
n = J Ichi

n =
dσ1+dσ1−dσ2+dσ2−

(1+2+)(1+2−)(1−2+)(1−2−)
Ichi
n , (6.20)

and analogously Ĩ(2)
n = J Ĩchi

n . The new integrand factor I(2)
n defined in this manner has

form degree one and vanishing SL(2,C)-weight in each of the marked points, including the

nodes σ1+ , σ1− , σ2+ and σ2− . The full expression is thus manifestly invariant under both

the SL(2,C) fixing any three of the marked points, and the SL(2,C) associated to the choice

of n + 1 out of the n + 4 scattering equations. Finally, notice that the product of δ̄ delta

functions has (1, 0)-form degree −1 and (0, 1)-form degree 1 in each of the punctures, since

EA = ResσAP2(σ) has (1, 0)-form degree 1. The total form degree of the expression under

the integral is therefore of the appropriate type for the integration over the moduli space:

a (1, 1) form in each of the punctures.40

The formula above, with I(2)
n further simplified as below in (6.27), is the main result

of this paper for supergravity.

6.3 The chiral integrand on the bi-nodal Riemann sphere

The last missing ingredient is the chiral integrand on the maximal non-separating boundary

divisor Dmax
2,n . In particular, we are interested in the asymptotics of the Szegő kernels as

well as the partition functions Zchi[δ] around q1 = q2 = 0.

By the definition (3.18), the behaviour of the Szegő kernels near the boundary divisor

depends on the theta functions and the prime form E(z, w). While the degeneration of

the theta functions can be obtained straightforwardly from eq. (3.15), the expansion of the

prime form needs more care. First note that Fay’s degeneration formula (3.37) ensures

that the subleading O(q1, q2) contribution to the holomorphic differentials ωI vanishes, so

subleading terms in the prime form E can only originate from the theta functions. A short

calculation shows that these terms cancel, and so41

E(z, w) =
z − w√
dz
√
dw

+ o(q1, q2) . (6.21)

Therefore, the subleading asymptotics of the Szegő kernels depend only on the behaviour

of the theta function near the non-separating boundary divisor. With the expansion (3.15)

of the theta function, the Szegő kernels can be grouped into NS-NS, NS-R, R-NS and R-R

40We have abused notation slightly at several points regarding the form degrees, so here we just want to

clarify that the formula is consistent.
41We use the standard convention that O(ε) denotes a contribution at order ε, whereas o(ε) denotes a

contribution at order strictly lower than ε.
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Szegő kernels as follows:

Sδ(z, w) =
∑

n1,n2∈{0,1}

(−1)2(n1δ′′1 +n2δ′′2 ) qn1
1 qn2

2 S
(n1,n2)
NS (z, w) δ ∈ {δ1, δ2, δ3, , δ4} , (6.22a)

Sδ(z, w) =
∑

n1∈{0,1}

(−1)2n1δ′′1 qn1
1 S

(n1,n2)
R2 (z, w) δ ∈ {δ5, δ6} , (6.22b)

Sδ(z, w) =
∑

n2∈{0,1}

(−1)2n2δ′′2 qn2
2 S

(n1,n2)
R1 (z, w) δ ∈ {δ7, δ8} , (6.22c)

Sδ(z, w) = S
(0,0)
RRi

(z, w) δ ∈ {δ9, δ0} , i = 9, 0 . (6.22d)

All expansions are given to order o(q1q2), which suffices for our purposes, and the notation

for the Szegő kernels is chosen to reflect the sector of the spin structure according to (3.14).

The explicit form of the respective orders can be found in section D.1. Below, we will

primarily make use of the relative signs in the expansion (6.22). The other ingredient in

the integrand are the partition functions, whose asymptotics are completely determined

by the degeneration of the prime form and the theta functions. To order o(1) in the

degeneration parameters, we find

Zchi[δ] =
∑

n1,n2∈{0,1}

(−1)2(n1δ′′1 +n2δ′′2 ) q−n1
1 q−n2

2 Z(−n1,−n2)
NS δ ∈ {δ1, δ2, δ3, , δ4} , (6.23a)

Zchi[δ] =
∑

n1∈{0,1}

(−1)2n1δ′′1 q−n1
1 Z(−n1,0)

R2 δ ∈ {δ5, δ6} , (6.23b)

Zchi[δ] =
∑

n2∈{0,1}

(−1)2n2δ′′2 q−n2
2 Z(0,−n2)

R1 δ ∈ {δ7, δ8} , (6.23c)

Zchi[δ] = Z(0,0)
RRi

δ ∈ {δ9, δ0} , i = 9, 0 . (6.23d)

All details and the explicit form of the NS-NS, NS-R, R-NS and R-R partition functions can

be found in section D.2. Note in particular that the highest pole in the partition functions

is of order q−1
1 q−1

2 , so it is indeed sufficient to expand (6.22) only to order o(q1q2). With

the asymptotics (6.22) and (6.23), we can proceed to study the chiral integrand on the

bi-nodal Riemann sphere,

I(2)
n = J

∑
δ

Zchi[δ] Pf
(
M

(2)
δ

)∣∣∣∣∣q1→0
q2→0

. (6.24)

Let us first check explicitly that all terms of order q−1
1 , q−1

2 and q−1
1 q−1

2 cancel.42 As a first

check, this is easily verified for four external particles from the degeneration of the relations

in section A. To generalise this cancellation to n points, we will rely on the relative signs in

the partition functions and the Szegő kernels for the different spin structures. Explicitly,

we find that the contribution to the chiral integrand at order q−1
1 q−1

2 vanishes due to the

42Recall that we assumed this in the degeneration to the nodal Riemann sphere; if not, q1 = 0 and q2 = 0

would not have been simple poles.
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sign differences in the NS-NS spin structures,

I(2)
n

∣∣∣
q−1
1 q−1

2

= J

4∑
i=1

(−1)2(δ′′i,1+δ′′i,2)

︸ ︷︷ ︸
=1−1−1+1

Z(−1,−1)
NS

(
Pf
(
MNS

)∣∣
q0
1q

0
2

)
= 0 . (6.25)

To improve readability, we introduced the notation Pf
(
MNS

)∣∣
qa1 q

b
2

to indicate that the

matrix M is defined using the NS-NS Szegő kernels introduced in (6.22), and evaluated at

order qa1q
b
2 for a, b = 0, 1.43 In particular, all signs due to different spin structures have

been extracted, and only contribute an overall factor — which of course vanishes in (6.25).

The calculation for the chiral integrand at order q−1
1 then proceeds in complete analogy,

I(2)
n

∣∣∣
q−1
1 q0

2

= J

4∑
i=1

(−1)2δ′′i,2

︸ ︷︷ ︸
=1−1+1−1

Z(−1,−1)
NS

(
Pf
(
MNS

)∣∣
q1
1q

0
2

)

+ J

4∑
i=1

(−1)2δ′′i,1

︸ ︷︷ ︸
=1+1−1−1

Z(−1,0)
NS

(
Pf
(
MNS

)∣∣
q0
1q

0
2

)

+ J

6∑
i=5

(−1)2δ′′i,1

︸ ︷︷ ︸
=1−1

Z(−1,0)
R2

(
Pf
(
MR2

)∣∣
q0
1q

0
2

)
= 0 . (6.26)

The same argument holds for Ichi
n

∣∣
q0
1q
−1
2

, with the R1 spin structures contributing instead

of R2. The leading contribution of the chiral integrand is thus of order one, proving the

assertion that q1 = 0 and q2 = 0 are indeed simple poles of the integrand.44

The full chiral integrand is therefore given by the O(1) contribution on the bi-nodal

sphere,

I(2)
n = INS

n + IR2
n + IR1

n + IRR
n , (6.27)

where we defined NS-NS, NS-R, R-NS and R-R integrands

INS
n = 4J

∑
n1,n2∈{0,1}

Z(−n1,−n2)
NS Pf

(
MNS

)∣∣
q
n1
1 q

n2
2
, (6.28a)

IR2
n = 2J

(
Z(0,0)

R2 Pf
(
MR2

)∣∣
q0
1q

0
2

+ Z(−1,0)
R2 Pf

(
MR2

)∣∣
q1
1q

0
2

)
, (6.28b)

IR1
n = 2J

(
Z(0,0)

R1 Pf
(
MR1

)∣∣
q0
1q

0
2

+ Z(0,−1)
R1 Pf

(
MR1

)∣∣
q0
1q

1
2

)
, (6.28c)

IRR
n = J Z(0,0)

RR9
Pf
(
MRR9

)∣∣
q0
1q

0
2

+ J Z(0,0)
RR0

Pf
(
MRR0

)∣∣
q0
1q

0
2
. (6.28d)

43That is, to order o(q1q2), we have Pf
(
M

(2)
δ

)
=
∑
n1,n2≥0 (−1)2(n1δ

′′
1 +n2δ

′′
2 ) q−n1

1 q−n2
2 Pf

(
MNS

)∣∣
q01q

0
2

for δ ∈ {δ1, δ2, δ3, , δ4}, with MNS = M
(2)
δ (Sδ → SNS) and SNS ≡

∑
n1,n2≥0 q

n1
1 qn2

2 S
(n1,n2)
NS .

44While we do not need the equivalent statement for q3 here, note that it can be proven by the same

methods after exchanging the roles of τ1 and τ3 using a modular transformation.

– 63 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
8

Just as on the genus two Riemann surface, ten different terms contribute to the amplitude,

as can be easily seen from the expansions (6.28). However, these terms are not aligned

with the spin structures any more, but rather reflect the sector as well as the asymptotics

of the degeneration. The (2n+ 2)× (2n+ 2) matrices M are defined as before by

M
(2)
S =

(
A −CT

C B

)
, (6.29a)

Ax1x2 =℘(x1,x2)SS(x1,x2) , Axα,j=P (xα) ·kjSS(xα,zj) , Aij= ki ·kjSS(zi,zj) , (6.29b)

Cxα,j =P (xα) ·εjSS(xα,zj) , Cij = εi ·kjSS(zi,zj) , (6.29c)

Cii =P (σi) ·εi , Bij = εi ·εjSS(zi,zj) , (6.29d)

where S ∈ {NS, R1, R2, RR} denotes the types of states propagating through the nodes.

All expressions for the partition functions and the Szegő kernels can be found in section D.

To find the asymptotics of ℘(x1, x2) on the bi-nodal Riemann sphere, note that the holo-

morphic differential $ degenerates to

$(σ) =

√
ω1+,1−(x1)

ω2+,2−(x1)
ω2+,2−(σ)−

√
ω2+,2−(x1)

ω1+,1−(x1)
ω1+,1−(σ) (6.30)

=

√
ω1+,1−(x2)

ω2+,2−(x2)
ω2+,2−(σ)−

√
ω2+,2−(x2)

ω1+,1−(x2)
ω1+,1−(σ) ,

and thus, from the definition $(σ) = cα∆(xα, σ),

cα =

√
(xα1+)(xα1−)(xα2+)(xα2−)

(1+1−)(2+2−)

1

dxα
=
(
ω1+,1−(xα)ω2+,2−(xα)

)−1/2
. (6.31)

In particular, the expression for $ and cα is only valid for x1 and x2 related by

ω1+,1−(x1)ω2+,2−(x2) = ω1+,1−(x2)ω2+,2−(x1) , (6.32)

as can be seen from eq. (4.45a). The two identities for $ are related straightforwardly

by (6.32), and it is easily checked that x1 and x2 are the unique zeroes of $. We recall for

convenience the form of ℘(x1, x2) from eq. (4.49),

℘(x1, x2) = −1

2

∑
i,j

ki · kj
c1c2

(
c1ωi,∗(x1)− c2ωi,∗(x2)

)(
c1ωj,∗(x1)− c2ωj,∗(x2)

)
, (6.33)

which can be easily checked not to depend on the marked point σ∗.

The two-loop supergravity integrand In from (6.19), with I(2)
n as described here, is

the main result of this section. Below, we will briefly derive the simplifications for four

external particles, and discuss some basic checks for the formula.
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The four-particle amplitude. As expected from the genus two results, the four-particle

amplitude simplifies considerably. Degenerating directly from the expression (4.50) found

in section 4.6, the integrand reduces to

I4 =

∫
M0,4+4

1

vol SL(2,C)2

∏
A

δ̄
(
EA
)
KK̃ Ŷ2 (1+2−)(1−2+)

(1+1−)(2+2−)
. (6.34)

where we rescaled the integrand again by the Jacobian form J ,

Ŷ = J Y =
dσ1+dσ1−dσ2+dσ2−

(1+2+)(1+2−)(1−2+)(1−2−)
Y . (6.35)

This agrees directly with the four particle supergravity integrand given in [26]. Instead,

we could have chosen to work with the general form of the integrand as a sum over spin

structures, and only simplified the formula after the residue theorem, when the ampli-

tude is localised on the bi-nodal Riemann sphere — the result agrees with eq. (6.34).

As shown in [26], this integrand indeed reproduces the known four-point integrand of

supergravity [76], if both the planar and the non-planar double boxes are written in the

‘mostly-linear’ representation of the propagators. This representation can be achieved from

the standard representation via the use of partial fraction identities and shifts in the loop

momenta, and is related to the Q-cut construction [31].

6.4 Absence of unphysical poles

The two-loop integrand (6.34) can be shown to match known supergravity integrands ex-

actly for four external particles [26]. To generalise this to n points, a proof of the for-

mula (6.27) could in principle be given by studying the behaviour of the amplitude near

the boundary of the (sphere) moduli space to establish the standard field theory factorisa-

tion properties of the integrand. In practice, a full factorisation proof of (6.27) is beyond

the scope of this paper due to the Ramond states flowing through the nodes.45 As a first

step towards factorisation, we show below that the amplitude only contains physical poles.

Since the absence of unphysical poles relies on properties of the two-loop scattering equa-

tions (6.15) established in previous work [26], we include a brief review for completeness.

Separating degenerations. The key feature of the scattering equations, at both tree

and loop level, is that they relate factorisation channels of the amplitude to the boundary

of the moduli space M̂′g,n. This characteristic is preserved when degenerating to the bi-

nodal Riemann sphere, and the potential poles are completely determined by the scattering

equations via ∑
A∈D

(σA − σD)EA = 0 , (6.36)

for some subset D of the vertex operators coalescing to a point σD. The poles arising from

such separating degenerations have been classified in [26]. With KDµ =
∑

i∈D ki µ denoting

the sum of external momenta in D, the scattering equations encode the poles described in

table 1. This highlights two important features of the amplitude (6.19).

45Closed n-point formulas involving Ramond states have been discussed previously in [77, 78], indicating

that these difficulties can be resolved.
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subset D pole

{σi} K2
D

{σI± , σi} 2 `I ·KD ±K2
D

{σI+ , σI− , σi} K2
D

{σ1+ , σ2+ , σi}
(
`1 + `2 +KD

)2
{σ1− , σ2− , σi}

(
`1 + `2 −KD

)2
{σ1+ , σ2− , σi}

(
`1 + `2

)2
+ 2
(
`1 − `2

)
·KD +K2

D

{σ1− , σ2+ , σi}
(
`1 + `2

)2
+ 2
(
`2 − `1

)
·KD +K2

D

Table 1. Separating degenerations and associated poles.

(i) Most notably, we observe that the poles containing only one of the loop momenta

are linear. The loop integrand is therefore represented in the ‘mostly-linear’ prop-

agator representation (as opposed to Feynman propagators), related to the Q-cut

construction of ref. [31]. This representation of the integrand can be obtained from

the standard representation by generalised ‘partial fraction identities’ of the form

1∏
iDi

=
∑
i

1

Di
∏
j 6=i
(
Dj −Di

) , (6.37)

where 1/Di denote standard Feynman propagators. In particular, the right-hand side

of the above relation contains only one quadratic propagator, given by `2 up to shifts

in the loop momentum, while all other terms are linear in `.

This result at two loops mirrors the amplitude representation at one loop, and is

expected from the basis choice of Beltrami differentials: by extracting the residues of

P 2 at the vertex operator insertions, the scattering equations Ei can only contain `

linearly.

(ii) The other important aspect in table 1 are the unphysical poles
(
`1 + `2

)2
+ 2
(
`1 −

`2
)
·KD + K2

D. Since these poles do not correspond to factorisation channels of the

loop integrand, they must be absent from In, which serves as an important check for

our formula.degeneration

From table 1, the scattering equations relate these unphysical poles to separating divisors

Dsep
0,n+4 that retain σ1+ and σ2− (together with some subset σi for i ∈ D) on one component

of the separating degeneration, while σ1− and σ2+ lie on the other sphere; see figure 13. Of

course, the presence of this unphysical divisor on the moduli space does not imply that the

loop integrand contains a pole there — indeed, a CHY-type formula does not necessarily

realise all factorisation channels encoded in the scattering equations. We can test for the

presence or absence of the unphysical pole by probing the behaviour of the integrand close

to the boundary divisor.

While it is possible to verify the absence of the unphysical poles explicitly from the

form of the integrand (6.27), the calculation is quite involved. Luckily, there is a much more

elegant solution relying exclusively on properties of the amplitude already discussed in the
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(a) Physical factorisation channel, corre-

sponding to poles of the form
(
`1+`2+KD

)2
.

(b) Unphysical factorisation channel, corre-

sponding to poles of the form
(
`1 + `2

)2
+

2
(
`1 − `2

)
·KD +K2

D.

Figure 13. Different factorisation channels of the two-loop scattering equations.

degeneration to the bi-nodal Riemann sphere. To see this, note that the separating bound-

ary divisors containing the unphysical poles correspond to q3 = ∞ according to eq. (6.8),

since either σ1+ and σ2− coalesce, leading to (1+2−) = 0, or σ1− and σ2+ , giving (1−2+) = 0.

The limit q3 → ∞, on the other hand, has already been studied in section 5.3, where we

established the absence of a pole in the amplitude. Let us briefly recall the argument here.

Modular invariance guarantees that the integrand In in

Mn =

∫
|q12|<1

dµ2,n In =

∫
|q12|>1

dµ2,n In , (6.38)

has a simple pole at q3 = q12 = ∞, related to the pole at q3 = 0 by the modular trans-

formation q12 ↔ 1/q12. After trivialising the isomorphism Dmax
2,n
∼= M̂′0,n+4 by extend-

ing the domain of integration over q3 however, the full amplitude contains a factor of

f(q3) = (1− q3)−1,

Mn =

∫
dµ2,n In

1

1− q3
, (6.39)

which cancels the pole at q3 =∞. The final expression on the bi-nodal sphere is thus finite

at q3 → ∞, and does not contain the unphysical pole
(
`1 + `2

)2
+ 2
(
`1 − `2

)
·KD + K2

D.

The argument presented here highlights the interplay between the form of the amplitude

on the bi-nodal sphere and the residue theorem: the absence of a pole at q3 =∞ ensured

both that the amplitude would localise on the sphere after applying the residue theorem,

and that only physical factorisation channels are realised.

To gain some additional intuition for this unphysical pole, let us briefly revisit the orig-

inal formula (4.35) on the genus-two Riemann surface. The n+3 genus-two scattering equa-

tions did not contain an equivalent of the unphysical pole — modular invariance guarantees

both that the integrand has a simple pole at q3 =∞ and that the scattering equations relate

this to the (physical) pole
(
`1 + `2 ±KD

)2
. After the degeneration to the nodal Riemann

sphere, however, the remaining (independent) n+1 scattering equations do not relate these

poles, so the pole at q3 = ∞ assumes the unphysical form seen above — which must of

course be absent from the loop integrand, because the original loop integrand did not con-

tain the unphysical pole. In the residue theorem, this is implemented concretely by the map

Dmax
2,n
∼= M̂′0,n+4, which provides the additional factor f(q3) that cancels the pole at infinity.
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Degenerate solutions. The scattering equations (6.15) on the nodal Riemann sphere

encode an additional, more subtle unphysical pole: a Gram determinant of Mandelstam

variables that can be localised on the so-called ‘degenerate solutions’ to the loop scattering

equations [32].46 These degenerate solutions appear due to the form of the scattering

equations for the nodal points: the two constraints associated to the same node have the

same functional form,

± E1±(σ1±) = 0 , ±E2±(σ2±) = 0 . (6.40)

Solutions to the scattering equations thus fall into two classes, regular solutions where σI+

and σI− localise on different roots, and ‘degenerate solutions’ with σI+ = σI− for at least

one of I = 1, 2. The latter class accounts for the unphysical Gram determinant pole at

det(kA · kB) = 0 , kA,B ∈ {`, k1, . . . kn} . (6.41)

Let us recall why poles of this type are absent at one loop, where their potential to appear

was first observed. Note in this context that, while modular invariance at higher genus

places strict requirements on the worldsheet theories, one of the main strengths of the

representation on the nodal sphere is its versatility. Integrands have been proposed for

a variety of theories in various dimensions, ranging from supergravity and super Yang-

Mills [24] to theories with less supersymmetry like pure Yang-Mills theory, NS-gravity and

the bi-adjoint scalar theory [25, 30]. For these theories, two different strategies have been

developed to establish the absence of the Gram determinant pole. The simplest case is

that of supersymmetric theories, whose integrands vanish on the degenerate solutions, so

no further analysis is necessary. For non-supersymmetric theories on the other hand, the

contribution from the unphysical pole can be shown to vanish after integration because

it is homogeneous in the loop momentum. This distinction between the behaviour of

supersymmetric and non-supersymmetric theories on degenerate solutions is closely linked

to the UV behaviour of the theory [25], because the only solutions that contribute as

`→∞ become degenerate in that limit. In particular, the fact that the integrand vanishes

on the degenerate solutions is associated to the absence of bubbles in a diagrammatic

representation of the loop integrand. We may thus naturally expect some of the above

discussion to carry over to two loops. Indeed, we will find below that, in analogy to one

loop, the two-loop supergravity integrand vanishes on the degenerate solutions.

With this background in mind, let us return to the scattering equations on the bi-nodal

Riemann sphere (analysed in detail in [26]). In generalising from one to two loops, a new

feature appears: the degenerate solutions can be further split into three types, best sum-

marised by figure 14. Note however that all three types of degenerate solutions satisfy σI+ =

σI− for at least one node I = 1, 2, so they all imply q3 = 1, or equivalently τ3 = τ12 = 0.

Conveniently, we have encountered this divisor before in section 5.3 on the genus-

two Riemann surface, in the context of trivialising the isomorphism Dmax
2,n
∼= M̂′0,n+4. As

discussed there, the amplitude at a given spin structure scales as O(1) in τ3 → 0, even in the

46We refer to the original paper [32] for details on how to relate the Gram determinant pole to the

degenerate solutions.
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(a) Type A. (b) Type B. (c) Type C.

Figure 14. The three types of degenerate solutions to the scattering equations at two loops.

presence of additional punctures on both components of the degeneration. To show further

that the supergravity integrand vanishes on the degenerate solutions, and thus that the

Gram determinant pole is absent, consider the type A configuration, where no additional

punctures are present on one of the tori. Clearly, this factorisation channel vanishes in

the genus-two representation of the amplitude, because all n-point one-loop amplitudes for

n < 4 vanish in type II supergravity. On the bi-nodal sphere, both the leading and the

subleading contribution from the degenerate solutions thus vanish, and the chiral integrand

scales as O(τ3).

This argument is easily generalised to degenerate solutions of type B and type C,

using respectively that one-loop and two-loop n-point amplitudes vanish for n < 4. Note,

moreover, that this argument for the absence of degenerate solutions relies on considering

the full amplitude, including the sum over spin structures — no such cancellations are

expected for any individual spin structure, or the contribution from just the NS sector of

the amplitude, for example. As mentioned above for one loop, this behaviour is expected

from the known UV properties of those theories.

In conclusion, the chiral integrand for type II supergravity at two loops behaves as

I(2)
n = O(τ3) , (6.42)

for all types of degenerate solutions. Including the factor of f(q3) ∼ τ−1
3 , the full integrand

thus vanishes on the degenerate solutions,

I(2)
n Ĩ(2)

n f(q3) = O(τ3) , (6.43)

and only the Nreg = (n + 1)! − 4n! + 4(n − 1)! + 6(n − 3)! regular solutions contribute to

the supergravity amplitude.47 Since the Gram determinant poles can be localised on the

degenerate solutions, this precludes unphysical poles from contributing to the amplitude.

7 Super-Yang-Mills amplitudes

In the preceding sections, we have succeeded in obtaining an n-point formula for super-

gravity scattering amplitudes at two loops. We started on a genus-two surface but our

final result is a formula on the bi-nodal sphere, which provides a dramatic simplification.

Though technically much more challenging, our procedure mirrors that followed at one

47Details on the counting can be found in [26], appendix B.
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loop [24]. We can now proceed to mirror another accomplishment of ref. [24] by proposing

an n-point formula for super-Yang-Mills theory, now at two loops. The formula reproduces

the four-point results of [26], and thus gives rise to known expressions for four-particle

two-loop amplitudes in super Yang-Mills.

7.1 Parke-Taylor factor on the bi-nodal Riemann sphere

There are three main concerns in achieving our goal of describing super-Yang-Mills ampli-

tudes. The first is that we have no expression on the genus-two surface, as we had in the

case of supergravity. So we cannot follow a straightforward derivation from the degenera-

tion limit to a nodal sphere. In fact, this apparent obstruction happens already at one loop.

However, one of the lessons of [24] is that, while the degeneration is important in order

to obtain a formalism on the nodal sphere, the new formalism can then be extended to a

variety of theories, in particular gauge theory, without recourse to the higher-genus surface

(where it may not even be possible to define those theories). Ref. [36] fully exploited this

idea at one loop by re-deriving the formulas obtained in [24, 25] directly from a non-local

one-loop ‘gluing operator’ representing the node of the sphere. To conclude, we will simply

work directly on the (bi-)nodal sphere.

The second concern comes from the description of colour in the ambitwistor string

formalism [15], which is analogous to that in the heterotic string [79] (and also Nair’s

observation [80]). Colour degrees of freedom are introduced via a current algebra, which

leads to Parke-Taylor factors. For instance, at three points,

〈ρa1(σ1)ρa2(σ2)ρa3(σ3)〉 =
tr([T a1 , T a2 ]T a3)

(12)(23)(31)
, (7.1)

where we denote (ij) = σi − σj as usual. There is a difficulty at higher points, where

unwanted multi-trace terms appear in the correlation function. Some constructions avoid

these terms, but they also have limitations [23]. In this paper, as in [15], we will simply

discard the multi-trace terms, since this directly gives a valid formula for gauge-theory

amplitudes. It will be useful to have in mind a certain representation of the tree-level

result. Suppose we have an n-point tree-level amplitude: the colour part of the CHY

formula [19] can be written as48

IPT(0)
n =

∑
γ∈Sn−2

tr([[· · · [[[T a1 , T aγ(2) ], T aγ(3) ], T aγ(4) ], · · · ], T aγ(n−1) ]T an)(
1 γ(2) γ(3) γ(4) · · · γ(n− 1)n

) , (7.2)

where we denote the Parke-Taylor denominators by (123 · · ·m) = (12)(23) · · · (m1).

The third concern is that the cross ratio appearing in the supergravity formula (6.19),

originating in the genus-two fundamental domain, signals a requirement that did not exist

at tree level or at one loop. As we mentioned in section 6.4, the practical role of that cross

ratio on the nodal sphere is to forbid unphysical factorisation channels. Our proposed

formula for gauge theory will satisfy the same factorisation requirement. The solution to

48This is the CHY implementation of the Dixon-Del Duca-Maltoni half-ladder basis for the colour de-

pendence [81]. The loop-level case in (7.5) is closely related to the procedure detailed in [82].
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this problem was already mentioned in [26]. It suffices to restrict the orderings of the loop

insertions in the colour part in the manner to be described momentarily.

We are now in a position to present the n-point two-loop formula for super-Yang-Mills

theory. It is analogous to the supergravity formula (6.19), and it reads

Mn =

∫
d10`1 d10`2

`21`
2
2

In , (7.3)

where In is given by

In =

∫
M0,n+4

1

vol SL(2,C)2

∏
A

δ̄
(
EA
)
I(2)
n IPT(2)

n . (7.4)

The final expression for I(2)
n was obtained in (6.27), and the new object is the colour part,

IPT(2)
n = dn+4σA

∑
γ∈S′n+2

(7.5)

× tr([[· · · [[[T a1+ , T aγ(1) ], T aγ(2) ], T aγ(3) ], · · · ], T aγ(n+2) ]T a1− ) δa1+ ,a1− δa2+ ,a2−(
1+ γ(1) γ(2) γ(3) · · · γ(n+ 2) 1−

) .

This formula should be compared with the tree-level analogue (7.2). The two-loop formula

is very similar, but has four extra ‘particles’, corresponding to the loop insertions 1± and

2±, whose colour indices we contract for each node. The two insertions 1± play now the

special role of 1 and n in (7.2), so that the sum is over permutations of all the remaining

n+2 insertions. In fact, the sum in (7.5) is over a restricted set of permutations (hence the

prime in S′n+2): we require that the ordering of loop insertions is (1+ · · · 2+ · · · 2− · · · 1−),

which leads to S′n+2 having (n + 2)!/2 elements; that is, we drop terms with ordering

(1+ · · · 2− · · · 2+ · · · 1−), where the dots represent external particles. The reason for this is

that the forbidden terms would lead to unphysical factorisation channels, the same type

of unphysical channels that were eliminated by the cross-ratio in the supergravity case.

We leave a more detailed exposition of the factorisation argument to future work, where

we intend to provide field theory proofs of at least some of our ambitwistor-string-derived

formulae.

7.2 Colour trace decomposition

While our two-loop Parke-Taylor formula (7.5) contains only single traces when seen as an

(n+ 4)-particle-like expression, we know it must give rise to single-trace, double-trace and

triple-trace contributions. These contributions arise due to the colour index contractions

δa1+ ,a1− and δa2+ ,a2− , together with the use of the completeness relation for the fundamen-

tal representation generators of the Lie algebra of SU(Nc),

(T a) j1
i1

(T a) j2
i2

= δj2i1 δ
j1
i2
− 1

Nc
δj1i1 δ

j2
i2
. (7.6)
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After the use of this identity, the Parke-Taylor formula takes the known form

IPT(2)
n =

∑
ρ

(
N2
c C

P
ρ + CNP,1

ρ

) (
tr(ρ) + (−1)n tr(ρ−1)

)
+
∑
ρ1,ρ2

NcC
NP,2
ρ1,ρ2

(
tr(ρ1) tr(ρ2) + (−1)n tr(ρ−1

1 ) tr(ρ−1
2 )
)

+
∑

ρ1,ρ2,ρ3

CNP,3
ρ1,ρ2,ρ3

(
tr(ρ1) tr(ρ2) tr(ρ3) + (−1)n tr(ρ−1

1 ) tr(ρ−1
2 ) tr(ρ−1

3 )
)
. (7.7)

where tr(12 · · · ) ≡ tr(T a1T a2 · · · ) is a colour trace, and {12 · · ·m}−1 ≡ {m · · · 21} denotes

the inverse ordering. The sums in (7.7) are over non-cyclic permutations of the n external

particles or of partitions of these.

The elements introduced above completely determine the trace decomposition coeffi-

cients. For instance, the planar contribution (the leading order in Nc) is

CP
ρ =

 ∑
ρ=(ρ1,ρ2,ρ3)

1 + δ|ρ2|,0 + δ|ρ2|,n

(1+ ρ1 2+ ρ2 2− ρ3 1−)
+ cyc(ρ)

+ (−1)n[ ρ→ ρ−1 ] . (7.8)

The sum runs over all the order-respecting splittings ρ = (ρ1, ρ2, ρ3), where a set ρr may

be empty. The remaining notations should be clear: δ|ρ2|,0 is 1 if ρ2 is empty and is 0

otherwise; cyc(ρ) denotes sum over cyclic permutations of ρ; the last term corresponds (up

to sign) to the same expression for the inverse ordering. Notice that, while this expression

does not resemble the one presented in [26] for n = 4, they are actually equivalent. We can

also identify the terms in the leading non-planar correction:

CNP,2
ρ1,ρ2

=


∑

ρ1=(ρ1,1,ρ1,2)

3

(1+ ρ1,1 2+ ρ2 2− ρ1,2 1−)
+

∑
ρ̃=ρ1�ρ2

ρ̃=(ρ̃1,ρ̃2,ρ̃3)
ρ1⊂ρ̃1∪ρ̃3, ρ2 6⊂ρ̃2

1

(1+ ρ̃1 2+ ρ̃2 2− ρ̃3 1−)

+
∑

ρ̃=ρ1�ρ2

ρ̃=(ρ̃1,ρ̃2,ρ̃3)
ρ2⊂ρ̃2, ρ2 6=ρ̃2

1 + δ|ρ̃2|,0

(1+ ρ̃1 2+ ρ̃2 2− ρ̃3 1−)
+ [cyc(ρ1), cyc(ρ2), ρ1 ↔ ρ2]

 (7.9)

+ (−1)|ρ1|[ ρ1 → ρ−1
1 ] + (−1)|ρ2|[ ρ2 → ρ−1

2 ] + (−1)n[ ρ1 → ρ−1
1 , ρ2 → ρ−1

2 ] ,

where the inversion terms in the last line are only included for |ρ1| > 2 and/or |ρ2| > 2.

We have obtained these formulae for the trace coefficients CP
ρ and CNP,2

ρ1,ρ2 by inference

from the complete result (7.5) for four and five particles, and will not attempt a proof

here. In fact, there are different representations, due to (KK-type [83]) identities among

expressions with Parke-Taylor denominators. For instance, we find that we can also write

each trace coefficient as

C(1+, 1−, 2+, 2−) =
1

4

(
c(1+, 1−, 2+, 2−) + c(1−, 1+, 2−, 2+)

+ c(2+, 2−, 1+, 1−) + c(2−, 2+, 1−, 1+)
)
,
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so that

cP
ρ (1+, 1−, 2+, 2−) =

4

(1+ 2+ ρ 2− 1−)
+

∑
ρ=(ρ1,ρ2)

1

(1+ ρ1 2+ 2− ρ2 1−)
+ cyc(ρ) , (7.10)

and

cNP,2
ρ1,ρ2

(1+, 1−, 2+, 2−) =
∑

ρ1=(ρ1,1,ρ1,2)

2

(1+ ρ1,1 2+ ρ2 2− ρ1,2 1−)

+
∑

ρ̃=ρ1�ρ2

ρ̃=(ρ̃1,ρ̃2,ρ̃3)
ρ2⊂ρ̃2

1

(1+ ρ̃1 2+ ρ̃2 2− ρ̃3 1−)

+ [cyc(ρ1), cyc(ρ2), ρ1 ↔ ρ2] . (7.11)

A very helpful consistency test of these formulae was provided by the relations among

trace coefficients studied in [84–86], which we checked up to five points.

8 Discussion

In this paper, we have constructed new formulae based on the two-loop scattering equations

for the n-particle two-loop integrands in supergravity and in super-Yang-Mills theory. We

started by constructing a formula derived from the ambitwistor string at genus two in

the case of supergravity. We then turned this formula into a much simpler one at genus

zero via the residue theorem on the genus-two moduli space. Finally, we proposed an

analogous genus-zero formula for the n-particle two-loop integrand of super-Yang-Mills

theory. A summary of the results was given in section 1.2. We stress that we have presented

results for the loop integrands, since the ten-dimensional amplitudes are not defined due

to the ultraviolet divergence of the loop integration, as expected from these field theories.

Loop integrands for theories in fewer spacetime dimensions are obtained via dimensional

reduction as usual, including for N = 4 super-Yang-Mills theory and N = 8 supergravity

in four dimensions, if we reduce from 10d on a 6-torus.

Our results provide the two-loop extension of the one-loop formulae constructed in [24].

The developments of the one-loop story point therefore towards the next obvious steps. One

goal is to present analogous formulae for the two-loop integrands of non-supersymmetric

theories, as in [25]. The RNS formalism used here, where we consider separately contribu-

tions from the various spin structures, is helpful in that regard, since it is clear that the

non-supersymmetric theories should arise entirely from the four NS-NS spin structures.

This is work in progress. Obviously, our formulae admit further simplifications from the

choice of gravitino gauge slice (the marked points x1, x2) and, in the supersymmetric case,

from the sum over all even spin structures. Indeed, it would be interesting to compare our

results to the known expressions for the five-point two-loop integrand in both supergravity

and super-Yang-Mills theory [87–89].

Another very interesting direction is to re-derive our formulae from a two-loop ‘gluing

operator’ directly on the Riemann sphere, obviating the intricacies of higher-genus sur-

faces. This was achieved at one loop in [36]. Indeed, the heavy machinery involved in
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our calculations suggests that higher-loop results require a different approach. A major

motivation for us is that the two-loop case may be sufficient to reveal important parts of

the all-loop structure.

The formulae presented here for the loop integrands are of CHY type: they are ex-

pressed as moduli integrals on the sphere that localise on the solutions to the two-loop

scattering equations. While such formulae have many interesting properties, it is impor-

tant to obtain standard formulae for the loop integrand, depending only on the kinematic

invariants. The goal is the extension of what was achieved in [35, 37] at one loop. As

in those works, there is the prospect of clarifying the colour-kinematics duality at loop

level [3, 4], using the ambitwistor string as a first-principles tool. From the perspective

of conventional string theory, the colour-kinematics duality of gauge theory is intimately

connected to the monodromy properties of the open string [90, 91], and recent work has

analysed these properties at higher genus [92–94].

It would also be important to provide proofs for our loop-integrand formulae, e.g., based

on factorisation as in [25] at one loop. Beyond the loop integrand, the ultimate objective

is, of course, to obtain the scattering amplitude, particularly in the four-dimensional case,

and hopefully to contribute beyond the state-of-the-art level to the phenomenology-oriented

computation of gauge theory amplitudes.
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A Useful identities

A.1 Identities involving the chiral partition function

The calculation of the four-point amplitude in section 4.6 makes use of various identities

for Szegő kernels summed over all even spin structures. These were derived in [12], and the

interested reader is referred to the original work for details of the proof. We quote them
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here for completeness and convenience. Consider the following sums over chiral partition

functions and Szegő kernels:

I1 =
∑
δ

Zchi[δ] Sδ(x1, x2) (A.1a)

I2 =
∑
δ

Zchi[δ] Sδ(x1, x2)Sδ(z1, z2)2 (A.1b)

I3 =
∑
δ

Zchi[δ] Sδ(x1, x2)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z1) (A.1c)

I4 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, x2) (A.1d)

I5 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, x2)Sδ(z2, z3)2 (A.1e)

I6 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, z2)Sδ(z2, x2) (A.1f)

I7 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, x2) (A.1g)

I8 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, x2) (A.1h)

I9 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, z2)Sδ(z2, x2)Sδ(z3, z4)2 (A.1i)

I10 =
∑
δ

Zchi[δ] Sδ(x1, z1)Sδ(z1, x2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z2) (A.1j)

I11 =
∑
δ

Zchi[δ] Sδ(x1, x2)Sδ(z1, z2)2Sδ(z3, z4)2 (A.1k)

I12 =
∑
δ

Zchi[δ] Sδ(x1, x2)Sδ(z1, z2)Sδ(z2, z3)Sδ(z3, z4)Sδ(z4, z1) . (A.1l)

Only the last two of these sums are non-trivial, the rest vanish,

I1 = I2 = I3 = I4 = I5 = I6 = I7 = I8 = I9 = I10 = 0 , (A.2a)

I11 = I12 = −2Z0

4∏
i=1

$(zi) , (A.2b)

where we defined $ in (4.29). Since the right-hand side of eq. (A.2b) is independent of

the ordering of marked points zi, both I11 and I12 are invariant under permutations of the

marked points.

A.2 Useful identities for the PCO gauge slice

Throughout section 4, we made use of the PCO gauge choice (4.29) fixing the moduli PCO

insertions xα to coincide with the zeros of a holomorphic (1, 0)-form $ defined by

$(z) ≡ ωI(z)∂Iϑ(x1 −∆)e2iπκ′·(x1−∆) = −ωI(z)∂Iϑ(x2 −∆)e2iπκ′·(x2−∆) , (A.3)
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with x1 + x2− 2∆ = 2κ ∈ Z2⊕ΩZ2. Here, we collect useful identities available due to this

gauge choice:

c1ωI(x1) = c2ωI(x2) , (A.4a)

−c2
1∂$(x1) = c2

2∂$(x2) , (A.4b)

c1ωi∗(x1)− c2ωi∗(x2) = −c2
1∂$(x1)

∆i∗
$(zi)$(z∗)

, (A.4c)

Z0c1c2∂$(x1)∂$(x2) = 1 , (A.4d)

where the cα are defined via $(z) = c1∆(x1, z) = c2∆(x2, z), and z∗ is an arbitrary marked

point. As above, the interested reader is referred to the original string theory literature [12]

for details and proofs.

B Modular transformations and M′
g,n

In this section, we prove that the two-loop amplitude can be expressed as an integral over

the moduli space M′2,n defined in section 4.3. To see this, we provide the explicit modular

transformations that map each of the six terms in the amplitude

Mn =

6∑
α=1

M(α)
n , (B.1)

to a different copy of the fundamental domain, all localising Pµ to P
(1)
µ = `IµωI +∑n

i=1 ki µωi,∗. The proof relies on the modular invariance of the amplitude proven in sec-

tion 4.7, which we assume from here on. For convenience, we also remind ourselves of the

definition of the terms M(α)
n : each represents the ambitwistor string correlator, with P

localised to Pµ = P
(α)
µ defined by eq. (4.16),

P (1)
µ = `1µω1 +`2µω2 +

n∑
i=1

kiµωi,∗ , P (4)
µ = `2µω1 +

(
`1 +`2

)
µ
ω2 +

n∑
i=1

kiµωi,∗ ,

P (2)
µ = `2µω1 +`1µω2 +

n∑
i=1

kiµωi,∗ , P (5)
µ = `1µω1 +

(
`1 +`2

)
µ
ω2 +

n∑
i=1

kiµωi,∗ , (B.2)

P (3)
µ =

(
`1 +`2

)
µ
ω1 +`2µω2 +

n∑
i=1

kiµωi,∗ , P (6)
µ =

(
`1 +`2

)
µ
ω1 +`1µω2 +

n∑
i=1

kiµωi,∗ .

Clearly, all termsM(α)
n in the sum are related toM(1)

n by a redefinition of the loop momenta

with trivial Jacobian J = 1.

α = 2. In section 4.3, we already encountered the modular transformation relating M(2)
n

to M(1)
n . As a warm-up, let us briefly revisit this here before proceeding. Since P

(2)
µ is

related to P
(1)
µ by simply exchanging the holomorphic differentials, consider the modular

transformation M2 exchanging the homology cycles,

a =

(
0 1

1 0

)
, d =

(
0 1

1 0

)
, b = c = 0 . (B.3)
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Expressed in terms of the basis of homology cycles, this transformation corresponds to(
Ã1, B̃1

)
=
(
A2, B2

)
,

(
Ã2, B̃2

)
=
(
A1, B1

)
, (B.4)

so it indeed interchanges the cycle A1 and A2, and analogously B1 and B2. From section 4.7,

we also confirm that this exchanges Ω11 and Ω22 in the period matrix,

Ω̃ =

(
Ω22 Ω12

Ω12 Ω11

)
, (B.5)

as well as the following behaviour of the holomorphic differentials and the loop momenta;(
ω̃1, ω̃2

)
=
(
ω2, ω1

)
,

(˜̀
1, ˜̀2) =

(
`2, `1

)
. (B.6)

Directly substituting ˜̀by `, the modular transformation M2 thus maps P
(2)
µ to

P̃ (2)
µ = `1µω̃1 + `2µ ω̃2 +

∑
i

ki,µωi,∗ . (B.7)

Moreover, using the original inequalities 0 < 2Im(Ω12) ≤ Im(Ω11) ≤ Im(Ω22) as well as

the modular transformation of the period matrix (B.5), we conclude that M2 maps the

integration domain to

0 < 2Im(Ω̃12) ≤ Im(Ω̃22) ≤ Im(Ω̃11) , (B.8)

as claimed in section 4.3. The contribution M(2)
n to the amplitude is therefore given by

M(2)
n =M(1)

n

∣∣∣∣
0<2Im(Ω12)≤Im(Ω22)≤Im(Ω11)

, (B.9)

where we reset the notation for the period matrix to Ω again for convenience.

α = 3. To map P
(3)
µ to P

(1)
µ , we are looking for a modular transformation M3 that maps

`1 + `2 to `1 while preserving `2. Consider therefore the transformation

a =

(
1 0

1 1

)
, d =

(
1 −1

0 1

)
, b = c = 0 . (B.10)

Using again the modular properties reviewed in section 4.7, the period matrix transforms

into

Ω̃ =

(
Ω11 Ω12 + Ω11

Ω12 + Ω11 Ω11 + Ω22 + 2Ω12

)
, (B.11)

while the holomorphic differentials and the loop momenta map to(
ω̃1, ω̃2

)
=
(
ω1 + ω2, ω2

)
,

(˜̀
1, ˜̀2) =

(
`1 − `2, `2

)
, (B.12)

Again substituting ˜̀by ` while keeping the new differential ω̃I , the modular transformation

M3 maps P
(3)
µ to the same form as P

(1)
µ ,

P̃ (3)
µ = `1µω̃1 + `2µ ω̃2 +

∑
i

ki,µωi,∗ . (B.13)
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From the original inequalities 0 < 2Im(Ω12) ≤ Im(Ω11) ≤ Im(Ω22) as well as the modular

transformation of the period matrix (B.11), we again conclude that the integration domain

for the modular parameters transforms to

0 < Im(Ω̃11) ≤ 2Im(Ω̃12) ≤ Im(Ω̃22) , (B.14)

in agreement with section 4.3.

α = 4. This is a particularly simple case; since M4 = M3 ◦M2. We can thus recycle the

two modular transformations discussed above by applying first M2 to exchange the coeffi-

cients of the holomorphic differentials. This maps P
(4)
µ to P

(3)
µ , so a further transformation

M3 leads back to

P̃ (4)
µ = `1µω̃1 + `2µ ω̃2 +

∑
i

ki,µωi,∗ . (B.15)

In particular, M4 maps the period matrix to

Ω̃ =

(
Ω22 Ω12 + Ω22

Ω12 + Ω22 Ω11 + Ω22 + 2Ω12

)
, (B.16)

and thus we confirm that after a modular transformation, the amplitude is integrated over

0 < Im(Ω̃11) ≤ 2Im(Ω̃22) ≤ Im(Ω̃12) . (B.17)

α = 5. Note that α = 5 closely resembles α = 3 discussed above: we are interested in a

modular transformation M5 that maps P
(5)
µ to P

(1)
µ , and hence `1+`2 to `2 while preserving

`1. M3 provided a similar map, but reversed the roles of `1 and `2. This suggests that we

can simply take M5 = M t
3, where t denotes the transpose,

a =

(
1 1

0 1

)
, d =

(
1 0

−1 1

)
, b = c = 0 . (B.18)

Under M5, the period matrix transforms as

Ω̃ =

(
Ω11 + Ω22 + 2Ω12 Ω12 + Ω22

Ω12 + Ω22 Ω22

)
, (B.19)

and we confirm that both the holomorphic differentials and the loop momenta behave as

expected, (
ω̃1, ω̃2

)
=
(
ω1, ω2 + ω1

)
,

(˜̀
1, ˜̀2) =

(
`1, `2 − `1

)
, (B.20)

The modular transformation M3 therefore maps P
(5)
µ to the same form as P

(1)
µ . Moreover,

using (B.19) and 0 < 2Im(Ω12) ≤ Im(Ω11) ≤ Im(Ω22), the integration domain for the

modular parameters transforms to

0 < Im(Ω̃22) ≤ 2Im(Ω̃11) ≤ Im(Ω̃12) , (B.21)

in agreement with section 4.3.
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α = 6. The modular transformation mappingM(6)
n toM(1)

n can again be composed of the

modular transformations M5 and M2; M6 = M5 ◦M2. As above, this is best understood

at the level of the field P , where M2 interchanges the coefficients of the holomorphic

differentials, thereby mapping P
(6)
µ to P

(5)
µ . Since we just discussed this case, we only

state the important transformation properties under M6. In particular, the period matrix

behaves as

Ω̃ =

(
Ω11 + Ω22 + 2Ω12 Ω12 + Ω11

Ω12 + Ω11 Ω11

)
. (B.22)

This confirms that applying M6 maps the integration domain for the modular parameters

to the following copy of the fundamental domain:

0 < Im(Ω̃22) ≤ 2Im(Ω̃12) ≤ Im(Ω̃11) , (B.23)

This concludes the proof. In summary, after applying a modular transformation Mα,

all terms M(α)
n localise Pµ on P

(1)
µ = `IµωI +

∑n
i=1 ki µωi,∗, but are formulated over six

different copies of the fundamental domain Mg,

M(1)
n ≡M(1)

n

∣∣∣∣
0<2Im(Ω12)≤Im(Ω11)≤Im(Ω22)

M(4)
n =M(1)

n

∣∣∣∣
0<Im(Ω11)≤Im(Ω22)≤2Im(Ω12)

M(2)
n =M(1)

n

∣∣∣∣
0<2Im(Ω12)≤Im(Ω22)≤Im(Ω11)

M(5)
n =M(1)

n

∣∣∣∣
0<Im(Ω22)≤Im(Ω11)≤2Im(Ω12)

(B.24)

M(3)
n =M(1)

n

∣∣∣∣
0<Im(Ω11)≤2Im(Ω12)≤Im(Ω22)

M(6)
n =M(1)

n

∣∣∣∣
0<Im(Ω22)≤2Im(Ω12)≤Im(Ω11)

.

C The separating degeneration q12 = 0 and uniqueness of f(q12)

This appendix provides the proof for the uniqueness of f(q12) when requiring that the max-

imal non-separating boundary divisor Dmax
2,n remains the only simple pole of the integrand.

As a first step, we prove that introducing a factor of

f(q12) =
1

1− q12
(C.1)

does not introduce a pole at the separating degeneration Dsep
2,n. This degeneration, corre-

sponding to Ω12 → 0, has been extensively studied in string theory [5, 65, 66, 95], and the

ambitwistor string discussion here proceeds in close analogy.

Just as for the string, it will be convenient to use a so-called ‘plumbing fixture’ to

explicitly parametrise the moduli space near the separating boundary divisor. As discussed

around eq. (3.34), the separating degeneration Dsep splits the Riemann surface into two

components, in this case two tori ΣI with an additional puncture encoding the node on

each component,

Dsep
2,n
∼= M̂1,n1+1 × M̂1,n2+1 , (C.2)

and n = n1 + n2. To parametrise the moduli space near the boundary, let us introduce

coordinates zI on each torus ΣI , such that zI = 0 will be the nodal point yI in the
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degeneration limit, and remove an open neighbourhood UI = {|zI | < τ1/2}, where |τ | < 1

is a coordinate on the unit disk. The two tori, with UI removed, can now be glued together

using an annulus Aτ = {w ∈ C
∣∣ |τ |1/2 < |w| < |τ |−1/2} with

w =

{
τ1/2z−1

1 if |τ |1/2 < |w| < 1 ,

τ−1/2z2 if 1 < |w| < |τ |−1/2 .
(C.3)

In the family of surfaces
(
Σ1\U1

)
∪ Aτ ∪

(
Σ2\U2

)
constructed in this way, the separating

degeneration Dsep
2,n is given by the singular surface τ = 0, where Ω12 ∝ τ . Following [65]

and [5], the asymptotics of the period matrix in this singular limit are given by

Ω =

(
Ω11 0

0 Ω22

)
+O(τ) , (C.4)

where ΩII are the modular parameters of the tori ΣI . Moreover, the genus-two holomorphic

differentials ωI approach the ones on the two tori [5, 65],

ωI(z) =

{
ω

(1)
I (z) +O(τ) if z ∈ ΣI ,

O(τ) otherwise,
(C.5)

where we denoted the holomorphic differentials on the tori by ω
(1)
I (z) for I = 1, 2 respec-

tively. Moreover, the prime form around the separating boundary divisor becomes [5],

E(z, w|Ω) =


E

(1)
I (z, w|ΩII) if z, w ∈ ΣI ,

E
(1)
1 (z, y1|Ω11)wτ−3/4 if z ∈ Σ1, w ∈ Aτ ,

E
(1)
2 (z, y2|Ω22) τ−1/4 if z ∈ Σ2, w ∈ Aτ ,

E
(1)
1 (z, y1|Ω11)E

(1)
2 (y2, w|Ω22) τ−1/2 if z ∈ Σ1, w ∈ Σ2 ,

(C.6)

where E
(1)
I (z, w|ΩII) are the prime forms on the respective tori ΣI , and yI denote the

extra puncture encoding the node on each torus. In particular, this implies the following

asymptotics for the meromorphic differentials

ωw1,w2(z) =


ω

(1)
w1,w2(z) if z, w1, w2 ∈ ΣI ,

ω
(1)
w1,yI (z) +O(τ) if z, w1 ∈ ΣI , w2 ∈ ΣJ ,

dz/z +O(τ) if z ∈ Aτ , w1 ∈ Σ1, w2 ∈ Σ2 ,

O(τ) otherwise ,

(C.7)

where ω
(1)
w1,w2(z) are the meromorphic differentials on the tori, and dw/w denotes the dif-

ferential on the annulus. Upon distributing the marked points on the two tori, eqs. (C.5)

and (C.6) provide all the asymptotics needed to study Pµ in the separating degeneration,49

49Notice that ω
(1)
i,∗ −ω

(1)
y1,∗ = ω

(1)
i,y1

, since both sides of the equation have the same residues. There can be

no holomorphic contribution, since we defined the Abelian differentials of the third kind as having vanishing

A-periods.
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Pµ(z) = `1µω
(1)
1 (z) +

∑
i∈Σ1

ki,µω
(1)
i,y1

(z) +O(τ) for z ∈ Σ1 , (C.8a)

Pµ(z) = `2µω
(1)
2 (z) +

∑
j∈Σ2

kj,µω
(1)
j,y2

(z) +O(τ) for z ∈ Σ2 , (C.8b)

Pµ(w) = Kµ
dw

w
+O(τ) for w ∈ Aτ , (C.8c)

where Kµ =
∑

i∈Σ1
ki,µ is the momentum flowing through the cylinder. The scattering

equations thus descend to the separating degeneration as expected, with nI particle scat-

tering equations on the torus ΣI , as well as a modular parameter scattering equation

uII = 0 enforcing P 2 = 0 on ΣI . The remaining scattering equation is naturally associated

to the annulus (see also [29]), and can be expressed as

u3 = K2 +O(τ) , (C.9)

on the support of the other constraints. Therefore, neither the integrand nor the scattering

equations contribute to a pole in Ω12 ∝ τ , and the full amplitude (5.42) can have at most

a simple pole in 1− q12. To establish that the integral actually vanishes as τ → 0, consider

again the integrand as defined in eq. (5.32). Since the amplitude is independent of the

PCO gauge slice, let us choose both xα to be located on the connecting cylinder. This

is the best we can do after chosing xα to be the zeros of the differential $(z) due to the

consistency condition
c2

c1
=
ω1(x1)

ω1(x2)
=
ω2(x1)

ω2(x2)
. (C.10)

Clearly, this is only satisfied if both xα lie on the cylinder or on the same torus.50 Choosing

the former with both xα on the cylinder, the Szegő kernels Sδ(xα, zi) vanish to order

O(τ1/4) due to the asymptotics of the prime form (C.6),51 while the component Ax1 x2 =
℘(x1, x2)Sδ(x1, x2) of the Pfaffian behaves asO(τ) on the support of the scattering equation

u3,

℘(x1, x2) = K2 dx1 dx2

x1 x2
+O(τ) = O(τ) . (C.11)

The leading order contribution to the pfaffian Pf
(
Mδ

)
is therefore of order O(τ1/2), with

the rows and columns associated to xα contributing τ1/4 each. Moreover, the partition

functions (4.30) are of order O(1) in this gauge, and the chiral integrand thus behaves as

Ichi
n = O(τ1/2) for each spin structure. Consequently, Ichi

n Ĩchi
n vanishes on the separating

degeneration as O(τ), confirming that f
(
q12

)
= O(τ−1) does not introduce a new pole in

the integrand.52

50Of course, we could in principle choose a different PCO gauge that does not require $(xα) = 0. Note,

however, that the representation of the integrand in section 5.2 relies on eq. (C.10), so amplitudes in a PCO

gauge with $(xα) 6= 0 do not localise on the nodal Riemann sphere.
51See also [96] for further details on the degeneration of the Szegő kernels, and how to obtain them from

a sewing mechanism of lower-genus Riemann surfaces.
52If we had chosen instead the PCO gauge where both xα lie on the same torus, the Pfaffian would have

been of order one, while the partition function contributes O(τ1/2) for each spin structure. Evidently, this

again leads to Ichi
n = O(τ1/2).
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Evidently, the discussion above is specific to q12 → 1, and the integrand will not

vanish for other values of q12. Proving the uniqueness of f is then straightforward: (5.41)

is the only function satisfying (5.40) with at most a simple pole in 1− q12 that vanishes as

q12 →∞, as required to retain Dnon-sep
2,n as the only pole. �

Since this will play an important role in establishing the absence of degenerate solutions

on the bi-nodal Riemann sphere, note that it is sufficient to consider the contribution from a

single spin structure to establish the absence of a pole in τ . The full integrand — including

the sum over spin structures — actually vanishes to higher order in τ if no additional

punctures are present on one of the tori, because all n-point amplitudes for n < 4 vanish

in type II supergravity. On the bi-nodal sphere, this argument ensures the absence of a

certain type of unphysical pole, discussed in detail in section 6.4, and thereby provides an

important check on the amplitude.

D Degeneration of the Szegő kernels and the partition functions

In this section, we give explicit expressions for the Szegő kernels and the partition func-

tions of even spin structures near the non-separating boundary divisor, up to the relevant

orders in the degeneration parameters. These degeneration formulae underly our results in

section 6, and lead in particular to the representation (6.27) of the two-loop chiral integand

from the bi-nodal Riemann sphere.

Beyond the scope of this article, the non-separating degeneration also plays an impor-

tant role in superstring theory, for example in the field theory limit (see e.g. [97]) or for mod-

ular graph functions [98–100]. Due to the strong similarity between the ambitwistor string

and string theory, the expressions given here may prove useful in these contexts as well.

D.1 Degeneration of the Szegő kernels

We will focus first on the degeneration of the Szegő kernels. Throughout this section, we

will work to order o(q1, q2) since this is the highest pole present in the partition functions

Zchi[δ]; see below. As discussed in section 6, all subleading terms in the asymptotics of the

prime form cancel (6.21),

E(z, w) =
z − w√
dz
√
dw

+ o(q1, q2) , (D.1)

and thus the degeneration of the Szegő kernels depends only on the behaviour of the theta

function near the non-separating boundary divisor. Using the expansion eq. (3.15) for the

theta functions, the Szegő kernels for the NS-NS spin structures only differ by signs and

can be summarised conveniently as follows,

Sδ1(z,w)=S
(0,0)
NS (z,w)+q1S

(1,0)
NS (z,w)+q2S

(0,1)
NS (z,w)+q1q2S

(1,1)
NS (z,w)+o(q1, q2) , (D.2a)

Sδ2(z,w)=S
(0,0)
NS (z,w)+q1S

(1,0)
NS (z,w)−q2S

(0,1)
NS (z,w)−q1q2S

(1,1)
NS (z,w)+o(q1, q2) , (D.2b)

Sδ3(z,w)=S
(0,0)
NS (z,w)−q1S

(1,0)
NS (z,w)+q2S

(0,1)
NS (z,w)−q1q2S

(1,1)
NS (z,w)+o(q1, q2) , (D.2c)

Sδ4(z,w)=S
(0,0)
NS (z,w)−q1S

(1,0)
NS (z,w)−q2S

(0,1)
NS (z,w)+q1q2S

(1,1)
NS (z,w)+o(q1, q2) . (D.2d)
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To highlight the relations among the different spin structures, we have used the following

definitions for the ‘NS-NS Szegő kernels’ at the relevant orders in the expansion:

S
(0,0)
NS (z,w)=

√
dzdw

(zw)
, (D.3a)

S
(1,0)
NS (z,w)=q3

(zw)(1+1−)2
√

dzdw

(z1+)(z1−)(w1+)(w1−)
= q3ω1+,1−(z)ω1+,1−(w)

(
S

(0,0)
NS (z,w)

)−1
, (D.3b)

S
(0,1)
NS (z,w)=q3

(zw)(2+2−)2
√

dzdw

(z2+)(z2−)(w2+)(w2−)
= q3ω2+,2−(z)ω2+,2−(w)

(
S

(0,0)
NS (z,w)

)−1
, (D.3c)

S
(1,1)
NS (z,w)=q2

3S
(1,0)
NS (z,w)S

(0,1)
NS (z,w)

(
(z1+)(w2+)(1−2−)+(z2−)(w1−)(1+2+)

)2
(zw)(1+2+)(1−2−)(1+2−)(1−2+)

√
dzdw

. (D.3d)

Similarly, for the R-NS and NS-R cases, the Szegő kernels only differ by a sign in the

subleading order,

Sδ5(z, w) =
1

2

(
S

(0,0)
R2 (z, w) + q1 S

(1,0)
R2 (z, w)

)
+ o(q1, q2) , (D.4a)

Sδ6(z, w) =
1

2

(
S

(0,0)
R2 (z, w)− q1 S

(1,0)
R2 (z, w)

)
+ o(q1, q2) , (D.4b)

Sδ7(z, w) =
1

2

(
S

(0,0)
R1 (z, w) + q2 S

(0,1)
R1 (z, w)

)
+ o(q1, q2) , (D.4c)

Sδ8(z, w) =
1

2

(
S

(0,0)
R1 (z, w)− q2 S

(0,1)
R1 (z, w)

)
+ o(q1, q2) . (D.4d)

To improve the readability of the formulas, we have again defined ‘R-NS Szegő kernels’ for

the respective loops (R1 and R2),

S
(0,0)
R2 (z, w) =

√
dz dw

(zw)

(√
(z2+)(w2−)

(z2−)(w2+)
+

√
(z2−)(w2+)

(z2+)(w2−)

)
, (D.5a)

S
(1,0)
R2 (z, w) = q3 S

(1,0)
NS (z, w)

(√
(1+2+)(1−2+)(z2−)(w2−)

(1+2−)(1−2−)(z2+)(w2+)

+

√
(1+2−)(1−2−)(z2+)(w2+)

(1+2+)(1−2+)(z2−)(w2−)

)
, (D.5b)

S
(0,0)
R1 (z, w) =

√
dz dw

(zw)

(√
(z1+)(w1−)

(z1−)(w1+)
+

√
(z1−)(w1+)

(z1+)(w1−)

)
, (D.5c)

S
(0,1)
R1 (z, w) = q3 S

(0,1)
NS (z, w)

(√
(2+1+)(2−1+)(z1−)(w1−)

(2+1−)(2−1−)(z1+)(w1+)

+

√
(2+1−)(2−1−)(z1+)(w1+)

(2+1+)(2−1+)(z1−)(w1−)

)
. (D.5d)

Finally, for the Ramond-Ramond Szegő kernels at spin structures δ9 and δ10, it will be useful

to define the following shorthand notation for (square-roots of) cross-ratios involving the
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marked points as well as the nodes;

v1 =

√
(z1+)(w1−)

(z1−)(w1+)
, v2 =

√
(z2+)(w2−)

(z2−)(w2+)
, and recall that q3 =

(1+2+)(1−2−)

(1+2−)(1−2+)
. (D.6)

Using this, the R-R Szegő kernels become

Sδ9(z, w) =

√
dz dw

2 (zw)

(
+

1− q1/2
3

1− q3

(
v1

v2
+
v2

v1

)
− q3 − q1/2

3

1− q3

(
v1v2 +

1

v1v2

))
+ o(q1, q2) , (D.7a)

Sδ0(z, w) =

√
dz dw

2 (zw)

(
− 1 + q

1/2
3

1− q3

(
v1

v2
+
v2

v1

)
+
q3 + q

1/2
3

1− q3

(
v1v2 +

1

v1v2

))
+ o(q1, q2) . (D.7b)

D.2 Degeneration of the partition function

The behaviour of the integrand on the non-separating boundary divisor is governed by

two factors: the Pfaffians and the partition functions Zchi[δ]. The Szegő kernels discussed

in the preceding section, together with Pµ near the boundary divisor, fully determine the

form of the Pfaffian. Here, we focus on the degeneration of the partition function (4.25),

Zchi[δ] =
ϑ[δ](0)5 ϑ(Db)

∏
r<sE(yr, ys)

∏
r σ(yr)

3

Z15/2 ϑ[δ](Dβ)E(x1, x2)
∏
α σ(xα) detωIωJ(yr)

. (D.8)

All relevant formulae have already been established, and we can use eq. (3.32) in conjunc-

tion with the expansions of the theta function (3.15) and the prime form (6.21) to arrive at

our results below. Just as for the Szegő kernels, we find that the NS-NS partition functions

contain the same terms — up to signs — in the expansion around the boundary divisor:

Zchi[δ1] = Z(0,0)
NS + q−1

1 Z
(−1,0)
NS + q−1

2 Z
(0,−1)
NS + (q1q2)−1Z(−1,−1)

NS + o(q1, q2) , (D.9a)

Zchi[δ2] = Z(0,0)
NS + q−1

1 Z
(−1,0)
NS − q−1

2 Z
(0,−1)
NS − (q1q2)−1Z(−1,−1)

NS + o(q1, q2) , (D.9b)

Zchi[δ3] = Z(0,0)
NS − q−1

1 Z
(−1,0)
NS + q−1

2 Z
(0,−1)
NS − (q1q2)−1Z(−1,−1)

NS + o(q1, q2) , (D.9c)

Zchi[δ4] = Z(0,0)
NS − q−1

1 Z
(−1,0)
NS − q−1

2 Z
(0,−1)
NS + (q1q2)−1Z(−1,−1)

NS + o(q1, q2) . (D.9d)

This can be summarised more compactly as

Zchi[δ] =
∑

n1,n2∈{0,1}

(−1)δ
′′
1n1+δ′′2n2q−n1

1 q−n2
2 Z(−n1,−n2)

NS , for δ ∈ {δ1, δ2, δ3, δ4} . (D.10)
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Again, we have introduced ‘NS-NS partition functions’ at the respective orders to keep the

notation compact and highlight the similarities among the spin structures,

Z(−1,−1)
NS =

√
dx1dx2

(2iπ)4(x1x2)

q−2
3

ω1+,1−(x1)ω1+,1−(x2)ω2+,2−(x1)ω2+,2−(x2)
, (D.11a)

Z(−1,0)
NS =

√
dx1dx2

(2iπ)4(x1x2)

q−1
3

ω1+,1−(x1)ω1+,1−(x2)
Z

(−1,0)
8 , (D.11b)

Z(0,−1)
NS =

√
dx1dx2

(2iπ)4(x1x2)

q−1
3

ω2+,2−(x1)ω2+,2−(x2)
Z

(0,−1)
8 , (D.11c)

Z(0,0)
NS = 5

(
q−1

3 + 6 + 4q3

)
Z(−1,−1)

NS +

√
dx1dx2

(2iπ)4(x1x2)

(
2Z

(−1,0)
3 Z

(0,−1)
3 − Z(0,0)

)
, (D.11d)

where the factors of Z
(−1,0)
a , Z

(0,−1)
a and Z(0,0) are given by

Z(−1,0)
a =

a

ω2+,2−(x1)ω2+,2−(x2)

−
(
(x12+)(x22+)(2−1+)(2−1−)− (x12−)(x22−)(2+1+)(2+1−)

)2
(2+2−)2(2+1+)(2+1−)(2−1+)(2−1−) dx1dx2

,

Z(0,−1)
a =

a

ω1+,1−(x1)ω1+,1−(x2)

−
(
(x11+)(x21+)(1−2+)(1−2−)− (x11−)(x21−)(1+2+)(1+2−)

)2
(1+1−)2(1+2+)(1+2−)(1−2+)(1−2−) dx1dx2

,

Z(0,0) =

((
(x11+)(x21+)(x12+)(x22+)(1−2−)2

)2
+
(
σ1+ ↔ σ1−

)
(1+1−)2(2+2−)2 (1+2+)(1+2−)(1−2+)(1−2−) dx2

1dx2
2

+
(
σ2+ ↔ σ2−

)
+

(
σ1+ ↔ σ1−

σ2+ ↔ σ2−

))
(1+1−)2(2+2−)2 (1+2+)(1+2−)(1−2+)(1−2−) dx2

1dx2
2

.

As expected, the partition functions carry form degree −3/2 in both PCO insertion points

xα, exactly balanced by the Pfaffians. To see this, note that each term in a Pfaffian is

proportional to either ℘(x1, x2)Sδ(x1, x2) or the product
∏
α=1,2 P (xα) · viα Sδ(xα, ziα),

with viα ∈ {kiα , εiα}, and thus carries form degree +3/2 in each xα.

Similarly to the NS-NS case, the expansions of the NS-R and R-NS partition functions

differ only by relative signs in the subleading order,

Zchi[δ5] = Z(0,0)
R2 + q−1

1 Z
(−1,0)
R2 + o(q1, q2) , (D.12a)

Zchi[δ6] = Z(0,0)
R2 − q−1

1 Z
(−1,0)
R2 + o(q1, q2) , (D.12b)

Zchi[δ7] = Z(0,0)
R1 + q−1

2 Z
(0,−1)
R1 + o(q1, q2) , (D.12c)

Zchi[δ8] = Z(0,0)
R1 − q−1

2 Z
(0,−1)
R1 + o(q1, q2) . (D.12d)

To define the ‘R-NS partition functions’ Z−n1,−n2

R1 and Z−n1,−n2

R2 , it will be useful to intro-

duce two further square-roots of cross-ratios, in this case involving the PCO gauge insertion
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points xα and the nodes,

v±1 =

√
(x11+)(x21+)(2±1−)2

(x11−)(x21−)(2±1+)2
, and v±2 =

√
(x12+)(x22+)(1±2−)2

(x12−)(x22−)(1±2+)2
. (D.13)

Using this, the terms in the R-NS partition functions are given by

Z(0,0)
R2 = −4Z(0,0)

NS

√v+
2 v
−
2 +

1√
v+

2 v
−
2

−1

, (D.14a)

Z(−1,0)
R2 = −4

√
dx1dx2

(2iπ)4(x1x2)

q−1
3

ω2+,2−(x1)ω2+,2−(x2)
Ẑ

(−1,0)
R2 , (D.14b)

Z(0,0)
R1 = −4Z(0,0)

NS

√v+
1 v
−
1 +

1√
v+

1 v
−
1

−1

, (D.14c)

Z(−1,0)
R1 = −4

√
dx1dx2

(2iπ)4(x1x2)

q−1
3

ω1+,1−(x1)ω1+,1−(x2)
Ẑ

(0,−1)
R1 , (D.14d)

For the sake of readability, we introduced a short-hand notation for the Ramond part of

the subleading term of the partition function,

Ẑ
(−1,0)
R2 =

5

ω1+,1−(x1)ω1+,1−(x2)

 1

v+
2 + 1

v+
2

+
1

v−2 + 1
v−2


−

√v+
2 v
−
2 +

1√
v+

2 v
−
2

−1

Zcr
R2 , (D.15a)

Ẑ
(0,−1)
R1 =

5

ω2+,2−(x1)ω2+,2−(x2)

 1

v+
1 + 1

v+
1

+
1

v−1 + 1
v−1


−

√v+
1 v
−
1 +

1√
v+

1 v
−
1

−1

Zcr
R1 . (D.15b)

and defined the following product of cross-ratios:

Zcr
R2 =

(x11+)2(x21+)2(1−2+)(1−2−)
(
(x12−)(x22−)(1−2+)2+(x12+)(x22+)(1−2−)2

)
+
(
1+↔1−

)
(1+1−)2(1+2−)(1−2+)

(
(x12+)(x22+)(1+2−)(1−2−)+(x12−)(x22−)(1+2+)(1−2+)

)
dx1dx2

,

Zcr
R1 =

(x12+)2(x22+)2(2−1+)(2−1−)
(
(x11−)(x21−)(2−1+)2+(x11+)(x21+)(2−1−)2

)
+
(
2+↔2−

)
(2+2−)2(2+1−)(2−1+)

(
(x11+)(x21+)(2+1−)(2−1−)+(x11−)(x21−)(2+1+)(2−1+)

)
dx1dx2

.
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To conclude, we give the (single) term in the expansion of the Ramond-Ramond partition

functions to the relevant order,

Zchi[δ9] = −4Z(0,0)
NS

(
1 + q

1/2
3

)5

q3

(
v+− + 1

v+−

)
+ q

1/2
3 (v++ + v−−)

+ o(q1, q2) , (D.16a)

Zchi[δ0] = −4Z(0,0)
NS

(
1− q1/2

3

)5

q3

(
v+− + 1

v+−

)
− q1/2

3 (v++ + v−−)
+ o(q1, q2) , (D.16b)

where we used the following definition for the cross-ratios,

v++ =
(1−2−)2

(1+2−)(1−2+)

√
(x11+)(x21+)(x12+)(x22+)

(x11−)(x21−)(x12−)(x22−)
, (D.17a)

v−− =
(1+2+)2

(1+2−)(1−2+)

√
(x11−)(x21−)(x12−)(x22−)

(x11+)(x21+)(x12+)(x22+)
, (D.17b)

v+− =
(1−2+)

(1+2−)

√
(x11+)(x21+)(x12−)(x22−)

(x11−)(x21−)(x12+)(x22+)
. (D.17c)
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