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1 Introduction

It is evident that detailed study of the Higgs boson will be a primary focus of the exper-

iments performed at the CERN LHC for at least the next decade. Many calculations of

Higgs boson production by gluon fusion are carried out in the Higgs boson effective field

theory, valid when the top mass is larger than all other scales in the problem. This ap-

proach has the merit that calculations performed in the effective theory are easier, since

the Born-level matrix element is a tree graph, rather than a one-loop process. However,

with increasing statistics the LHC will be able to probe a regime where the effective theory
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is no longer valid, yielding valuable information about the intermediaries circulating in the

loop that couple to the Higgs boson. This is the case in Higgs boson + jet production

when the transverse momentum of the Higgs boson or of the jets is large compared to the

top quark mass.

Next-to-leading order (NLO) QCD corrections to Higgs boson plus 1-jet production

with full top-quark mass dependence are already known [1–3]. These calculations use the

one-loop Higgs boson + 3 parton amplitude as the Born-level cross section, and the one-loop

Higgs boson + 4 parton amplitude as a real radiation correction to the Born-level process.

The two loop virtual corrections are calculated using an expansion method [1, 3] or sector

decomposition [2]. If one were to go further and calculate the NNLO QCD corrections

to the Higgs boson + 1 jet process, one of the ingredients would be the Higgs boson + 5

parton amplitudes.

The Higgs + 2 jet process via gluon fusion has also been calculated at leading order in

the full theory [4, 5]. This process constitutes a “background” to the Higgs + 2 jet process

occurring via Vector Boson fusion, which also comes accompanied by two jets. The leading

order Higgs + 3 jet process has been considered in ref. [6]. Phenomenological analyses of

Higgs + jets including full mass effects have been performed in refs. [7, 8].

Despite this progress the literature does not contain detailed analytic results for Higgs

+ n-parton amplitudes in the full theory for n ≥ 4. Techniques for the analytic calculations

based largely on unitarity have been developed over a number of years [9–15]. The purpose

of the current paper is to provide analytic results for the specific case of gluons all having

the same helicity. We have undertaken this work, in order to elucidate patterns which

exist for varying values of n. In addition, by calculating the all positive helicity processes,

which yield simple results, we are encouraged to believe that simple analytic forms may be

posssible for all helicities.

From a numerical point of view, one loop calculations are a solved problem thanks to

techniques [16, 17] that allow numerical calculation of the coefficients of the needed loop

integrals.1 The full numerical result is obtained by combining these numerical results for

the coefficients, with analytic results for the one-loop scalar integrals. Analytic expressions

for scalar one-loop integrals are completely known both for IR-finite [19] and divergent [20]

cases. The downside of this semi-numerical approach is that it can lead to instabilities

in corners of phase space. These instabilities can be solved by moving to higher precision

calculation, at the cost of increased computer time. Analytic calculations on the other

hand are less prone to these instabilities.

2 Preamble: unitarity calculation of H + 2g amplitude

The aim of this paper is to calculate one-loop results for Higgs boson + gluon amplitudes.

These amplitudes contain a quark of mass m circulating in the loop, (dominantly the

top quark) and the coupling of the Higgs boson to the quark is given by −im/v where

v ≈ 246GeV is the vacuum expectation value of the Higgs field. The mass of the Higgs

boson is denoted by Mh.

1For a review and a complete set of references, see ref. [18].
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Figure 1. Unitarity approach to calculating the Higgs + 2 gluon amplitude.

We will calculate colour-ordered sub-amplitudes for the production of a Higgs boson

and n gluons defined as follows:

An({pi, hi, ci}) = i
gns

16π2

1

v

∑

{1,2,...,n}′

tr (tc1tc2 . . . tcn)An(1
h1
g , 2h2

g , . . . nhn

g ;H) , (2.1)

where the sum with the prime,
∑

{1,2,...,n}′ , is over all (n − 1)! non-cyclic permutations

of 1, 2, . . . , n and the t matrices are the SU(3) matrices in the fundamental representation

normalized such that,

tr(tatb) = δab. (2.2)

Because of Bose symmetry it will be sufficient to calculate one permutation, and the other

colour sub-amplitudes can be obtained by exchange.

The unitarity method seeks to calculate this result by sewing together tree-level colour-

ordered sub-amplitudes. For the tree graph process, qgg . . . gq̄, these are defined as,

Gn
ab(pa, ha, {pi, hi, ci}, pb, hb) = igns

∑

σ∈Sn

(tcσ(1)tcσ(2) . . . tcσ(n))abG
tree
n (aq, σ(1), . . . σ(n), bq̄) ,

(2.3)

where Sn is the permutation group on n elements, and Gtree
n are the tree-level partial

amplitudes. In a similar way we can define the tree-level sub-amplitudes for the production

of a Higgs boson and gluons from a massive fermion line,

Hn
ab(pa, ha, {pi, hi, ci}, pb, hb)

= −i
gns
v

∑

σ∈Sn

(tcσ(1)tcσ(2) . . . tcσ(2))abH
tree
n (aq, σ(1), . . . σ(n), H, bq̄) . (2.4)

For the case of Higgs + 2 gluons the only non-zero amplitude is when the gluons have

the same helicity. We sketch the calculation of this amplitude, which closely follows the

approach of Bern and Morgan [12]. The relevant component tree diagrams can be extracted

from figure 1. The left-hand side of the diagram is the colour-ordered amplitude for the

qggq̄ process with positive helicity gluons which is given by,

Gtree
2 (a, 1+, 2+, b) =

[1 2]

〈1 2〉

ū(pa)γR(6µ+m)u(pb)

(sa1 −m2)
, γR = (1+γ5)/2, s2ai = (pa+pi)

2 . (2.5)

– 3 –
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Following ref. [12] the components of the d-dimensional momenta pa beyond four dimensions

are denoted by µ. In practice only one extra dimension will be needed so µ also denotes the

length of the vector in the extra dimension. With the normalization defined by eq. (2.4)

the right-hand side of the diagram in figure 1 is given by

Htree
0 = mū(pb)u(pa) . (2.6)

Sewing eqs. (2.5) and (2.6) together and summing over the polarizations of fermions a and

b we get in four dimensions,

m2 [1 2]

〈1 2〉

Tr{γR(6pb +m)(6pa +m)}

(sa1 −m2)
= m2 [1 2]

〈1 2〉

(2pa · pb + 2m2)

(sa1 −m2)
= m2 [1 2]

〈1 2〉

(4m2 −M2
h)

(sa1 −m2)
.

(2.7)

Restoring the propagators which were put on shell and exploiting the linkage between the

mass terms and µ, we obtain a result for the amplitude, evaluated on the two particle cut,

A2(1
+, 2+;H)scut = m2 [1 2]

〈1 2〉

1

iπ2

∫

ddl
(4(m2 + µ2)−M2

h)

(l2 −m2)((l + p1)2 −m2)((l + p12)2 −m2)
. (2.8)

The symbol pi denotes the four-momentum of the ith particle, and we further define,

pij = pi + pj , pijk = pi + pj + pk, etc. Adding in the other diagram 1 ↔ 2, and evaluating

the rational term from µ2 we obtain,

A2(1
+
g , 2

+
g ;H) = 2m2 [1 2]

〈1 2〉

[

(4m2 −M2
h)C0(p1, p2;m) + 2

]

. (2.9)

where C0 is the scalar triangle integral, defined in eq. (A.2). Note that the essential feature

leading to the simple answer was the simplified form of the tree level inputs. In the following

section we present the tree-level building blocks for one-loop Higgs amplitudes with greater

numbers of gluons.

3 Tree level ingredients and cut techniques

3.1 Born-level results for QQ̄+n gluon amplitudes

Multi-gluon tree amplitudes with a pair of massive fermions have been considered by a

number of authors [21–23] using BCFW techniques and supersymmetric relations to scalar

amplitudes. However since these authors make specific choices of spinors for the massive

fermions they are not well suited for our purposes. All orders results for tree graphs with

n gluons have been given in a convenient form in ref. [24]. In our notation the n + 2-

point amplitude for a quark-antiquark pair and n positive-helicity gluons is given in four

dimensions by,

Gn(a, 1
+, 2+, . . . , n+, b) = m

ū(a)γRu(b) [1|
∏n−2

j=1

{

6pa...j 6pj+1 + (sa1...j −m2)
}

|n]

(sa1−m2)(sa12−m2) . . . (sa1...(n−1)−m2) 〈12〉〈23〉 . . . 〈n−1|n〉
.

(3.1)

The important features of the all-positive helicity gluon amplitude are that the amplitude

vanishes for massless quarks and that spin structure of the dependence on the massive

quark momenta enters through the combination ū(a)γRu(b) for all n.

– 4 –
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For n = 2 the product collapses to unity and we recover the four dimensional version

of eq. (2.5)

G2(a, 1
+, 2+, b) = m

ū(a)γRu(b)

(sa1 −m2)

[1 2]

〈1 2〉
. (3.2)

The results for larger numbers of gluons are similarly compact. For example, for n = 3, 4

we obtain,

G3(a, 1
+, 2+, 3+, b) = m

ū(a)γRu(b) [1|
(

6pa16p2 + (sa1 −m2)
)

|3]

(sa1 −m2)(sa12 −m2) 〈1 2〉 〈2 3〉
. (3.3)

G4(a, 1
+, 2+, 3+, 4+, b) = m

ū(a)γRu(b) [1|
(

6pa16p2 + (sa1−m2)
) (

6pa126p3 + (sa12 −m2)
)

|4]

(sa1 −m2)(sa12 −m2)(sa123−m2) 〈1 2〉 〈2 3〉 〈3 4〉
.

(3.4)

3.2 Interference with Higgs amplitudes

From eq. (3.1) the all-positive helicity gluon amplitude has the same kinematic structure

for all n. It is therefore useful to contract the Higgs production amplitudes with this

structure,

M †
0 = m ū(b)γRu(a) (3.5)

We will interfere this structure with the amplitude for the production of a Higgs + 0,1 or

2 gluons. Summing over the polarizations of the massive quarks

∑

u(p)ū(p) = 6p+m, (3.6)

we obtain the following results for the interference with zero, one and two gluon amplitudes,

H0, H1 and H2,

M †
0 H0(a;H, b) = m2

(

4m2 −M2
h

)

, (3.7)

M †
0 H1(a, 1

+
g ;H, b) = m2

(

4m2 −M2
h

) 1

〈1 q〉

{

[1|a|q〉

[1|a|1〉
−

[1|b|q〉

[1|b|1〉

}

(3.8)

= m2
(

4m2 −M2
h

) [1|ab|1]

[1|a|1〉 [1|b|1〉
,

(where q is an arbitrary light-like vector),

M †
0 H2(a, 1

+
g , 2

+
g ;H, b) = 2m2

(

4m2 −M2
h

) 1

〈1 2〉

{

[2|6b(6b− 6a)|1]

[1|a|1〉 [2|b|2〉

−m2 [2 1]

(

1

[2|b|2〉 ((b− p12)2 −m2)
+

1

[1|a|1〉 [2|b|2〉
−

1

[1|a|1〉 ((a+ p12)2 −m2)

)}

. (3.9)

We take all momenta to be outgoing except for b. We note that in four dimensions the

interference of eq. (3.5) with the Higgs + gluon amplitudes, Hn, is always proportional to

4m2 −M2
h .

– 5 –
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Figure 2. Feynman diagram to illustrate the calculation of coefficient the scalar pentagon integral.

3.3 Higgs + 4 gluon amplitude: the coefficient of the scalar pentagon

In four dimensions a scalar pentagon integral can be expressed as a sum of five boxes [25, 26].

(This reduction formula is described in appendix C). Consequently any attempt to iden-

tify the coefficient of a pentagon integral is inherently a d-dimensional calculation. In

d-dimensions we must introduce an extra parameter µ, that describes the magnitude of the

loop momentum momentum in the (d− 4) = −2ǫ space. We now use unitarity to extract

the coefficient of the scalar pentagon integral for the diagram shown in figure 2. Following

ref. [27] we express the loop momentum l as,

lν = αpν1 + β pν2 +
γ

2
〈1|γν |2] +

δ

2
〈2|γν |1] + lνǫ . (3.10)

We denote the length of the component of l beyond 4 dimensions, lǫ, by µ. Placing all five

propagators on their mass shell we obtain the following five equations,

l2 −m2 = 0, → −γδ 〈1 2〉 [2 1]−m2 − µ2 = 0 , determines µ2 ,

(l − p1)
2 −m2 = 0, → β = 0 ,

(l + p2)
2 −m2 = 0, → α = 0 ,

(l + p2 + p3)
2 −m2 = 0, → γ 〈1 3〉 [3 2]) + δ 〈2 3〉 [3 1] + s23 = 0 ,

(l + p2 + p3 + p4)
2 −m2 = 0, → γ 〈1 4〉 [4 2] + δ 〈2 4〉 [4 1] + s234 − s23 = 0 . (3.11)

However, because of the good ultraviolet properties of the pentagon integral, terms of order

less than µ6 will play no part in the limit ǫ → 0 and can be ignored.

The pentagon coefficient of Higgs plus four gluon amplitude in figure 2 can be calculated

by putting all five propagators on-shell and sewing together the qggggq̄ amplitude, eq. (3.4)

and the projection of the Higgs production vertex, eq. (3.7). After imposing the mass-

shell conditions, all dependence on the loop momentum drops out and the result for the

coefficient of E0(p1, p2, p3, p4;m) is,

m2(4m2 −M2
h)

[1|6l 6p2 (6l + 6p2)6p3|4]

〈1 2〉 〈2 3〉 〈3 4〉
= −m4(4m2 −M2

h)
tr+{1 2 3 4}

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
. (3.12)

– 6 –
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Figure 3. Feynman diagram to illustrate the calculation of the coefficient of the scalar integral

E0(p1, p2, p3, p4;m).

To express this formula (and subsequent formula) we have introduced a notation for the

traces of gamma matrices (defined in detail in appendix B),

tr+{1 2 . . . n} = tr{γR 6p1 6p2 . . . 6pn} . (3.13)

The full result for the Higgs + 4 gluon amplitude is given in eq. (4.3).

3.4 Higgs + 5 gluon amplitude: the coefficient of one of the scalar pentagons

We now use a similar method to identify the pentagon coefficient for the hexagon diagram

shown in figure 3. We parameterize the loop momentum as before, eq. (3.10) and set

the same condition on the five propagators, eq. (3.11). The condition on the propagator

l2 −m2 serves to fix the length of the loop momentum in the extra dimension. Solving the

simultaneous equations for γ and δ we have that,

γ = +
1

tr5(1, 2, 3, 4)

[

〈2 3〉 [3 1] (s234 − s23)− 〈2 4〉 [4 1] s23

]

δ = −
1

tr5(1, 2, 3, 4)

[

〈1 3〉 [3 2] (s234 − s23)− 〈1 4〉 [4 2] s23

]

(3.14)

With this solution for the γ, δ in hand we can evaluate the sixth denominator, d6 =

(l+ p2 + p3 + p4 + p5)
2 −m2. The result for d6 on the cut of the first five denominators is

d6 = −
tr5(1, 2, 3, 4, 5, 6)

tr5(1, 2, 3, 4)
. (3.15)

Not surprisingly, this is inverse of the coefficient which occurs in the reduction of a scalar

hexagon integral to the scalar pentagon integral formed by the first five propagators, see

eq. (D.3). By evaluating any possible numerators factors for the value of l determined by

our γ, δ from eq. (3.14) we obtain the coefficient of this particular pentagon integral in our

real physical amplitude. Thus determining pentagon coefficients is even easier than box

coefficients, because we deal with a linear rather than a quadratic equation. The full result

for the Higgs + 5 gluon amplitude is given below in eq. (4.4).

– 7 –
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4 Results for Higgs + gluon amplitudes with all positive helicity gluons

4.1 n = 2

For the case n = 2 we have the well known result [28, 29]

A2(1
+
g , 2

+
g ;H) = 2m2 [1 2]

〈1 2〉

[

(4m2 −M2
h)C0(p1, p2;m) + 2

]

. (4.1)

For n = 2 the same helicity amplitudes are the only non-zero amplitudes. We follow the

normal notation for spinor products, [30] with 〈ij〉[ji] = sij where sij = p2ij = 2pi · pj for

the lightlike momenta pi and pj . The C0 functions are the scalar triangle integrals, defined

along with the box, pentagon and hexagon integrals, D0, E0 and F0 in eq. (A.2).

4.2 n = 3

For the case n = 3 the results for all helicities are given in ref. [31]. The result for all

positive helicity gluons is given by,

A3(1
+
g , 2

+
g , 3

+
g ;H) = m2

[{

4m2 −M2
h

〈1 2〉 〈2 3〉 〈3 1〉

[

−
1

2
s12s23D0(p1, p2, p3;m)

−(s12 + s13)C0(p1, p23;m)

]

− 2
s12 + s13

〈1 2〉 〈2 3〉 〈3 1〉

}

+
{

2 cyclic permutations
}

]

. (4.2)

This result of ref. [31] has been confirmed in ref. [32] where it is presented in a notation

similar to the notation of the current paper. This result has been also obtained later by

unitarity methods in ref. [33].

4.3 n = 4

Analytical results for the full one-loop amplitude for Higgs + 4 gluons have been calculated

for all helicities by the authors of ref. [34] and are available in MCFM. However simple

analytic results have not been achieved. For the case n = 4 we find the simple expression,

A4(1
+
g , 2

+
g , 3

+
g , 4

+
g ;H) = m2

[{

4m2 −M2
h

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

[

− tr+{1 2 3 4}m
2E0(p1, p2, p3, p4;m)

+
1

2
((s12 + s13)(s24 + s34)− s14s23)D0(p1, p23, p4;m)

+
1

2
s12s23D0(p1, p2, p3;m)

+(s12 + s13 + s14)C0(p1, p234;m)

]

+ 2
s12 + s13 + s14

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

}

+
{

3 cyclic permutations
}

]

. (4.3)
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4.4 n = 5

For the case n = 5 we find,

A5(1
+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ;H) = m2

[{

(4m2 −M2
h)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

[ 6
∑

i=1

e(i)E(i)

−
1

2
s12s23D0(p1, p2, p3;m)−

1

2
[(s12 + s13)(s24 + s34)− s14s23]D0(p1, p23, p4;m)

−
1

2
[(s12 + s13 + s14)(s25 + s35 + s45)− s15(s23 + s24 + s34)]D0(p1, p234, p5;m)

− (s12 + s13 + s14 + s15)C0(p1, p2345;m)

]

−
2(s12 + s13 + s14 + s15)

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉

}

+
{

4 cyclic permutations
}

]

, (4.4)

where the coefficients of the scalar pentagon integrals are given by,

e(1) = m2

[

1

2
tr−{2 3 4 5}+

s23s34s45(tr−{2 6 5 1}+ s51s12)

tr5{1 2 3 4 5 6}

]

,

e(2) = −m2s45s34
tr−{5 1 2 3 (1 + 2) 6}

tr5{1 2 3 4 5 6}
,

e(3) = −m2 tr+{5 4 (2 + 3) 1} tr−{1 2 3 4 5 6}

tr5{1 2 3 4 5 6}
,

e(4) = −m2 tr+{1 2 (3 + 4) 5} tr−{5 4 3 2 1 6}

tr5{5 4 3 2 1 6}
,

e(5) = −m2s12s23
tr−{1 5 4 3 (4 + 5) 6}

tr5{5 4 3 2 1 6}
,

e(6) = m2

[

1

2
tr−{4 3 2 1}+

s12s23s34(tr−{4 6 1 5}+ s45s51)

tr5{5 4 3 2 1 6}

]

, (4.5)

and the pentagon integrals E(i) ≡ F
(i)
0 correspond to the scalar hexagon integrals with

the ith propagator removed, see eq. (D.2). Note the absence of boxes of the form

D0(p1, p23, p45;m), D0(p12, p3, p45;m), D0(p1, p2, p345;m) and D0(p1, p2, p34;m) apart from

those which would occur if the scalar pentagons in eq. (4.4) were expressed as a sum of

boxes. The momentum of the Higgs boson is denoted by p6 such that

6
∑

i=1

pi = 0 . (4.6)

Note that tr5{5 4 3 2 1 6} = −tr5{1 2 3 4 5 6}. This relationship is important to show that

the apparent singularity in e(1) and e(6) in the limit p6 → 0 cancels, because in that limit

E0(p1, p2, p3, p4) = E0(p2, p3, p4, p5).

– 9 –
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5 Limits

One of the benefits of an analytic formula is that we can investigate the behaviour of the

amplitudes in various limits. In this section we shall present the behaviour of the amplitude

in the limit of vanishing Higgs boson momentum and for large top mass. The high energy

limits of Higgs + 4 parton amplitudes have been considered in ref. [35].

5.1 Soft Higgs limit

The insertion of a soft Higgs boson is performed by the operating on the corresponding

multi-gluon amplitude without a Higgs boson with the operator,

m

v

d

dm
≡

1

v
2m2 d

dm2
. (5.1)

The colour sub-amplitude for scattering of four positive helicity gluons via a loop of quarks

has been presented by Bern and Morgan [12],

A4(1
+
g , 2

+
g , 3

+
g , 4

+
g ) = −2

[1 2] [3 4]

〈1 2〉 〈3 4〉

[

m4D0(p1, p2, p3;m)−
1

6

]

. (5.2)

In the limit in which p5 → 0 the result for the four gluon + Higgs amplitude, eq. (4.3)

including cyclic symmetrization can be written as,

A4(1
+
g , 2

+
g , 3

+
g , 4

+
g ;H) → −4m4 [1 2] 〈2 3〉 [3 4] 〈4 1〉

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

×

[

1

2
(D0(p1, p2, p3;m) +D0(p2, p3, p4;m) +D0(p3, p4, p1;m) +D0(p4, p1, p2;m))

+m2(E0(p1, p2, p3, p4;m)+E0(p2, p3, p4, p1;m)+E0(p3, p4, p1, p2;m)+E0(p4, p1, p2, p3;m))

]

= −2
[1 2] 〈2 3〉 [3 4] 〈4 1〉

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉

[

4m4D0(p1, p2, p3;m) + 2m6 d

dm2
D0(p1, p2, p3;m)

]

= −2
[1 2] 〈2 3〉 [3 4] 〈4 1〉

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
2m2 d

dm2

[

m4D0(p1, p2, p3;m)
]

, (5.3)

since in the limit p5 → 0 we have that [1 2] 〈2 3〉 [3 4] 〈4 1〉 = −s12s23 and

d

dm2
D0(p1, p2, p3;m) = E0(p1, p2, p3, p4;m) + E0(p2, p3, p4, p1;m)

+E0(p3, p4, p1, p2;m) + E0(p4, p1, p2, p3;m) . (5.4)

This demonstrates the expected form in the limit p5 → 0. Similarly eq. (4.4) can be studied

in the limit p6 → 0. In fact, we make use of the existence of this limit to help organise

coefficients of scalar pentagons presented in eq. (4.5).
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5.2 Large top mass limit

In the large top mass limit we obtain the following results for the scalar integrals

C0(p1, p2;m) = −
1

2m2
−

(p21 + p22 + p212)

24m4
+O

(

1

m6

)

, (5.5)

D0(p1, p2, p3;m) =
1

6m4
+

(s23 + s12 + p21 + p22 + p23 + p2123)

60m6
+O

(

1

m8

)

, (5.6)

E0(p1, p2, p3, p4;m) = −
1

12m6
+O

(

1

m8

)

. (5.7)

Using these expansions we obtain the expected form [36, 37] for the tree graphs in the

effective theory.

A2(1
+
g , 2

+
g ;H) = +

2

3

M4
h

〈1 2〉 〈2 1〉
, (5.8)

A3(1
+
g , 2

+
g , 3

+
g ;H) = −

2

3

M4
h

〈1 2〉 〈2 3〉 〈3 1〉
, (5.9)

A4(1
+
g , 2

+
g , 3

+
g , 4

+
g ;H) = +

2

3

M4
h

〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉
, (5.10)

A5(1
+
g , 2

+
g , 3

+
g , 4

+
g , 5

+
g ;H) = −

2

3

M4
h

〈1 2〉 〈2 3〉 〈3 4〉 〈4 5〉 〈5 1〉
. (5.11)

6 Conclusions

The results of the paper have shown that, having simple expressions for the component

tree graph amplitudes in hand, it is feasible to extract compact expressions for the Higgs

boson + n-parton amplitudes for n ≤ 5. The results for n = 4 and n = 5, after extension

to all helicities, offer the prospect of fast and stable numerical evaluation. The results with

all gluon helicities taken to be the same, display simple patterns. One is tempted to try

and extend these results to even higher n, but in view of the limited phenomenological

importance of higher n we have not succumbed to this temptation.

More pressing is the need to extend the results for n = 4, (and possibly n = 5) to all

helicity combinations. Although the results of ref. [24] are only available for two helicity

combinations (+ + . . . + +) and (− + . . . + +), tree-level results for all helicities with a

low number of gluons can be easily derived using BCFW techniques. The BCFW results

typically contain new denominators, which do not correspond to physical singularities,

which are not present in the all-plus helicity amplitude considered so far. We do not yet

know whether these spurious denominators will complicate efforts to derive results for all

helicities. There is no doubt that complete results for all helicities can be derived for n = 4,

but it is too early to say how simple they will be.
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A Integrals

We define the denominators of the integrals as follows

d0 = l2 −m2 + iε ,

d1 = (l + p1)
2 −m2 + iε = (l + q1)

2 −m2 + iε ,

d12 = (l + p1 + p2)
2 −m2 + iε = (l + q2)

2 −m2 + iε ,

d123 = (l + p1 + p2 + p3)
2 −m2 + iε = (l + q3)

2 −m2 + iε ,

d1234 = (l + p1 + p2 + p3 + p4)
2 −m2 + iε = (l + q4)

2 −m2 + iε ,

d12345 = (l + p1 + p2 + p3 + p4 + p5)
2 −m2 + iε = (l + q5)

2 −m2 + iε . (A.1)

The pi are the external momenta, whereas the qi are the off-set momenta in the propagators.

In terms of these denominators the integrals are,

C0(p1, p2;m) =
1

iπ2

∫

d4l
1

d0d1d12
,

D0(p1, p2, p3;m) =
1

iπ2

∫

d4l
1

d0d1d12d123
,

E0(p1, p2, p3, p4;m) =
1

iπ2

∫

d4l
1

d0d1d12d123d1234
,

F0(p1, p2, p3, p4, p5;m) =
1

iπ2

∫

d4l
1

d0d1d12d123d1234d12345
. (A.2)

B Definitions of γ-matrix traces

In order to obtain compact expressions for the coefficients of the scalar integrals, we define

the following traces of γ-matrices.

tr5{1 2 . . . n} = tr{γ5 6p1 6p2 . . . 6pn} ,

tr+{1 2 . . . n} = tr{γR 6p1 6p2 . . . 6pn} ,

tr−{1 2 . . . n} = tr{γL 6p1 6p2 . . . 6pn} ,

tr5{1 2 . . . n} ≡ tr+{1 2 . . . n} − tr−{1 2 . . . n} , (B.1)

with γR/L = (1± γ5)/2. For the special case of lightlike vectors we have that

tr+{1 2 3 . . . n}= [1 2] 〈2 3〉 [3 4] . . . 〈n 1〉 ,

tr−{1 2 3 . . . n}= 〈1 2〉 [2 3] 〈3 4〉 . . . [n 1] . (B.2)

In the case of lightlike vectors, the traces with γ5 can be written as differences of spinor

strings,

tr(γ5 6p1 6p2 6p3 6p4) =
(

[1 2] 〈2 3〉 [3 4] 〈4 1〉 − 〈1 2〉 [2 3] 〈3 4〉 [4 1]
)

, (B.3)

tr(γ5 6p1 6p2 6p3 6p4 6p5 6p6) =
(

[1 2] 〈2 3〉 [3 4] 〈4 5〉 [5 6] 〈6 1〉 − 〈1 2〉 [2 3] 〈3 4〉 [4 5] 〈5 6〉 [6 1]
)

.

(B.4)

In the case where external vectors are not light-like, (e.g. in our case the Higgs momentum

p6), the spinor expressions must be modified using momentum conservation, e.g. eq. (4.6)

for the five gluon case.
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C Reduction of scalar pentagon integrals to boxes

The reduction of the scalar pentagon integrals E0 to a sum of the five boxes obtained by

removing one propagator has been presented in ref. [26]. We present the result here for

completeness.

E0(w
2 − 4∆4m

2) = E(1) [2∆4 − w · (v1 + v2 + v3 + v4)]

+E
(2)
0 v1 · w + E

(3)
0 v2 · w + E

(4)
0 v3 · w + E

(5)
0 v4 · w , (C.1)

where the vectors vi are expressed in terms of the totally antisymeetric tensor ε,

vµ1 = εµ,q2,q3,q4 , vµ2 = εq1,µ,q3,q4 , vµ3 = εq1,q2,µ,q4 , vµ4 = εq1,q2,q3,µ,

wµ = r1v
µ
1 + r2v

µ
2 + r3v

µ
3 + r4v

µ
4 , (C.2)

and the box integrals are,

E
(1)
0 = D0(p2, p3, p4;m) ,

E
(2)
0 = D0(p12, p3, p4;m) ,

E
(3)
0 = D0(p1, p23, p4;m) ,

E
(4)
0 = D0(p1, p2, p34;m) ,

E
(5)
0 = D0(p1, p2, p3, ;m) , (C.3)

where pij = pi + pj . The ri are the residues when the dot products of the offset momenta

and the loop momenta, qi · l, are expressed in terms of differences of propagators,

q1.l =
1

2
[d1 − d0 − r1], q2.l =

1

2
[d12 − d0 − r2] ,

q3.l =
1

2
[d123 − d0 − r3], q4.l =

1

2
[d1234 − d0 − r4] . (C.4)

D Reduction of scalar hexagons integrals to pentagons

The reduction of the scalar hexagon integrals F0 to a sum of the six pentagons obtained

by removing one propagator can be derived following the techniques of refs. [25, 26]. We

denote by F
(i)
0 the six pentagon integrals obtained by removing the ith propagator from

the hexagon integral,

F0(p1, p2, p3, p4, p5;m) =
6

∑

i=1

c12345(i)F
(i)
0 . (D.1)

Explicitly we have that,

F
(1)
0 ≡ E(1) = E0(p2, p3, p4, p5;m) ,

F
(2)
0 ≡ E(2) = E0(p12, p3, p4, p5;m) ,

F
(3)
0 ≡ E(3) = E0(p1, p23, p4, p5;m) ,

F
(4)
0 ≡ E(4) = E0(p1, p2, p34, p5;m) ,

F
(5)
0 ≡ E(5) = E0(p1, p2, p3, p45;m) ,

F
(6)
0 ≡ E(6) = E0(p1, p2, p3, p4;m) , (D.2)
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where pij = pi + pj . Translating the results of ref. [26] to the notation of eq. (B.1) we

find (see also ref. [38]),

c
(1)
12345 = +tr5{2 3 4 5}/tr5{1 2 3 4 5 6} ,

c
(2)
12345 = −tr5{(1 + 2) 3 4 5}/tr5{1 2 3 4 5 6} ,

c
(3)
12345 = +tr5{1 (2 + 3) 4 5}/tr5{1 2 3 4 5 6} ,

c
(4)
12345 = −tr5{1 2 (3 + 4) 5}/tr5{1 2 3 4 5 6} ,

c
(5)
12345 = +tr5{1 2 3 (4 + 5)}/tr5{1 2 3 4 5 6} ,

c
(6)
12345 = −tr5{1 2 3 4}/tr5{1 2 3 4 5 6} . (D.3)

In this equation we have used an obvious extension of the notation of eq. (B.1),

tr5{(1 + 2) 3 4 5} ≡ tr(γ5 (6p1 + 6p2) 6p3 6p4 6p5) . (D.4)

Expressed in this form it is manifest that

6
∑

i=1

c
(i)
12345 = 0 . (D.5)
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