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1 Introduction

Any local quantum field theory (QFT) can be studied on a non-trivial space-time geometry.

This is done by coupling the stress-energy tensor to a background metric.1 In this paper,

we study three-dimensional Euclidean QFTs with N = 2 supersymmetry — that is, four

Poincaré supercharges — on Seifert three-manifolds.

In any supersymmetric QFT, the stress-energy tensor sits together with the supersym-

metry current in a supercurrent multiplet, which can be canonically coupled to a super-

gravity multiplet. Given a choice of supercurrent [1, 2] and of the corresponding off-shell

supergravity, one can classify the supersymmetry-preserving geometries systematically [3].

In the case of 3d N = 2 supersymmetric theories with an exact U(1)R symmetry [4–6], one

finds a large class of compact half-BPS geometries, M3, which preserve two supercharges,

Q and Q̄, satisfying the curved-space supersymmetry algebra:

Q2 = 0 , Q̄2 = 0 , {Q, Q̄} = −2i (LK + Z) . (1.1)

Here, Z is the real central charge of the 3d N = 2 supersymmetry algebra on R3, and LK
generates an isometry of the Riemannian manifold M3 along a real Killing vector K. A

necessary and sufficient condition for such a half-BPS background to exist is that M3 be

a Seifert manifold [5].

Given any half-BPS geometric background, one can, in principle, compute the super-

symmetric partition function :

ZM3(ν) , (1.2)

of any UV-free N = 2 supersymmetric field theory, using supersymmetric localization

techniques. (See e.g. [7] for a recent review.) On general grounds, the quantity (1.2) is

renormalization-group (RG) invariant, therefore it gives access to non-perturbative infor-

mation about the strongly-coupled infrared (IR) of the theory. It is also a function of

background vector multiplets for the flavor symmetries of the theory, in particular through

some complex parameters ν, as indicated in (1.2). Moreover, ZM3(ν) is locally holomorphic

in those parameters, ν [8, 9].

Explicit localization formulas are known for (1.2) when M3 is a lens space — see

e.g. [10–18]. However, localization computations become increasingly complicated to carry

out as the topology of M3 becomes less trivial, in part because the sum over topological

sectors becomes more involved. In this work, we will bypass such difficulties by thinking of

ZM3 as an observable in an auxilliary two-dimensional topological field theory, the so-called

“3d A-model.”2

The basic idea is the following. Let us first consider the product space:

M3
∼= Σ× S1 , (1.3)

1At first order in the background metric. The higher-order terms are (partially) constrained by diffeo-

morphism invariance.
2Note that, in the terminology of this paper, the “3d A-model” is really a 2d TQFT. Related works that

used a 3d TQFT-like approach include e.g. [19–23].

– 1 –
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with Σ a Riemann surface. One can preserve the supersymmetry algebra (1.1) on this

product three-manifold by performing a topological A-twist along the Riemann surface [24].

The two supercharges Q and Q̄ are the A-twisted version of the flat-space supercharges Q−
and Q̄+ in the 3d N = 2 algebra — equivalently, if we consider the theory on R2×S1, Q−
and Q̄+ are part of the 2d N = (2, 2) supersymmetry algebra along R2. We then consider

the operators, L , that commute with them:

[Q−,L ] = 0 , [Q̄+,L ] = 0 . (1.4)

These are the twisted chiral operators, in the 2d nomenclature. Note that the twisted-chiral

condition is not Lorentz covariant in dimension larger than two, so that L cannot be a

local operator in 3d. In the three-dimensional N = 2 theory on R2 × S1, the twisted

chiral operators are half-BPS line operators, wrapping the S1 and localized at a point on

Σ. Typical examples are the half-BPS Wilson loops in 3d N = 2 gauge theories. The 3d

A-model is defined as the two-dimensional topological quantum field theory (TQFT) on Σ

obtained by viewing the 3d theory as a 2d theory with an infinite number of fields (the

S1 Fourier modes), and by performing the topological A-twist. The TQFT is obtained

by passing to the (simultaneous) cohomology of the scalar supercharges Q, Q̄. The 3d

A-model observables are of the form:

〈LiLjLk · · · 〉Σ×S1 , (1.5)

where the insertion points of the lines can be omitted, since the theory is topological

along Σ. These observables encode the algebra of half-BPS line operators — see e.g. [25,

26] for detailed discussions of the Wilson loop algebras. In this work, we will view the

supersymmetric partition functions as 3d A-model observables:

ZM3 =
〈
GM3

〉
Σ×S1 , (1.6)

where the line L = GM3 is a particular line defect, or geometry-changing line operator,

whose insertion is equivalent to introducing a non-trivial fibration of the S1 over Σ, giving

rise to the Seifert manifold M3. In a previous work [27], we carried out this program for a

restricted class of Seifert geometries. In the present paper, we define the geometry-changing

line operator for any Seifert manifold, in the case of 3d N = 2 gauge theories. This gives us

a compact formula for the supersymmetric partition functions, (1.2), for supersymmetric

gauge theories on any half-BPS Seifert geometry. Even in the previously-understood cases

when M3 is a lens space, our results offers a new perspective on some well-known matrix

integrals obtained by supersymmetric localization. We also clarify a number of more subtle

points along the way.

In the remainder of this introduction, we review some necessary background material

and spell out our main results in some detail.

1.1 Seifert geometry and surgery

By a Seifert manifold M3, we mean a closed, oriented three-manifold, equipped with a

Seifert fibration:

π : M3 → Σ̂g,n . (1.7)

– 2 –
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For our purposes, a Seifert fibration is simply an S1 bundle over a two-dimensional orb-

ifold [28, 29]. Here the orbifold base of the fibration, Σ̂ = Σ̂g,n, is a genus-g Riemann

surface with n marked points, the “orbifold points,” xi, which have conical local neigh-

borhoods Ui ∼= C/Zqi , with qi > 0. In the absence of orbifold points, the Seifert fibration

is a principal circle bundle over a smooth Riemann surface Σg, which is fully determined

by its degree (or first Chern number) d ∈ Z. More generally, we must also specify what

happens at the fibers above the orbifold points, the so-called “exceptional fibers.” The

tubular neighborhood of each exceptional fiber in M3 is a solid fibered torus, which is

characterized by a pair of co-prime integers (qi, pi).
3 Note that, while a generic S1 fiber

has a fixed radius β, the radius jumps to β/qi over the orbifold point xi.

In this way, the Seifert manifold M3 is fully characterized by a finite numbers of

integers, known as the “Seifert symbols:”

M3
∼=
[
d ; g ; (q1, p1) , · · · , (qn, pn)

]
. (1.8)

Here d is the degree of the Seifert fibration, g is the genus of the base, and (qi, pi) are the

so-called Seifert invariants of the exceptional fibers.4 Any suchM3 can be constructed by

surgery on the product manifold:

Σg × S1 ∼=
[
0 ; g ;

]
, (1.9)

seen as a trivial Seifert fibration. Indeed, given any Seifert manifold M(n)
3 with n excep-

tional fibers, one can add an exceptional (q, p) fiber by Dehn surgery along a generic Seifert

fiber at xn+1 ∈ Σ̂, by removing a tubular neighborhood of the fiber, resulting in a manifold

M̃(n)
3 with a boundary ∂M̃(n)

3
∼= T 2, and constructing a new compact three-manifold:

M(n+1)
3

∼= M̃(n)
3 ∪g (D2 × S1) , (1.10)

by gluing M̃3 to a solid torus with an SL(2,Z) twist:

g : ∂M̃3 → ∂(D2 × S1) , g =

(
q −t
p s

)
∈ SL(2,Z) . (1.11)

Shifting the degree d to d+1 in (1.8) can be done similarly, with g ∈ SL(2,Z) corresponding

to (q, p) = (1, 1).

In fact, any Seifert manifold can be constructed by elementary surgery operations on

the genus-zero trivial fibration S2 × S1. One may consider the following operations (in

whatever order; all these operations are reversible):

• Add handles to the base Σ̂g,n, for instance going from S2 × S1 to Σg × S1. This

operation only affects the base of the fibration.

3A solid fibered torus T (q, t) is obtained by gluing together the two disk boundaries of a solid cylinder,

with a relative rotation of 2πt
q

, for q and t some co-prime integers. One can equivalently describe T (q, t) in

terms of the coprime integers (q, p) such that pt = 1 mod q, as we are doing here.
4More precisely, d is the degree if the invariants (qi, pi) are normalized such that qi > 0 and 0 ≤ pi < qi.

We will give a detailed introduction to Seifert geometry in section 2.

– 3 –
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• Change the degree d of the fibration. This operation leaves the base invariant.

• Add an exceptional (q, p) fiber. This operation modifies both the base and the fibra-

tion.

These three topological operations can be implemented in N = 2 supersymmetric field

theories on M3, by the insertion of geometry-changing line operators along the Seifert

fiber [27], as anticipated in (1.6). In the case of a smooth base Σ̂ = Σg, the line operators

for the first and second operations were discussed in [26, 30, 31] and [27], respectively. The

main goal of this paper is to explain how to carry out the third operation — the insertion

of an exceptional Seifert fiber—, thus allowing us to study 3d N = 2 theories on any

Seifert manifold.

1.2 Gauge theories on Seifert manifolds

Let us choose a Riemannian metric on M3 compatible with the Seifert fibration (1.8).

In particular, a compatible metric admits a Killing vector K whose orbits are the Seifert

fibers. In this paper, we will assume that K is the Killing vector entering the curved-space

supersymmetry algebra (1.1). As we will see, this assumption is less restrictive than it

might appear.

We consider any 3d N = 2 gauge theory with gauge group G, and with g = Lie(G) its

Lie algebra. Here, G can be a compact, simply-connected, simple Lie group, Gγ , a unitary

group, or a product thereof:

G =
∏
γ

Gγ ×
∏
I

U(NI) . (1.12)

The inclusion of non-simply-connected gauge groups (other than U(N)) requires additional

care, and we leave it for future work.

We may decompose any 3d field in Kaluza-Klein (KK) modes along the Seifert fiber.

In particular, the zero-mode of the 3d gauge field gives us a two-dimensional gauge field

on Σ̂, which sits in a 2d N = (2, 2) vector multiplet V(2d). It will be natural to write down

an effective field theory for the complex scalar u in V(2d) on the classical Coulomb branch:

u = diag(ua) , a = 1, · · · , rk(G) , (1.13)

by integrating out all the other massive fields at generic values of ua, and with various mass

parameters, ν, for the flavor symmetries turned on. The topological twist of this effective

two-dimensional field theory will be our “3d A-model.”

Then, any half-BPS line operators L in the A-model will be expressed as functions of

the gauge parameters, u, and of the flavor parameters, ν:

L = L (u, ν) . (1.14)

As an example, consider L = WR, a supersymmetric Wilson loop in a representation R

of G, wrapped along the S1 fiber. It takes the form:

WR = TrR Pexp

(
−i
∫
S1

(aµdx
µ − iβσdψ)

)
, (1.15)

– 4 –
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with σ the real scalar in the 3d vector multiplet, and ψ the circle coordinate. In the 3d

A-model, this is simply the character of the representation:

WR(u) = TrR(e2πiu) . (1.16)

Here, we are interested in defect line operators that change the topology of M3. The

geometry-changing line operators:

H = H(u, ν) , F = F(u, ν) , (1.17)

were discussed in previous papers [26, 27, 30–32]. The handle-gluing operator H [30, 33] has

the effect of adding one handle to the base Σ̂ of the Seifert fibration M3. The “ordinary”

fibering operator F [27] has the effect of shifting the degree of the Seifert fibration by one,

d→ d + 1. In this paper, we define and compute the (q, p)-fibering operator :

Gq,p = Gq,p(u, ν) , (1.18)

which introduces an exceptional fiber of type (q, p). Given these building blocks, we can

write the supersymmetric partition function (1.6) as:

ZM3 = 〈LM3〉S2×S1 , LM3 ≡ Hg GM3 = FdHg
n∏
i=1

Gqi,pi , (1.19)

schematically, for any Seifert fibration. Here, the S2 × S1 background on which we insert

LM3 corresponds to the topologically twisted index [34]. The main object of this work is

to understand and compute the Seifert fibering operator:

GM3 ≡ Fd
n∏
i=1

Gqi,pi , (1.20)

associated to an arbitrary Seifert manifold M3, with Seifert symbols (1.8).

1.3 R-charge and spin-structure dependence of ZM3

As part of our choice of supersymmetric background on M3, we must specify the U(1)R
line bundle, LR, associated to the background R-symmetry gauge field. This line bundle

is defined by the condition:

L⊗2
R = KM3 , (1.21)

where KM3 is the “canonical line bundle” of the Seifert manifoldM3 seen as a transversely

holomorphic foliation (THF) [5, 9]. For our purposes, KM3 can simply be defined as the

pull-back of the canonical line bundle on the orbifold Σ̂ along the Seifert fibration (1.7):

KM3
∼= π∗(KΣ̂) . (1.22)

There are, in general, many solutions to (1.21) for a fixedM3. The choices are in one-to-one

(but non-canonical) correspondence with the group H1(M3,Z2), namely:{
valid R-symmetry line bundles LR on M3

} ∼= H1(M3,Z2) . (1.23)

– 5 –
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Note this group also determines the allowed set of spin structures on M3. In fact, these

two choices, of a line bundle LR and of a spin structure on M3, are correlated. The

supersymmetric background onM3 includes a pair of Killing spinors, ζ and ζ̄, of R-charge

±1, respectively, which solve the generalized Killing spinor equations:

(∇̂µ − iA(R)
µ )ζ = 0 , (∇̂µ + iA(R)

µ )ζ̄ = 0 , (1.24)

where ∇̂µ is a particular connection adapted to the Seifert geometry, and A(R)
µ is the

connection on LR. Whenever we change the R-symmetry line bundle on M3, the old and

new U(1)R gauge fields are distinguished by Z2-valued holonomies along certain 1-cycles,

determined by an element of H1(M3,Z2). In order to retain the two solutions to the Killing

spinor equations (1.24), we must simultaneously shift the spin structure in such a way as

to cancel the holonomy incurred by the Killing spinors. In this sense, different elements

in (1.23) correspond to different choices of a spin structure on the Seifert manifold.

The partition function of a 3d N = 2 gauge theory depends in a subtle way on the

choice of spin structure, as we will see in later sections. In particular, in the special

case of (N = 2 supersymmetric) Chern-Simons (CS) theories, this reproduces the spin-

structure dependence expected in certain cases, whenever the CS theory is known to be a

spin-TQFT [35].

An additional feature of the choice of R-symmetry line bundle is that it determines

the allowed R-charges for matter fields. Namely, the R-charges, r, must be such that the

bundle L⊗rR is well-defined. This typically forces the R-charges to be integer-quantized,

r ∈ Z. In some special cases, we may relax this condition. In particular, in the special case

of a topologically trivial R-symmetry line bundle:

LR ∼= O , (1.25)

we may allow arbitrary real R-charges, r ∈ R. Such backgrounds are particularly important

if we want to study the N = 2 superconformal field theories (SCFT) that may appear in the

IR of UV-free gauge theories. Indeed, the superconformal R-charges are often irrational,

due to mixing of the UV R-charge with abelian flavor symmetries.5 A topologically trivial

U(1)R line bundle is allowed only on certain choices of M3. Important examples are the

so-called squashed sphere S3
b , and more generally the squashed lens spaces L(p,−1)b. These

examples belong to more general family of Seifert manifolds with topologically trivial LR,

the “spherical manifolds,” which are described in section 3.6. (Other interesting examples

are the torus bundles described in section 3.5.)

1.4 Parity anomaly, Chern-Simons contact terms and supersymmetry

In this work, we are careful to treat fermions in a manner consistent with gauge invariance

and the parity anomaly [36–38] — see [39–42] for detailed recent discussions. Since our

treatment differs from most of the supersymmetric localization literature, let us elaborate

on this point here. For completeness, we provide more background material on 3d fermions,

the parity anomaly, and supersymmetric CS terms, in appendix A.

5The SCFT R-charges can often be determined by F-maximization [8, 12].

– 6 –
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Parity anomaly and CS contact terms. Consider a massless Dirac fermion ψ coupled

to a background gauge field Aµ. The parity anomaly is the statement that we cannot

quantize ψ while preserving both three-dimensional parity6 and gauge invariance. In this

work, we always wish to preserve gauge invariance, and therefore the effective action Seff [A]

obtained after integrating over the (possibly massless) fermions generally violates parity.

The relevant parity-violating terms contribute to the imaginary part of Seff [A]. They

are conveniently captured by parity-odd contributions to the two-point functions of con-

served currents [39], with coefficients denoted by κ ∈ R. Consider various abelian sym-

metries U(1)a coupled to our fermions. (The generalization to non-abelian symmetries is

straightforward.) In a general theory, we have the contributions:

κab , κg , (1.26)

where κab is the contribution from the two-point functions of U(1)a conserved currents,

and κg is the gravitational contributions (from the two-point function of the stress-energy

tensor). The κ coefficients in (1.26) are called the “Chern-Simons contact terms,” by a

slight abuse of notation. They are physical modulo integers. This is because we always

have the freedom of adding Chern-Simons terms to the effective action:

Seff [A] → Seff [A] + k SCS[A] + kg Sgrav[g] , (1.27)

where SCS and Sgrav are the U(1) and gravitational CS actions, respectively (with g a

background metric). The CS levels k and kg are integer-quantized, as required by gauge

invariance. The shift (1.27) induces a shift of the CS contact terms:

κ→ κ+ k , κg → κg + k . (1.28)

In the UV, the gauge theory is free, and the only contribution to κ is from free fermions

coupled to gauge fields, whether dynamical gauge fields or background gauge fields for

global symmetries, and from the CS terms themselves.7 Consider then a single free fermion

ψ coupled to Aµ with U(1) charge 1. One can consider the so-called “U(1)− 1
2

quantization”

for ψ, which corresponds to having the UV contact terms:8

κ = −1

2
, κg = −1 . (1.29)

Any other choice of quantization is related to this one by a shift of the UV CS levels, as

in (1.28), and is a matter of convention. For instance, the “U(1) 1
2

quantization” would

correspond to κ = 1
2 and κg = 1. Importantly, for a single Dirac fermion, there exists no

6On R3 with Euclidean signature, parity acts by inverting the sign of a single coordinate.
7Of course, along the RG flow, we should distinguish between dynamical and background gauge fields,

but in the far UV we are just quantizing free fermions in the background of some arbitrary gauge fields.

The integration over the dynamical gauge fields should be done at a later stage.
8The notation U(1)− 1

2
comes from the fact that κ = − 1

2
is often called the “effective CS level.” In this

paper, we distinguish carefully between the “CS contact term” κ, which is real (and half-integer in the free

UV), and the CS level k, which is always integer-quantized.
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gauge-invariant scheme in which κ = 0 in the UV.9 We refer to appendix A for a more

detailed discussion.

Finally, we may also consider adding a “real mass” m for ψ, which breaks parity

explicitly. In that case, we can integrate out the fermion in the IR, which has the effect of

shifting the CS contact terms according to:

δκ =
1

2
sign(m) , δκg = sign(m) . (1.30)

In particular, for a free fermion in the “U(1)− 1
2

quantization” and with a positive mass

m > 0, we obtain the net CS terms κ = κg = 0 in the IR, since the shift (1.30) cancels

the UV contribution (1.29). If m < 0 instead, we clearly obtain κ = −1 and κg = −2 in

the IR.

Quantizing the N = 2 chiral and vector multiplets. Given the above discussion,

let us state our conventions for quantizing fermions in N = 2 supersymmetric theories

with a U(1)R symmetry. In the supersymmetric theory, we distinguish between the gauge

(dynamical or flavor) Chern-Simons terms, the mixed gauge-R CS terms, the R-R CS term,

and the gravitational CS term. The supersymmetrization of these terms is reviewed in

appendix A. Given some U(1)a gauge (or flavor) symmetries, we denote the corresponding

CS contact terms by:

κab , κaR , κRR , κg , (1.31)

respectively.

Consider first a chiral multiplet Φ of U(1)a charges Qa and R-charge r. Unless oth-

erwise stated, we always use the “U(1)− 1
2

quantization” described above for the Dirac

fermion ψ in Φ, which then contributes to the CS contact terms as:

Φ :

δκab = −1
2Q

aQb , δκRR = −1
2(r − 1)2 ,

δκaR = −1
2Q

a(r − 1) , δκg = −1 .
(1.32)

Consider next the vector multiplet V. It is convenient to decompose the gauge fields into

abelian gauge fields in vector multiplets Va along a maximal torus H ∼=
∏
a U(1)a, and

into the components along the non-trivial roots. Then, we choose a so-called “symmetric

quantization” for the gauginos, such that they contribute trivially to the contact terms

involving the gauge symmetry:

V : δκab = 0 , δκaR = 0 . (1.33)

We must also specify the U(1)R and gravitational CS contact terms. In our conventions,

each gaugino component contributes κRR = 1
2 and κg = 1. Therefore, the adjoint gaugino

in the full vector multiplet contributes:

V : δκRR =
1

2
dim(G) , δκg = dim(G) , (1.34)

in the UV. We explain our motivation for this particular choice in appendix A.

9Similarly, we have κg = − 1
2

mod 1 for a Majorana fermion. In this work, we only consider Dirac

fermions (that is, an even number of Majorana fermions), so that κg will always be integer in the UV.
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Concretely, the quantization requirements (1.32) and (1.33)–(1.34) constrain the regu-

larization of the various one-loop determinants that appear in supersymmetric localization

formulas, as we will see in later sections. Implicitly, a lot of the supersymmetric localization

literature used regularizations that set every CS contact term to zero, in the UV, κ(UV) = 0,

thus preserving parity but violating gauge invariance. In this paper, as in [27], we are care-

ful to regulate the one-loop determinants consistently with gauge-invariance. This leads to

subtle corrections with respect to many previous results in the literature. Those corrections

turn out to be important when performing finer checks of the supersymmetric partition

functions, for instance when testing supersymmetric dualities.

1.5 Supersymmetric partition functions and sum over Bethe vacua

As described above (1.19), we expect that the supersymmetric partition function on a

general Seifert manifold, M3, can be computed as the expectation value of a suitable

“geometry changing line operator” LM3 inserted along the circle on the A-twisted S2×S1

geometry. Consequently, the explicit expression for the partition function ZM3 has a similar

form to that of the expectation value of line operators in S2 × S1.

The partition function of an N = 2 supersymmetric gauge theory on S2 × S1, with

the topological A-twist on S2, was computed in [34] using supersymmetric localization in

the UV, and in [30] using topological field theory methods. The S2 × S1 computation has

been generalized to the product space Σg×S1 in [26, 30, 31]. More recently, we considered

the case of the three-manifold Mg,d, a principal S1 bundle of degree d over the smooth

Riemann surface Σg [27].10 In all cases, the partition function can be computed using two

complementary methods. Let us discuss them in turn.

1.5.1 TQFT computation

The first method exhibits the partition function as an observable in the 3d A-model [22, 27,

30]. As for any two-dimensional TQFT, A-model observables can be written as a trace over

a suitable basis of field theory vacua. In the case of the 3d A-model, these two-dimensional

vacua are called the “Bethe vacua,” because the equations determining them coincide with

the Bethe equations for a certain class of integrable spin chains [30, 44].

The 3d A-model on Σg is fully characterized by the two-dimensional twisted superpo-

tential, W(u, ν), on the one hand, and by the effective dilaton, Ω(u, ν), on the other hand.

These two functions are determined by the UV Lagrangian, and control the low-energy

effective action on the Coulomb branch of any effective 2d N = (2, 2) gauge theory. They

depend (locally) holomorphically on the gauge parameters u and on the global-symmetry

parameters ν.11 The “Bethe equations” determining the supersymmetric vacua are written

in terms of the twisted superpotential alone, according to:

Πa(u, ν) = exp

(
2πi

∂W(u, ν)

∂ua

)
= 1 , a = 1, · · · , rk(G) . (1.35)

10See also [43] for an early computation on that same geometry.
11In addition to the flavor symmetry parameters, there is also an dependence on the U(1)R background

gauge field introduced in section 1.3, as we will see in detail later in the paper.
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We denote by SBE the set of Bethe vacua:

SBE =
{
ûa

∣∣ Πa(û, ν) = 1 , w · û 6= û, ∀w ∈WG

}
/WG . (1.36)

Here, we exclude solutions û which are fixed by some Weyl group elements, and count the

remaining solutions up to the Weyl group action. Then, the partition function on Σg × S1

— also known as the genus-g twisted index — can be computed as [26, 30, 31]:

ZΣg×S1(ν) =
∑
û∈SBE

H(û, ν)g−1 , (1.37)

with H is the handle-gluing operator introduced in (1.17). Its explicit expression in the 3d

A-model is [30]:

H(u, ν) = e2πiΩ(u,ν) det
a,b

∂2W(u, ν)

∂ua∂ub
. (1.38)

Note that, in this approach, we assume that there are a finite number of isolated Bethe

vacua. This is the case in many interesting theories. In particular, in the presence of

enough flavor symmetries, one can turn on generic real mass parameters and the vacua are

then isolated.

A-model observables and geometry-changing line defects. A general A-model

observable can be computed as:

〈LiLj · · · 〉Σg×S1 =
∑
û∈SBE

Li(û, ν)Lj(û, ν) · · · H(û, ν)g−1 , (1.39)

with the insertion of any half-BPS line (1.14) in the 3d A-model. In [27], we considered the

principal S1 bundle Mg,d, which is realized by inserting the so-called “ordinary” fibering

operator, L = F . It can be written explicitly in terms of the twisted superpotential W:

F(u, ν) = exp

(
2πi

(
W(u, ν)− ua

∂W
∂ua
− να

∂W
∂να

))
, (1.40)

where the sum over repeated indices is implicit. Therefore, we have [27]:

ZMg,d
(ν) =

∑
û∈SBE

F(û, ν)dH(û, ν)g−1 . (1.41)

In this paper, we want to generalize those results to any half-BPS background

(M3,LR), withM3 a Seifert manifold (1.8), and LR the R-symmetry line bundle discussed

above, which determines a choice of spin structure over M3. We do this by introducing

the “(q, p) fibering operator” (1.18). More precisely, we should consider the object:

Gq,p(u, ν)n,m , (1.42)

with q and p some mutually prime integers. Without loss of generality, we take q > 0. The

integers n and m in (1.42) refer to “fractional fluxes” localized at the exceptional fiber,

for the gauge and global symmetries, respectively, described in more detail below. Unlike
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the handle-gluing operator (1.38) or the “ordinary” fibering operator (1.40), the fibering

operator (1.42) cannot be expressed in a simple way in terms of the twisted superpotential

and effective dilaton alone. We can nevertheless write down explicit expressions for this

operator in terms of the UV Lagrangian of the theory. For instance, the contribution of a

U(1) Chern-Simons term at level k is given by:

GCS
q,p (u)n = (−1)nk(1+t+lRt+2νRs) exp

(
−πik

q

(
pu2 − 2nu+ tn2

))
. (1.43)

Here, t and s are integers such that qs+pt = 1, while the parameters lR and νR are related

to the choice of U(1)R bundle LR, as we will explain in detail later on. As another example,

a chiral multiplet Φ of unit U(1) charge contributes:12

GΦ
q,p(u) = exp

(
q−1∑
l=0

{
p

2πi
Li2(e

2πiu+tl
q ) +

pu+ l

q
log
(

1− e2πiu+tl
q

)})
, (1.44)

with the integer t defined as before. In a general theory, there can be contributions from

various U(1)R and gravitational Chern-Simons terms, and there is also an important con-

tribution from the vector multiplet. These are described in full detail in section 4. The

Seifert fibering operator for a general gauge theory is built by assembling these building

blocks, for fixed gauge and flavor fluxes n and m. Then, the “physical” (q, p) fibering

operator of the gauge theory is obtained by summing over the fractional gauge fluxes n,

according to:

Gq,p(u, ν)m =
∑

n∈ΓG∨ (q)

GCS
q,p (u, ν)n,m Gmatter

q,p (u, ν)n,m Gvector
q,p (u)n . (1.45)

Here, ΓG∨(q) is the Zq reduction of the lattice of magnetic fluxes, namely:

ΓG∨(q) =
{
n ∈ h

∣∣ ρ(n) ∈ Z, ∀ρ ∈ Λchar ; n ∼ n + qλ, ∀λ ∈ Λcochar

}
, (1.46)

with Λchar and Λcochar the character and co-character lattices of G, respectively.

The M3 partition function. Given the above discussion, the geometry-changing line

operator (1.19) can be written as:

LM3(u, ν)m ≡ GM3(u, ν)mH(u, ν)g , (1.47)

with GM3 the Seifert-fibering operator, which is determined by the Seifert fibration (1.8):

GM3(u, ν)m ≡ F(u, ν)d
n∏
i=1

Gqi,pi(u, ν)mi . (1.48)

Here, the (q, p) fibering operators is given as in (1.45). Note that the ordinary fibering

operator is a special case of the (q, p) fibering operator, with (q, p) = (1, 1). We should

12Here we choose a vanishing R-charge r = 0, and we turn off the fractional fluxes, for simplicity. The

general expressions are given in section 4.
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also anticipate that the individual fibering operators appearing in (1.48) are generally not

completely well-defined for every choice of LR in (1.23). Nonetheless, their product in (1.48)

is always well-defined (assuming the half-BPS geometry itself is well-defined globally).

Thus, we have obtained an explicit expression for the supersymmetric partition on any

Seifert manifold, as a sum over the Bethe vacua of the 3d N = 2 gauge theory:

ZM3(ν)m =
∑
û∈SBE

GM3(û, ν)mH(û, ν)g−1 . (1.49)

This is the main result of this paper.

1.5.2 Supersymmetric localization computation

An alternative approach to the TQFT computation, which can be shown to be completely

equivalent, is to follow the standard localization procedure and to deform the UV action

by a suitable Q-exact term. This concentrates the path-integral to the neighborhood of

a finite dimensional space, MBPS , which consist of field configuration that satisfies the

BPS equations:

σ = (constant) , f01 = f01̄ = 0 , D = 2if11̄ + σH . (1.50)

Here, H is a supergravity background scalar proportional to the rational number:

c1(L0) = d +

n∑
i=1

pi
qi
. (1.51)

The quantity (1.51) is a topological invariant of the Seifert fibration. The case c1(L0) = 0

and c1(L0) 6= 0 are qualitatively different. Let us first assume that c1(L0) 6= 0. By a

standard abelianization procedure [45, 46], the path integral reduces to a finite dimensional

integral over the complex variable u ∈ hC, valued in the complexified Cartan subalgebra of

G. The BPS equations also allow non-trivial gauge line bundles on the base Σ̂ of the Seifert

fibration, and we should sum over all the lines bundles L on M3 that can be obtained as

pull-backs of the orbifold line bundles L on Σ̂ — that is, L = π∗(L). These line bundles

form a group, which we denote by:

P̃ic(M3) ∼= π∗
(

Pic(Σ̂)
)
, (1.52)

with Pic(Σ̂) the orbifold Picard group on Σ̂. After integrating out the gaugino zero modes

and the auxiliary field D in the vector multiplet, which can be done in the same way as

in [26, 27, 31], we can write the partition function as:

ZM3(ν) =
1

|WG|
∑

(n0,n1,··· ,nn)

∈P̃ic(M3)

∫
C(η)

drk(G)u e−SCS(u,ν)Z1-loop
(n0,n1,··· ,nn)(u, ν)Hg(u, ν) . (1.53)

The various factors in the integrand will be defined in section 6. As in [27], the choice of

the contour C(η) in (1.53) can be rigorously derived in the rank-one case, while it remains

– 12 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

as a conjecture for the higher rank case, due to a number of subtleties that we will review

in section 6.

One can check that the integrand of (1.53) is invariant under large gauge transforma-

tion along the Seifert fiber, which acts on the gauge parameters as:13

u→ u+ 1 , n0 → n0 + d , ni → ni + pi . (1.54)

This is a trivial operation in P̃ic(M3), which ensures that the summation in (1.53) is well-

defined. On the other hand, there exists an alternative way of fixing the gauge under this

large gauge transformation [47, 48]. Namely, one can take a quotient on the “classical

Coulomb branch” spanned by the variables u ∈ hC, by restricting them to:

u ∈ hC/Λcochar . (1.55)

In this way, one arrives at the formula:

ZM3(ν) =
1

|WG|
∑

n0∈ΓG∨

∑
{(n1,··· ,nn)|

ni∈Γ∨G(qi),∀i}

∫
C0(η)

drk(G)u e−SCS(u)Z1-loop
(n0,n1,··· ,nn)(u)Hg(u) , (1.56)

where the contour C0(η) can be obtained by restricting C(η) in (1.53) to the “strip” (1.55)

in the Coulomb branch variables. Here, ΓG∨ is the ordinary lattice of magnetic fluxes.

Now, the formula (1.56) is also valid for Seifert manifolds with c1(L0) = 0. For

instance, in the case of the twisted index onM3
∼= Σg×S1, the sum over the ni with i > 0

trivializes, while the sum over n0 is a sum over the magnetic fluxes on Σg, thus reproducing

the localization formula derived in [26, 31, 34].

In the case of a gauge group G = U(1), one can explicitly perform the summation over

n0 in (1.56), as explained in [27]. We will show that the resulting expression is equivalent

to the Bethe-sum formula (1.49) which we obtained from the two-dimensional TQFT point

of view.

We will also show that the contour C(η) used in (1.53) can be continuously deformed to

a non-compact integral Cσ, the “σ-contour,” which connects the region Im(u)→ −∞ with

the region Im(u) → +∞. This reproduces the well-known expressions for the partition

functions on lens spaces in earlier literature [10, 13, 18, 49], which were given as an integral

over the constant mode of the real scalar σ in the vector multiplet.

When G is non-abelian and 2g − 2 + n ≥ 0, the abelianized path integral becomes

singular at the loci where the non-abelian symmetry enhances. The simple “σ-contour”

integral formula must be modified in generic cases due to these additional singularities in

the integrand. We will briefly discuss this subtlety in section 6. On the other hand, the

Bethe-sum formula (1.49) is always valid, for any gauge group of the form (1.12), with the

Bethe vacua defined as in (1.36). This claim is supported by a number of highly non-trivial

consistency checks.

13For non-abelian G, it is understood that the shifts are by elements of Λcochar.
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1.6 Testing supersymmetric dualities

A common application of exact results for supersymmetric partition functions is to test

field theory dualities — see e.g. [50–52]. In particular, since the supersymmetric partition

functions are RG-invariant, we can test infrared dualities — that is, the claim that two

different gauge theories flow to the same infrared fixed point. A prime example of that are

the 3d infrared dualities [52–55] similar to 4d Seiberg duality [56].

Given two infrared-dual theories T and T D, their supersymmetric partition functions

must agree:

ZTM3
(ν)m = ZT

D

M3
(ν)m , (1.57)

for any half-BPS geometry M3. By now, many three-dimensional dualities are firmly

established, and therefore we can also consider verifying (1.57) as a strong consistency

check on our results for ZM3 . This is what we will do. Given the 3d A-model formula (1.49)

for the partition function, the duality relation (1.57) is equivalent to the statement that

the various (q, p)-fibering operators agree on dual Bethe vacua, namely:

GTq,p(û, ν)m = GT Dq,p (ûD, ν)m (1.58)

Here, û denotes a solution to the Bethe equation in theory T , and ûD denotes a solution to

the dual Bethe equation in the dual theory T D, with û and ûD paired by the duality map.

In previous work, similar duality relations were checked for the handle-gluing operator [26]

and for the ordinary fibering operator [27].14 The duality relations (1.58) are hard to prove

in general, but we were able to checked them numerically, for a very large number of pairs

of mutually-prime integers (q, p), and for a large number of infrared dualities.

For instance, consider Aharony duality [53], which is an infared duality between a

U(Nc) gauge theory with Nf chiral multiplets in the fundamental and anti-fundamental

representations (that is, Nf “flavors”), on the one hand, and a U(Nf −Nc) gauge theory

on the other hand, schematically:

T : U(Nc) + Nf (Φ, Φ̃) ←→ T D : U(Nf −Nc) + Nf (ΦD, Φ̃D) . (1.59)

The Bethe equation of both theories are determined by a certain polynomial:

P (x, y) , x ≡ e2πiu , y = e2πiν , (1.60)

of degree Nf in a single variable x. Here, ν denotes collectively various flavor parameters for

the SU(Nf )2 ×U(1)2 global symmetry. A Bethe vacuum in the U(Nc) theory corresponds

to a choice of Nc distinct roots, x̂a = e2πiûa , amongst the Nf roots of P (x, y), the “Bethe

roots.” The dual vacuum in the U(Nf −Nc) theory corresponds to choosing x̂Dā = e2πiûDā

the complement of Nf −Nc roots. Then, the duality relations (1.58) depends on seemingly

“miraculous” properties of the fibering operators Gq,p(u, ν)m in (1.45) when evaluated on

the Bethe roots.

It would be interesting to prove those relations analytically, presumably using some

“number theoretic” reasoning. In any case, the exact match that we found, numerically and

in many examples of 3d dualities, already provides a very strong test of our main results.

14We will revisit those cases as well, taking into account the spin-structure dependence of the answer.
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1.7 Lens spaces and holomorphic blocks

Lens spaces are an important class of thee-manifolds that admit supersymmetric back-

grounds. Topologically, we define the lens space L(p, q), for any pair of mutually prime

integers p and q (with p 6= 0), as the quotient:

L(p, q) ∼= S3/Zp , Zp :
(
z1 , z2

)
∼
(
e

2πiq
p z1 , e

2πi
p z2

)
, (1.61)

where the three-sphere S3 is viewed as the unit sphere, {|z1|2 + |z2|2 = 1}, inside C2.

Important special cases are:

S3 ∼= L(1, 1) , L(p,−1) , L(p, 1) ∼=M0,p . (1.62)

namely the three-sphere itself, and certain “simpler” lens spaces S3/Zp. Every lens space

supersymmetric background is part of a continuous one-parameter family, generally indexed

by a complex “squashing parameter” b ∈ C. The supersymmetric partition function on the

(squashed) three-sphere S3
b was studied in [5, 9, 10, 12–14, 49, 57–59]. The generalization

to the (squashed) lens space L(p,−1)b was considered in [11, 15, 60–62]. The three-sphere

S3
b and the lens space L(p,−1)b are examples of supersymmetric backgrounds with a trivial

R-symmetry line bundle, as in (1.25); they are the only lens spaces with that property. The

third example in (1.62) consists of the degree-p principal circle bundle over S2 as studied

in [27, 43, 63].15 The general L(p, q)b lens space partition functon was studied in [18].

Lens space are rather special amongst half-BPS geometries, due to the continuous

parameter b — most half-BPS Seifert geometries are rigid and admit no such “squashing”

deformation. Moreover, for generic b ∈ C, the half-BPS background is actually not of

the form studied in the present work, because the Killing vector K in the supersymmetric

algebra (1.1) does not generate the Seifert fibers. This is because, on L(p, q)b with any b,

the Killing vector appearing in the curved-space supersymmetry algebra takes the form:

K(b) = b−1
(
iz1∂z1 − iz̄1∂z̄1

)
+ b
(
iz2∂z2 − iz̄2∂z̄2

)
. (1.63)

For a generic b, this Killing vector is complex. Even for b ∈ R, its orbits are non-compact

unless we impose the rationality condition:

b2 ∈ Q . (1.64)

Precisely in this case, the orbits of the U(1) action generated by K(b) span the S1 fibers of

a Seifert fibration structure on L(p, q). More precisely, for:

b2 =
q1

q2
, q1, q2 ∈ Z , (1.65)

the lens space L(p, q)b admits a presentation as a Seifert fibration over S2(q1, q2), a genus-

zero Riemann surface, with two exceptional fibers:

L(p, q)b ∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , (1.66)

15To avoid any possible confusion, let us note that, in [27], we chose a different naming convention for

L(p, q) (which is the convention more often used in the physics literature), so that L(p, p − 1) here was

named L(p, 1) there, and vice-versa.
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and with the identifications p = p1q2 +p2q1 and q = q1s2−p1t2 between the lens space and

Seifert fibration parameters.16 The lens spaces are the only Seifert manifolds that admit

an infinite number of inequivalent Seifert fibrations, which are all accounted for by the

rational squashing parameters, b2 ∈ Q.

The above discussion assumed p 6= 0, but it will be very natural to also define

the spaces:

L(0, 1) ∼= S2
ε × S1 , L(0,−1) ∼= S2 × S1 . (1.67)

Topologically, L(0, 1) and L(0,−1) have the same topology, S2 × S1, but they differ very

much as supersymmetric backgrounds. In our notation, L(0, 1) corresponds to the (refined)

topologically-twisted supersymmetric index [34]. For rational values of the “refinement pa-

rameters” ε, L(0, 1) is again a Seifert fibration and it fits into our formalism (in particular,

for ε = 0, this gives the twisted index discussed above). On the other hand, the supersym-

metric background L(0,−1) admits no Seifert description. It corresponds to the “ordinary”

supersymmetric (or superconformal) index, without topological twist [64, 65].

Holomorphic blocks and fibering operators. We will demonstrate that our formal-

ism for general Seifert manifolds reproduces, in the special case above, the known results

for partition functions on rationally-squashed lens spaces. In particular, we clarify many

subtle features of these partition functions, including a detailed discussion of the possible

R-symmetry backgrounds.17

We also relate our results to the “holomorphic blocks” of Beem, Dimofte and Pas-

quetti [17]. The holomorphic blocks can be defined as an uplift of the two-dimensional

vortex partition function, or, equivalently, as the twisted partition function on a solid

torus, D2 ×τ S1. In [17, 18, 67] it was shown that the supersymmetric partition function

on lens spaces can be constructed by “fusion” of two holomorphic blocks:

ZL(p,q)b(ν) =
∑
α∈SBE

Bα(g · ν,−g · τ)Bα(ν, τ) , (1.68)

schematically. Here, ν are flavor parameters, τ is a geometric parameter related to the

squashing b, and g is an SL(2,Z) element used to glue the two solid tori into a closed

three-manifold — corresponding to the genus-one Heegaard splitting of L(p, q) into solid

tori. The sum in (1.68) is over the Bethe vacua, and therefore (1.68) is very reminiscent of

our general result (1.49) for Seifert manifolds. Indeed, we will show that, in the limit of b2

rational, (1.68) becomes equivalent to (1.49).

The holomorphic blocks are actually singular in the limit where b2 becomes rational,

but that singular behavior encodes interesting physics. In particular, that limit is governed

by the twisted superpotential and by the effective dilaton [17]. We will show that, in the

limit of rational squashing, the holomorphic blocks essentially reduce to the (q, p) fibering

operators. This serves as an independent derivation of the fibering operators, and gives a

new perspective on the holomorphic blocks themselves. We will also clarify some technical

features of the blocks, such as their dependence on the choice of spin structure.

16As above, the integers si, ti are defined by the condition qisi + piti = 1.
17For p even, there are really two distinct L(p, q)b backgrounds, distinguished by two different spin

structures. This was first noted in [63, 66].
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1.8 Discussion and outlook

The present work can be connected to many other lines of inquiries. First of all, as a

special case of our formalism, we can study 3d N = 2 supersymmetric Chern-Simons

theory on Seifert manifolds. Supersymmetric CS theory is essentially equivalent to pure

(non-supersymmetric) CS theory, therefore we can directly compare our results to many

exact results in Chern-Simons theory [47, 48, 68–72]. This will be discussed in a separate

work [73]. See also [74] for some interesting recent work in that direction.

Another interesting research direction concerns the existence of many supersymmetric

backgrounds that admit a topologically-trivial canonical line bundle (in addition to S3
b and

the lens space L(p,−1)b), which can be used to study N = 2 superconformal field theories.

For instance, using our results, the partition function of N = 2 SCFTs can be computed

explicitly on the Poincaré homology sphere, and the obvious challenge is to understand

exactly what kind of CFT observables that quantity may encode. We hope to return to

this investigation in future work.

Supersymmetric partition functions on Seifert manifolds were previously studied in [22,

32, 75], with a particular focus on the 3d/3d correspondence [76]; in particular, the 3d A-

model played a crucial role in [22]. Let us also mention that the relation between the

integral formula (1.53) and the Bethe-sum formula (1.49) first appeared, in some special

instances, in studies of state integrals in complex Chern-simons theory [77, 78]. It would

be interesting to understand if our evaluation formula (1.49), in the case of a lens space,

can provide additional insight into multi-dimensional state-integrals. More generally, it

would be very interesting to better understand our results in the context of the 3d/3d

correspondence, wherein the supersymmetric partition functions on a given Seifert three-

manifold should be related to observables in some (possibly new) 3d TQFT.

The results of this paper can be uplifted to four-dimensional N = 1 gauge theories,

by considering complex four-manifolds that are also T 2 fibrations over a Riemann surface,

T 2 → M4 → Σ̂ [79]. In this way, one could study the most general half-BPS 4d N = 1

geometries, generalizing the approach of [80].

Finally, it would be very interesting to study boundaries and boundary conditions

in the 3d A-model, making contact with the work of, e.g., [81, 82]. Such a study would

likely lead to a deeper understanding of the fibering operators as 3d defects defined in the

UV by suitable boundary conditions (instead of the simpler two-dimensional definitions

we adopted here), and it would likely allow us to explore more interesting coupled bulk-

boundary systems exactly, using TQFT and localization techniques.

Due to its length, this paper is divided in three parts, plus appendices.

Part I gives a detailed discussion of half-BPS supersymmetric backgrounds. In sec-

tion 2, we provide an introduction to Seifert three-manifolds. On any Seifert three-manifold,

we construct a half-BPS “A-twisted” supergravity background. The formalism of that

section will be used extensively throughout the paper. In section 3, we spell out a num-

ber of interesting examples of half-BPS Seifert geometries. We pay particular attention

to lens spaces, for which we enumerate all the possible Seifert structures and choices of

pin structure.
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In Part II, we compute supersymmetric partition functions of 3d N = 2 gauge theories

on a general Seifert manifold. In section 4, we derive the result (1.49) from the point

of view of the three-dimensional A-model, by introducing various geometry-changing line

operators. In section 5, as a non-trivial test of our result, we study infrared dualities

of three-dimensional gauge theories on Seifert manifolds. In section 6, we provide an

alternative derivation of the partition function formula via Coulomb branch localization in

the UV, which leads to the expressions (1.53) and (1.56).

In Part III, we revisit the computation of supersymmetric partition functions on the

lens spaces, L(p, q). We compare our results with the previous literature and we clarify var-

ious subtleties. In section 7 and 8, we study the squashed three-sphere partition function

(M3 = S3
b ) and the refined twisted index (M3 = S2

ε×S1), respectively. In section 9, we dis-

cuss the general squashed lens space L(p, q)b in terms of holomorphic blocks, and we exhibit

the precise relation between the holomorphic blocks and the Seifert fibering operators.
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Part I

Half-BPS Seifert geometry

2 Supersymmetric backgrounds on Seifert three-manifolds

In this section, we give an introduction to the topology and geometry of Seifert three-

manifolds, following [28, 29] and [48, 72, 83]. Each Seifert fibration M3, together with

a choice of spin structure on M3, provides us with a distinct half-BPS supersymmetric

background, which we will spell out in detail.

2.1 Two-dimensional orbifolds and holomorphic line bundles

Since a Seifert manifold18 M3 can be viewed as circle bundle M3 → Σ̂g,n over a two-

dimensional orbifold Σ̂g,n, we first discuss the latter in some detail. A two-dimensional

orbifold Σ̂g,n is topologically a genus-g closed orientable Riemann surface Σg with n marked

points xi ∈ Σg, i = 1, · · · , n, called the orbifold (or ramification) points. In an open

neighborhood Ui of an orbifold point xi, the coordinate system is modeled on C/Zqi instead

of C, where qi ∈ Z>0 a positive integer. That is, in terms of a complex coordinate z(i)

centered at xi, we have a cyclic identification:

z(i) ∼ e
2πi
qi z(i) . (2.1)

An orbifold point xi has an “anisotropy parameter” qi > 1. If qi = 1 instead, the point xi
is simply a smooth marked point. We often denote the orbifold Σ̂g,n by Σ̂g(q1, · · · , qn).

Many of the familiar geometrical and topological tools can be extended to the orbifold

case, in particular, one can define vector bundles, various cohomology theories, etc., sim-

ilarly to the smooth case [84–86]. In particular, one can define a Q-valued orbifold Euler

characteristic. It takes the numerical value:

χ(Σ̂g,n) = χ(Σg) +
n∑
i=1

1− qi
qi

, (2.2)

with χ(Σg) = 2 − 2g, the Euler characteristic of the underlying smooth surface. One can

also choose a Riemannian metric compatible with the orbifold structure. A metric g(Σ̂)

is a Riemannian metric with conical singularities19 at xi, with deficit angles 2π qi−1
qi

. The

orbifold version of the Gauss-Bonnet theorem [85] reads:

1

4π

∫
Σ̂g,n

d2x
√
g RΣ̂ = χ(Σ̂g,n) . (2.3)

18Here and in the rest of this paper, every two- and three-manifold is orientable. In particular, by “Seifert

manifold” we mean “orientable Seifert manifold.” M3 is also taken to be a closed manifold.
19Near the point xi, we have:

ds2 = dr2 +
r2

q2
i

dφ2 ,

in terms of the polar coodinates z = reiφ, so that there is a deficit angle 2π qi−1
qi

.
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Physicists may be more familar with the notion of an orbifold Σ̂ as the quotient,

Σ̂ ∼= Σ/Γ, of a smooth surface Σ by a discrete group Γ. An orbifold that can be written

in this way is called “good”, otherwise it is called “bad” [29]. Almost all two-dimensional

compact orbifolds Σ̂g,n are good. The only bad orbifolds are S2(q1, q2), with q1 6= q2, a

two-sphere with two orbifold points of anisotropy parameters q1 and q2. (This includes the

cases q1 = 1 or q2 = 1. If q1 = q2 = q, we have S2(q, q) ∼= S2/Zq, which is a good orbifold.)

Example: the spindle. The orbifold S2(q1, q2) is a sphere S2 with two orbifold points,

also called a “spindle.” Consider the angular coordinates θ ∈ [0, π] and φ ∼ φ + 2π on

S2, with the Zq1 and Zq2 orbifold points at the poles θ = 0 and θ = π, respectively. The

spindle metric can be chosen as:

ds2
(
S2(q1, q2)

)
= dθ2 +

sin2 θ

f(θ)2
dφ2 , (2.4)

with the function f(θ) any smooth positive function of θ such that f(θ) = q1 + O
(
θ2
)

as

θ ∼ 0, and f(θ) = q2 +O
(
(π − θ)2

)
as θ ∼ π. Using this metric, one can check that:

1

4π

∫
d2x
√
g R =

1

f(0)
+

1

f(π)
=

1

q1
+

1

q2
, (2.5)

in agreement with (2.3).

2.1.1 Holomorphic line bundles over Σ̂

One may define an orbifold holomorphic line bundle L over Σ̂g,n, similarly to the smooth

case. Topologically, the line bundle L is fully determined by the data:

deg(L) ∈ Z , bi(L) ∈ Zqi , i = 1, · · · , n . (2.6)

The integer deg(L) is the degree of L. On the open set Ui centered at the orbifold point

xi, the local trivialization is modeled on (C× C∗)/Zqi , with the quotient:(
z(i) , s(i)

)
∼
(
e

2πi
qi z(i) , e

2πibi(L)

qi s(i)

)
, (2.7)

with s(i) the fiber coordinate. Note that L is an ordinary line bundle over the underlying

smooth Rieman surface Σg if and only if bi(L) = 0 mod qi, ∀i. We may also introduce a

connection A on L. The (integrated) first Chern class of L may be defined as:

c1(L) =
1

2π

∫
Σ̂g,n

dA . (2.8)

In terms of the invariants (2.6), it reads:

c1(L) = deg(L) +

n∑
i=1

bi(L)

qi
. (2.9)

Unlike the degree, the first Chern class transforms simply under tensor product:

c1(L1 ⊗ L2) = c1(L1) + c1(L2) . (2.10)
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On the other hand, the invariants bi satisfy:

bi(L1 ⊗ L2

)
= bi(L1) + bi(L2) mod qi , 0 ≤ bi(L1 ⊗ L2

)
< qi . (2.11)

It follows that the degree of the tensor product line bundle is:

deg(L1 ⊗ L2

)
= deg(L1) + deg(L2) +

∑
i

⌊
bi(L1) + bi(L2)

qi

⌋
. (2.12)

Here, bxc is the floor function:

bxc = max{n ∈ Z |n ≤ x} . (2.13)

Let us denote by:

L ∼=
[
d ; g ; (q1, b1), · · · , (qn, bn)

]
, d = deg(L) , bi = bi(L) , (2.14)

the line bundle L over Σ̂g,n. In the following, it will sometimes be useful to relax the con-

straints 0 ≤ bi < qi on the fiber invariants bi. That is, we may take bi ∈ Z in [d ; g ; (qi, bi)
]
,

with the understanding that a shift of bi → bi+qi, at any given orbifold point, is equivalent

to shifting the degree by one unit. We then have the equivalences:[
d ; g ; (qi, bi)

] ∼= [d−∑
i

mi ; g ; (qi, bi + miqi)
]
, (2.15)

for any (mi) ∈ Zn. The first Chern class (2.9) is invariant under such shifts.

We should note that, as in the case of an ordinary line bundle, the holomorphic line

bundle L is also characterized by some continuous holomorphic data, corresponding to flat

connections valued in H0,1(Σ̂g,n).

Canonical line bundle and spin structures. The canonical line bundle K over Σ̂g,n

has the topological invariants:

deg(K) = 2g − 2 , bi(K) = qi − 1 . (2.16)

Its first Chern class is equal to minus the Euler characteristic (2.2), c1(K) = −χ(Σ̂). A

spin structure on Σ̂g,n is a line bundle
√
K such that

√
K ⊗
√
K ∼= K. Such a square root:

√
K ∼=

[
g − 1 ; g ;

(
qi,

qi − 1

2

)]
, (2.17)

exists if and only qi ∈ 2Z+1, ∀i. More generally, we will need to consider a spinc structure

on Σ̂, which always exists — that is, on a given Σ̂, we may always introduce another line

bundle L such that K ⊗ L possesses a well-defined square root. We will come back to this

point later in the discussion.

Riemann-Roch-Kawasaki theorem. Let h0(L) = dimH0(Σ̂, L) denote the number

of holomorphic sections of the line bundle L over Σ̂g,n. The Riemann-Roch-Kawasaki

theorem [86] states that:

h0(L)− h0(L−1 ⊗K) = deg(L) + 1− g , (2.18)

generalizing the smooth case.
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The orbifold Picard group. Let us denote by Pic(Σ̂) the group of linearly inequivalent

line bundles, with the group multiplication given by the tensor product. Let us denote by

L0 and Lj the elementary line bundles:

L0
∼=
[
1 ; g ; (qi, 0)

]
, Lj ∼=

[
0 ; g ; (qi, δij)

]
. (2.19)

That is, L0 is an ordinary line bundle of degree 1, while the line bundle Lj is an elementary

orbifold line bundle with bj = 1 at the orbifold point xj , and bi = 0 for i 6= j. The Picard

group takes the form:

Pic(Σ̂) =
{
L0, Li

∣∣∣ L⊗qii = L0 ∀i
}
. (2.20)

Let us emphasize that, in general, Pic(Σ̂) is not freely generated. To summarize, any

L ∈ Pic(Σ̂) can be written as:

L ∼= L⊗n0
0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nnn , (2.21)

for some integers n0, ni, giving d = n0, bi = ni up to the equivalences (2.15). It follows

from the above discussion that:

deg(L) = n0 +

n∑
i=1

⌊
ni
qi

⌋
, bi(L) = ni mod qi , c1(L) = n0 +

n∑
i=1

ni
qi
. (2.22)

In the following, when thinking of the connection A on L as an abelian gauge field, we will

often refer to n0 and ni as the “ordinary flux” and the “fractional fluxes” of the U(1) gauge

field A, respectively. They can be thought of as gauge fluxes localized at a smooth point

x0 ∈ Σ̂ or at the orbifold points xi:

dA = 2π n0 δ
2(x− x0) + 2π

∑
i

ni
qi
δ2(x− xi) , c1(L) =

1

2π

∫
Σ̂
dA . (2.23)

The statement Lqii = L0 is the statement that qi units of fractional flux at xi are equivalent

to a single unit of ordinary flux, which can then be moved away from the orbifold point.

2.2 Seifert three-manifolds: definition and properties

Given any line bundle L over the two-dimensional orbifold Σ̂, we may consider the associ-

ated circle bundle S[L]. The total space of S[L] is a smooth three-manifold if and only if,

at each each orbifold point xi, the integers qi and bi(L) are mutually prime. This follows

simply from (2.7). A Seifert manifold is a closed three-manifoldM3 endowed with a Seifert

fibration:

S1 −→M3
π−→ Σ̂ , (2.24)

as we explain momentarily. Any Seifert manifold M3 can be viewed as the circle bundle

associated to a certain defining line bundle L0 over the orbifold Σ̂g,n(q1, · · · , qn), with

topological invariants:

deg(L0) = d , bi(L0) = pi , gcd(qi, pi) = 1 , ∀i . (2.25)
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(a) T (1, 0). (b) T (2, 1). (c) T (3, 2).

Figure 1. Solid fibered tori T (q, t). The central fiber, shown in red, is exceptional if q > 1. Generic

fibers are shown in black.

We summarize this construction by the standard short-hand notation:

M3
∼= S[L0] ∼=

[
d ; g ; (q1, p1) , · · · , (qn, pn)

]
. (2.26)

The integers d and (qi, pi) appearing in (2.26) are the so-called normalized Seifert invariants

if 1 ≤ pi < qi. We will often consider the unnormalized invariants with pi ∈ Z, taking into

account the equivalences (2.15). Moreover, it is possible to relax the condition that qi > 0,

taking into account the equivalence (qi, pi) ∼= (−qi,−pi) for each exceptional fiber. In the

following, we will always choose qi > 0 unless otherwise stated. For future reference, let us

write down the first Chern class:

c1(L0) = d +

n∑
i=1

pi
qi
. (2.27)

This quantity is independent of the specific normalization of the Seifert invariants, since it

remains invariant under the shift d → d − 1, pi → pi + qi, as well as under the inversion

(qi, pi)→ (−qi,−pi), for any i.

A Seifert fibration (2.24) is a smooth map π :M3 → Σ̂ such that any point x ∈ Σ̂ has

a neighborhood D2 ⊂ Σ̂ (with x at r = 0 ∈ D2, the center of the disk) whose pre-image

is isomorphic to a solid fibered torus, π−1(D2) ∼= T (q, t). Here we define

T (q, t) ∼= D2 ×t/q S1 , (2.28)

to be obtained by gluing the two disk boundaries of the cylinder D2 × I with an angular

twist 2πt/q, with t ∈ Z and gcd(q, t) = 1. In the local coordinates (r, ϕ, ψ̃), with r ∈ [0, 1),

ϕ ∈ [0, 2π) the polar coordinates on the disk D2, and ψ̃ ∈ [0, 2π) the angular coordinate

on S1, we identify: (
ψ̃ , ϕ

)
∼
(
ψ̃ + 2π , ϕ+

2πt

q

)
. (2.29)

For q > 1, the fiber S1 at r = 0 is an exceptional Seifert fiber. There can only be a

finite number of exceptional fibers, at a finite number of points xi ∈ Σ̂ (i = 1, · · · , n). The

neighborhood of an exceptional fiber is illustrated in figure 1. At any smooth point x0 ∈ Σ̂,

we simply have π−1(D2) ∼= T (1, 0).

This description of M3 is related to the S1 bundle description (2.26) as follows. For

T (1, 0) ∼= D2 × S1, we clearly have a (trivial) circle fibration structure over the disk,
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corresponding to the neighborhood of a smooth point on Σ̂. For T (q, t), the neighborhood

of an exceptional fiber, on the other hand, we can obtain a Zq orbifold trivialization D2×S1

of the form (2.7), by considering the q-covering T (1, 0) → T (t, q). Note that the generic

fiber (at r = r0 > 0) in T (q, t) winds q times around the torus. Let us define the coordinate

ψ = ψ̃/q, so that the generic fiber has length 2π, and the singular fiber (at r = 0) has

length 2π/q. Then, the identification (2.29) becomes (ψ,ϕ) ∼ (ψ+2π/q, ϕ+2πt/q), which

is equivalent to:(
ϕ , ψ

)
∼
(
ϕ+

2π

q
, ψ +

2πp

q

)
, with pt = 1 mod q , (2.30)

reproducing the local trivialization (2.7) at an orbifold point.20

Surgery construction. Any Seifert manifold can be constructed by some simple surgery

operations, as summarized in section 1.1. Consider a Seifert manifold M3 presented as

in (2.26). One may add a new exceptional fiber of type (q, p), as follows. Consider cutting

out T (1, 0) ∼= D2×S1 around a generic fiber, with D2 a small disk around the smooth point

on the base. We thus obtain a three-manifold M̃3 with boundary ∂M̃3
∼= T 2 ∼= −∂D2×S1.

One can then glue back D2 × S1 along the boundary with an SL(2,Z) twist, to obtain a

new closed three-manifold. If (ϕ,ψ) and (ϕ′, ψ′) denote the angular coordinates on the T 2

boundary of M̃3 and D2 × S1, respectively, we glue the boundaries according to:(
ψ

ϕ

)
= M

(
ψ′

ϕ′

)
, M =

(
q −t
p s

)
∈ SL(2,Z) . (2.31)

This introduces a new (q, p) fiber, for q, p two mutually prime integers; by convention, we

choose q > 0. In particular, this introduces a new Zq orbifold point on the base of the

Seifert fibration. The special case:

M =

(
1 0

1 1

)
(2.32)

leaves the base invariant. The introduction of such a “(1, 1) fiber” is equivalent to shifting

the degree, d → d + 1. In this way, we may obtain the Seifert manifold (2.26) starting

from the trivial fibration:

Σg × S1 ∼=
[
0 ; g ; ] , (2.33)

and performing surgery to introduce the exceptional fibers (1,d) and (qi, pi), i = 1, · · · , n.

One may also consider the reverse process, by performing surgery at exceptional fibers.

Note that s, t ∈ Z in (2.31) are not fully determined by:

qs+ pt = 1 . (2.34)

Given a solution (s, t), we have an infinite number of solutions (s+np, t−nq), n ∈ Z. This

shift of (s, t) corresponds to:

M →MTn , T =

(
1 1

0 1

)
, (2.35)

which does not affect the topology of the resulting thee-manifold.

20The integer pairs [q, t] are called the orbit invariants and the integer pairs (q, p) are called the Seifert

invariants [28]. The integer t ∈ Zq is the so-called modular inverse of p ∈ Zq, and vice-versa.
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2.2.1 Fundamental group, (co)homology and line bundles

Consider the Seifert manifold M3
∼= [d; g; (qi, pi)]. Its fundamental group π1(M3) has the

following explicit presentation:

π1(M3) =

〈
al, bl, gi, h

∣∣∣∣∣ [al, h] = [bl, h] = [gi, h] = gqii h
pi = 1,

g∏
l=1

[al, bl]
n∏
i=1

gi = hd

〉
,

(2.36)

with l = 1, · · · g, i = 1, · · · , n, and [a, b] = aba−1b−1 the group commutator. The gener-

ators al, bl correspond to the A- and B-cycles of the underlying Riemann surface Σg, gi
corresponds to a loop in Σ̂ around the orbifold points xi, and h corresponds to a generic

Seifert fiber.

The first homology of M3 is the abelianization of (2.36). It can be written as:

H1(M3,Z) ∼= H2(M3,Z) ∼= P̃ic(M3)⊕ Z2g . (2.37)

Here, the free factor Z2g in H1(M3,Z) corresponds to the one-cycles al, bl of Σg. The

group P̃ic(M3) which appears in (2.37) can be viewed as the pull-back of the orbifold

Picard group Pic(Σ̂) through the map:

π∗ : H2(Σ̂,Z)→ H2(M3,Z) , (2.38)

where we identified lines bundles over Σ̂ or M3 with their first Chern classes in H2(Σ̂,Z)

or H2(M3,Z), respectively. One finds:21

P̃ic(M3) ∼= Pic(Σ̂)/(L0) . (2.39)

That is, the group P̃ic(M3) is isomorphic to the two-dimensional orbifold Picard group

modulo tensor products with the defining line bundle L0. One can also show that P̃ic(M3)

is finite if and only if c1(L0) 6= 0, with:

P̃ic(M3) ∼=

{
TorH1(M3,Z) if c1(L0) 6= 0 ,

TorH1(M3,Z)⊕ Z if c1(L0) = 0 .
(2.40)

We also have:

H2(M3,Z) ∼= H1(M3,Z) ∼=

{
Z2g if c1(L0) 6= 0 ,

Z⊕ Z2g if c1(L0) = 0 .
(2.41)

Line bundles over M3. The group P̃ic(M3) is the group of complex line bundles over

M3 which are the pull-backs of orbifold line bundles over Σ̂. For later purposes, it is useful

to spell this out explicitly. Let us introduce the generators:

[γ], [ωi] ∈ P̃ic(M3) ⊂ H1(M3,Z) , (2.42)

21Assuming that we can simply generalize the smooth case to the orbifold case, this follows from the

Gysin sequence, · · · −→ H0(Σ̂)
c1(L0)−→ H2(Σ̂)

π∗
→ H2(M3)

π∗−→ · · · .
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such that h = eγ and gi = eωi in the abelianization of (2.36). Here, γ and ωi are viewed as

representatives of first homology classes in H1(M3,Z) (which are all torsion if c1(L0) 6= 0).

They are in one-to-one correspondence with the elementary line bundles (2.19) in Pic(Σ̂),

according to:

[γ] ∼ L−1
0 , [ωi] ∼ Lpii . (2.43)

More precisely, the pull-back of L0 toM3 is a line bundle π∗(L0) represented by −[γ], and

the pull-back of Lpii is represented by [ωi]. Therefore, the abelian group P̃ic(M3) has the

explicit presentation:

P̃ic(M3) ∼=
{

[γ], [ωi]

∣∣∣∣∣ qi[ωi] + pi[γ] = 0, ∀i ,
∑
i

[ωi] = d[γ]

}
. (2.44)

For each pair (qi, pi), let us introduce the integers si and ti such that:

siqi + tipi = 1 . (2.45)

The elementary line bundles L0, Li pull-back to the following ordinary line bundles

over M3:22

π∗(L0) ∼= −[γ] , π∗(Li) ∼= −si[γ] + ti[ωi] . (2.46)

This directly gives us the pull-back of an arbitrary orbifold line bundle (2.21) to M3.

2.2.2 The classification of Seifert manifolds

Most three-manifolds that admit a Seifert fibration π : M3 → Σ̂ do so in a unique way.

The only — and very important — exceptions are the lens spaces (including S2 × S1),

which are realized as genus-zero Seifert manifolds with n ≤ 2 exceptional fibers. Each

lens space L(p, q) admits an infinite number of inequivalent Seifert fibrations. This will be

discussed in greater detail below. For the purpose of classification, it is useful to define a

small Seifert manifold as one amongst the following short list [28]:23

(i) The lens spaces M3
∼= [0; 0; (q1, p1), (q2, p2)].

(ii) The manifolds M3
∼= [0; 0; (q1, p1), (q2, p2), (q3, p3)] such that 1

q1
+ 1

q2
+ 1

q3
> 1.

(iii) The manifold M3
∼= [0; 0; (2, 1), (2, 1), (2,−1), (2,−1)].

(iv) The manifolds M3
∼= [0; 1; (1, p)].

Here we have set d = 0 by using unnormalized Seifert symbols; these four cases will

be discussed in detail in section 3. Any other Seifert manifold is called large. It turns

out that any two large Seifert manifolds M3 and M′3 have equivalent Seifert fibrations

if and only they are homeomorphic [28]. Moreover, they are homeomorphic if and only

22Note that −si[γ] + ti[ωi] ∈ P̃ic(M3) is independent of the choise of si, ti solving siqi + tipi = 1.
23We restrict ourselves to the case of oriented Seifert manifolds with an oriented base Σ̂. The fuller

classification is discussed in [28], where it is also shown that the prism manifolds (a subset of case (ii)) and

the case (iii) admit another, distinct Seifert fibration over an unorientable surface.
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if they have the same fundamental group. Note that this topological classification of

Seifert manifolds is valid up to orientation reversal, which acts on M3
∼= [d; g; (qi, pi)] as

−M3
∼= [−d; g; (qi,−pi)].

Interestingly, the only Seifert manifolds with a finite fundamental group (2.36) are

the small Seifert manifolds of type (i) or (ii). Otherwise, the order of π1(M3) is infinite.

Seifert manifolds span six out of the eight Thurston geometries [29].24 It is convenient to

distinguish three cases according to the Euler characteristic of the base. If χ(Σ̂) > 0, the

Seifert manifold is modeled on S3 if π1(M3) is finite, or on S2×R otherwise. If χ(Σ̂) = 0,

M3 is Euclidean if c1(L0) = 0, and has Nil geometry otherwise. If χ(Σ̂) < 0, the general

case, then M3 has ˜SL(2,R) or H2 × R geometry.

2.2.3 Adapted metric and transversely holomorphic foliation

Given a Seifert manifold M3, we choose an adapted metric:

ds2(M3) = η2 + ds2(Σ̂) , (2.47)

which admits a real Killing vector K along the Seifert fiber. The one-form η is dual to K

— that is, ηµ = Kµ in local coordinates. We introduce the local coordinates ψ, z, z̄, with

ψ ∈ [0, 2π) the angular coordinate along the fiber, and z, z̄ the complex coordinates along

the orbifold Σ̂, so that:

η = β(dψ + C(z, z̄)) , K =
1

β
∂ψ , Kµηµ = 1 . (2.48)

and:

ds2(M3) = β2
(
dψ + C(z, z̄)

)2
+ 2gzz̄(z, z̄)dzdz̄ , (2.49)

with β > 0 the radius of a generic fiber. Let us normalize the volume of Σ̂ to vol(Σ̂) = π.

The connection C is a real two-dimensional connection on the defining line bundle L0. Its

curvature reads ∂zCz̄ − ∂z̄Cz = c1(L0) 2igzz̄, with c1(L0) given in (2.27). Therefore:

1

2π

∫
Σ̂
dC = c1(L0) = d +

n∑
i=1

pi
qi
. (2.50)

Note also the useful identities:

dη = 2βc1(L0) dvol(Σ̂) , η ∧ dη = 2βc1(L0) dvol(M3) . (2.51)

THF and the canonical line bundle of M3. A Seifert fibration is a special case

of a transversely holomorphic foliation (THF), viewed as the foliation generated by the

nowhere-vanishing vector field K — see [5, 9] and references therein. A metric-compatible

THF can be characterized by the tensors ηµ and Φµ
ν = −εµνρηρ, which gives a three-

dimensional analogue to a complex structure. Under a change of adapted coordinates, we

have:

ψ′ = ψ − λ(z, z̄) , z′ = f(z) , (2.52)

24The hyperbolic (H3) and Sol geometries are not Seifert.
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with λ real and f(z) a holomorphic function of z. Given a THF, there exists a notion

of Dolbeault-like decomposition of differential forms [9]. In particular, one can define the

notion of a holomorphic one-form, ω ∈ Λ1,0M3, such that:

ωµΠµ
ν = ων , Πµ

ν =
1

2
(δµν − iΦµ

ν − ηµην) . (2.53)

Thus ω has a single component, ωz, which transforms as ω′z′ = (∂zf(z))−1ωz under (2.52).

This makes ωz a section of a holomorphic line bundle over M3, by definition. We call this

particular holomorphic line bundle the canonical line bundle of the Seifert manifold M3,

denoted by KM3 . It is also the pull-back of the canonical line bundle of Σ̂ through the

Seifert fibration:

π∗(K) = KM3 . (2.54)

We see from (2.16)–(2.19) that K ∼= L2g−2
0 ⊗i Lqi−1

i . Therefore, (2.46) implies:

KM3
∼=
(

2− 2g − n+

n∑
i=1

si

)
[γ]−

n∑
i=1

ti[ωi] ∈ P̃ic(M3) . (2.55)

In particular, the canonical line bundle ofM3 is topologically trivial if and only if KM3
∼= 0

in P̃ic(M3).

THFs on three-manifolds were classified in [87, 88]. It turns out that “most” three-

manifolds that admit a THF are Seifert manifolds (in the sense that they admit at least one

Seifert fibration), and can thus preserve two supercharges.25 We also expect that most half-

BPS Seifert backgrounds do not admit any continuous “squashing” deformations, in the

following sense. In order to affect supersymmetric observables, any half-BPS “squashing”

should modify the supersymmetry algebra (1.1), deforming K to K + εK ′, with K ′ a

distinct Killing vector on M3. This K ′ must be the pull-back of a Killing vector along the

base Σ̂g,n, which can only exist at genus 0 with n ≤ 2 (giving us the lens space case) or at

genus 1. It would be interesting to verify this by a direct analysis of the THF moduli of

half-BPS Seifert manifolds.

2.2.4 Spin structures on M3

Recall that any orientable three-manifold is spin, and that the distinct spin structures are

in one-to-one (non-canonical) correspondence with elements of H1(M3,Z2). Using the

universal coefficient theorem and Poincaré duality, one finds:

H1(M3,Z2) ∼=
(
H1(M3,Z)⊗ Z2

)
⊕ Tor

(
H1(M3,Z),Z2

)
. (2.56)

Here Tor(A,Z2) ∼= {a ∈ A | 2a = 0} for any abelian group A — the group of elements that

square to zero. From subsection 2.2.1, we find:

H1(M3,Z2) ∼= Z2g
2 ⊕

(
P̃ic(M3)⊗ Z2

)
. (2.57)

25There can also exist more general THFs on lens spaces which only preserve one supercharge, as discussed

in [9].
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The factor Z2g
2 corresponds to the familiar choice of spin structure on the underlying genus-

g Riemann surface. The supersymmetric observables will be independent of that choice.

The factor P̃ic(M3) ⊗ Z2 reflects the further possibility of choosing the periodic or anti-

periodic boundary conditions for fermions along all the other non-trivial one-cycles in M3.

Note that:26

P̃ic(M3)⊗ Z2
∼=

Tor
(
P̃ic(M3),Z2

)
if c1(L0) 6= 0 ,

Tor
(
P̃ic(M3),Z2

)
⊕ Z2 if c1(L0) = 0 .

(2.58)

Now, let us sketch a more explicit description of the spin structure.

Spin structures on Σ̂. On a smooth Riemann surface Σg, choosing a spin structure is

equivalent to choosing a square root of the canonical line bundle:
√
K . (2.59)

This square root always exists in that case, with c1(K) = g − 1. There is a Z2g
2 ambiguity

corresponding to the boundary conditions for the fermions along the A- and B-cycles.

Equivalently, we can introduce a Z2-valued flat connection on Σg, which couples non-

trivially to fields of half-integer spin, as follows. The two-dimensional connection AKµ on

the canonical line bundle over Σ̂ is given by the spin connection:

AKµ = ω(2d)
µ . (2.60)

Then, choosing a spin structure with periodic boundary conditions for fermions around a

one-cycle Cl is equivalent to choosing a connection 1
2ω

(2d)
µ on

√
K with a non-trivial Z2

holonomy around Cl. For a two-dimensional orbifold Σ̂(qi), on the other hand, we saw

in (2.17) that the square root
√
K only exists if all the qi’s are odd integers. When it

exists,
√
K has a Z2g

2 ambiguity as in smooth case — see e.g. [89].

While
√
K generally does not exist, we may be able to define a spinc structure for some

spinors, in the sense that there might exist a line bundle L ∈ Pic(Σ̂) such that
√
K ⊗ L

exists. As we will show, this is precisely what happens in the 3d A-model.

Spin structures on M3. Consider a three-dimensional Seifert manifold M3 with an

adapted metric. Similarly to the 2d case, it is natural to consider the square roots of the

three-dimensional canonical line bundle (2.55),

S ∈ P̃ic(M3) such that S ⊗S = KM3 . (2.61)

Since KM3 = π∗(K) by definition, we may view the “holomorphic” cotangent bundle of

M3 as:

T (1,0)M3
∼= R⊕KM3 , (2.62)

with fibers R⊕ C adapted to the THF. The 3d spin bundle, denoted by S, is a C2 vector

bundle over M3 with structure group Spin(3) = SU(2), such that:

S ⊗ S ∼= O ⊕ T ∗M3

∼= O ⊕O ⊕KM3 ⊕K−1
M3

.
(2.63)

26For any abelian group A of rank r, one has A⊗ Z2
∼= Tor(A,Z2)⊕ Zr

2.
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In other words, for any two Dirac spinors ψα and ψ̃α valued in S, we have the obvious

decomposition ψα ⊗ ψ̃α ∼= ψ ⊕ ψµ into a scalar and a vector.27 The spin bundle over M3

can then be written as:

S ∼= S ⊕S −1 , (2.64)

with S defined in (2.61). The decomposition (2.64) also naturally corresponds to the

decomposition of a 3d Dirac spinor ψα into the two-dimensional Weyl spinors ψ±. (We

refer to appendix D of [66] and to [63] for related discussions of S some special cases.)

Therefore, choosing a spin structure on M3 is equivalent to choosing a square root

S of KM3 .28 Let us assume that we have found a solution to (2.61), denoted by S0. If

c1(L0) 6= 0 for the defining line bundle L0 over Σ̂, P̃ic(M3) is a finite group and any S

can be written as a product of S0 with a nilpotent element:

S = S0 ⊗N , N ∈ Tor
(
P̃ic(M3),Z2

)
. (2.65)

If c1(L0) = 0, there is an additional twofold freedom associated with the free generator

of P̃ic(M3). We will show this more explicitly in the next subsection. In this way, the

set of spin structures on M3 are indeed in one-to-one correspondence with elements of the

group (2.58).

2.3 A-twist and supersymmetric backgrounds on Seifert manifolds

OnM3 with the adapted metric (2.49), we may preserve two supercharges Q and Q̄, corre-

sponding to the generalized Killing spinors ζ and ζ̄ of R-charge 1 and −1, respectively [4, 5].

A rigid supersymmetric background on M3 consists of supersymmetry-preserving back-

ground values for the bosonic fields in the 3d N = 2 new-minimal supergravity multi-

plet [3, 5, 6]:

H =
(
gµν , A

(R)
µ , H , Vµ

)
, (2.66)

where A
(R)
µ is a background gauge field for the U(1)R symmetry. The metric gµν is given

by (2.49), and the other background fields are:

A(R)
µ = A(R)

µ + βc1(L0)ηµ , H = iβc1(L0) , Vµ = −2βc1(L0) ηµ , (2.67)

with the U(1)R gauge field A(R) given by the expression:

A(R)
µ =

1

4
Φµ

ν∂ν log
√
g + ∂µs , (2.68)

27Our conventions for spinors are summarized in appendix B. We will always choose an adapted frame

(e0, e1, e1̄) = (η,
√

2gzz̄dz,
√

2gzz̄dz̄). In the second equation in (2.63), we view KM3 as the associated U(1)

line bundle, so that O⊕KM3⊕K−1
M3

corresponds to the decomposition of a vector into components v0, v1, v1̄

in the adapted frame.
28Here and in the following, we ignore the additional choice of spin structure on the underlying smooth

Riemann surface Σg. As we mentioned, the supersymmetric observables are independent of that choice.

Heuristically, this is because, after the topological A-twist, all the A-twisted fields have integer spins on Σg

and therefore do not depend on the spin structure on the Riemann surface.
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in the adapted coordinates ψ, z, z̄. Using a modified (torsionfull) connection ∇̂ such that

∇̂η = 0, as defined in appendix B, the Killing spinor equations take the simple form:

(∇̂µ − iA(R)
µ )ζ = 0 , (∇̂µ + iA(R)

µ )ζ̃ = 0 , (2.69)

The THF-adapted connection ∇̂ has U(1) holonomy, which can be compensated by the

holonomy of the U(1)R connection (2.68), generalizing the familiar topological A-twist

from two to three dimensions [5, 21, 27]. The Killing spinors read:

(ζα) = eis

(
0

1

)
, (ζ̄α) = e−is

(
1

0

)
, (2.70)

in the adapted frame. The function s appearing in (2.68) and (2.70) encodes the freedom

in choosing the spin structure associated to our supersymmetric background, as we will

now explain.

2.3.1 Three-dimensional A-twist and spin structure

Let LR be the U(1)R line bundle on M3. Given the Killing spinor ζ̄, we may define a

spinor bilinear valued in L−2
R :

Pµ = ζ̄σµζ̄ . (2.71)

One can show that Pµ is in fact a holomorphic one-form [5] — it satisfies (2.53). It

follows that:

Pz = e−2is
√

2gzz̄ (2.72)

is a nowhere-vanishing section of KM3 ⊗ L−2
R . We thus have:

KM3
∼= L2

R . (2.73)

Therefore, the more precise statement of the three-dimensional A-twist [27] is that we

choose the R-symmetry line bundle LR to be any well-defined square root of the canonical

line bundle, as in (2.61):

LR ∼= S . (2.74)

The connection (2.68) on LR can be written as:

A(R)
µ =

1

2
π∗(ω(2d)

µ ) +A(R),flat
µ , (2.75)

in terms of the spin connection (2.60) on Σ̂ and of a flat connectionAflat
µ with Z2 holonomies:

e−i
∫
C A

(R),flat
= ±1 , ∀[C] ∈ H1(M3,Z) . (2.76)

Since we have A(R),flat
µ = ∂µs, the “function” eis in (2.70) should really be seen as a non-

trivial map:

eis :M3 → C∗ . (2.77)

Once we have fixed some s0 so that (2.75) is well-defined, we can also find any other maps

eis related to eis0 by a non-trivial Z2-valued homotopy [21]. The A-twist (2.74) correlates
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this choice of A(R),flat
µ with the choice of spin structure onM3, precisely so that the Killing

spinors (2.70) are always invariant. In other words, for every one-cycle on M3, we might

choose either the periodic or the anti-periodic boundary condition for the fermions, as long

as we also choose the R-symmetry background gauge field with Z2-valued holonomies in

such a way that the Killing spinors ζ and ζ̄, of R-charges ±1, remain periodic and therefore

globally defined.

In this way, we obviously preserve supersymmetry. Even though a particular fermionic

dynamical field might be either periodic or anti-periodic in some spin structure, the U(1)R
background ensures that all the scalars in the same supersymmetry multiplet have the same

boundary conditions, thus preserving supersymmetry. Note that, for a vector multiplet,

both the gauge field and the gauginos are periodic in any spin structure, since the gauge

field has zero R-charge while the gauginos have R-charge ±1 just like the Killing spinors.

We should also note that the two-dimensional connection 1
2ω

(2d)
µ in (2.75) is not well-

defined by itself if
√
K does not exist on Σ̂. When that happens, the flat connection A(R),flat

µ

will be similarly ill-defined such that the full three-dimensional A(R)
µ is well-defined. This

construction can be made very explicit from the two-dimensional point of view, as we

now explain.

2.3.2 Constructing LR on Σg

We can view the Seifert supersymmetric background (M3,LR) as the pull-back of the topo-

logical A-twist background on Σ̂ [5, 27, 79]. In particular, there exists a two-dimensional

R-symmetry line bundle LR ∈ Pic(Σ̂) such that:

π∗(LR) ∼= LR ∼= S , (2.78)

with S defined in (2.61). In the rest of this paper, it will be most useful to consider any

three-dimensional N = 2 supersymmetric field theory as a two-dimensional theory with

N = (2, 2) supersymmetry, topologically twisted along Σ̂ [27]. The two-dimensional field

theory has an infinite number of fields, corresponding to the Kaluza-Klein (KK) modes of

the 3d fields along the Seifert fiber:

ϕ =
∑
k∈Z

ϕk(z, z̄)eikψ . (2.79)

For any field ϕ a section of a vector bundle E over M3, the two-dimensional modes

are sections:

ϕk ∈ Γ[E ⊗ Lk
0] , (2.80)

where E is such that π∗(E) = E.

The Killing spinors (2.70) need not be constant along the Seifert fiber. We gener-

ally have:

s = −νRψ + · · · , νR ∈
1

2
Z . (2.81)

in local coordinates, where the ellipsis denotes ψ-independent term. The parameter νR
encodes the Z2 holonomy of the flat connection A(R),flat

µ along the generic Seifert fiber:

− 1

2π

∫
γ
A(R),flat = νR . (2.82)
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Somewhat formally, the 3d spinors ζ̄ is the pull-back of the following nowhere-vanishing

section on Σ̂:

ζ̄− ∈ Γ
[√
K ⊗N ⊗ (L0)νR ⊗ L−1

R

]
, (2.83)

and similarly for ζ. Here,
√
K is the naive square root defined in (2.17), N is some formally

nilpotent 2d line bundle in Pic(Σ̂), while L0 pulls back to the trivial line bundle in P̃ic(M3).

In general, both
√
K and N ⊗ (L0)νR are ill-defined, in such a way that LR is well-defined.

This gives a slight generalization of the usual A-twist on a Riemann surface, with the

identification:

LR ∼=
√
K ⊗N ⊗ (L0)νR . (2.84)

We can now characterize this LR explicitly, as an element of Pic(Σ̂). We have:

LR ∼= L
ñR0
0

n⊗
i=1

L
nRi
i , (2.85)

with ñR0 ∈ Z the “ordinary flux” and nRi ∈ Z the “fractional fluxes” for U(1)R. For future

reference, let us define another integer nR0 by:

ñR0 = g − 1 + nR0 . (2.86)

We then introduce the parameterization:

nR0 ≡
lR0
2

+ νRd , nRi ≡
qi − 1

2
+
lRi qi

2
+ νRpi , (2.87)

Here, we introduced the integer-valued parameters:

lR0 ∈ Z , lRi ∈ Z (i = 1, · · · , n) , such that: lR0 +

n∑
i=1

lRi = 0 . (2.88)

They correspond to the formal line bundle N , with:

N ⊗N ∼= L
lR0
0 ⊗

n⊗
i=1

L
qil
R
i

i
∼= O ∈ Pic(Σ̂) . (2.89)

Note that the (generally ill-defined) line bundle N ⊗LνR0 in (2.84) cannot be trivial unless√
K exist. If qi is odd for every exceptional fiber, we can choose lRi = 0 and νR = 0, as

in the ordinary A-twist (and as was considered in [27], for instance). On a generic Seifert

background M3, however, the parameters lRi and νR are non-trivial. There are chosen

precisely such that the fluxes nR0 , n
R
i are integers.

2.3.3 LR and the M3 spin structure

By definition, we have:

c1(LR) = g − 1 + nR0 +

n∑
i=1

nRi
qi

. (2.90)
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From (2.87), we immediately see that:

c1(LR) =
1

2
c1(K) + νR c1(L0) . (2.91)

Let us fix a solution L
(0)
R to the constraints nR0 ∈ Z, nRi ∈ Z. Any other solution LR is

obtained by a shift of the parameters νR modulo 1 and lRi modulo 2. Let us denote these

shifts by:

∆νR , and
∆lRi

2
, (2.92)

respectively. We have:

LR ∼= L
(0)
R ⊗ δLR , (2.93)

with the first Chern class of the line bundle δLR given by:

c1(δLR) = c1(LR)− c1(L
(0)
R ) = ∆νR c1(L0) . (2.94)

The shifting parameters (2.92) are constrained by:

−
∑
i

∆lRi
2

+ ∆νRd ∈ Z ,
∆lRi

2
+ ∆νRpi ∈ Z . (2.95)

By comparing this constraint to the presentation (2.44) of three-dimensional Picard group,

we see that the shifts (2.92) are in one-to-one correspondence with elements of P̃ic(M3)⊗Z2,

by identifying the generators as:

[γ]  ∆νR , [ωi]  
∆lRi

2
. (2.96)

Since the choice of LR is equivalent to a choice of spin structure, this completes our dis-

cussion of the relation between the choice of spin structure on M3 and the group (2.58).

In section 3, we will illustrate the above procedure in many examples.

2.3.4 Holomorphic line bundle moduli

Holomorphic lines bundles on Σ̂ and M3 are determined by additional data, beyond the

topological data encoded in Pic(Σ̂) or P̃ic(M3). In two-dimensions, it is well-known that

holomorphic line bundles can come in continuous families, indexed by complex moduli,

corresponding to the Dolbeault cohomology H0,1(Σ̂); the moduli correspond to (anti-

holomorphic) flat connections Aflat
z̄ . In three-dimensions, the THF structure allows for

similar holomorphic moduli for a holomorphic line bundle L, with complex moduli valued

in H0,1(M3) [9]. Given AFµ a 3d background gauge field and σF its scalar superpartner in

a vector multiplet, it is convenient to define the complexified gauge field:

AFµ = AFµ − iηµσF . (2.97)

The complex moduli of the associated bundle LF correspond to the holonomies of (2.97)

along one-cycles. In particular, we denote by:

νF ≡ −
1

2π

∫
γ
AF , yF ≡ e2πiνF , (2.98)

– 34 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

its holonomy along the Seifert fiber [γ]. The continuous parameters νF play a crucial role

in this paper, because the various half-BPS observables we compute are holomorphic —

more precisely, meromorphic — in them.29 Note that we have the identifications:

νF ∼ νF + 1 , (2.99)

corresponding to large U(1) gauge transformations along the fiber.

In summary, at least for our present purposes, any holomorphic line bundle LF over

M3 is fully characterized by a particular element LF ∈ P̃ic(M3) together with a complex

parameter νF ∈ C. From the two-dimensional point of view, the parameters νF are simply

twisted masses in background N = (2, 2) vector multiplets on Σ̂.

The U(1)R complex structure modulus. The U(1)R line bundle LR is also a holo-

morphic line bundle. While the background gauge field A
(R)
µ is part of the supergrav-

ity multiplet, it is also part of a smaller vector multiplet, which includes the gauge field

A
(R)
µ + Vµ and the scalar σR = H [6, 21]. Thus, we see that the U(1)R analogue of (2.97)

is precisely the gauge field A(R)
µ in (2.68):

A(R)
µ = A(R)

µ + Vµ − iηµH . (2.100)

It follows that the U(1)R complex structure modulus is given by the parameter νR intro-

duced in (2.81). In addition to νR, we have seen above that it is important to keep track

of the parameters lRi , corresponding to Z2 holonomies of A(R),flat
µ along the one-cycles ωi,

or equivalently along the exceptional fibers.

2.3.5 Quantization condition on the R-charge

By definition, any 3d field ϕ of R-charge r ∈ Z is valued in (LR)r, and the corresponding

two-dimensional KK modes ϕn take value in LrR ⊗Ln0 . For the three-dimensional A-model

to be well-defined, those bundles should be well-defined. This condition can be written as:

LrR ∈ Pic(Σ̂) , (2.101)

with LR the two-dimensional U(1)R line bundle defined in subsection 2.3.2. If we assume

that LR exists, we generally have the integrality condition:

r ∈ Z , (2.102)

for the R-charges of the matter fields. We may also consider the case for which only L2
R

exists — in such a case, we must impose the quantization condition r ∈ 2Z for all 3d

chiral multiplets. In such a case, the partition function becomes independent of a choice of

spin structure. More general R-charges might also be allowed on a given background. For

instance, if the U(1)R fluxes ñR0 and nRi have a common divisor m, the Dirac quantization

condition will simply be mr ∈ Z.

29The other continuous moduli of LF correspond to the holonomies of AF along the 1-cycles on the

Riemann surface; they couple to Q-exact operators in the A-twisted theory, and therefore they can safely

ignored, for our purposes.
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2.3.6 Topologically trivial KM3 and real R-charges

A very special but very important case occurs when LR is topologically trivial:

LR ∼= O . (2.103)

This is equivalent to the conditions:

ν̃R0 = g − 1 + νRd− 1

2

n∑
i=1

lRi = 0 , nRi =
qi − 1

2
+
qil

R
i

2
+ νRpi = 0 . (2.104)

This system of n + 1 equations for the n + 1 variables 2νR, lRi , generally does not have

any solution over the integers. By construction, there exists a solution if and only if the

three-dimensional line bundle KM3 in (2.55) is trivial in P̃ic(M3). When c1(L0) 6= 0, this

fixes νR to be:

νR = −1

2

c1(K)

c1(L0)
. (2.105)

When c1(L0) = 0, there exists a linear relation between the equations (2.104), and we then

have an additional freedom in choosing a topologically trivial LR.

When (2.104) holds, there is no Dirac quantization condition and we may consider

arbitrary real R-charges r ∈ R for the matter fields. Such supersymmetric backgrounds are

particularly interesting in order to study 3d N = 2 superconformal field theories, which

generally have irrational R-charges. When KM3
∼= O and c1(L0) 6= 0, there exists a unique

spin structure on M3 compatible with real R-charges.

3 Examples of supersymmetric Seifert backgrounds

In this section, we discuss some important examples of Seifert manifolds and their associ-

ated supersymmetric backgrounds, to illustrate the formalism of section 2. After reviewing

the principal-bundle case of [27], we discuss in detail all the possible Seifert-fibration back-

grounds on lens spaces. We then present a few other interesting examples of manifolds

with more general topology.

3.1 The principal bundle Mg,p

As a first example, consider the family of manifolds Mg,p studied in [27]. In the Seifert

notation, we have:

Mg,p
∼=
[
p ; g ;

] ∼= [0 ; g ; (1, p)
]
. (3.1)

This is a principal circle bundle of first Chern class p ∈ Z over the smooth Riemann

surface Σg:

S1 −→Mg,p −→ Σg . (3.2)

The 2d Picard group Pic(Σg) ∼= {L0} ∼= Z is freely generated. The defining line bundle is:

L0
∼= Lp0 , (3.3)
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and therefore:

P̃ic(M3) ∼= {L0}/(L0) ∼= Zp . (3.4)

To fully specify the supersymmetric background, we need to choose a U(1)R line bundle

over Σg:

LR ∼= Lg−1+νRp
0 . (3.5)

For p odd, we must take νR integer. The case νR = 0 was called the “A-twist gauge”

in [27]. When p is even, we can choose νR to be either integer or half-integer. In particular,

taking 2νR even or odd corresponds to the choice between the two distinct spin structures

on Mg,p [63, 66]. Indeed, we have:

H1(Mg,p,Z2) ∼= Z2g
2 ⊕ Zgcd(p,2) , (3.6)

when p is even. Note that, if p = 0, we haveMg,0 = Σg×S1 and H1(Mg,0,Z2) ∼= Z2g
2 ×Z2

as well. In that case, L0
∼= O, and we can still turn on the U(1)R fugacity νR ∈ 1

2Z. Thus,

even the “ordinary” twisted index ZΣg×S1 admits a Z2 refinement keeping track of the

choice of spin structure.30

3.2 The twisted S2
ε × S1

Consider the three-manifold S2 × S1. There exists a one-parameter family of half-BPS

backgrounds, denoted by S2
ε × S1, with non-trivial U(1)R flux through the S2. The corre-

sponding supersymmetric partition function is the refined twisted index of [31]. The case

ε = 0 corresponds to the standard A-twist on S2.

The THF associated to this family of supersymmetric backgrounds is best understood

as the quotient of S2 × R by:

(τ , z) ∼ (τ + 2π , e2πiεz) , ε ∈ R , (3.7)

with τ , z, z̄ the adapted coordinates, and ε the THF modulus [9]. Let us introduce the real

coordinates θ, ϕ, τ , with θ ∈ [0, π], ϕ ∈ [0, 2π) the standard angular coordinates on S2. We

have:

z = tan
θ

2
ei(ϕ+ετ) . (3.8)

In these angular coordinates, the quotient (3.7) simply corresponds to the identification

τ ∼ τ + 2π. For definiteness, we consider the same adapted metric as in [31]:

ds2(S2
ε × S1) = β̃2dτ2 +

R2
0dzdz̄

(1 + |z|2)
= β̃dτ2 +

R2
0

4

(
dθ2 + sin2 θ(dϕ+ εdτ)2

)
. (3.9)

The Killing vector entering in the curved-space supersymmetry algebra reads:

K =
1

β̃
(∂τ − ε∂ϕ) . (3.10)

30In earlier literature on the twisted index [26, 30, 31, 34], the role of the spin structure was not discussed.

In in [27], we restricted ourselves to the periodic spin structure.
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We have η = β̃dτ with ηµ = Kµ. Note that the orbits of K only close if ε is a rational

number:

ε =
t

q
, t, q ∈ Z , gcd(q, t) = 1 . (3.11)

Let us restrict ourselves to this case. We claim that, with the identification (3.11), K

generates a Seifert fibration:

S1 −→ S2
ε × S1 −→ S2(q, q) , (3.12)

with S2(q, q) ∼= S2/Zq. In the standard notation, we have:

M3
∼= S2

ε × S1 ∼=
[
0 ; 0 ; (q, p) , (q,−p)

]
, qs+ pt = 1 . (3.13)

In particular, we have the defining line bundle:

L0
∼= Lp1L

−p
2 (3.14)

over the spindle S2(q, q), with L1 and L2 the elementary line bundles associated to the two

orbifold points at the north and south poles, respectively. Note that c1(L0) = 0. One can

show that (3.13) gives the complete list of Seifert fibrations of S2 × S1 [90].

The fibration (3.13) is given explicitly by:

π : S2 × S1 → S2 : (τ, z) 7→ zq . (3.15)

This map is obviously invariant under (3.7) if ε = t/q. We can also understand the fibration

structure directly from the metric (3.9) and Killing vector (3.10). Consider the change of

coordinates:

ψ = sτ − pϕ , φ = tτ + qϕ . (3.16)

For q, s, p, t ∈ Z such that qs + pt = 1, this is an SL(2,Z) transformation and the new

angles ψ, φ have periodicities 2π. Let us also define β = qβ̃. In the new coordinates, we

have:

K =
1

β
∂ψ , η = β

(
dψ +

p

q
dφ

)
, (3.17)

and

ds2 = η2 + ds2
(
S2(q, q)

)
, ds2

(
S2(q, q)

)
=
R2

0

4

(
dθ2 +

sin2 θ

q2
dφ2

)
. (3.18)

We may choose the radius R0 =
√
q so that vol(S2(q, q)) = π. This brings this geometric

background to the general form (2.49), with the flat L0 connection C = p
qdϕ. The spindle

metric in (3.18) is a special case of (2.4). We have the holonomies:

1

2π

∫
ω1

C =
p

q
,

1

2π

∫
ω2

C = −p
q
, (3.19)

with ω1, ω2 the generators of the orbifold fundamental groups — the loops around the

poles. This reproduces (3.13).
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Line bundles and choice of LR. Finally, let us discuss the orbifold bundles on Σ̂ ∼=
S2(q, q). We have:

Pic(Σ̂) =
{
L0, L1, L2

∣∣ Lq1 = Lq2 = L0

}
, (3.20)

which is not freely generated. These orbifold line bundles pull-back to the three-dimensional

line bundles in:

P̃ic(S2
ε × S1) ∼= Pic(Σ̂)/(L0)

∼=
{

[γ], [ω1], [ω2]
∣∣∣ q[ω1] + p[γ] = 0 , q[ω2]− p[γ] = 0 , [ω1] + [ω2] = 0

}
∼=
{

[γ], [ω]
∣∣∣ q[ω] + p[γ] = 0

}
∼=
{

[Ω]
}
∼= Z .

(3.21)

In the third line, we used [ω] ≡ [ω1] = −[ω2] and defined the generator:

[Ω] ≡ t[ω]− s[γ] . (3.22)

Of course, [Ω] is the single generator of H2(S2 × S1,Z) ∼= Z. Note that we have:

[Ω] ∼= π∗(L1) ∼= π∗(L2) , (3.23)

and L1
∼= L2 ⊗ Lt0. We have the 2d and 3d canonical line bundles:

K ∼= L−2
0 Lq−1

1 Lq−1
2
∼= L−1

1 L−1
2 , KM3

∼= −2[Ω] . (3.24)

We thus obviously have LR
∼= −[Ω] as an element of P̃ic(M3). However, there remains a

twofold choice of square root of the canonical line bundle over M3, corresponding a choice

of flat connection along the S1 in S2 × S1. Using the parameterization of section 2.3.2, let

us consider the two-dimensional line bundle:

LR ∼=
√
K ⊗N ⊗ LνR0 . (3.25)

with integer U(1)R fluxes:

nR0 = − l
R
1 + lR2

2
, nR1 =

q − 1

2
+
lR1 q

2
+ νRp , nR2 =

q − 1

2
+
lR2 q

2
− νRp . (3.26)

Note that lR1 and lR2 must have the same parity. There are three different cases, depending

on the parity of p and q. One easily finds:
(−1)2νR = (−1)l

R
i = ±1 for q and p odd ,

(−1)2νR = ±1 , (−1)l
R
i = 1 for q odd, p even ,

(−1)2νR = −1 , (−1)l
R
i = ±1 for q even, p odd .

(3.27)

These two distinct solutions, for any given (q, p), are in one-to-one correspondence with

the two spin structures on S2 × S1.
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3.3 The three-sphere S3
b

Consider the three-sphere S3. There exists a one-parameter family of supersymmetric

backgrounds preserving two supercharges, indexed by the so-called squashing parameter

b ∈ C [9, 14, 49, 58]. Viewing S3 as a T 2 fibered over an interval, with ϕ, χ the angular

coordinates on the T 2, let us consider the background of [14] with b2 ∈ R, for definiteness.

The supersymmetry algebra involves the Killing vector:

K = b∂ϕ + b−1∂χ . (3.28)

There is a natural symmetry under b → b−1, which corresponds to exchanging the two

cycles, ϕ and χ, of the torus. For generic b2 ∈ R, the orbits of K do not close and this K

does not define a Seifert structure (it only defines a THF). However, in the special case:

b2 =
q1

q2
∈ Q , (3.29)

the orbits close and the S3
b geometry can be viewed as a Seifert fibration over a sphere with

two orbifold points:

S1 −→ S3
b

π−→ S2(q1, q2) . (3.30)

The integers q1 and q2 should be mutually prime, and exchanging their roles corresponds

to the equivalence b→ b−1. We then have:

S3
b
∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , q1p2 + q2p1 = 1 , (3.31)

for b2 = q1
q2

a rational squashing parameter.31 We will demonstrate (3.31) momentarily,

in the more general case of the lens space. This can also be understood by bringing any

metric on the three-sphere, with the Killing vector K, to the form (2.49) — we give an

example of that approach in appendix C.1. Moreover, the Seifert fibrations (3.31), modulo

trivial equivalences, coincide with the set of all Seifert fibrations of the three-sphere [28].

Consider the spindle S2(q1, q2) with gcd(q1, q2) = 1. We have the defining line bundle:

L0
∼= Lp1

1 L
p2
2 . (3.32)

The orbifold Picard group of S2(q1, q2) is freely generated, with L0 the single generator:

Pic(Σ̂) = {L0, L1, L2 | Lq11 = Lq22 = L0} ∼= {L0} , (3.33)

with L1
∼= Lq20 and L2

∼= Lq10 . It directly follows that the three-dimensional Picard group

is trivial:

P̃ic(S3
b ) ∼= 0 , (3.34)

in agreement with the fact that H2(S3,Z) = 0. Therefore, we have KS3
b

∼= 0, and the U(1)R
line bundle over S3

b is topologically trivial. On the other hand, we have the two-dimensional

canonical line bundle:

K ∼= L−1
1 L−1

2
∼= L−q1−q20 . (3.35)

31According to (3.29), q1 and q2 (and therefore b2) could be of either sign. However, using the equivalence

(qi, pi) ∼= (−qi,−pi) at each exceptional fiber, we can always write (3.31) in the convention in which the

anisotropy parameters are all positive.
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We may choose:

LR ∼=
√
K ⊗ LνR0

∼= LνR−
q1+q2

2
0 . (3.36)

We can choose any νR such that 2νR− q1− q2 is even. Note that the parity 2νR is fixed by

the parity of q1 +q2, which here corresponds to the fact that there is a unique spin strucure

on S3. A particularly interesting choice is:

νR =
q1 + q2

2
. (3.37)

such that LR is trivial in Pic(Σ̂) as well. This is the background that can be directly

compared to the squashed-sphere backgrounds considered in the literature [14, 49], as we

will further discuss in section 7. For this choice of LR ∼= O, we have nR0 = nR1 = nR2 = 0 and

the Dirac quantization on the R-charge is trivial. This allows us to consider real R-charges

for the matter fields.

3.4 The lens space L(p, q)b

We define the lens space L(p, q) as the quotient of S3:(
z1 , z2

)
∼
(
e

2πiq
p z1 , e

2πi
p z2

)
, gcd(p, q) = 1 , (3.38)

with S3 a three-sphere inside C2 ∼= {(z1, z2)}.32 The associated supersymmetric back-

grounds come in one-parameter families L(p, q)b, indexed by the so-called “squashing pa-

rameter” b [9, 14, 15]. We already discussed the special case L(1, 1)b ∼= S3
b in the previous

subsection. Another very special case is L(0, 1) ∼= S2 × S1, which we analysed separately;

here we consider p 6= 0.

As mentioned above, lens spaces are the only compact three-manifolds which admit

more than one Seifert fibration (with the base Σ̂g orientable); in fact, they admit an infinite

number of distinct Seifert fibrations, which are fully classified [28, 90]. Any Seifert fibration

of genus 0 with n ≤ 2 exceptional fibers is a lens space, and every Seifert fibration over a

lens space can be constructed in that way. We have:

L(p, q)b ∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , (3.39)

with the identifications:

p = p1q2 + p2q1 , q = q1s2 − p1t2 , b2 =
q1

q2
. (3.40)

Here, as usual, the integers si, ti are such that qisi + piti = 1. The pair of integers (s2, t2)

entering in (3.40) is only defined up to shifts by (p2,−q2). This has the effect of shifting

q to q + p, which gives the same lens space. More generally, two lens spaces L(p, q) and

L(p, q′) are related by an orientation-preserving diffeomorphism if and only if q = q′ mod

p, or qq′ = 1 mod p. This second equivalence is realized in (3.39)–(3.40) by exchanging the

roles of the two exceptional fibers, which also takes b→ b−1.33

32In this paper, we are using the “mathematicians’ definition” for L(p, q). The lens space L(p, q) as

defined in many physics papers, for instance in [15, 27, 60], corresponds to L(p,−q) here.
33Taking q′ = q2s1 − p2t1 and q as in (3.40), one can check that qq′ = 1− p(t1s2 + s1t2).
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Note also the following special cases: For q1 = q2 = 1, there are no orbifold points on

S2 and we have the principal bundle L(p, 1)1
∼=M0,p as defined in (3.1), where p = p1 +p2.

The other special case is when there is only one orbifold point, with q1 = q and q2 = 1 or

q1 = 1 and q2 = q, then:

L(p, q)b ∼= [0 ; 0 ; (q, p)] , with b2 = q or b2 =
1

q
, (3.41)

respectively.

Seifert fibration from Hopf surface. To understand the identification of the Seifert

structures (3.39) with the known supersymmetric backgrounds, it is useful to consider the

four-dimensional uplift to the secondary Hopf surface, which is diffeomorphic to L(p, q)×S1.

The primary Hopf surface Mp,q
4
∼= S3 × S1 is defined as the quotient of C2 − {(0, 0)} by:(
z1 , z2

)
∼
(
p z1 , q z2

)
. (3.42)

The parameters p, q are complex structure moduli of the Hopf surface — they give rise to

the one-parameter family of THFs in 3d, which we can parameterize by p = e−2πbβ , q =

e−2πb−1β , with β the radius of the S1 [9, 55]. The secondary Hopf surfaceM4
∼= L(q, p)×S1

is obtained by a further Zp quotient of Mp,q
4 as in (3.38). As in the three-sphere case, the

THF is also a Seifert fibration if and only if b2 ∈ Q:

b2 =
q1

q2
⇔ qq1 = pq2 . (3.43)

The lens space Seifert fibration is given explicitly by:

π : L(p, q)→ S2(q1, q2) : (z1, z2) 7→ z = zq21 z
−q1
2 , (3.44)

with z the local coordinate on the S2 base. The map (3.44) is obviously compatible with

the quotient (3.42) when (3.43) holds. It is also compatible with (3.38) provided that

qq2 − q1 = 0 mod p; one can check that this automatically follows from (3.40). The

map (3.44) also makes manifest the presence of ramification points at the poles, so that

the base of the fibration is a spindle S2(q1, q2). The defining line bundle of the Seifert

fibration (3.39) has a first Chern class:

c1(L0) =
q1

p1
+
q2

p2
=

p

q1q2
. (3.45)

Unlike the case of S3
b , the integers q1 and q2 may not be coprime; in appendix C.2, we

review an algorithm to constructs all the Seifert fibrations of any given L(p, q) [90].

Line bundles and R-symmetry backgrounds. The base space for the Seifert fibra-

tion (3.39) of L(p, q) is the spindle S2(q1, q2). Since q1 and q2 need not be relatively

prime, the two-dimensional orbifold Picard group Pic(S2(q1, q2)) is not necessarily freely

generated. In the three-dimensional notation, it has the presentation:

Pic
(
S2(q1, q2)

) ∼= {[γ], [ω1], [ω2]
∣∣∣ pi[γ] + qi[ωi] = 0 , i = 1, 2

}
. (3.46)
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Following (2.46), we denote the pull-backs of the elementary orbifold line bundles Li by:

[δi] ≡ π∗(Li) ∼= −si[γ] + ti[ωi] , i = 1, 2 . (3.47)

One may check that:

[γ] = −q1[δ1] = −q2[δ2] , [ω1] = p1[δ1] , [ω2] = p2[δ2] , (3.48)

as relations inside the 2d Picard group, thus Pic
(
S2(q1, q2)

)
is also generated by [δ1] and

[δ2]. The three-dimensional Picard group P̃ic
(
L(p, q)

)
is the quotient of Pic

(
S2(q1, q2)

)
by

the relation:

[L0] = [ω1] + [ω2] = p1[δ1] + p2[δ2] ∼= 0 . (3.49)

One can check that:

q[δ1] = [δ2]− t2[L0] , p[δ1] = q2[L0] , (3.50)

as relations in Pic
(
S2(q1, q2)

)
, with p and q given by (3.40). The first relation implies that

[δ2] lies in the group generated by [δ1] in P̃ic
(
L(p, q)

)
, and therefore P̃ic(L(p, q)) can be

generated by the single generator [δ1]. The second relation in (3.50) then implies that:

P̃ic
(
L(p, q)

) ∼= {[δ1]
∣∣∣ p[δ1] = 0

}
∼= Zp , (3.51)

in agreement with H1(L(p, q),Z) ∼= Zp.
Now, consider the R-symmetry line bundle. The canonical line bundle of the spindle

is given by K ∼= L−1
1 L−1

2 , which can be written as:

[K] ∼= −[δ1]− [δ2] (3.52)

in Pic
(
S2(q1, q2)

)
. Using the relations (3.50), we may rewrite this as:

[K] = −(q + 1)[δ1]− t2[L0] . (3.53)

In particular, this is trivial in (3.51) if and only if:

q + 1 = 0 mod p . (3.54)

In the general case, the 2d R-symmetry line bundle takes the form:

LR ∼=
√
K ⊗ LνR0

∼= L
− q+1

2
1 L−

t2
2

+νR
0 . (3.55)

In the special case (3.54), it is natural to choose LR ∼= O topologically trivial, so that we

may consider any real R-charges. Writing q + 1 = np for some integer n, we see that:

[K] = −(nq2 + t2)[L0] . (3.56)

It follows that LR is topologically trivial if we choose:

νR =
nq2 + t2

2
=

(q + 1)q2 + t2p

2p
=
q1 + q2

2p
, (3.57)
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where we used (3.40). Equivalently, this follows from (2.105). From (3.54), we also see that

a lens space admits a trivial R-symmetry line bundle if and only if has the form L(p, p−1).

This obviously generalizes the case of the S3
b background with νR given by (3.37). This

L(p, p−1) supersymmetric background was the one studied by supersymmetric localization

in [15, 27, 60].34

Choice of LR and spin structure. On a general lens space L(p, q), we have:

c1

(
KL(p,q)

) ∼= −q − 1 ∈ Zp , (3.58)

and the R-symmetry line bundle cannot be topologically trivial unless (3.54) holds [9].

Nonetheless, we can always choose νR and lRi such that arbitrary integer R-charges satisfy

the Dirac quantization condition (2.101). Consider the general parameterization of LR as

in (2.86)–(2.87), with the 2d integer fluxes:

ñR0 = −1− lR1 + lR2
2

, nRi =
qi − 1

2
+ νRpi +

lRi qi
2

, i = 1, 2 . (3.59)

That implies:

q1q2 c1(LR) = pνR −
q1 + q2

2
∈ Z . (3.60)

The special case (3.57) with LR ∼= O corresponds to this integer being zero.

We should carefully distinguish between the cases with p odd or even. If p is odd, (3.60)

implies that νR mod 1 is fixed by the parity of q1 + q2 — that is, νR ∈ 1
2 + Z if q1 + q2

is odd, and νR ∈ Z if q1 + q2 is even. If p is even, on the other hand, we see that

q1 + q2 must be even35 and the constraint (3.60) can be solved with νR either integer or

half-integer. Therefore:

(−1)2νR =

{
(−1)q1+q2 if p ∈ 2Z + 1 ,

1 or − 1 if p ∈ 2Z .
(3.61)

While any such choice of νR mod 1 satisfy (3.60), we must also solve the stronger con-

straints (3.59). From the constraint ñR0 ∈ Z, we see that lR1 and lR2 have the same parity.

Then, one can check that, if p is odd, that parity is determined by the fibration:

p ∈ 2Z + 1 ⇒ (−1)l
R
i = (−1)p1+p2+1 , (3.62)

while if p is even, we have the following three cases:

p ∈ 2Z ⇒


(−1)2νR = (−1)l

R
i = ±1 for q1, q2, p1, p2 odd ,

(−1)2νR = ±1 , (−1)l
R
i = 1 for q1, q2 odd, p1, p2 even ,

(−1)2νR = −1 , (−1)l
R
i = ±1 for q1, q2 even, p1, p2 odd .

(3.63)

34It was called L(p, 1) in those papers, due to our different conventions. See footnote 32.
35This is easily seen by contradiction. Assume that p is even and q1 + q2 odd. Then we must have that

q1 is odd and q2 even (or vice-versa). That would imply that p2 is odd (since gcd(q2, p2) = 1), and then

p = q1p2 + q2p1 is odd, a contradiction.

– 44 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

The important point is that there are two and only two distinct possibilities, for any Seifert

fibration of L(p, q). This nicely agrees with the geometric result:

H1(L(p, q),Z2) =

{
0 if p ∈ 2Z + 1 ,

Z2 if p ∈ 2Z .
(3.64)

For p even, the two distinct spin structures of L(p, q) correspond to the two choices in (3.63),

generalizing the M0,p
∼= L(p, 1) example discussed in section 3.1.

3.5 Torus bundles over the circle

Another interesting class of examples consists of Seifert manifolds which are also surface

bundles over the circle. It turns out that a Seifert manifold, M3, fibers over the circle

if and only if c1(L0) = 0 [28].36 Here we consider two simple examples of torus bundles.

(Interestingly, there are only five torus bundles which are also oriented Seifert manifolds,

including the trivial case T 3 ∼= [0; 0; ]. In addition to the S- and C-twisted torus bundles

to be discussed below, the two last examples can be found in [91].)

3.5.1 S-twisted torus bundle

A torus bundle MA
3 is a three manifold which is obtained from the product T 2 × I, with

I ∈ [0, 1] an interval, by gluing the end-points of the interval into a circle while identifying

the tori with a non-trivial automorphism A:

MA
3
∼= (T 2 × I)/ ∼A , A ∈ GL(2,Z) (3.65)

Let us choose the automorphism to be:

S =

(
0 1

−1 0

)
∈ SL(2,Z) , S4 = 1 . (3.66)

Consider T 2 to be the square torus T 2 ∼= C/ ∼, with identifications z ∼ z + 1 ∼ z + i.

The order-4 element S acts by rotation by 90 degrees. The points z = 0 and z = 1
2 + i

2

have a Z4 stabilizer (i.e. they are left invariant), while the points z = 1
2 and z = i

2 have a

Z2 stabilizer (generated by C ≡ S2) and are identified by S. The fundamental domain for

Z4 is the square with corners z = 0, 1
2 ,

1
2 + i

2 ,
i
2 . The corresponding Seifert three-manifold

takes the form:

S1 −→MS
3 −→ S2(2, 4, 4) , (3.67)

where the three orbifold points on the genus-zero base correspond to z = 1
2 ∼

i
2 , z = 0 and

z = 1
2 + i

2 , respectively. More precisely, it is possible to show that:

MS
3
∼= [0 ; 0 ; (2, 1) , (4,−1) , (4,−1)] . (3.68)

Note that the base has vanishing orbifold Euler character, and the first Chern class of the

defining line bundle vanishes as well:

χ
(
Ŝ2(2, 4, 4)

)
= −c1(K) = 0 , c1(L0) = 0 , (3.69)

36We already studied a trivial example of this, the manifold S2 × S1.
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as anticipated. The 2d Picard group takes the form

Pic
(
S2(2, 4, 4)

) ∼= {L0, L1, L2, L3

∣∣ L2
1 = L4

2 = L4
3 = L0

}
, (3.70)

and we have:

K ∼= L0
∼= L1L

−1
2 L−1

3 . (3.71)

The 2d U(1)R line bundle therefore takes the form:

LR ∼= (L0)
1
2

+νR , (3.72)

so that νR must be half-integer. We will consider this square-root a little bit more carefully

below.

The 3d Picard group. The three-dimensional Picard group takes the form:

P̃ic
(
MS

3

) ∼= {[ω1] , [ω2]
∣∣ 2[ω1] + 4[ω2] = 0

}
. (3.73)

By changing the basis of generators to:

[λ1] = [ω1] + [ω2] , [λ2] = [ω1] + 2[ω2] , (3.74)

we find that:

P̃ic
(
MS

3

) ∼= {[λ1] , [λ2]
∣∣ 2[λ2] = 0

} ∼= Z× Z2 . (3.75)

Note that the free generator [λ1] corresponds to L2
1L

4
2 in Pic

(
S2(2, 4, 4)

)
. It follows that:

H1(MS
3 ,Z2) ∼= Z2 × Z2 , (3.76)

which comes entirely from (3.75). In other words, there are four distinct spin structures

compatible with supersymmetry on MS
3 .

Choice of LR and spin structures. Consider a general LR. We have the U(1)R fluxes:

ñR0 = −1− lR1 + lR2 + lR3
2

, nR1 =
1

2
+ νR + lR1 ,

nR2 =
3

2
− νR + 2lR2 , nR3 =

3

2
− νR + 2lR3 ,

(3.77)

which must be integers. It follows that νR ∈ 1
2 + Z, as already mentioned, together with:

lR1 + lR2 + lR3 ∈ 2Z . (3.78)

There are four possibilities for lRi mod 2, namely (lRi ) = (0, 0, 0), (0, 1, 1), (1, 1, 0) or (1, 0, 1).

This matches exactly the expectation from (3.76).

It is also very natural to choose a line bundle LR ∼= O, with vanishing fluxes. This is

possible for:

νR = −1

2
+ 2k , (lR1 , l

R
2 , l

R
3 ) = (−2k,−1 + k,−1 + k) , ∀k ∈ Z . (3.79)

Interestingly, we can have a topologically-trivial LR (and therefore choose any real R-charge

for the matter fields) for two out of the four choices of spin structures, namely for the two

spin structures corresponding to (li) mod 2 equal (0, 0, 0) and (0, 1, 1).
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3.5.2 C-twisted torus bundle

Another interesting torus bundle is obtained by taking the order-two automorphism C =

−1 in (3.65). It corresponds to a genus-zero Seifert fibrations with four exceptional fibers:

MC
3
∼= [0 ; 0 ; (2, 1) , (2, 1) , (2,−1) , (2,−1)] . (3.80)

This is also the “small” Seifert manifold (iii) in section 2.2.2. It has c1(K) = 0 and

c1(L0) = 0 as in the last example. We easily find the three-dimensional Picard group:

P̃ic
(
MC

3

) ∼= {[λ1] , [λ2] , [ω3]
∣∣ 2[λ1] = 0 , 2[λ2] = 0

} ∼= Z2 × Z2 × Z , (3.81)

with [λi] = [ωi] + [ω3] for i = 1, 2. It follows that:

H1(MS
3 ,Z2) ∼= Z2 × Z2 × Z2 , (3.82)

so that there are eight distinct spin structures on MC
3 . They can all be probed by our

supersymmetric backgrounds. Indeed, the conditions on the U(1)R flux are equivalent to:

νR =
1

2
mod 1 , lR1 + lR2 + lR3 + lR4 ∈ 2Z , (3.83)

and there are eight distinct possibilities for the parameters lRi mod 2. There are also

“conformal” backgrounds for which LR is topologically trivial, with νR = −1
2 + k and

(lRi ) = (−k,−k,−1 + k,−1 + k), spanning two out of the eight spin structures.

3.6 Spherical manifolds S3/ΓADE

Another interesting family of genus-zero Seifert manifolds are the so-called spherical three-

manifolds, which are quotients of the three-sphere, M3
∼= S3/Γ, with Γ a freely-acting

finite subgroup of SO(4) ∼= SU(2)L× SU(2)R. Here we consider the simple case in which Γ

is a subgroup of SU(2)L. These background are particularly interesting from the point of

view of 3d N = 2 superconformal theories. Recall that one can preserve the superalgebra:

OSp(2|2)× SU(2)L (3.84)

on the round S3, where the SU(2)L factor can be taken to act by left multiplication. This

is a subgroup of the full flat-space superconformal algebra OSp(2|2, 2) which contains four

supercharges and is compatible with N = 2 massive deformations of the theory on S3 [12].

It is immediately clear that, if we quotient S3 by Γ ⊂ SU(2)L, we do not break any further

supersymmetry. Therefore, such spherical three-manifolds can also be used to construct

3d N = 2 backgrounds preserving four superchages [5].

It is well-known that the finite subgroups Γ ⊂ SU(2) are in one-to-one correspondence

with the finite Dynkin diagrams of type ADE, according to:

ΓADE =
(
Zp , D̂n , T̂ , Ô , Î

)
↔

(
Ap−1 , Dn+2 , E6 , E7 , E8

)
. (3.85)

Here, D̂4n is the binary dihedral group, and T̂ , Ô and Î are the binary tetrahedral, binary

octahedral and binary icosahedral groups, respectively. Their orders are given in table 1.

Let us also introduce the notation:

S3[ADE] ∼= S3/ΓADE . (3.86)
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ADE Ap−1 Dn+2 E6 E7 E8

Γ Zp D̂n T̂ Ô Î

|Γ| p 4n 24 48 120

Table 1. ADE classification of the finite subgroups of SU(2).

By construction, spherical three-manifolds have a finite fundamental group:

π1(S3[ADE]) = ΓADE . (3.87)

The corresponding Seifert manifolds can be written as [28, 92]:

S3[Ap−1] ∼= [0 ; 0 ; (q1, 1) , (q2, 1)] , p = q1 + q2 ≥ 2 ,

S3[Dn+2] ∼= [0 ; 0 ; (2,−1) , (2, 1) , (n, 1)] , n ≥ 1

S3[Em+3] ∼= [0 ; 0 ; (2,−1) , (3, 1) , (m, 1)] , m = 3, 4, 5 .

(3.88)

Extrapolating the E-series to m = 1, 2, we have the equivalences E4 = A4 and E5 = D5,

which are clearly realized by the Seifert geometries (3.88). (We also have D3 = A3.) In all

cases, we find the relation:

K ∼= L−1
0 ∈ Pic(Σ̂) , (3.89)

with c1(L0) 6= 0, and therefore there exists a “superconformal” background with the U(1)R
fugacity:

νR = −1

2

c1(K)

c1(L0)
=

1

2
, (3.90)

so that LR ∼= O. The A-series consists of the lens spaces L(p, p − 1) with squashing

b2 = q1/q2, which we discussed in section 3.4. Let us briefly discuss the other cases.

3.6.1 The D-series

Consider the Seifert fibrations S3[Dn+2] as defined in (3.88). One easily finds that:

P̃ic(S3[Dn+2]) ∼=

{
Z2 × Z2 if n is even,

Z4 if n is odd.
(3.91)

When n is even, the two generators of Z2 × Z2 can be taken to be [ω1] and [ω1] + [ω2].

When n is odd, the generator of Z4 can be taken to be [ω1]. Correspondingly, there are

four distinct spin structures if n is even, and two distinct spin structures if n is odd. The

U(1)R fluxes are:

nR0 = − l
R
1 + lR2 + lR3

2
, nR1 =

1

2
+ lR1 − νR ,

nR2 =
1

2
+ lR2 + νR , nR3 =

n− 1

2
+
lR3 n

2
+ νR .

(3.92)

If n is even, we have νR = 1
2 mod 1 and there are four distinct choices of lRi mod 2. If n is

odd, we also have νR = 1
2 mod 1 but we also need lR3 = 1 mod 2 and there then only two

distinct choices of the U(1)R fractional fluxes, matching the number of spin structures.
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3.6.2 The E-series

For the Seifert fibrations S3[Em+3] defined in (3.88), we find:37

P̃ic(S3[Em+3]) ∼= Z6−m , (3.93)

where the single generator can be take to be [ω1] + [ω2]. In other words, we have the

homologies:
H1(S3[E6],Z) = Z3 , H2(S3[E6],Z) = 0 ,

H1(S3[E7],Z) = Z2 , H2(S3[E7],Z) = 0 ,

H1(S3[E8],Z) = 0 , H2(S3[E8],Z) = 0 .

(3.94)

It also follows that the E6 and E8 spherical three-manifolds admit a unique spin structure,

while there are two distinct spin structures in the E7 case. The Seifert manifold:

S3[E8] ∼= [0 ; 0 ; (2,−1) , (3, 1) , (5, 1)] (3.95)

is the celebrated Poincaré homology sphere — it has the same homology as the three-sphere,

but its fundamental group (the binary icosahedral Î) is non-trivial.

Beyond this complete list of spherical three-manifolds preserving four supercharges, it

is natural to extend the E-series in (3.88) to m > 5. The bound m ≤ 5 is equivalent to:

χ(Σ̂) =
1

2
+

1

3
+

1

m
− 1 > 0 . (3.96)

The “Em+3 manifolds” with m > 5 are examples of rational homology spheres (discussed

in the next subsection), which generally do not have spherical geometry. For instance, the

Seifert manifold S3[E9] has χ(Σ̂) = 0 and c1(L0) = 0 and Euclidean geometry (according

to the classification reviewed in section 2.2.2). The manifold S3[E10] provides an example

of an integral homology sphere with SL(2,R) Thurston geometry.

3.7 Homology spheres

A three-dimensional “integral homology sphere” (ZHS) is a three-manifold M3 with the

same integral homology as the three-sphere:

H0(M3,Z) = H3(M3,Z) = Z , H1(M3,Z) = H2(M3,Z) = 0 . (3.97)

More generally, a “rational homology sphere” (QHS) has H1(M3,Zd) = H2(M3,Zd) = 0

for some integer d, with d = ±1 in the integral case.

Seifert rational homology spheres can be constructed as the genus-zero fibration:

M3
∼= [0 ; 0 ; (q1, p1), · · · , (qn, pn)] , (3.98)

such that:

c1(L0) =

n∑
i=1

pi
qi

= ± 1∏n
i=1 qi

. (3.99)

37Note that, for m = 1, this agrees with the Picard group Z5 of the A4 case, and for m = 2 this agrees

with the Z4 of the D5 case, as expected.
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This implies that the anisotropies qi should be mutually prime:

gcd(qi, qj) = 1 , ∀i, j . (3.100)

For instance, that is the case for both the examples S3[E8] (the Poincaré homology sphere)

and S3[E10] mentioned above, with (qi) = (2, 3, 5) and (2, 3, 7), respectively. Then,

Pic(Σ̂) ∼= Z is freely generated by:

L0
∼=
∏
i

Lpii , (3.101)

and P̃ic(M3) is trivial. In particular, there is a unique choice of LR and of spin structure.

In their studies of CS theories, [48, 72] also considered certain simple QHS’s obtained by a

Zd quotient of a ZHS. They can be obtained by replacing pi by dpi, ∀i, in (3.98).

To conclude this survey of Seifert backgrounds, let us note that, while all the ex-

amples of Seifert fibration in this section had an a underlying genus-zero base Σ̂0,n, the

generalization to Σ̂g,n is automatic. Indeed, changing the genus of the base does not af-

fect the discussion of P̃ic(M3) nor the determination of the R-symmetry line bundle. In

the field theory discussion of the next sections, this will be reflected in the fact that the

handle-gluing operator and the Seifert fibering operator are independent from each other.
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Part II

Seifert fibering operators

4 Fibering operators and partition functions

Supersymmetric partition functions of 3d N = 2 gauge theories on Seifert manifolds M3

can be computed in the language of the “3d A-model,” a topologically twisted 2d N =

(2, 2) effective field theory for abelianized vector multiplets on the base Σ̂ of the Seifert

fibration [27].

In this section, we first review this construction in the case of a principal bundle

M3 =Mg,d, while also discussing the spin-structure dependence of 3d A-model. We then

introduce the (q, p)-fibering operator, whose insertion at a smooth point on Σ̂ corresponds

to adding a (q, p) exceptional fiber toM3. This allows us to elegantly write down the exact

supersymmetric partition on any Seifert manifold.

4.1 Twisted superpotential and Bethe vacua

Consider a 3d N = 2 gauge theory with gauge group G, a product of semi-simple simply-

connected and unitary groups, coupled to chiral multiplets Φ in representations R of G.

We consider the theory on R2 × S1, with a finite circle S1 of radius β, and we focus

on the effective field theory on the two-dimensional Coulomb branch. The low-energy

modes consist of 2d N = (2, 2) twisted chiral multiplets Ua, a = 1, · · · , rk(G) — which

are the field strength multiplets of 2d gauge fields — with complex scalar ua. We have

u = iβσ − a0 in terms of the 3d real scalar σ and the Polyakov loop a0 = 1
2π

∫
S1 A, which

gives the equivalences:

ua ∼ ua + 1 , (4.1)

under large gauge transformations along the maximal torus of G.

The theory might also have a flavor group GF , with maximal torus
∏
α U(1)α ⊂ GF ,

and we may turn on chemical potentials να (α = 1, · · · , rk(GF ))—i.e. background gauge

fields — for these flavor symmetries. We have the periodicities να ∼ να+1 under large gauge

transformations of the background gauge fields. Let us introduce the convenient notation:

ua = (ua, να) , (4.2)

with the index a = (a, α) running over both the gauge and flavor groups. We also consider

the U(1)R fugacity:

νR ∈
1

2
Z , (4.3)

as discussed in previous sections. Choosing either νR = 0 or νR = 1
2 (mod 1), is correlated

with choosing the periodic or anti-periodic spin structure, respectively, for 3d fermions

along the S1 fiber.
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4.1.1 Twisted superpotential of the 3d gauge theory on R2 × S1

Up to Q-exact terms, the 2d low energy action on R2 is fully determined by the twisted

superpotential [27, 30]:

W(u; νR) =WCS(u; νR) +Wmatter(u; νR) +Wvector(u; νR) . (4.4)

On general grounds, the twisted superpotential is only defined up to linear shifts [27]:

W →W + naua + nαuα + n0 , na, nα, n0 ∈ Z . (4.5)

Classical contribution. The first term in (4.4) is the contribution from the Chern-

Simons terms (for the gauge and flavor groups) in the UV action. It is given by:

WCS(u; νR) =
1

2

∑
a,b
a 6=b

kabuaub +
1

2
(1 + 2νR)

∑
a

kaaua

+
∑

a

kaRuaνR + · · · .
(4.6)

Here, kab are the CS levels for the gauge and flavor groups, including possible, mixed

gauge-flavor CS levels in the abelian sector; kaR are the mixed U(1)a-U(1)R CS levels.

All the Chern-Simons levels are integer-quantized. The ellipsis in (4.6) corresponds to u-

independent terms, which will not concern us in the following. Note that νR enters in (4.6)

in two conceptually different ways: In the second line, it enters as a chemical potential for

νR in the mixed gauge-R CS term. In the first line, it enters as a shift of the linear term in

u, corresponding to a choice of spin structure on R2 × S1. In fact, the classical action for

a U(1)k N = 2 Chern-Simons theory on Σg × S1, with n units of flux through Σg, gives:

e−SU(1)k = (−1)kn(1+2νR)e2πiknu = e2πin
∂WCS
∂u , WCS(u) =

k

2

(
u2 + (1 + 2ν)u

)
, (4.7)

for u constant, where the sign depends on whether we choose the periodic (νR = 0) or

anti-periodic (νR = 1
2) spin structure.38 Note that the sign dependence disappears if k is

even, in agreement with the fact that U(1)k CS theory only depends on the spin structure

if k is odd, while it is a fully topological theory for k even [35].

Matter contribution. The second term in the twisted superpotential (4.4) is a one-

loop-exact contribution from the chiral multiplets. For a single chiral multiplet of U(1)

gauge charge 1 and R-charge r ∈ Z, we have the formal contribution:

− 1

2πi

∑
k∈Z

(u+ νRr + k) (log(u+ νRr + k)− 1) , (4.8)

where the infinite sum is over the KK modes on the circle. This gives:

WΦ(u+ νRr) , with WΦ(u) ≡ 1

(2πi)2
Li2
(
e2πiu

)
. (4.9)

38This is explained in appendix C of [27].
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This is the result in the “U(1)− 1
2

quantization,” consistent with the parity anomaly [38].

In the large-σ limit, we have:

lim
σ→+∞

WΦ(u+ νRr) = 0 ,

lim
σ→−∞

WΦ(u+ νRr) = −1

2

(
u2 + (1 + 2νR)u

)
− (r − 1)uνR + · · · .

(4.10)

The limit σ → +∞ corresponds to an empty theory at vanishing CS levels. The limit

σ → −∞ reproduces the integer CS levels:

kGG = −1 , kGR = −(r − 1) , kRR = −(r − 1)2 , kg = −2 , (4.11)

as expected. We refer to [27] for further discussion of the parity anomaly in this context.39

The matter contribution Wmatter in (4.4) is the sum over all the chiral multiplets, weighted

by their charges:

Wmatter(u; νR) =
∑
ω∈RF

∑
ρ∈R
WΦ(ρ(u) + ω(ν) + νRrω) , (4.12)

with rω the R-charge of the fields Φω in some representation R of the gauge group. Here

and henceforth, ρ = (ρa) and ω = (ωα) denote the gauge and flavor weights, respectively.

We also use the short-hand notation ρ(u) = ρ(u) + ω(ν).

Vector multiplet contribution. The last term in (4.4) is the contribution from the

vector multiplet. Consider first the W-bosons Wα, with α ∈ ∆ the roots of g = Lie(G).

In the abelianized theory on the Coulomb branch, Wα contributes exactly like a chiral

multiplet of gauge charges αa and R-charge r = 2 [93]. For each pair of roots α and −α,

we choose the “symmetric quantization,” such that there is a vanishing net contribution

to the contact terms κGG, κGR, κRR and κg. Each positive root then contributes:

1

(2πi)2

(
Li2
(
e2πi(α(u)+2νR)

)
+ Li2

(
e2πi(−α(u)+2νR)

))
+

1

2

(
α(u)2 + (1 + 2νR)α(u)

)
(4.13)

to the twisted superpotential. Up to u-independent terms, the expression (4.13) is equiva-

lent to νRα(u). Therefore, we find the very simple result:

Wvector(u; νR) = νR
∑
α∈∆+

α(u) = 2νR ρW (u) , (4.14)

with ∆+ the set of positive roots, and ρW = 1
2

∑
α∈∆+ α the Weyl vector. For G a simply-

connected simple gauge groups, the Weyl vector is a weight, so that ρaW ∈ Z and Wvector

can be set to zero by a linear shift (4.5). For G = U(N), on the other hand, Wvector will

contribute some non-trivial signs to physical observables if and only if N is an even integer

(and νR = 1
2 mod 1).

39The U(1)R CS level kRR and the gravitational CS level kg are omitted in (4.6), since they are u-

independent. Below we will discuss how they contribute to the partition function on general Seifert three-

manifolds.
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As already anticipated in the introduction, with our choice of quantization the vector

multiplet also contributes non-trivially to the κRR and κg CS contact terms, as in (1.34).

These contribute to the constant piece in the twisted superpotential, which we ignored in

the above.40 They do affect the more general geometry-changing operators to be introduced

below, as we will see.

4.1.2 Bethe equations and Bethe vacua

Consider the so-called “gauge flux operators:”

Πa(u, ν; νR) ≡ exp

(
2πi

∂W
∂ua

)
. (4.15)

The Bethe vacua are the two-dimensional vacua of the effective field theory for the abelian-

ized 2d vector multiplets. These Bethe vacua are obtained from the Bethe equations:

SBE =

{
ûa

∣∣∣∣ Πa(û, ν; νR) = 1 , ∀a , w · û 6= û, ∀w ∈WG

}
/WG , (4.16)

with the identification ua ∼ ua + 1. Here WG denotes the Weyl group of G, and w · u
the Weyl group action on {ua} — that is, we should discard any solution to the equations

{Πa = 1} that is not acted on freely by the Weyl group [94, 95].

Note that the Bethe equations generally depend on νR. In the special case when all

U(1) CS levels and all chiral-multiplet R-charges are even, the dependence on νR drops

out and the Bethe equations are the same as in the “A-twist background” studied in [27].

When the R-charges are all integer-quantized (as is the case, for instance, on Σg×S1), the

dependence on νR only appears through subtle signs.

4.2 Handle-gluing operator and twisted index

Consider the supersymmetric partition function of the 3d N = 2 theory on Σg × S1,

also known as the twisted index [26, 30, 31, 34]. It is given by a sum over Bethe vacua, as:

ZΣg×S1(ν; νR) =
∑
û∈SBE

H(û, ν; νR)g−1 . (4.17)

This is a sum over the solutions u = û of the Bethe equations (4.16), with the handle-gluing

operator H evaluated on the vacua. The handle-gluing operator of a 3d gauge theory reads:

H(u; νR) = e2πiΩ(u;νR) det
ab

(∂ua∂ubW) . (4.18)

Here, the “effective dilaton” Ω is given by:

Ω(u; νR) = ΩCS + Ωmatter + Ωvector , (4.19)

40This is because, for our purposes in this paper, we will only need the derivatives of W with respect to

u or ν, not the “constant” pieces that are either numerical constants or depend on the parameter νR.
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with:

ΩCS(u; νR) =
∑

a

kaRua +
1

2
kRR (4.20)

the contribution from the gauge or flavor-R and RR CS levels. The matter contribution

reads:

Ωmatter(u; νR) = −
∑
ω,ρ

rω − 1

2πi
log
(

1− e2πi(ρ(u)+νRrω)
)
, (4.21)

and the vector multiplet contribution reads:

Ωvector(u; νR) = − 1

2πi

∑
α∈g

log
(

1− e2πiα(u)
)
. (4.22)

This last term is ν- and νR-independent, and gives rise to a factor:

e2πi(g−1)Ωvector =
∏
α∈g

(1− e2πiα(u))1−g . (4.23)

At genus g = 0, this is an ordinary Weyl determinant. The last factor in (4.18) is the Hes-

sian determinant of the twisted superpotential (4.4) as a function of the gauge parameters

ua. It can be written as:

det
ab

(∂ua∂ubW) = det
ab

(
1

2πi
∂ua log Πb

)
, (4.24)

in terms of the gauge flux operators (4.15).

One can also insert background flux nα ∈ Z for some U(1)α flavor symmetry through

Σg. That background flux can be localized at a point, in which case it can be viewed as

another local operator in 2d, the flavor flux operator [27], given by:

Πα(u, ν; νR)nα ≡ exp

(
2πinα

∂W
∂να

)
. (4.25)

In three dimensions, this is a line operator wrapping the S1, at a point on Σg [96, 97].

One can also insert a supersymmetric Wilson loops WR in representations R of the gauge

group, wrapping the S1, which corresponds to the characters:

WR(u) = TrR(e2πiu) =
∑
ρ∈R

e2πiρ(u) . (4.26)

The operators Πα andWR are the simplest examples of half-BPS lines operators, also known

as twisted-chiral operators, which can be inserted at any point on Σg while preserving the

same supercharges Q− and Q̄+ as the geometric background. The correlations functions of

twisted-chiral operators are topological — i.e. independent of the insertion points on Σg.

Therefore, the most general correlation function in the 3d A-model is the expectation value

of a general line operator L wrapped over S1, which is given explicitly by the formula:

〈L 〉Σg×S1 =
∑
û∈SBE

L (û, ν; νR)H(û, ν; νR)g−1 . (4.27)

The twisted index (4.17) is the very special case L = 1.
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4.3 Fibering operators for Seifert manifolds

In this work, we study a more general class of half-BPS line operators in the 3d A-model, the

geometry-changing line operators, whose insertion on Σg is equivalent (in Q-cohomology)

to considering the field theory on a different three-manifold with S1 non-trivially fibered

over Σg [27]. For any supersymmetric background (M3, LR) on a Seifert manifoldM3, we

expect that the supersymmetric partition function can be written (at least formally) as an

expectation value:

ZM3 = 〈LM3〉S2×S1 =
∑
û∈SBE

H(û, ν; νR)−1 LM3(û, ν; νR) , (4.28)

with LM3 the line operator associated to the Seifert geometry M3, from the point of

view of S2 × S1. In [27], we studied the case of M3
∼= Mg,d a principal circle bundle, in

which case:

LMg,d
(u) = F(u)dH(u)g , (4.29)

with F the so-called fibering operator. In the present work, we will write down the

geometry-changing line operator associated to any Seifert geometry (2.26) as:

LM3(u) = F(u)dH(u)g
n∏
i=1

Gqi,pi(u) , (4.30)

schematically. Each (q, p)-fibering operator Gg,p corresponds to adding an exceptional fiber

with the Seifert invariants (q, p). Using unnormalized Seifert invariants and the fact that

the degree d can be viewed as a (1,d) exceptional fiber, we write a general Seifert fibration

as:

M3
∼= [0 ; g ; (1,d) , (q1, p1) , · · · , (qn, pn)] , (4.31)

and we will use the notation:

(q0, p0) ≡ (1,d) , G1,d(u) = F(u)d (4.32)

for the “ordinary” fibering operator, F(u). We then write:

LM3(u) = H(u)g GM3(u) , GM3(u) ≡
n∏
i=0

Gqi,pi(u) . (4.33)

Note that the (qi, pi)-fibering operators (with qi > 1) should be inserted at distinct

points xi ∈ Σg, corresponding to the n ramification points of the two-dimensional orbifold

Σ̂g(q1, · · · , qn) at the base of the Seifert fibration M3. The position of the ramification

points is otherwise arbitrary. Since the correlation function does not depend on the position

of these points, we may take them arbitrarily close to one another, and so may effectively

treat the operator LM3 as a single line operator.
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Fractional fluxes and large gauge transformations. From the point of view of the

2d orbifold Σ̂, we may consider any holomorphic line bundle as in (2.21). We refer to

the corresponding integers ni as the “fractional fluxes” at the orbifold points xi, while a

flux n0 localized at a smooth point is an “ordinary flux.” Then, considering a single (q, p)

exceptional fiber, we denote by:

Gq,p(u)n , (4.34)

with n ∈ Z the fractional flux. (From here onwards, the dependence on νR is left implicit.)

Strictly speaking, the fractional flux is valued in Zq, and we must have:

Gq,p(u)n+qn0 = Π(u)n0 Gq,p(u)n , (4.35)

with Π(u) the ordinary flux operator defined above. (Treating gauge and flavor fluxes

democratically.) In particular, we have:

G1,d(u)n = Π(u)nF(u)d , (4.36)

for the (1,d) “exceptional fiber” encoding the degree of L0. We will use the notation

Gq,p(u) for (4.34) with n = 0.

The fractional fluxes encode all the relevant (supersymmetry-preserving) non-trivial

lines bundles over M3 in a redundant manner, according to (2.39). Tensoring by L0

corresponds to a large gauge transformation in the A-model. Considering a configuration

with fractional fluxes (n0, ni) and holomorphic modulus u ∈ C, we have:

L→ L⊗ L0 ⇔ u→ u+ 1 , n0 → n0 + d , ni → ni + pi . (4.37)

By gauge invariance of the quantum field theory, the shift (4.37) should be an invariance

of the various fibering operators, viewed as functions of u ∈ C and n ∈ Z:

Gq,p(u + 1)n+p = Gq,p(u)n . (4.38)

We will verify this in the explicit results below.41 In the special case (4.36), the difference

equation (4.38) is equivalent to:

F(u− 1) = Π(u)F(u) , (4.39)

which was a crucial ingredient in the analysis of [27]. In the following subsections, we

present explicit expressions for the building blocks of the fibering operators for general 3d

N = 2 gauge theories.

4.3.1 Contribution from Chern-Simons terms

Let us first consider the contribution from the classical action to the fibering operators. It

comes entirely from Chern-Simons terms. (The relevant supersymmetric Lagrangians can

be found in [27], following [5].)

41There is an important subtlety for general LR, which we will address below.
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U(1)k CS term. Consider first the supersymmetric Chern-Simons action for a single

U(1) vector multiplet, at level k. We claim that each (q, p)-fibering operator contributes:

GU(1)k
q,p (u)n =

(
GGG
q,p (u)n

)k
(4.40)

with the function:

GGG
q,p (u)n ≡ (−1)n(1+t+lRt+2νRs) exp

(
−πi
q

(
pu2 − 2nu+ tn2

))
. (4.41)

Here, n ∈ Z denotes the fractional flux, lR ∈ Z corresponds to the parameterization (2.86)

for the R-symmetry line bundle LR, and the integers s and t are such that qs + pt = 1,

as usual. It follows from (2.86) that, for a given (q, p), (4.41) is independent of the choice

of (s, t).42

The function (4.41) is invariant under the large gauge transformation (u, n) → (u +

1, n + p) up to a sign:

GGG
q,p (u+ 1)n+p = (−1)l

R GGG
q,p (u)n , (4.42)

as one can easily check. When taking the product of all the fibering operators to obtain

a geometry-changing operator, as in (4.33), the signs (−1)l
R

from (4.42) cancel out due

to (2.88). Therefore the operator GM3(u) for the U(1)k theory is gauge invariant, as

expected. We can also check that:

GGG
q,p (u)n+qn0 = ΠGG(u)n0 GGG

q,p (u)n , (4.43)

with:

ΠGG(u) ≡ (−1)1+2νR e2πiu (4.44)

the ordinary flux operator for the U(1)k=1 term.

Mixed abelian CS term. Consider a mixed abelian CS term at level k12 ∈ Z for some

U(1)1 ×U(1)2 vector multiplets. At level k12 = 1, we have:

GG1G2
q,p (u1, u2)n(1), n(2) ≡ exp

(
−2πi

q

(
pu1u2 − n(1)u2 − n(2)u1 + tn(1)n(2)

))
, (4.45)

with n(1), n(2) the fractional fluxes for the two U(1) factors. This expression is fully gauge-

invariant and satisfies:

GG1G2
q,p (u1, u2)

n(1)+qn
(1)
0 , n(2)+qn

(2)
0

= e
2πi
(
n

(1)
0 u2+n

(2)
0 u1

)
GG1G2
q,p (u1, u2)n(1), n(2) , (4.46)

in agreement with the form of the corresponding flux operators [27]. Note that (4.45) is

independent of νR and lR, in agreement with the fact that the mixed CS action is spin-

structure independent.

42Under a shift (s, t) → (s − p, t + q), the expression (4.41) gets multiplied by a trivial sign

(−1)n(q−1+2pνR+lRq) = 1, where we have used the fact that q − 1 + 2pνR + lRq = 2nR is even.
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Non-abelian CS terms. The Chern-Simons contribution for a non-abelian gauge group

G can be obtained similarly. For G = U(N) at level k, we simply have:

GU(N)k
q,p (u)n =

(
N∏
a=1

GGG
q,p (ua)n

)k
. (4.47)

For G a simply-connected simple Lie group, the signs in front of (4.41) cancel out, in

agreement with the expected spin-structure-independence of the answer, and one obtains:

GGk
q,p (u)n = exp

(
−πi k h

ab

q
(puaub − naub − nbua + tnanb)

)
, (4.48)

with hab the Killing form of g = Lie(G).

Mixed gauge-R CS term. We may also have a mixed CS term between an abelian

gauge field and the R-symmetry background gauge field on M3, at level kGR ∈ Z. This is

given in terms of:

GGR
q,p (u)n ≡ exp

(
−2πi

q

(
puνR − nνR − nRu+ tnRn

))
, (4.49)

to the power kGR. Here the R-symmetry “fractional flux” nR at the exceptional fiber (q, p)

is given as in (2.86), namely:

nR =
q − 1

2
+ νRp+

lRq

2
. (4.50)

The expression (4.49) can be understood as a special case of (4.45), essentially because the

R-symmetry gauge field also sits in a vector multiplet, which is a submultiplet of the 3d

N = 2 “new minimal” supergravity multiplet [21]. Using (4.50), the expression (4.49) can

also be written as:

GGR
q,p (u)n = (−1)n(lRt+2νRs) eπiul

R
e
πi q−1

q
(u−tn)

. (4.51)

The RR CS term. We can also have a U(1)R CS term at level kRR ∈ Z. It contributes

to the fibering operator through:

GRR
q,p ≡ (−1)n

R(1+t+lRt+2νRs) exp

(
−πi
q

(
pν2
R − 2nRνR + t(nR)2

))
, (4.52)

to the power kRR, with nR given by (4.50). Since νR is real, GRR
q,p is a pure phase. Obviously,

this can also be understood as a special case of (4.41).

The gravitational CS term. The last supersymmetric Chern-Simons term is the super-

symmetrization of the gravitational CS term, with level kg ∈ Z [39]. For future reference,

let us first introduce the phase:

G(0)
q,p ≡ exp

(
πi

(
p

12q
− s(p, q)

))
, (4.53)
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with s(p, q) the Dedekind sum:

s(p, q) =
1

4q

q−1∑
l=1

cot

(
πl

q

)
cot

(
πlp

q

)
. (4.54)

We will denote by:

(Ggrav)kg (4.55)

the contribution of the gravitational CS term at level kg. We find:

(Ggrav)2 =
(
GRR
q,p

)−1
(
G(0)
q,p

)2
, (4.56)

with the phase GRR
q,p given by (4.52). Note that we could only determine the precise

phase (4.55) for kg even. (In other words, we determined Ggrav up to a sign. In any

case, in this paper at least, we will only ever need to consider kg even.)

4.3.2 Contribution from chiral multiplets

Next, we consider the contribution of chiral multiplets to the fibering operator. This can be

extracted from the one-loop determinant of a free chiral multiplet on the supersymmetric

background (M3, LR). Let Φ be a chiral multiplet coupled to a U(1) background vector

multiplet with charge 1, of R-charge r ∈ Z. We can compute the one-loop determinant by

considering the KK expansion (2.79) of the fields along the Seifert fiber. By supersymmetry,

the only modes that give a net contribution to the one-loop determinant are holomorphic

sections on Σ̂ [27]. Let L = Ln0
0 ⊗i L

ni
i denote the gauge bundle. The KK modes φk for the

scalar field φ in Φ are then valued in the holomorphic line bundles:

L(r,k) = L⊗ (LR)r ⊗ (L0)k = L
n0+ñR0 r+dk
0

n⊗
i=1

L
ni+nRi r+pik
i (4.57)

Using the Riemann-Roch-Kawasaki theorem (2.18), we obtain the simple result:

ZΦ
M3

=
∏
k∈Z

(
1

u+ νRr + k

)deg(L(r,k))+1−g
, (4.58)

with:

deg(L(r,k)) = n0 + ñR0 r + dk +

n∑
i=1

⌊
ni + nRi r + pik

q

⌋
. (4.59)

The formal infinite product (4.58) needs to be regularized.

Vanishing R-charge. Consider first the case of a chiral multiplet of R-charge r = 0. As

in [27], we define the ordinary flux and fibering operators for a free chiral by:

ΠΦ(u) ≡
∏
k∈Z

1

u+ k
, FΦ(u) ≡

∏
k∈Z

(
1

u+ k

)k

. (4.60)
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Similarly, we find the (q, p)-fibering operator for a free chiral multiplet:

GΦ
q,p(u)n ≡

∏
k∈Z

(
1

u+ k

)⌊ n+pk
q

⌋
. (4.61)

With these definitions, we find:

ZΦ
M3

∣∣∣
r=0

= ΠΦ(u)n0+1−g FΦ(u)d
n∏
i=1

GΦ
qi,pi(u)ni = ΠΦ(u)1−g

n∏
i=0

GΦ
qi,pi(u)ni . (4.62)

In the U(1)− 1
2

quantization for the Dirac fermions, we obtain:

ΠΦ(u) ≡ 1

1− e2πiu
, FΦ(u) ≡ exp

(
1

2πi
Li2(e2πiu) + u log

(
1− e2πiu

))
, (4.63)

upon regularizing (4.60). Note that FΦ(u) is a meromorphic function of u which satisfies

FΦ(u − 1) = ΠΦ(u)FΦ(u), as in (4.39) [27]. We can similarly regularize the infinite

product (4.61) — this is elaborated upon in appendix D. In the absence of fractional flux

(n = 0), we find:

GΦ
q,p(u) ≡ exp

q−1∑
l=0

{
p

2πi
Li2(e

2πiu+tl
q ) +

pu+ l

q
log
(

1− e2πiu+tl
q

)}
, (4.64)

with t the modular inverse of p mod q. Note that GΦ
q,p(u) is a meromorphic function of

u with poles or zeros at u = −k ∈ Z, as expected from (4.61). (One can show that the

various branch cut ambiguities in the definition (4.64) cancel out entirely, so that GΦ
q,p(u)

is single-valued.) This generalizes the ordinary flux operator, which corresponds to:

GΦ
1,d(u) = FΦ(u)d . (4.65)

The function (4.64) can be also written as:

GΦ
q,p(u) = e

p
q (

1
2πi

Li2(e2πiu)+u log(1−e2πiu))
q−1∏
l=1

(
1− e2πiu+tl

q

) l
q
. (4.66)

The contribution from the fractional fluxes can be conveniently written in term of Pochham-

mer symbols:

ΠΦ
q,p(u)n ≡

(
e

2πiu
q ; e

2πit
q

)
−n

=


∏n−1
l=0

(
1

1−e2πi
u+t(l−n)

q

)
if n > 0 ,

∏|n|
l=1

(
1− e2πi

u−t(l+n)
q

)
if n < 0 .

(4.67)

Let us note the identity:

ΠΦ
q,p(u)n+m = ΠΦ

q,p(u)n ΠΦ
q,p(u− tn)m . (4.68)
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The full (q, p) fibering operator for Φ is then given by:

GΦ
q,p(u)n ≡ ΠΦ

q,p(u)n GΦ
q,p(u) (4.69)

One can check that:

GΦ
q,p(u)n+q = ΠΦ(u)GΦ

q,p(u)n , GΦ
q,p(u+ 1)n+p = GΦ

q,p(u)n , (4.70)

as expected on general grounds.

General R-charge. For a general R-charge r ∈ Z, we simply have:

ZΦ
M3

= ΠΦ(u+ νRr)
(g−1)(r−1)

n∏
i=0

Gqi,pi(u+ νRr)ni+nRi r
, (4.71)

with the R-symmetry line bundle over Σ̂ parameterized as in (2.86) and (2.87). In partic-

ular, the chiral multiplet simply contributes:

GΦ
q,p(u+ νRr)n+nRr (4.72)

to the (q, p)-fibering operator.

Large σ limits. In the limit σ →∞, we find:

lim
u→i∞

GΦ
q,p(u+ νRr)n+nRr = 1 , (4.73)

in agreement with having an empty theory in the IR. In the opposite limit σ → −∞, one

can show that:

lim
u→−i∞

GΦ
q,p(u+ νRr)n+nRr = e−πi(u+rνR)lR

×
(
GGGq,p

)−1 (GGRq,p )−(r−1) (GRRq,p )−(r−1)2 (
Ggrav
q,p

)−2
,

(4.74)

with the right-hand-side given in terms of the CS fibering operators defined in subsec-

tion 4.3.1.43 This is exactly as expected from (4.11). The lR-dependent term in front of

the CS terms in (4.74) cancels out in the full fibering operator GM3 due to the constraint∑n
i=0 l

R
i = 0.

Complex mass term. Similarly, we can consider two chiral multiplets Φ1,Φ2 with gauge

charges ±1 and R-charges r and 2− r, such that we can write down a superpotential mass

term W = Φ1Φ2. One finds:

GΦ
q,p(u+ νRr)n+nRr GΦ

q,p(−u+ νR(2− r))−n+nR(2−r) = g̃(u+ νRr)
lR

×
(
GGGq,p (u)n

)−1 (GGRq,p (u)n
)−(r−1) (GRRq,p )−(r−1)2 (

Ggrav
q,p

)−2
,

(4.75)

with:

g̃(u) ≡ − eπiu

1− e2πiu
, (4.76)

43See appendix D for details on the derivation of (4.74).
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a (q, p)-independent function, which therefore cancels out from GM3 . In the limit u →
−i∞, we have g̃(u) ∼ e−πiu and (4.75) obviously reduces to (4.74). The relation (4.75)

nicely matches our expectations — the two chiral multiplets are given in the “U(1)− 1
2

quantization” and, upon integrating them out with a superpotential mass term, we remain

with the integer-quantized CS contact terms (4.11), including the U(1)−1 CS term.

4.3.3 Contribution from the vector multiplet

Let us now consider the vector multiplet V for the gauge group G with Lie algebra g. The

(q, p) fibering operator has contributions both from the 3d H = U(1)rk(G) vector multiplets

Va in the maximal torus of G, and from the massive “W-bosons” on the Coulomb branch.

W-boson contribution. Consider first the W-bosons, which contribute like chiral mul-

tiplets of gauge charges αa and R-charge 2. For each pair of roots α, −α, we choose the

symmetric quantization as discussed around equation (4.13). This gives:

G̃Wq,p(u)n ≡
∏
α∈∆+

GΦ(α(u) + 2νR)α(n)+2nR

GΦ(α(u))α(n)
GGR
q,p (α(u))α(n) . (4.77)

Here we have used the fact that, in the symmetric quantization, we have to turn on some

bare CS levels k = α2 — as in (4.13) — as well as kRR = 1 and kg = 2. Then, using the

relation (4.75) leads us to (4.77).44 This expression can be massaged to:

G̃Wq,p(u)n ≡
∏
α∈∆+

(−1)l
R
g̃(α(u))l

R GW0
q,p

(
α(u)

)
α(n)

, (4.78)

with the function g̃(u) defined in (4.76). Here we defined:

GW0
q,p (u)n ≡ (−1)n(t+lRt+2νRs)

e
−πiu−tn

q

e−πiu
1− e2πiu−tn

q

1− e2πiu

= (−1)n(t+lRt+2νRs)
sin
(
π(u−tn)

q

)
sin(πu)

,

(4.79)

a function of a single set of parameters u ∈ C, n ∈ Z. The factors (−g̃)l
R

in (4.78) can be

dropped, since they cancels out in GM3 . We are then left with a rather simple expression

for the W-boson contribution to the fibering operator:

GWq,p(u)n =
∏
α∈∆+

GW0
q,p

(
α(u)

)
α(n)

= (−1)2ρW (n)(t+lRt+2νRs)
e
− 2πi

q
ρW (u−tn)

e−2πiρW (u)

∏
α∈∆+

1− e
2πi
q
α(u−tn)

1− e2πiα(u)
.

(4.80)

Note that, while G̃Wq,p is gauge-invariant by construction, GWq,p shifts by a sign under large

gauge transformations, due to the relation:

GW0
q,p (u+ 1)n+p = (−1)l

R GW0
q,p (u)n . (4.81)

44Up to some lR-dependent factor which cancels from GM3 .
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This follows either from the definition (4.79), or from the factorization (4.78) together with

the fact that g̃(u + 1) = −g̃(u). As a small consistency check on (4.80), one can also

check that:

GWq,p(u)n+δaq = e4πiνRρ
a
W GWq,p(u)n , (4.82)

where n + δaq corresponds to the shift na → na + q. This shift is due to the twisted

superpotential term (4.14), which contributes to the gauge-flux operator a sign:

ΠWa = e4πiνRρ
a
W . (4.83)

Therefore, (4.82) is in perfect agreement with (4.35).

U(1) contribution. Consider next a U(1) vector multiplet, and more generally the max-

imal torus H of G. On general grounds, the one-loop fluctuations of Va could contribute

to the fibering operator. We claim that each U(1) vector multiplet does contribute a

pure number:

GVq,p =
1
√
q
G(0)
q,p (4.84)

to the fibering operator, with G(0)
q,p defined by (4.53). We interpret the phase G(0)

q,p as the

result of quantizing the gaugino λ such that it shifts the RR and gravitational contact terms

by δκRR = 1
2 and δκg = 1, as we explained in section 1.4. Indeed, we see from (4.56) that:(

G(0)
q,p

)2
= GRR

q,p (Ggrav)2 , (4.85)

therefore it is natural to assign the contact terms:

κRR =
1

2
, κg = 1 (4.86)

to (4.84). The factor of 1/
√
q in (4.84) is more ad-hoc, but it can be argued for by requiring

consistency with many well-established results. In particular, we can argue for (4.84) by

comparing our results to well-known results for pure CS theory [71]. This will be discussed

elsewhere [73].

Following our discussion in section 1.4 (and in appendix A), it is also convenient to

introduce a factor of (G(0)
q,p )2 for each pair of W-bosons Wα, W−α — in that case, this

is simply a different choice of quantization of the vector multiplet, since it corresponds

to adding the integer-quantized RR and gravitational CS terms (with level kRR = 1 and

kg = 2) to the UV action, for each α ∈ ∆+. We then have an overall contribution:(
1
√
q

)rk(G) (
G(0)
q,p

)dim(G)
(4.87)

from the vector multiplet, in addition to the W-boson contribution (4.80).

4.4 Supersymmetric partition on M3 as a sum over Bethe vacua

Combining all the ingredients above, we can now write down the full formula for the

geometry-changing operator, for any Seifert manifolds, in the general class of gauge theories

considered here.
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4.4.1 The full (q, p)-fibering operator: summing over fractional fluxes

Consider a 3d N = 2 supersymmetric gauge theory with gauge group G and matter

fields Φ in chiral multiplets, with generic background gauge fields turned on for the global

symmetry group GF . Let na and mα denote the gauge and flavor fluxes, respectively. The

gauge and flavor chemical potentials are denoted by ua and να, respectively. At fixed gauge

flux na = (na,0, na,i) on M3, the fibering operator reads:

Gq,p(u, ν)n,m = GCS
q,p (u, ν)n,m Gmatter

q,p (u, ν)n,m Gvector
q,p (u)n . (4.88)

The first factor GCS
q,p is the classical contribution from Chern-Simons terms, including CS

contact terms for global symmetries, which can be constructed from the results in sec-

tion 4.3.1. The second factor is the contribution from matter fields, which reads:

Gmatter
q,p (u, ν)n,m =

∏
ω

∏
ρ∈R
GΦ
q,p(ρ(u) + ω(ν) + rωνR)ρ(n)+ω(m)+nRrω (4.89)

with the gauge and flavor weights ρa and ωα, respectively, rω the R-charges, and the

function GΦ
q,p defined in (4.64). The third factor in (4.88) is the contribution from the

vector multiplet, which reads:

Gvector
q,p (u)n =

(
1
√
q

)rk(G) (
G(0)
q,p

)dim(G)
GWq,p(u)n , (4.90)

with GWq,p given by (4.80). Note that (4.90) is independent of the flavor parameters.

The expression (4.88) depends both on the gauge theory chemical potentials ua and

on the gauge fluxes na. In the full theory, we need to “integrate over” the vector multiplet.

In the present formalism, “integration over u” is realized by the sum over Bethe vacua

in (4.28). However, we also need to sum over the fractional fluxes, for each exceptional

fiber (q, p). For a gauge group G, the fractional fluxes are valued in a Zq reduction of the

magnetic flux lattice:

ΓG∨(q) =
{
n ∈ h

∣∣ ρ(n) ∈ Z, ∀ρ ∈ Λchar ; n ∼ n + qλ, ∀λ ∈ Λcochar

}
, (4.91)

with Λchar and Λcochar the character and co-character lattices of G, respectively — in other

words, ΓG∨(q) ∼= Λcochar ⊗ Zq. The full fibering operator is obtained by summing over all

the fractional fluxes:

Gq,p(u, ν)m =
∑

n∈ΓG∨ (q)

Gq,p(u, ν)n,m . (4.92)

We will argue below that this is the correct sum over topological sectors, when we consider

supersymmetric localization in section 6. Heuristically, the idea is that, from the two-

dimensional point of view, we should sum over all orbifold H-bundles on the orbifold base

Σ̂, in order to have a consistent sum over topological sectors. The sum (4.92) is well-

defined when evalued on a Bethe vacuum. Indeed, if we shift any na by q in the summand,

we obtain:

Gq,p(u, ν)n+δaq,m = Πa(u, ν)Gq,p(u, ν)n,m , (4.93)

where the new prefactor trivializes on any Bethe vacuum, Πa(û, ν) = 1.
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Moreover, while we saw before that the individual fibering operators Gqi,pi are not well-

defined in the presence of a general R-symmetry line bundle LR (when lRi 6= 0), these am-

biguities factor out of the sum (4.92), and safely cancel in the full Seifert fibering operator:

GM3(u, ν)m =
n∏
i=0

Gqi,pi(u, ν)mi . (4.94)

Recall that, in this notation, (q0, p0) = (1,d), and so m = (mi) includes both the “ordinary

fluxes” m0 and the “fractional fluxes” mi, i > 0.

4.4.2 The M3 partition function as a sum over Bethe vacua

This completes the definition of the general fibering operator of a 3d N = 2 gauge theory.

We have found the geometry-changing line operator, given by the product of g handle-

gluing operators (4.18) with the Seifert fibering operator (4.94), namely:

LM3(u, ν)m = H(u, ν)g GM3(u, ν)m . (4.95)

This operator can be inserted along S1 in the topologically-twisted S2 × S1 geometry, as

in (4.28). We therefore found a closed exact formula for the supersymmetric partition

function on any Seifert manifold:

ZM3(ν)m =
∑
û∈SBE

H(û, ν)g−1 GM3(û, ν)m . (4.96)

Note that this expression is properly gauge invariant, including under large gauge transfor-

mations for the flavor symmetry.45 In section 6, we will provide further evidence for (4.96)

from a localization argument in the UV.

5 Infrared dualities on Seifert manifolds

The above results can be used to check infrared dualities between 3d N = 2 gauge theories,

by matching their supersymmetric partitions on any Seifert manifold. Given two dual

theories T and T D, we must have:

ZTM3
(ν)m = ZT

D

M3
(ν)m , (5.1)

for any supersymmetric background M3. More generally, any infrared duality implies the

existence of a “duality map” mapping the Bethe vacua in the dual theories:

D : SBE[T ]→ SBE[T D] : û 7→ ûD , (5.2)

where the Bethe vacua are defined by (4.16). Given the formula (4.96) for ZM3 as a sum

over Bethe vacua, the equality of partition functions is equivalent to the relations:

H(û, ν) = HD(ûD, ν) , GM3(û, ν)m = GDM3
(ûD, ν)m (5.3)

45Under a large gauge transformation for some flavor U(1)α, the parameters (να,mi,α) are shifted to

(να + 1,mi,α + pi), which leaves the fibering operator invariant.
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between the handle-gluing and fibering operators of the dual theories, for every pair of

dual Bethe vacua û and ûD. These duality relations were previously proven for H [26] and

for the “ordinary” fibering operator F = G1,1 [27], for many three-dimensional Seiberg-like

dualities [52–54, 98, 99].46

In the following, we verify the duality relations (5.3) in a few simple examples. This

also serves to illustrate the formalism of the previous section, by spelling out the fibering

operators of some well-known theories. In each case, we performed detailed numerical

checks of the duality relations (5.3). Even in the case of the simplest abelian dualities, these

are very non-trivial checks, which work for any (q, p)-fibering operator and depend crucially

on the fine structure of the theories and of the duality relations, including the relative

background Chern-Simons contact terms between dual theories [39, 52]. We thus view

the successful matching across dualities as very stringent consistency checks of our results,

including more subtle features such as the spin-structure dependence of the supersymmetric

background (M3,LR).

5.1 Duality between the U(1)1 CS theory and an almost trivial theory

As our first example, consider a 3d N = 2 supersymmetric U(1) gauge theory at Chern-

Simons level k = 1, without matter. It is dual to an empty theory. More precisely, the

dual theory consist only of a CS contact term for the topological symmetry U(1)T , at level

kTT = −1, and of a pure gravitational CS term at level kg = −2:

T : U(1)1 gauge theory ←→ T D : kTT = −1 , kg = −2 . (5.4)

As we discussed in section 4.3.3, we quantize the gaugino in the vector multiplet in such a

way that it contributes the contact terms:

κRR =
1

2
, κg = 1 , (5.5)

for the U(1)R and gravitational background fields, respectively. Recall that most N = 2

CS theories are equivalent to pure CS theories in the infrared — a CS term at level k gives

a real mass m = −kg2

2π to the gaugino,47 which can be integrated out, and we are left with

the gauge field only. In the present case, integrating out the single gaugino in the U(1)

vector multiplet shifts the CS contact terms by −1
2 and −1, respectively, so that we have:

κ
(IR)
RR = 0 , κ(IR)

g = 0 . (5.6)

in the deep infrared. We then have a U(1)1 pure CS theory, which was recently studied

in detail in [42]. As argued there, the theory is “almost trivial,” being equivalent to a

purely gravitational CS term at level kg = −2. If we couple the topological symmetry of

the U(1)1 theory to a background U(1)T gauge field, we also have the U(1)T CS term at

level kTT = −1 in the dual description [100], as indicated in (5.4).

46In our previous work [27], we only discussed the case νR ∈ Z for the U(1)R background, corresponding

to the “periodic” spin structure. Here we consider the general case νR = 1
2
Z as well.

47With g2 the YM coupling, or any other UV regulator.
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The Bethe vacuum. The U(1)1 supersymmetric theory has the gauge flux operator:

Π(u, ζ) = (−1)1+2νRe2πiue2πiζ . (5.7)

Here ζ = νT is the fugacity for U(1)T , which is equivalent to a complexified FI parameter.

We then have a single Bethe vacuum (up to large gauge transformations, u→ u+ 1):

Π(û, ζ) = 1 ⇒ û = −ζ +
1

2
+ νR . (5.8)

A very simple observable in this theory is the U(1)T flavor flux operator, which reads:

ΠT (u) = e2πiu . (5.9)

Plugging in the Bethe solution, we obtain:

ΠT (û) = (−1)1+2νRe−2πiζ , (5.10)

with is precisely the U(1)T flux operator generated by a U(1)T CS level kTT = −1, in

agreement with the right-hand-side of (5.4). It is interesting to note that the U(1)T flux

operator (5.9) is equivalent to a Wilson line of charge 1 wrapping a generic Seifert fiber.

Even as we turn off the U(1)T fugacity, setting ζ = 0, we remain with a non-trivial sign

in (5.10), which depends on the spin structure of M3 restricted to the Seifert fiber.48 This

is in agreement with the known properties of this line operator [42].

Matching the fibering operators. In the present theory, we haveH = 1 for the handle-

gluing operator, so it trivially matches across the duality. To match the supersymmetric

partition functions, we then only need to match the (q, p)-fibering operators. In the U(1)1

theory, we have:

GTq,p(u, ζ)n,mT =
1
√
q
G(0)
q,p GGG

q,p (u)n GG1G2
q,p (u, ζ)n,mT . (5.11)

Here n is the gauge flux and mT is the U(1)T background flux. The fibering operator is

obtained by summing over the gauge fluxes:

GTq,p(u, ζ)mT =

q−1∑
n=0

GTq,p(u, ζ)n,mT . (5.12)

In the “dual theory,” we have:

GT Dq,p (ζ)mT =
(
GGG
q,p (ζ)mT

)−1 (Ggrav
q,p

)−2
(5.13)

Plugging in the Bethe vacuum (5.8), we find:

GTq,p(û, ζ)mT = e
πi
2
lR GT Dq,p (ζ)mT . (5.14)

48That is, assuming the Seifert fiber corresponds to a non-trivial element of H1(M3,Z2). Otherwise there

is a unique choice of νR mod 1 consistent with supersymmetry.
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The prefactor on the right-hand-side cancels out when we consider the full fibering operator

GM3 . The relation (5.14) therefore implies (5.3).

We should emphasize that the factor G(0)
q,p in (5.11), which originates from the gaugino,

is crucial in obtaining a precise match across the duality, even in this overly simple example.

This and other related consistency checks give us confidence that we have identified the

correct fibering operators. The above analysis can be generalized to the N = 2 version of

level/rank duality, U(N)k ↔ U(|k| −N)−k, and one again finds a perfect agreement [73].

(Supersymmetric level/rank duality can be also obtained as a limit of Aharony duality,

which we study below.)

5.2 Elementary mirror symmetry

Consider the elementary N = 2 mirror symmetry [99] between a U(1) gauge theory with

one chiral multiplet and a free chiral multiplet:

T : U(1) 1
2

+ Φ (gauge theory) ←→ T D : T+ (free chiral) . (5.15)

The gauge theory consists of a U(1) vector multiplet coupled to a single chiral multiplet

of unit charge, with effective CS level κ = 1
2 . The dual theory is a single free chiral,

denoted by T+, which is identified with the gauge-invariant monopole operator of the U(1)

gauge theory. If the chiral multiplet of the original theory has an R-charge r ∈ Z, the

dual chiral multiplet T+ has R-charge R[T+] = 1− r. Moreover, we also have the relative

Chern-Simons contact terms:

kTR = −r , kRR = r2 , (5.16)

in the dual description. These relative CS levels can be derived, for instance, by integrating

out Φ with a large positive real mass, thus flowing to the duality (5.4).49

Bethe equation, handle-gluing operator and fibering operators. Consider first

the gauge theory T . We have the twisted superpotential:

WT =
1

(2πi)2
Li2(e2πi(u+rνR)) +

1

2
(u2 + (1 + 2νR)u) + ζu+ · · · . (5.17)

Note the presence of a U(1) CS level k = 1, corresponding to the choice of U(1)− 1
2

quanti-

zation for the chiral multiplet.50 The Bethe equation reads:

Π(u, ζ) =
(−1)1+2νRe2πiue2πiζ

1− e2πi(u+νRr)
= 1 . (5.18)

Let û denote the unique solution . We also have the non-trivial effective dilaton:

ΩT = −r − 1

2πi
log(1− e2πi(u+νRr)) , (5.19)

49In this limit, the gauge theory T flows exactly to the U(1)1 theory in (5.4). In the dual description,

integrating out the chiral multiplet T shifts the CS levels (5.16) back to zero, while it also generates the

levels kTT = −1 and kg = −2. See e.g. [26, 27, 39] for detailed discussions of such decoupling limits.
50That is, we must add a “bare” CS term at level 1 to go from our default “U(1)− 1

2
quantization” to the

“U(1) 1
2

quantization” that appears in (5.15), in the theory T .
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and the handle-gluing operator:

HT (u, ζ) =

(
1

1− e2πi(u+νRr)

)r
, (5.20)

which is easily derived from (5.17) and (5.19). Last but not least, the (q, p)-fibering operator

reads:

GTq,p(u, ζ)mT =
1
√
q

q−1∑
n=0

G(0)
q,p GΦ

q,p(u+ νRr)n+nRr GGG
q,p (u)n GG1G2

q,p (u, ζ)n,mT . (5.21)

The second and third factors in the summand corresponds to the chiral multiplet in the

U(1) 1
2

quantization, and the last factor is the mixed U(1)-U(1)T CS term, which includes

the contribution from the FI coupling.

Matching across the duality. It is straightforward to check the matching of the handle-

gluing operators across the duality. Plugging the solution to (5.18) into (5.20), we obtain:

HT (û, ζ) = (−1)re−2πirζ

(
1

1− e2πi(ζ+νR(1−r))

)−r
= HT D(ζ) . (5.22)

The dual handle-gluing operator is derived from the effective dilaton:

ΩT
D

=
r

2πi
log(1− e2πi(ζ+νR(1−r)))− rζ +

r2

2
. (5.23)

Note the contribution from the contact terms (5.16). Similarly, the dual (q, p)-fibering

operator takes the form:

GT Dq,p (ζ)mT = GΦ
q,p(ζ + νR(1− r))mT+nR(1−r)

(
GGR
q,p (ζ)mT

)−r (GRR
)r2

. (5.24)

We verified numerically the duality relations:

GTq,p(û, ζ)mT = fD(ζ, r)l
R GT Dq,p (ζ)mT , (5.25)

with fD(ζ, r) a function independent of (q, p), which therefore cancels out from the physical

fibering operator GM3 .51 This establishes the equality of the dual supersymmetric partition

functions on any M3.

5.3 General abelian mirror symmetry and gauging flavor symmetries

The elementary mirror symmetry described above is the basic building block in a more

general class of dualities due to [99]. These can be obtained by starting with several decou-

pled copies of the above duality and gauging certain combinations of the flavor symmetries

on each side of the duality [101]. Then, since the original theories were equivalent, the

theories we obtain after this gauging procedure must also be equivalent.

51By checking the duality for (q, p) = (1, 0), one can derive fD(ζ, r)2 = 1 − e2πi(ζ+νR(1−r)), which

determines fD up to a sign. We can also easily perform numerical checks of the matching of GM3 across

the duality for various numbers of exceptional fibers. We find perfect agreement.
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At the level of the partition function on a Seifert manifold, M3, suppose we have

shown that two theories, A and B, have equal M3 partition functions. Equivalently, this

implies that all the basic building blocks match between the two theories, i.e.:

HA(v) = HB(v) , and GAq,p(v)m = GBq,p(v)m, ∀ q, p . (5.26)

Here, we denote by v the flavor symmetry parameters, and by m the corresponding (frac-

tional) fluxes. We have implicitly included any relative background CS terms necessary for

the duality. Then, we expect that any pair of theories we obtain by gauging some flavor

symmetry, on both sides of the duality, will also have matching partition functions.

It is clear that this last statment will follow immediately if we can construct the building

blocks for any daughter theory, T ′, obtained by gauging some flavor symmetry of a parent

theory, T , entirely in terms of the building blocks of the parent theory. In the case of the

handle-gluing and ordinary fibering operators (i.e., G1,p), this was shown in [27]. In fact,

these ingredients were shown to be obtained from two more basic objects, the “on-shell

twisted superpotential” and the “on-shell effective dilaton” of the parent theory. For the

more general (q, p) fibering operators, the latter statement no longer holds, however it is

still straightforward to obtain the building blocks of the daughter theory from those of

the parent. Consider gauging a U(1)F symmetry for concreteness, as the general case is a

straightforward extension, and let v and m be the corresponding U(1)F flavor parameter

and fractional flux. Then we first obtain the Bethe vacua of the daughter theory as the set:

ST ′BE = {v̂ | Πα
v (v̂) = 1, some vacuum α ∈ STBE} , (5.27)

where Πv is the ordinary U(1)F flux operator in the parent theory, and Πα
v denotes that flux

operator evaluated on the Bethe vacuum α in the parent theory. Then, we simply have:

GT ′(q,p)

β
=

1
√
q

q−1∑
m=0

GT(q,p)(v̂β)m , β ∈ ST ′BE , (5.28)

for the “on-shell” fibering operators of the daughter theory.

Example of N = 2 abelian mirror symmetry. To illustrate the above discussion,

let us consider a simple example. According to [99], we have the duality:

A: A single U(1) gauge group U(1)−Nf/2 coupled to Nf chiral multiplets of charge 1.

B: A circular quiver with gauge group U(1)
Nf
1/2/U(1), with bifundamental chiral multi-

plets connecting adjacent nodes.

“Theory A” can clearly be obtained by starting with Nf copies of theory T D in (5.15), and

gauging the diagonal U(1) flavor symmetry. Similarly, we claim that “Theory B” can be

obtained by starting with Nf copies of the theory T in (5.15), and then gauging a diagonal

U(1)J flavor symmetry. Implementing this gauging at the level of the fibering operator,

starting from Nf copies of (5.11), we obtain:

GT ′q,p(ui, ζ̂, ζi, ζ ′)ni,m̂T ,mi,T ,m′T = GG1G2
q,p (ζ̂, ζ ′)m̂T ,m′T

Nf∏
i=1

GTq,p(ui, ζ̂ + ζi)ni,m̂T+mi,T , (5.29)
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where we have written the FI terms for the U(1) gauge groups as ζ̂+ζi, with the constraint∑
i ζi = 0, and similarly for the corresponding fluxes. We have also introduced a new FI

parameter, ζ ′, for new gauge symmetry corresponding to ζ̂. It is useful to solve the Bethe

equation corresponding to the dynamical FI parameter, ζ̂, which is simply:

e2πi(ζ′+
∑
i ui) = 1 ⇒

∑
i

ui = −ζ ′ + n , n ∈ Z . (5.30)

We may absorb the dependence on n into a redefinition of ζ ′. If we isolate the ζ̂ and m̂T

dependence in (5.29), we find:

e
− 2πi

q
(ζ̂−m̂T )(ζ′+

∑
i ui−m′T−

∑
i ni) = e

− 2πi
q

(ζ̂−m̂T )(−m′T−
∑
i ni) . (5.31)

Recall we must also sum over the fractional fluxes, m̂T ∈ Zq. This imposes:

−m′T −
∑
i

ni = 0 (mod q) . (5.32)

Then the ζ̂ dependence in (5.31) also drops out. We may solve (5.30) and (5.32) by writing

(setting n = 0):

ui = − ζ ′

Nf
+ u′i − u′i+1 , ni = −

m′T
Nf

+ n′i − n′i+1 . (5.33)

Note the second relation implies a non-trivial quantization of the fluxes n′i when m′T is not

a multiple of Nf , so that ni ∈ Z. Plugging this in to (5.29), we find:

GT ′q,p(ui, ζi, ζ ′)ni,mi,T ,m′T =

Nf∏
i=1

GTq,p
(
u′i − u′j −

ζ ′

Nf
, ζi

)
n′i−n′j−

m′
T

Nf
,mi,T

, (5.34)

which is the expected fibering operator for Theory B. Since we demonstrated in section 5.2

that the original two theories have equal fibering operators, this proves the equality of the

fibering operators across this more general abelian mirror symmetry.

5.4 Aharony duality

Next, consider N = 2 SQCD with gauge group U(Nc) and Nf flavors—Nf chiral multiplets

Qi in the fundamental representation of U(Nc), and Nf chiral multiplets Q̃j in the anti-

fundamental, of R-charges r ∈ Z, with vanishing effective CS level for the gauge group. The

gauge and flavor charges of the fields are summarized in table 2. When Nf ≥ Nc, the theory

has a infrared-dual description discovered by Aharony [53], similar to Seiberg duality:

T : U(Nc) + Q, Q̃ ←→ T D : U(Nf −Nc) + q, q̃ + M,T+, T− . (5.35)

The dual theory is a U(Nf−Nc) gauge theory with Nf dual flavors qj , q̃
i together withN2

f+2

gauge singlets M j
i and T±, which are dual to the gauge-invariants mesons M = Q̃Q and to
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U(Nc) U(Nf −Nc) SU(Nf ) SU(Nf ) U(1)A U(1)T U(1)R

Qi Nc 1 Nf 1 1 0 r

Q̃j Nc 1 1 Nf 1 0 r

qj 1 Nf −N 1 Nf −1 0 1− r

q̃i 1 Nf −Nc Nf 1 −1 0 1− r

M j
i 1 1 Nf Nf 2 0 2r

T+ 1 1 1 1 −Nf 1 −Nf (r − 1)−Nc + 1

T− 1 1 1 1 −Nf −1 −Nf (r − 1)−Nc + 1

Table 2. Gauge and flavor charges of the chiral multiplets Q, Q̃ in 3d N = 2 SQCD with U(Nc)

gauge group, and of the dual flavors q, q̃ and gauge singlet chiral multiplets M,T+, T− in the

Aharony-dual U(Nf −Nc) theory.

the monopole operators T± (of topological charge ±1) in the U(Nc) theory, respectively.

The gauge-singlet fields couple to the dual gauge sector through the superpotential:

W = M j
i q̃
iqj + T+t− + T−t+ , (5.36)

with t± the elementary monopole operators of the U(Nf −Nc) theory. The charges of the

dual matter fields are sumarized in table 2 as well.

To fully define the duality, we need to specify the relative Chern-Simons contact terms

for the global symmetries [39, 52]. In our present conventions, the dual theory contains the

CS levels:

kSU(Nf ) = k̃SU(Nf ) = Nf −Nc (5.37)

for the SU(Nf )× SU(Nf ) flavor symmetry, the integer-quantized CS levels:

kTT = 1 ,

kAA = 4N2
f − 2NcNf ,

kAR = 2N2
f + (4N2

f − 2NcNf )(r − 1) ,

kRR = N2
c +N2

f + 4N2
f (r − 1) + (4N2

f − 2NcNf )(r − 1)2 ,

(5.38)

for the abelian global symmetries, and:

kg = 2Nf (Nf −Nc) + 2 (5.39)

for the gravitational CS level. These levels can be derived in a variety of ways. One

interesting derivation consist in integrating out the matter fields so that Aharony duality

reduces to 3d N = 2 supersymmetric level/rank duality U(N)K ↔ U(K − N)−K in the

IR, with K = Nf — after integrating out the gaugini, one can compare the IR relative CS

levels to known results for level/rank duality in pure CS theory [100], which then implies

the above contact terms in the Aharony-dual theory.

In previous literature, it was found that the relative CS levels vanish for the Aharony

duality,52 contrary to what we are claiming here. The more precise claim is that, in a

52For instance, this is what was found in [51, 52] by looking at the S3
b partition function.
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scheme in which all the fermions (including the gaugini) would be quantized in such a way

that gives a trivial contribution to the flavor contact terms, κF = 0, then we would indeed

have no relative CS levels. However, that (implicit) quantization scheme is not consistent

with background gauge invariance for U(1)R [27], as we already explained. Here instead,

we are following the conventions in which each chiral multiplet is taken in the “U(1)− 1
2

quantization,” while the gaugini are quantized with the contact terms (4.86). For instance,

in the U(Nc) gauge theory T , the fermions in Q, Q̃ contribute:

δκU(Nc) = −Nf , δκAA = −NfNc (5.40)

to the gauge and U(1)A UV contact terms. Since those shifts are by integers, we can

always cancel them by adding the bare CS levels kU(Nc) = Nf and kTAA = NfNc. For the

gauge group, this is part of the definition of the theory, and we need to introduce the bare

level so that we have the effective CS level kU(Nc) = 0. For the flavor symmetry U(1)A,

however, this is a non-physical contact term, which we can choose at will — only the

relative level kAA ≡ kT
D

AA − kTAA across the duality is physically meaningful. Here we chose

kTAA = 0. For the U(1)R symmetry, on the other hand, the gauge-invariant quantization

(in the conventions of this paper) gives a contribution:

δκRR = −(r − 1)2NfNC +
1

2
N2
c (5.41)

to the U(1)R CS contact term in the UV, coming from the chiral multiplets and the gaugino,

respectively. We see that, for Nc odd, δκRR is half-integer and cannot be fully cancelled by

a gauge-invariant counter-term. Nonetheless, consider for a moment setting kTF = −δκTF
formally, for the full flavor symmetry GF , and similarly in the dual theory T D. Then, the

assumption that there are no additional relative contact terms between the dual theories,

in that particular “scheme,” allows us to derive:

kF ≡ kT
D

F − kTF = −δκT DF + δκTF , (5.42)

which must be integer quantized. We choose kTF = 0 throughout, so that the fla-

vor CS levels in the dual description are given by the right-hand-side of (5.42). This

reproduces (5.37)–(5.39).

Bethe equations and dual Bethe vacua. Consider turning on generic chemical po-

tentials for the flavor group GF = SU(Nf )× SU(Nf )×U(1)A ×U(1)T , denoted by:

νi , ν̃j

(
with

Nf∑
i=1

νi =

Nf∑
j=1

ν̃j = 0

)
, νA , ζ , (5.43)

respectively, and similarly for the background fluxes mi, m̃j ,mA,mT ∈ Z. The gauge-flux

operators of the U(Nc) theory are given by:

Πa(u, ν) = Π0(ua, ν) , a = 1, · · · , Nc , (5.44)
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with ν denoting collectively all the flavor parameters (5.43), and:

Π0(u, ν) ≡ (−1)2νR(Nf+Nc−1)
(
−e2πiu

)Nf e2πiζ

∏Nf
j=1

(
1− e2πi(−u+ν̃j+νA+νRr)

)∏Nf
i=1

(
1− e2πi(u−νi+νA+νRr)

) , (5.45)

a function of a single variable u. Let us call “Bethe roots” the Nf solutions {ûα}
Nf
α=1 to

Π0(û, ν) = 1. They correspond to the Nf roots x̂α of the polynomial:

(−1)Nf+2νR(Nf+Nc−1)e2πiζ

Nf∏
j=1

(
x− e2πi(ν̃j+νA+νRr)

)
−

Nf∏
i=1

(
1− xe2πi(−νi+νA+νRr)

)
,

(5.46)

of degree Nf in x, with x̂ = e2πiû. A Bethe vacuum:

û ≡ {ûa}Nca=1 ⊂ {ûα}
Nf
α=1 , (5.47)

consists of a choice of Nc distinct Bethe roots. In particular, there are:

|SBE| =

(
Nf

Nc

)
(5.48)

distinct Bethe vacua. This number is the flavored Witten of U(Nc) SQCD [26, 102], and

it is obviously invariant under Nc → Nf −Nc.

Consider now the dual U(Nf −Nc) gauge theory. Using the identification ζD = −ζ for

the dual FI term, and the charge assignments in table 2, it is easy to show that the dual

Bethe equations are isomorphic to the ones in the original theory. More precisely, we find:

ΠD
ā (uD, ν) = 1 ⇔ Π0(uā − νR, ν) = 1 . (5.49)

for the dual gauge-flux operators. Here the index ā = 1, · · · , Nf −Nc runs over the Cartan

of the dual gauge group. It follows that the duality map (5.2) is given by:

D : û = {ûa} 7→ ûD = {ûā} = {ũā + νR} , with {ũā} = {ûa}c ⊂ {ûα}
Nf
α=1 . (5.50)

Namely, the Bethe vacuum ûD dual to û is obtained by taking the complement ũ = ûc of

û in the set of Bethe roots, and shifting each ũā by νR.

Matching the handle-gluing operators. The handle-gluing operator of the U(Nc)

gauge theory is given by:

HT (u, ν) =

Nc∏
a,b=1
a 6=b

(
1− e2πi(ua−ub)

)−1
Nc∏
a=1

[
H(ua, ν)

×
Nf∏
i=1

(
1− e2πi(ua−νi+νA+νRr)

)1−r
Nf∏
j=1

(
1− e2πi(−ua+ν̃j+νA+νRr)

)1−r
]
,

(5.51)
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with the function:

H(u, ν) ≡ Nf +

Nf∑
i=1

e2πi(u−νi+νA+νRr)

1− e2πi(u−νi+νA+νRr)
+

Nf∑
j=1

e2πi(−u+ν̃j+νA+νRr)

1− e2πi(−u+ν̃j+νA+νRr)
, (5.52)

of a single variable u, corresponding to the Hessian detab ∂a∂bW =
∏
aH(ua, ν). Similarly,

the handle-gluing operator of the dual gauge theory takes the form:

HT D(uD, ν) = Hgauge(uD, ν)Hsinglets(uD, ν)Hct(uD, ν) , (5.53)

a product of three contributions. The gauge theory contribution reads:

Hgauge =

Nf−Nc∏
ā,b̄=1
ā 6=b̄

(
1− e2πi(uā−ub̄)

)−1
Nf−Nc∏
ā=1

[
HD(uā, ν)

×
Nf∏
i=1

(
1− e2πi(−uā+νi−νA+νR(1−r))

)r Nf∏
j=1

(
1− e2πi(uā−ν̃j−νA+νR(1−r))

)r ]
,

(5.54)

with the function:

HD(u, ν) ≡ Nf +

Nf∑
i=1

e2πi(−u+νi−νA+νR(1−r))

1− e2πi(−u+νi−νA+νR(1−r)) +

Nf∑
j=1

e2πi(u−ν̃j−νA+νR(1−r))

1− e2πi(u−ν̃j−νA+νR(1−r)) . (5.55)

Note that HD(u, ν) = −H(u − νR, ν), with H(u, ν) defined in (5.52). The contribution

from the gauge-singlet fields M and T± reads:

Hsinglets =

Nf∏
i,j=1

(
1− e2πi(ν̃j−νi+2νA+2rνR)

)1−2r ∏
±

(
1− e2πi(±ζ−NfνA+νRrT )

)1−rT
, (5.56)

with rT ≡ −Nf (r− 1)−Nc + 1 the R-charge of T±. We also have a contribution from the

Chern-Simons contact terms:

Hct = (−1)kRR e2πikARνA , (5.57)

with the levels kRR and kAR given in (5.38). Note that the handle-gluing operator HT

and HT D are rational functions of xa = e2πiua and xā = e2πiuā , respectively. By using

elementary identities involving the roots x̂α of the polynomial (5.46), one can prove the

matching of the handle-gluing operators across the duality [26]. That is, given any Bethe

vacuum û in T and its dual Bethe vacuum ûD in T D, we find:

HT (û, ν) = HT D(ûD, ν) . (5.58)

This was first proven in [26] in the special case νR = 0, and the generalization to νR ∈ 1
2Z

is straightforward.53 The identity (5.58) proves the matching of the twisted indices (4.17)

across Aharony duality, for both the periodic and anti-periodic spin structures.

53In [26], the relation (5.58) was proven up to a complicated sign. Following [27], we see that, after

properly treating the parity anomaly, the match is exact.

– 76 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

Matching the fibering operators. We can similarly compare the (q, p)-fibering oper-

ators of the dual theories. Let us set r = 0 to avoid clutter. The R-charge dependence can

easily be restored by shifting νA → νA + νRr and mA → mA + nRr. For a U(Nc) gauge

theory with Nf flavors, we have:

GNc,Nfq,p (u, νi, ν̃j , νA, ζ)mi,m̃j ,mA,mT =

q−1∑
n1=0

· · ·
q−1∑

nNc=0

GNc,Nfq,p (u, ν)n,m , (5.59)

with:

GNc,Nfq,p (u, ν)n,m ≡ q−
Nc
2

(
G(0)
q,p

)N2
c

Nc∏
a,b=1
a>b

GW0(ua − ub)na−nb
Nc∏
a=1

[
GG1G2
q,p (ua, ζ)na,mT

×
(
GGG
q,p (ua)na

)Nf Nf∏
i=1

GΦ
q,p(ua − νi + νA)n−mi+mA

×
Nf∏
j=1

GΦ
q,p(−ua + ν̃j + νA)−na+m̃j+nA

]
,

and with the various building blocks introduced in section 4, including the W-boson con-

tribution (4.79). Note the presence of the bare U(Nc) CS term at level Nf on the second

line, as discussed above. In our conventions, we then have:

GTq,p(u, ν)m = GNc,Nfq,p (u, ν)m (5.60)

for 3d N = 2 SQCD. For the dual theory, on the other hand, we have:

GT Dq,p (uD, ν)m = Ggauge
q,p (uD, ν)m Gsinglets

q,p (uD, ν)m Gct
q,p(u

D, ν)m , (5.61)

a product of three contributions, similarly to (5.53). The gauge-theory contribution is

given by:

Ggauge
q,p (uD, ν)m = GNf−Nc,Nfq,p (uD, ν̃j , νi,−νA + νR,−ζ)m̃j ,mi,−mA+nR,−mT , (5.62)

in terms of the function (5.59). The gauge-singlet contribution reads:

Gsinglets
q,p (uD, ν)m =

Nf∏
i,j=1

GΦ
q,p(ν̃j − νi + 2νA)m̃j−mi+2mA

×
∏
±
GΦ
q,p(±ζ −NfνA + νRrT )±mT−NfmA+nRrT ,

(5.63)

with rT the monopole R-charge (with r = 0, here). The CS contact term contribution reads:

Gct
q,p(u

D, ν)m =
(
GSU(Nf ) CS
q,p (ν)m

)kSU(Nf )
(
GSU(Nf ) CS
q,p (ν̃)m̃

)k̃SU(Nf ) (
GGG
q,p (ζ)mT

)kTT
×
(
GGG
q,p (νA)mA

)kAA (GGR
q,p (νA)mA

)kAR (GRR
q,p

)kRR (Ggrav
q,p

)kg ,
(5.64)
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with the SU(Nf ) CS contribution:

GSU(Nf ) CS
q,p (ν)m ≡

Nf∏
i=1

GGG
q,p (νi)mi , such that

Nf∑
i=1

νi =

Nf∑
i=1

mi = 0 , (5.65)

and the flavor CS levels (5.37)–(5.39). The infrared duality between the two theories implies

the equality:

GTq,p(û, ν)m = fD(ν)l
R GT Dq,p (ûD, ν)m (5.66)

for any pair of dual Bethe vacua û and ûD, with fD(ν) some function independent of (q, p),

which cancels from the physical fibering operator GM3 . We checked (5.66) numerically, for

a large number of examples. Together with (5.58), this identity implies the equality of the

supersymmetric partition function across Aharony duality on any Seifert manifold. Note

that (5.66) was previously proven in the special case q = 1 [27]. For q > 1, given the sum

over fractional fluxes in (5.59), the duality relation (5.66) is rather more complicated. It

would be worthwhile to find an analytic proof.

Finally, let us note that, through various decoupling limits, we can go from 3d N = 2

SQCD to more general U(Nc)k theories with Nf fundamental chiral multiplets, Na ≤ Nf

anti-fundamental chiral multiplets, and an effective CS level k ∈ 1
2Z such that k+ 1

2(Nf −
Na) ∈ Z. These theories also enjoy interesting dualities [52, 54]. (The elementary mirror

symmetry (5.15) is a special case.) The corresponding duality relations for the geometry-

changing operators directly follow from (5.58) and (5.66) by taking appropriate limits on

the chemical potentials [27].

It would be interesting to extend this discussion to various other three-dimensional IR

dualities, such as dualities involving adjoint fields [103, 104] or monopole-operator super-

potentials [105–107].

5.5 The “duality appetizer”

As our final example, we consider the duality of [108], relating the following theories:

A: An SU(2)1 CS theory coupled to an adjoint chiral multiplet, Φ.

B: A free chiral multiplet, Z, tensored with a decoupled topological sector U(1)2.

The chiral operators in the two theories are identified by:

Tr Φ2 ↔ Z . (5.67)

In particular, theory A has a U(1)F global symmetry acting on Φ with charge 1, which

maps to a symmetry acting on Z with charge 2. In addition, theory A has a Z2 1-form

electric symmetry [109], which maps to that of the decoupled U(1)2 CS theory.

Bethe equations. The twisted superpotential and the Bethe equation for the SU(2)

theory were described in [27]. The Bethe equation reads:54

Π0 = x6

(
1− µx−2

1− µx2

)2

= 1 , (5.68)

54In [27], we worked with the A-twist background, namely νR = 0. More generally, the dependence on

νR here is trivial, and we have absorbed it into the definition of µ below.
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where we have defined:

x = e2πiu , µ = e2πi(ν+rνR) , (5.69)

with ν the U(1)F parameter. Here we have used the U(1)−1/2 quantization for the chiral

multiplets, so that the adjoint chiral multiplet itself contributes a gauge CS contact term

κ = −2 in the UV, therefore we have included a bare CS term at level k = 3, to recover

the appropriate effective level k = 1 of the SU(2)1 theory. Then, factoring out trivial

solutions, (5.68) can be rearranged to:

(x+ x−1)2 = (1 + µ)2 . (5.70)

Up to Weyl equivalence, taking x → x−1, there are two solutions, x± = e2πiû± , given by

the two choices of sign in taking the square root of (5.70).

On the dual side, we must consider the Bethe equation for the U(1)2 supersymmetric

CS theory, which is:55

x̃2 = 1 ⇒ x̃ = ±1 . (5.71)

and so there are two vacua, matching the counting in Theory A. Note that, since a free

chiral by itself has only one vacuum, this extra decoupled CS sector in Theory B is crucial

for the duality to make sense.

Handle-gluing and flux operators. Let us first consider the flux operator for the

U(1)F flavor symmetry. The adjoint chiral multiplet contributes:

ΠF =
1

(1− µ)(1− µx2)(1− µx−2)
. (5.72)

Plugging in the solutions (5.70), we find:

ΠF

∣∣∣∣
û±

=
1

(1− µ2)2
. (5.73)

which precisely agrees with the contribution of the charge 2 chiral Z in the dual theory.

Next consider the handle-gluing operator. Without loss of generality, we may assign

the chiral multiplet Φ an R-charge of r = 1, and then Z has R-charge 2. Then in the SU(2)

theory, the handle-gluing operator is given by:

HA(u, ν) =
1

(1− x2)(1− x−2)
H(u, ν) , (5.74)

where the first factor is the W-boson conrtribution, and H is the Hessian of the twisted

superpotential:

H(u, ν) =
1

2πi

∂

∂u
log Π0 = 6 + 4

µx2

1− µx2
+ 4

µx−2

1− µx−2
. (5.75)

55In principle one can include a background gauge field coupled to the U(1)J topological symmetry, as

was suggested in [108]. However, this explicitly breaks the Z2 1-form symmetry, and so we do not include

this here.
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Plugging in the solutions (5.70), one finds that, in both vacua, we have:

HA(û±, ν) =
2

1− µ2
. (5.76)

On the dual side, the U(1)2 CS theory contributes a factor HU(1)2
= 2 to the handle-gluing

operator, while the free chiral Z contributes a factor (1−µ2)−1, therefore we recover (5.76).

Fibering operators. Let us now consider the matching of the fibering operators, Gq,p.
For the SU(2) theory, we have:

GAq,p(u, ν)n,m =
1
√
q

(
G(0)
q,p

)3
GW0
q,p (2u)2n GW0

q,p (−2u)−2n

(
GGGq,p (u)n

)6
× GΦ

q,p(2u+ ν + rνR)2n+m+rnRG
Φ
q,p(−2u+ ν + rnR)−2n+m+rnR

× GΦ
q,p(ν + rnR)m+rnR ,

(5.77)

with n and m the gauge and flavor fractional fluxes, as usual. Then the full fibering

operator, evaluated at the Bethe vacua (5.70), reads:

GAq,p(ν)
(±)
m =

q−1∑
n=0

GAq,p(û±, ν)n,m . (5.78)

For the dual theory, we find:

GBq,p(ũ, ν)ñ,m =
1
√
q
G(0)
q,p

(
GGGq,p (ũ)ñ

)2 GΦ
q,p(2ν + 2rνR)2m+2rnR , (5.79)

The two Bethe vacua (from the U(1)2 sector) correspond to ˆ̃u+ = 0 and ˆ̃u− = 1
2 . Thus, we

find the full “on-shell” fibering operators:

GBq,p(ν)
(±)
m =

q−1∑
ñ=0

GBq,p(ˆ̃u±, ν)n,m . (5.80)

We note that the contribution of the decoupled CS theory is quite non-trivial; in particular,

unlike the flux and handle-gluing operators, the two vacua give different contributions,

which must be separately matched. We have checked numerically in several examples that

the following relation holds:56

GAq,p(ν)
(±)
m = GBq,p(ν)

(±)
m , (5.81)

giving a new strong test of this peculiar duality. In particular, this is a strong test that the

conjectured decoupled topological sector described above indeed appears. It also gives a

precise handle on the relative CS contact terms between the two dual theories. Interestingly,

with the choice of quantization for the fermions used in this paper, there are no additional

relative global Chern-Simons term necessary for the duality to hold.

56More precisely, we have shown that the two values on the l.h.s. agree with those on the r.h.s. , but

the precise identification between the two vacua can vary, e.g., as we cross branch cuts of the Bethe

solutions, (5.70), in the complex ν plane.
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6 Localization on Seifert manifolds

The exact result for the Seifert manifold partition function can also be arrived at by a

direct three-dimensional path-integral computation, as in [26, 31, 34]. In this section, we

derive the result (4.96) via supersymmetric localization onto the classical Coulomb branch,

starting from the three-dimensional UV action. The relevant curved-space supersymmetric

actions and supersymmetry multiplets [5] can be found in section 3 of [27]. The supersym-

metric localization argument is a straightforward generalization of section 4 of [27], which

we we will briefly summarize for completeness. The gauge group G is chosen as in (1.12).

6.1 Supersymmetric localization and integral formula

Consider M3 with the supergravity background as in section 2.3. In particular, we have

first Chern class:

c1(L0) = d +

n∑
i=1

pi
qi
, (6.1)

for the defining orbifold line bundle.

BPS configurations. Let us first consider the BPS equation for the vector multiplet.

The gaugino variations with respect to the two supersymmetries (2.70) vanish if and

only if:57

Dµσ = 0 , f01 = f01̄ = 0 , D = 2if11̄ + σH , (6.2)

with H = iβc1(L0) the supegravity background field given in (2.67). In addition to the

BPS equations, we impose the gauge fixing condition along the Seifert fiber:

ηµ(LKaµ) = 0 , (6.3)

which implies ∂0a0 = 0, with a0 ∈ R, in the adapted frame. We can diagonalize a0 using

the residual gauge symmetry. The equation Dµσ = 0, together with the reality condition

on σ, implies [a0, σ] = 0, and therefore we can diagonalize a0 and σ simultaneously:

a0 = diag(a0,a) , σ = diag(σa) , (6.4)

with constant σa’s. This breaks the gauge group down to its maximal torus times the

residual Weyl symmetry:

G→ H oWG , H ≡
rk(G)∏
a=1

U(1)a . (6.5)

The fields a0 and σ are combined into the η-component of the complexified 3d gauge field:

Aµ = aµ − iηµσ , (6.6)

similarly to (2.97). Then, the two-dimensional scalar fields ua are defined as:

ua = − 1

2π

∫
γ
Aa . (6.7)

57Here we impose a reality condition on σ and aµ, not on the auxiliary field D.
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We localize onto the constant modes:

ua = iβ(σ + ia0) , (6.8)

which naturally span the “classical Coulomb branch” for the 3d theory on R2 × S1.

It is important to note that the BPS equations allow for non-trivial H-bundles on the

two-dimensional orbifold. We must sum over all such independent line bundles, which are

indexed by the 3d Picard group:

P̃ic(M3) = Pic(Σ̂)/〈[L0]〉 , (6.9)

as discussed in section 2.2.1. We will denote the gauge line bundles in Pic(Σ̂) by:

F = L⊗n0
0 ⊗ L⊗n1

1 ⊗ · · · ⊗ L⊗nnn , (6.10)

where ni = (ni,a) label the GNO-quantized magnetic fluxes:

ΓG∨ = {ni ∈ h| ρ(ni) ∈ Z , ∀ρ ∈ Λchar} . (6.11)

Any line bundle (6.10) has the orbifold first Chern class:

c1(F) = n0 +

n∑
i=1

ni
qi
. (6.12)

Recall that these orbifold line bundles are not all independent. They are subject to the

equivalence relations in Pic(Σ̂):

L0 = L⊗qii , for i = 1, · · · , n . (6.13)

From now on, let us assume that c1(L0) 6= 0. Then the line bundles in (6.9) are all torsion

line bundles, and they can be characterized by their flat connections. In each topological

sector {n0, n1, · · · , nn}, the localized gauge field can be written as:

a = â0η + a(flat) , (6.14)

where â0 ∈ R is a constant. The flat connection takes the form:

a(flat) = a
(flat)
ψ dψ + α , (6.15)

in local coordinates, where α is the flat connection on the base Σ̂. To find the correct

expression for a
(flat)
ψ , consider the coordinate transformation:

δx : ψ′ = ψ − λ(z, z̄) , C′ = C + dλ(z, z̄) , (6.16)

so that the one-form η is well-defined. We can also write:

dC = c1(L0)π∗(wΣ̂) , da = c1(F)π∗(wΣ̂) , (6.17)
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where wΣ̂ is the volume form on the two-dimensional base. It is convenient to define the

forms w
(0)

Σ̂
and w

(1)

Σ̂
by descent with respect to the coordinate transformation δx, as:

wΣ̂ = dw
(0)

Σ̂
, δxw

(0)

Σ̂
= dw

(1)

Σ̂
. (6.18)

Then, we can write C and the gauge field a as:

C = c1(L0)π∗w
(0)

Σ̂
+ db , a = c1(F)π∗w

(0)

Σ̂
+ dc , (6.19)

where b and c are globally-defined functions on the base. It follows that the change of

coordinates acts as:

δxC = c1(L0)π∗dw
(1)

Σ̂
, δxa = c1(F)π∗dw

(1)

Σ̂
. (6.20)

Comparing this expression with (6.16), we find:

a
(flat)
ψ dψ = − c1(F)

c1(L0)
dψ . (6.21)

This gives the holonomy:

exp

(
−i
∫
γ
a(flat)

)
= exp

(
2πi

c1(F)

c1(L0)

)
(6.22)

along the Seifert fiber γ (at generic point on the base). Therefore, the complex variable u

in (6.8) can be written as:

u = iβ(σ + iâ0) +
c1(F)

c1(L0)
, (6.23)

which is valued in u ∈ hC. One can check that this expression is compatible with the large

gauge transformation:

u→ u+ 1 , n0 → n0 + d , ni → ni + pi , ∀i , (6.24)

which we discussed in (4.37). (Here, â0 is invariant under large gauge transformations.)

If c1(L0) = 0 instead, the flat connection a
(flat)
ψ ∈ R is a free parameter which can

be reabsorbed into â0, corresponding to the free generator in P̃ic(M3). In that case, â0

is also subject to the large gauge transformation â0 ∼ â0 + 1. It is then more natural to

gauge-fix that invariance by imposing that â0 is valued in the interval â0 ∈ [0, 1). Then,

the Coulomb branch variable u can be defined as:

u = iβ(σ + iâ0) , with u ∈ hC/Λcochar . (6.25)

Finally, the flat connection α on the Riemann surface corresponds to the factor Z2g ⊂
H1(M3), which we can expand as:

α =

g∑
I=1

(
αIw

I
1dz + α̃Iw

I
1̄dz̄
)
, [wI ] ∈ H1(M3) . (6.26)

In addition to these bosonic zero modes, this background admits 2g+2 gaugino zero-modes,

which can be written as:

Λ =

g∑
I=1

(
ΛIw

I
1dz + Λ̃Iw

I
1̄dz̄
)
, Λ0 , Λ̃0 = (constant). (6.27)

– 83 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

Localization formula for the path integral. The bosonic and fermionic zero-modes

can be organized into short supermultiplets:

V0 = (a0, σ,Λ0, Λ̃0, D̂) , VI = (αI , α̃I .ΛI , Λ̃I) , I = 1, · · · , g . (6.28)

Here, we also introduced a constant mode D̂ for the auxiliary field D, as a regulator for the

localization computation, as studied e.g. in [110, 111]. Then, using a standard localization

argument, we can reduce the supersymmetric path integral to supersymmetric ordinary

integral over the zero-modes (6.28), namely [27]:58

ZM3(ν) = lim
e2,g2→0

1

|WG|
∑

(n0,ni)

∈P̃ic(M3)

∫
dV0

g∏
I=1

dVI e−SCS(V0,VI)Z1-loop
(n0,ni)

(V0,VI) , (6.29)

where Z1-loop(V0,VI) is the contribution from the one-loop fluctuation around the solution

to the BPS equations. Here we again assumed that c1(L0) 6= 0. The integration over the

fermionic zero modes and the D̂ integral can be done as in [27]. We then obtain:

ZM3(ν) =
1

|WG|
∑

(n0,ni)

∈P̃ic(M3)

∫
C(η)

drk(G)u e−SCS(u,ν)Z1-loop
(n0,ni)

(u, ν)H(u, ν)g , (6.30)

as a holomorphic contour integral in the variables ua. The factor e−SCS in the integrand is

the classical contribution from the Chern-Simons terms in the UV Lagrangian. The factor

Z1-loop(u, ν) is the one-loop contribution,59 given in terms of the one-loop determinants

for the chiral and vector multiplets, which we discussed in section 4 (see also appendix D).

The function H(u, ν) in the integrand is the Hessian of the twisted superpotential:

H(u, ν) = det
a,b

∂W(u, ν)

∂ua∂ub
, (6.31)

as in (4.24). The factor H(u, ν)g in (6.30) arises from integrating out the zero-mode

multiplets VI .
Both the classical and the one-loop factors in (6.30) can be written in terms of the

geometry-changing line operators of section 4. We simply have:60

e−SCS(u,ν)Z1-loop
(n0,ni)

(u, ν) = (−1)rk(G) e2πi(g−1)Ω(u,ν) GM3(u, ν)n , (6.32)

58Here and in the following, in addition to the gauge magnetic fluxes n (that must be summed over), we

can turn on background fluxes m for the flavor symmetries. We leave them implicit to avoid clutter. We

similarly leave the dependence on the LR parameters implicit.
59Z1-loop(u, ν) is specialization to D̂ = 0 of the one-loop determinant Z1-loop(V0,VI) appearing in (6.29).

The latter is not holomorphic in u, but a careful integration over the gaugino zero-modes Λ0, Λ̄0, and over

the bosonic mode D̂, leads to the holomorphic contour integral (6.30) — see the discussion in appendix D

of [27], and references therein.
60The sign (−1)rk(G) is introduced for future convenience. It could be absorbed in the orientation of the

contour integral.
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with n = (n0, ni). Here, Ω(u, ν) is the effective dilaton introduced in section 4.2, and

GM3(u, ν)n is the full Seifert fibering operator:

GM3(u, ν)n ≡ F(u, ν)d Π(u, ν)n0

n∏
i=1

Gqi,pi(u, ν)ni , (6.33)

at fixed gauge flux n, where Gq,p(u, ν)n is the (q, p) fibering operator given by (4.88), and

where Π(u, ν) and F(u, ν) = G1,1(u, ν)0 are the ordinary gauge-flux and fibering operators,

respectively. We also used the obvious short-hand notation Π(u, ν)n0 ≡
∏rk(G)
a=1 Πa(u, ν)na,0

for the gauge-flux operator, and suppress the flavor symmetry flux from the notation.

The contour C(η) in (6.30) is a “JK-like” middle-dimensional contour on the u-domain,

closely related to the Jeffrey-Kirwan (JK) residue [112, 113], which depends on an auxiliary

real vector η ∈ h∗. The contour can be derived in the rank-one case, while in the higher-

rank case we can propose some natural conjecture [27]. We will review these contour

prescriptions momentarily. We will also discuss how they can be related to a non-compact

“σ-contour” which appeared in well-known localization formulas for the supersymmetric

partition function on the three-sphere and other lens spaces [10, 13, 15, 18, 49].

Another integral formula. There exists an alternative way to present the summation

over the line bundles and the u-integral in (6.30). The integrand in (6.30) is invariant under

the large gauge transformation (6.24), as required by gauge invariance. Recall from sec-

tion 4 that this large gauge transformations corresponds to tensoring the line bundle (6.10)

by the defining line bundle of the Seifert manifold:

F → F ⊗ L0 (6.34)

This ensures that the summation over P̃ic(M3) in (6.30) is well-defined. On the other

hand, we could also fix the gauge freedom (6.34) in a different way, so that we sum over all

independent line bundles in Pic(Σ̂). In this scheme, we should quotient the space u ∈ hC
by the action of the large gauge transformations (6.24). This can be done by restricting

the range of the Coulomb branch variables, according to:

u ∈ hC/Λcochar . (6.35)

Given this gauge-fixing of the large gauge transformations (6.34), we still have to sum over

all the fluxes (n0, ni) in Pic(Σ̂), instead of the smaller group P̃ic(M3). Given the 2d Picard

group relations (6.13), this is equivalent to:

n0 ∈ ΓG∨ , ni ∈ Γ∨G(qi) , for i = 1, · · ·n , (6.36)

with n0 an ordinary magnetic flux over Σ̂, and ni the fractional fluxes at the exceptional

fibers, as explained in detail around (4.91). For instance, for G = U(1), we should restrict

the integration variables to the strip Re(u) ∈ [0, 1), while we sum over the ordinary fluxes

n0 ∈ Z and over the fractional fluxes ni ∈ Zqi .
We then arrive at the localization formula:

ZM3(ν) =
1

|WG|
∑

n0∈ΓG∨

∑
ni∈Γ∨G(qi),∀i

∫
C0(η)

drk(G)u e−SCS(u,ν)Z1-loop
(n0,ni)

(u, ν)H(u, ν)g . (6.37)
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Here, C0(η) is defined as the contour C(η) restricted to the quotient space (6.35). Thus,

for c1(L0) 6= 0, we have replaced the finite sum over the torsion H-bundles in (6.30) by

an infinite sum over n0, together with a sum over the fractional fluxes. The infinite sum

is essentially a sum over the images of the restricted domain (6.35) under the large gauge

transformations (6.34).

Interestingly, in the gauge (6.35)–(6.36), we can naturally include the case with

c1(L0) = 0, as should be clear from (6.25). Thus, the integral formula (6.37) should

be valid for anyM3. In this formulation, we have an infinite sum over the magnetic fluxes

n0, and one should worry about whether that sum converges. The convergence ultimately

follows from the properties of the contour C0(η). In the following, we will study this contour

more in detail, focussing on the rank-one case where everything can be done very explicitly.

For future reference, let us note that the sum over the fractional fluxes in (6.37)

is exactly the same sum that we considered in (4.92) when computing the full fibering

operators. Therefore, we may also define:

GM3(u, ν) ≡ F(u, ν)d
n∏
i=1

 ∑
ni∈Γ∨G(qi)

Gqi,pi(u, ν)ni

 = F(u, ν)d
n∏
i=1

Gqi,pi(u, ν) , (6.38)

the product of the “full” (q, p)-fibering operators, so that the integral formula (6.37) reads:

ZM3 =
(−1)rk(G)

|WG|
∑

n0∈ΓG∨

∫
C0(η)

drk(G)u Π(u, ν)n0 GM3(u, ν) e−2πiΩ(u,ν)H(u, ν)g . (6.39)

Here, H(u, ν) = e2πiΩ(u,ν)H(u, ν) is the handle-gluing operator (4.18). In this form the

partition function is exhibited as the expectation value of the geometry changing line

operator, LM3 , in the S2 × S1 partition function [34], as anticipated in (1.19).

6.2 Contour prescriptions and the Bethe-sum formula

In the rest of this section, we explain the relation between the above contour-integral for-

mulas and the Bethe-sum formula (4.96). For a rank-one gauge theory, we will explicitly

show that the two types of expressions agree, when certain additional conditions are satis-

fied. We also study the relation to the “σ-contour” formula, which has been considered in

previous works on lens spaces [10, 13, 18, 49].

6.2.1 Singularities of the integrand

Let us denote the integrand in (6.30) by:

J(n0,ni)(u, ν) = (−1)rk(G) GM3(u, ν)n e
−2πiΩ(u,ν)H(u, ν)g . (6.40)

The function J(n0,ni)(u, ν) has various singularities on the domain u ∈ hC, which define

four different types of hyperplanes [27], including “hyperplanes at infinity.”
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Chiral multiplet singularities. For each chiral multiplet with gauge charge ρ and

R-charge r, we have singular hyperplanes where the chiral multiplet becomes massless,

defined by

Hρ,r,n = {u ∈ hC | ρ(u) + νRr + k = 0 , k ∈ Z} (6.41)

The order of pole at Hρ,r,k is

Nρ,r,k = deg(Lr,k) + 1− g = ρ(n0) + ñR0 r + dn+
n∑
i=1

⌊
ρ(ni) + nRi r + pin

qi

⌋
+ 1− g , (6.42)

with the orbifold line bundle Lr,k as in (4.57).

Large Im(u) regions (monopole) singularities. The integrand may diverge in the

large Im(u) region. The hyperplanes defined by these singularities are

Ha± = {u ∈ hC | Im(ua)→ ±∞} . (6.43)

The behaviour of the integrand in this limit depends on the charges of the monopole

operators [26, 27]. Equivalently, the behaviour of the integrand in this limit depends on

the value of the effective Chern-Simons levels as σ → ±∞ — the limit is given explicitly

in (4.74) for the chiral-multiplet contribution to the fibering operator, and similarly for the

effective dilaton.

Large Re(u) regions. When c1(L0) 6= 0, the integrand is not periodic in the Re(ua)

directions, and can be divergent as we take the limit Re(ua) → ±∞. Let us define the

integer Q =
∏n
i=1 qi > 0. We then have:61

GM3(ua +QN, ν)n = Πa(u, ν)c1(L0)QNGM3(u, ν)n , (6.44)

for any N ∈ Z. (The effective dilaton and the handle-gluing operators are periodic.)

When c1(L0) > 0, we can see that the integrand diverges in the Re(u) → ∞ region,

on the segments of the contour C(η) where |Πa(u)| > 1. Similarly, it diverges in the

Re(ua) → −∞ direction on the segments of the contour where |Πa(u)| < 1. The opposite

holds for c1(L0) < 0.

W-boson singularities. For a non-abelian gauge group, when 2 − 2g − n > 0, we also

have potential singularities at each root α ∈ g:

Hα = {u ∈ hC | α(u) = n , n ∈ Z} . (6.45)

This is the locus where the non-abelian gauge symmetry enhances. As in [27], our prescrip-

tion for the contours C and C0 is to define them such that we do not pick any contributions

from poles which intersects with Hα.

6.2.2 Contour integral for U(1) theories

Let us make this contour more precise in the case G = U(1). For a U(1) gauge theory, we

can explicitly derive the contour C and prove the equivalences among different expressions

for the partition functions.

61Here we consider shifting a single ua at the time.
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JK contour and the Bethe-sum formula. In the U(1) case, the formula (6.39) sim-

plifies to:

ZM3 =
∑
n0∈Z

∫
C0(η)

du Π(u)n0 I(u) , (6.46)

with:

I(u) ≡ (−1)GM3(u) e−2πiΩ(u)H(u)g . (6.47)

Here and in the following, we suppress the dependence on the flavor parameters ν, for

simplicity of notation. The contour C0(η) is given by:62

C0(η) =
{
u ∈ ∂M̂0| sign(Im(∂uW)) = −sign(η)

}
. (6.48)

Here, M̂0 is defined to be the complex u-plane restricted to the strip Re(u) ∈ [0, 1), with

the ε-neighbourhoods of the singularities listed in section 6.2.1 removed. We also remove

the region outside of the large box with the boundaries Im(σ) = ±R, Re(u) = 0, 1, with

R arbitrarily large. Then, the boundary ∂M̂0 consists of small circles along the “bulk”

singularities, plus the boundary of the strip. The prescription (6.48) is to take the subset

of ∂M̂0 such that |Π(u)| > 1 if η > 0, or such that |Π(u)| < 1 if η < 0. In this way, C0(η)

defines a contour integral which is equivalent to the JK-residue prescription for singularities

at finite u, with additional contributions from the boundary integral. Here, the parameter

η ∈ R can be chosen arbitrarily, but the final answer is independent of that choice.

To relate the expression (6.46) to the Bethe-sum formula (4.96), we should simply sum

over n0 ∈ Z explictly. By choosing η < 0 for n0 ≥ 0 sector and η > 0 for n0 < 0, we have:

ZM3 =

−1∑
n0=−∞

∫
C0(η>0)

du Π(u)n0I(u) +

∞∑
n0=0

∫
C0(η<0)

du Π(u)n0I(u)

=

(
−
∫
C0(η>0)

du+

∫
C0(η<0)

du

)
I(u)

1−Π(u)
=

∮
CBE

du
I(u)

1−Π(u)
.

(6.49)

Note that the two geometric series in (6.49) converge, since |Π(u)| < 1 for η < 0 and

|Π(u)| > 1 for η > 0. In the last expression, CBE denotes the contour enclosing the poles

of the new integrand, which are located at Π(u) = 1 [27]. Thus, we pick up the residues:∮
u=û

du
I(u)

1−Π(u)
= −2πi

∮
u=û

du

2πi

I(u)

(u− û)∂uΠ(u)
, (6.50)

at the Bethe roots û such that Π(û) = 1. Using the fact that H(u) = 1
2πi∂u log Π(u), we

directly obtain:

ZM3 = −
∑
û∈SBE

I(û)H(û)−1 =
∑
û∈SBE

H(û)g−1 GM3(û) , (6.51)

thus reproducing the Bethe-sum formula (4.96). This can be considered a derivation of the

TQFT formula from a UV localization computation, in this special case.

62The derivation of the contour is essentially the same as that for the Mg,p partition function. This is

discussed in appendix D of [27].
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The σ-contour integral formula. For c1(L0) 6= 0, we have seen that there exists an

alternative way of fixing the gauge under the large gauge transformation (6.24), which

leads to the expression (6.30). Let us define:

I(ni)(u) ≡ (−1)rk(G) e−2πiΩ(u)H(u)g F(u)d
n∏
i=1

Gqi,pi(u)ni , (6.52)

which depends on the fractional fluxes ni but not on the “ordinary flux” n0. For a U(1)

gauge group, the formula (6.30) can then be written as:

ZM3 =
∑

(n0,ni)

∈P̃ic(M3)

∫
C(η)

duΠ(u)n0 I(ni)(u) , (6.53)

with the contour:

C(η) = {u ∈ ∂M̂ | sign(Im(∂uW)) = −sign(η)} . (6.54)

Here, M̂ is defined in the same way as in M̂0 of (6.48), but now u is valued in the entire

complex plane, u ∈ C. Let us choose:

c1(L0) > 0 , (6.55)

for definiteness, and without loss of generality.63 One can then show that the contour

C(η) can be deformed to a non-compact σ-contour integral connecting Im(u) → −∞ to

Im(u)→ +∞ [27]. To see this, let us first write:∫
C(η)

du =
∑
m∈Z

∫
Cm(η)

du , (6.56)

where we decompose the contour C(η) into components in vertical strips M̂m with Re(u) ∈
[m,m + 1], as:

Cm(η) = {u ∈ ∂M̂m | sign(Im(∂uW)) = −sign(η)} , Re(u) ∈ [m,m + 1]} , (6.57)

by closing the contour on the boundary of each strip M̂m in the obvious way. We then have:

ZM3 =
∑

(n0,ni)

∈P̃ic(M3)

∑
m∈Z

∫
Cm(η)

duΠ(u)n0 I(ni)(u)

=
∑

(n0,ni)

∈P̃ic(M3)

∑
m∈Z

∫
C0(η)

duΠ(u)n0 I(ni)(u−m) ,

(6.58)

with C0(η) as above. Now, let us choose η as:

∑
m∈Z

∫
C0(η)

du =

0∑
m=−∞

∫
C0(η>0)

du+

∞∑
m=1

∫
C0(η<0)

du . (6.59)

63Changing the sign of c1(L0) corresponds to flipping the orientation of M3, which can be achieved by

the replacement (d, pi)→ (−d,−pi).
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Then, under some convenient assumptions about the flavor parameters, one can show64

that most of the contributions along the contour cancel out between adjacent terms, and

that the only non-vanishing contribution comes from the contour along the imaginary axis

at Re(u) = 0:

ZM3 =
∑

(n0,n1,··· ,nn)

∈P̃ic(M3)

− ∫C0(η<0),
Re(u)=0

du+

∫
C0(η>0),
Re(u)=0

du

 Π(u)n0 I(ni)(u)

=
∑

(n0,n1,··· ,nn)

∈P̃ic(M3)

∫
Re(u)=0

du Π(u)n0 I(ni)(u) .

(6.60)

Note that this simple contour along the imaginary axis is valid under certain assumptions

on the charges of the chiral multiplets and monopole operators, as studied in [27]. In

general, the resulting contour Cσ is deformed with respect to the Re(u) = 0 contour, in

such a way that the non-compact integral (6.60) converges. We will see explicit examples

of this σ-contour in later sections.

From the σ-contour to the Bethe-sum formula. We can also derive the Bethe-sum

formula (4.96) directly from the σ-contour formula (6.60). More precisely, let us start from

the equivalent expression (6.58), namely:

ZM3 =
∑

(n0,ni)

∈P̃ic(M3)

∑
m∈Z

∫
C0(η)

duΠ(u)n0 I(ni)(u−m) . (6.61)

Using the gauge-invariance of the fibering operator, as in (4.38) and (4.39), this equals:

ZM3 =
∑

(n0,ni)

∈P̃ic(M3)

∑
m∈Z

∫
C0(η)

duΠ(u)n0+md I(ni+mpi)(u) . (6.62)

Now, reparameterizing of the fluxes:

n′0 ≡ n0 + md , n′i = ni + mpi , (6.63)

the sum over (n0, ni) ∈ P̃ic(M3) and the sum over m ∈ Z can be replaced by a summation

over all the element (n′0, n
′
i) in Pic(Σ̂). Taking into account the relations (6.13), we find:

ZM3 =
∑
n′0∈Z

∑
{(n′1,··· ,n′n)|
n′i∈Zqi}

∫
C0(η)

du Π(u)n
′
0 I(n′i)

(u) =
∑
n0∈Z

∫
C0(η)

du Π(u)n0 I(u) , (6.64)

The last expression is obtained by performing the sum over the fractional fluxes to obtain

the “full” fibering operator. Thus we obtain the same expression as in (6.46), which was

shown to be equivalent to (6.51).

64We refer to section 4.6.1 in [27], whose argument can be repeated verbatim.
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Non-abelian generalization. For a non-abelian gauge theory, we lack of a complete

derivation of the contour C(η). We expect that the Bethe-sum formula:

ZM3(ν) =
∑
û∈SBE

∑
{(n1,··· ,nn)|

ni∈Γ∨G(qi),∀i}

H(û, ν)g−1F(û, ν)d
n∏
i=1

Gqi,pi(û, ν)ni , (6.65)

provides the correct answer for any gauge group G of the type considered in this paper.

This claim, while not rigorously proven, has been corroborated by numerous highly non-

trivial consistency checks.

Recall that, when looking for the solutions u = û to the Bethe equations Πa(u, ν) = 1,

we need to exclude the would-be solutions that are located on a Weyl chamber boundary.

Correspondingly, in the integral formula (6.39), the contour C0(η) must be such that we do

not pick any higher-dimensional residues from the W-boson singularities.

6.3 Higher-dimensional C0-contour

Somewhat formally, the contour C0 can be defined in terms of a rk(G)-dimensional residue

at the “poles” defined by an intersection of r independent singular hyperplanes (including

“poles” at infinity), with r ≥ rk(G). This can always be decomposed into bulk and

boundary contributions:

C0 = Cbulk
0 + Cboundary

0 , (6.66)

where the contour Cbulk
0 captures the contribution from the residues at finite u, while the

Cboundary
0 captures the singularities that intersect the hyperplanes “at infinity.” We will

not derive the precise contribution from the boundary contour Cboundary
0 for a higher-rank

gauge group in this paper.

The bulk contribution is given by the JK residue, which can be derived as in [26, 27, 34].

However, when the singularity has an intersection with the hyperplane Hα, the JK residue

is not well-defined. At these loci, where α(u) = 0 for some root α, the non-abelian gauge

symmetry enhances and the path integral becomes potentially singular. This happens when

2g−2+n ≥ 0, in the C0-contour integral formula. We claim that we should always exclude

such poles, which are fixed by the Weyl group WG. This is true already in the case of the

trivial fiber bundle,M3 = Σg×S1, and the principal S1 bundle,M3 =Mg,p, as discussed

in [27, 31, 34].

Non-abelian σ-contour. For non-abelian gauge groups, the existence of additional sin-

gularities due to the W-bosons also modifies the σ-contour formula. Namely, the integrand

in (6.64) may contain a potential singularity when α(u) = ` ∈ Z, in addition to the accept-

able solutions to the Bethe equations. In the rank-one case, the general relation between

the σ-contour and the Bethe-sum formula is:

ZM3 =
∑
û∈SBE

H(û)g−1GM3(û)

=
1

|WG|
∑

(n0,n1,··· ,nn)

∈P̃ic(M3)

∫
Cσ
du Π(u)n0 I(ni)(u)− 1

|WG|

∮
α(u)=`,

Re(u)∈[0,1)

I(u)

1−Π(u)
,

(6.67)
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with I(ni)(u) and I(u) defined in (6.52) and (6.47) respectively, including the W-boson

contribution, which we may write as (extracting the contribution from the handle-gluing

and fibering operators):

IW0 =
∏
α∈∆+

(2 sin(πα(u)))2(1−g)
n∏
i=1

(−1)α(ni)(ti+l
R
i ti+2νRsi)

sin
(
πα(u−tini)

qi

)
sin(πα(u))

=
∏
α∈∆+

2n(2 sin(πα(u)))2−2g−n
n∏
i=1

(−1)α(ni)(ti+l
R
i ti+2νRsi) sin

(
πα(u− tini)

qi

)
,

(6.68)

For 2g− 2 + n < 0, the exponent of the first factor is positive, and vanishes at points with

α(u) ∈ Z, and so the contribution to the second term in (6.67) vanishes. In the marginal

case, 2g − 2 + n = 0, we note that if α(u) = n ∈ Z, then the set {α( û−tiniqi
)}, as we vary

ni, is invariant under reflections, x → −x. Thus when we sum over fractional fluxes, ni,

the terms come in pairs related by a sign, due to the second factor in (6.68), and so their

contribution cancels out. Then we again find that the second term in (6.67) vanishes.

The two cases above correspond precisely to the Seifert fibrations over S2 with at most

two exceptional fibers, which are precisely the lens spaces. We see that, in these cases,

the Bethe sum agrees with the standard σ-contour formula found in the supersymmetric

localization literature [10–18]. We will discuss the lens-space partition functions in more

detail in the next sections.

Finally, in the general case, 2g − 2 + n > 0, the second term in (6.67) is generically

non-trivial, and so the Bethe-sum formula is different from the naive σ-contour formula.

The discrepancy is given by the residue at α(u) = n ∈ Z in the strip. Interestingly, the

formula (6.67) agrees with a formula derived by Lawrence and Rozansky [70] for a pure CS

theory with gauge group G = SU(2) on a Seifert homology sphere. It will be interesting

to explore this point further [73].
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Part III

Lens space partition functions

7 The S3
b partition function

In this final part of the paper, we compare our results above to the well-known localization

results for supersymmetric partition functions on lens spaces. We prove that our results

agree with the known results, in the cases where they overlap, and clarify various subtleties

related to the choice of spin structure and to the contributions from CS contact terms.

We start in this section with the squashed three-sphere, S3
b . For a 3d N = 2 gauge

theory, the S3
b partition function can be written as the integral formula [14, 49]:

ZS3
b
(m̂) =

1

|WG|

∫
Cσ̂

rk(G)∏
a=1

dσ̂a Z
CS
S3
b

(σ̂, m̂)Zvector
S3
b

(σ̂)Zmatter
S3
b

(σ̂, m̂) , (7.1)

where |WG| is the order of the Weyl group of G, and m̂ stands for the real masses associated

to the flavor symmetry. The classical piece ZCS(σ̂, m̂) comes from CS terms, and takes the

general form:

ZCS
S3
b

= ZGG
S3
b

(σ̂)kGG ZG1G2

S3
b

(σ̂1, σ̂2)kG1G2 ZGR
S3
b

(σ̂)kGR (ZRR
S3
b

)kRR (Zgrav
S3
b

)kg . (7.2)

The various supersymmetric CS actions evaluated on the S3
b background give the contri-

butions [14, 39, 49]:

ZGG
S3
b

(σ̂) = eπiσ̂
2
, ZG1G2

S3
b

(σ̂1, σ̂2) = e2πiσ̂1σ̂2 ,

ZGR
S3
b

(σ̂) = e2πiσ̂Rσ̂ = eπ(b+b
−1)σ̂ , ZRR

S3
b

= eπiσ̂
2
R = e−

πi
4 (b2+b−2+2) ,

Zgrav
S3
b

= e
πi
24(b2+b−2) . (7.3)

Here we defined the parameter:

σ̂R ≡ −
i

2
(b+ b−1) , (7.4)

which is the effective “real mass” for the R-symmetry [21]. The generalization to any

non-abelian CS term is straightforward. One can similarly write down CS contact terms

for the flavor symmetries, by replacing the gauge parameters σ̂a by the flavor parameters

m̂α appropriately.

The remaining contributions to the integrand in (7.1) are one-loop determinants around

the supersymmetric background with constant σ̂. The vector multiplet contributes a term:

Zvec
S3
b

(σ̂) =
(
Z

(0)

S3
b

)dim(G) ∏
α∈∆+

4 sinh (πbα(σ̂)) sinh
(
πb−1α(σ̂)

)
. (7.5)

Here the product is over the positive roots of g. Note that, in addition to the standard

result from [14, 49], we introduced a phase:

Z
(0)

S3
b
≡
(
ZRR
S3
b

) 1
2 Zgrav

S3
b

= e−
πi
12(b2+b−2+3) , (7.6)
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which is the contribution 2δκRR = δκg = 1 to the contact terms from each gaugino,

consistently with our conventions.

The matter contribution to (7.1) is given by a product over all the chiral multiplets of

gauge and flavor charges ρ, ω, respectively, and R-charges rω:

Zmatter
S3
b

(σ̂, m̂) =
∏
ω

∏
ρ∈R

ZΦ
S3
b
(ρ(σ̂) + ω(m̂) + σ̂Rrω) , (7.7)

with ZΦ
S3
b

the partition function for a single chiral multiplet of unit gauge charge, and with

σ̂R defined in (7.4). The partition for a free chiral multiplet of R-charge r can be written as:

ZΦ
S3
b
(σ̂ + σ̂Rr) = Φ̃b

(
σ̂ + σ̂R(r − 1)

)
, (7.8)

in terms of the quantum dilogarithm [114]:65

Φ̃b(σ̂) ≡
(
e−

2π
b
σ̂ e
−πi

(
1
b2

+1
)
; e−2πib−2

)
∞

(
e−2πbσ̂ eπi(b

2+1); e2πib2
)−1

∞
. (7.10)

The field-theory computation actually gives us the formal infinite product [14]:

ZΦ
S3
b
(σ̂ + σ̂Rr) =

∞∏
n1=0

∞∏
n2=0

n2b+ n1b
−1 − iσ̂ + iσ̂R(2− r)

n2b+ n1b−1 + iσ̂ + iσ̂Rr
, (7.11)

which must be regularized. We claim that (7.8) is the correct gauge-invariant regulariza-

tion, corresponding to the “U(1)− 1
2

quantization” scheme and consistent with the parity

anomaly [27, 38]. To confirm this, we consider the limits:

Φ̃b(σ̂) ∼ e−πiσ̂2
e−

πi
12(b2+b−2) as σ̂ → −∞ , Φ̃b(σ̂) ∼ 1 as σ̂ →∞ , (7.12)

which correspond to integrating out the chiral multiplet of R-charge r = 1 with a large

real mass σ̂. By comparing with (7.3), we see that we generate the gauge and gravitational

CS terms at levels k = −1 and kg = −2 in the limit σ̂ → −∞, while the theory is trivial

in the limit σ̂ → ∞. This is exactly as expected. Finally, the contour Cσ̂ is defined by a

non-compact real rk(G)-dimensional contour that connects σ̂ → ∞ and σ̂ → −∞ region,

which is properly deformed in such a way that the integral converges.

65To be exact, we defined the new function:

Φ̃b(x) ≡ Φb(−x)−1 , (7.9)

with Φb(x) is the standard quantum dilogarithm, as discussed for instance in [78]. This is partly a matter of

convention: Φb(σ̂) would be precisely the contribution from a chiral multiplet in the “U(1) 1
2

quantization,”

while we are considering the “U(1)− 1
2

quantization.” The definition (7.10) (with the (a, q)∞ ≡
∏∞
k=0(1−aqk)

the q-Pochhammer symbol) only holds for Im(b2) > 0, but admits an analytic continuation to more general

b, and in particular to b ∈ R>0. The one-loop determinant (7.8) has appeared under various names in the

physics literature — it can be conveniently written in terms of the quantum dilogarithm Φb [114, 115], the

double-sine function sb [116], or the hyperbolic gamma function Γh [117, 118], among other names.
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7.1 Comparison with the Seifert-manifold formalism

Setting b2 = q1/q2, with q1, q2 ∈ Z some positive integers (for definiteness), we can com-

pare the standard result (7.1) to our new formalism. Let us consider S3
b as discussed in

section 3.3, a Seifert fibration of genus zero with two exceptional fibers (q1, p1) and (q2, p2),

with d = 0 (for convenience). We must have:

q1p2 + q2p1 = 1 . (7.13)

We choose the two-dimensional R-symmetry line bundle to be trivial, LR ∼= O. Setting

ñR0 = −1 + nR0 = 0 and nR1 = nR2 = 0, this gives:

νR =
q1 + q2

2
, lR0 = 2 , lR1 = p2 − p1 − 1 , lR2 = p1 − p2 − 1 . (7.14)

This allows us to consider any real R-charge for the chiral multiplets, r ∈ R. In our

formalism, we have the gauge and flavor parameters u = iβσ and ν = iβm, and the R-

symmetry chemical potential νR, which are identified with the parameters σ̂, m̂ and σ̂R
appearing in (7.1) according to [13]:

u = i
√
q1q2 σ̂ , ν = i

√
q1q2 m̂ , νR = i

√
q1q2σ̂R (7.15)

One can then write the integrand of (7.1) as:

ZS3
b
(σ̂, m̂) = (−i√q1q2)rk(G) e−2πiΩ(u,ν) G̃S3

b
(u, ν) , (7.16)

with the identification (7.15). The S3
b fibering operator takes the simple form:

G̃S3
b
(u, ν) = G1,0(u, ν)r G̃q1,p1(u, ν) G̃q2,p2(u, ν) , q1p2 + q2p1 = 1 . (7.17)

Note that all these fibering operators are evaluated at zero flux, n = m = 0, except for

G1,0 which has a contribution from the effective R-symmetry flux nR0 =
lR0
2 = 1 (so that

ñR0 = g − 1 + nR0 = 0), as indicated schematically in (7.17). For instance, for the U(1) CS

term we have GGG
1,0 (u) = 1 and GGG

q,p (u) = e
−πi p

q
u2

, so that:

GGG
S3
b

(u) = e
−πi p1

q1
u2

e
−πi p2

q2
u2

= e
−πi u

2

q1q2 = eπiσ̂
2
. (7.18)

This CS term does not contribute to the effective dilaton. For the U(1)R CS term, we find:

e−2πiΩRR
= −1 , GRR

1,0 = −1 , GRR
q1,p1
GRR
q2,p2

= e
−πi

4

(
q1
q2

+
q2
q1

+2
)
. (7.19)

Note here that GRR
1,0 = −1 is non-trivial, due to the non-zero parameter lR0 = 2. That sign

cancels the sign from e−2πiΩRR
. The other CS terms can be checked similarly. Therefore

we find:

ZCS
S3
b

(σ̂, m̂) = e−2πiΩCS(u,ν) GCS
S3
b

(u, ν) , (7.20)
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for the classical contribution (7.2). For the vector-multiplet contribution, we have:

e−2πiΩvector =
∏
α∈∆+

4 (sinπα(u))2 ,

Gvector
S3
b

(u) =

(
1

√
q1q2

)rk(G) (
G(0)

S3
b

)dim(G) ∏
α∈∆+

sin
(
πα(u)
q1

)
sin
(
πα(u)
q2

)
(sinπα(u))2 ,

(7.21)

with:

G(0)

S3
b

= G(0)
q1,p1
G(0)
q2,p2

= e
−πi

12

(
q1
q2

+
q2
q1
−3
)
, (7.22)

so that:

Zvector
S3
b

(σ̂, m̂) = (−i√q1q2)rk(G) e−2πiΩvector(u,ν) Gvector
S3
b

(u, ν) , (7.23)

Note the factor of −i√q1q2 for each element of the Cartan, which will be important below.

Finally, for the chiral-multiplet contribution, we find the nice factorization formula:

ZΦ
S3
b
(σ̂ + σ̂Rr) = ΠΦ(u+ νRr) G̃Φ

q1,p1
(u+ νRr) G̃Φ

q2,p2
(u+ νRr) , (7.24)

if b2 = q1/q2 and q1p2 + q2p1 = 1. Here the first factor is the product of a contribution

from the effective dilaton and from G1,0:

e−2πiΩΦ
= ΠΦ(u+ νRr)

1−r , GΦ
1,0(u+ νRr)r = ΠΦ(u+ νRr)

r . (7.25)

We give an explicit proof of the factorization formula (7.24) in appendix D.4. The iden-

tity (7.24) is equivalent to some previously-known factorization formula for the quantum

dilogarithm at rational values of b2 [78].

7.2 Integral formula and its evaluation

Using the above relations in the case b2 = q1
q2

, we can write the integral formula (7.1) for

the S3
b partition function in the canonical form:

ZS3
b
(ν) =

(−2πi)rk(G)

|WG|

∫
Cσ

∏
a

dua
2πi

e−2πiΩ(u,ν) G̃S3
b
(u, ν) , (7.26)

with the GS3
b

the zero-flux three-sphere fibering operator defined in (7.17), and Cσ the σ-

contour defined in section 6. On the other hand, our Bethe-sum formula for the partition

function reads:

ZS3
b
(ν) =

∑
û∈SBE

H(û, ν)−1 GS3
b
(û, ν) , (7.27)

with GS3
b

the full fibering operator for the squashed three-sphere, including the sum over

fractional fluxes:

GS3
b
(u, ν) = G1,0(u, ν)r

q1−1∑
n1=0

Gq1,p1(u, ν)n1

q2−1∑
n2=0

Gq2,p2(u, ν)n2 . (7.28)

This gives an explicit evaluation formula for the squashed-sphere partition function (7.26)

of any N = 2 supersymmetric gauge theory.66

66Note that, while we had to restrict the choice of gauge group on a general M3 (to be simply connected

or unitary), the three-sphere partition function is insensitive to the global structure of G.
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Direct computation. One can check that (7.26) equals (7.27) by an explicit computa-

tion. Here we consider the case G = U(1), for simplicity. Let us write (7.26) as:

ZS3
b

= −
∫
iR
du e−2πiΩ(u)G̃S3

b
(u)

1−Π(u)

1−Π(u)
, (7.29)

where we suppressed the dependence on ν to avoid clutter, and we introduce a trivial factor

1 = x
x in the integrand. The contour is taken along the imaginary axis (for appropriate

choices of the flavor parameters). Now, using the difference equation:

G̃S3
b
(u− q1q2) = Π(u)G̃S3

b
(u) , (7.30)

we obtain:

ZS3
b

= −

(∫
iR
−
∫

(iR−q1q2)

)
du

e−2πiΩ(u)G̃S3
b
(u)

1−Π(u)
=

∫
C̃BE

du
e−2πiΩ(u)G̃S3

b
(u)

Π(u)− 1
. (7.31)

One can argue that the contour C̃BE encloses all the poles at Π(u) = 1 located in the strip

Re(u) ∈ [0, q1q2). We then find:

ZS3
b

=
∑
û∈SBE

q1q2∑
l=0

H(û− l)−1G̃S3
b
(û− l) =

∑
û∈SBE

H(û)−1
q1q2∑
l=0

G̃S3
b
(û− l) . (7.32)

In the last equation, we used the fact that the handle-gluing operator is periodic under u ∼
u+ 1. Finally, one can check that the contribution from the fibering operator factorizes as:

q1q2−1∑
l=0

G̃S3
b
(û− l) =

q1−1∑
l1=0

G̃q1,p1(û− l1)

q2−1∑
l2=0

G̃q2,p2(û− l2)

=

q1−1∑
l1=0

Gq1,p1(û)p1l1

q2−1∑
l2=0

Gq2,p2(û)p2l2

=

q1−1∑
l1=0

Gq1,p1(û)l1

q2−1∑
l2=0

Gq2,p2(û)l2 .

(7.33)

Here we used the transformation property of Gq,p(u) under the large gauge transformation

and the Bethe equation Π(û) = 1. Written in this way, (7.32) becomes equivalent to the

formula (7.27).

Further comments. It is interesting to note that, in some very special cases, this eval-

uation formula (7.27) has appeared before in a different context. Namely, in complex

Chern-Simons theory, the integral (7.1) for an abelian gauge group (in the supersymmetric

language) is known as a “state integral” [77, 119], and it has been studied in the literature in

parallel to the development of 3d N = 2 localization methods. (This apparent coincidence

between the two subjects is explained by the 3d/3d correspondence [76] in string theory.)

The state integral corresponding to an U(1)k supersymmetric CS theory coupled to Nf
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chiral multiplets of unit charge was given an evaluation formula for b2 rational equivalent

to (7.27) in [78].67

The evaluation formula (7.27) renders manifest a number of properties of ZS3
b

which

are less than obvious from the integral expression. One property is that, for any theory

without any supersymmetric vacuum, ZS3
b

= 0. This follows from (7.27) and the fact

that the number of Bethe vacua — that is, the mass-regulated Witten index [102] —

is zero in that case. For instance, for U(Nc) SQCD with Nf < Nc flavors, the Witten

index (5.48) vanishes and so does ZS3
b
. Another property which is obvious from (7.27)

is that supersymmetric Wilson loops wrapping generic Seifert fibers68 satisfy the correct

twisted chiral ring relations [25, 26].

8 The refined twisted index

Next we consider the refined topologically twisted index of [34], computed as a super-

symmetric partition function on the supersymmetric background S2
ε × S1 discussed in

section 3.2. In particular we have the metric (3.9), where the “refinement” parameter:

ε ∈ C (8.1)

plays the role of a chemical potential for the azimuthal momentum on S2. Importantly,

there is a non-trivial U(1)R flux across the S2:

mR ≡
1

2π

∫
S2

dA(R) = −1 . (8.2)

This implies that the R-charges must be integer-quantized, r ∈ Z. We also introduce a

U(1)R flat connection along the S1:

vR ≡ −
1

2π

∫
S1

A(R) , with vR ∈
1

2
Z , (8.3)

which is correlated with a choice of spin structure on S2 × S1. If vR = 0 mod 1, we

choose the periodic boundary condition for fermions along S1, while if vR = 1
2 mod 1, we

choose the anti-periodic boundary condition. Thus, the fugacity vR introduces a further

Z2 refinement of the twisted index by the choice of spin structure. Following [34, 93], we

can compute the supersymmetric partition function on this background by supersymmetric

localization:6970

Zε(vF )mF =
1

|WG|
∑

m∈ΓG∨

∮
JK

rk(G)∏
a=1

dva
2πi
Zε(v, vF )m,mF , (8.4)

67More precisely, Theorem 1.1 of [78] is equivalent to (7.27) in that case. Their state integral IA,B
corresponds to a U(1)k theories with Nf = B flavors and effective CS level k = 1

2
B −A.

68In this case, these correspond to (q1, q2)-torus knots on S3
b , for b2 = q1

q2
as above.

69This is the result derived in [34], after taking into account our conventions for quantizing fermions, and

keeping track of the spin structure dependence. The parameters v and ε here correspond to u
2π

and ς
2π

,

respectively, in section 4 of [34].
70In this section, the parameters m and mF denote gauge and flavor fluxes, respectively, unlike in previous

sections. We hope this will cause no confusion.
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with the integrand:

Zε(v, vF )m,mF = (−2πi)rk(G) ZCS
ε (v, vF )m,mF Z

vector
ε (v)m Z

matter
ε (v, vF )m,mF (8.5)

Here and in the following, v denotes the gauge parameters to be integrated over, vF denotes

the flavor chemical potentials, mF denotes the flavor background fluxes, and we leave the

dependence on the U(1)R parameter vR implicit to avoid clutter. In (8.4), the sum is over

the gauge fluxes ma, and the v-integral is a particular middle-dimensional contour integral

in the strip-like region:

Re(va) ∈ [0, 1) , (8.6)

that implements a modified JK residue prescription — see [26, 31, 34]. The integrand is

periodic under va ∼ va + 1, corresponding to large gauge transformations along the S1

in S2
ε × S1.

The classical contribution to the integrand is given by the CS contributions, of the

schematic form:

ZCS
ε (v)m = ZGG

ε (v)kGGm ZG1G2
ε (v1, v2)

kG1G2
m1,m2 ZGR

ε (v)kGRm (ZRR
ε )kRR , (8.7)

with:

ZGG
ε (v)m = (−1)m(1+2vR)e2πivm , ZG1G2

ε (v1, v2)m1,m2 = e2πi(v1m2+v2m1) ,

ZGR
ε (v)m = (−1)2vRm e−2πiv , ZRR

ε = −1 .
(8.8)

The gravitational CS term is trivial on this background. Note the spin-structure depen-

dence of the gauge CS term, corresponding to vR = 0 or vR = 1
2 .71 The vector multiplet

contribution to the integrand (8.5) is given by:

Zvector
ε (v)m =

∏
α∈∆+

(−1)2vRα(m) sin

(
π

(
α(v)− ε

2
α(m)

))
sin

(
π

(
α(v) +

ε

2
α(m)

))
. (8.9)

The matter contribution to (8.5), as usual, is a product over the chiral multiplets of

the theory:

Zmatter
ε (v, vF )m,mF =

∏
ω

∏
ρ∈R

ZΦ
ε (ρ(v) + ω(vF ) + vRrω)ρ(m)+ω(mF )−rω+1 . (8.10)

Here we defined the function:

ZΦ
ε (v)m ≡

(
e2πi(v− ε2m); e2πiε

)−1

m+1
, (8.11)

in terms of the q-Pochhammer symbol (x; q)n, defined in (4.67). which is the contribution of

a chiral multiplet of U(1) gauge charge 1 and R-charge r = 0. For a single chiral multiplet

of R-charge r ∈ Z, in particular, we have the contribution:

ZΦ
ε (v + vRr)m−r =

(
(−1)2vRre2πi(v− ε2 (m−r)); e2πiε

)−1

m−r+1
, (8.12)

71The RR CS term is similar, but in that case vR enters both as the choice of spin structure and as the

U(1)R fugacity, and the effect cancels out — we have ZRRε = (−1)mR(1+2vR)e2πivRmR = (−1)mR = −1.
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including a subtle spin-structure dependence through vR when r is odd. As a consistency

check on this result, we should consider the decoupling limits v → ±i∞. For a chiral

multiplet of R-charge r = 1, we find:

ZΦ
ε (v + vR)m−1 ∼ ZGG

ε (v)−1
m as v → −i∞ ,

ZΦ
ε (v + vR)m−1 ∼ 1 as v → i∞ .

(8.13)

In the limit v → −i∞, we thus generate a gauge CS term k = −1, as expected in the

U(1)− 1
2

quantization. Note that, for ε = 0, the chiral multiplet contribution simplifies to:

ZΦ
ε=0(v + vRr)m−r =

(
1

1− e2πi(v+vRr)

)m−r+1

, (8.14)

and the supersymmetric partition function (8.4) becomes the ordinary genus-zero twisted

index ZS2×S1 , given by (4.17) with g = 0. (In that ε = 0 limit, we can identify the

parameters v, vF , vR here with u, νF , νR.)

8.1 Comparison to the Seifert fibration result for ε rational

As we explained in section 3.2, the S2
ε ×S1 geometry is a Seifert fibration over the orbifold

S2(q, q) ∼= S2/Zq if and only if the deformation parameter ε is rational, with:

ε =
t

q
, gcd(q, t) = 1 . (8.15)

The Seifert fibration is then:

S2
ε × S1 ∼=

[
0 ; 0 ; (q, p) , (q,−p)

]
, qs+ pt = 1 . (8.16)

In the Seifert description, we have the JK-residue formula (6.37), which gives:

Zε(ν)nF =
(−1)rk(G)

|WG|
∑

n0∈ΓG∨

∑
n1,n2∈ΓG∨(q)

∮
C0(η)

drk(G)u e−2πiΩ(u,ν) Gε(u, ν)n0,n1,n2,nF . (8.17)

Here, n0 ≡ n0,a and n1 ≡ n1,a, n2 ≡ n2,a denote the ordinary fluxes and the fractional fluxes

at the two Zq orbifold points, respectively, and similarly for the flavor background fluxes

nF . The contribution Gε to the integrand of (8.17) is the fibering operator for the Seifert

fibration (8.16) before performing the sum over fractional gauge fluxes:

Gε(u, ν)n0,n1,n2,nF ≡ G1,0(u, ν)n0,nF0
Gq,p(u, ν)n1,nF1

Gq,−p(u, ν)n2,nF2
. (8.18)

The complete fibering operator is:

Gε(u, ν)n0,nF =
∑

n1,n2∈ΓG∨(q)

Gε(u, ν)n0,n1,n2,nF , (8.19)

and (8.17) can then be written as:

Zε(ν)nF =
(−1)rk(G)

|WG|
∑

n0∈ΓG∨

∮
C0(η)

drk(G)u e−2πiΩ(u,ν) Gε(u, ν)n0,nF . (8.20)
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We note the important property that the integrand in (8.17) is periodic under u ∼ u + q.

More precisely, the effective dilaton contribution is invariant under u ∼ u+1, while we have:

Gε(u+ q, ν)n0,n1,n2,nF = Gε(u, ν)n0,n1,n2,nF , (8.21)

and similarly for ν, due to the fact that c1(L0) = 0.

Back to the Bethe sum. By summing over n0 in (8.20) like in (6.49), and picking the

poles at the solutions to the Bethe equations, we recover the Bethe-sum formula:

Zε(ν)nF =
∑
û∈SBE

Gε(u, ν)nF H(û, ν)−1 , (8.22)

where Gε(u, ν)nF is the full Seifert fibration (8.19) at n0 = 0.

Comparison to the integral formula (8.4) for ε rational. One can compare (8.17)

to (8.4) and find perfect agreement at ε = t
q , given the following identification of

the parameters:

v =
u

q
− t

2q
(n1 − n2) +

tn0

2
, m = qn0 + n1 + n2 ,

vF =
ν

q
− t

2q
(nF1 − nF2 ) +

tnF0
2
, mF = qnF0 + nF1 + nF2 ,

vR =
νR
q
− t

2q
(nR1 − nR2 ) +

tñR0
2
, mR = qñR0 + nR1 + nR2 .

(8.23)

The matching of the fluxes between the two descriptions is clear from:

π∗(Ln0
0 L

n1
1 L

n2
2 ) = (qn0 + n1 + n2)[Ω] . (8.24)

The matching between the continuous parameters v and u is obtained by comparing the

supersymmetric Wilson loops in the two descriptions [34]. Note that the parameters

v, vF , vR are defined modulo 1. Using the parameterization (3.26) for the U(1)R fluxes,

with ñR0 = −1 + nR0 , we find:

vR = νRs+
t

2
(lR + 1) mR = −1 . (8.25)

Here lR ≡ lR1 = lR2 mod 2, where we used the fact that the parities of lR1 and lR2 must be

equal for the line bundle LR to be well-defined. As a consistency check, it is interesting to

note that:

(−1)2vR = (−1)2νRs+t(l
R+1) = ±1 , (8.26)

where, for any fixed (q, p), the two signs correspond to the two distinct choices of LR given

by (3.27). By a direct computation with the identifications (8.23), we can check that:

Zε= t
q
(v, vF )m,mF = (−2πiq)rk(G) e−2πiΩ(u,ν) Gε(u, ν)n0,n1,n2,nF , (8.27)
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where the left-hand-side is the integrand (8.5) evaluated at rational values of ε. For instance,

for a chiral multiplet, we have a “factorization” formula for (8.12), according to:

ZΦ
ε= t

q
(v + vRr)m−r = ΠΦ(u+ νRr)

n0+1−r+nR0 r GΦ
q,p(u+ νRr)n1+nR1 r

GΦ
q,−p(u+ νRr)n2+nR2 r

.

(8.28)

Note that the left-hand-sides of (8.27) and (8.28) only depend on v and m, and not on the

fractional fluxes n1 and n2 individually.

We can now show that the Seifert result agrees with the localization result (8.4). Con-

sider again the case G = U(1), for simplicity. Using the identifications (8.23) and (8.27),

we can write (8.4) as:

Zε(v) =
∑
m∈Z

∮
[0,q)

du

2πiq
Zε= t

q
(v)m = −

∑
n0∈Z

∑
n′1∈Zq

∑
j∈Zq

∮
[0,1)

du e−2πiΩ(u)Gε(u− j)n0,n′1,0
.

Here, the first integral is over the strip Re(u) ∈ [0, q), which is rewritten as a sum of

integrals over the strip Re(u) ∈ [0, 1). Then, using (4.38), we may write:

Gε(u− j)n0,n′1,0
= Gε(u)n0,n′1+pj,−pj (8.29)

and we then find:

Zε(v) = −
∑
n0∈Z

∑
n1,n2∈Zq

∮
[0,1)

du e−2πiΩ(u)Gε(u)n0,n1,n2 . (8.30)

This shows the equality of (8.4) with (8.17), whenever ε is rational. This proof is easily

generalized to any gauge group G.72

9 Lens spaces and holomorphic blocks

In this final section, we revisit the general lens spaces, L(p, q). We will recover some of the

above results on S3
b and S2

ε × S1 as special cases, and connect our results to general lens

space partition functions.

As we already mentioned, three-dimensional lens spaces are rather special amongst

Seifert manifolds, since they are the only three-manifolds that admit an infinite number of

Seifert fibrations. The lens space L(p, q) is defined as a Zp quotients of the three-sphere:

L(p, q) ∼= S3/Zp , Zp :
(
z1 , z2

)
∼
(
ωqp z1 , ωp z2

)
, ωp ≡ e

2πi
p , (9.1)

where we view S3 as the set:

S3 ∼= {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1} . (9.2)

For gcd(p, q) = 1, this identification defines a free Zp action and L(p, q) is a smooth

manifold, which depends only on q modulo p. For later convenience, we formally define:

L(0,±1) = S2 × S1 . (9.3)

72Up to the unresolved difficulties in defining the correct JK-like contour.
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We described the L(p, q) supersymmetric backgrounds in section 3.4 — see also appendix C.

The partition function of 3d N = 2 gauge theories on spheres and lens spaces has been

extensively studied in the literature — e.g. in [10, 12, 14, 15, 17, 34, 60, 67]; see the

reviews [120, 121] and references therein. Lens spaces admit a family of supersymmet-

ric backgrounds preserving two supercharges, which can be characterized by a complex

“squashing parameter,” b [9, 14]. To see how b appears, let us introduce some angular

coordinates on L(p, q), with:

z1 = sin
θ

2
eiχ, z2 = cos

θ

2
eiϕ ,

(
χ , ϕ

)
∼
(
χ+

2πq

p
, ϕ+

2π

p

)
. (9.4)

In this description, the covering space S3 is viewed as a torus, with angles (χ, ϕ), fibered

over the interval θ ∈ [0, π]. The lens space admits a metric where ∂χ and ∂ϕ are generators

of a U(1)×U(1) isometry. Then, in the supersymmetric background L(p, q)b with squashing

b, the anti-commutator of the two supercharges is an isometry along a Killing vector K(b):

{Q, Q̄} = −2i
(
L(b)
K + Z

)
, K(b) = b ∂ϕ + b−1 ∂χ , (9.5)

where LK(b) is the Lie derivative along K(b). For generic b, the orbits of the U(1) isometry

generated by K(b) do not close, except at θ = 0 and θ = π, where ∂ϕ and ∂χ, respectively,

vanish. However, in the special case where:

b2 =
q1

q2
∈ Q , (9.6)

then all of the orbits close. In this case, the orbits of the real Killing vector K(b) define

a Seifert fibration with base S2(q1, q2), which generically has two exceptional fibers at the

“poles” θ = 0 and θ = π.

In the following, we start by reviewing earlier computations of supersymmetric parti-

tion functions on squashed spheres and lens spaces. Interestingly, these partition functions

are known to factorize into pairs of “holomorphic blocks,” or D2×S1 partition functions, re-

flecting the genus-one Heegaard splitting of the lens space into two solid tori [17, 18, 67, 122].

We then explain how the holomorphic blocks can be directly related to the fibration op-

erators, by considering a singular limit on the blocks. Using this correspondence, we

demonstrate that, in the case of rational squashing (9.6), the partition functions computed

in the Seifert formalism reproduce the earlier computations on squashed spheres and lens

spaces. Along the way, we will also clarify a number of points, and obtain some new explicit

results for the L(p, q) partition functions.

9.1 Holomorphic blocks and lens space partition functions

Let us start by reviewing the definition of the holomorphic blocks [17], and their role as

building blocks of lens space partition functions. This subsection is mostly a review, but

we also clarify some details of the construction, in particular concerning the role of the

R-symmetry background, which leads to some new observations.
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9.1.1 Definition and properties

The holomorphic block of a 3d N = 2 gauge theory is the partition function of the theory

on a disk, D2, fibered over a circle. Specifically, one considers a space D2 ×τ S1 with a

smooth metric of the form:

ds2 = dr2 + f(r)2
(
τ2(r)−1(dϕ2 + τ1(r)dζ)2 + τ2(r)dζ2

)
. (9.7)

Here, (r, ϕ) are the disk coordinates and ζ ∈ [0, 2π) is the S1 coordinate. The functions

τ1(r), τ2(r) become the constants τ1, τ2 at the boundary, r = r0, while f(r0) = 1. We then

have a complex structure τ = τ1 + iτ2 on the boundary torus, with complex coordinate

w = ϕ+ τζ. We must also perform a topological twist along D2, so that the R-symmetry

gauge field has flux −1
2 through the disk. We will discuss the R-symmetry gauge field in

more detail below. As a consequence of the twist, the partition function is independent

of the metric on D2. On the other hand, the space S1 ×τ D2 has a torus boundary, T 2,

and we must specify some data at this boundary. The partition function on the solid torus

S1 ×τ D2 will depend on this data, which consists of:

• A choice of two-dimensional vacuum (i.e. a Bethe vacuum) on the disk, α ∈ SBE,

which fixes the asymptotic behavior of the fields at the boundary.

• The complex structure parameter, τ , of the boundary torus.

• The holonomy of background gauge fields, AF , coupled to global symmetries. Specif-

ically, we define:

ν =

∮
S1

AF + τ

∮
∂D2

AF . (9.8)

Here ν lives in the complexified Cartan subalgebra of the flavor symmetry group. For

simplicity of notation, we will focus on the case of a rank-one flavor symmetry group,

U(1)F , so that ν ∈ C, but the general case is a straightforward extension.

• The holonomy of the U(1)R background gauge field:

νR =

∮
S1

A(R) + τ

∮
∂D2

A(R) , (9.9)

and a corresponding choice of spin structure on D2×τ S1. We will discuss this point

momentarily.

Given this data, the holomorphic block is a locally-holomorphic function:

Bα(ν, τ) , (9.10)

The νR dependence is kept implicit. Note that (9.10) is neither a modular nor an elliptic

function, since those symmetries of the boundary torus are broken by the fact that only one

of its cycles is filled. However, there is a residual symmetry under the independent shifts:

τ → τ + 1 , ν → ν + 1 , (9.11)
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with the latter corresponding to large gauge transformations of AF along the S1. Thus, it

is sometimes convenient to use the single-valued parameters:

q ≡ e2πiτ , y ≡ e2πiν . (9.12)

Note that shifting ν → ν+nτ , or y → qny, for any n ∈ Z, corresponds to a large gauge

transformation on the boundary torus, but is not a symmetry of the block. From (9.8) and

Stoke’s theorem, this is equivalent to a shift of the flux of AF through the disk by n units.

Thus we define:

Bα(ν, τ)n ≡ Bα(ν + nτ, τ) (9.13)

to be the block with n units of flux. Here we have made an arbitrary choice of the zero of

ν, which can always be redefined by ν → ν + α+ βτ , with α, β ∈ Z. This freedom will be

useful below.

The R-charge dependence of the holomorphic blocks can be discussed similarly. In

the following discussion, we assume that the R-charges are integer-quantized. (Later on,

we will be able to relax this restriction on some compact three-manifolds.) We have the

background U(1)R gauge field AR, and the corresponding parameter νR defined by (9.9),

similarly to the flavor parameter ν. Naively, we have νR = − τ
2 because the topological

twist on D2 introduces −1
2 unit of U(1)R flux. More generally, we should consider:

νR = ν̃R − 1

2
τ , ν̃R ∈ 1

2
Z . (9.14)

Here, the parameter ν̃R ∈ 1
2Z mod 1 gives a Z2 valued holonomy of AR through the S1:

e−i
∫
S1 AR = (−1)2ν̃R . (9.15)

Similarly to the discussion in previous sections, in order to preserve supersymmetry, ν̃R

must be correlated with a choice of spin structure on D2 ×τ S1. If ν̃R is an integer, we

choose the periodic spin structure for fermions around the S1; if ν̃R is half-integer, we

choose the anti-periodic spin structure.73

If we mix the R-symmetry current with the flavor symmetry current according to:

j(R)
µ → j(R)

µ + rjFµ , (9.16)

this has the effect of shifting the U(1)F gauge field according to AF → AF + rAR. The

R-charge dependence of the blocks then appears through the shift:

ν → ν + νRr ↔ y → y (−1)2ν̃Rr q−
r
2 . (9.17)

For r ∈ 2Z, this depends only on q, or equivalently, on the choice of τ mod 1, but for more

general r the symmetry under τ → τ + 1 is partially broken. Namely, for general r ∈ Z,

we only have τ ∼ τ + 2. If we allow for general r ∈ R, all shifts of τ are inequivalent. We

will discuss the R-charge dependence of the blocks more carefully below.

73The parameters νR and ν̃R here are closely related but distinct from the parameter νR on Seifert

backgrounds. We will discuss the relation later in this section.
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9.1.2 Explicit construction of the blocks for a gauge theory

To construct the blocks for a given 3d N = 2 supersymmetric gauge theory, we first specify

the contributions of the chiral multiplets and the Chern-Simons terms. Since we are not

yet gauging any symmetry, we are considering a theory with a single vacuum and we can

omit α ∈ SBE from the notation.

Chiral multiplets. Let us introduce the function:

BΦ(ν, τ)n ≡
(
q1+ny; q

)
∞ , (9.18)

defined in terms of the (extended) q-Pochhammer symbol:

(x; q)∞ ≡


∏∞
j=0(1− xqj) if Im(τ) > 0 ,∏∞
j=0(1− xq−j−1)−1 if Im(τ) < 0 .

(9.19)

The expression (9.18) is the contribution from a chiral multiplet in the U(1)− 1
2

quantization,

with unit charge under U(1)F and R-charge r = 0, including also n units of flux through

the disk. A chiral multiplet of R-charge r ∈ Z contributes:74

BΦ(ν + νRr, τ)n =
(
(−1)2ν̃Rrq1− r

2
+ny; q

)
∞ . (9.20)

Note that the function (9.19) is analytic for |q| < 1 or |q| > 1, with:

(x; q−1)∞ = (qx; q)−1
∞ , (9.21)

but it diverges at |q| = 1. The holomorphic blocks are therefore divergent in the limit

τ → R, a limit we will discuss in detail below.

Chern-Simons contributions. The classical Lagrangian contributes to the blocks

through the supersymmetric Chern-Simons terms. These contributions are somewhat sub-

tle, but can be inferred by consistency from the chiral multiplet contribution [17]. The

U(1) Chern-Simons term at level k = 1 contributes:

BGG(ν, τ)n =
θ
(
(−1)2ν̃Rq−

1
2 ; q
)

θ
(
(−1)2ν̃Rqn−

1
2 y; q

) , (9.22)

in terms of the Jacobi theta function:

θ(y, q) ≡ (qy; q)∞(y−1; q)∞ . (9.23)

For a mixed CS term, we have:

BG1G2(ν1, ν2, τ)n1,n2 =
θ
(
(−1)2ν̃Rqn1− 1

2 y1; q
)
θ
(
(−1)2ν̃Rqn2− 1

2 y2; q
)

θ
(
(−1)2ν̃Rq−

1
2 ; q
)
θ
(
(−1)2ν̃Rqn1+n2− 1

2 y1y2; q
) . (9.24)

74For general r, we define q
r
2 = eπiτr and (−1)2ν̃Rr = e2πiν̃Rr.
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This is useful, for instance, to insert the contribution of an FI term (which is a mixed

U(1)T -gauge CS term at level 1) in an abelian theory.

We also find an interesting formula for the supersymmetric gravitational CS term,

which contributes:75

Bgrav(τ) =
(
(−1)2ν̃Rq

1
2 ; q
)−1

∞ . (9.25)

We have the obvious identity:

BΦ(ν + νR, τ)nB
Φ(−ν + νR, τ)−n = BGG(ν, τ)−1

n Bgrav(τ)−2 . (9.26)

This is simply the statement that a pair of chiral multiplets of U(1) charge ±1 and R-

charge r = 1 can be given a superpotential mass, which generates the CS levels k = −1

and kg = −2.

To fully specify the classical contribution to the blocks, we should also discuss the R-

gauge and RR CS contributions. To our knowledge, this has not been discussed precisely

in the literature, and we leave it for future work. We should also note that the holomorphic

blocks are only defined up multiplications by certain elliptic functions E(ν, τ), which cancel

out from partition functions on closed three-manifolds upon gluing [17].

Vector multiplets. Next we have the contribution of the vector multiplets. The contri-

bution from the W-bosons, corresponding to the non-trivial roots of G, contribute in the

same way as chiral multiplets of R-charge 2 and U(1)a gauge charges α. For the Cartan

components H =
∏
a U(1)a, we propose the following contribution:

BCart(τ) =

 τ−rk(G)(q; q)
−rk(G)
∞ if Im(τ) > 0 ,

(q−1; q−1)
rk(G)
∞ if Im(τ) < 0 .

(9.27)

We will argue below this has the appropriate limit as we take τ → Q, reproducing the

Seifert manifold formalism above. We denote the total contribution from the Cartan and

from the W-bosons by Bvec(u, τ).

Gauging the blocks. Given a 3d N = 2 Lagrangian gauge theory, we may assemble the

“ungauged block:”

B̃(u, ν, τ) = BGG(u, τ)k Bvec(u, τ)
∏
ρ,ω

BΦ(ρ(u) + ω(ν) + νRrω, τ) , (9.28)

schematically, by combining the above contributions for the chiral and vector multiplets

and CS terms, as a function of both the gauge and the flavor symmetry parameters u and

ν, respectively.

Then the “gauged block” is determined by integrating this over certain middle-

dimensional contours, Γα, in the complex “u-plane,” which are naturally associated to

the Bethe vacua, α ∈ SBE [17]:

Bα(ν, τ) =

∫
Γα
du B̃(u, ν, τ) , (9.29)

75As far as we know, this precise identification of Bgrav(τ) is new in the literature. We will provide some

strong consistency checks of this claim — see equation (9.56) below.
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The Γα-contours are described in more detail in appendix F. We will see in a moment that

we can also define the partition function of the gauge theory on a closed manifold directly

in terms of the ungauged block, (9.28).

9.2 Lens space partition function from holomorphic blocks

The holomorphic blocks can be used to construct supersymmetric partition functions on

closed manifolds. By gluing two solid tori along their boundary tori, we may obtain a

general “squashed” lens space:

L(p, q)b ∼= (−D2 ×τ1 S1) ∪g (D2 ×τ2 S1) . (9.30)

Here, the gluing of the tori is through a large diffeomorphism:

g =

(
s t

−p q

)
∈ SL(2,Z) , τ1 = −g · τ2 . (9.31)

Note that one should flip the orientation of one of the solid tori before gluing, to obtain a

compact three-manifold. Correspondingly, the lens space partition function of 3d N = 2

gauge theories can be written as the “fusion” of two holomorphic blocks [17]. To see

how this works, consider two holomorphic blocks with parameters ν1, τ1, n1 and ν2, τ2, n2,

respectively. To glue these along their boundaries, we must ensure that the boundary data

is compatible.

9.2.1 Identity gluing and S2 × S1

Let us first consider the “trivial gluing,” with g in (9.31) the identity matrix. Here, we

simply identify the two boundary tori with a change of orientation of D2 ×τ1 S1. Thus we

impose (ignoring the magnetic flux for the moment):

ν1 = ν2 , τ1 = −τ2 . (9.32)

Topologically, this gives us the space S2 × S1. Since each block includes a flux −1
2 for the

R-symmetry, there is a net U(1)R flux −1 through S2. Thus we recover the background

corresponding to the refined topological index, which we discussed in section 8. Explicitly,

the fusion of blocks is achieved by taking an inner product in the basis of Bethe vacua.

One finds [67]:

ZS2×S1(ν, τ)m =
∑

α∈SBE

Bα(ν,−τ)n1B
α(ν, τ)n2 . (9.33)

Here, we have set ν = ν1 = ν2 and τ = −τ1 = τ2. By direct computation, one can check

that the fusion (9.32) indeed reproduces the refined index (8.4). The parameters used here

and the ones in section 8 are related by:

ε = τ , v = u− τ

2
(n1 − n2) , vF = ν − τ

2
(n1 − n2) , m = n1 + n2 , (9.34)

and similarly for the R-symmetry parameters. (In particular, vR = ν̃R.) For instance, for

a chiral multiplet of R-charge r = 0, we have:

ZΦ
S2×S1(ν, τ)m = (q−1−n1y; q−1)∞(q1+n2y; q)∞ =

(q1+m
2 z; q)∞

(q−
m
2 z; q)∞

, (9.35)

where we defined z = q−
1
2

(n1−n2)y = e2πiv. This is indeed equal to (8.11).
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The supersymmetric index. Another “trivial gluing,” which was studied in [17], cor-

responds to:

ν1 = −ν2 , τ1 = −τ2 . (9.36)

This also gives S2 × S1 topologically, but it is distinct from (9.32). When considering this

gluing, the sign flip in ν1 must also be applied to the U(1)R flux through the disk, and the

resulting background has a vanishing R-symmetry flux through the S2. The corresponding

supersymmetric background computes the “ordinary” supersymmetric index, also known

as the 3d superconformal index [64, 65]. In terms of the gluing (9.30), it corresponds to:

g =

(
−1 0

0 −1

)
, (9.37)

instead of the identity for the twisted index. We may denote this background by L(0,−1),

which is distinct from L(0, 1). The supersymmetric background L(0,−1) is the exceptional

case amongst the L(p, q) backgrounds; it does not admit any Seifert limit, and therefore

does not fit directly into the formalism of this paper.

9.2.2 Non-trivial gluing and the lens space L(p, q)

Consider the more general gluing (9.30)–(9.31). We should identify the parameters accord-

ing to:

τ1 = − sτ2 + t

−pτ2 + q
, ν1 =

ν2

−pτ2 + q
. (9.38)

More precisely, the background gauge field parameters νi could be shifted by elements of

Z+Zτi, for each block. As before, we may introduce in this way the fluxes ni on each block:

νi → νi + αi + niτ , αi, ni ∈ Z . (9.39)

Then, for the fluxes ni, we find the following consistency conditions upon gluing:76

tn2 + α1 − sα2 ∈ Z , n1 + qn2 + pα2 ∈ Z , (9.40)

with α1, α2 ∈ Z and otherwise arbitrary. We then identify:

m ≡ n1 + qn2 ∈ Zp , (9.41)

as the torsion U(1) flux on L(p, q), since a shift of m by p is equivalent to a shift of α2. We

may fix α1 = −tn2 and α2 = 0, for definiteness.

Fusing the blocks. Given the identifications (9.38) and (9.41), we directly find the

partition function on a squashed lens space:

ZL(p,q)b(σν)m =
∑
α

Bα(ν1, τ1)n1 B
α(ν2, τ2)n2 . (9.42)

76Here we used the identities τ2
−pτ2+q

= −qτ1 − t and 1
−pτ2+q

= −pτ1 + s.
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In order to directly compare to the more common notation on squashed spheres and lens

spaces, we can solve the gluing constraints (9.38) by:

τ1 = −b
−2 − s
p

, ν1 =
b−1

p

(
iσ̂ν + b−1n1 + bn2

)
,

τ2 = −b
2 − q
p

, ν2 =
b

p

(
iσ̂ν + b−1n1 + bn2

)
.

(9.43)

Here, b2 ∈ C is the squashing parameter. Consider for instance the L(p, q)b partition

function of a free chiral of R-charge r = 0:

ZΦ
L(p,q)b

(σ̂ν)m ≡ BΦ(ν1, τ1)n1B
Φ(ν2, τ2)n2 (9.44)

We directly find [18]:

ZΦ
L(p,q)b

(σ̂ν)m =

(
e
−2πi b

−2−s
p e

2πi
p

(ib−1σ̂ν+sm)
; e
−2πi b

−2−s
p

)
∞(

e
2πi
p

(ibσ̂ν+m)
; e

2πi b
2−q
p

)
∞

. (9.45)

Here, we used (9.21) to write the chiral-multiplet partition function in terms of the “or-

dinary” q-Pochhammer symbol, for |q| < 1, which corresponds to Im(b2) > 0. For p = 1,

this reduces to the S3
b one-loop determinant:

ZΦ
L(1,1)b

(σ̂) = ZΦ
L(1,−1)b

(σ̂) = ZΦ
S3
b
(σ̂) = Φ̃b

(
σ̂ +

i

2
(b+ b−1)

)
. (9.46)

with Φ̃b defined in (7.10).

R-symmetry dependence and spin structures. The R-symmetry background

gauge fields:

νRi = ν̃Ri −
1

2
τi , (9.47)

satisfy a consistency condition upon gluing, analogous to the one for flavor background

gauge fields. Namely, we must have:

νR1 −
νR2

−pτ2 + q
∈ (Z + τ1Z) . (9.48)

This is equivalent to:

− q + 1

2
+ pν̃R2 ∈ Z , − t

2
+ ν̃R1 − sν̃R2 ∈ Z . (9.49)

This fixes the parameters ν̃Ri ∈ 1
2Z (mod 1). More precisely, there are three cases:

(−1)2ν̃R1 = (−1)s+1 , (−1)2ν̃R2 = −1 , if q is odd, p is odd,

(−1)2ν̃R1 = (−1)t , (−1)2ν̃R2 = 1 , if q is even, p is odd,

(−1)2ν̃R1 = (−1)2ν̃R2 s+t , (−1)2ν̃R2 = ±1 , if q is odd, p is even,

(9.50)
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We see that there is a unique consistent choice for the Z2 holonomies ν̃Ri when p is odd,

while there are two distinct choices when p is even. This is exactly as expected from our

discussion of Seifert backgrounds. On L(p, q) with p even, there are two distinct choices of

spin structures, which are probed by the two distinct supersymmetric backgrounds.

The R-symmetry Zp torsion flux can be read off from (9.49), similarly to (9.41):

mR = −1

2
(q + 1) + pν̃R2 ∈ Zp . (9.51)

This is in agreement with the discussion in section 3.4. For p even (and therefore q odd),

there are two distinct choices in Zp, namely mR = −1
2(q + 1) or mR = −1

2(q − p + 1).

We also recover the fact that the canonical line bundle KL(p,q)
∼= L2

R is trivial if and only

if q = −1 (mod p). The U(1)R line bundle itself is trivial, LR ∼= O, if the two integers

in (9.49) vanish. This requires:

ν̃R1 =
s+ 1

2p
, ν̃R2 =

q + 1

2p
, (9.52)

which is only possible for q = −1 mod p. On such a background, we can consider any real

R-charges, r ∈ R. In this case, combining (9.52) with (9.43), we see that:

νR1 = ν̃R1 −
τ1

2
=
b−2 + 1

2p
, νR2 = ν̃R2 −

τ2

2
=
b2 + 1

2p
, (9.53)

and therefore the shift (9.17) induced by a change of R-charge corresponds to:

σ̂ν → σ̂ν − i
b+ b−1

2
r . (9.54)

This reproduces the well-known R-charge dependence on S3
b , as in (7.4). In fact that result

directly generalizes to L(p, p− 1) ∼= S3
b /Zp [21], as we see here. Note that, for p even, the

“superconformal” background with mR = 0 exists for a particular choice of spin structure.

The other choice of spin structure gives rise to a distinct L(p, p − 1)b background, with

non-trivial U(1)R flux mR = p
2 and Dirac-quantized R-charges.

Gravitational CS term. As another consistency check of the above discussion, it is

interesting to consider the gravitational Chern-Simons term. Consider the compact lens

space L(p,−1)b with the the R-symmetry background such that LR ∼= O, as described

above. Then, we find [18]:

Zgrav
L(p,−1)b

= e
πi
24p(b2+b−2) e

−πi
12

(
p− 1

p

)
. (9.55)

For p = 1, we recover the S3
b contribution as given on the last line of (7.3). One can check

that this term indeed factorizes as expected:

Zgrav
L(p,−1)b

= Bgrav

(
− τ

pτ + 1

)
Bgrav(τ) , τ = −b

2 + 1

p
, (9.56)

for p 6= 0. Here we used the gluing matrix g with (p, q) = (p,−1) and (t, s) = (0,−1),

which implies ν̃R1,2 = 0 due to (9.52). The identity (9.56) can be checked numerically.

For the identity gluing, we obtain Bgrav(−τ)Bgrav(τ) = 1 instead, as expected for the

twisted index.
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Integral formula. An alternative expression for the lens space partition function starts

from the ungauged blocks, B̃(u, ν, τ), introduced above. We may fuse two ungauged blocks,

thus obtaining the lens space partition function of the ungauged theory:77

Z̃L(p,q)b(σ̂u, σ̂ν ,m,m
F ) ∝ B̃(u1, ν1, τ1)n1,nF1

B̃(u2, ν2, τ2)n2,nF2
. (9.57)

Here, we denoted by ni and nFi the gauge and flavor fluxes, respectively, and we identify

the torsion fluxes:

m = n1 + qn2, mF = nF1 + qnF2 , (9.58)

as in (9.41). Then, for p 6= 0, the partition function of the gauge theory can be obtained by

integrating (9.57) over the real σ̂u contour,78 and summing over fluxes m ∈ Zp. Schemati-

cally, this gives:

ZL(p,q)b(σ̂ν)mF =
∑
m∈Zp

∫
dσ̂u Z̃L(p,q)b(σ̂u, σ̂ν ,m,m

F ) , (9.59)

where we have included the contribution from the vector multiplets in the maximal torus,

as above. Indeed, one can show that this agrees with the expressions for the squashed

sphere and lens space obtained directly by localization in [10, 12, 14, 15, 60]. When p = 0,

the sum in (9.59) is over the integers, m ∈ Z — more generally, for a gauge group G, the

sum is over the GNO-quantized magnetic fluxes on S2 — , and the integration is over the

JK contour, as described in section 6.

Geometric equivalences amongst lens spaces L(p, q). Before concluding this dis-

cussion of the L(p, q) partition function, let us make a few more comments about the

geometry. In the above, we constructed the lens space L(p, q) using the arbitrary SL(2,Z)

element g in (9.31). In particular, the integer p could be positive or negative. In general,

it is chosen positive. There is an obvious equivalence:

L(−p, q) ∼= −L(p, q) , (9.60)

where the minus on the right-hand-side stands for orientation reversal. This is clear, for

instance, from the definition (9.1)–(9.2), since sending p to −p is equivalent to sending

z1, z2 to z̄1, z̄2. In terms of the Heegaard splitting (9.30), the lens space L(−p, q) is realized

by the gluing:

τ1 = −g̃ · τ2 , g̃ =

(
s −t
p q

)
. (9.61)

Interestingly, we have:

g̃ = C · g · C , C =

(
1 0

0 −1

)
, (9.62)

77The proportionality factor is a τ -dependent factor, which can be thought of as contributing to the

measure in the integral formula below. We will be somewhat imprecise about such measure factors in the

following.
78More precisely, this is true for b2 > 0. For b2 < 0 we should instead integrate over the imaginary σν

contour.
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and therefore:

τ1 = −g̃ · τ2 ↔ C · τ1 = −g · (C · τ2) . (9.63)

The last relation precisely realizes −L(p, q). That is, C acting on the boundary tori changes

the sign of a single direction, and the gluing is with the same g that realizes L(p, q), therefore

we indeed obtain L(p, q) with the opposite orientation.

Let us mention two other operations we can perform. First, we may replace:

g =

(
s t

−p q

)
→ Cg−1C =

(
q t

−p s

)
(9.64)

This is equivalent to exchanging the roles of the two blocks, i.e., τ1 ↔ τ2 and ν1 ↔ ν2, and

so does not affect the partition function obtained by fusing the two blocks. More precisely,

we find the relation:

ZL(p,s)b(σ̂ν)mF = ZL(p,q)b−1
(σ̂ν)smF (9.65)

This exhibits the equivalence L(p, q) ∼= L(p, q−1 (mod p)), where we use q−1 = s (mod p).

Next, we may replace g → −g. We see this has the effect of replacing L(p, q) →
L(−p,−q). From (9.38), this has no effect on the identification of the τi, but now the

relation between νi incurs an additional sign. Inspecting (9.43), we see that, for p 6= 0, we

may equivalently replace:

b→ ib, σν → iσν , m→ −m (9.66)

In other words, we have the relation, for p 6= 0:

ZL(−p,−q)b(σ̂ν)mF = ZL(p,q)ib(iσ̂ν)−mF (9.67)

For p = 0, where g = Id, this operation takes us between the topological index,

L(0, 1), and the ordinary index, L(0,−1), but the partition functions on these two spaces

do not obey a simple relation, as in (9.67). These two choices are the three dimensional

analogue of the topological-topological (tt) and topological-anti-topological (tt∗) fusion of

the holomorphic blocks, respectively [20, 123]. The statement of (9.67) is then that, once

we non-trivially fiber the S1 over S2, the distinction between these two choices goes away.

This gives another perspective on why the partition function on the squashed sphere and

lens spaces, which can be thought of as a 3d uplift of the tt∗ partition functions [20], can

also be computed in the 3d A-model, which is an uplift of the topological A-model.

9.3 Rational squashing and the Seifert fibering operators

Given this discussion of the holomorphic block, we can now come back to the half-BPS

Seifert manifold formalism. Recall that, although the orbits of the Killing vector K(b)

in (9.5) do not close for generic b ∈ C, they do close when

b2 =
q1

q2
∈ Q . (9.68)
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In this case, the orbits of K(b) are the fibers of one of the infinitely many inequivalent

Seifert fibrations of the lens space, L(p, q). Thus we expect that, by taking a limit of the

lens space partition function as b2 approaches a rational number, we may express it in

terms of the formalism introduced in earlier sections.

In fact, more directly, we expect there to be a simple relation between the holomorphic

blocks and the Seifert fibering operators, which insert an exceptional (q, p) fiber in a general

Seifert manifold. Namely, the holomorphic block is the partition function on a disk fibered

over an circle, and in the limit where this fibration approaches a rotation by a rational angle,

τ → t

q
, (9.69)

this is precisely the solid fibered torus T (q, t) introduced in section 2 — see equation (2.28)–,

which is the local model of an exceptional fiber. That is, schematically, we expect a relation

of the form:

Bα

(
ν, τ =

t

q

)
; Gαq,p(ν) . (9.70)

The precise relation is given in (9.79) below. In the following, by establishing this corre-

spondence more precisely, we demonstrate that the Seifert formalism of this paper indeed

reproduces the known partition functions on squashed lens spaces in the rational-squashing

limit, (9.68).

9.3.1 Trivial gluing and the topological index

Let us start with the “trivial gluing” of two blocks, as in (9.33) above, which gives us the

topological index [34]. First of all, in the limit τ → 0, we should recover the ordinary

(i.e. non-refined) S2 × S1 twisted index. The precise claim is that, for each Bethe vacuum

α ∈ SBE:

lim
τ→0

Bα(ν,−τ)n1B
α(ν, τ)n2 = Hα(ν)−1 Πα(ν)m

F
. (9.71)

Here mF = n1 + n2 is a flavor symmetry background flux, and Π the ordinary flavor flux

operator. It then directly follows from (9.33) that:

ZS2×S1(ν, τ = 0) = lim
τ→0

∑
α∈SBE

Bα(ν,−τ)Bα(ν, τ) =
∑
α∈SBE

Hα(ν)−1Πα(ν)m , (9.72)

which is the expected result from the A-model computation of the twisted index.

We demonstrate (9.71) in appendix F. Here, let us briefly illustrate the argument in

the case of a free chiral multiplet with R-charge r ∈ Z, and setting the fluxes to zero. The

corresponding holomorphic block (9.20) is given in terms of the q-Pochhammer symbol:

BΦ(ν, τ) = ((−1)2ν̃Rrq1− r
2 y; q)∞ , q = e2πiτ , y = e2πiν . (9.73)

For τ → 0, we may use the following expansion of the q-Pochhammer symbol [17]:

(qy; q)∞ →
τ→0

exp

(
1

2πiτ
Li2(e2πiν)− 1

2
log(1− e2πiν) +O(τ)

)
. (9.74)
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The leading behavior of the chiral multiplet block as τ → 0 is then:

BΦ(ν, τ) = ((−1)2ν̃Rrq1− r
2x; q)∞

→
τ→0

exp

(
1

2πiτ
Li2(e2πi(u+ν̃Rr− r

2
τ))− 1

2
log(1− e2πi(ν+ν̃Rr)) +O(τ)

)
= exp

(
1

2πiτ
Li2(e2πi(ν+ν̃Rr)) +

r − 1

2
log(1− e2πi(ν+ν̃Rr)) +O(τ)

)
.

(9.75)

When we multiply this with another block with τ → −τ , as in the l.h.s. of (9.71), the

leading divergence cancels and we obtain a finite limit:

lim
τ→0

BΦ(ν,−τ)BΦ(ν, τ) = (1− e2πi(ν+ν̃Rr))r−1 = HΦ(u)−1 , (9.76)

which agrees with the handle-gluing operator of a chiral multiplet of R-charge r, as claimed.

Comparing (9.76) to (4.21), we also see that ν̃R can be identified with νR in the Seifert

formalism. This is expected in this case: given the identity gluing, we have ν̃R1 = ν̃R2 and

the choice of spin structure on the solid tori becomes a choice of spin structure on S2×S1.

9.3.2 General lens spaces

To consider similar limits for general lens spaces, it will be useful to first introduce some

notation. For g ∈ SL(2,Z) given as in (9.31), we define:

g̃ = C · g · C =

(
s −t
p q

)
, C =

(
1 0

0 −1

)
, (9.77)

as in (9.62). We also define:

Bα
g̃ (ν, τ) ≡ Bα

(
ν

pτ + q
,
sτ − t
pτ + q

)
. (9.78)

This is simply a reparameterization of the variables ν and τ defining the blocks. Specif-

ically, these are the values measured after applying the SL(2,Z) transformation g̃ to the

boundary torus.

Fibering operators from the holomorphic blocks. Let us choose q > 0 for definite-

ness. Then, the precise form of the relation (9.70) between the holomorphic block and the

Seifert fibering operator reads:

lim
τ→0

Bα
g̃ (ν, τ)n

Bα(ν, τ)
= lim

τ→0

Bα
(

ν
pτ+q ,

sτ−t
pτ+q

)
n

Bα(ν, τ)
= Gαq,p(ν)n . (9.79)

We can understand this geometrically, as follows. To glue an exceptional Seifert fiber of

type (q, p), we first cut out a tubular neighborhood of “trivial fiber,” D2 × S1, and then

glue the local model of an exceptional fiber, T (q, t), to the boundary torus. This is reflected

in the equation above, where the denominator corresponds to the “trivial block” we are

removing, and the numerator corresponds to the non-trivial block, with rational rotation
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angle g̃ · τ → − t
q . More precisely, we must first regularize by taking non-zero τ ∈ C\R, as

the blocks are divergent at real τ , and we recover the above procedure in the limit τ → 0,

reflected in (9.79).

We prove the relation (9.79) in appendix F. Let us again illustrate the argument in

the case of a free chiral multiplet. For simplicity of notation, we take both the R-charge

and flux to be zero. Then, we are interested in the limit of:

BΦ
g̃ (u; τ) = (q̃ỹ; q̃) , ỹ = exp

(
2πi

ν

pτ + q

)
, q̃ = exp

(
2πi

sτ − t
pτ + q

)
, (9.80)

as τ → 0. Using the identity:

(qy; q) =

n−1∏
`=0

(qn(q−`y); qn) , ∀n ∈ Z>0 , (9.81)

and the limit (9.74) for the q-Pochhammer symbol, we find:

(q̃ỹ; q̃) ∼
τ→0

exp

(
q−1∑
`=0

(
q

2πiτ
Li2(e

2πi
q

(ν+t`)
) +

p

2πi
Li2(e

2πi
q

(ν+t`)
)

+

(
pν + `

q
− 1

2

)
log(1− e

2πi
q

(ν+t`)
)

)
+O(τ)

)
.

(9.82)

Using the identities (D.15), we may rewrite this as:

(q̃ỹ; q̃) ∼
τ→0

exp

(
1

2πiτ
Li2(e2πiν)− 1

2
log(1− e2πiν)

)
× exp

(
p

q

(
1

2πi
Li2(e2πiν) + ν log(1− e2πiν)

)
+

q−1∑
`=0

`

q
log(1− e

2πi
q

(ν+t`)
)

))
.

(9.83)

We see this differs from the trivial block, (9.74), by a finite piece. Thus we may divide by

the trivial block to obtain a finite limit:

lim
τ→0

BΦ
g̃ (ν, τ)

BΦ(ν, τ)
= exp

(
p

q

(
1

2πi
Li2(e2πiν)+ν log(1− e2πiν)

)
+

q−1∑
`=0

`

q
log(1− e

2πi
q

(ν+t`)
)

))
.

(9.84)

Comparing to (4.66), we see the right-hand-side is precisely the (q, p) fibering operator for

the chiral multiplet:

lim
τ→0

BΦ
g̃ (ν, τ)

BΦ(ν, τ)
= GΦ

q,p(ν) . (9.85)

This proves the relation (9.79) in this special case.

Fusing the blocks. Let us now consider the fusion of the blocks as in (9.42), with the

gluing conditions:

τ1 = −g · τ2 ≡ −
sτ2 + t

−pτ2 + q
, ν1 ≡ g · ν2 =

ν2

−pτ2 + q
, (9.86)
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where g ∈ SL(2,Z) acts on τ2 and ν2 in the obvious way. It is then very convenient to

introduce the two SL(2,Z) matrices:

g1 =

(
s1 t1
−p1 q1

)
, g2 =

(
s2 t2
−p2 q2

)
, (9.87)

such that:

g = g1 C g−1
2 C ↔

(
s t

−p q

)
=

(
q2s1 − p2t1 s1t1 + s1t2
−q1p2 − q2p2 q1s2 − p1t2

)
. (9.88)

Then, it is clear that the conditions (9.86) can be solved by:

τ1 = −g1 · τ , ν1 = g1 · ν ,
τ2 = g̃2 · τ , ν2 = g̃2 · ν ,

(9.89)

where g̃2 = Cg2C, and τ and ν are free parameters. More explicitly, we have:

τ1 =
−s1τ − t1
−p1τ + q1

, ν1 =
ν

−p1τ + q1
,

τ2 =
s2τ − t2
p2τ + q2

, ν2 =
ν

p2τ + q2
.

(9.90)

In these new variables, the L(p, q) partition function (9.42) takes the suggestive form:

ZL(p,q)(ν, τ)m =
∑
α

Bα(ν1, τ1)n1 B
α(ν2, τ2)n2

=
∑
α

Bα
g̃1

(ν,−τ)n1 B
α
g̃2

(ν, τ)n2 .
(9.91)

At this point this is simply a reparameterization. However, if we now take the limit τ → 0

of (9.91), we find:

lim
τ→0

ZL(p,q)(ν, τ)m = lim
τ→0

∑
α

Bα
g̃1

(ν,−τ)n1

Bα(ν,−τ)

Bα
g̃2

(ν, τ)n2

Bα(ν, τ)
Bα(ν,−τ)Bα(ν, τ) . (9.92)

Then using the limits (9.79) and (9.71),this becomes:

lim
τ→0

ZL(p,q)(ν, τ)m =
∑
α

Gαq1,p1
(ν)n1Gαq2,p2

(ν)n2Hα(ν)−1 . (9.93)

This is precisely the partition function of a Seifert manifold with two exceptional fibers,

(qi, pi), i = 1, 2, over a genus zero Riemann surface — namely, a lens space. Recall from

section 3.4 that the lens space L(p, q)b with b2 = q1
q2

has the Seifert fibration:

L(p, q)b ∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , p = p1q2 + p2q1 , q = q1s2 − p1t2 . (9.94)

The identification of the lens space parameters p, q with the Seifert invariants (qi, pi) is

precisely as in (9.88). Comparing (9.90) to (9.43), we also find:

b2 =
ν2

ν1
=
−p1τ + q1

p2τ + q2
−→
τ→0

q1

q2
, (9.95)
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as expected. Thus, we have proven that:

ZL(p,q)b(σν , m̂)
∣∣∣
b2=

q1
q2

=
∑
α

Gαq1,p1
(ν)n1Gαq2,p2

(ν)n2Hα(ν)−1 , (9.96)

which is our main result for Seifert manifolds, specialized to the lens space Seifert fibra-

tion (9.94).

We should emphasize the condition q > 0 stated before (9.79) is important for the

argument above to go through. Thus we must impose qi > 0 for both SL(2,Z) matrices gi.

From (9.95), we see qi = 0 is a singular limit of the squashing parameter, and this limit

is not expressible in terms of the Seifert fibering operators. When qi < 0, we may replace

gi → −gi, which (at most) takes g → −g. Then for p 6= 0, we have seen above, in (9.67),

that this is simply a reparameterization in terms of the equivalent space L(−p,−q), and

so there is no loss in restricting to qi > 0 in these cases.

However, for p = 0, taking g → −g is not a reparameterization, and takes us between

the inequivalent backgrounds L(0, 1) and L(0,−1), corresponding to the twisted index and

the ordinary supersymmetric index, respectively. Then, one can check that for (p, q) =

(0,−1), it is not possible to find matrices gi satisfying (9.88) with both qi > 0. Therefore,

although the supersymmetric index can be constructed in terms of holomorphic blocks, it

cannot be written in terms of the Seifert fibering operators.

Contour integral expression. Finally, let us return to the integral formula (9.59).

Applying the results above to the ungauged theory, we find:

Z̃L(p,q)b(σu, σν ,m,m
F ) ∝ e−2πiΩ(u,ν) G̃q1,p1(u, ν)n1,nF1

G̃q2,p2(u, ν)n2,nF2
, (9.97)

for b2 rational. Here we used the fact that H = e2πiΩ for the ungauged theory. Then,

plugging this into (9.59), we find:

ZL(p,q)b(σν ,m
F ) ∝

∑
n∈Zp

∫
dσu e

−2πiΩ(u,ν) G̃q1,p1(u, ν)n1,nF1
G̃q2,p2(u, ν)n2,nF2

, (9.98)

schematically, in agreement with the “σ-contour” expression derived in (6.60).
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A Parity anomaly and Chern-Simons contact terms

In this appendix, we review some important properties of three-dimensional fermions and

Chern-Simons terms, following in particular [39–42].

A.1 Three-dimensional fermions and the parity anomaly

It is well-known that three-dimensional fermions suffer from parity anomalies [36–38]. Con-

sider a 3d Dirac fermion ψ coupled to a U(1) background gauge field Aµ with charge 1.

On {xµ} ∼= R3 with Euclidean signature, the parity operation is given by changing the

sign of a single coordinate, say x3 → −x3. (It is thus indistinguishable from time-reversal

symmetry.) The classical Lagrangian of a massless fermion,

L = −iψ̄γµ(∂µ − iAµ)ψ , (A.1)

preserves parity. The parity anomaly is the statement that there exists a mixed parity-

U(1) anomaly — in other words, one cannot preserve both parity and (background) gauge

invariance. As usual in this type of situation, we have to give up some symmetry of the

classical theory in the quantum theory. If we couple the theory to a metric, we have a

similar parity anomaly with background diffeomorphism. In this paper, we always choose

to preserve gauge invariance (and diffeomorphism invariance). Then, the “parity anomaly”

is the statement that the quantum effective action:

Seff [Aµ] ≡ − log det
(
− iγµ(∂µ − iAµ)

)
, (A.2)

is a gauge-invariant (non-local) functional of Aµ which violates parity. The parity-violating

term is an imaginary contribution to Seff , which arises because one needs to regulate

carefully the infinite product over the eigenvalues of the Dirac operator. This can be made

rigorous on a closed three-manifold. A standard regularization of the phase of the Dirac

determinant gives [38, 40]:

det(−i 6DA) = |det(−i 6DA)| e
πi
2
η(g,A) . (A.3)

Here, the absolute value is unambiguous, while the phase is given by the APS η-invariant.

Crucially, η(g,A) is a gauge-and diff-invariant functional of the gauge field A and of the

metric g,79 which is generally non-local. The η term is closely related to the U(1) and

gravitational CS terms:

SGG[A] =
i

4π

∫
A ∧ dA , Sgrav[g] =

i

192π

∫
Tr

(
ω ∧ dω − 2

3
ω ∧ ω ∧ ω

)
, (A.4)

with ω the spin connection. While these CS terms are not gauge (or diff) invariant unless

their coefficient is a quantized level, k ∈ Z and kg ∈ Z, respectively, their infinitesimal

variations are well-defined and coincide with the variations of the η-invariant:

πiδAη(ω,A) = δASGG[A] , πiδgη(ω,A) = 2δgSgrav[g] . (A.5)

79It is defined by a ζ-regulated sum over the signs of the eigenvalues, λ, of the Dirac operator:

η(g,A) = lim
s→0

∑
λ

sign(λ)|λ|−s .
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By the Atiyah-Patodi-Singer (APS) index theorem, we also have:

exp (−πikη(g,A)) = exp (−kSGG[A]− 2kSgrav[g]) , (A.6)

for any quantized integer k ∈ Z. Thus, for many purposes, the gauge-invariant phase

e
πi
2
η(g,A) in (A.3) looks just like an improperly-quantized U(1) CS term at level −1

2 (plus

a gravitational CS term at level −1).80

In any 3d field theory coupled to background gauge fields and metric, the parity-

violating terms are conveniently captured by the two-point functions of the conserved

currents, whose parity-odd coefficients are denoted by κ. As explained in [39], the quantity:

κ mod 1 (A.7)

is a physical observable. This is because κ can always be shifted by some integer k ∈ Z, by

adding a background Chern-Simons term with integer level k to the effective action. For

instance, we may add the U(1) CS term in (A.4) to the UV action, which would shift the

observable κ:

Seff [A]→ Seff [A] + k SGG[A] ↔ κ→ κ+ k . (A.8)

Since the CS level k must be quantized by gauge invariance, κ mod 1 is physical. By abuse

of notation, we call κ the “CS contact term,” but we should not loose sight of the fact

that (A.7) is physical (unlike an ordinary contact term, which can be entirely canceled by

a local term). For the free fermion ψ regularized as in (A.3), we have:

κ = −1

2
, κg = −1 . (A.9)

Here, κ is the parity-odd contact term in the two-point functions of the U(1) current, and

κg is a similar contact term involving the stress-energy tensor [39]. The only ambiguity is in

shifting κ and κg by integers, by adding the CS terms (A.4) to the action. We must therefore

make a choice in the UV. We call the choice (A.3)–(A.9) the “U(1)− 1
2

quantization,” in

agreement with standard notation.81 More generally, for a fermion with charges Qa ∈ Z
under some U(1)a symmetries, the “U(1)− 1

2
quantization” (A.3) corresponds to the CS

contact terms:

κab = −1

2
QaQb , κg = −1 . (A.10)

The corresponding CS terms are the mixed U(1)a-U(1)b CS interactions, with levels kab ∈ Z.

(The generalization to non-abelian symmetries is straightforward.) Incidentally, let us note

that, while the choice of background CS terms for global symmetries is unphysical, once

we start gauging symmetries (making some Aµ’s dynamical), their CS terms, of course,

become an important part of the definition of the theory in the UV. For instance, a U(1)

80Nonetheless, we emphasize that it is not possible to “cancel the parity anomaly” (as it is sometimes

stated in the supersymmetric localization literature) by adding a CS term with level k = 1
2

to (A.3), since

such a term violates gauge invariance. The point is that one cannot take the “square-root” of equation (A.6).
81The term κ = − 1

2
is sometimes call the “effective CS level.”
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gauge theory coupled to a single fermion ψ of unit charge, with bare CS term k ∈ Z in the

UV, together with our choice of quantization (A.3), is generally denoted by U(1)− 1
2

+k +ψ,

and its dynamics, of course, depends crucially on the level k [42].

To conclude this overly detailed discussion of 3d fermions, we recall that the ‘real

mass” term:

∆Lm = −imψ̄ψ , m ∈ R , (A.11)

breaks parity explicitly. Integrating out the fermion ψ with a large real mass, m → ±∞,

shifts the CS contact terms according to:

δκab =
1

2
sign(m)QaQb , δκg = sign(m) , (A.12)

in our conventions. In particular, for a single fermion ψ of U(1) charge 1 and with a mass

term m, we have the CS contact terms (A.9) in the UV, while in the IR we can integrate

out the fermion and obtain an empty (trivial, gapped) theory. If m > 0, that empty theory

has vanishing CS contact terms, κ = 0 and κg = 0, while if m < 0, we obtain the IR

contact terms κ = −1 and κg = −2.

A.2 Chern-Simons actions, contact terms and supersymmetry

Now, let us specialize the above discussion to the case of N = 2 supersymmetric theories

with a U(1)R symmetry. We have to consider the various contact terms:

κab , κaR , κRR , κg , (A.13)

which correspond to the gauge, mixed gauge-R, RR, and gravitational contact terms,

respectively. The supersymmetrization of those terms was studied in [39].

Supergravity CS terms. Let us briefly discuss the supersymmetric CS term A(R)dA(R)

for the U(1)R gauge field A
(R)
µ , and the supersymmetric gravitational CS term [6, 39].

Setting the fermions to zero, the N = 2 supersymmetric version of the gravitational CS

term reads:

Sgrav =
kg

192π

∫
d3x
√
g

(
iεµνρ Tr

(
ωµ∂νωρ −

2

3
ωµωνωρ

)
+ 4iεµνρA(R)

µ ∂νA
(R)
ρ

)
, (A.14)

with A
(R)
µ the U(1)R gauge field. The level kg is integer-quantized. This action is confor-

mally invariant. There also exists another, non-conformal CS-like term one can write down

using the supergravity multiplet alone:

Szz =
kzz
4π

∫
d3x
√
g

(
iεµνρ(A(R)

µ + Vµ)∂ν(A(R)
ρ + Vρ)−

1

2
HR−H3 −HVµV µ

)
. (A.15)

Here, Vµ and H and auxiliary supergravity fields (as we briefly review in section 2.3) and

R is the 3d Ricci scalar. The actual U(1)R Chern-Simons level is given by:

kRR =
kg
12

+ kzz , (A.16)

which is the net coefficient of the A(R)dA(R) term. The RR level kRR is integer-quantized

if U(1)R is compact — that is, whenever all the R-charges are integer-quantized.
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Quantizing 3d N = 2 supersymmetric multiplets. Let Φ be a chiral multiplet of

U(1)a charges Qa and R-charge r. In this paper, we use the “U(1)− 1
2

quantization” for the

Dirac fermion ψ in Φ. Then, each chiral multiplet Φ contributes to the CS contact terms:

κab = −1

2
QaQb , κRR = −1

2
(r − 1)2 ,

κaR = −1

2
Qa(r − 1) , κg = −1 .

(A.17)

If we give a large positive real mass, m → ∞, to a free chiral multiplet in the U(1)− 1
2

quantization, thus integrating it out, we get vanishing CS contact terms in the IR:

m� 1 : κ
(IR)
ab = 0 , κ

(IR)
aR = 0 , κ

(IR)
RR = 0 , κ(IR)

g = 0 . (A.18)

Operationally, and especially for the purpose of supersymmetric localization, this is as

good a definition as any of what we mean by the “U(1)− 1
2

quantization” of an N = 2

chiral multiplet — it is the regularization of the one-loop determinant ZΦ for Φ such that

ZΦ → 1 in the limit m→∞.

The vector multiplet V also contains an adjoint fermion, the gaugino. To discuss its

UV quantization, we decompose V into abelian vector multiplets Va along a maximal torus

H ∼=
∏
a U(1)a, and into the components Vα along the non-trivial roots. Each Va and Vα

contains a gaugino λ or R-charge 1 (and its charge conjugate λ̄ or R-charge −1), which we

denote by λa and λα, respectively. The λα’s come in pairs λα, λ−α, which carry opposite

gauge charges (Qa = αa and Qa = −αa, respectively) under the Cartan subgroup H. We

therefore choose the “symmetric quantization” with respect to the U(1)a gauge charges,

which results in a vanishing net shift of the gauge contact terms:

V : κab = 0 , κaR = 0 , (A.19)

for the full vector multiplet. (The elements Va are of course neutral.) We also have

to specify the U(1)R and gravitational CS contact terms in the UV. We will quantize the

gauginos λ = (λa, λα) such that they each induce the RR and gravitational CS levels κRR =
1
2 and κg = 1 — that corresponds to a phase e−

πi
2
η(A(R),g) in their one-loop determinant,

instead of (A.3). Then, for the full vector multiplet, we obtain the UV CS contact terms:

V : κRR =
1

2
dim(G) , κg = dim(G) . (A.20)

Of course, we could always choose a different quantization in which κg = 0, by adding the

supersymmetric gravitational CS term (A.14), with level kg = −dim(G), to the effective

action. On the other hand, the UV contribution of the vector multiplet to κRR is gener-

ally half-integer, and thus cannot be shifted to zero in any gauge-invariant scheme. The

quantization (A.20) for the vector multiplet is particularly natural from the point of view

of pure Chern-Simons theory, as we now explain.
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Flowing to pure CS theory. Consider an N = 2 supersymmetric Chern-Simons theory

Gk, consisting of a vector multiplet V with a CS term at level k ∈ Z:82

k

4π

∫
d3x
√
g

(
iεµνρ

(
Aµ∂νAρ −

2i

3
AµAνAρ

)
− 2Dσ + 2iλ̄λ

)
. (A.21)

In such a theory, the gaugino has a real mass (A.11) given by the CS level:83

mλ = − k

2π
. (A.22)

It is useful to introduce a supersymmetric Yang-Mills (YM) term as a UV regulator, with

gauge coupling g2 (of mass dimension 1). Then, the gauge field (and the gaugino) acquire

a so-called topological mass, mT = g2mλ. In the infrared, at scales well below mT (and

for k large enough so that we do not break supersymmetry dynamically [124]), we can

integrate out the gauginos and recover pure Chern-Simons theory for a gauge group G and

shifted levels:

k̂ab = kab − 1

2
sign(kab)

∑
α∈g

αaαb , (A.23)

as follows from (A.12). For a simple gauge group G = Gγ , this is:

k̂γ = kγ − sign(kγ)h , (A.24)

with h the dual Coxeter number. With the choice of quantization (A.20) for the vector

multiplet, we then obtain the infrared contact terms:

V : δκ
(IR)
RR =

1− sign(k)

2
dim(G) , δκ(IR)

g = (1− sign(k)) dim(G) . (A.25)

In particular, if k > 0 we have κ
(IR)
RR = 0 and κ

(IR)
g = 0. Since the U(1)R symmetry

completely decouples in the pure CS theory, this is a very natural choice. It also simplifies

the presentation of various supersymmetric dualities.

B Geometry conventions

In this appendix, we briefly discuss some useful facts about the half-BPS Seifert geometries,

and we set our conventions for spinors. Our geometric conventions closely follow [5, 27], to

which we refer for further discussion.

B.1 Seifert geometry and THF

Consider the oriented Seifert three-manifold:

S1 −→M3 −→ Σ̂ , (B.1)

82More generally, we have distinct levels kγ and kI for each factor in (1.12). We could also consider

distinct CS levels for the SU(N) and U(1) factors in U(N).
83This is dimensionless, since the canonical dimension of the gaugino is 3

2
.
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with Riemannian metric and Killing vector:

ds2(M3) = β2
(
dψ + C(z, z̄)

)2
+ 2gzz̄(z, z̄)dzdz̄ , K =

1

β
∂ψ , (B.2)

as discussed in the main text. There is a natural metric-compatible transversely holomor-

phic foliation (THF) on M3 generated by the one-form:

η = β
(
dψ + C(z, z̄)

)
, (B.3)

with ηµ = Kµ. The THF can be defined in terms of ηµ and:

Φµ
ν = −εµνρηµ , (B.4)

with εµνρ the Levi-Civita tensor. We have:

ηµηµ = 1 , Φµ
νΦν

ρ = −δµν + ηµηρ , (B.5)

together with an integrability condition which is automatically satisfied in this case [5]. As

one can see from (B.5), the tensor Φ defines a complex structure J on the space of leaves

of the foliation — here, the space of leaves is the base Σ̂ of the Seifert fibration:

Φ
∣∣
Σ̂

= JΣ̂ . (B.6)

The local coordinates z, z̄ that appear in (B.2) are the complex coordinates on Σ̂ adapted

to JΣ̂, while ψ ∈ [0, 2π) is the local coordinate along the Seifert fiber.

B.2 Conventions for spinors

We define the canonical frame:

e0 = β (dψ + pA) , e1 =
√

2gzz̄dz , e1̄ =
√

2gzz̄dz̄ , (B.7)

adapted to the Seifert fibration structure. Here, e1, e1̄ form a complex frame on Σ̂. The

frame indices a = 0, 1, 1̄ are lowered using δab with δ00 = 1 and δ11̄ = 1
2 . The orientation is

such that ε011̄ = −2i. We choose the γ-matrices:{
(γa)α

β
}

=
{
γ0, γ1, γ1̄

}
=

{(
1 0

0 −1

)
,

(
0 −2

0 0

)
,

(
0 0

−2 0

)}
. (B.8)

When reducing to two dimensions along the fiber direction, γ1, γ1̄ become the two-

dimensional γ-matrices, with γ0 ≡ γ3 the chirality matrix. In particular, any three-

dimensional Dirac fermion:

ψα =

(
ψ−
ψ+

)
(B.9)

naturally decomposes into the 2d Weyl fermions ψ±. Dirac spinor indices are raised and

lowered with εαβ , εαβ , with ε−+ = ε+− = 1. The covariant derivative is given by:

∇µψ =

(
∂µ −

i

4
ωµabε

abcγc

)
ψ . (B.10)
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B.3 Decomposition and adapted connection

Given the Seifert structure above, it is useful to introduce the projectors:

P0
µ
ν = ηµην ,

Πµ
ν =

1

2
(δµν − iΦµ

ν − ηµην) ,

Π̃µ
ν =

1

2
(δµν + iΦµ

ν − ηµην) .

(B.11)

They allow a decomposition of any tensor into vertical, holomorphic and anti-holomorphic

components, corresponding to the canonical frame (B.7). For instance, for any one-form

ω, we have:

ω = ω0η + ωzdz + ωz̄dz̄ . (B.12)

In particular, a holomorphic one-form on M3 is such that:

ωµΠµ
ν = ων . (B.13)

By definition, its single component ωz is a section of the canonical line bundle of M3:

ωz ∈ Γ[KM3 ] . (B.14)

Importantly, the Levi-Civita connection ∇µ does not commute with ηµ, and therefore does

not preserve the decomposition (B.12). We define a Seifert-compatible adapted connection

∇̂, such that

∇̂µgνρ = 0 , ∇̂µην = 0 . (B.15)

It is given by:

Γ̂µµρ = Γνµρ +Kν
µρ , Kνµρ ≡ −β c1(L0) (ηνΦµρ − ηρΦµν + ηµΦνρ) , (B.16)

with Γνµρ the Christoffel symbols. Here, c1(L0) is the first Chern class of the defining line

bundle on Σ̂, as defined in section 2. The compatible spin connection is:

ω̂µνρ = ωµνρ −Kνµρ . (B.17)

The adapted connection ∇̂ commutes with the projectors (B.11), thus it is compatible with

the decomposition into vertical, holomorphic and anti-holomorphic components. The price

to pay is that ∇̂ has torsion [5]:

T νµρ = Kν
µρ −Kν

ρν = −2β c1(L0)ηνΦµρ . (B.18)

Using this geometric decomposition and the Killing spinors ζ, ζ̄, it is easy to rewrite all

fields in terms of two-dimensional forms on Σ̂, thus providing a very explicit description of

the topological A-twist pulled-back to M3 [21, 27].

C Comments on S3
b and L(p, q)b as Seifert fibrations

In this appendix, we discuss some properties of the three-sphere and lens space backgrounds

seen as Seifert fibrations, complementing the discussion in the main text.
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C.1 The squashed three-sphere as a Seifert fibration

In section 3.3, we saw that the squashed three-sphere S3
b with b2 ∈ Q is given in terms of

a Seifert fibration with two exceptional fibers:

S3
b
∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , q1p2 + q2p1 = 1 , b2 =

q1

q2
. (C.1)

Any “squashed-sphere” background preserving the supersymmetry algebra:

{Q, Q̄} = −2i(L(b)
K + Z) , (C.2)

with K(b) a real Killing vector,84 can be written in the general Seifert form of section 2.3.

For definiteness, let us consider the U(1) × U(1)-isometric background of [14], with a real

squashing parameter b. Let us describe the three-sphere as a torus fibered over an interval,

with θ ∈ [0, π] the interval and χ ∈ [0, 2π) and ϕ ∈ [0, 2π) the angular coordinates on the

torus. The squashed-sphere metric reads:

ds2(S3
b ) = R2

0

(
1

4
h(θ)2dθ2 + b2 sin2 θ

2
dχ2 + b−2 cos2 θ

2
dϕ2

)
(C.3)

The function h(θ) is some smooth positive function which behaves as:

h(θ) ∼ b+O(θ2) as θ ∼ 0 , h(θ) ∼ b−1 +O((π − θ)2) as θ ∼ π , (C.4)

near the “poles” θ = 0, π, and is otherwise arbitrary. For b = 1 and h(θ) = 1, (C.3) is the

round metric on S3 with radius R0. The Killing vector K(b) appearing in (C.2) is given by:

K(b) =
1

R0

(
b∂ϕ + b−1∂χ

)
. (C.5)

One can check that:

η = K(b)
µ dxµ = R0

(
b sin2 θ

2
dχ+ b−1 cos2 θ

2
dϕ

)
(C.6)

defines a THF, and one finds the auxiliary fields:85

H =
i

R0h(θ)
, Vµ = − 2

R0h(θ)
ηµ , A(R)

µ dxµ =
1

2h(θ)

(
bdχ+ b−1dϕ

)
. (C.7)

Now, consider the case:

b =

√
q1

q2
, q1, q2 ∈ Z>0 . (C.8)

To bring the supersymmetric background (C.3)–(C.7) to the general form of section 2.3,

we need to perform a change of coordinates from the angles χ, ϕ to some new angles φ, ψ

such that:

K(b) =
1

β
∂ψ , (C.9)

84More general backgrounds with b and K(b) complex exist. We can focus on b real for our purposes.
85Here we choose κ = 0 for the “κ parameter” in [5, 9]. In [14], the implicit choice was κ = − 2

R0h(θ)
, so

that H = − i
R0
h(θ) and Vµ = 0. These are equivalent supersymmetric backgrounds [9].
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with β the radius of the generic Seifert fiber. One can check that, in the new variables:(
φ

ψ

)
= M

(
χ

ϕ

)
, M =

(
q1 −q2

p1 p2

)
∈ SL(2,Z) , R0 =

β
√
q1q2

, (C.10)

the metric (C.3) takes the standard form:86

ds2(S3
b ) = β2 (dψ + C)2 + ds2(Σ̂) , (C.11)

with the Seifert connection:

C =
1

2

(
−p1

q1
+
p2

q2
− cos θ

q1q2

)
dφ , (C.12)

and the orbifold metric:

ds2(Σ̂) = R2
0 h(θ)2

(
dθ2 +

sin2 θ

f(θ)2

)
, with f(θ) =

√
q1q2h(θ) . (C.13)

Comparing to (2.4), this is clearly a metric on the spindle S2(q1, q2). The connection (C.12)

satisfies:

1

2π

∫
ω1

C =
p1

q1
,

1

2π

∫
ω2

C =
p2

q2
,

1

2π

∫
Σ̂
dC =

1

q1q2
=
p1

q1
+
p2

q2
, (C.14)

with ω1, ω2 the generators of the orbifold fundamental group on S2(q1, q2). This shows that

the S3
b background with b2 = q1

q2
corresponds to the Seifert fibration (C.1).

C.2 All the Seifert fibrations of L(p, q)

As we mentioned in section 3.4, any genus-zero Seifert fibration with n ≤ 2 exceptional

fibers is a lens space. Conversely, for any lens space L(p, q), we would like to find all of its

possible Seifert fibrations. Here we review the algorithm of [90] — Theorem 4.10 therein

—, which constructs all the Seifert fibrations of a given L(p, q). (We assume that p 6= 0.

The case L(0, 1) ∼= S2×S1 was treated separately in the main text.) Consider p and q two

mutually-prime integers. Given the mutually-prime non-zero integers q0
1 and q0

2, we can

construct the Seifert fibration:

M3
∼= [0 ; 0 ; (q1, p1) , (q2, p2)] (C.15)

on L(p, q), as in (3.39)–(3.40), in the following way:

• Choose some integers s, t such that qs+ pt = 1.

• Define:

q1 = αq0
1 , q2 = αq0

2 , α ≡ p

gcd(p, sq0
1 − q0

2)
. (C.16)

This defines q1, q2 in (C.15).

86Note that H and Vµ in (C.7) differ from (2.67) by a factor 1
h(θ)

. Relatedly, we have dη = 2
R0h(θ)

dvol(Σ̂)

instead of (2.51). To land exactly on the background (2.67), we need to do a Weyl rescaling of the metric

on the spindle S2(q1, q2). This does not affect supersymmetric observables [9].
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• Define:

t1 = − sq0
1 − q0

2

gcd(p, sq0
1 − q0

2)
.

Then there exists some integers s1, p1 such that q1s1 + p1t1 = 1. This defines p1

in (C.15).

• Finally, we define p2 ≡ −sp1 + s1p.

One can check that this reproduces (3.40), for q mod p. Due to (C.16), we also see that:

b2 =
q1

q2
=
q0

1

q0
2

, (C.17)

so that a choice of (q0
1, q

0
2) is equivalent to a choice of b2 ∈ Q.

D Supersymmetric one-loop determinants on Seifert manifolds

In this appendix, we further explain the computation of one-loop determinant of a chiral

multiplet on M3, generalizing the discussion on M3 =Mg,p in [27]. We then study some

of its properties, providing additional details about computations that we alluded to in the

main text.

D.1 Derivation and general properties of ZΦ
M3

Consider a 3d N = 2 chiral multiplet Φ, of U(1) gauge charge 1 and R-charge r, on

the half-BPS Seifert background (M3, LR) discussed in section 2. Let Dµ be the covari-

ant derivative:

Dµ = ∇̂µ − iAµ − irϕA(R)
µ , (D.1)

with the adapted connection ∇̂ introduced in appendix B, acting on some field ϕ ofR-charge

rϕ. On the supersymmetric locus for the vector multiplet, with holomorphic parameters:

u = iβσ − a0 , a0 =
1

2π

∫
γ
A , (D.2)

and flux n, most modes cancel out between the bosons and fermions. By a standard

argument — see in particular [14, 93, 125] — we then find:

ZΦ
M3

=
detcokerD1̄

(−σ +D0)

detkerD1̄
(−σ +D0)

. (D.3)

Here, (D0, D1, D1̄) denote the covariant derivative (D.1) in the canonical frame basis. We

then expand any field along the Seifert fiber:

ϕ =
∑
k∈Z

ϕk e
ikψ , (D.4)

with the modes ϕk the two-dimensional fields on Σ̂. In particular, the modes Ak in the

kernel of D1̄ are the holomorphic sections of the orbifold line bundle:

L(r,k) ≡ L⊗ LrR ⊗ Lk
0
∼= L

n0+ñR0 r+kd
0

n⊗
i=1

L
ni+nRi r+kpi
i , (D.5)
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Note that:

dim kerD1̄ = h0(L(r,k)) , dim cokerD1̄ = h0(L−1
(r,k) ⊗K) . (D.6)

Using the Riemann-Roch-Kawasaki formula (2.18), we directly find the formal product:

ZΦ
M3

=
∏
k∈Z

(
1

u+ νRr + k

)deg(L(r,k))+1−g
, (D.7)

which is the result (4.58) quoted in the main text.

D.2 Regularizing GΦ
q,p

As a formal infinite product, the (q, p) fibering operator for Φ with R-charge r = 0 reads:

GΦ
q,p(u)n =

∏
k

(
1

u+ k

)⌊ pk+n
q

⌋
. (D.8)

By rewriting the product over k ∈ Z as:

k = qn+ tl , n ∈ Z , l = 0, · · · , q − 1 , qs+ pt = 1 , (D.9)

we obtain:

GΦ
q,p(u)n =

q−1∏
l=0

FΦ

(
u+ tl

q

)p
ΠΦ

(
u+ tl

q

)⌊ tpl+n
q

⌋
, (D.10)

with the ordinary fibering and flux operators FΦ and ΠΦ, respectively, as in (4.60):

ΠΦ(u) ≡
∏
k∈Z

1

u+ k
, FΦ(u) ≡

∏
k∈Z

(
1

u+ k

)k

. (D.11)

which are regularized to:

ΠΦ(u) ≡ 1

1− e2πiu
, FΦ(u) ≡ exp

(
1

2πi
Li2(e2πiu) + u log

(
1− e2πiu

))
, (D.12)

in the U(1)− 1
2

quantization for the Dirac fermions, as discussed in [27]. The regularized

expression (D.10) can then be written as:

GΦ
q,p(u)n = ΠΦ

q,p(u)n GΦ
q,p(u) (D.13)

with:

ΠΦ
q,p(u)n ≡

(
e

2πiu
q ; e

2πit
q

)
−n

,

GΦ
q,p(u) ≡ exp

q−1∑
l=0

{
p

2πi
Li2(e

2πiu+tl
q ) +

pu+ l

q
log
(

1− e2πiu+tl
q

)}
,

(D.14)

which is the expression discussed in the main text. Using the identities:

q−1∑
l=0

Li2(e
2πiu+tl

q ) =
1

q
Li2(e2πiu) ,

q−1∑
l=0

log(1− e2πiu+tl
q ) = log(1− e2πiu) , (D.15)

one can also write Gq,p(u) as:

GΦ
q,p(u) = e

p
q (

1
2πi

Li2(e2πiu)+u log(1−e2πiu))
q−1∏
l=1

(
1− e2πiu+tl

q

) l
q
. (D.16)

– 129 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

D.3 The Chern-Simons limit of GΦ
q,p

Let us consider the limit u → ±i∞ on the chiral-multiplet fibering operator. We obvi-

ously have:

lim
u→i∞

GΦ
q,p(u)n = 1 , (D.17)

consistently with our choice of quantization of Φ. In the opposite limit, u → −i∞, we

should generate the CS terms:

kGG = −1 , kGR = 1 , kRR = −1 , kg = −2 , (D.18)

corresponding to plugging r = 0 into (4.11). Let us first consider the case n = 0. Using

the expression (D.10) and the limits [27]:

lim
u→−i∞

FΦ(u) ∼ eπi(u2− 1
6) , lim

u→−i∞
ΠΦ(u) ∼ −e−2πiu , (D.19)

we find:

lim
u→−i∞

GΦ
q,p(u) ∼ eπi

p
q
u2

e
πi q−1

q
u
eiϕ

(0)
q,p , (D.20)

with the phase:

eiϕ
(0)
q,p ≡ (−1)s

q(q−1)
2 e

πi
6

(
t
(

1
q

+s
)

(q−1)(2q−1)−pq
)
. (D.21)

This expression only depends on the coprime integers (q, p), not on the choice of s, t such

that qs+ pt = 1. We claim that, for q > 0 and p coprime to q, (D.21) can be written as:

eiϕ
(0)
q,p =

(
G(0)
q,p

)−2
= exp

(
−2πi

(
p

12q
− s(p, q)

))
, (D.22)

with s(p, q) the Dedekind sum and G(0)
q,p defined as in (4.53). This is equivalent to:

exp
(

2πi s(p, q)
)

= exp

(
πi(q − 1)

6q

(
3sq2 − p(q + 1) + t(qs+ 1)(2q − 1)

))
, (D.23)

which is an evaluation formula for the Dedekind sum s(p, q) modulo integers, when q > 0

and gcd(q, p) = 1. It would be interesting to prove (D.23) directly.87 As a sanity check,

we note that the following known evaluation formulas for the Dedekind sum at p = 1

and p = 2:

s(1, q) =
(q − 1)(q − 2)

12q
, s(2, q) =

(q − 1)(q − 5)

24q
, (D.24)

are consistent with (D.23). Now, re-introducing the fractional flux n ∈ Z, we also have

the limit:

lim
u→−i∞

ΠΦ
q,p(u)n ∼ (−1)n e

− 2πi
q

nu
e
πi t
q
n(n+1)

. (D.25)

Therefore, we find:

lim
u→−i∞

GΦ
q,p(u)n ∼ (−1)n e

− 2πi
q

nu
e
πi t
q
n(n+1)

e
πi p
q
u2

e
πi q−1

q
u
(
G(0)
q,p

)−2
. (D.26)

87We discovered this relation by comparing our results with known results in pure Chern-Simons theory.

It can be checked “experimentally.” We leave the proof as an exercise for the interested number theorist,

as it were.
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For a general R-charge r ∈ Z, we simply replace:

u→ u+ νRr , n→ n + nRr , (D.27)

in (D.26). The resulting expression must be equal to the correct CS terms, as indicated

in (4.74). This is indeed the case, as one can check by direct computation. In fact, that

is the method we first used to derive the expression of section 4.3.1 for the Chern-Simons

contributions to the fibering operator. In appendix E, we give an independent consistency

check of those results.

D.4 Comments on ZΦ
S3
b

and its Seifert factorization

In this subsection, we provide some additional details about the one-loop determinant ZΦ
S3
b

for a chiral multiplet on the squashed three-sphere, S3
b , discussed in section 7, and we

demonstrate the Seifert factorization of ZΦ
S3
b

at rational values of b2.

The supersymmetric one-loop determinant on S3
b is given by the formal product [14]:

ZΦ
S3
b
(σ̂ + σ̂Rr) =

∞∏
n1=0

∞∏
n2=0

n2b+ n1b
−1 − iσ̂ + b+b−1

2 (2− r)
n2b+ n1b−1 + iσ̂ + b+b−1

2 r
. (D.28)

This is naturally regularized in terms of the quantum dilogarithm (to be discussed below):

ZΦ
S3
b
(σ̂ + σ̂Rr) = Φ̃b

(
σ̂ + σ̂R(r − 1)

)
, σ̂R = −ib+ b−1

2
, (D.29)

or, equivalently:

ZΦ
S3
b
(σ̂ + σ̂Rr) = Φb

(
σ̂ + σ̂R(r − 1)

)
e−πiσ̂

2
e−2πi(r−1)σ̂σ̂Re−πi(r−1)2σ̂2

Re−
πi
12(b2+b−2) . (D.30)

The expression (D.29) corresponds to the chiral multiplet in the U(1)−1 quantization, which

includes the contact terms:

κGG = −1

2
, κGR = −1

2
(r − 1) , κRR = −1

2
(r − 1)2 , κg = −1 . (D.31)

Then, since the CS terms on S3
b are given by (7.3), it is clear from (D.30) that Φb

(
σ̂ +

σ̂R(r − 1)
)

corresponds to the chiral multiplet in the U(1) 1
2

quantization.

D.4.1 Some properties of the quantum dilog Φb(σ̂).

The quantum dilogarithm is generally defined as:

Φb(σ̂) ≡
(
e2πbσ̂ eπi(b

2+1); e2πib2
)
∞

(
e

2π
b
σ̂ e
−πi

(
1
b2

+1
)
; e−2πib−2

)−1

∞
, (D.32)

for Im(b2) > 0, which is related to the function Φ̃b(σ̂) introduced in (7.10) by:

Φb(σ̂) = Φ̃b(−σ̂)−1 = Φ̃b(σ̂)eπiσ̂
2
e
πi
12(b2+b−2) . (D.33)
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In fact, Φb(σ̂) and Φ̃b(σ̂) correspond to a chiral multiplet of R-charge r = 1 in the U(1) 1
2

or U(1)− 1
2

quantization, respectively, on S3
b . Then, the identity:

Φb(σ̂)Φ̃b(−σ̂) = 1 , (D.34)

is simply the statement that, for two chiral multiplets of R-charge r = 1 and gauge charges

±1 in the “symmetric” quantization, we have no leftover CS contact terms in the IR.

The quantum dilogarithm satisfies many interesting identities, which have nice inter-

pretations in the field theory [76]. The simplest relation is:

Φb(σ̂)Φb(−σ̂) = eπiσ̂
2
e
πi
12(b2+b−2) , (D.35)

which is equivalent to (D.33). (Here the statement is that, integrating out two chiral

multiplets in the U(1) 1
2

quantization, we are left with the CS levels k = 1 and kg = 2.)

Interestingly, Φb(σ̂) has a simple Fourier-transform (see e.g. [126]):

e−
πi
12

(b2+b−2+3)

∫
dσ̂Φb(σ̂) e2πiξ̂σ̂ = e−πiξ̂

2
Φb(ξ̂ − σ̂R) , (D.36)

with σ̂R as defined in (D.29). This corresponds to the elementary N = 2 mirror symme-

try (5.15) between the U(1) 1
2

gauge theory with one chiral multiplet (with R-charge r = 1)

and the free chiral T+ (with R-charge 0). Indeed, since Φb(σ̂) corresponds to the “U(1) 1
2

quantization,” we have κ = 1
2 (for the gauge symmetry) and κg = 1 on the left-hand-side

of (D.36) (with the phase in front of the integral corresponding to the gaugino), while in

the right-hand-side we have the contributions δκTT = 1
2 , δκTR = −1, δκRR = 1 and κg = 1

from Φb(ξ̂ − σ̂R), and a contribution δκTT = −1 from the bare CS term e−πiξ̂
2
. This is

therefore equivalent to the duality (5.15).

Another interesting relation for Φb(σ̂) is the pentagon identity [115]. Let us use the

function Φ̃b(σ̂), for convenience. Then, the pentagon identity can be written as:

e−
πi
12

(b2+b−2+3)

∫
dσ̂ Φ̃b(σ̂ + m̂A)Φ̃b(−σ̂ + m̂A)eπiσ̂

2
e2πiξ̂σ̂

= e
πi
12

(b2+b−2)eπiξ̂
2
e2πi(m̂A+σ̂R)2

Φ̃b(ξ̂ + m̂A − σ̂R)Φ̃b(−ξ̂ + m̂A − σ̂R)Φ̃b(2m̂A + σ̂R)

(D.37)

This identity corresponds to the well-known mirror symmetry between SQED, a U(1)

theory with two chiral multiplets of charge ±1, and the XY Z model, consisting of three

chiral multiplets (X,Y, Z) ≡ (M,T+, T−) coupled by cubic superpotential W = MT+T−.

This is also a special case of Aharony duality discussed in section 5.4, when Nf = Nc = 1

(and r = 1, here). The parameters m̂A and ξ̂ in (D.37) are the complexified chemical

potentials for the global symmetry U(1)A ×U(1)T of SQED.

D.4.2 Seifert factorization of ZΦ
S3
b

Finally, let us further comment on the factorization of the one-loop determinant (D.29)

into fibering operators, when b2 is rational. It is convenient to start with the unregularized

product (D.28) at r = 0. (The general r case can be obtained by shifting σ̂.) Given:

b2 =
q1

q2
, q1, q2 ∈ Z>0 , u = i

√
q1q2σ̂ , (D.38)
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the expression (D.28) becomes:

ZΦ
S3
b
(u)
∣∣
r=0

=
∞∏

n1=0

∞∏
n2=0

(n2 + 1)q1 + (n1 + 1)q2 − u
n2q1 + q2n1 + u

. (D.39)

By reordering the infinite product, this can brought to the form:

ZΦ
S3
b
(u)
∣∣
r=0

=
∏
k∈Z

q1−1∏
l1=0

q2−1∏
l2=0

(
1

u+ kq1q2 + l1q2 + l2q1

)k+1

. (D.40)

The product over k ∈ Z can be interpreted as a product over the momentum modes

ϕk along the Seifert fiber. Using (D.11)–(D.12), that product can then be immediately

regularized to:

ZΦ
S3
b
(u)
∣∣
r=0

=

q1−1∏
l1=0

q2−1∏
l2=0

ΠΦ

(
u

q1q2
+
l1
q1

+
l2
q2

)
FΦ

(
u

q1q2
+
l1
q1

+
l2
q2

)
(D.41)

By using the identities (D.15) repeatedly, it is easy to show that:

q1−1∏
l1=0

q2−1∏
l2=0

ΠΦ

(
u

q1q2
+
l1
q1

+
l2
q2

)
= ΠΦ(u) , (D.42)

and:

q1−1∏
l1=0

q2−1∏
l2=0

FΦ

(
u

q1q2
+
l1
q1

+
l2
q2

)
= GΦ

q1,p1
(u)GΦ

q2,p2
(u) , if q1p2 + q2p1 = 1 . (D.43)

This gives a physicist’s proof of the factorization formula (7.24), which can be written as

a property of the quantum dilogarithm:

Φb

(
iu
√
q1q2

− i

2

q1 + q2√
q1q2

)
= ΠΦ(u)−1 GΦ

q1,p1
(u)−1 GΦ

q2,p2
(u)−1 , b2 =

q1

q2
, (D.44)

with q1p2 + q2p1 = 1. To the best of our knowledge, this property was first discussed

in [78] from a mathematical perspective. Here, we give it a new physical interpretation, by

viewing S3
b , with b2 rational, as a Seifert fibration.

E Chern-Simons actions on Seifert manifolds

In this appendix, we collect some comments about the classical Chern-Simons functional on

Seifert manifolds. In appendix D.3, we explained how we derived the classical Chern-Simons

contribution ZCS
M3

to the supersymmetric partition function ZM3 , for any supersymmetric

Seifert background M3, by taking appropriate limits of the one-loop determinant for free

chiral multiplets coupled to background vector multiplets.

This is a convenient but oddly roundabout way to compute ZCS
M3

. Indeed, the straight-

forward computation would be to evaluate the known supersymmetric actions on the

Seifert background:

ZCS
M3

= exp

(
−
∫
M3

d3x
√
gLCS

)
, (E.1)
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with LCS the sum of the various supersymmetric CS Lagrangians. However, in the presence

of non-trivial flat connections onM3, the direct evaluation of (E.1) is not entirely straight-

forward. In the following, we make some further comments on the evaluation of (E.1), and

we compare our results from section 4.3.1 to previously-known results.

E.1 The U(1)k Chern-Simons functional

The N = 2 supersymmetric Chern-Simons functional for a gauge group U(1) at CS level

k ∈ Z takes the form:

SU(1)k =
k

4π

∫
d3x
√
g
(
iεµνρAµ∂νAρ − 2Dσ + 2iλ̄λ

)
. (E.2)

On the supersymmetric locus, λ = λ̄ = 0, σ is constant and:

D = 2if11̄ + σH , H = iβc1(L0) . (E.3)

Let us assume that c1(L0) 6= 0, so that we can expand the gauge field Aµ as:

Aµ = â0ηµ + a(flat)
µ , (E.4)

with â0 constant. Then, defining the quantity:

u0 ≡ iβ (σ + iâ0) , (E.5)

it is easy to check that:

SU(1)k = Sflat
U(1)k

+ πikc1(L0)u2
0 , (E.6)

including the contribution from the flat connection:

Sflat
U(1)k

≡ ik

4π

∫
M3

a(flat)da(flat) . (E.7)

In principle, this latter quantity (modulo 2πi) can be computed for any a(flat) valued in the

torsion group H1(M3,Z), for instance by extending to a four-manifold with compatible

spin structure [35]:

ik

4π

∫
M3

a(flat)da(flat) =
ik

4π

∫
M4

F (4d) ∧ F (4d) . (E.8)

In practice, this is rather non-trivial to compute.

Extracting the CS functional from the fibering operator. Consider then a non-

trivial torsion line bundle:

L ∈ P̃ic(M3) , (E.9)

with flat connection Aflat. It can be represented as:

L = π∗(L) , L =

n⊗
i=0

Lni
i ∈ Pic(Σ̂) , (E.10)
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with L an orbifold line bundle on Σ̂, and ni the “fractional fluxes”.88 Our supersymmetric

result (4.41) then gives:

Z
U(1)k
M3

= e−SU(1)k =

(
n∏
i=0

GGG
qi,pi(u)ni

)k
, (E.11)

for an arbitrary Seifert manifold. Here we have:

u = u0 +
c1(L)

c1(L0)
, c1(L) =

n∑
i=0

ni
qi
, (E.12)

as discussed in section 6. One can check that (E.11) agrees with (E.6) if and only if:

exp
(
−Sflat

U(1)k

)
= (−1)s(n,lR,νR)k exp

(
πik

(
c1(L)2

c1(L0)
−

n∑
i=0

tin
2
i

qi

))
. (E.13)

Here we defined the sign:

(−1)s(n,lR,νR) =

n∏
i=0

(−1)ni(1+ti+l
R
i ti+2νRsi) . (E.14)

Note that (E.13) is determined by both the choice of Aflat and of the spin structure onM3.

As a small consistency check, one can verify that (E.13) is invariant upon L→ L⊗ L0 —

this follows directly from (4.42).89

The formula (E.13) therefore gives us a completely explicit formula for the U(1)k CS

action (E.7), for any non-trivial torsion line bundle L over M3.

E.2 Non-abelian Chern-Simons functional

The above considerations can be generalized to the case of a non-abelian, simply connected

(or unitary) gauge group G at level k ∈ Z, by “abelianization” as in equation (4.48). Let

us define:

Sflat
Gk
≡ ik

4π

∫
M3

Tr

(
AflatdAflat − 2i

3
Aflat ∧Aflat ∧Aflat

)
, (E.15)

the non-abelian generalization of (E.7). Here Aflat is the connection of a given flat principal

G-bundle E. On the “2d Coulomb branch”, G is broken to its maximal torus H =∏
a U(1)a, and the bundle E can be described in terms of U(1)a line bundles L(a), which can

be treated as in (E.10). Let L(a) denote some line bundles in Pic(Σ̂) such that π∗(L(a)) =

L(a), and let ni,(a) denote the corresponding fractional fluxes. Here, the non-trivial step is

to identify the correct fractional fluxes for a given G-bundle E. We will not discuss that

step here.

88Here n0 is an “ordinary flux”. We find it convenient to let the index i run from 0 to n.
89Under a shift ni → ni+pi, for every i at once, the sign (E.14) transforms as (−1)s → (−1)

∑
i pisi(−1)s,

while the full answer (E.13) is invariant.
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Let us focus on the case G semi-simple and simply-connected. Upon abelianization,

the signs (−1)s in front of (E.13) cancel out in that case, consistent with the fact that (E.15)

is independent of the spin structure. We then find the explicit formula:

exp
(
−Sflat

Gk

)
= exp

(
πikhab

(
c1(L(a))c1(L(b))

c1(L0)
−

n∑
i=0

tini,(a)ni,(b)

qi

))
, (E.16)

with hab the Killing form. In the next subsection, we compare (E.16) to known results for

lens spaces. This already provides a non-trivial consistency check.

E.3 The CS action on L(p, q)

Consider the lens space L(p, q), with p 6= 0. For simplicity, let us first compare (E.16) to

previous results in the case of a gauge group SU(2). In that case, there is a single variable

ua = u and the Killing form gives haa = 2. Considering the Seifert fibration:

L(p, q) ∼= [0 ; 0 ; (q1, p1) , (q2, p2)] , p = p1q2 + p2q1 , q = q1s2 − p1t2 . (E.17)

We also define:

q′ = q2s1 − p2t1 , (E.18)

which satisfies qq′ = 1 mod p. The formula (E.16) then gives:

Sflat
SU(2)k

(
L(p, q)

)
= −2πik

q′n2
1 + 2n1n2 + qn2

2

p
mod 2πi , (E.19)

with n1, n2 the fractional fluxes. As we explained in section 3.4, any 3d line bundle L with

first Chern class m ∈ Zp can be represented by Lm
1 in Pic

(
S2(q1, q2)

)
. We also have the

relation L2
∼= Lq1 in P̃ic

(
L(p, q)

)
. Therefore:

π∗
(
Ln1

1 L
n2
2

)
= L with c1(L) = m = n1 + qn2 ∈ Zp . (E.20)

Since π1(L(p, q)) is abelian, any SU(2) flat connection is labeled by its torsion flux m ∈ Zp.
From (E.19) and (E.20), we find:

Sflat
SU(2)k

(
L(p, q)

)
= −2πik

q′

p
m2 mod 2πi . (E.21)

This is in perfect agreement with known results [69]. The generalization to any Gk is

straightforward:

Sflat
Gk

(
L(p, q)

)
= −πik q

′

p
Tr(m2) mod 2πi , m ∈ ΓG∨(p) , (E.22)

with Tr(m2) = habmamb and the flux lattice ΓG∨(p) ∼= Γcochar ⊗ Zp. This agrees with the

Conjecture 5.6 of [127].

F Seifert operators from holomorphic blocks

In this appendix, we complete the proof of (9.71) and (9.79). This gives the relation

between the holomorphic blocks and the Seifert fibering operators, as discussed in detail

in section 9.
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F.1 Proof for the trivial gluing

We start by considering (9.71), which reads:

lim
τ→0

Bα(ν,−τ)n1B
α(ν, τ)n2 = Hα(ν)−1 Π(ν)m

F
. (F.1)

This corresponds to the case of trivial gluing.

Trivial gluing for the ungauged blocks. We start by proving the relation (F.1) on

the building blocks of the ungauged theory. The proof for the chiral multiplet was given

in the main text in the case of zero flux. To incorporate flux, we simply note that:

BΦ(ν, τ)n = BΦ(ν, τ)0 (qỹ; q)−1
n , (F.2)

with q = e2πiτ , ỹ = e2πi(ν+ν̃Rr), and (y; q)n defined as in (4.67), namely:

(x; q)n ≡


∏n−1
l=0

(
1− xql

)
if n > 0 ,∏|n|

l=1

(
1− xq−l

)−1
if n < 0 .

(F.3)

Then we have the limit:

lim
τ→0

(qỹ; q)n = (1− ỹ)−n = ΠΦ(ν)n , (F.4)

reproducing the ordinary flux operator. Thus, the extra contribution from the fractional

fluxes n1 and n2 of the two blocks is simply ΠΦ(ν)n1+n2 = ΠΦ(ν)m
F

, as in (F.1). Consider

next the Chern-Simons contributions (9.22) and (9.25), which read:

BGG(ν, τ)n =
θ
(
(−1)2ν̃Rq−

1
2 ; q
)

θ
(
(−1)2ν̃Rqn−

1
2 y; q

) , Bgrav(τ) =
(
(−1)2ν̃Rq

1
2 ; q
)−1

∞ . (F.5)

The gravitational CS term does not contribute directly to the handle-gluing operator,

therefore it should drop out in the limit above. As we already mentioned, we have:

Bgrav(−τ)Bgrav(τ) = 1 (F.6)

for any τ , and in particular in the limit (F.1). For the U(1) CS term, we similarly have:

lim
τ→0

BGG(ν,−τ)n1B
GG(ν, τ)n2 = (−ỹ)m

F
, (F.7)

as expected. This simply follows from the relation (9.26) for a pair of massive chiral

multiplets. We should also note that fusing the Cartan contribution (9.27) gives:

BCart(−τ)BCart(τ) = τ−rk(G) . (F.8)

This factor should be compensated by the measure factor in the integral formula (9.59).

Thus, up to this last subtlelty, we find that (F.1) indeed holds true for the ungauged

blocks. More generaly, for any “ungauged” theory, we have the following expansion at

small τ :

B(ν, τ)n ∼
τ→0

exp

(
2πi

τ
W(ν)− πiΩ(ν) + 2πin∂νW(ν) +O(τ)

)
. (F.9)
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Here, W(ν) is the twisted superpotential and Ω(ν) is the effective dilaton. When we glue

two blocks with opposite orientations, as in (F.1), the divergences cancel out, and we

indeed recover (F.1), with Π = e2πi∂νW the flux operator and H = e2πiΩ the handle-gluing

operator for the ungauged theory.

Trivial gluing for the gauged blocks. Let us now consider the blocks of the gauged

theory. Let us first note the following limit, for real x and Im(τ) > 0 [128]:

(qx; q)∞ →
τ→0

exp

(
− πi

12τ
+

(
1

2
−x
)

log(−iτ)+(1−x) log(2π)− log Γ(x)+O(τ)

)
. (F.10)

In particular, we have:

(q; q)∞ →
1√
−iτ

exp

(
− πi

12τ
+O(τ)

)
, (F.11)

which gives the limit for BCart(τ) as

BCart(τ)→ 1√
iτ

exp

(
πi

12τ
+O(τ)

)
, (F.12)

The divergent τ−
1
2 scaling will be important below.

As shown in [17], the holomorphic blocks of the gauge theories are obtained by inte-

grating the holomorphic block B̃ of the ungauged theory over certain contours, Γα, in the

u-plane, which are in one-to-one correspondence with the Bethe vacua, ûα of the theory:

Bα(ν, τ) =

∫
Γα
du B̃(u, ν, τ) . (F.13)

Here and below we work in the rank-one case, for simplicity. The contour Γα is determined

by the following conditions:

• It passes through the point ûα, which is a critical point of the twisted superpotential,

W(u), and near this point the contour follows the path of steepest descent of W(u).

• It is invariant under the shifts u→ u+ τ .

• It does not cross lines of poles.

A cartoon of the contour Γα is shown in figure 2(a), and we consider the contribution near

a single Bethe vacua, û. In the limit τ → 0, the dominant contribution comes from the

neighborhood of the critical point, ûα, as in figure 2(b), and we may write:90

Bα(ν, τ) −→
τ→0

1√
iτ

∫
u≈ûα

du exp

(
2πi

τ
W(u, ν)− πiΩ(u, ν)

)
(F.14)

where ûα is the αth solution to the Bethe equation in the region 0 < Re(u) < 1. Here

we have used the observation (F.9), and included the extra divergence due to BCart(τ),

90Here and in the following, we omit the background fluxes for flavor symmetries, to avoid clutter. It is

straightforward to include them, using (F.9).
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(a) (b)

Figure 2. On the left, the contour Γα is shown for finite τ , with towers of poles separated by τ .

As τ becomes small, the contributions from û and its images are dominant, shown in red. On the

right, we take the τ → 0 limit, where we may approximate the answer by the contribution from

u = û. Here the towers of poles have collapsed to form the branch cuts of W(u).

as in (F.11). The saddle-point approximation at the saddle u = ûα becomes exact in this

limit. The τ−1/2 prefactor in (F.14) cancels, leaving us with:

Bα(ν, τ) ≈
(
− ∂2W

∂u2

)− 1
2
∣∣∣∣
u=ûα

exp

(
2πi

τ
W(uα, ν)− πiΩ(uα, ν)

)
. (F.15)

A similar argument holds for the block with τ → −τ . Then, when we fuse these blocks as

in (F.1), we see that the divergences in τ cancel out, and we find the finite result:

lim
τ→0

Bα(ν,−τ)Bα(ν, τ) =

(
∂2W
∂u2

)−1∣∣∣∣
u=ûα

e−2πiΩ(ûα,ν) = Hα(ν)−1 , (F.16)

as claimed. The case of a higher-rank gauge group is a staightforward generalization, by

the same saddle-point argument, with the handle-gluing operator given by:

H = e2πiΩ(u,ν) det
a,b

∂2W
∂ua∂ub

, (F.17)

in the general case. This concludes the proof of (F.1).

F.2 Fibering-operator limit of the holomorphic block

We now turn to the proof of the limit (9.79), namely:

lim
τ→0

Bα
g̃ (ν, τ)m

Bα(ν, τ)
= Gαq,p(ν)n . (F.18)

Recall that Bg̃(ν, τ)n is defined in (9.78).
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Ungauged block. The proof of (F.18) for a chiral multiplet with zero flux was given in

section 9.3.2. For non-zero flux, we again note that:

BΦ
g̃ (ν, τ)m = (q̃1+mỹ; q̃) = (q̃ỹ, q̃)−1

m BΦ
g̃ (ν, τ)0 , (F.19)

where q̃ = e
2πi sτ−t

pτ+q and ỹ = e
2πiν
pτ+q , and (x; q)m is defined as in (F.3).91 Then, the flux

contribution gives an extra finite piece in the limit (F.18), in addition to (9.85). We find:

lim
τ→0

(q̃ỹ, q̃)−1
m = (e

2πi(ν−t)
q ; e

− 2πit
q )−1

n = (e
2πiν
q ; e

2πit
q )−n = ΠΦ

q,p(u)n , (F.20)

reproducing the fractional-flux contribution (4.67). Therefore, we indeed find:

lim
τ→0

BΦ
g̃ (ν, τ)n

BΦ(ν, τ)
= GΦ

q,p(ν)n . (F.21)

The proof for the Chern-Simons contribution can be shown using the behavior of the Jacobi

theta function under modular transformations, or more simply from their relation to two

chiral multiplets of opposite charges, as noted above.

The contribution from the vector multiplets and gravitational CS term can also be

worked out straightforwardly. It is interesting to consider the Cartan component con-

tribution in detail. Consider the modular transformation properties of the Dedekind

eta function:92

η

(
sτ − t
pτ + q

)
= e
−πi

(
p
q
−s(p,q)

)
e
πi
12

(
s
p
− 1
pq

)√
pτ + q η(τ) . (F.22)

Using the fact that η(τ) = q−1/24(q; q)∞, we find:

(q̃; q̃)∞ →
τ→0

√
q
(
G(0)
q,p

)−1
(−iτ)−1/2 exp

(
− πi

12τ
+O(τ)

)
, (F.23)

with G(0)
q,p defined as in (4.53).

Gauged blocks. Next, let us consider the holomorphic blocks of a gauge theory. We

again consider G of rank one. We have:

Bα
g̃ (ν; τ)nF =

∫
Γα

duBg(u, ν; τ)0,nF =

∫
Γα

dũB(ũ, ν̃; τ̃)0,nF (F.24)

where we identify ũ = u
pτ+q and τ̃ = sτ−t

pτ+q . Here, by convention, we work at zero gauge

flux, which is allowed since the contour is invariant under shifts ũ→ ũ+ τ̃ by assumption.

The contour at finite τ is shown in figure 3.

As shown in figure 4(a), as τ → 0, this contour can be deformed to one that passes

through q images of the Bethe vacua at ûα:

ũ =
ûα + j

q
, j = 0, . . . , q − 1 (F.25)

91Here, we are also setting ν̃R = 0 to avoid clutter.
92This is valid for p > 0. The transformation for p < 0 can be obtained by sending (p, q, s, t) to

(−p,−q,−s,−t) on the right-hand-side of (F.22).
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Figure 3. Contour Γα corresponding to a block Bg̃ with non trivial (q, p), at finite τ .

(a) (b)

Figure 4. In the limit τ → 0, the dominant contributions to the integral over Γα come from the

regions around û and their images. These can be reassembled into a series of q shifted copies of

contours passing through the critical points u = qũ = û, û+ 1, . . . , û+ q − 1.

For the ungauged block, we can use the result above to write:

B(ũ, ν̃; τ̃)0,nF ∼ q B(u, ν; τ)Gq,p(u, ν)0,nF , as τ → 0 . (F.26)

Here, the prefactor of q on the right-hand-side correspond to the fact that we have a factor

of 1/
√
q in (F.23).93 By a similar argument as above, we find:

Bα
g̃ (ν; τ)n =

∫
Γα

dũB(ũ, ν̃; τ̃)0,n ≈
τ→0

∫
Γ̂α

duB(u, ν; τ)Gq,p(u, ν)0,n , (F.27)

93This is also modulo a factor of (G(0)
q,p)2, which is a matter of convention — unlike G(0)

q,p itself, the factor

(G(0)
q,p)2 corresponds to properly quantized background CS terms kRR = 1 and kg = 2, and thus depends on

our choice of quantization for the gaugino.

– 141 –



J
H
E
P
1
1
(
2
0
1
8
)
0
0
4

where, in the second equation, we changed variables from ũ to u, incurring a factor of q−1,

which precisely cancels the prefactor in (F.26). Performing the saddle point approximation

about the points (F.25), the factor of τ−1/2 cancels as in (F.15), and we obtain:

Bα
g̃ (ν; τ)nF ∼

q−1∑
j=0

B(uα − j, ν; τ)Gq,p(uα − j, ν)0,nF

= Bα(ν; τ)

q−1∑
n=0

Gq,p(uα, ν)n,nF ,

(F.28)

where we used the fact that B(u, ν; τ) is invariant under uα → uα − j, together with the

relation Gq,p(uα − j, ν)0,nF = Gp,q(uα, ν)pj,nF , to replace the sum over j by a sum over

fractional fluxes. Finally, we divide by the trivial gauged block, obtaining:

lim
τ→0

Bα
g̃ (ν; τ)nF

Bα(ν; τ)
=

q−1∑
n=0

Gq,p(ûα, ν)n,nF = Gαq,p(ν)n . (F.29)

This expression for the “on-shell” gauged (q, p) fibering operator, including the sum over

fractional fluxes, agrees nicely with the discussion in section 4. This completes the proof

of (F.18).
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