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odromy. In the interior of Σ, the solutions are everywhere regular, except at the punctures
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didate holographic duals to the five-dimensional superconformal field theories realized on

such intersections.
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1 Introduction

Five-dimensional superconformal field theories (SCFTs) exhibit many intriguing and exotic

properties, including the uniqueness of the exceptional superconformal symmetry algebra

F (4), the possibility for exceptional global symmetries, the absence of a useful Lagrangian

description, and many non-trivial dualities and relations to theories in other dimensions.

In the absence of a conventional Lagrangian description, the theories have been ac-

cessed indirectly, for example as non-trivial UV fixed-points of five-dimensional gauge the-

ories considered on the Coulomb branch or as low-energy description of certain brane

configurations in string theory or M-theory on Calabi-Yau manifolds [1, 2]. A very fruitful

approach has been to engineer these theories using brane constructions in Type IIB string

theory. Five-dimensional gauge theories can be realized on the world-volume of D5-branes

that are suspended between semi-infinite external (p, q) 5-branes [3, 4]. In the limit where

these brane webs collapse to a fully localized intersections of (p, q) 5-branes one recovers the

SCFTs at the origin of their moduli spaces. While the string theory constructions provide

access to many features of the 5d SCFTs and have led to many insights, the corresponding

supergravity solutions in Type IIB supergravity are the prerequisite for utilizing AdS/CFT

as tool for comprehensive quantitative analyses. In recent work we have constructed large

classes of warped AdS6 solutions in Type IIB supergravity that are in direct correspon-

dence with fully localized 5-brane intersections in Type IIB string theory [5–7]. They allow

for quantitative analyses of the theories realized on intersections of 5-branes, including as

a first step the study of free energies and entanglement entropies [8].

The 5-brane web constructions in Type IIB string theory can be generalized consider-

ably by including 7-branes [9, 10]. External 5-branes are allowed to terminate on 7-branes

and 7-branes may be added into the open faces of the web. An explicit example, discussed

in detail in [9], is to add a single D7 brane into an open face of a 5-brane web for an SU(2)

gauge theory, to realize an additional flavor field. The Hanany-Witten brane creation ef-

fect [11] provides a way to relate certain webs with 7-branes to webs without 7-branes, and

in this case leads back to a pure 5-brane web with an additional D5 brane. Many recent

insights are based on manipulations involving 7-branes, including new dualities between 5d

theories from branch cut moves, the construction of gauge theory descriptions for 5d uplifts

of 4d class S theories, the realization of theories violating the flavor bounds of [1, 2]1 and

connections to 6d SCFTs [14–19]. These observations provide a clear motivation for the

construction of warped AdS6 solutions in Type IIB supergravity corresponding to 5-brane

intersections which include 7-branes. 7-branes placed inside the faces of a 5-brane web,

for example, should be directly accessible via supergravity solutions corresponding to the

conformal limit of the web. In the present paper we will construct warped AdS6 solutions

to Type IIB supergravity which include 7-branes.

The geometry of the solutions constructed in [5–7] takes the form of AdS6×S2 warped

over a two-dimensional Riemann surface Σ with boundary, and the solutions realize holo-

graphically the unique F (4) superconformal algebra in 5d [20, 21]. The solutions are

specified in terms of two locally holomorphic functions A± on Σ and a crucial feature is

1Recent attempts towards a more complete classification can be found in [12, 13].
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that the differentials of these functions have poles on the boundary of Σ. At these poles

the geometry approaches that of (p, q) 5-branes with the charges given by the residues, and

this allows for a clear mapping between 5-brane intersections and supergravity solutions.

For the global solutions constructed explicitly so far Σ was taken to be a disc [6, 7]. We

note that, due to the presence of the poles corresponding to 5-branes on the boundary, the

Riemann surface is not compact. This is well in line with the brane web interpretation of

the solutions and also avoids a recent no-go theorem [22]. These solutions will provide the

basis for the construction of solutions with 7-branes.

The distinct feature of 7-branes, amongst the brane solutions in Type IIB supergravity,

is the defect they create in the space transverse to their world-volume, and the non-trivial

monodromy the axion and dilaton fields exhibit around this defect. The duality group

of Type IIB supergravity is SL(2,R) and, mathematically, the axion-dilaton field and the

three-form field strengths might have monodromy with arbitrary values in SL(2,R). Phys-

ically, however, we are interested in supergravity solutions which embed into Type IIB

string theory. The duality group of Type IIB string theory is SL(2,Z), and string the-

ory solutions only allow for SL(2,Z)-valued monodromy. For example the monodromy of

a D7-brane leaves the dilaton invariant and shifts the axion field by 1, corresponding to

a parabolic element of SL(2,Z). Just as strings and 5-branes, 7-branes transform non-

trivially under SL(2,Z) so that a general 7-brane carries a charge labeled by a pair of

integers [p, q] which specify the monodromy around the 7-brane [23–25]. In supergravity,

SL(2,Z) is replaced by SL(2,R), p and q become real numbers, and the monodromy can

be a generic parabolic element of SL(2,R).

The supersymmetry conditions on branes allow for the preservation of the full F (4)

superalgebra in the presence of both 5-branes and 7-branes, and we shall henceforth restrict

to solutions with this full symmetry. Preserving the full F (4) requires the 7-branes to be

located at isolated points or punctures in the interior of the surface Σ, around which the

supergravity fields have non-trivial monodromy given by a parabolic element of SL(2,R).

For the constructions presented here we will restrict to configurations with mutually local

7-branes. The brane web constructions in [9, 10] allow for such configurations and realizing

mutually local 7-branes is a natural first step. The construction of solutions with mutually

non-local 7-branes will be left for future work. We will show that the monodromy of the

supergravity fields around the punctures can be realized by suitable monodromies of the

locally holomorphic functions A± which parametrize the solutions, and we will explicitly

construct such A± and the corresponding global supergravity solutions. We will allow for

an arbitrary number of punctures with mutually commuting monodromies. These are the

appropriate monodromies for an arbitrary number of mutually local 7-branes, and we will

show that the asymptotic behavior of the solutions near the punctures indeed approaches

the form expected on physical grounds.

The remainder of the paper is organized as follows. In section 2 we will review the

global solutions constructed in [5–7] and highlight the points that will be relevant for

the construction of solutions with 7-brane monodromy. The actual construction will be

carried out in section 3, where we explicitly set up the holomorphic data for solutions

with monodromy and derive the regularity conditions constraining the parameters. We

– 3 –
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will also show that the supergravity fields close to the punctures match to the expected

form for [p, q] 7-branes. In section 4 we will solve the regularity conditions and present

explicit example solutions, showing that the solutions indeed have the desired properties.

The connection to 5-brane webs with 7-branes will be discussed in more detail in section 5

and we close with a discussion in section 6.

2 Review of solutions without monodromy

In this section we will briefly review the local solutions to Type IIB supergravity with 16

supersymmetries and metric of the form AdS6 × S2 warped over a Riemann surface Σ as

constructed in [5], the regularity conditions they have to satisfy and the global solutions

without monodromy constructed in [7]. The global solutions without monodromy will be

the starting point for the construction of solutions with monodromy in the next section.

2.1 Supergravity fields in terms of holomorphic data

The general local solution with 16 supersymmetries and SO(2, 5) × SO(3) isometry can

be expressed in terms of two locally holomorphic functions A± defined on the Riemann

surface Σ with so far arbitrary topology. The symmetry requirement restricts the metric

and two-form field strength to take the form

ds2 = f2
6 ds

2
AdS6

+ f2
2 ds

2
S2 + 4ρ2|dw|2

F(3) = dC ∧ volS2 (2.1)

with f2
6 , f2

2 ρ
2 real functions on Σ while C is an in general complex function on Σ. The four-

form field vanishes. The functions appearing in the ansatz can be conveniently expressed

in terms of A± by using the composite objects

κ2 = −|∂wA+|2 + |∂wA−|2 G = |A+|2 − |A−|2 + B + B̄

∂wB = A+∂wA− −A−∂wA+ R+
1

R
= 2 +

6κ2 G
|∂wG|2

(2.2)

where B is defined up to an integration constant. The metric functions then take the form

f2
6 =
√

6G
(

1 +R

1−R

)1/2

f2
2 =

1

9

√
6G
(

1−R
1 +R

)3/2

ρ2 =
κ2

√
6G

(
1 +R

1−R

)1/2

(2.3)

where we set an integration constant c6 to one from the outset for simplicity. The remaining

fields are the axion-dilaton scalar B, which is given by

B =
∂wA+ ∂w̄G −R∂w̄Ā−∂wG
R∂w̄Ā+∂wG − ∂wA−∂w̄G

(2.4)

and the complex function C parametrizing the two-form gauge field, which reads

C =
4i

9

(
∂w̄Ā− ∂wG

κ2
− 2R

∂wG ∂w̄Ā− + ∂w̄G ∂wA+

(R+ 1)2 κ2
− Ā− − 2A+

)
(2.5)
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2.2 Regularity conditions and global solutions

For physically sensible solutions additional regularity conditions are required, and these

can be expressed concisely as conditions on the composite quantities κ2 and G defined

in (2.2). To have the metric functions f2
6 , f2

2 , ρ2 positive in the interior of Σ it is sufficient

to require

κ2 > 0 G > 0 (2.6)

A smooth and geodesically complete ten-dimensional geometry can be realized by shrinking

the S2 on the boundary ∂Σ of Σ, which amounts to the additional conditions

κ2
∣∣∣
∂Σ

= 0 G
∣∣∣
∂Σ

= 0 (2.7)

This finishes the general discussion of the regularity conditions. As shown in [7] they can be

satisfied by choosing Σ to be the upper half plane and the locally holomorphic functions as

A±(w) = A0
± +

L∑
`=1

Z`± ln(w − p`) (2.8)

where p` for ` = 1, · · · , L denote the L poles of the differentials ∂wA±; they lie on the real

line which is the boundary ∂Σ. The residues of ∂wA± at these poles, Z`±, are expressed in

terms of L− 2 zeros sn, n = 1, · · · , L− 2 in the upper half plane, with the restriction that

at least one of them must be in the interior of Σ. They take the form

Z`+ = σ

L−2∏
n=1

(p` − sn)

L∏
k 6=`

1

p` − pk
(2.9)

with an overall complex normalization parametrized by σ, and Z`− = −Z`+. The locally

holomorphic functions constructed this way satisfy the regularity conditions on κ2, produce

G constant along each boundary component free of poles and G > 0 in the interior of Σ

if G = 0 on the boundary. The only condition left to satisfy therefore is G = 0 on the

boundary, which constrains the parameters to satisfy

A0Zk− + Ā0Zk+ +
∑
` 6=k

Z [`k] ln |p` − pk| = 0 (2.10)

for k = 1, · · · , L, where we have defined 2A0 = A0
+ − Ā0

− and Z [`k] = Z`+Z
k
− − Zk+Z`−.

2.3 SU(1,1) transformations

The SL(2,R) ∼ SU(1, 1) duality symmetry transformations of Type IIB supergravity have

been realized on the locally holomorphic data A± and on the composite quantities κ2 and

G in [5]. Parametrizing a generic SU(1, 1) transformation by u, v ∈ C with |u|2 − |v|2 = 1,

the locally holomorphic functions A± transform as follows

A+ → A′+ = +uA+ − vA− + a+

A− → A′− = −v̄A+ + ūA− + a− (2.11)

– 5 –
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where a± are complex constants parametrizing a shift in addition to a pure SU(1, 1) trans-

formation. On the differentials ∂wA± this induces a pure SU(1, 1) transformation

∂wA+ → ∂wA′+ = +u∂wA+ − v∂wA−
∂wA− → ∂wA′− = −v̄∂wA+ + ū∂wA− (2.12)

and implies that κ2 and its complex conjugate are invariant under SU(1, 1). Since B is

defined only up to a constant by (2.2), the transformation of A± determines the trans-

formation of B only up to a further constant shift. As discussed in [5], however, for the

transformation of the locally holomorphic data to induce the correct SU(1, 1) transfor-

mations on the supergravity fields, this shift has to vanish and we in addition have to

require

a− = ā+ (2.13)

This condition is itself SU(1, 1) invariant and it implies that G is invariant under (2.11) as

well. As a result, the metric functions f2
6 , f2

2 , ρ2 are invariant, as expected for the metric

in Einstein frame, and the axion-dilaton scalar B and gauge field C transform as

B → B′ =
uB + v

v̄B + ū
(2.14)

C → C′ = uC + vC̄ + C0 (2.15)

Note that the transformation of C includes a shift by a constant C0 which can be compen-

sated by a gauge transformation.

2.3.1 Mapping to SL(2,R)

To translate the SU(1, 1) transformation of B to the corresponding SL(2,R) transformation

of τ , we note that B and τ are related by

B =
τ − i
−τ − i

= U(τ) U =
1√
−2i

(
1 −i
−1 −i

)
(2.16)

The normalization factor in U has been chosen such that detU = 1. The SU(1, 1) trans-

formation in (2.14) can be written as

B → B′ =
uB + v

v̄B + ū
= V (B) V =

(
u v

v̄ ū

)
(2.17)

with |u|2 − |v|2 = 1, while the SL(2,R) transformation of τ is given by

τ → τ ′ =
aτ + b

cτ + d
= M(τ) M =

(
a b

c d

)
(2.18)

with a, b, c, d ∈ R and ad− bc = 1. The two transformations are related to one another by

V (B) = B′ = U(τ ′) = UM(τ) = UMU−1(B) (2.19)

– 6 –
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from which the identification of SU(1, 1) and SL(2,R) parameters can be read off as

u =
1

2
(a+ ib− ic+ d) v =

1

2
(−a+ ib+ ic+ d) (2.20)

Given the relation between B and ∂wA± in (2.4) we find that the transformation of B can

be realized if the differentials ∂wA± are transformed as follows(
∂wA+

∂wA−

)
→

(
∂wA′+
∂wA′−

)
= (V †)−1

(
∂wA+

∂wA−

)
(V †)−1 =

(
u −v
−v̄ ū

)
(2.21)

2.4 Identification with 5-brane intersections

As discussed in detail in [7], the geometry of the supergravity solution close to a pole p`
precisely matches the near-brane limit of the 5-brane solutions constructed in [26]. In the

notation of [26], the charges of the 5-brane, (q1, q2)Q, are identified with the residue of

∂wA+ at the pole pm, given by Zm+ , via

(q1 − iq2)Q =
8

3
Zm+ (2.22)

We note that in the convention of [26] q1 corresponds to NS5 charge and q2 to D5 charge, and

correspondingly Im (Zm+ ) translates to D5 charge while Re (Zm+ ) translates to NS5 charge.

3 Solutions with monodromy on the disc

In this section we will start from the global solutions without monodromy on the disc

reviewed in the previous section and use them to construct physically regular solutions on

a disc with punctures and non-trivial monodromy. We will allow for an arbitrary number of

punctures and for generic parabolic SL(2,R) monodromies, as appropriate for the inclusion

of 7-branes, but restrict the monodromies to be mutually commuting. In sections 3.1–3.4

we will detail the construction and derive the regularity conditions. The results will be

summarized in section 3.5. In section 3.6 and 3.7 we will count the free parameters labeling

distinct solutions and identify the punctures with [p, q] 7-branes.

3.1 Strategy for solutions with monodromy

Before discussing the construction of solutions with general monodromies in the upper half

plane, we will outline the basic strategy for a simple example where we take Σ to be a disc.

A general parabolic element of SL(2,R) can be parametrized by two real numbers p, q as

M[p,q] =

(
1− pq p2

−q2 1 + pq

)
(3.1)

and we will use this parametrization in the following. The parameters of the corresponding

SU(1, 1) transformation are given via (2.20) by

u[p,q] = 1 +
i

2
(p2 + q2) v[p,q] =

i

2
(p− iq)2 (3.2)

– 7 –
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We will now consider the special case of a single puncture at the center of the disc, where

only the axion has non-trivial monodromy and shifts by 1. The corresponding SL(2,R)

matrix is

M[1,0] =

(
1 1

0 1

)
(3.3)

The entries of the corresponding SU(1, 1) transformation matrix V in (2.17) are given

by u = u[1,0], v = v[1,0] with (3.2). The differentials correspondingly have to transform

via (2.21) as

∂wA± → ∂wA′± = ∂wA± +
i

2
(∂wA+ − ∂wA−) (3.4)

To realize this monodromy around the point at the center of the disc, we introduce a

coordinate such that w = 0 corresponds to the center of the disc and |w| = 1 to the

boundary. We may then realize the above monodromy by considering the logarithmic

function, which has the appropriate monodromy as we wrap around the center by w →
e2πiw. Let ∂wA(0)

± be the differentials for a solution without monodromy on the disc, which

are single-valued and meromorphic. We then set

∂wA± = ∂wA(0)
± + f0

(
∂wA(0)

+ − ∂wA
(0)
−

)
f0(w) =

1

4π
lnw (3.5)

The function f0 is locally holomorphic on the disc, and this produces locally holomorphic

differentials with the desired monodromy. What we have left to verify is that they satisfy

the regularity conditions on κ2 reviewed in section 2.2. A straightforward calculation

shows that

κ2 = −|∂wA(0)
+ |2 + |∂wA(0)

− |2 − (f0 + f̄0)
∣∣∣∂wA(0)

+ − ∂wA
(0)
−

∣∣∣2 (3.6)

The first term is positive in the interior of Σ and vanishes on the boundary, since the

differentials ∂wA(0)
± were assumed to correspond to a regular solution. For the second term

we note that

−(f0 + f̄0)(w) = − 1

4π
ln |w|2 (3.7)

is positive in the interior of the disc and vanishes on the boundary. The second term

in (3.6) therefore is non-negative in the interior of the disc and zero on the boundary, such

that κ2 satisfies the regularity conditions in (2.6) and (2.7).

3.2 The differentials ∂wA±

We will now generalize the strategy outlined in the previous subsection to construct the

differentials for an arbitrary number of punctures with commuting monodromies of the

general form in (3.1). Instead of working with the disc, we will map to the upper half

plane, so we can directly use the solutions of [6, 7] reviewed in section 2.

– 8 –
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The first step is to generalize the locally holomorphic function f0 to the case with

multiple punctures with commuting monodromies at points wi, i = 1, · · · , I in the upper

half plane. This is straightforward and yields

f(w) =

I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
(3.8)

where ni ∈ R and |γi|2 = 1 for i = 1, · · · I. We note the following properties of the

function f

• f is locally holomorphic in the upper half plane, with branch points at wi around which

f(wi + e2πi(w − wi)) = f(w) +
i

2
n2
i (3.9)

• the branch cuts associated with wi extend in a direction determined by γi and can

be parametrized as

w = wi + c
w̄i − wi
c+ γi

c ∈ [0, 1] (3.10)

in particular, γi = +1 and γi = −1 correspond to a branch cut extending in the

negative and positive imaginary direction, respectively;

• −(f + f̄) is positive in the interior of Σ and vanishes on the boundary ∂Σ.

Using the function f defined in (3.8) and the differentials ∂wA(0)
± for a solution without

monodromy in the upper half plane, as given in (2.8), we can now construct the differentials

for a solution with axion monodromy in the upper half plane, by setting

∂wAax
± = ∂wA(0)

± + f
(
∂wA(0)

+ − ∂wA
(0)
−

)
(3.11)

The monodromy of these differentials around wi is given by the SU(1, 1) transformation

in (2.21) with u = u[ni,0], v = v[ni,0] and (3.2). This corresponds to the SL(2,R) transfor-

mation

M[ni,0] =

(
1 n2

i

0 1

)
(3.12)

thus realizing axion monodromies as desired.

To generalize the construction to general parabolic SL(2,R) monodromies of the

form (3.1), we note that the transformation given in (3.1) can be generated from M[1,0]

given in (3.3) by conjugating with an SL(2,R) matrix Q as follows

M[p,q] = QM[1,0]Q
−1 Q =

(
p −q/(p2 + q2)

q p/(p2 + q2)

)
(3.13)

– 9 –
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To realize the transformation by Q on the differentials in (3.11) we translate it to an

SU(1, 1) transformation via (2.20), which yields

uQ =
1 + η+η−

2η−
vQ =

1− η+η−
2η−

η± = p∓ iq (3.14a)

Transforming the differentials (3.11) according to (2.12) then yields differentials realizing

the desired monodromies, and with ∂wA± ≡ (∂wAax
± )′ we find

∂wA+ = +uQ∂wA(0)
+ − vQ∂wA

(0)
− + η+f

(
∂wA(0)

+ − ∂wA
(0)
−

)
∂wA− = −v̄Q∂wA(0)

+ + ūQ∂wA(0)
− + η−f

(
∂wA(0)

+ − ∂wA
(0)
−

)
(3.14b)

This completes the construction of the differentials. The expressions in (3.14) realize

SL(2,R) monodromies

M[nip,niq] =

(
1− n2

i pq n2
i p

2

−n2
i q

2 1 + n2
i pq

)
(3.15)

around the points wi in the upper half plane, as desired. Moreover, since κ2 is SU(1, 1)

invariant and the differentials (3.14) are obtained by an SU(1, 1) transformation from those

in (3.11), we have

κ2 = −|∂wAax
+ |2 + |∂wAax

− |2

= −|∂wA(0)
+ |2 + |∂wA(0)

− |2 − (f + f̄)
∣∣∣∂wA(0)

+ − ∂wA
(0)
−

∣∣∣2 (3.16)

Due to the properties of f collected above, the differentials in (3.14) therefore produce

κ2 that is positive in the interior of the upper half plane and zero on its boundary, thus

satisfying the regularity conditions in (2.6), (2.7). For any choice of global solution without

monodromy, we therefore get suitable differentials for a solution with monodromy.

To facilitate the computations and arguments in the following sections, we will intro-

duce a more convenient notation. Namely, we split

∂wA± = ∂wAs± + η±F (3.17)

where ∂wAs± denotes the single-valued part of the differentials and the logarithmic part is

denoted by F . In terms of the seed solution without monodromy we have

∂wAs+ = +uQ∂wA(0)
+ − vQ∂wA

(0)
−

∂wAs− = −v̄Q∂wA(0)
+ + ūQ∂wA(0)

− (3.18)

for the single-valued part and the logarithmic part is given by

F = f
(
∂wA(0)

+ − ∂wA
(0)
−

)
(3.19)

This can be spelled out more explicitly as

∂wAs+(w) =

L∑
`=1

Y `
±

w − p`
F(w) = f(w)

L∑
`=1

Y `

w − p`
(3.20)
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where we have defined convenient combinations of the residues as

Y `
+ = +uQZ

`
+ − vQZ`− Y ` = Z`+ − Z`−

Y `
− = −v̄QZ`+ + ūQZ

`
− (3.21)

Due to the conjugation properties of Z`± we have Y `
± = −Y `

∓ and that Y ` is real. Moreover,

since the Z`± sum to zero the same holds for Y `
± and we have

∑
` Y

`
± = 0.

3.3 The functions A±

In this subsection we will construct the locally holomorphic functions A± from the dif-

ferentials. This in particular involves realizing a monodromy of the form (2.11) with the

constant shifts related as in (2.13). The differentials for solutions without monodromy

could be integrated straightforwardly to obtain the locally holomorphic functions A±. For

the differentials constructed in the previous section this is still possible, but due to the

presence of the logarithms in F , their integrals involve dilogarithms. We find it more

convenient to work with the integrals explicitly, and introduce the following notation

A± = As± + η±I (3.22)

We have once again separated the single-valued part As± from the part resulting from the

logarithmic terms in the differentials η±I. The expressions for As± are

As+ = +uQA(0)
+ − vQA

(0)
−

As− = −v̄QA(0)
+ + ūQA(0)

− (3.23)

with A(0)
± the holomorphic functions for the seed solution without monodromy as given

in (2.8). More explicitly, we may write this as

As±(w) = A0
± +

L∑
`=1

Y `
± ln(w − p`) (3.24)

with the Y `
± given in (3.21) and integration constants A0

±, which are appropriate com-

binations of the integration constants of the seed solution without monodromy. For the

logarithmic part I we have to discuss the choice of integration contour. We will assume

that all γi and wi are chosen such that the resulting branch cuts do not intersect a pole on

the real line, and moreover that the branch cuts do not intersect each other in the interior

of Σ. The integration contour for I with starting point at +∞ + i0+ can then be chosen

such that it does not intersect any of the branch cuts in F . The contour is illustrated in

figure 1. The expression for I becomes

I(w) =

∫ w

∞
dzF(z) (3.25)
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Figure 1. Branch cuts for F are drawn as black dashed lines and do not intersect each other

or poles on the real line. The cuts shown correspond to γi = −1, γj = 1 and γk = eiπ/3. An

integration contour for I, which does not intersect any of the branch cuts, is shown in red.

3.3.1 Behavior of A± across branch cuts

We can now evaluate the behavior of the holomorphic functions A± across the branch cut,

for each cut individually. Let w be a point on the branch cut associated with a particular

branch point wi. We can then evaluate the shift in the holomorphic functions by integrating

around the branch cut as follows,

A±(w + ε)−A±(w − ε) =

∫
C
dz ∂zA±

=

∫
C
dz
[
∂zAs± + η±f

(
∂zA(0)

+ − ∂zA
(0)
−

)]
(3.26)

where the contour C is illustrated in figure 2 and the second equality follows us-

ing (3.17), (3.19). Since As± are holomorphic in the interior of Σ, the first term in square

brackets cancels between the segments C1 and C2 as ε → 0. Moreover, again due to

holomorphicity of ∂wA(0)
± , we can write the remaining part as

A±(w + ε)−A±(w − ε) =

∫
C2

dz η±(∆f)(∂zA(0)
+ − ∂zA

(0)
− ) (3.27)

where ∆f is the shift in f across the branch cut. Using ∆f = in2
i /2, we then find

A±(w + ε)−A±(w − ε) = η±
in2
i

2

[
A(0)

+ (w)−A(0)
− (w)−A(0)

+ (wi) +A(0)
− (wi)

]
(3.28)

The logarithmic singularity in the differentials ∂wA± is integrable, and the functions A±
therefore finite in the upper half plane. But they shift across the branch cut as given above.

The shift in eq. (3.28) can be written as SU(1, 1) transformation supplemented by an

additional complex shift as follows,

A+(w + ε) = +u[nip, niq]A+(w − ε)− v[nip, niq]A−(w − ε) + a+

A−(w + ε) = −ū[nip, niq]A+(w − ε) + v̄[nip, niq]A−(w − ε) + a− (3.29)

with the parameters u, v as defined in (3.2). The complex constants a± are given by

a± = −η±
in2
i

2

[
A(0)

+ (wi)−A(0)
− (wi)

]
(3.30)
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C2C1

Figure 2. Integration contour C = C1 ∪ C2, where C1 denotes the left half of the contour shown

in red and C2 the right half.

The SU(1, 1) parameters in (3.29) correspond to the SL(2,R) transformation in (3.15) and

this is precisely the desired monodromy. To guarantee single-valued G we only have to

impose (2.13) on the shift parameter a±. Since we have η− = η̄+, this condition amounts

to the difference A(0)
+ (wi)−A(0)

− (wi) being imaginary

A(0)
+ (wi)−A(0)

− (wi) + c.c. = 0 (3.31)

This can be expressed as a condition on the single-valued part of the differentials by noting

that the residues are related by

η−Y
k

+ − η+Y
k
− = Y k (3.32)

This yields the relation A(0)
+ −A

(0)
− = η−As+ − η+As− for the locally holomorphic functions

and we can express the condition in (3.31) as

η−As+(wi)− η+As−(wi) + c.c. = 0 (3.33)

We have thus constructed the holomorphic functions A± for a solution with monodromy,

and find that the location of the branch points is constrained by (3.33).

3.4 Regularity conditions for G

We have constructed the differentials and the locally holomorphic functions A± and imple-

mented the regularity conditions on κ2. It remains to implement the regularity conditions

on G, which we will do in this section. The positivity condition in the interior of Σ in (2.6)

is automatically satisfied if we implement the condition G = 0 on the boundary in (2.7),

for the same reasons as discussed in section 2.3 of [7]. Implementing G = 0 on ∂Σ proceeds

in two steps. The first is to ensure that G is piecewise constant along each boundary seg-

ment free of poles. The second is to then ensure that G is also constant across poles. The

remaining free integration constant in G (recalling its definition in terms of B in (2.2) and

that B is fixed only up to a constant) can then be used to set it to zero.
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3.4.1 Piecewise constant G on ∂Σ

Piecewise constant G on the boundary ∂Σ = R can be implemented by realizing a reflection

symmetry across ∂Σ on the locally holomorphic functions A± due to the fact that

∂wG + ∂w̄G =
(
A+(w)−A−(w)

)(
∂wA−(w)− ∂w̄A−(w̄)

)
−
(
A−(w)−A+(w)

)(
∂wA+(w)− ∂w̄A+(w̄)

)
(3.34)

It is therefore sufficient to establish the conjugation property

A±(w̄) = −A∓(w) (3.35)

which guarantees that ∂wG + ∂w̄G = 0 on ∂Σ and hence that G is piecewise constant.

To implement this conjugation property we start with the weaker condition on

the derivatives. The solution without monodromy is assumed to obey ∂w̄A(0)
± (w̄) =

−∂wA(0)
∓ (w), as discussed in [7], and from the explicit expressions for ∂wAs± in (3.18)

we see that the same is true for the single-valued part of the differentials. From (3.17) we

therefore have

∂w̄A±(w̄) = ∂w̄As±(w̄) + η±F(w̄)

= −∂wAs∓(w) + η∓f(w̄)
(
−∂wA(0)

− (w) + ∂wA(0)
+ (w)

)
(3.36)

To realize differentials with the desired conjugation property we therefore have to impose

f(w̄) = −f(w) (3.37)

With the symmetric distribution of the points wi and w̄i under complex conjugation and

the fact that the γi are pure phases, we indeed find from the definition of f in (3.8) that

f(w̄) =

I∑
i=1

n2
i

4π
ln

(
γi
w̄ − wi
w̄ − w̄i

)
=

I∑
i=1

n2
i

4π
ln

(
1

γi

w − w̄i
w − wi

)
= −f(w) (3.38)

if the branch cut of the logarithm ln is chosen symmetrically with respect to complex

conjugation. With (3.36) this yields the desired conjugation condition for the differentials

∂w̄A±(w̄) = −∂wA∓(w) (3.39)

Lifting this relation to the holomorphic functions A± now simply amounts to choosing the

integration constants A0
± such that

A0
± = −A0

∓ (3.40)

With the symmetric choice of branch cuts and the contour for I± in (3.22), this suffices to

ensure the conjugation property for the locally holomorphic functions A± in (3.35), and

thus constant G along each boundary component free of poles or branch cuts (G also does

not shift across branch cuts if the conditions (3.33) are satisfied).

– 14 –



J
H
E
P
1
1
(
2
0
1
7
)
2
0
0

3.4.2 Vanishing G on ∂Σ

Implementing the vanishing of G amounts to realizing vanishing monodromy of G around

each pole. Since we assumed that the branch cuts do not intersect the poles on the real

axis, they will play a role only at the very end. For the evaluation of the monodromy of G
around the pole pk, ∆kG, we note that, with a small ε ∈ R+,

∆kG = |A+(pk − ε)|2 − |A+(pk + ε)|2 − |A−(pk − ε)|2 + |A−(pk + ε)|2

+ ∆kB + ∆kB̄ (3.41)

With Ck a half circle contour of radius ε centered on pk with counter-clockwise orientation,

the shift in B is given by

∆kB =

∫
Ck

dz
(
A+ ∂zA− −A− ∂zA+

)
(3.42)

To evaluate the first line in (3.41) explicitly, we note that we can evaluate the shift in A±
across the pole by integrating the differentials along Ck, which yields

A±(pk − ε)−A±(pk + ε) =

∫
Ck

dw ∂wA± = iπ
[
Y k
± + η±f(pk)Y

k
]

(3.43)

This also directly gives the residues of the differentials in the new solution at the poles on

the real line. Using that η̄± = η∓ and that f is imaginary on ∂Σ, we find

∆kG = iπ
[
Y k

+ + η+f(pk)Y
k
] (
A+(pk + ε)−A−(pk + ε)

)
+ ∆kB + c.c. (3.44)

Explicitly evaluating ∆kB with its conjugate shows that it precisely reproduces the first

term. We give the details of this calculation in appendix A. Evaluating the first term

in (3.44) explicitly and using that f(pk) is imaginary, the resulting expression for the

shift reads

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
6̀=k
Y [`,k] ln |p` − pk|2

+ Y k
(
f(pk)

[
η−As+(pk + ε)− η+As−(pk + ε)

]
− I(pk + ε)− c.c.

)
(3.45)

where 2A0 = A0
+ − Ā0

− and Y [`,k] = Y `
+Y

k
− − Y k

+Y
`
−. The individual terms in the second

line are divergent as ε → 0, but their combination is finite. To make this manifest, it is

convenient to perform an integration by parts in the expression for I. We relegate the

details again to appendix A. In the resulting expression we can then take ε→ 0, as desired,

and find

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
` 6=k

Y [`,k] ln |p` − pk|2

+ 2f(pk)Y
k(η−A0

+ − η+A0
−) + Y k

(∫ pk

∞
dw

L∑
`=1

Y ` ln(w − p`)∂wf − c.c.

)
(3.46)
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As discussed in section 3.3 the integration contour has to be chosen in such a way that it

does not cross any of the branch cuts, and this is a natural form of the regularity conditions.

We can simplify the choice of contour by noting that ∂wf is meromorphic with simple poles

in the upper half plane at the wi, such that the integrand in the second line is holomorphic

except for at the poles of ∂wf . We can therefore also move the contour to the real line.

When deforming the integration contour shown in figure 1 to approach the real line, we

will only pick up the residues for the poles in ∂wf at those wi that are crossed. This yields∫ pk

∞
dw ln(w − p`)∂wf − c.c. =

∫ pk

∞
dx ln |x− p`|2f ′(x) +

∑
i∈Sk

in2
i

2
ln |wi − p`|2 (3.47)

where Sk ⊂ {1, · · · , I} is the set of branch points for which the associated branch cut

intersects the real line in the interval (pk,∞) and the integral over x is along the real line.

The explicit expression for f ′(x) reads

f ′(x) =
I∑
i=1

in2
i

2π

Im (wi)

|x− wi|2
(3.48)

The final form for ∆kG can then be written as

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
6̀=k
Y [`,k] ln |p` − pk|2 + 2f(pk)Y

k(η−A0
+ − η+A0

−)

+ Y k
L∑
`=1

Y `

[∫ pk

∞
dx f ′(x) ln |x− p`|2 +

∑
i∈Sk

in2
i

2
ln |wi − p`|2

]
(3.49)

To ensure that G = 0 on the entire boundary of Σ we have to enforce ∆kG = 0 for all

k = 1, · · · , L.

3.5 Summary of solutions and regularity conditions

We will now give a self-contained summary of the construction of solutions with monodromy

and of the regularity conditions, and discuss some additional points. The data feeding into

the construction are L ≥ 3 poles p` on the real line, L− 2 zeros sn in the upper half plane

and an overall complex normalization σ. From those one constructs Z`± via

Z`+ = σ
L−2∏
n=1

(p` − sn)
L∏
k 6=`

1

p` − pk
Z`− = −Z`+ (3.50)

The additional data for the monodromies is given by a pair of real numbers p, q and I

punctures wi in the upper half plane, with a real number ni for each puncture and a

complex phase γi fixing the direction of the branch cut. This data fixes a function

f(w) =

I∑
i=1

n2
i

4π
ln

(
γi
w − wi
w − w̄i

)
(3.51)
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which encodes the branch points and additional branch cut structure. Moreover, with

uQ =
1 + η+η−

2η−
vQ =

1− η+η−
2η−

η± = p∓ iq (3.52)

we define convenient shorthands for linear combinations of the Z`± as

Y `
+ = +uQZ

`
+ − vQZ`− Y `

− = −Y `
+ Y ` = Z`+ − Z`− (3.53)

The locally holomorphic functions for a solution with monodromy are then given by

A± = A0
± +

L∑
`=1

Y `
± ln(w − p`) + η±

∫ w

∞
dz f(z)

L∑
`=1

Y `

z − p`
(3.54)

where A0
± are integration constants that are constrained by Ā0

± = −A0
∓. The contour for

the integral is chosen inside the upper half plane in such a way that it does not cross any

of the branch cuts in f , as illustrated in figure 1.

The supergravity fields for these solutions have SL(2,R) monodromies given by (3.15)

around the points wi, as desired. The residues of the differentials at the poles on the real

line played a crucial role in the solutions without monodromy, for the identification with

external 5-branes. The differentials corresponding to A± in (3.54) are given by

∂wA± =
L∑
`=1

Y `
± + η±f(w)Y `

w − p`
(3.55)

where we note that the numerators are non-trivial functions of w. The residues of these

differentials at the poles on the real line appeared already in (3.43), and are given by

Y`± = Y `
± + η±f(p`)Y

` (3.56)

It is these residues that correspond to the charges of the external 5-branes via the identifi-

cation reviewed in section 2.4: since the match of the geometry close to a pole to a 5-brane

solution only uses the local form of the solution around the pole, this match carries over to

the solution with monodromy straightforwardly. We will therefore use the Y`± as shorthand

for the combination in (3.21) whenever convenient.

The parameters introduced above are constrained by regularity requirements and there-

fore not all independent. The construction already ensures that the regularity conditions

on κ2 are satisfied, but to have single-valued G which vanishes on the boundary the param-

eters in addition have to be chosen such that eqs. (3.33) and (3.49) are satisfied. Using the

conjugation condition Ā0
± = −A0

∓ and the relation (3.32), we can write these conditions

more explicitly as

0 = 2η−A0
+ − 2η+A0

− +
L∑
`=1

Y ` ln |wi − p`|2 i = 1, · · · , I (3.57)

0 = 2A0
+Yk− − 2A0

−Yk+ +
∑
6̀=k
Y [`,k] ln |p` − pk|2 + Y kJk k = 1, · · · , L (3.58)
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where Y [`,k] = Y `
+Y

k
− − Y k

+Y
`
−. With Sk ⊂ {1, · · · , I} denoting the set of branch points

for which the associated branch cut intersects the real line in the interval (pk,∞), Jk is

given by

Jk =
L∑
`=1

Y `

[∫ pk

∞
dxf ′(x) ln |x− p`|2 +

∑
i∈Sk

in2
i

2
ln |wi − p`|2

]
(3.59)

where the integral over x is along the real line. The conditions in (3.58) ensure that the shift

in G across the pole pk, ∆kG, vanishes, while those in (3.57) ensure that G is continuous

across the branch cuts associated with wi. In contrast to the case without monodromy, the

sum over the regularity conditions in (3.58) does not manifestly vanish, and we therefore

in general have L independent conditions. However, satisfying the branch point conditions

in (3.57) does imply that
∑

k ∆G = 0, and consequently that the sum over the conditions

in (3.58) vanishes: by the arguments of section 3.4.1, G is constant along each boundary

segment free of poles. Therefore, since
∑

k ∆G gives the total change in G across all poles,

it must equal the shift in G across all branch cuts. Satisfying (3.57) for each branch point

implies that G is continuous across all branch cuts and therefore
∑

k ∆G = 0.

3.6 Counting free parameters

Having gathered the parameters and the constraints on the parameters for general solutions

to be regular with monodromy in a convenient form, we can now count the moduli. The

parameters associated with the Z`± are

sn 2L− 4 real parameters

σ 2 real parameters

p` L real parameters (3.60)

The remaining parameters are the integration constants A0
±, which are related by the

conjugation condition (3.40) and therefore correspond to only 2 real parameters, and the

parameters directly associated with the punctures and monodromies. Namely,

A0
± 2 real parameters

p, q 2 real parameters

ωi 2I real parameters

ni I real parameters

γi I real parameters (3.61)

Altogether, (3.60) and (3.61) are 3L+4I+2 real degrees of freedom. Those have to satisfy

the L + I − 1 independent conditions in (3.57) and (3.58). We also have to account for

the redundancy due to the SL(2,R) automorphisms of the upper half plane, which map to

equivalent solutions and can be used to fix, e.g., the position of three of the poles at will.

Moreover, one of the parameters in (p, q, ni) is redundant, since an overall rescaling of p

and q can be compensated by rescaling the ni. We are thus left with

2L− 1 + 3I (3.62)
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free real parameters. As discussed in [7], the general L-pole solution without monodromy

has 2L−2 free real parameters. Compared to the solution with no monodromy, each branch

point therefore adds three real degrees of freedom, and we in addition have one extra free

parameter. The extra parameter corresponds to the choice of SL(2,R) monodromy that is

fixed by (p, q, ni). With the ni unconstrained we can take it e.g. as the the phase of p− iq.
For I = 0 the dependence on that extra parameter becomes trivial, and the parameter

count therefore reduces to the expected number for a solution without monodromy.

3.7 Identification of punctures with [p, q] 7-branes

In this section we will discuss the identification of the punctures wi with the location of [p, q]

7-branes. The monodromies around the punctures in (3.15) are precisely those expected

for a [p, q] 7-brane [23], which certainly suggests this identification. We will discuss this in

more detail by explicitly working out the form of all supergravity fields near the wi. It will

be sufficient to fix [p, q]= [1, 0] and discuss the relation of the punctures in the resulting

solution to D7-branes. Since the solutions with general [p, q] monodromies were obtained

from those with [1, 0] monodromies by an SL(2,R) transformation, and the [p, q] 7-branes

are related to [1, 0] 7-branes by the same SL(2,R) transformation, the identification directly

extends to general [p, q] once it is established for [1, 0]. In section 3.7.1 we will analyze

the asymptotic behavior of the supergravity fields near the wi for [p, q]= [1, 0] and in

section 3.7.2 we will compare to the expected behavior for D7-branes.

3.7.1 Asymptotic behavior near [1, 0] branch points

For [p,q] = [1, 0] we have uQ = 1, vQ = 0, η± = 1, and the expressions simplify correspond-

ingly. In particular, ∂wAs± = ∂wA(0)
± . To analyze the metric factors near wi we need the

behavior of κ2, G and ∂wG. We introduce a coordinate ξ centered on the branch point

ξ = γi
w − wi
w − w̄i

(3.63)

and will assume |ξ| � 1 for the expansions. For the asymptotic behavior of κ2 we then find

κ2 = −n
2
i

4π
|c|2 ln |ξ|2 +O(1) c = ∂wA(0)

− − ∂wA
(0)
+

∣∣∣
w=wi

(3.64)

For the expansion of G it is convenient to separate off the contribution purely from the

A(0)
± as ∂wG(0), so we have

∂wG = ∂wG(0) + c(I − Ī) + F(Ā(0)
+ −A

(0)
− +A(0)

+ − Ā
(0)
− ) (3.65)

Due to (3.33), the term multiplying F is O(ξ). Moreover, due to the same condition

∂wG(0) = c(A(0)
+ − Ā

(0)
− ) +O(ξ). Therefore,

∂wG = g1 +O(ξ ln |ξ|2) g1 = c(A+ − Ā−)
∣∣∣
w=wi

(3.66)

Note that I and thus A± are finite at wi, so ∂wG is finite as w → wi as well. Upon

integrating the same applies for G, and to conveniently collect the O(1) terms we use

G = g0 +O(ξ) (3.67)
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Due to the regularity condition G > 0 in Σ we have g0 ∈ R+, while g1 is not constrained,

g1 ∈ C. Using the definition of R yields

R =
2π|g1|2

3n2
i g0|c|2(− ln |ξ|2)

+O
(
(ln |ξ|)−2

)
(3.68)

and therefore R → 0+ as w → wi. With the expression for the metric factors in (2.3), we

then find, to leading order in the ξ-expansion,

f2
6 ≈

√
6g0 f2

2 ≈
1

9

√
6g0 ρ2 ≈ n2

i

4π

|c|2√
6g0

(− ln |ξ|2) (3.69)

That is, in Einstein frame the radii of AdS6 and S2 are finite, while ρ2 diverges logarithmi-

cally. Note that the sign ensures that ρ2 is positive. With |dw|2 ≈ |wi− w̄i|2|dξ|2 and (2.1),

the complete metric takes the form

ds2 ≈
√

6g0

(
ds2
AdS6

+
1

9
ds2
S2

)
+

n2
i |c|2

π
√

6g0
(− ln |ξ|2) |wi − w̄i|2|dξ|2 (3.70)

To derive the expansion of B it is convenient to rewrite (2.4) as

B = −1 +
(∂wA+ − ∂wA−)∂w̄G +R(∂w̄Ā+ − ∂w̄Ā−)∂wG

R∂w̄Ā+∂wG − ∂wA−∂w̄G
(3.71)

Since ∂wA+ − ∂wA− = ∂wA(0)
+ − ∂wA

(0)
− , the numerator in the second term is O(1), while

the denominator is O(ln |ξ|2). The explicit expansion reads

B = −1 +
c

F
+O

(
(ln |ξ|)−2

)
(3.72)

The expansion for τ is conveniently derived using τ = −i+ 2i/(1 +B), which yields

τ = − in
2
i

2π
ln ξ + τ0 (3.73)

where τ0 is finite at ξ = 0 and single-valued up to terms of O(1/ ln |ξ|). With τ = χ+ ie−2φ

we find the explicit expressions for axion and dilaton, to leading order near the branch point,

χ ≈ − in
2
i

4π

(
ln ξ − ln ξ

)
+ χ0 e−2φ ≈ −n

2
i

4π
ln |ξ|2 (3.74)

where χ0 is finite at ξ = 0 and single-valued up to terms of O(1/ ln |ξ|). We there-

fore find the expected axion monodromy χ → χ + n2
i when encircling wi counterclock-

wise at an infinitesimal radius. Moreover, we see that the exponentiated dilaton diverges

logarithmically.

To derive the form of C near the branch point we start from the expression in (2.5).

With (3.66) and (3.33), one finds that ∂wG ∂w̄Ā− + ∂w̄G ∂wA+ = O(1). The second term

in the bracket of (2.5) therefore is O((ln |ξ|)−2). Up to terms of O((ln |ξ|)−2), the behavior

of C near the branch point is thus given by

C ≈ 4i

9

(
−Ā− − 2A+ +

ln ξ

ln |ξ|2
(A+ − Ā−)

)
(3.75)
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The two-form potential is therefore finite at the branch point but not necessarily single-

valued across the branch cut. We note that, due to (3.33), A+ − Ā− is imaginary at

wi. Since the monodromy of ln ξ is imaginary as well, we find that the real part of C is

single-valued and only the imaginary part is in general not.

In general, C(2) and correspondingly C transform non-trivially under SL(2,R), as given

in (2.15). For the monodromy considered here we would expect the imaginary part of C
to receive a shift proportional to the real part of C. However, since ln ξ/ ln |ξ|2 → 0 as

the branch point is approached, the expansion in (3.75) shows that the shift in C vanishes

when encircling the branch point at an infinitesimal radius. This reveals the constant gauge

transformation in (2.15) as

C0 = − in
2
i

2

(
C(wi) + C̄(wi)

)
(3.76)

3.7.2 Matching to 7-branes

With the asymptotic behavior of the solution with [1, 0] monodromy near the branch point

in hand, we can now attempt a physical interpretation. The form of the monodromy

clearly suggests that the branch points correspond to D7-branes, and we will now extend

the discussion to include all supergravity fields. The D7-brane solution has been worked

out already in [27], but we will take it in the form given in [28]. To match to [28], we

rewrite the metric near the branch point, as given in (3.70), as

ds2 ≈
√

6g0

(
ds2
AdS6

+
1

9
ds2
S2

)
+ Im (H)|dz|2 H = − in

2
i

2π
ln z (3.77)

where we changed coordinates to z = c |w − wi| ξ. The axion-dilaton τ near the branch

point, as given in (3.73), then takes the form τ ≈ H + τ̃0, where τ̃0 is finite at z = 0 and

single-valued up to terms of O(1/ ln |z|).
The metric of the transverse space parametrized by z immediately matches the form

of the flat-space D7-brane solution given in (19.74), (19.75) of [28], taking into account the

difference in conventions for the spacetime signature. The (trivial) scaling of the remaining

part of the metric with z in Einstein frame also agrees with the flat-space D7-brane solution,

but with AdS6 × S2 replacing R1,7. The axion-dilaton τ matches up to the finite offset

τ̃0, and for ni = 1 we find the same monodromy. The two-form gauge field is generically

non-vanishing at wi, which is another difference to the flat-space D7-brane solution. We

therefore find a D7-brane in a non-trivial background, where the axion-dilaton and the

two-form fields have non-trivial background values and the D7-brane wraps AdS6 × S2.

The stronger background dependence exhibited by a D7-brane compared to the virtual

background independence observed near any of the semi-infinite 5-branes (as discussed

in [7]) can be understood from the behavior of ρ2. Close to the poles on the real line,

where the semi-infinite 5-branes reside, the metric factor ρ2 behaves as O(r−3/2| ln r|−1/4).

Therefore, the metric distance of any interior point of Σ to the location of the pole is

infinite. This offers the possibility to move out on each of the semi-infinite 5-branes of

the web and decouple from the intersection. Close to the branch point, however, ρ2 only

diverges logarithmically, so the proper distance to other points in Σ remains finite. We
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can not move away from the intersection to a point where the 5-branes decouple. We will

expand on the interpretation in the context of 5-brane webs in section 5.

The asymptotic behavior of the supergravity fields for a branch point with generic

parabolic [p, q] monodromy can be obtained by an SU(1, 1) transformation with parame-

ters given in (3.14a) from the results in section 3.7.1. The Einstein-frame metric is invari-

ant while the axion-dilaton B and the gauge field C transform as in (2.14), (2.15). Since

[p, q] 7-branes are obtained from D7-branes precisely by the SL(2,R) transformation cor-

responding to this element of SU(1, 1), this straightforwardly extends the above discussion

to generic p, q.

4 Example solutions with monodromy

In this section we will explicitly construct example solutions with monodromy and illus-

trate that the regularity conditions derived in the previous sections are indeed sufficient

to guarantee smooth supergravity solutions with the desired monodromies. We will also

explicitly exhibit the real degree of freedom in choosing the position of the 7-branes.

The simplest case to consider are 3-pole solutions. 3-pole solutions without 7-branes are

all SL(2,R) dual to each other up to an overall rescaling of the charges, as discussed in [7].

This is to be expected already from the parameter count: for solutions without monodromy

there are 4 independent parameters after taking into account the redundancy due to the

SL(2,R) automorphisms of the upper half plane. These parameters are further reduced

by the SL(2,R) duality transformations of Type IIB supergravity to a single parameter

corresponding to the overall scale of the residues. For solutions with monodromy, however,

this is not true anymore. For solutions with I ≥ 1 branch points, there are 5 + 3I free

parameters according to the counting in section 3.6 and 2 + 3I after taking into account

the SL(2,R) duality transformations of Type IIB supergravity. So the 3-pole solutions

already yield families of inequivalent solutions and we will discuss some of the features in

the following.

4.1 3-pole solutions with D7 and D5-branes

We will start with a simple example where the regularity conditions can be solved straight-

forwardly in closed form, to illustrate the procedure and discuss some general points. We

will consider the case where a solution with D7-brane monodromy is constructed from a

3-pole solution where one of the poles corresponds to D5-branes. Recalling the discussion

in section 2.4 that means the corresponding residue Z`+ is purely imaginary. By SL(2,R)

duality the discussion extends straightforwardly to the case where generic 7-brane charges

coincide with the charges of one of the 5-branes, but to keep the expressions simple we fix

them as corresponding to D7 and D5-branes. In that case we have vQ = 0 and uQ = η± = 1.

For 3-pole solutions the SL(2,R) automorphisms of the upper half plane can be used

to fix the location of all poles, and we will use

p1 = 1 p2 = 0 p3 = −1 (4.1)
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We will take the pole p1 to correspond to a stack of D5-branes. Since the residues in the

seed solutions sum to zero, this constrains the real parts of the other two residues to sum

to zero, and we have

Z1
+ = iN Y 1 = 0 Y 2 = −Y 3 (4.2)

with N ∈ R \ {0}. This simplifies the regularity conditions (3.57), (3.58) considerably.

2 + I of these conditions are independent and have to be solved. The condition in (3.58)

for k = 1 fixes the real part of the integration constants A0
± as

A0
+ −A0

− = −Y 3 ln 2 (4.3)

Recall that the integration constants are related by the conjugation condition (3.40). With

that real part fixed we can solve the branch point conditions (3.57), which imply

wi =
1

3

(
1 + 2eiαi

)
0 ≤ αi ≤ π (4.4)

The location of the branch points is thus constrained to a half circle of radius 2/3 centered

on the real line at 1/3. It intersects the real line at the location of the pole p1, corresponding

to D5-branes, and at −1/3, in between the other two poles. The remaining regularity

conditions are the conditions in (3.58) for k = 2, 3. Since we solved the branch point

conditions in (3.57), these remaining conditions are not linearly independent and solving

one of them implies the other one. We therefore find only one more real constraint, fixing

the imaginary part of A0
± which was left unconstrained by (4.3). This yields

A0
+ =

1

2
J2 −

Y 3Y2
+

Y 2
ln 2 (4.5)

The combination of this A0
+ with wi in (4.4) solves all the regularity condi-

tions (3.57), (3.58).

The regularity conditions do not fix ni and γi, and the curve on which the branch

points can be placed is independent of both parameters. In addition we have one real

parameter αi for each puncture, specifying the position of the branch point on the curve

in Σ. This clearly exhibits the 3 extra parameters introduced by each branch point, in line

with the discussion in section 3.6. The additional parameters associated with the branch

points do affect the residues Y`± of the differentials at the poles on the real line, as given

in (3.56). With (4.2) they explicitly read

Y1
+ = Z1

+ Y2
+ = Z2

+ + f(p2)Y 2 Y3
+ = Z3

+ − f(p3)Y 2 (4.6)

Since f is imaginary on the real line, the residue at each pole changes by an imaginary

amount proportional to the real part of the residue. That is, the D5 charge of the 5-brane

changes by an amount proportional to its NS5 charge. In particular, the residue at p1,

corresponding to the D5 charge there, is unaffected by the addition of the D7-branes. The

total charge non-conservation is given by
∑

` Y`+ = (f(p2)− f(p3))Y 2. It is independent of

the choice of γi, but varies with ni and αi.
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Regarding the choice of orientation for each branch cut, one can realize “topologi-

cally” different configurations, by choosing different pairs of adjacent poles between which

the branch cut intersects the real line. These different configurations have an immediate

interpretation from the brane intersection picture, namely as the choice of semi-infinite

external branes between which the branch cut is located. The phases γi fixing the orien-

tation of the branch cuts, however, can be varied continuously. Indeed, fixing all other

parameters and varying one of the γi such that the associated branch cut varies without

crossing any of the poles, we find a linear dependence of the residues Y`+ on arg(γi). The

change in the residue Yk+ as the branch cut associated with wi crosses the pole pk is discrete

and given by ∆Yk+ = i
2n

2
iY

k. We will come back to the interpretation of the continuous

moduli in the brane web picture in section 5. As a last point, we note that the solution

without monodromy can be recovered if the branch cuts are chosen e.g. along the negative

imaginary direction and the branch points are moved along the allowed curve in (4.4) to

approach the real line at −1/3. At the real line the wi “annihilate” with their mirror points

in the lower half plane, leading back to a solution without monodromy.

4.2 3-pole solution with [1, 0] branch point

To illustrate that the constructions outlined in section 2 indeed yield solutions with the

desired monodromies and regularity properties, we will now show explicit plots for a generic

solution with three poles and one puncture corresponding to a D7-brane. We fix the poles

again as in (4.1). As an explicit example we start from the 3-pole solution discussed in

section 4.1 of [7], for which the zero in the upper half plane and σ were chosen as

s =
1

2
+ 2i σ = i (4.7)

Plots of the solution without punctures were shown in section 4 of [7]. Adding 7-branes

introduces additional parameters (wi, ni, γi) as well as the charges p, q. We add a single

D7-brane with [p,q] = [1, 0], such that uQ = η± = 1, vQ = 0, and fix

n1 = 1 γ1 = −1 (4.8)

The regularity conditions in (3.58) for k = 1, 2 can be solved for A0
± straightforwardly, and

as the remaining independent constraint we can then take the condition associated with the

branch point in (3.57). That constrains the location of the D7-brane. For the particular

solution (4.7), the resulting curve to which w1 is restricted is shown in figure 3. It is not

a half circle as in the previous example but of similar form. The curve starts and ends on

the real line, between the poles p2, p3 and p1, p2, respectively. For any value of w1 along

the curve, with A0
± as described above, all regularity conditions in (3.57) and (3.58) are

solved. We note that there is no direction along which the branch point could be moved

out of Σ along its branch cut for this choice of γ1. The puncture is “trapped” inside Σ in

that sense. As in the previous example, the real parts of the residues are constant along

the curve, and given by

Re (Y1
+) = 1 Re (Y2

+) = −2 Re (Y3
+) = 1 (4.9)

But the imaginary parts vary, as shown on the right hand side in figure 3.
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Figure 3. On the left hand side the allowed locations for the branch point w1 in the upper half

plane, for the solution (4.7) with a single puncture corresponding to a D7-brane and n1 = 1. On the

right hand side the imaginary part of the charges along the curve shown on the left. At arg(w1) = π

the curves are, from top to bottom, Im (Y1
+), Im (Y2

+) and Im (Y3
+).

To explicitly construct the supergravity fields for a set of parameters that solve the

regularity conditions as above, we now have to construct the locally holomorphic functions

A± and the composite quantities κ2, G explicitly. We do this numerically as follows. Once

the regularity conditions are solved it is straightforward to construct the differentials ∂wA±
via (3.55). Constructing the locally holomorphic functions A± themselves, however, already

requires a more non-trivial integration than in the case without monodromy, as is evident

from the expression in (3.54). From the functions A± we then have to construct the locally

holomorphic function B defined in (2.2) by a further integration. With these functions in

hand one can then construct G and R in (2.2) and from those the metric functions via (2.3),

the axion-dilaton scalar B via (2.4) and the gauge field via (2.5). To explicitly construct

the supergravity fields we implement a two-step numerical integration procedure. In a first

step we construct I defined in (3.25) and from that the locally holomorphic functions A±
on a dense grid in the upper half plane. Since the A± feed into the construction of B via

a further integration, they are needed with higher precision than the desired precision for

the supergravity fields. To accurately capture the rapidly varying behavior of A± around

the poles on the real line and around the branch cuts, the grid in particular contains a

large number of points around the poles and also a large number of points closely tracing

the branch cuts. The freedom in choosing the integration contour in (3.54) (illustrated in

figure 1) can be exploited to avoid rapidly varying regions for all other points. In a second

step we then determine B by a further numerical integration. The grid can be chosen

less dense but again contains a large number of points around the poles and branch cuts,

to accurately capture the behavior there. Once these functions are determined it is then

straightforward to compute the supergravity fields.

For the sake of presenting explicit plots of a solution, we pick a generic point on the

curve shown in figure 3, namely

w1 = 0.3980480542 eiπ/4 (4.10)

Plots of the supergravity fields for the resulting solution are shown in figure 4. They show

that the branch cut indeed starts at w1 and from there extends in the positive imaginary
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Figure 4. The metric factors f22 , f
2
6 and ρ2, the real and imaginary parts of the two-form potential

C and axion and dilaton for the 3-pole solution with [1, 0] branch point.

direction. The plots also show that the metric functions are smooth and single-valued,

with only ρ2 diverging at the position of the D7-brane, as desired. The dilaton blows up at

the location of the D7-brane but is otherwise smooth, as expected, and the axion has non-

trivial monodromy around w1, realizing precisely the shift expected for a D7-brane. The

real part of the two-form field is smooth, and also the imaginary part behaves precisely as
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discussed in section 3.7.1. Namely, C transforms by the appropriate SU(1, 1) transformation

combined with a constant gauge transformation such that the limit of C as w → w1 is well

defined. The imaginary part of C also reflects the fact that the imaginary parts of the

residues in the presence of a D7-brane do not have to sum to zero: after crossing all three

poles, the boundary value of Im (C) does not return to its original value. The discrepancy

in the value of Im (C) on the boundary to the left of all poles and to the right of all poles is

given by the discontinuity of Im (C) across the branch cut at infinity. The real parts of the

residues, on the other hand, still sum to zero and correspondingly the value of Re (C) on

∂Σ does return to its original value after crossing all three poles. The behavior of all fields

at the poles on the real line is as expected for an identification of the poles with 5-branes,

in the same way as discussed in more detail in [7].

4.3 3-pole solution with [0, 1] branch point

As a second explicit example we will consider a case with a different choice of the charges

and a different orientation of the branch cut, to illustrate the features of the solutions in

that case. We start again from the 3-pole solution (4.1) with (4.7), and add a branch

point with [p,q] = [0, 1] monodromy, corresponding to the S-dual of a D7-brane. Choosing

[p,q] = [0, 1] results, via (3.14a), in η+ = −η− = uQ = −i and vQ = 0, and we fix

n1 = 1 γ1 = 1 (4.11)

Solving the regularity conditions proceeds in the same way as outlined for the previous

example, and the location of the branch point is once again restricted to a curve in Σ

which can be parametrized by arg(w1). From the expression for the residues at the poles

on the real line in (3.56) we now see that their imaginary part is unaffected by the addition

of the branch point, but their real parts change. The conserved linear combination of the

(p, q) 5-brane charges therefore is the D5-charge, corresponding to the imaginary parts of

the residues. The NS5-charge, corresponding to the real parts of the residues, is modified

and in general not conserved. To show explicit solutions we again pick a generic point on

the curve, namely

w1 = 0.3980480542 e3iπ/4 (4.12)

The residues for this particular choice for the location of the branch point are given by

Y1
+ = 0.181179− i Y2

+ = 1.000000 + 2i Y3
+ = −0.631161− i (4.13)

where the imaginary parts are exact and the real parts evidently do not sum to zero.

Plots of the metric functions, the two-form gauge field and the axion and dilaton for that

solution are shown in figure 5. The behavior of the metric functions is qualitatively similar

to the example with [1, 0] monodromy: the radii of AdS6 and S2 are finite at the branch

point while ρ2 diverges, as expected. For the two-form gauge field, on the other hand,

the imaginary part is now continuous across the branch cut, while the real part is not.

Their roles are thus switched compared to the previous example, as expected. The non-

conservation of the real part of the residues at the poles is reflected in the values of Re (C)
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Figure 5. The metric factors f22 , f
2
6 and ρ2, the real and imaginary parts of the two-form potential

C and axion and dilaton for the 3-pole solution with [0, 1] monodromy.

on the boundary as well: since there is no pole or branch cut at infinity, the boundary

value of Re (C) to the left of all poles equals its boundary value to the right of all poles,

but the non-conservation is manifest in the discontinuity at the point where the branch cut

intersects the real line. Axion and dilaton now both behave non-trivially when crossing
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the branch cut, reflecting the expected behavior for a [1, 0] monodromy. Moreover, the

exponentiated dilaton e−2φ is finite at the branch point, instead of diverging as previously

for the branch point corresponding to a D7-brane. This is the expected behavior after

performing an S-duality transformation and completes the discussion of all the non-trivial

supergravity fields. In summary, we find a solution that satisfies the physical regularity

conditions and realizes the desired monodromy.

The behavior of the supergravity fields for generic [p, q] 7-brane charges is qualitatively

similar and shows a combination of the features seen for the specific examples we discussed

in detail. In general, the real and imaginary parts of C both have a discontinuity across

the branch cut, corresponding to the fact that the conserved linear combination of the

charges does not simply reduce to the real or imaginary part of the residues. Likewise,

as seen already for the [0, 1] example, axion and dilaton both transform non-trivially.

The exponentiated dilaton e−2φ is finite at the branch point when q 6= 0 and diverges

if q = 0. The generalization to multiple branch points with commuting monodromies is

likewise straightforward, the plots become more busy but the regularity conditions derived

in section 3 again guarantee smooth metric functions and that the two-form gauge field

and the axion-dilaton scalar show the desired behavior across the branch cuts.

5 Connection to 5-brane webs with 7-branes

In this section we will discuss the connection of the supergravity solutions constructed in

section 3 to 5-brane webs with additional 7-branes in more detail. We will first revisit

the identification with 5-brane intersections and then turn to the punctures and their

identification with additional 7-branes.

As argued in [7], the solutions without monodromy have a compelling interpretation

as supergravity descriptions for fully localized intersections of 5-branes, as obtained by

taking the conformal limit of 5-brane webs describing 5d gauge theories. The arguments

were based on having the correct symmetries and parameter count, and in particular on

the identification of the poles on the real line with the external 5-branes defining the

intersection. This identification directly carries over to the solutions with monodromy,

since it only uses the leading behavior of the holomorphic data close to the poles and the

differentials for the solutions with monodromy again have simple poles on the real line. By

direct extension of the identification in section 2.4, we therefore find that the poles p` on

the real line correspond to 5-branes with charges determined by the residues Y`± in (3.56).

Analogously to (2.22), the identification with the charge vector (q1, q2)Q in the conventions

of [26] is given by

(q1 − iq2)Q =
8

3
Y`+ (5.1)

with the real part of Y`+ corresponding to NS5 charge and the imaginary part corresponding

to D5 charge. Compared to the Z`± which determined the charges in the solutions without

monodromy, however, the residues Y`± are less constrained. For solutions with D7-branes,

only the real parts of the Y`± have to sum to zero: since f(p`) is imaginary, η± = 1 and
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Y ` real, eq. (3.56) shows that the real parts of Y`± sum to zero, due to charge conservation

in the seed solution without monodromy. But the imaginary parts in general do not.

This was clearly exhibited in the example solutions discussed in section 4.1 and 4.2, where

the sum over the imaginary parts of the residues was non-vanishing. For general [p, q]

7-branes the corresponding SL(2,R) rotated statements hold, and we likewise have one

real charge conservation constraint on the complex residues. For [0, 1] 7-branes this simply

corresponds to switched roles for the real and imaginary parts of the residues, as exhibited

in the example in section 4.3. We therefore find that the solutions correspond, in general,

to 5-brane intersections with only one linear combination of the (p, q) 5-brane charges

conserved.

We now come to the punctures themselves. The parabolic SL(2,R) monodromies given

in (3.1) have the expected form for a [p, q] 7-brane [23], and for multiple coincident branes

we expect precisely a monodromy of the form given in (3.15). As discussed in section 3.7 the

punctures can indeed be identified with [p, q] 7-branes, and as reviewed in the introduction

the addition of 7-branes into 5-brane webs is well motivated. The way they appear in our

solutions indeed matches well with their role in the 5-brane webs. To recall, if we take

the 5-branes in the string theory construction to extend along the directions 0 − 4 and a

one-dimensional subspace of the 5 − 6 plane, then the 7-branes are localized at points in

the 5− 6 plane and wrap all other directions, as summarized in the following table [9]:

0 1 2 3 4 5 6 7 8 9

D5 brane x x x x x x

NS5 brane x x x x x x

7-brane x x x x x x x x

In our supergravity solutions the poles on the boundary of Σ represent the remnants of the

semi-infinite external 5-branes, which suggests that Σ encodes the structure of the web in

the 5 − 6 plane. We would then expect each 7-brane to be localized at a point in Σ and

wrap all other parts of the geometry, precisely as we find from the discussion in section 3.7.

The fact that we naturally found D7-branes and their SL(2,R) orbits of [p, q] 7-branes in

section 3.7, instead of anti D7-branes, also has a natural interpretation from the brane web

perspective. While for a 7-brane alone both choices are possible and supersymmetric, the

difference becomes crucial in the presence of the 5-branes. To preserve supersymmetry, the

7-branes added to a 5-brane web have to be compatible with precisely the supersymmetries

preserved by the 5-branes, hence explaining the restriction to D7-branes and their SL(2,R)

orbits. The presence of 7-branes also provides a natural brane web explanation for the

fact that the residues Y`±, corresponding to the charges of the external 5-branes, do not

necessarily sum to zero, as discussed in the previous paragraph. 5-branes may cross the

branch cuts introduced by the 7-branes, where their charges undergo the corresponding

SL(2,R) transformation and thus potentially change. Moreover, 5-branes can terminate on

the 7-branes, such that their charges do not contribute to the total charge of the external

5-branes at all. The total charges of the external 5-branes therefore do not necessarily

sum to zero in the presence of 7-branes, precisely as realized in the supergravity solutions.
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Figure 6. Brane web and intersection with a large-N limit. On the right hand side the conformal

limit for generic N , on the left hand side for N = 2 a deformation corresponding to finite gauge

coupling and a state on the Coulomb branch.

We thus find a coherent general picture where the supergravity solutions constructed in

section 3 correspond to the conformal limit of 5-brane webs with additional 7-branes.

Establishing a precise map between specific brane webs and our supergravity solu-

tions is beyond the scope of this work, but we will close this section with a speculative

general discussion of a possible relation. Since the supergravity solutions correspond to

the conformal limit of 5-brane webs and the 7-branes are accessible in the supergravity

description, a natural possibility would be that the solutions correspond to 5-brane webs

with 7-branes inside the faces of the web. This interpretation aligns well with the fact

that we find 7-branes in a non-trivial background, as discussed in section 3.7: Taking the

conformal limit of a 5-brane web with a 7-brane kept inside a face means the 7-brane ends

up precisely on the 5-brane intersection. The geometry created by the 5-branes at that

point is AdS6 × S2 warped over Σ, and we thus find the 7-brane wrapping AdS6 × S2.

There is no limit of moving along the 7-brane in the 5, 6 directions which would take us

away from the intersection, such that we would expect to recover a 7-brane in flat space.

This is in contrast to the external 5-branes, where we can move along their worldvolume

away from the intersection in the 5, 6 directions, and gives a brane web interpretation for

the discussion in section 3.7.2.

One might wonder in that context what the modulus corresponding to the position of

the 7-brane in Σ, as exhibited in the parameter count in section 3 and in the examples in

section 4, would correspond to in the brane web picture when the 7-brane is trapped at

the intersection point. An explanation can be given by the fact that we are considering

solutions corresponding to brane webs in a “large-N” limit. Such brane webs can have a

complex internal structure, as illustrated for an example in figure 6. The web for N = 2

has four distinct faces, and in the limit where the charges of the external branes are large

this becomes a dense grid of faces in which we can have a 7-brane. The discrete choice of

which face the 7-brane is in remains in the conformal limit where the web collapses to an

intersection, and in the large-N limit it becomes effectively continuous. In our supergravity

solutions we expect the internal structure of the web to be encoded in Σ, and the choice of

position of the branch point could then naturally correspond to the choice of face in which

the 7-brane is located. A similar argument can explain the choice for the orientation of the
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branch cuts, determined by the continuous parameters γi. The trajectories of the branch

cuts in Σ could have a natural interpretation as corresponding to their trajectory through

the dense grid of faces in the corresponding brane webs in the large-N limit. This choice

again remains meaningful in the conformal limit, giving a possible interpretation for all

additional parameters associated with the punctures.

6 Discussion

We have constructed physically regular AdS6 solutions to Type IIB supergravity with 16

supercharges, that realize the unique five-dimensional superconformal algebra F (4) geo-

metrically. Similarly to the solutions in [6, 7], the geometry takes the form AdS6 × S2

warped over a two-dimensional Riemann surface Σ. Moreover, there are once again mild

isolated singularities on the boundary of Σ that correspond to semi-infinite 5-branes. The

new feature compared to the existing solutions is that Σ has punctures around which the

supergravity fields undergo non-trivial SL(2,R) monodromy. The solutions may also have

an interpretation as solutions to F-theory [29].2 We have identified the punctures with [p, q]

7-branes, and the fact that we can identify both, 5-branes and 7-branes, suggests a direct

identification of the solutions with the conformal limit of 5-brane webs with additional

7-branes, as introduced in [9]. The solutions therefore provide compelling candidates for

holographic duals of the UV fixed points of five-dimensional gauge theories that are de-

scribed by brane webs with additional 7-branes. This offers a clear path for quantitative

analyses of the UV fixed points, e.g. of their spectra, entanglement entropies and free en-

ergies. We will close with a discussion of open questions and of some directions for future

research.

We have collected a number of arguments for the identification of the punctures with 7-

branes already, and found a coherent general picture for the interpretation of the solutions

we have constructed. To further specify and substantiate the relation to 5-brane webs with

additional 7-branes, a natural next step is to compare supergravity computations, e.g. of

the free energy, to the corresponding field theory or string theory calculations. Moreover,

for the identification of the punctures with the addition of 7-branes additional consistency

checks can already be performed directly in the supergravity description. Namely, via the

relation of 5-brane webs with 7-branes to 5-brane webs without 7-branes by the Hanany-

Witten brane creation effect [9]. It suggests that certain supergravity solutions with punc-

tures, as constructed here, should yield equivalent results in holographic computations as

certain solutions without 7-branes, as constructed previously in [6, 7]. Identifying precisely

which solutions are equivalent in that sense would provide interesting information about

the internal structure of the webs and further support the identification of the supergravity

solutions with brane webs. A more technical question in that context concerns the role

of the punctures for holographic computations: as shown in [8], the isolated singularities

on the real line do not interfere with supergravity computations at least of the free energy

and entanglement entropy. We expect the same to be true for the punctures since the

singularities are of a similarly mild type, but leave an explicit verification for the future.

2In the context of AdS3/CFT2, solutions with non-trivial monodromy were recently constructed in [30].
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Concerning the solutions themselves, a natural next question is for an extension of

the constructions presented here to include punctures with non-commuting monodromies.

We have currently allowed for an arbitrary number of punctures with the restriction that

the associated monodromies commute, which realizes mutually local 7-branes. But in the

brane web constructions mutually non-local 7-branes and the corresponding branch cut

moves also play a prominent role, and it would therefore be desirable to have supergravity

solutions with the corresponding features.
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A The vanishing of G on ∂Σ

In this appendix we provide further technical details for the derivation of the regularity

conditions to guarantee G = 0 in section 3.4.2. There are two auxiliary results for which

we omitted the derivation in the main part and we will discuss the details in the following.

The first result used in section 3.4.2 is that the ∆kB contribution in (3.44) indeed

reproduces the first term, and to evaluate the result more explicitly to arrive at (3.45).

Evaluating the first term in (3.44) explicitly, using (3.32), yields

∆kG = 2πi
(
Ā0Y k

+ +A0Y k
− +

∑
6̀=k
Y [`,k] ln |p` − pk|

)
+ iπY k

(
I(pk + ε)− I(pk + ε)

)
+ iπf(pk)Y

k
(
η−As+(pk + ε)− η+As−(pk + ε) + c.c.

)
+ ∆kB + ∆kB̄ (A.1)

It remains to evaluate ∆kB. Starting from (3.42) and using (3.17), (3.22) we find

∆kB = ∆kBs −
∫
Ck

dz I (η−∂zAs+ − η+∂zAs−) +

∫
Ck

dzF (η−As+ − η+As−) (A.2)

where Bs denotes the part of B constructed from the single-valued differentials and func-

tions, and Ck is the half circle contour centered on pk. It is convenient to evaluate ∆kB
together with its complex conjugate. For the last term we find∫
Ck

dzF(η−As+ − η+As−) + c.c. = iπf(pk)Y
k
(
η−As+(pk + ε)− η+As−(pk + ε) + c.c.

)
(A.3)
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where ε > 0 once again is the radius of the half circle Ck. For the second term in (A.2)

we have to evaluate the integral in I from ∞ to z ∈ Ck. It is convenient to split it into

the part from ∞ to the starting point of Ck, pk + ε, and the remaining part along the half

circle Ck, parametrized by pk + εeiθ with θ ∈ (0, π). Namely,

I(pk + εeiθ) = I(pk + ε) + iε

∫ θ

0
dφF(pk + εeiφ) (A.4)

The first term is constant along the integration contour in (A.2) and does not complicate

the integration there. The second term in (A.4) can be evaluated explicitly, since the

contour is localized around pk such that the integrand can be expanded. The contribution

to ∆kB + c.c. then becomes∫
Ck

dz I(η−∂zAs+ − η+∂zAs−) + c.c. = iπY k
(
I(pk + ε)− I(pk + ε)

)
(A.5)

Evaluating ∆kB+ ∆kB̄ using (A.2) with (A.3) and (A.5) shows that it exactly reproduces

the already existing terms in (A.1). We thus find for the shift of G given in (A.1)

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
` 6=k

Y [`,k] ln |p` − pk|2 + Y k
(
I(pk + ε)− I(pk + ε)

)
+ f(pk)Y

k
(
η−As+(pk + ε)− η+As−(pk + ε) + c.c.

)
(A.6)

Using that f(pk) is imaginary, we can write the shift in G in the form given in (3.45),

completing the derivation for that result.

The second result for which we have not provided a detailed derivation in the main

part concerns the integration by parts in (3.45), to arrive at (3.46). We repeat (3.45) for

convenience

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
` 6=k

Y [`,k] ln |p` − pk|2

+ Y k
(
f(pk)

[
η−As+(pk + ε)− η+As−(pk + ε)

]
− I(pk + ε)− c.c.

)
(A.7)

The individual terms in the second line are divergent as ε → 0, but their combination is

finite. We can use A(0)
+ − A(0)

− = η−As+ − η+As− and integration by parts to rewrite I
defined in (3.25) as

I(pk + ε) =

∫ pk+ε

∞
dw f(w)

(
η−∂wAs+ − η+∂wAs−

)
= f(w)

(
η−As+ − η+As−

) ∣∣∣pk+ε

∞
−
∫ pk+ε

∞
dw
(
η−As+ − η+As−

)
∂wf (A.8)

The first term evaluated at pk + ε cancels the first term in the round brackets in the

second line of (A.7). The first term evaluated at ∞ becomes (η−A0
+−η+A0

−)f(+∞), since∑
` Y

`
± = 0. The integrand of the last term in (A.8) is only logarithmically divergent as pk
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is approached and in particular integrable, so we can now drop ε in the integration bound.

The shift (A.7) therefore becomes

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
6̀=k
Y [`,k] ln |p` − pk|2

+ Y k

(
(η−A0

+ − η+A0
−)f(+∞) +

∫ pk

∞
dw
(
η−As+ − η+As−

)
∂wf − c.c.

)
(A.9)

The integral in the second line contains the integration constants A0
±, which only multiply

∂wf , and it will be convenient to extract them. This yields

∆kG
2πi

= 2Ā0Y k
+ + 2A0Y k

− +
∑
6̀=k
Y [`,k] ln |p` − pk|2

+ 2f(pk)Y
k(η−A0

+ − η+A0
−) + Y k

(∫ pk

∞
dw

L∑
`=1

Y ` ln(w − p`)∂wf − c.c.

)
(A.10)

This is the result quoted in (3.46), thus completing the derivation for that result as well.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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