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1 Introduction and summary

Quantum chaos has recently received a surge of interest in the context of holography, which

has led to new insights on thermal physics of quantum gravity and conformal field theories.

This program was initiated by a holographic realization of the butterfly effect [1], where it

was shown that a small boundary perturbation can have drastic consequences in the bulk

provided it happens at sufficiently early times. This effect along with several generalization

were then studied in various quantum systems relevant for gravitational physics [2–21].

In classical physics, the Poisson bracket i~{q(t), p(0)} measures the sensitivity of q(t)

to the initial conditions and hence diagnoses classical chaos. In analogy, one can consider

the commutator

[W (t), V (0)] , (1.1)

which measures the perturbation by V on measurements of W . If the time separation is

small, this commutator will be small. However, it can grow quickly if the quantum system is

chaotic. In this paper, we will consider a quantity closely connected to this commutator [9],

the out-of-time-ordered (OTO) correlation function

F (t) =
〈V (0)W (t)V (0)W (t)〉β

〈V V 〉β 〈WW 〉β
. (1.2)

The behaviour of this Lorentzian correlation function was argued to be a sharp diagnostic

of quantum chaos [9]. In particular, it should decay at late times in chaotic conformal field

theories for arbitrary choice of “simple” operators V and W . Simple means that V and W

should be a product of an O(1) number of degrees of freedom.
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For large N theories, one can distinguish two parametrically distinct time-scales. First,

there is the dissipation time td ∼ β which is the characteristic time scale of the exponential

decay of two point functions 〈V (0)V (t)〉β in the thermal state. This will also be the time

scale at which typical time-ordered correlation functions reach there late time limits, for

example

〈V (0)V (0)W (t)W (t)〉 ∼ 〈V V 〉 〈WW 〉 , for t > td . (1.3)

For holographic theories, this time scale will be connected to the behaviour of the quasinor-

mal modes of black holes. Next, there is the time-scale at which the out-of-time-ordered cor-

relation function becomes small in chaotic theories, which is named the scrambling time ts.

For large N theories, the scrambling time is parametrically larger than the dissipation time

ts ∼ logN ≫ td . (1.4)

A way to characterize the strength of chaos is by looking at the behaviour of F (t) for

times between td and ts. Chaotic theories are expected to exhibit an exponential growth

in this regime which takes the form

〈V (0)W (t)V (0)W (t)〉β ∼

(

1−
1

N
eλLt

)

, (1.5)

where λL is called the Lyapunov exponent. The first term in the r.h.s. of (1.5) corresponds

to the disconnected part of the four-point function, whereas the second term is the con-

nected contribution. We see that the connected contribution starts out to be small but

becomes of the same order as the disconnected part for t ∼ ts. The 1/N hierarchy between

connected and disconnected contributions is a result of large N factorization and always

remains valid for Euclidean correlators. Chaos can also be viewed as a breakdown of large

N factorization for large Lorentzian times.

In [9], a bound on the Lyapunov exponent was found to be

λL ≤
2π

β
, (1.6)

which is saturated by black holes in Einstein gravity, showing support for the claim that

black holes are the fastest scramblers in nature [22, 23]. This bound on chaos can also be

used to carve out from the space of all CFTs, those that have nice enough properties to

have potential Einstein gravity duals [19, 24]. We will be interested in the case of two-

dimensional CFTs where it was shown that identity block domination of the correlation

function (1.2) yields maximal chaos [6].

In this paper, we will study out-of-time-ordered correlation function in a large class

of theories: permutation orbifolds. Starting from a two-dimensional CFT C with central

charge c, we can define

CN =
C⊗N

GN
, (1.7)

for GN ⊆ SN , giving an orbifold CFT with central charge Nc. Provided that the group

GN is oligomorphic, this will provide a vast landscape of two-dimensional CFTs that have

a good large N limit [25–27]. Permutation orbifolds should be viewed as free discrete

gauge theories and hence provide examples of weakly-coupled CFTs. In this paper, we

will show that these theories are not chaotic, in agreement with the fact that they are free
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gauge theories. We will show this explicitly by considering the OTO four-point function of

arbitrary low-dimension operators.

Although one could have suspected this outcome on the grounds that orbifold theories

are free gauge theories, there are other perspectives from which the result can appear more

surprising. First, the result is completely independent of the choice of seed theory C. This

means we can pick a seed theory that is chaotic with a spectrum of operators that is, at least

in principle, as crazy as we want. We can certainly make most of the operator dimensions

irrational. One might suspect that this leaves an important imprint in the orbifold theory.

However, our results indicate that it does not. Because the N copies are non-interacting,

the details of the seed theory’s spectrum are completely washed out in the large N limit.

The details of the seed theory will only be important at early times t ∼ O(1) but do not

matter at times of order the scrambling time t ∼ logN .

The other reason why one could have suspected the outcome to be different is that

permutation orbifolds have been capable of reproducing many universal features of Einstein

gravity in the semi-classical limit. This is often tied to the dominance of the identity block

in CFT correlation functions. At least for the symmetric group, the orbifolds theories give

the same partition function as Einstein gravity [28, 29], which also means they correctly

reproduce the BTZ black hole entropy. Furthermore, one can check that they satisfy all

conditions demanded in [30], which means that finite temperature two-point functions

match those calculated in the BTZ background. Finally, other observables involving late-

time dynamics such as two point functions in excited states also show qualitative similarities

to a theory dual to Einstein gravity [31] (even though there are quantitative differences in

terms of time-scales). In some sense, these theories are doing a way better job at mimicking

general relativity than what they should be doing. This is probably related to the fact that

gravity in three dimensions is very special, while the story is more complicated in higher

dimensions [32]. Nevertheless, these facts suggest that several observables of permutation

orbifolds might be well approximated by the identity block, and pinning down which ones

are and which ones aren’t appears to be quite important. In this paper, we will show that

the OTO correlator does not fall in this class as it behaves drastically differently from how

a theory dual to Einstein gravity would behave.

In some cases (like for example when GN = SN and C is the non-linear sigma model on

T
4), one can deform the orbifold theory to go to strong coupling. In that case, one expects

maximal chaos which means that the Lyapunov exponent should increase as we increase

the coupling. We do not perform this calculation but make some general comments on the

deformation to strong coupling.

1.1 Summary of results

We will show that the OTO four-point function in permutation orbifolds takes the general

form

F (t) = 1 +
∑

g2( ~K, ~ϕ)f2(t) +
1

N

[∑

g3( ~K, ~ϕ)f3(t) +
∑

g4( ~K, ~ϕ)f4(t)
]

+ . . . (1.8)

where the gi( ~K, ~ϕ) are order one combinatorial factors that depend on the choice of group

and the choice of operators for V and W while the fi(t) are related to i-point functions of
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the seed theory. The sums are taken over the different i-point functions of the seed theory

that can appear. This results follows directly from large N factorization.

For times much greater than the dissipation time, we will show that the OTO correlator

behaves as

F (t) ≈ 1 +
1

N

∑

g4( ~K, ~ϕ)f4(t) + . . . , t ≫ td , (1.9)

namely that the two and three-point function contributions become small and we are simply

left with the seed theory four-point functions. If we consider twisted sector operators, f4(t)

is not directly related to seed theory four-point functions on the plane but rather to some

higher genus amplitude. Nevertheless, we can also think of its contribution as coming from

four-point functions in a Sk orbifold theory with k ∼ O(1).

This will be enough to show that permutation orbifolds cannot be chaotic. There

are essentially two scenarios. If the seed theory (or Symk(C) for the twisted sectors) is

chaotic, then the four-point function of the seed theory vanishes at lates times. In that

case, F (t) ∼ 1 at late times. If the seed theory is not chaotic, its OTO four-point function

will stabilizes at some value α ∼ O(1) which means F (t) ∼ 1+α/N ∼ 1. Again, F (t) does

not decay. This result is universal and holds for all oligomorphic permutation orbifolds.

Even if the seed theory is chaotic, the effect is washed away once we take N non-interacting

copies and orbifold. The orbifolding procedure does not introduce any interaction between

the N copies but only projects to GN singlets and hence considerably reduces the number

of low-energy states. This result should be a taken as a general feature of free gauges

theories in the large N limit.

The paper is organized as follows: in section 2, we discuss the kinematics of the OTO

correlation functions and define notation. In section 3, we introduce permutation orbifolds

and show how large N factorization arises. In section 4, we study the OTO correlators in

permutation orbifolds, considering both untwisted and twisted sector operators. We also

discuss the behaviour of the function at early times as well as a possible deformation of

the theory to strong coupling.

2 Out-of-time-ordered correlators in 2d CFTs

We are interested in calculating out-of-time-ordered correlation functions in two dimen-

sional conformal field theories. In this paper, we will focus on four point functions and

consider correlation functions in the thermal state on the infinite line. We will closely fol-

low [6] to set up our convention. 2d CFTs have the nice property that a correlation function

in the thermal state on the infinite line can be mapped to usual vacuum expectation values

through the map

z(x, tE) = e
2π
β
(x+itE)

, z̄(x, tE) = e
2π
β
(x−itE)

, (2.1)

where x, tE label points along the spatial and thermal direction respectively. With this

transformation one can easily compute Euclidean correlators by mapping the operators to

the plane. The operators transform as

O(x, t) =

(
2πz

β

)h(2πz̄

β

)h̄

O(z, z̄) . (2.2)
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In this paper, we will be interested in computing Lorentzian correlators so the conformal

transformation (2.1) becomes

z(x, t) = e
2π
β
(x+t) , z̄(x, t) = e

2π
β
(x−t) , (2.3)

where t is now Lorentzian time. Note that although z∗ = z̄ for Euclidean times, it is no

longer true in Lorentzian time. However, any Lorentzian correlation function with arbitrary

ordering of operators can always be obtained from its Euclidean counterpart upon doing the

appropriate analytic continuation. We will describe the procedure shortly. The correlation

function we wish to compute is

F (t) ≡
〈V (0, 0)W (x, t)V (0, 0)W (x, t)〉β

〈V (0, 0)V (0, 0)〉β 〈W (x, t)W (x, t)〉β
, (2.4)

which by (2.3) can be mapped to

F (t) =
〈W (z1, z̄1)W (z2, z̄2)V (z3, z̄3)V (z4, z̄4)〉

〈W (z1, z̄1)W (z2, z̄2)〉 〈V (z2, z̄2)V (z4, z̄4)〉
. (2.5)

The positions of the operators are

z1 = e
2π
β
(x+t+iǫ1) z̄1 = e

2π
β
(x−t−iǫ1)

z2 = e
2π
β
(x+t+iǫ2) z̄2 = e

2π
β
(x−t−iǫ2)

z3 = e
2π
β
(iǫ3) z̄3 = e

2π
β
(−iǫ3) (2.6)

z4 = e
2π
β
(iǫ4) z̄4 = e

2π
β
(−iǫ4) .

The various factors of ǫi are regulators that are needed to analytically continue the Eu-

clidean correlator to Lorentzian time. The procedure is as follows. We start with finite

values of ǫi at t = 0. This is a Euclidean correlator. We then analytically continue in

Lorentzian time by increasing t keeping the ǫi finite. Finally, one can smear the operators

over Lorentzian time and then take the ǫi → 0. The order in which we take the ǫi to zero

will determine the ordering in Lorentzian time. Similarly to [6], we will omit this final step

and keep the ǫi finite and refer the reader to section 2.4 of [6] for a more detailed discussion.

Note that by conformal symmetry, this function is only a function of the cross ratios

given by

u =
z12z34
z13z24

, ū =
z̄12z̄34
z̄13z̄24

, (2.7)

which means

F (t) = F (u, ū) . (2.8)

If the correlator is purely Euclidean, then the function F (u, ū) is single valued. However,

this is no longer true for Lorentzian times and F (u, ū) becomes multivalued: a branch cut

stretches from 1 to ∞. One must specify which sheet we do the computation on, which

again is related to the choice of ordering for the operators. The ordering given in (2.4)

corresponds to doing the analytic continuation

1− u → 1− u , 1− ū → e2πi(1− ū) , (2.9)
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which circles around the branch point ū = 1 and hence crosses the branch cut. However,

nothing happens for the holomorphic cross-ratio u because we have broken the symmetry

between u and ū by considering Lorentzian times. Note that at late times, the cross-ratios

are small and read

u ≈ −e−
2π
β
(t+x)ǫ∗12ǫ34 , ū ≈ −e−

2π
β
(t−x)ǫ∗12ǫ34 , (2.10)

with

ǫij = i
(

e
2πi
β

ǫi − e
2πi
β

ǫj
)

. (2.11)

We will now turn to the computation of these correlation function for permutation

orbifolds.

3 Permutation orbifolds

We will consider OTO correlation functions in a particular family of 2d CFTs: permutation

orbifolds. Permutation orbifolds give a huge landscape of 2d CFTs at large central. They

are built in the following way: consider any 2d CFT C with central charge c; we will call C

the seed theory. Now consider the N -fold tensor product

C⊗N , (3.1)

which has central charge Nc. This theory has a global SN symmetry that permutes any of

the N copies of C. We may then take a quotient of this product theory by any subgroup

of the permutation group GN ⊆ SN . We are thus led to define

CN =
C⊗N

GN
. (3.2)

One can define such a theory for any seed theory C and for any group GN , which by taking

N large, gives a huge landscape of 2d CFTs with a large central charge and thus a possible

semi-classical holographic dual.

It is important to note that not all permutation groups have a well-defined large N

limit. For example, the number of states at fixed dimension ∆ may diverge as N → ∞.

We will therefore work with a subset of permutation orbifolds, those for which the group

GN is oligomorphic [33–35]. Oligomorphic means that the group has a finite number of

orbits on K-tuples as N → ∞ which in turn gives a finite number of states [25–27] of fixed

dimensions ∆ as N → ∞. For example, this excludes the cyclic orbifolds ZN but allows

group quite smaller than SN such as the wreath product S√
N ≀ S√

N .

3.1 Large N factorization

In [27], it was shown that a class of permutation orbifolds satisfy large N factorization.

This was shown to be the case for the symmetric group, the wreath product, as well as

any democratic group, i.e. groups with orbits of the same size in the large N limit. In this

paper, we will assume that large N factorization holds for all oligomorphic permutation

groups. Even if a general proof is still missing, we believe this to be true. As evidence,
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note that even the cyclic group that is not oligomorphic still satisfies large N factorization.

Alternatively, one can consider our results to apply to democratic permutation groups. For

simplicity, we will derive the expressions for the symmetric group SN and only reintroduce

the factors counting the numbers of orbits when we discuss the OTO correlators.

We now review the derivation of large N factorization given in [27] and generalize it

to four point functions. For simplicity, we will only consider untwisted sector operators

but the generalization to arbitrary twisted sectors follows trivially. The untwisted sector

operators can be described in the following way. Consider an ordered K-tuple ~K of distinct

integers, and a K-vector ~ϕ of states in the seed theory,

φ = φ( ~K,~ϕ) . (3.3)

The notation is that the CFT Ki is in state ϕi while all other CFTs are in the vacuum.

This is a state of the product theory (3.1). To obtain a state invariant under the action of

GN , we must sum over images of the group. This gives

Φ =
∑

g∈GN

φ(g. ~K,~ϕ) , (3.4)

where g acts only on the vector of integers, namely it permutes which of the N copies are

in excited states. Any untwisted sector state of the orbifold theory can be expressed this

way. Note that states where a single copy is in a non-trivial state correspond to single-trace

operators, whereas those that have multiple excited states give multi-trace operators.

We will now prove that a general 4-point function will have the following schematic

structure

〈Φ1Φ2Φ3Φ4〉

N1N2N3N4
≈

∑∏

〈ϕϕ〉+
∑

N−n3/2−n4 〈ϕϕϕ〉n3 〈ϕϕϕϕ〉n4
∏

〈ϕϕ〉 , (3.5)

where the Ni are normalization factors and 〈ϕ1 . . . ϕk〉 corresponds to a k-point function of

the seed theory. The leading term in the 1/N expansion corresponds to the disconnected

contribution for single-trace operators. For multi-trace operators, it simply corresponds to

the sum over all Wick contractions [36].

It is usefull to consider the following schematic contraction of the different excited

factors of the seed theory.

φ1 :

N
︷ ︸︸ ︷
• • • • • • • • • • • • • •
︸ ︷︷ ︸

K1

◦ ◦ ◦ ◦ ◦ · · · ◦

φ2 : • • • • • • • • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ · · · ◦

φ3 : • • • • • • • • •
︸ ︷︷ ︸

n123

◦ • • • • • • • • ◦ · · · ◦

φ4 : • • • • •
︸ ︷︷ ︸

n4

◦ ◦ ◦ ◦ ◦ • • • • • • • •
︸ ︷︷ ︸

n34

◦ · · · ◦
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Each black dot corresponds to an excited states whereas white dots correspond to vacua.1

The numbers nij or nijk tell us the number of 2 or 3 point overlaps of the seed theory and

n4 gives the number of 4 point overlaps. The numbers are not all independent, we have

n12 + n13 + n14 + n123 + n124 + n134 + n4 = K1

n12 + n23 + n24 + n123 + n124 + n234 + n4 = K2

n13 + n23 + n34 + n123 + n134 + n234 + n4 = K3 (3.6)

n14 + n24 + n34 + n124 + n134 + n234 + n4 = K4 .

Each state in this pictorial representation is accompanied by its own sum over the per-

mutation group. To calculate the correlation function, we only need to keep track of the

non-zero contributions, which means we only keep the terms where there are at least two

states overlapping because any 1-point function would vanish. We will take the states of

the seed to be orthonormal such that

〈ϕiϕj〉 = δij . (3.7)

We must also take into account the normalization factors Ni for the four operators Φi.

The two point function can be shown to be

〈ΦiΦi〉 = N !(N −Ki)! , (3.8)

which gives

Ni =
√

N !(N −Ki)! . (3.9)

We are now ready to evaluate the contribution to the 4p-function. Keeping only the N -

dependent factors, we obtain the following contributions:

• The sum over the group S1
N simply gives N !

• For S2
N , there are two contributions. First, the excited states of φ2 that are not

contracted with φ1 can be distributed in any way on the vacua of φ1. This gives a

contribution of
(

N−K1

K2−n12−n123−n124−n4

)
. Then, there is a factor of (N − K2)! coming

from the permutation of the vacua of φ2.

• For S3
N There are also two contributions. First the contractions of 3 and 4 only

can be distributed in any way along the vacua not occupied by 1 or 2. This gives

a contribution of
(
N−K1−n23−n24−n234

n34

)
. The vacua of φ2 also give a contribution of

(N −K3)!.

• Finally, the only contribution from S4
N comes from the vacua as all the other con-

tractions are fixed. This gives (N −K4)!

1In principal, one would have to keep track of the different seed theory states. This would amount to

giving different colors to the black dots. This will only keep track of N -independent numbers so we neglect

it for simplicity. See [36] for an exact expression in the case of the symmetric group.
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Adding the normalization factors, we get a contribution of

√

(N −K1)!(N −K2)!(N −K3)!(N −K4)!

N !(N − 1/2(K1 +K2 +K3 +K4)! + n4 + n3/2)
, (3.10)

with n3 = n123 + n124 + n134 + n234. Using Stirling’s approximation, it is easy to see that

we recover the form (3.5). A term which has n3 and n4 three and four-point overlap and

will be of order

N−n3/2+n4 . (3.11)

We will now proceed to the evaluation of F (t) using the results we just derived.

4 Out-of-time-ordered correlators in permutation orbifolds

4.1 Untwisted sector single-trace operators

We will start with the simplest possible choice of operators: single-trace operators. These

will be operators given by

V =
N∑

k=1

ϕk
i , W =

N∑

k=1

ϕk
j , (4.1)

where i and j label operators of the seed theory and the sum over k sums over the N

copies. They are symmetric operators invariant under SN .

One might wonder wether there are multiple operators of this form for a given φi if

the group is a subgroup of SN , rather than the full symmetric group. This would mean

that there are multiple orbits of the group when acting on 1-tuples. While there clearly

are examples of oligomorphic permutation groups that have this property (for example

SN/2 × SN/2), we will not consider them here. These theories would have more than one

stress tensor and would hence be peculiar. We will focus on oligomorphic permutation

groups who have a single orbit when acting on 1-tuples.

For such a choice of operators, it is easy to see that there cannot be 3-point overlaps

hence n3 = 0. We get

F (t) = 1 +
1

N

〈ϕi(z1, z̄1)ϕi(z2, z̄2)ϕj(z3, z̄3)ϕj(z4, z̄4)〉

〈ϕi(z1, z̄1)ϕi(z2, z̄2)〉 〈ϕj(z2, z̄2)ϕj(z4, z̄4)〉
. (4.2)

This shows that the dynamics of the four-point function at late times is completely

fixed by the behaviour of the OTO correlation function in the seed theory. It is now easy

to see that F (t) cannot become small at late times. To see that, notice that there are

essentially two scenarios. First, the seed theory could be chaotic. In that case, its own

OTO correlator would vanish at late times. Second, it could be non-chaotic which means

its OTO would not vanish at late times and stay of order one. In any event, the OTO

correlator of the seed theory can never become O(N). In fact, it cannot even know about

the existence of a parameter N . This shows that the OTO of all single-trace operators

stays of O(1) at late times. We now turn to multi-trace operators.
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4.2 Untwisted sector multi-trace operators

For a multi-trace operator, the expression of F (t) will be more complicated. In general it

will be of the form

F (t) = 1 +
∑

g2( ~K, ~ϕ)f2(t) +
1

N

[∑

g3( ~K, ~ϕ)f3(t) +
∑

g4( ~K, ~ϕ)f4(t)
]

+ . . . (4.3)

where f2(t), f3(t), f4(t) are the contribution coming from 2-point, 3-point and 4-point over-

laps respectively. The gi are combinatorial factors that depend on the number of seed

operators chosen, wether they are all the same or not, and the choice of the group. It can

be determined purely from group theory arguments by counting the number of orbits on a

given (un)ordered K-tuple. In any case, note that

gi ∼ O(1) , (4.4)

as implied by the fact that we are considering oligomorphic permutation groups which by

definition have a finite number of orbits as N → ∞. Also note that the sums in (4.3) run

over an O(1) number of possibilities. This results from the fact that we considered V andW

to be “simple” operators, made out of an O(1) number of seed theory operators. In partic-

ular, V and W must have ∆ ≪ N . We will now analyze the various contributions to (4.3).

4.2.1 2-point overlaps

The 2-point overlap captures the disconnected contribution to the four-point function. For

single-trace operators, this term simply gave one. For multi-trace operators, there can be

contractions between seed operators in V and seed operators in W if V and W share a

same seed theory operator. This means we can have terms of the form

〈ϕa(z1)ϕa(z4)〉 〈ϕa(z2)ϕa(z3)〉

〈ϕa(z1)ϕa(z2)〉 〈ϕa(z3)ϕa(z4)〉
=

(
u

1− u

)2ha
(

ū

1− ū

)2h̄a

〈ϕa(z1)ϕa(z3)〉 〈ϕa(z2)ϕa(z4)〉

〈ϕa(z1)ϕa(z2)〉 〈ϕa(z3)ϕa(z4)〉
= u2ha ū2h̄a . (4.5)

One can quickly see that these terms do not do anything interesting upon taking an analytic

continuation. Terms of the first type simply gives a phase upon analytic continuation

whereas those of the second type do nothing. Furthermore, u, ū → 0 when t ≫ td which

means both types of terms will quickly decay. We now turn to the three-point overlaps.

4.2.2 3-point overlaps

First, it is important to note that there must be an even number of three point overlaps

because the four point function we consider has two pairs of identical operators. It is then

easy to see that the most general form of f3(t) will be

f3(t) = C2
i u

p1(hi)(1− u)p2(hi)ūp̄1(h̄i)(1− ū)p̄2(h̄i) (4.6)

where the pi are linear functions of the conformal weights and C2
i is an ope coefficient of

three operators of the seed theory squared. Also, one can easily check that p1, p̄1 > 0. This

shows that the three-point overlaps do not have interesting analytic continuations and just

like the two-point overlaps, they would pick up a simple phase and anyway decay for times

much greater than the dissipation time.
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4.2.3 4-point overlaps

The contributions from the 4-point overlap are of course very similar to the case where we

had single-trace operators. They take the form

〈ϕa(z1)ϕa(z2)ϕb(z3)ϕb(z4)〉

〈ϕa(z1)ϕa(z2)〉 〈ϕb(z3)ϕb(z4)〉
, (4.7)

which again is an OTO correlation function in the seed theory. The only difference with

the single-trace operators is that there will be a sum over different OTO correlators in the

seed theory, weighted by sum combinatorial factor that depends on the number of different

states and the group GN .

Nevertheless, this implies that the OTO correlators of the multi-trace operators cannot

decrease at late times as it is built out of an O(1) number of seed theory OTO correlators

that each may decay or not, but at least can never become large. This closes our analysis

of the untwisted sector operators.

We have shown that an arbitrary choice of untwisted sector operators V and W with

∆ ≪ N yields an OTO correlator that cannot decay at late times. It is tempting to conclude

that this already proves that permutation orbifolds cannot be chaotic. Note however that

the growth of operators in the symmetric product theory is dominated by twisted sector

operators [25], which grow as

ρtw(∆) ≈ e2π∆ , (4.8)

whereas the growth of untwisted sector operators only goes as

ρuntw(∆) ≈ e
∆

log∆ . (4.9)

One could then argue that an untwisted sector operator is actually not generic, and that

it is perhaps the reason why they do not decay at late times. We will now show that the

twisted sector operators behave exactly in the same way.

4.3 Twisted sector operators

The expression for generic twisted sector operators will still take the form (4.3). As showed

in the previous section, there is no fundamental difference between single-trace and multi-

trace operators at this level so we will consider multi-trace operators to stay as general

as possible. It is easy to show that the 2-point and 3-point overlaps behave exactly the

same way as for the untwisted sector operators. This results from the fact that the only

data necessary do derive (4.5) and (4.6) was the conformal weights. f3(t) also carries an

OPE coefficient of the seed theory squared but these are O(1) numbers and do not play

an important role. For this reason, no interesting contribution can come from the two and

three-point overlaps.

We still need to consider the four-point overlaps. The general structure of these con-

tributions is sketched in [27, 37–39] and reads

〈ϕa(z1)ϕa(z2)ϕb(z3)ϕb(z4)〉

〈ϕa(z1)ϕa(z2)〉 〈ϕb(z3)ϕb(z4)〉
, (4.10)

– 11 –



J
H
E
P
1
1
(
2
0
1
7
)
1
3
1

where the ϕa,b are now operators in some Sk orbifold theory where k ∼ O(1). For example,

if the twisted sector contains a single cycle of length k, the operators will be twisted sector

operators in a Zk orbifold theory, which were considered in [21].2

But now, the same logic we applied for the untwisted sector operators can be used

here. Independently of wether this Sk orbifold theory is chaotic or not, its OTO four-point

function can never become O(N). It would be nice to be able to bound the OTO four-point

function, for example by its value at t = 0. This can be done for the spectral-form factor

which is an analytic continuation of the partition function [40, 41]. The bound simply

comes from the fact that the partition function is a sum over positive contributions and

introducing phases can only decrease its value. Unfortunately, a similar reasoning does

not apply to the OTO four-point function as the Euclidean correlator is not a sum over

positive contributions. Also, if V and W are null separated then the Lorentzian correlator

must diverge. Nevertheless, once we move away from the lightcones and go to late times

the correlator (4.10) still cannot be of order N .

As an example, one can consider the four-point function of two twisted and two un-

twisted operators in the D1D5 CFT. The two twist operators we will consider are special in

that they correspond to the operators that deform the theory towards the strongly coupled

regime. The Euclidean correlator was calculated in [39] and it was shown in [19] that it

does not vanish at late times after we analytically continue to the OTO setup. A general

four-point function of twisted operators in the D1D5 CFT at the orbifold point will be hard

to compute but for the reasons mentioned above, we do not expect it to decay at late times.

This closes our discussion of all possible operators of dimension ∆ ≪ N in permu-

tation orbifolds. We have shown that their OTO correlators do not decay at late times,

indicating that permutation orbifolds are not chaotic theories. This is in fact expected,

since permutation orbifolds correspond to free discrete gauge theories.

4.4 The early time behaviour

So far, we have been interested in the behaviour of the OTO correlator at late times (t ∼ ts)

and have simply investigated wether it decays to zero or not. In this sense, permutation

orbifolds are universal and all share the same structure: the OTO of generic operators does

not decay at late times and stays of order one.

However, one may wonder what happens at earlier times (t ≪ ts). This is where the

universality will break down and the physics will be theory-dependent. In particular, the

choice of the seed theory will dictate the dynamics at early times. This dependence on de-

tails of the theory was made explicit in [21] where the authors considered the behaviour of

the OTO correlator in Zn orbifolds of T2. As they show, the answer depends strongly on the

compactification radius and wether it is a rational number or not. For irrational compact-

ification radii, they find a polynomial decay. This is directly relevant for the behaviour of

the OTO correlator in permutation orbifolds, where this type of behaviour will be relevant

at early times (see also [42] for a discussion of OTO correlators in rational CFTs).

2It is also possible to view these twisted sector four-point functions as correlation functions of the seed

theory but on a complicated Riemann surface, although it will not be particularly helpful here.
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In general, if one picks a seed theory that is chaotic, we expect there to be some

interesting time-dependence at early times dictated by the physics of the seed theory. Note

however that there is no clear notion of a Lyapunov exponent for CFTs with central charge

c ∼ O(1) as there is no parametrically large difference between the dissipation time and

the scrambling time.

4.5 Deformation to strong coupling

We know that CFTs dual to weakly-coupled supergravity should be maximally chaotic since

black holes in Einstein Gravity saturate the chaos bound [9]. This means that deforming

the D1D5 CFT away from the orbifold point should drastically change the behaviour of the

OTO correlation function. To see this, one needs to study the orbifold theory deformed by

a twist-2 operator. The deformation is

δS = α

∫

dzdz̄O(z, z̄) (4.11)

where O(z, z̄) is the exactly marginal operator described in [39, 43, 44] built from the

twist-2 operator. The scaling of the coupling α can be shown to be [38]

α ∼ λN1/2 (4.12)

where λ is the ’t Hooft coupling and is fixed in the limit N → ∞. Only even powers of λ

will appear in the OTO correlators as we do conformal perturbation theory. This means

that the first correction will be of the form

λ2N
〈VWVWσσ〉con
〈V V 〉 〈WW 〉

. (4.13)

It would be very interesting to compute this correction using second-order conformal pertur-

bation theory. Nonetheless, much more work is needed to compute the Lyapunov exponent

perturbatively. One would need to resum ladder diagrams along the lines of [13], which

in this case means considering four-point function on arbitrary genus Riemann surfaces,

integrated over the moduli of the surface. This appears to be a very complicated task and

it is not clear to us how to use the ladder diagram re-organization in this context. It would

be interesting to attempt this calculation but we leave this for future work.
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