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1 Introduction

Finite charges in a gravity theory with AdS asymptotics are a consequence of the renor-

malization of the action [1, 2]. The standard procedure to achieve this is to consider a

conformal boundary at a given cutoff z = ε in the radial coordinate and to identify the di-

vergent terms that appear in both the action and its variation. In doing so, it is particularly

useful to consider the Fefferman-Graham coordinate frame [3]

ds2 =
`2

4z2
dz2 +

gij(x, z)

z2
dxidxj , (1.1)

suitable to deal with any asymptotically AdS (AAdS) space. The near-boundary (z = 0)

expansion is written as

gij(x, z) = g(0)ij + zg(2)ij + z2g(4)ij + · · · , (1.2)

where g(0)ij is the initial data for the problem of holographic reconstruction of the space-

time. In the context of gauge/gravity duality, g(0)ij is the background metric of the bound-

ary CFT. AdS/CFT is then realized as the matching of boundary/bulk correlators, defined

as functional derivatives with respect to the holographic source g(0)ij .
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Evaluating the gravity action on-shell, the terms that contain negative powers of z

will blow up at the cutoff. These divergent pieces are a combination of the coefficients

g(k)ij in the expansion (1.2), which are not covariant from the point of view of gij(x, z).

Therefore, it is required to invert the series to express a given coefficient as a series of

covariant functionals of the metric gij(x, z), with an increasing number of derivatives.

The result is a renormalized AdS action in D = d+1 dimensions, which is supplemented

by a series of intrinsic counterterms as surface terms on top of a generalized Gibbons-

Hawking term [4, 5]

Iren = I + IGGH +

∫
∂M

dD−1x
√
−hLct(h,R,∇R) . (1.3)

These counterterms depend on the boundary metric hij , the intrinsic curvature Rikjl (h)

and its covariant derivatives.

Once the AdS gravity action has been properly renormalized, one can compute holo-

graphic 1-point functions as functional variations with respect to the metric g(0)ij , that is,

T ij
[
g(0)

]
=

2√
−g(0)ij

δIren

δg(0)ij
= lim

z→0

(
1

zd−2
T ij [h]

)
. (1.4)

In the previous relation, a suitable rescaling of the quasilocal energy-tensor [6, 7]

T ij = πij +
2√
−h

δLct

δhij
, (1.5)

and the limit to the asymptotic boundary has been taken. The tensor πij stands for the

canonical momentum associated to a radial foliation of the spacetime.

Obtaining the counterterm series in Einstein-Gauss-Bonnet (EGB) AdS and, in gen-

eral, Lovelock AdS gravity requires the full machinery of holographic techniques. The

presence of higher-order terms in the curvature, in this case, turns Holographic Renor-

malization into a formidable task. Computations are particularly involved, and the net

outcome does not shed light on the general problem of holographic description of higher-

curvature gravity theories.

On the other hand, an alternative background-independent regularization scheme for

Einstein AdS gravity was introduced in refs. [8, 9]. The asymptotic form of the extrinsic

curvature Kij makes possible the addition of a given boundary term Bd(h,K,R), which

depends on the boundary metric, the extrinsic curvature and the boundary curvature

Ĩren = Ibulk + cd

∫
∂M

ddxBd(h,K,R) , (1.6)

where cd is a given coupling. This proposal, also known as Kounterterm method, by-passes

the standard holographic techniques as it is based on the addition of boundary terms

linked to topological invariants and Chern-Simons densities. Despite the fact that this

action manifestly spoils the Dirichlet problem for the boundary metric hij , its variation

is both finite and expressible in terms of δg(0)ij . In other words, Ĩren is a renormalized
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Einstein AdS action, of a different sort, which allows to define holographic quantities

at the boundary without the need of a quasilocal stress tensor as an intermediate step.

Holographic Renormalization is an efficient tool to cancel divergences in the action and

the corresponding correlation functions in gravity theories like Einstein or Einstein-Gauss-

Bonnet with negative cosmological constant. However, due to its perturbative nature, it is

extremely complicated in theories that contain higher powers in the curvature, as it is the

case of Lovelock.

That is the reason why the extension of the Kounterterm method to Lovelock AdS

gravity [10, 11] was a relevant step towards a holographic description of a generic gravity

theory with second-order field equations.

However, as the on-shell variation of the total action (1.6) does not define a Dirichlet

action principle for the metric hij , i.e.,

δĨren =

∫
∂M

ddx
√
−h
(

1

2
τ̂ ji
(
h−1δh

)i
j

+ ∆j
i δK

i
j

)
, (1.7)

a Brown-York quasi-local stress tensor cannot be directly read off from it. Only a tour-de-

force approach, that is, performing asymptotic expansions in eq. (1.7), can show which are

the relevant quantities at the conformal boundary (z → 0). The lack of an argument that

would streamline this computation prevents from extracting holographic information from

eq. (1.7) in a straightforward way.

In a way, we would like to know how the tensor τ̂ ji is connected to a stress-energy

momentum T ji of the theory. What we know this far is that τ̂ ji provides the total energy

(black hole mass plus vacuum energy) for a gravitational object in any Lovelock AdS theory

as the surface integral

Q[ξ] =

∫
Σ∞

dD−2y
√
σ ujξ

iτ̂ ji , (1.8)

where σ is the determinant of the metric of the codimension-2 surface Σ∞ (t = const

and r = ∞), uj is a normal to the constant-time slice and ξi is an asymptotic Killing

vector [10, 11]. On the other hand, we know that the tensor τ̂ ji is separable in the form

τ̂ ji = τ ji + τ j(0)i , (1.9)

where τ(0) is different from zero only in odd spacetime dimensions. This is justified by the

fact that τ ji is a polynomial of the spacetime Riemann tensor and the metric, which can

always be factorized by the AdS curvature

Fµναβ = Rµναβ +
1

`2eff

δµναβ , (1.10)

where `eff is an effective AdS radius, which accounts for the higher-curvature couplings in

the Lovelock action, i.e., corrections respect to Einstein gravity. Thus, for AdS vacuum

(F = 0), τ ji vanishes identically. Therefore, we know that, in general, τ and τ(0) give rise

to the mass of the black hole and the zero-point energy for global AdS space, respectively.

– 3 –
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In this paper, we relate Kounterterms charges to another definition of conserved quan-

tities in AAdS spacetimes, which was given for Einstein gravity by Ashtekar-Magnon-Das

(AMD) [12, 13]. This notion of energy, also known as Conformal Mass, is given in terms

of the electric part of the Weyl tensor

Eji =
1

D − 3
W jµ
iν nµn

ν , (1.11)

where nµ is a spacelike normal to the boundary, and it is given by the integral

H[ξ] = − `

8πG

∫
Σ∞

dD−2y
√
σ ujE

j
i ξ
i
. (1.12)

The fact that there are two quantities which identically vanish for a global AdS space

(the AdS curvature in eq. (3.3) and the Weyl tensor) was the key observation to prove that

Eji can be obtained as a truncation of the Kounterterm charges in Einstein AdS [14] and

Einstein-Gauss-Bonnet AdS [15] theories.

Here, we study the generic fall-off of the metric and the curvature for black hole

solutions in Lovelock AdS gravity, in order to see when it is possible to linearize the tensor

τ ji , such that it still contains the information on the energy of the system. In simple terms,

this is equivalent to provide a criterion that discriminates when the Weyl tensor is able to

measure the mass of Lovelock black holes with respect a global AdS background.

2 Lovelock AdS gravity

Higher-dimensional gravity theories in AdS space with second-order equations of motion

are of particular interest for holographic purpose. They represent a generalization of Gen-

eral Relativity and depend on a number parameters which provide a richer playground

for gauge/gravity duality applications. At the same time, they require a minimal set of

holographic data as the holographic reconstruction of the spacetime is given only in terms

of the metric source at the boundary.

The action of Lovelock gravity in a D-dimensional spacetime M with a metric gµν , is

a series of dimensionally continued Euler densities [16, 17]

Lp =
1

2p
δ
µ1···µ2p

ν1···ν2p
Rν1ν2
µ1µ2
· · ·Rν2p−1ν2p

µ2p−1µ2p , (2.1)

which are polynomials of order p in the Riemann curvature Rµναβ . It is clear from the

above relation that such terms exists only up to p = N = [(D − 1)/2]. In our notation,

δ
µ1···µ2p
ν1···ν2p = det[δµ1

ν1 δ
µ2
ν2 · · · δ

µ2p
ν2p ] is completely antisymmetric product of 2p Kronecker deltas.

The action is, therefore, an arbitrary linear combination of Lp,

I =
1

16πG

∫
M

dDx
√
−g

N∑
p=0

αpLp , (2.2)

where αp are coupling constants and G is the Newton constant. In general, the set {αp}
is arbitrary, but restrictions may apply if one imposes additional conditions on the theory.

– 4 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
8

In fact, in the context of gauge/gravity duality, the values of αp are restricted by causality

in a holographically dual theory [18]. It also been shown that, for certain values of the

parameters, black holes are unstable under gravitational perturbations in EGB [19] and

Lovelock theory [20].

In order to see the higher-curvature terms as corrections to the Einstein-Hilbert AdS

gravity, we fix the first coupling constants as α1 = 1 and α0 = −2Λ, where Λ = −(D −
1)(D − 2)/2`2 is the cosmological constant expressed in terms of the AdS radius `. Then,

the action becomes

I =
1

16πG

∫
M

dDx
√
−g

R− 2Λ +
N∑
p=2

αp
2p
δ
µ1···µ2p
ν1···ν2p R

ν1ν2
µ1µ2
· · ·Rν2p−1ν2p

µ2p−1µ2p

 . (2.3)

The equations of motion read

Rµν −
1

2
Rδµν + Λδµν − Lµν = 0 , (2.4)

where, in higher dimensions (D > 4), the Einstein tensor with the cosmological constant

acquires a contribution of higher-curvature terms through the Lanczos-Lovelock tensor

Lνµ =

N∑
p=2

αp
2p+1

δ
νν1···ν2p
µµ1···µ2p R

µ1µ2
ν1ν2
· · ·Rµ2n−1µ2p

ν2p−1ν2p . (2.5)

Lovelock gravity possesses a plethora of different vacua. In this paper, we will fo-

cus only on AdS branches. An AdS vacuum is a maximally symmetric solution of the

gravitational equations of motion (2.4)–(2.5)

Rµναβ = − 1

`2eff

δµναβ . (2.6)

Higher-order curvature terms change the bare AdS radius of Einstein-Hilbert gravity, `, to

the effective AdS radius, `eff .

The substitution of the maximally-symmetric condition into the equations of motion

gives rise to a polynomial in `−2
eff ,

∆(`−2
eff ) =

N∑
p=0

(D − 3)! (−1)p−1αp
(D − 2p− 1)!

(
1

`2eff

)p
= 0 , (2.7)

such that each root of ∆ defines a different sector in the theory.

2.1 Vacuum degeneracy

Let us consider, as an example, Einstein-Gauss-Bonnet AdS gravity in D ≥ 5, which is

quadratic in the curvature. We set the couplings α2 = α in Lµν and αp = 0 for 3 ≤ p ≤ N .

The polynomial (2.7) reads

α(D − 3)(D − 4)
1

`4eff

− 1

`2eff

+
1

`2
= 0 , (2.8)
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leading to the effective AdS radii

`
(±) 2
eff =

2α(D − 3)(D − 4)

1±
√

1− 4α(D−3)(D−4)
`2

. (2.9)

EGB AdS gravity, therefore, has two simple, different AdS vacua in the range of Gauss-

Bonnet coupling α < `2

4(D−3)(D−4) , that is,

`
(+) 2
eff 6= `

(−) 2
eff . (2.10)

When α > `2

4(D−3)(D−4) , the AdS branch cannot be defined. At the critical point α =
`2

4(D−3)(D−4) , there is only one degenerate vacuum of multiplicity two with the radius

`
(+) 2
eff = `

(−) 2
eff =

`2

2
. (2.11)

In five dimensions, the EGB gravity at the degenerate point in the space of parameters

becomes Chern-Simons gravity, which has an enhanced gauge symmetry. The EGB example

suggests that a behavior of solutions within a degenerate branch would be different than

the ones obtained as massive perturbations around a simple vacuum.

In Lovelock AdS gravity, a given vacuum with the radius `eff is simple (or non-

degenerate) if

∆′(`−2
eff ) =

N∑
p=1

(D − 3)! (−1)p−1pαp
(D − 2p− 1)!

(
1

`2eff

)p−1

6= 0 . (2.12)

A vacuum with the radius `eff is degenerate, with multiplicity K > 1, if all derivatives of

∆(`−2
eff ) vanish up to the order K, i.e.,

∆(q)
(
`−2
eff

)
=

1

q!

dq∆

d
(
`−2
eff

)q = 0 , q < K ,

∆(K)
(
`−2
eff

)
=

N∑
p=K

(
p

K

)
(D − 3)! (−1)p−1αp

(
`−2
eff

)p−K
(D − 2p− 1)!

6= 0 . (2.13)

In EGB AdS gravity, it is straightforward to show that the vacua (2.10) fulfil ∆′ 6= 0,

whereas the vacuum (2.11) satisfies ∆′ = 0 and ∆′′ 6= 0.

In order to get deeper insight into the role of vacuum multiplicity, in what follows we

analyze the asymptotic behavior of solutions in Lovelock AdS gravity.

2.2 Black hole solution and its asymptotic behavior

Lovelock AdS gravity possesses static black hole solutions in an arbitrary dimension D.

The geometry, in that case, is described by the metric

ds2 = −f(r) dt2 +
1

f(r)
dr2 + r2dΣ2

D−2 , (2.14)

– 6 –
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where dΣ2
D−2 = σmn(y)dymdyn is the line element of the transversal section with constant

curvature k = +1, 0,−1. The explicit form of the metric function f(r) depends on the par-

ticular Lovelock theory for a given set {αp}. It is, therefore, calculated from the following

algebraic master equation [21–25]

N∑
p=0

αp(D − 3)!

(D − 2p− 1)!

(
k − f(r)

r2

)p
=

µ

rD−1
. (2.15)

The integration constant µ is related to the mass of the solution.

Without loss of generality, here, we deal with the case k = 1. In particular, for global

AdS space (µ=0), the metric function becomes fAdS = 1 + r2

`2eff
, where `eff is one of the

AdS vacua in eq. (2.7). Therefore, in asymptotically AdS space, the metric function can

be written as

f(r) = 1 +
r2

`2eff

+ ε(r) , (2.16)

where ε(r) is a function with a fast fall-off. From the above relation, it follows that the

master equation (2.15) in terms of the function ε(r) has the form

N∑
p=0

(−1)pαp(D − 3)!

(D − 2p− 1)!

(
1

`2eff

+
ε(r)

r2

)p
=

µ

rD−1
. (2.17)

This algebraic equation can be solved order by order in ε.

Writing down the binomial expansion for small ε,

µ

rD−1
=

N∑
p=0

(D − 3)! (−1)pαp
(D − 2p− 1)!

[
1 +

pε

r2

(
1

`2eff

)p−1

+
p(p− 1)

r4

(
1

`2eff

)p−2

+O
(
(ε/r)2K

)]
,

(2.18)

one recognizes the coefficients of the sum as ∆(`−2
eff ) and ∆(q)(`−2

eff ) given by eqs. (2.7)

and (2.13), respectively. An immediate consequence of this is that the series acquires a

simple form

− µ

rD−1
=

N∑
q=1

∆(q)
(
`−2
eff

) ( ε
r2

)q
, (2.19)

where it was used that the fact that ∆(`−2
eff ) = 0. From the criterion (2.13), it is manifest

that the first non-trivial term in the asymptotic form depends on the vacuum degeneracy

condition.

For a non-degenerate vacuum, ∆′ 6= 0, we obtain

ε(r) = − µ

∆′
(
`−2
eff

)
rD−3

+O
(
1/r2D−4

)
, (2.20)

what implies that the metric function behaves asymptotically as

f(r) = 1 +
r2

`2eff

− µ

∆′
(
`−2
eff

)
rD−3

+O
(
1/r2D−4

)
. (2.21)
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In turn, for a degenerate vacuum with multiplicity K, such as the one that defines

Lovelock Unique Vacuum gravity, the fall-off of the mass term in the metric is slower as K

is larger,

f(r) = k +
r2

`2eff

+
(
− µ

∆(K) rD−2K−1

) 1
K

+O
(
r−(2D−2K−2)/K

)
. (2.22)

An illustrative example of the asymptotic behavior of a solution with respect to mul-

tiplicity of the vacuum is given by the EGB AdS and Chern-Simons (CS) AdS black holes

in D = 5. For a generic solution to EGB AdS gravity, f(r) behaves as

fEGB ∼ 1 +
r2

`2eff

− m

r2
, (2.23)

where m is an effective mass parameter and the Gauss-Bonnet coupling satisfies α >

`2/8 (2.10). At the critical point α = `2/8, the multiplicity of the vacuum is K = 2 and

the CS AdS black hole has a fall-off two orders slower than the EGB AdS black hole, i.e.,

fCS ∼ 1 +
r2

`2eff

− ν , (2.24)

where ν is a constant.

Our goal is to derive the equivalent form of the formula of Conformal Mass for Lovelock

AdS gravity. To this end, we have to impose a suitable condition on the asymptotic form

of the Weyl tensor within a given branch of the theory. This can be worked out from the

general fall-off of the mass term in the metric and it should turn out to be one prescribed

by Ashtekar-Magnon-Das in the case of Einstein AdS gravity. From eq. (2.22), we may

anticipate that the vacuum degeneracy will play an important role in the derivation of

the result.

Indeed, in what follows, we show that ∆′ 6= 0 is a necessary condition to have a

well-defined AMD mass.

3 Weyl tensor vs. AdS curvature

In Einstein gravity, the Weyl tensor contains the modes that represent propagating waves

in vacuum. In general, Weyl tensor is the traceless part of the Riemann tensor, that is,

Wµν
αβ = Rµναβ −

1

D − 2
δ

[µ
[αR

ν]
β] +

R

(D − 1)(D − 2)
δµναβ , (3.1)

where

δ
[µ
[αR

ν]
β] = δµαR

ν
β − δ

µ
βR

ν
α − δναR

µ
β + δνβR

µ
α. (3.2)

On the other hand, the only nonvanishing part of the field strength associated to the AdS

group in a Riemannian theory is

Fµναβ = Rµναβ +
1

`2
δµναβ . (3.3)

– 8 –
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We will loosely refer to this quantity as AdS curvature. A remarkable property of Einstein

AdS gravity is that these two quantities are equal on-shell. On top of that, for global AdS

space, both tensors vanish.

In Lovelock gravity, nonlinear curvature terms modify these tensors in a different

manner. The AdS curvature incorporates the information on corrections to EH gravity in

the effective AdS radius `eff taking the form (1.10). In turn, the Weyl tensor evaluated on-

shell, this time contains higher-order curvature terms through the Lanczos-Lovelock tensor,

Wµν
αβ = Rµναβ +

(
1

`2
+

2L

(D − 1)(D − 2)

)
δµναβ −

1

D − 2
δ

[µ
[αL

ν]
β] , (3.4)

where L is the trace of Lµν . The introduction of additional terms leads to a difference

between the Weyl tensor and the AdS curvature given by the expression

Xµν
αβ = Wµν

αβ − F
µν
αβ =

(
1

`2
− 1

`2eff

+
2L

(D − 1)(D − 2)

)
δµναβ −

1

D − 2
δ

[µ
[αL

ν]
β] , (3.5)

when field equations hold.

At this point, it remains to be seen whether the tensor X contributes to the charges

of the theory, defined as surface integrals at radial infinity.

To the above end, we analyze the asymptotic behavior of the higher-order curvature

terms present in Xµν
αβ , what can be obtained from the evaluation in the generic solu-

tion (2.22). For EH AdS and non-degenerate EGB AdS gravity, the fact that X is sublead-

ing was shown in refs. [14] and [15]. In Lovelock case, one should consider the generalization

of eq. (2.22) which includes the subleading contribution for large r,

f(r) = k +
r2

`2eff

+
(
− µ

∆(K) rD−2K−1

)1/K
− ∆(K+1)

K∆(K)

(
µ2

∆(K)2 r2D−2K−2

)1/K

+ · · · . (3.6)

Once one knows the form of f(r), it is straightforward to evaluate the asymptotic

behavior of the AdS curvature, what yields

Fµναβ ∼
( µ

∆(K) rD−1

)1/K
= O

(
1/r

D−1
K

)
. (3.7)

The above expression reduces to the known form Fµναβ = O
(
1/rD−1

)
in EH and EGB

theories.

Notice that the fall-off of Fµναβ is slower as the degeneracy K increases. For example, in

D = 5, the AdS tensor behaves as 1/r4 in EGB AdS gravity, and as 1/r2 in CS AdS gravity.

As discussed above, the relevant quantity for definition of the conformal mass is the

Weyl tensor. We can notice that the asymptotic form of the metric function (3.6) suggests

that a difference between the Weyl and AdS curvature tensors (3.5) of a massive state

in Lovelock AdS gravity is given as an power-expansion of the quantity (µ/rD−1)1/K . A

straightforward calculation confirms this claim, showing that

Xµν
αβ ∼ (K − 1)AK

( µ

rD−1

) 1
K

+ (K − 2)BK

( µ

rD−1

) 2
K

+ · · · . (3.8)
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The coefficients AK and BK account for higher-order corrections αp≥2 and they identically

vanish in EH gravity (αp≥2 = 0).

The above expression singles out K = 1 as a special case with particular asymptotic

behavior of the Weyl tensor. As long anticipated, for a non-degenerate vacuum (K = 1),

the difference between the Weyl tensor and the AdS curvature in any Lovelock AdS gravity

is subleading in r of order Xµν
αβ = O

(
µ2/r2(D−1)

)
. This agrees with the known result in the

EGB gravity [15]. When the vacuum is degenerate (K 6= 1), then the asymptotic decay of

Xµν
αβ is slower, as O

(
(µ/rD−1)1/K

)
.

In consequence, we focus on non-degenerate vacua, as the fall-off in that case is essential

for the obtention of a finite mass from a charge expression linear in the Weyl tensor, as it

is the matter of the discussion in the following section.

4 Linearization of Kounterterm charges and Conformal Mass

In gravity, the Noether charge associated to the isometries of spacetime provides an elegant

and simple way to calculate the mass of the black hole. Due to the fact that Noether

currents are sensitive to the addition of boundary terms to the bulk action, a necessary

condition to produce the correct conserved quantities is to have a well-defined variational

problem.

The prescription for the boundary term in eq. (1.6) is different in even and odd di-

mensions, as shown in refs. [10, 11].
In D = 2n dimensions, the Kounterterm series reads

B2n−1 = 2n
√
−h

1∫
0

du δ
i1...i2n−1

j1...j2n−1
Kj1

i1

(
1

2
Rj2j3

i2i3
− u2Kj2

i2
Kj3

i3

)
. . .

(
1

2
Rj2n−2j2n−1

i2n−2i2n−1
− u2Kj2n−2

i2n−2
K

j2n−1

i2n−1

)
,

(4.1)

where the corresponding coupling constant is

c2n−1 = − 1

16πnG

n−1∑
p=1

pαp
(D − 2p)!

(
−`2eff

)n−p
. (4.2)

In D = 2n+ 1 dimensions, the boundary term takes the form

B2n = 2n
√
−h

1∫
0

du

u∫
0

ds δ
i1...i2n−1

j1...j2n−1
Kj1
i1

(
1

2
Rj2j3i2i3

− u2Kj2
i2
Kj3
i3

+
s2

`2eff

δj2i2 δ
j3
i3

)
× . . .

· · · ×
(

1

2
Rj2n−2j2n−1

i2n−2i2n−1
− u2K

j2n−2

i2n−2
K
j2n−1

i2n−1
+

s2

`2eff

δ
j2n−2

i2n−2
δ
j2n−1

i2n−1

)
, (4.3)

with the coupling constant

c2n = − 1

16πnG

 1∫
0

du(1− u2)n−1

−1
n∑
p=1

pαp
(D − 2p)!

(
−`2eff

)n−p
. (4.4)

The use of a parametric integrations in u and s is not only a mere formality, but allows to

write down the whole series in a very compact form, as well. It also enormously simplifies
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the derivation of Noether charges and, in particular, it will be extensively used in the

derivation of Conformal Mass for the theory. The above boundary terms depend explicitly

on `eff . In a way, that means that the information on the vacuum of the theory and its

multiplicity is encoded both in Bd and the corresponding couplings cd.

At this point, we motivate the main result reported below by the prospect of AMD

mass being generalized to Lovelock AdS gravity.

As the concept of Conformal Mass is not necessarily linked to the addition of boundary

terms to the gravity action, it is not guaranteed that its applicability can be extended to

this case.

The first evidence in that direction comes from the fact that, in both even and odd

dimensions, the charge density tensor τ ji is a polynomial in the curvature that can be always

factorized by the AdS curvature F ijkl (with boundary indices). This implies that the black

hole charge vanishes identically for global AdS spacetime [10, 11].

In what follows, we work out a formula for Conformal Mass in Lovelock AdS grav-

ity, which appears as a truncation of the Kounterterm charges to the linear order in the

curvature.

As we shall see below, when the AdS vacuum in non-degenerate, the polynomial that

multiplies the AdS curvature is at most finite. Therefore, it only contributes with a propor-

tionality factor. This is the key ingredient to transform the Noether charge in a formula

proportional to the Weyl tensor. On the contrary, in the degenerate vacuum case, the

expression turns nonlinear and cannot be truncated.

This explicit derivation of the AMD formula for Lovelock theory depends on whether

the dimension is odd or even. In next subsections, we highlight the main points in the

linearization of the charge in both cases. Further details are provided in appendix B.

4.1 Even dimensions

In D = 2n dimensions, the vacuum energy vanishes, i.e., τ j(0)i = 0. Thus, the only con-

tribution to the Noether charge comes from the charge density tensor τ ji , whose explicit

form is

τ ji =
`2n−2
eff

16πG
δ
jj2···j2n−1

i1···i2n−1
Ki1
i

n−1∑
p=1

pαp
2n−2 (2n− 2p)!

(
1

`2eff

)p−1

Ri2i3j2j3
· · ·Ri2p−2i2p−1

j2p−2j2p−1
×

×

[(
1

`2eff

)n−p
δ
i2pi2p+1

j2pj2p+1
· · · δi2n−2i2n−1

j2n−2j2n−1
− (−1)n−pR

i2pi2p+1

j2pj2p+1
· · ·Ri2n−2i2n−1

j2n−2j2n−1

]
. (4.5)

Then, the charge density tensor can be factorized by the AdS curvature as

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1i2...i2n−1
Ki1
i F

i2i3
j2j3
P i4...i2n−1

j4...j2n−1
(R) , (4.6)

where the form of the polynomial P(R), of order n−2 in the curvature, is given by eq. (B.5).

The crucial step is to evaluate the charge density (4.6) in the asymptotic region, and

to use a power-counting argument in the radial coordinate r, in order to see which are
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the terms that do contribute in the limit r → ∞. In that way, we will obtain a consis-

tent truncation of the charge, which still is able to give rise to the black hole mass in

Lovelock gravity.

As argued in the previous section, the asymptotic behavior of the fields depends on

degeneracy of the vacuum. A non-degenerate vacuum has the fall-off of the Weyl tensor

W ∼ O(1/rD−1). This was a key ingredient in the definition of Conformal Mass for AAdS

spaces in Einstein theory [12, 13]. In the non-degenerate case, eq. (3.8) implies that a

difference between the Weyl and AdS tensor is subleading, F = W +O(1/r2D−2). It is also

known that the corresponding expansions of the bulk curvature and extrinsic curvature are

given by

Ki
j = − 1

`eff
δij +O(1/r) ,

Rijkl = − 1

`2eff

δijkl +O
(
1/rD−1

)
, (4.7)

yielding a finite value for P, as well. It is not difficult to see that, in order to have a finite

charge Q[ξ], the charge density has to be τ ∼ O(1/rD−1), which is exactly the order of W .

In turn, all the other quantities contribute –at most– to the finite order.

This way of thinking has a concrete realization when one replaces the extrinsic curva-

ture and the bulk curvature in the charge density tensor (4.6) by its leading-order (finite)

part, what produces

τ ji = −
`2n−3
eff

16πG
δ
jj2···j2n−1

ii2···i2n−1
W i2i3
j2j3
P i4···i2n−1

j4···j2n−1

(
−`−2

eff δ
[2]
)

+O
(
1/r2D−2

)
. (4.8)

The explicit evaluation of the polynomial leads to

P i4...i2n−1

j4...j2n−1

(
−`−2

eff δ
[2]
)

=
∆′
(
`−2
eff

)
2n−1`

2(n−2)
eff (2n− 3)!

δi4j5j4j5
· · · δi2n−2j2n−1

j2n−2j2n−1
, (4.9)

where we have identified the sum as the degeneracy condition (2.12). It is clear that the

expression is non-vanishing only if the vacuum is a simple root, i.e., ∆′ 6= 0. Plugging in

P in the charge density tensor (4.8) and contracting the deltas, one gets

τ ji = − `eff

16πG

∆′(`−2
eff )

2(2n− 3)
δjj2j3ii2i3

W i2i3
j2j3

+O
(
1/r2D−2

)
. (4.10)

In order to have the Noether charge properly written as a formula for Conformal Mass,

τ ji must be proportional to the electric part of the Weyl tensor. Not surprisingly, this is

the case. Expanding the contractions of the Weyl tensor,

δjj2j3ii2i3
W i2i3
j2j3

= 2
(
δjiW

kl
kl − 2W kj

ki

)
, (4.11)

and using the fact that the Weyl tensor is traceless, we can show that

W kl
kl = 0 , Wµj

µi = W rj
ri +W kj

ki = 0 . (4.12)

– 12 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
8

In doing so, we obtain

δjj2j3ii2i3
W i2i3
j2j3

= −4W kj
ki = 4W rj

ri . (4.13)

By definition, the electric part of the Weyl tensor in even dimensions reads

Eji =
1

2n− 3
W rj
ri , (4.14)

where we have used the normal to the boundary nµ = (nr, ni) = (N, 0) (appendix A) in the

general relation eq. (1.11). Then, as a consequence of dropping subleading contributions

in the curvature, we obtain

τ ji = − `eff

8πG
∆′
(
`−2
eff

)
Eji . (4.15)

4.2 Odd dimensions

In a similar fashion as in even-dimensional case, in odd dimensions D = 2n+ 1, the mass

for black hole solutions to a generic Lovelock AdS gravity theory can be attributed to the

quantity τ ji ,

τ ji =
1

16πG2n−2
δjj2···j2ni1···i2n Ki1

i δ
i2
j2
×

×

 n∑
p=1

pαp
(2n− 2p+ 1)!

Ri3i4j3j4
· · ·Ri2p−1i2p

j2p−1j2p
δ
i2p+1i2p+2

j2p+1j2p+2
· · · δi2n−1i2n

j2n−1j2n
+

+ 16πGnc2n

1∫
0

du

(
Ri3i4j3j4

+
u2

`2eff

δi3i4j3j4

)
· · ·
(
R
i2n−1i2n
j2n−1j2n

+
u2

`2eff

δ
i2n−1i2n
j2n−1j2n

) (4.16)

with the coupling constant given by eq. (4.4).

The above expression can be factorized by the AdS curvature

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1i2...i2n−1
Ki1
i F

i2i3
j2j3
P̃ i4...i2n−1

j4...j2n−1
(R) , (4.17)

where P̃(R) is a polynomial of degree n− 2 in the Riemann tensor, as shown in eq. (B.20).

The details of this computation are given, to a certain extent, in appendix (B.2). Then,

one can follow a strategy that mimic the procedure in the even-dimensional case. As

a matter of fact, for a non-degenerate vacuum, F behaves as W + O(1/r2D−2) where

W = O(1/rD−1), such that the extrinsic and intrinsic curvatures are finite, as dictated by

eq. (4.7). Therefore, the charge integrand takes the form

τ ji = −
`2n−3
eff

16πG
δ
jj2...j2n−1

ii2...i2n−1
W i2i3
j2j3
P̃ i4...i2n−1

j4...j2n−1

(
−`−2

eff δ
[2]
)
. (4.18)

A straightforward calculation reveals that P̃(−`−2
eff δ

[2]) is proportional to the degener-

acy condition, in such a way that

τ ji = − `eff

16πG

∆′
(
`−2
eff

)
2 (2n− 2)

δjj2j3ii2i3
W i2i3
j2j3

. (4.19)
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Notice that the subleading terms were conveniently dropped out again. This means that,

even though the charge expression appears as truncated, it stills provides the same answer

for the mass of a black hole within that branch of the theory. Hence, the linearized charge

density tensor and the electric part of the Weyl tensor are related by the degeneracy

condition, that is,

τ ji = − `eff

8πG
∆′
(
`−2
eff

)
Eji . (4.20)

Thus, we have shown that both in even and odd dimensions, the linearization of

Kounterterm charges leads to a generalization of the AMD mass H[ξ] (1.12) to Lovelock

AdS gravity

HLovelock[ξ] = − `eff

8πG
∆′
(
`−2
eff

) ∫
Σ∞

d2n−2y
√
σ ujE

j
i ξ
i
. (4.21)

From the above formula, it is evident that, for a degenerate vacuum of the theory

(∆′ = 0), Conformal Mass vanishes identically. This definition of energy for massive grav-

itational objects reproduces known results for particular cases.

In fact, in EH AdS gravity, switching off all higher-curvature corrections, we have

∆′(`−2
eff ) = α1 = 1 and `eff = `. The corresponding charge is the one originally derived by

Ashtekar-Magnon-Das [12, 13]. In EGB AdS case, the constant of proportionality is

∆′
(
`−2
eff

)
= α1 −

2α2

`2eff

(D − 3)(D − 4) , (4.22)

such that the charge reads

HEGB[ξ] = − `eff

8πG

[
1− 2α

`2eff

(D − 3)(D − 4)

] ∫
Σ∞

d2n−2y
√
σ uj E

j
i ξ

i , (4.23)

as shown previously in ref. [15]. The expression (4.22) is zero when evaluated at the critical

point, where the vacuum has multiplicity K = 2. This fact implies that HEGB[ξ] vanishes,

as well.

5 Conclusions

In this work, we have extended the concept of Conformal Mass to any branch of Lovelock

AdS gravity, as long as the corresponding vacuum is non-degenerate. The AMD energy

appears as a consistent truncation, to the linear order in the curvature, of the asymptotic

charges associated to a gravity action renormalized by the addition of Kounterterms.

The fact that the resulting AMD formula for Lovelock gravity is proportional to the

degeneracy condition reflects an obstruction to the linearization of the theory. As a con-

sequence, for a degenerate sector, the information on the black hole mass is carried to the

boundary by the tensor τ ji , which is no longer linear in the curvature. This is justified by

the slower falloff of the AdS curvature in that case. A finite conserved charge, defined as a

surface integral at radial infinity, would require additional Riemann tensors in it, in order

to produce an asymptotic behavior τ ji = O(1/rD−1). The limiting case in the above picture
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is given by K = n, in odd dimensions (D = 2n + 1). In that situation, the theory corre-

sponds to Chern-Simons gravity with an AdS vacuum of maximal degeneracy such that τ ji
vanishes, in a nontrivial way [26]. For that particular point in the parameter space (Love-

lock couplings), the energy for dimensionally-continued black holes comes from a formula

proportional to τ j(0)i, what in other cases is associated to the vacuum energy [27, 28].

Although, in the present work, our interest focuses on comparing two different notions

of conserved quantities for AAdS gravity, our ultimate goal is to work out holographic

quantities at the boundary of Lovelock theory.

In that respect, we can get some insight from the example of Einstein AdS gravity in

five dimensions, where the quasilocal stress tensor is separable as [13, 29]

T ji = Eji + ∆j
i , (5.1)

such that the trace of ∆j
i gives rise to the Weyl anomaly, upon an appropriate rescaling in

the normal coordinate to the boundary. At the same time, ∆j
i is responsible for a nonzero

vacuum energy for global AdS space.

The generalization of this result to Lovelock AdS gravity passes by understanding the

role of the degeneracy condition of order K 6= 1 in the definition of a tensor Ẽji which

shares similar properties with Eji . Indeed, Ẽji should be traceless but nonlinear in the

curvature of the spacetime. This would allow to readily identify the conformal anomaly

from a relation similar to eq. (5.1). All of above goes along the line the argument that

standard holographic techniques break down in a degenerate Lovelock theory. As a matter

of fact, in the maximally-degenerate case in odd dimensions (Chern-Simons AdS gravity)

none of the coefficients g(k)ij with k = 2, .., 2n − 2 can be determined in terms of g(0)ij .

Therefore, the corresponding holographic description is rather unusual [30, 31]. The fact

that the form of Kounterterm series is universal, regardless the particular Lovelock AdS

theory under study, may be of great help to deal with this issue. We hope to report on

this point elsewhere.
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A Gauss-normal foliation

Any line element for a given spacetime M can be cast in Gaussian coordinates

ds2 = N2(r) dr2 + hij(r, x) dxidxj , (A.1)

where hij is the induced metric at a fixed r. This is particularly useful to express bulk

quantities in terms of boundary tensors. In this frame, the extrinsic curvature is defined
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by the formula

Kij = −1

2
Lnhij = − 1

2N
∂rhij , (A.2)

where Ln is the Lie derivative along a radial normal nµ = Nδrµ. The foliation leads to the

Gauss-Codazzi relations

Rirjl =
1

N

(
∇l Ki

j −∇jKi
l

)
,

Rirjr =
1

N
∂rK

i
j −Ki

nK
n
j ,

Rikjl = Rikjl (h)−Ki
jK

k
l +Ki

lK
k
j . (A.3)

Here, ∇j = ∇j(h) is the covariant derivative defined with respect to the induced metric

and Rikjl (h) is the intrinsic curvature of the boundary ∂M.

B Explicit derivation of Conformal Mass in Lovelock AdS gravity

In this appendix, we provide further details regarding the factorization and the truncation

of the Kounterterm charges in even and odd dimensions, in order to obtain an expression

for Conformal Mass. We will employ a shorthand where δ[k] represents the antisymmetric

Kronecker delta of rank k, that is, δj1···jki1···ik . In turn, δ
j[k]
i[k] denotes a totally antisymmetric

Kronecker delta of rank (k + 1) with the indices i and j fixed, that is, δjj1···jkii1···ik .

B.1 Even dimensions

The charge density tensor in even dimensions (D = 2n) is given by eq. (4.5). In order to

manipulate it as a polynomial of the spacetime curvature, we employ the shorthand just

defined above,

τ ji =
1

16πG
δ
j[2n−2]
m[2n−2]K

m
i

n−1∑
p=1

pαp
2n−2(2n− 2p)!

[
Rp−1

(
δ[2]
)n−p

−
(
−`2eff

)n−p
Rn−1

]

=
`2n−2
eff

16πG2n−2
δ
j[2n−2]
m[2n−2]K

m
i

n−1∑
p=1

pαp
(2n− 2p)!

(
R

`2eff

)p−1
[(

δ[2]

`2eff

)n−p
− (−R)n−p

]
. (B.1)

The polynomial in R can conveniently be factorized using the following identity,

an−p − bn−p = (n− p)(a− b)
1∫

0

ds [s(a− b) + b]n−p−1, (B.2)

with a = 1
`2eff
δ[2] and b = R, what yields

(
1

`2eff

δ[2]

)n−p
− (−R)n−p = (n− p)F

1∫
0

ds

[
s

(
R+

1

`2eff

δ[2]

)
−R
]n−p−1

. (B.3)
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The AdS curvature F is defined as in eq. (1.10). The charge density tensor adopts the

factorized form,

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1...i2n−1
Ki1
i F

i2i3
j2j3
P i4...i2n−1

j4...j2n−1
(R) , (B.4)

where the polynomial is given by

P(R) =

n−1∑
p=1

pαp
2n−1 (2n− 2p− 1)!

(
R

`2eff

)p−1
1∫

0

ds

[
s

(
R+

1

`2eff

δ[2]

)
−R

]n−p−1

. (B.5)

Next, one notices that the asymptotic behavior of the AdS curvature is such that one

can use W instead of F in the above formula

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1i2...i2n−1
Ki1
i W

i2i3
j2j3
P i4...i2n−1

j4...j2n−1
(R) +O

(
1/r2D−2

)
. (B.6)

In addition, one considers the asymptotic expansion of the relevant tensors (4.7), that is,

Ki
j = − 1

`eff
δij +O(1/r) and R = − 1

`2eff
δ[2] +O(1/rD−1), what leads to

τ ji = −
`2n−3
eff

16πG
δ
jj2...j2n−1

ii2...i2n−1
W i2i3
j2j3
P i4...i2n−1

j4...j2n−1

(
−`−2

eff δ
[2]
)

+O
(
1/r2D−2

)
, (B.7)

where the polynomial is evaluated at the leading order in the curvature R = −`−2
eff δ

[2]. A

simple computation produces

P
(
−`−2

eff δ
[2]
)

=
n−1∑
p=1

p(n− p)αp
2n−2 (2n− 2p)!

(
1

`2eff

)p−1(
− 1

`2eff

δ[2]

)p−1
1∫

0

ds

(
1

`2eff

δ[2]

)
n−p−1

=
∆′(`−2

eff )

(2n− 3)! 2n−1`
2(n−2)
eff

(
δ[2]
)n−2

. (B.8)

When plugged in the charge formula, one obtains

δ
jj2···j2n−1

ii2···i2n−1
P i4···i2n−1

j4···j2n−1

(
−`−2

eff δ
[2]
)

=
∆′
(
`−2
eff

)
2 (2n− 3) `

2(n−2)
eff

δjj2j3ii2i3
. (B.9)

The charge density takes the form

τ ji = − `eff

16πG

∆′
(
`−2
eff

)
2 (2n− 3)

δjj2j3ii2i3
W i2i3
j2j3

+O
(
1/r2D−2

)
, (B.10)

what was shown to be proportional to the electric part of the Weyl tensor in subsection 4.1.

B.2 Odd dimensions

The charge density tensor (4.16) in odd dimensions (D = 2n + 1) can be symbolically

written as

τ ji =
δ
j[2n−1]
m[2n−1]

16πG2n−2
Km
i

 n∑
p=1

pαp
(2n−2p+1)!

Rp−1
(
δ[2]
)n−p

+16πGnc2n

1∫
0

du

(
R+

u2

`2eff

δ[2]

)n−1


(B.11)
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where the coupling constant c2n is given by eq. (4.4). Introducing the constant

γ =

n∑
p=1

(−1)ppαp `
2(n−p)
eff

(2n− 2p+ 1)!
, (B.12)

the tensor τ ji can be cast into the form

τ ji =
nc2n

2n−2γ
δ
j[2n−1]
m[2n−1]K

m
i

n∑
p=1

(−1)ppαp `
2(n−p)
eff

(2n− 2p+ 1)!

1∫
0

du Ip(u) . (B.13)

Here, the tensorial quantity Ip(u) is defined as

Ip(u) =

(
R+

u2

`2eff

δ[2]

)n−1

−
(
u2 − 1

)n−1
(−R)p−1

(
1

`2eff

δ[2]

)n−p
. (B.14)

In order to factorize τ ji by the AdS curvature F , one may add zero in the following way

− (−R)p−1 = −
(

1

`2eff

δ[2]

)p−1

+

(
1

`2eff

δ[2]

)p−1

− (−R)p−1 (B.15)

and use once again the formula (B.2) in the last two terms of the last expression with

a = 1
`2eff

δ[2], b = R and k = p− 1. In doing so, one obtains the relation

− (−R)p−1 = −
(

1

`2eff

δ[2]

)p−1

+ (p− 1)F

1∫
0

ds

[
s

(
R+

1

`2eff

δ[2]

)
−R

]p−2

(B.16)

which, when substituted in Ip, produces

Ip =

(
R+

u2

`2eff

δ[2]

)n−1

−
(
u2 − 1

)n−1
(

1

`2eff

δ[2]

)n−1

+F (p− 1)
(
u2 − 1

)n−1
(

1

`2eff

δ[2]

)n−p 1∫
0

ds

[
(s− 1)F +

1

`2eff

δ[2]

]p−2

. (B.17)

Applying the formula (B.2) yet another time in the first two terms of eq. (B.15), where

now a = R+ u2

`2eff
δ[2], b = −(u2 − 1) 1

`2eff
δ[2] and k = n− 1, leads to a factorization of Ip,

Ip = (n− 1)F

1∫
0

ds

(
sF +

u2 − 1

`2eff

δ[2]

)n−2

+(p− 1)F

(
1

`2eff

δ[2]

)n−p (
u2 − 1

)n−1

1∫
0

ds

[
(s− 1)F +

1

`2eff

δ[2]

]p−2

. (B.18)

In that way, the charge density tensor is factorized, as well,

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1i2...i2n−1
Ki1
i F

i2i3
j2j3
P̃ i4...i2n−1

j4...j2n−1
(R) , (B.19)

– 18 –



J
H
E
P
1
1
(
2
0
1
7
)
1
2
8

where P̃ is a polynomial of the type

P̃ = − 1

2n−2

 1∫
0

du
(
u2 − 1

)n−1

−1
n∑
p=1

pαp
(
−`2eff

)−(p−1)

(2n− 2p+ 1)!
Jp(R) , (B.20)

with the help of the parametric integrals

Jp(R) = (n− 1)

1∫
0

du

1∫
0

ds

(
sR+

u2 + s− 1

`2eff

δ[2]

)n−2

+(p− 1)

(
1

`2eff

δ[2]

)n−p 1∫
0

du
(
u2 − 1

)n−1

1∫
0

ds

[
(s− 1)R+

s

`2eff

δ[2]

]p−2

(B.21)

In a similar manner as in the even-dimensional case, there is no change in the energy of

a Lovelock black hole if one replaces the AdS curvature by the Weyl tensor in the expression

for τ ji , i.e.,

τ ji =
`2n−2
eff

16πG
δ
jj2...j2n−1

i1i2...i2n−1
Ki1
i W

i2i3
j2j3
P̃ i4...i2n−1

j4...j2n−1
(R) . (B.22)

Because the Weyl tensor is already of order O(1/rD−1), we can drop subleading contribu-

tions in K, R and the polynomial P̃

τ ji = −
`2n−3
eff

16πG
δ
jj2...j2n−1

ii2...i2n−1
W i2i3
j2j3
P̃ i4...i2n−1

j4...j2n−1

(
−`−2

eff δ
[2]
)
. (B.23)

In other words, it is sufficient to evaluate Jp in eq. (B.21) for global AdS space. For

that value of the curvature, the integral in s turns trivial, such that

Jp
(
−`−2

eff δ
[2]
)

=

(
1

`2eff

δ[2]

)n−2
1∫

0

du
[
(n− 1)

(
u2 − 1

)n−2
+ (p− 1)

(
u2 − 1

)n−1
]
.

(B.24)

In turn, the integral in u becomes

1∫
0

du
(
u2 − 1

)n−2
= − 2n− 1

2(n− 1)

1∫
0

du
(
u2 − 1

)n−1
, (B.25)

what finally can be expressed as

Jp
(
−`−2

eff δ
[2]
)

= −2n− 2p+ 1

2

(
1

`2eff

δ[2]

)n−2
1∫

0

du
(
u2 − 1

)n−1
. (B.26)

Substituting this result into the polynomial yields

P̃ =

(
−`2eff

)−n+2

2n−1

(
δ[2]
)n−2

n∑
p=1

(−1)p−1pαp
(2n− 2p)!

(
1

`2eff

)p−1

=
∆′(`−2

eff )

(2n− 2)!2n−1`
2(n−2)
eff

(
δ[2]
)n−2

. (B.27)
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Then, the linearization of the charge density leads to something proportional to the Weyl

tensor

τ ji = − `eff

16πG

∆′
(
`−2
eff

)
2 (2n− 2)

δjj2j3ii2i3
W i2i3
j2j3

+O
(
1/r2D−2

)
. (B.28)

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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