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Abstract: It is known that there are AdS vacua obtained from compactifying the SM to

2 or 3 dimensions. The existence of such vacua depends on the value of neutrino masses

through the Casimir effect. Using the Weak Gravity Conjecture, it has been recently ar-

gued by Ooguri and Vafa that such vacua are incompatible with the SM embedding into

a consistent theory of quantum gravity. We study the limits obtained for both the cosmo-

logical constant Λ4 and neutrino masses from the absence of such dangerous 3D and 2D

SM AdS vacua. One interesting implication is that Λ4 is bounded to be larger than a scale

of order m4
ν , as observed experimentally. Interestingly, this is the first argument implying

a non-vanishing Λ4 only on the basis of particle physics, with no cosmological input. Con-

versely, the observed Λ4 implies strong constraints on neutrino masses in the SM and also

for some BSM extensions including extra Weyl or Dirac spinors, gravitinos and axions. The

upper bounds obtained for neutrino masses imply (for fixed neutrino Yukawa and Λ4) the

existence of upper bounds on the EW scale. In the case of massive Majorana neutrinos with

a see-saw mechanism associated to a large scale M ' 1010−14 GeV and Yν1 ' 10−3, one

obtains that the EW scale cannot exceed MEW . 102 − 104 GeV. From this point of view,

the delicate fine-tuning required to get a small EW scale would be a mirage, since parame-

ters yielding higher EW scales would be in the swampland and would not count as possible

consistent theories. This would bring a new perspective into the issue of the EW hierarchy.
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1 Introduction

The deep infrared region of the Standard Model (SM), the region below the electron mass

me threshold, is quite simple. It only includes a few bosonic degrees of freedom (2 from

the photon and 2 from the graviton) and a few fermionic degrees of freedom (6 or 12

depending on whether they are Majorana or Dirac). The mass scale of neutrinos is in the

range mν ' 10−1 − 10−2 eV (although it is not yet excluded one neutrino being massless).

The other mass scale relevant in this SM infrared world is the cosmological constant (c.c.)
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which is Λ0 ' 3.25 × 10−11 eV 4 = (0.24 × 10−2eV )4. So it is an experimental fact that

with a good approximation

Λ0 ' (mν)4 . (1.1)

It has always been intriguing the proximity of the c.c. scale to that of neutrino masses since

both scales seem to have a very different origin. The c.c. comes from the vacuum energy of

the SM and its smallness is a major puzzle in the theory. One possible explanation of the

smallness of the c.c. is the existence of a landscape of vacua, as in string theory [1–4], with

this small value required for the development of galaxy formation, as first suggested by

Weinberg [5]. On the other hand the smallness of neutrino masses arises naturally from a

see-saw mechanism, if neutrinos are Majorana, whereas it is less natural to attain so small

neutrino masses in the Dirac case. It would be interesting to find links between the values

of the Λ
1/4
0 and mν scales which are quite close and around 7 orders of magnitude smaller

than the next higher mass scale given by the electron mass me.

In ref. [6] Arkani-Hamed et al. explored this deep infrared SM region by making the

interesting exercise of exploring the possible vacua that could be obtained by compactifying

the SM action to lower dimensions. They found that there is a richness of vacua, a real

landscape of vacua, both with AdS and dS geometries in 3D and 2D (see also [7, 8] for

low < 3D SM compactifications). The potential for the moduli of the compactification

is induced by the Casimir effect of the lightest particles of the SM. The existence or not

of these lower dimensional vacua turns out to depend sensitively on the value of neutrino

masses. For example, they found that if all neutrinos are Majorana and we compactify

down to 3 or 2 dimensions AdS SM vacua do appear for any values of neutrino masses

consistent with experiment. Interestingly, these vacua are almost identical to the 4D SM

at distances larger than 20 microns or so. Still, these 3D,2D vacua look like a curiosity

with no real physical relevance to our world.

In an apparently very unrelated development, there has been in the last few years a

renewed interest in the Weak Gravity Conjecture (WGC) [9–11]. In simplified terms the

WGC states that in any consistent theory of quantum gravity, the gravitational interac-

tion must be always weaker than any other interaction. This statement is motivated by

blackhole arguments and has been shown to be a powerful criterium to determine whether

an effective field theory has a consistent UV completion (see [12–35] for some recent ap-

plications of the WGC). The main support for the WGC comes from the fact that no

contradiction has been found with any string theory example. Recently a sharpened ver-

sion of the WGC has been put forward by Ooguri and Vafa [36] with a quite restrictive

corollary (see also [37–39] for related work). It states that stable non-SUSY AdS vacua

supported by fluxes cannot be consistent with quantum gravity. Furthermore, they con-

jecture that this should hold even in the absence of fluxes. Ooguri and Vafa also note in

passing that if the AdS SM lower dimensional vacua of [6] exist and are stable, then the 4D

SM itself could not be completed in the UV. In particular a minimal setting with Majorana

neutrinos in our vacuum would be ruled out.

This is a very interesting remark. The weakest point in the argumentation is that,

even if we take for granted this stronger conjecture, it applies only if the said 3D,2D
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vacua are actually stable. If they are unstable, no inconsistency with quantum gravity

would appear, which would result in no constraints. Some potential instabilities (like

decay into Witten’s bubble of nothing) are not present in these SM vacua, due to the

periodic boundary conditions of the fermions. However one may argue that other potential

instabilities may appear e.g. in the context of a 4D landscape of vacua in string theory, in

which tunneling in 4D would have parallel transitions in lower dimensions, rendering the

lower dimensional vacua unstable, and hence leading to no constraint on neutrino masses

or any other physical parameter.

In this paper we reanalyze the issue of the possible constrains on neutrino masses but

also on the value of the c.c. from the assumption that no lower dimensional AdS vacua of

the SM should exist. We also do this analysis if additional light BSM particles (axions, Weyl

fermions, Dirac fermions) are present well bellow the electron mass threshold. We are aware

that this assumption may be unjustified, since the stability of the AdS lower dimensional

SM is far from clear, as we will discuss in the text. Still our knowledge of the 4D landscape

of vacua is very poor and their stability is not excluded. Furthermore, the fact that this as-

sumption leads to intriguing connections between the c.c., the neutrino masses and possible

additional very light degrees of freedom make this study worthwhile. In fact we find quite

amazing that a simple very abstract condition like the absence of lower dimensional SM

AdS vacua leads to interesting and potentially testable conditions on the infrared degrees of

freedom of the SM. One would have expected that such abstract condition would had lead

to totally wild predictions, and we rather find conditions which are close to be fulfilled by

the SM or some simple extension. In our analysis we confirm that a simplest scheme with 3

Majorana neutrinos would be ruled out within this scheme. However the addition e.g. of a

single very light Weyl fermion to the SM makes the Majorana possibility viable. Dirac neu-

trinos are viable for the lightest neutrino light enough. So e.g. a potential measurement of

(natural hierarchy) Majorana masses at ν-less double β-decay experiments would then im-

ply some additional BSM physics like the existence of additional very light sterile neutrinos.

We also analyze in detail the role of the 4D c.c. on the constraints and find that the 4D

c.c. has a lower bound depending on the value of neutrino masses. As the c.c. grows above

the neutrino mass scale, the easier is to avoid that AdS vacua develop. This is important

because it is the first argument for a non-vanishing Λ4 based only on particle physics and

not on cosmology.

The bound of the lightest neutrino mass in terms of Λ4 allows to a draw another impor-

tant conclusion. Indeed, for such fixed data this bound implies an upper bound on the EW

scale. This is explicitly seen in figure 21 which show how for EW scales larger than 102−104

GeV AdS 3D vacua develops, at fixed cosmological constant. From the present perspec-

tive the Higgs scale is small compared to the UV scale because of the smallness of the c.c.

With values of Λ4 as observed in cosmology, and reasonable non-vanishing lightest neutrino

Yukawa, scales larger than the measured EW scale would yield theories with 3D,2D AdS

vacua. From the Wilsonian effective field theory point of view the smallness of the Higgs

scale looks like a tremendous fine-tuning. However such a fine-tuning would be a mirage

since parameters yielding higher Higgs mass scales or vevs cannot be embedded into a con-

sistent theory of quantum gravity and hence do not count as possible consistent theories.
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The structure of this paper is as follows. In the next section we briefly review the Weak

Gravity Conjecture in connection with AdS vacua discussed in [36]. We also critically

discuss the issue of the instability of the AdS vacua obtained upon compactification of

the SM to lower dimensions. In section 3 we study the 3D AdS vacua obtained from

the interplay of Casimir forces and the cosmological constant term. We discuss the limits

on neutrino masses obtained imposing the absence of AdS vacua and show how the 4D

cosmological constant is bounded below by a simple function of neutrino masses, deriving

an approximate formula eq. (3.21). The same analysis but for toroidal compactifications

to 2D is presented in section 4. In section 5 we study how the presence of additional light

states beyond the SM ones modify the previous limits on neutrino masses. The analysis

includes the addition of Weyl, Dirac/gravitino and axion states. In section 6 we discuss the

upper bounds on the EW scale obtained from the absence of AdS 3D vacua. We present

some conclusions and a summary of the results in section 7.

2 The weak gravity conjecture and AdS vacua

2.1 The Ooguri-Vafa conjecture

The Weak Gravity Conjecture states that, in theories of quantum gravity with a p-form

gauge field, there must exist an electrically charged object with charge Q and tension T

satisfying

T ≤M2
pQ (2.1)

in order to allow for (sub)extremal black holes to decay and avoid the usual trouble with

remnants. In the last years there has been a lot of progress generalising the conjecture for

multiple gauge fields and applying it to inflation [12–35]. However, a proof has not been

found yet, and the strongest evidence for the conjecture in fact comes from the lack of a

counter-example in string theory up to now. Ooguri and Vafa proposed in [36] a sharpened

version of this conjecture, claiming that the equality can only be satisfied if the charged

object is BPS and the theory is supersymmetric. This has dramatic consequences for the

AdS/CFT duality as we review in the following. It implies that any non-supersymmetric

AdS vacuum supported by fluxes must contain a membrane charged under the flux whose

tension is smaller than its charge. If this is the case,the possibility of nucleating such a

membrane corresponds to an instability of the vacuum,as shown by Maldacena et al. in [40]

(see also [41, 42]). Once it is nucleated, the bubble will expand and reach the boundary

in a finite time, since the electric repulsion wins over the tension of the expanding bubble,

describing the tunneling to a vacuum with a lower value of the flux. Hence, all non-

supersymmetric AdS vacua supported by fluxes are at best metastable. In other words,

stable non-supersymmetric AdS vacua belong to the swampland, i.e. the set of quantum

field theories which are not consistent with quantum gravity and cannot be embedded in

the string landscape.

As reviewed in the Introduction, it is known [6] that three dimensional AdS vacua

can appear upon compactifying the Standard Model on a circle. The appearance of these

vacua depends on the value of the neutrino masses with respect to the cosmological constant
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and its Dirac/Majorana nature. In particular, in the absence of new low energy physics,

Majorana neutrinos necessarily give rise to AdS vacua in three dimensions. If these vacua

are stable, they would be inconsistent with the above conjecture. As Ooguri and Vafa

commented in [36], this would rule out the possibility of Majorana neutrinos in the SM.

Before turning to a more thoughtful analysis of these constraints, let us comment, though,

on the issue of stability.

2.2 Instabilities in the landscape

The above considerations rely on the assumption that the would-be AdS vacua in three

dimensions are stable. However, if the parent four-dimensional deSitter vacuum is unsta-

ble, this instability could be inherited by the three-dimensional vacuum wiping out any

inconsistency with the above quantum gravity conjectures. This might occur if our four-

dimensional vacuum belongs to a landscape of consistent vacua connected by quantum

transitions, as suggested by string theory. Then, it would be unstable to tunneling into

other parts of the landscape. Unfortunately, our knowledge of the string landscape is very

limited and a estimation of the decay rate is completely out of reach at present. We can,

though, discuss under what circumstances the four-dimensional instability would also yield

an instability in lower dimensions.

Let us assume that the Standard Model lives within a landscape of vacua and that

tunneling between different vacua can be described by using semiclassical gravity. Vacuum

decay is then described by nucleating a bubble of true vacuum in a region of false vacuum

which starts growing approaching the speed of light from the point of view of an outside

observer. In deSitter, the bubble radius Rb cannot be larger than the deSitter length

l4 ∼ H−1 (larger bubbles contract instead of expanding). Upon compactification on a

circle, the 4d bubble can give rise to a 3d bubble obtained by wrapping the corresponding

domain wall on the S1. If the 3d vacuum is deSitter or Minkowski, this bubble will always

describe an instability in 3d. However, this is not necessarily the case if the vacuum is

AdS. Gravitational effects imply that the radius of a static domain wall is given by the

AdS length Rb ∼ l3, which means that only smaller bubbles will expand and mediate

vacuum decay. In other words, even if the four-dimensional vacuum is unstable, the three-

dimensional vacuum will remain stable if the bubble radius in four dimensions is smaller

than the dS4 length but still bigger than the AdS3 length, i.e. l3 < Rb < l4.

Let us compute how big is the stability window for the case at hand. The dS4 length

scale in our universe is given by

l4 =
Mp√
V0
∼ 4.8 · 1041 GeV (2.2)

where we have used that the cosmological constant is V0 = 2.6·10−47 GeV4. Upon compact-

ifying on a circle of radius R, the AdS3 length of the resulting three dimensional space reads

l3 =
M3d
p√
VR0

(2.3)
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where M3d
p =

√
2πR0Mp and VR0 is the potential energy evaluated at the minimum radius

R0. Borrowing the results from next section for R0 and VR0 we can compute the value of

l3, obtaining

Majorana NH : 4.7 · 1039 GeV−1 ≤ l3 ≤ 1.7 · 1041 GeV−1 → 2.9 . l4/l3 . 100 (2.4)

Majorana IH : 4.7 · 1039 GeV−1 ≤ l3 ≤ 2.6 · 1040 GeV−1 → 18.2 . l4/l3 . 100 (2.5)

Dirac NH/IH : l3 ≥ 1.2 · 1039 GeV−1 → l4/l3 . 410 (2.6)

Notice that the result depends on whether the neutrino particles are Majorana/Dirac with

Normal/Inverse hierarchy. The lower bound for l3 comes from the upper limit on the neu-

trino masses given by Planck 2015, while the upper bound is determined by the lowest

neutrino mass which yields an AdS vacuum. As already pointed out in [6], the stability

window is very small if the lightest neutrino is approximately massless. However, it can be

made quite large for the case of heavier neutrinos, still consistent with the Planck cosmolog-

ical bound. In overall, the AdS3 length can vary between zero and two orders of magnitude.

Therefore, instabilities in four dimensions described by a growing bubble whose size is of

order 0.01 l4 . Rb . l4 will not yield instabilities in three dimensions. The question now

is, in which cases will the membranes mediating vacuum decay have such a critical radius?

Let us first assume that the instability in four dimensions can be described by a

Coleman-De Luccia (CDL) instanton within the thin-wall approximation [43]. The size of

the bubble is given by

R2
b =

1( γ
κT

)2
+ Λi

(2.7)

where γ = (κT )2

4 −∆Λi and ∆Λ = Λi−Λf . We also use the standard notation for the cosmo-

logical constant Λi = κVi/3 with κ = 1/M2
p . There are two interesting limits depending on

whether gravitational effects are important (T � ∆Λ) yielding Rb ' 4/(κT ) or negligible

(T � ∆Λ) recovering the flat limit Rb ' κT/∆Λ. The case of interest for us, R2
b ' Λ−1

i ,

corresponds to an intermediate situation and will happen whenever γ ' 0 leading to

T 2 ' 4M4
p∆Λ (2.8)

Since Λi in our universe is very small, this relation has to be satisfied with a high accuracy.

More concretely, if ε ≡ T 2 − 4M4
p∆Λ one needs κε/(4T ) � Λi. As explained above, this

is the largest radius the bubble can have in deSitter, and gives rise to a very suppressed

tunneling rate at the edge of stability. Intuitively, it corresponds to the case in which the

SM is separated from other vacua in the landscape by huge potential barriers. Further-

more, in a supersymmetric theory it corresponds to the BPS bound (static domain walls

are given indeed by BPS membranes). Since we are in a non-supersymmetric configuration,

the membrane action might receive corrections that bring it away from the above bound.

If those corrections go in the direction of decreasing the tension T < M2
pQ (in a way con-

sistent with the WGC above) and supersymmetry is only slightly broken, one might expect

that the condition (2.8) is still approximately satisfied. In such a case, these membranes

would fit in the window l3 < Rb < l4 and the 3d vacuum would be stable. However, any

quantitative analysis is model dependent and out of reach at present.
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On the other hand, such a radius is characteristic of a Hawking-Moss (HM) process

(see e.g. [44–48] and references therein). A HM instanton describes the quantum transition

of a field starting at the minimum and emerging at the top of the barrier due to quantum

fluctuations in a sort of Brownian motion [46–48]. After emerging, the field will roll down

the potential until the next minimum. This process allows to connect minima for which

a CDL instanton does not exist, and has been argued to be essential to populate the

landscape [48], since up-tunneling from AdS cannot proceed through usual CDL instantons.

The decay rate of this stochastic diffusion process is equivalent to that of an homogeneous

tunneling of the whole universe in which the bubble radius is Rb ∼ l4. A HM process

will be dominant with respect to CDL whenever the thickness of the barrier is bigger than

the height. Therefore, if the SM is separated from other vacua in the landscape by thick

barriers, the corresponding 3d vacua might be stable.

Yet another possibility would be that the 4d vacuum is stable, but an instability

appears upon compactification. The only known example of this type on a circle compact-

ification is the Witten’s bubble [49], which describes the decay of spacetime to nothing.

However, this bubble is only topologically consistent with antiperiodic boundary condi-

tions for the fermions around S1, while the AdS3 vacuum exists only for periodic boundary

conditions. Therefore, the bubble of nothing is not allowed in our case.

To summarize, it seems that the AdS3 vacua will be stable unless the parent dS4 is

unstable and the corresponding bubble size is much smaller than the dS4 length, so it

does not lie in the range l3 < Rb < l4. Unfortunately, without a better understanding

of the string landscape, we cannot argue one way or another. From now on, we will

explore the consequences of assuming that the derived minima are stable. According to

the Ooguri-Vafa conjecture, a stable non-supersymmetric AdS vacuum is not consistent

with quantum gravity, which leads to interesting constraints on the SM matter spectrum

to avoid the appearance of AdS minima upon compactification. We find interesting that

the constraints derived in this way are close to the experimental bounds on neutrino masses

for the observed value of the c.c.

3 AdS Casimir SM vacua in 3D

The conjecture of Ooguri and Vafa implies that no stable non-SUSY AdS SM vacua should

exist. Assuming background independence, this statement should apply to any lower di-

mensional compactification of the SM. The simplest case is the 3D in which the SM is

compactified on a circle, which we will discuss in this section. The compactifications down

to 2D are richer, in the sense that there are more options, the simplest one being the com-

pactification on a 2-torus, which we will study in the next section. Furthermore one can

switch on electromagnetic fluxes through the torus, giving rise to a rich spectrum of vacua.

More generally one can consider compactifications on general Riemann surfaces. Those

have been argued in [6, 8] not to lead to new vacua. The same has also been argued to be

the case of 1D vacua [7]) (quantum mechanics). For these reasons we will concentrate in

this paper on 3D vacua and 2D toroidal vacua with no fluxes, which are the only vacua in
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which the Casimir contribution plays an important role and can lead to constraints on the

spectrum of neutrino masses and other BSM very light additional particles.

3.1 The radion potential in 3D

In this section we review the origin and numerics of the 3D SM vacua first discussed in [6].

The 3D action obtained upon compactification of the SM on a circle of radius R has the form

SSM+GR =

∫
d3x
√
−g3(2πr)

[
1

2
M2
pR(3) −

1

4

R4

r4
WµνW

µν −M2
p

(
∂R

R

)2

− r2Λ4

R2

]
. (3.1)

Here Mp is the 4D reduced Planck mass, Mp = (8πGN )−1/2 and Λ4 is the 4D cosmological

constant. The scale r is later to be fixed equal to the vev of the radion R. It also displays

the action of the graviphoton with field strength Wµν and the radion field R. The action

shows a runaway potential for the radion coming from the 4D cosmological constant

VΛ(R) =
2πr3Λ4

R2
. (3.2)

However the 4D c.c. is so tiny that the quantum contribution of the lightest SM modes

to the vacuum energy may become important for the computation of the radion poten-

tial. The 1-loop corrections to the effective potential of SM particles can be derived from

the Casimir energy coming from loops wrapping the circle. For massive particles such

contributions are exponentially supressed like ∝ e−2πmR for R � 1/m. This means that

only particles with mass lighter than 1/R contribute significantly. In the case of massless

particles the Casimir contribution to the potential becomes very simple. One obtains

VC = ∓ n0

720πR3
, (3.3)

that is written in the Weyl-rescaled metric as,

VC(R) = ∓ n0

720π

r3

R6
. (3.4)

The minus sign stands for bosons and the plus sign for fermions with periodic boundary

conditions (minus for antiperiodic). The integer n0 is the number of degrees of freedom

of the particle (two for massless vector bosons, two for Majorana fermions, four for Dirac

fermions, etc).

The only massless degrees of freedom in the SM+gravitation are 4 = 2 + 2 from the

photon and the graviton. If we only take into account these contributions the effective

potential reads,

V (R) =
2πr3Λ4

R2
− 4

(
r3

720πR6

)
, (3.5)

where the number four comes from the sum of the degrees of freedom of the massless

particles. In figure 1 the contributions from the massless states and the cosmological

constant are depicted. The contribution of the cosmological constant is shown as a black

line. If we include the massless states, the graviton and the photon, we see that the effective

– 8 –
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Figure 1. Effective potential as a function of the radion field, R, for the cosmological constant

(black) and the sum of the cosmological constant, graviton and photon contributions (red).

potential, red line, drops for small R. In this case there is no minimum. It is clear that the

negative sign of the bosonic massless states pushes the effective potential to negative values

for small radius due to the sixth power of the radion field, R−6 compared with the squared

of the cosmological constant, R2, that is important for larger values of R. However a

maximum appears due to the different behaviour of the two contributions. This maximum

occurs at Rmax [6],

Rmax =

(
1

120π2Λ4

)1/4

. (3.6)

Using the value of the cosmological constant, Λ4 = 2.6 · 10−47 GeV4 [51],

Rmax =

(
1

120π2Λ4

)1/4

= 7.55 · 1010 GeV−1, (3.7)

and the associated mass scale here will be,

Mm =
1

2πRmax
= 2.11 · 10−3 eV. (3.8)

Interestingly, this scale is close to the neutrino mass scale. As we decrease the value of R,

the next threshold in the SM is that of neutrino masses. With periodic boundary conditions

for neutrinos, schematically the potential is modified as

V (R) ' 2πr3Λ4

R2
− 4

(
r3

720πR6

)
+

∑
i=νe,νµ,ντ

ni
720π

r3

R6
Θ(Ri −R) (3.9)

with Ri = 1/mνi and Θ a step function. As R decreases the different neutrino thresholds

open and eventually overwhelm the bosonic contribution, giving rise to possible minima, as

long as Ri < Rmax. Minima turns out to develop at R0 ' 1/mν where here mν refers to the

first threshold for which the number of fermionic degrees of freedom becomes larger than 4.
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In practice a correct computation of the minima depends sensitively on the values of

the neutrino masses and the cosmological constant, and a full computation of the Casimir

contributions, including mass effects is required. In a general case for a particle of mass,

m the Casimir energy density is given by [6]

ρ(R) = ∓
∞∑
n=1

2m4

(2π)2

K2(2πRmn)

(2πRmn)2
, (3.10)

where Ki(x) is the Bessel function. We will use this formula in the computation of the

minima below. It is however interesting to expand this formula for small (mR),

ρ(R) = ∓
[

π2

90(2πR)4
− π2

6(2πR)4
(mR)2 +

π2

48(2πR)4
(mR)4 +O(mR)6

]
. (3.11)

Summing the contributions of the cosmological constant and the particles the effective

potential reads,

V (R) =
2πr3Λ4

R2
+
∑
i

(2πR)(−1)siniρi(R), (3.12)

where the sum goes over all the particles in the spectrum, ni is the number of degrees of free-

dom of the i-th particle and si = 0(1) periodic fermions or bosons respectively. One obtains

a general formula for the potential in terms of the Weyl-rescaled metric for small masses

V (R) =
2πr3Λ4

R2
+
∑
i

(2πR)
r3

R3
(−1)siniρi(R) '

' 2πr3Λ4

R2
+
r3

R6

π2

(2π)3

∑
i

(−1)sini

[
1

90
− 1

6
(miR)2 +

1

48
(miR)4

]
. (3.13)

Setting the scale r such that 2πr = 1 GeV−1 the effective potential is written,

V (R) =
(GeV−3)Λ4

(2πR)2
+
π2(GeV−3)

(2πR)6

∑
i

(−1)sini

[
1

90
− 1

6
(miR)2 +

1

48
(miR)4

]
. (3.14)

Note that this formula is not a good approximation to study the minima generated by

neutrinos because, as we said, the minima are obtained at R0 ' 1/mν and hence (Rm)

is not in general small. However in the case of the lightest neutrino (or some additional

very light BSM state) (Rm) may be small enough so that the dependence on these masses

is adequately described by this expression. We will also use it as an inspiration to fit the

curve which parametrises the lowest value of the cosmological constant required to get

positive vacuum energy in section 3.5.

Note added: As we decrease R, other particle thresholds will eventually open. The

analysis becomes more complicated since one has to include Wilson Line effects. In [6] it

was shown that below the QCD scale there are not further minima beyond the neutrino

minima. In a recent paper [50] which appeared one month later than ours, a first step

towards analysing the vacua structue above the QCD scale was performed, showing a

possible runaway of the potential towards smaller radius in certain cases. Let us remark,
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Figure 2. Normal and inverted hierarchies of neutrino masses.

though, that our analysis and that from [50] have been performed for different values

of the Wilson Lines. In our case, there is not runaway behaviour and our vacua are

perturbatively stable (they satisfy the Breitenlohner-Friedman bound by far), so they can

be problematic with quantum gravity. It is an open question whether there are instantonic

solutions describing tunneling transitions into these other vacua, in case they exist. A

more complete analysis of the vacua structure at smaller radius and possible tunneling

transitions would be certainly interesting.

3.2 Limits on neutrino masses

As we have discussed in the previous section, we want to impose that no stable AdS vacua

of the SM should exist. Note that only compactifications with periodic boundary conditions

for the neutrinos are dangerous, since only in this case the Casimir energy for fermions is

positive. The existence or not of these vacua depends also sensitively on the specific values

of neutrino masses. At the moment we do not know the absolute masses of the neutrinos,

nonetheless we are able to measure the difference in masses between them. According to

the PDG [51] the atmospheric and solar difference in masses are,

∆m2
21 = (7.53± 0.18)× 10−5 eV2, (3.15)

∆m2
32 = (2.44 ± 0.06)× 10−3 eV2 (NH), (3.16)

∆m2
32 = (2.51± 0.06)× 10−3 eV2 (IH). (3.17)

We also do not know the nature of the hierarchy of masses, either Normal Hierarchy (NH) ,

with mν1 � mν2 � mν3 or Inverted Hierarchy (IH), with mν1 < mν2 � mν3 (see figure (2).

In the NH case, for mν1 � mν2 one gets approximately

m2 ' 8.6× 10−3 eV ; m3 ' 4.9× 10−2 eV (3.18)

The lightest neutrino may be arbitrarily light from these data. In the case of the inverted

hierarchy one has

mν1 ' mν2 ' 4.9× 10−2 eV (3.19)
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Figure 3. Effective radion potential for Majorana neutrinos when considering normal hierarchy

(left) and inverted hierarchy (right). In both cases the lightest neutrino is considered massless,

mν1 = 0 for NH and mν3 = 0 for IH.

Figure 4. Radion effective potential for Dirac neutrinos when considering normal hierarchy (left)

and inverted hierarchy (right). For the case of NH the different lines correspond to several values

for the lightest neutrino mass: mν1 = 6.0 meV (black), 6.5 meV (green), 7.0 meV (blue), 7.5

meV (brown) and 8.0 meV (red). In the case of IH the different colours correspond to the lightest

neutrino masses: mν3 = 1.5 meV (black), 2.0 meV (green), 2.5 meV (blue), 3.0 meV (red).

with mν3 arbitrarily light. Using these experimental data, we will constraint the possible

values of the lightest neutrino in both NI and IH arising from the above WGC motivated

constraint, the absence of stable AdS vacua1 We discuss the cases of Majorana and Dirac

neutrinos in turn.

1It has been recently claimed a slight preference for the natural hierarchy from the combined analysis of

neutrino data [52–54]. However the evidence is still very weak [55].
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NH IH

No vacuum mν1 < 6.7 meV mν3 < 2.1 meV

dS3 vacuum 6.7 meV < mν1 < 7.7 meV 2.1 meV < mν3 < 2.56 meV

AdS3 vacuum mν1 > 7.7 meV mν3 > 2.56 meV

Table 1. Ranges of masses of Dirac neutrinos for different vacua configurations.

3.3 Majorana neutrinos

In the case of Majorana neutrinos we have 6 fermionic and 4 bosonic degrees of freedom, so

one expects that AdS vacua will develop. In figure 3 the effective potential for Majorana

neutrinos is shown where the lightest neutrino has a zero mass. On the left panel of figure 3

it is assumed a NH for the neutrinos masses where on the right panel of figure 3 it is assumed

an IH. An AdS vacuum is always formed for this configuration in both hierarchies. If the

mass of the lightest neutrino is different from zero, the mass terms of the potential make

the potential deeper. So the case of the pure SM with Majorana neutrino masses would be

ruled out, as already advanced in [36].

3.4 Dirac neutrinos

In figure 4 the case of Dirac neutrinos is presented. On the left panel of figure 4 the NH

is assumed. In this case a few values for the lightest neutrino masses are taken: 6.0 meV

(black), 6.5 meV (green), 7.0 meV (blue), 7.5 meV (brown) and 8.0 meV (red). In this case

we find different solutions in the effective potential depending on the neutrino masses. For

masses greater than 7.73 meV an AdS vacuum is formed, while for masses between 6.7 meV

and 7.73 meV a dS vacuum is obtained. In the case where the lightest neutrino is smaller

than 6.7 meV there is no vacuum. On the right panel of figure 4 the IH is assumed. In this

case the different colours correspond to the lightest neutrino mass: mν3 =1.5 meV (black),

2.0 meV (green), 2.5 meV (blue), 3.0 meV (red). For this mass hierarchy we found that

for a mass of the lightest neutrino greater than 2.56 meV an AdS vacuum is formed. A dS

vacuum is achieved for masses between 2.56 meV and 2.1 meV, and if the lightest neutrino

mass is smaller than mν3 < 2.1 meV no vacua is formed. A summary of the masses for

which the different vacua are formed is found in table 1.

3.5 Cosmological constant versus neutrino masses from 3D vacua

It is important to remark that the above results depend sensitively on the value of the

4D cosmological constant. It is clear that, the higher the value of the 4D c.c., the easier

becomes to avoid unwanted AdS vacua. For given neutrino masses, there is a lower bound

on Λ4 coming from absence of AdS vacua. To show this dependence we present in figure 5

the allowed values of the lightest neutrino versus the value of the cosmological constant,

both for NH and IH, in the Majorana case. The areas in red correspond to AdS vacua and

should be forbidden. We see that in the NI case this bound is around 7 times higher than

the experimental Λ4 and several orders of magnitude higher in the IH case. That is why

in the Majorana case is impossible to avoid AdS vacua. We will see later however, that
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Figure 5. Majorana neutrinos. Lower bound on the value of the 4D cosmological constant as a

function of the lightest neutrino mass coming from absence of AdS vacua. Left: NI. Right: IH.

the addition of e.g. just an additional light Weyl fermion to the SM it is enough to make

viable the Majorana neutrino case.

In the case of Dirac neutrinos the situation is different due to the fact that the number

of fermionic degrees of freedom doubles and they may pull up the potential before an AdS

vacuum can develop. We show in figure 6 the corresponding plot for the Dirac case. We

see that for any given value of the lightest neutrino, there is a lower bound on the value

of the 4D cosmological constant. For the value of the experimental cosmological constant

one obtains a lower bound on the value of the lightest neutrino mass, mν1 > 7.7× 10−3 eV

for NH and mν3 > 2.56× 10−3 eV for IH.

The form of the curves in figures 5, 6 may be understood from the aproximate equations

given in 3.14. Let us assume for the moment that mR is small for the three neutrinos, so

the formula 3.14 is a good approximation. We can then minimize the potential to get Rmin

and derive the value of Λ4 in terms of the neutrino masses for which V (Rmin) ≥ 0, obtaining

Λ4 ≥
nf (30nf (Σm2

i )
2 + (4− 3nf )Σm4

i )

(−3072 + 2304nf )π2
(3.20)

where nf = 2, 4 for Majorana/Dirac respectively. Above this value for Λ4 no AdS minimum

is formed. Unfortunately, mR ∼ 1 for the neutrino masses (specially the heaviest one),

so this curve does not fit well enough the numerical results in figures 5 and 6. In fact,

the appearance of a minimum is based on a delicate interplay between the contribution

from neutrino particles and cosmological constant, so the results are very sensitive to the

exact value of these contributions. The inclusion of higher order terms in 3.14 does not

lead to a notable improvement before the minimization analyses of the potential becomes

untractable. However, we can use (3.20) as an educated anstaz to fit the curve which

separates the region of AdS and Non-AdS vacuum in the above figures. Assuming that
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Figure 6. Dirac neutrinos. Lower bound on the value of the 4D cosmological constant as a function

of the lightest neutrino mass coming from absence of AdS vacua. Left: NI. Right: IH.

the leading terms will still be given by functions of (Σm2
i )

2 and Σm4
i but higher order

corrections may modify the coefficients in (3.20), we fit our results to the curve

Λ4 ≥
a(nf )30(Σm2

i )
2 − b(nf ,mi)Σm

4
i

384π2
(3.21)

obtaining a(nf ) = 0.184(0.009) and b(nf ,mi) = 5.72(0.29) for NH or b(nf ,mi) = 7.84(0.55)

for IH, respectively for Majorana(Dirac) neutrinos. This curve describes quite accurately

the numerical results and displays the lower bound on the cosmological constant required to

guarantee the absence of AdS vacuum. Interestingly, this bound scales as m4
ν , as observed

experimentally.

The mere existence of these lower bounds is interesting, since the only input is the

value of the 4D c.c., yet the values obtained are close to expectations from particle physic

models. Furthermore they give us a rationale as to why a non-vanishing value of the c.c.

would be expected on arguments not based at all on the need for dark energy in cosmology.

The existence of dark energy could have been predicted on the basis of these arguments.

4 AdS Casimir SM vacua in 2D

In the previous section it was shown the 3D compactification of the SM. One can also

compactify to 2D [6, 8]. In this case there are more SM compactifications than in the

3D case. The most simple case is the compactification in a 2D torus, and this is the case

that we will follow in the rest of the work. However several compactifications in different

manifolds are also possible. One example is the 2D sphere. In this case there is an extra

classical contribution from the curvature to the potential. As it was shown in [8] one can

only obtain new stable vacuum when magnetic fluxes are switched on, and in this case

the Casimir contribution of neutrinos becomes irrelevant for those vacua, and no further
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constraints are obtained. For the case of other Riemann surfaces there are no 2D SM

vacua configurations even if there are magnetic fluxes. For those reasons we study in this

section the case of the 2D torus compactification with no fluxes, which is the only 2D vacua

depending strongly on the neutrino spectrum.

4.1 The radion potential in 2D. 2D SM vacua and neutrino masses

As pointed out in ref. [6] and then studied in detail in ref. [8] the 2D potential can be

written as

V (a, τ) = (2πa)2Λ4 +
∑
a

(−1)FanaV
(1)

2D−C [a, τ1, τ2,ma], (4.1)

with V
(1)

2D−C [a, τ1, τ2,ma] defined by

V
(1)

2D−C [a, τ1, τ2,ma] = − 1

(2πa)2

2(am)3/2

τ̃1/4

∞∑
p=1

1

p3/2
K3/2(2πapma

√
τ̃2) (4.2)

+ 2τ̃2(am)2
∞∑
p=1

1

p2
K2

(
2πapma√

τ̃2

)

+4
√
τ̃2

∞∑
n,p=1

1

p3/2

(
n2 +

(am)2

τ̃2

)3/4

cos(2πpnτ̃1)K3/2

2πpτ̃2

√
n2 +

(am)2

τ̃2

 ,
where the 2D torus is parametrized as

tij =
a2

τ2

(
1 τ1

τ1 |τ |2

)
. (4.3)

and τ̃i = τi/|τ |2. In the following we will assume |τ | = 1 for the torus.

The minima of the effective potential corresponding to AdS vacua are those verifying

the conditions [6, 8]

V (a, τ) = 0, ∂τ1,2V (a, τ) = 0, (4.4)

∂aV (a, τ) < 0, ∂2
τ1,2V (a, τ) > 0. (4.5)

However not every configuration of the complex structure of the torus leads to the

appearance of extrema in the potential. The Casimir contributions to the energy density

are invariant under SL(2,Z) modular transformations. For that reason only in stationary

points of the complex structure one can find extrema of the potential [8]. These stationary

points in the case of the 2D torus are τ = 1 and τ = 1/2 + i
√

3/2. As it was pointed out in

ref. [8] only the latter point presents a minimum of the potential. Thus, in the rest of the

paper we assume this structure for the 2D torus in the computations. It is important to

note that in this case either an AdS vacuum appears or there is no vaccuum at all. This

scenario is different compared to the 3D case since in the latter also dS vacua could appear.
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Figure 7. Effective potential for Majorana neutrinos for the 2D case when considering normal

hierarchy (left) and inverted hierarchy (right). In both cases the lightest neutrino is considered

massless, mν1 = 0 eV for NH and mν3 = 0 for IH (black line) and a mass of mν1 = 10−2 eV for NH

and mν3 = 10−2 eV for IH (blue line).

4.2 Majorana neutrinos

As it was discussed in the case of the 3D compactification, we expect the presence of AdS

vacua due to the fact that there is a bigger number of fermionic degrees of freedom compared

to the bosonic ones. In figure 7 we show the potential for Majorana neutrinos. Left panel of

figure 7 corresponds to a NH ordering and the right panel to an IH. As in the case of 3D com-

pactification an AdS vacuum always develops. For a massless lightest neutrino, the black

line in both panels of figure 7, an AdS vacuum is found which means that for larger masses

this vacuum remains. This can be seen in terms of the blue line depicted in both panels

which corresponds to a lightest neutrino mass of mν1 = 10−2 eV for NH and mν3 = 10−2 eV

for IH. As in the 3D case the Majorana neutrino contributions drive down the potential to

an AdS vacuum, and this possibility would be excluded, if no extra light particles are added.

4.3 Dirac neutrinos

In the case of Dirac neutrinos, one could expect the same possibilities that we found for

the 3D case. In this 2D case however we can conclude immediately when an AdS vacuum

is present since there are not dS vacua as it was mentioned before. In figure 8 the potential

for Dirac neutrinos is depicted. On the left panel of figure 8 a NH is assumed for the

neutrinos while on the right panel an IH is assumed. Different lines represent different

neutrino masses: 1.0 meV (black), 5.0 meV (blue), 10.0 meV (red), 20.0 meV (green).

In the case of NH (left panel of figure 8) for masses of the lightest neutrino greater than

mν1 ≥ 4.12 meV an AdS vacuum is developed while for masses lighter than that value

there is no vacuum at all. In the case of IH (right panel of figure 8) the mass of the lightest

neutrino must be greater than mν3 ≥ 1.0 meV in order for an AdS vacuum to be created.

These limits could be compared directly with the ones of table 1 for the 3D case. In this
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Figure 8. Effective potential for Dirac neutrinos for the 2D case when considering normal hierarchy

(left) and inverted hierarchy (right). For the case of NH the different lines correspond to different

lightest neutrino mass: mν1 = 1.0 meV (black), 4.12 meV (blue), 10.0 meV (red) and 20.0 meV

(green). In the case of IH the different colours correspond to the lightest neutrino masses: mν3 =

1.0 meV (black), 5.0 meV (blue), 10.0 meV (red), 20.0 meV (green).

NH IH

No vacuum mν1 < 4.12 meV mν3 < 1.0 meV

AdS3 vacuum mν1 > 4.12 meV mν3 > 1.0 meV

Table 2. Ranges of masses of Dirac neutrinos where different vacua configurations are shown for

a 2D torus compactification.

case the 2D compactification imposes stringent bounds setting lower masses for the mass

of the lightest neutrino that induces an AdS vacuum.

4.4 Cosmological constant versus neutrino masses from 2D vacua

As we did in the 3D compactification case, we can compute how the 4D cosmological

constant value could affect the creation of AdS vacua. In figure 9 the lower bound on

the cosmological constant as a function of the lightest neutrino mass is depicted for the

case of Majorana neutrinos. The red area corresponds to AdS vacua and so it is excluded.

The left panel of figure 9 shows a NH for Majorana neutrinos and the right one for IH. In

comparison with the 3D case we see that the limits are more stringent. For the NH scenario

we have that the lower value for the cc to have a non-AdS vacuum is 60 times larger than

the cc, while in the 3D case this number was 7. This is also de case for IH where now

the limits on the minimal value of the cc are one order of magnitude larger. For the Dirac

case something similar happens as we can deduce from table 2. Note that still Majorana

neutrinos are excluded by the observed value of the cc. In order to avoid an AdS vacuum for

Majorana neutrinos one would have needed a greater value of the cc than the one observed.
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Figure 9. Majorana neutrinos. Lower bound on the value of the 4D cosmological constant as a

function of the lightest neutrino mass coming from absence of AdS vacua for 2D compactification.

Left: NI. Right: IH.

5 Beyond the SM: adding light fermionic and bosonic degrees of freedom

The presence of additional very light particles with masses of the order of neutrino masses

or smaller can substantially modify the structure or the very existence of 3D or 2D vacua

and modify or eliminate the bounds above. Here we will discuss in turn the addition

of extra fermionic or bosonic degrees of freedom separately. There are of course more

complicated possibilities with e.g. additional fermions and bosons at the same time, which

can equally be studied using the above equations. The effect of the different possibilities

for BSM scenarios involving these extra light states is summarized later in table (5).

5.1 Adding Weyl, Dirac fermions or gravitino

The existence of very light neutral fermionic degrees of freedom have been advocated for

several purposes. Some examples are as follows:

Sterile neutrinos. These particles have been introduced as a generalization of the SM

neutrino system (see e.g. [56, 57] for reviews). One original motivation was the presence

of such states with a mass of order 1eV to account for some neutrino oscillation anomalies

detected at LSND and other neutrino experiments. But, more generally, the presence of

sterile neutrinos has been considered for a variety of purposes. Axinos (SUSY partners

of the axion) may also be considered in this class. Although in specific models sterile

neutrinos have masses typically of order 1 eV, very light sterile neutrinos with masses e.g.

m2 = 6× 10−3 eV 2, relevant for Casimir energies, are also possible (see e.g. [58]).

Light gravitinos. Very light gravitinos appear in models of low scale gauge mediation.

Minimal models of gauge mediation have gravitino masses of order

m3/2 = ξ
F√
3Mp

= ξ

( √
F

100 TeV

)2

× 2.4 eV, (5.1)
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here ξ = F0/F , where F0 is the fundamental SUSY-breaking auxiliary field scale and F is

the spurion auxiliary field in X = M+θ2F . This auxiliary field coupled to the MSSM may

be smaller than F0. So, e.g. for ξ = 1 and F = (10 TeV)2 one has m3/2 ' 2.4 × 10−2 eV,

well in the region relevant for Casimir potentials. There are cosmological upper bounds

on stable gravitinos (see e.g. [59–62] and references therein). From CMB measurements

one gets m3/2 ≤ 4.7 eV [60] and from primordial nucleosintesis m3/2 ≤ 16 eV. In gauge

mediation there are lower bounds on the gravitino mass coming from consistency with

the measured Higgs mass, which gives a lower bound on the SUSY breaking scale. Lower

bounds depend on the GMSB version. In minimal GMSB one gets m3/2 > 300 eV but more

general GMSB models may yield gravitino masses as low as 1 eV. Searches at colliders (LEP

and LHC) set lower limits of order 10−3 eV (see e.g. [63] and references therein).

Dark matter. Additional Weyl or Dirac fermions may constitute a component of the

dark matter required by astrophysics and cosmology. However typical cold dark matter

candidates have masses above 102− 103 eV. For a gravitino to be the dominant component

of dark matter one needs m3/2 ≥ 90 eV. So these additional Weyl fermions contributing to

the Casimir energies do not seem to be natural candidates for dark matter.

Let us finally mention that ultralight fermionic states may contribute to the effective

number of degrees of freedom Neff in cosmology. But the limits apply to particles who were

at some point in thermal equilibrium with the SM and decoupled before recombination. De-

tails on bounds of dark radiation depend sensitively on how and when the particle decoupled

and hence need not apply to the light degrees of freedom here considered (see e.g. [61, 62]).

Independently of any motivation, it is clear that additional Weyl or Dirac fermions

with masses relevant for the Casimir potential could be present in addition to the SM from

e.g. hidden sectors or dark portals. Here we will present results for the addition of one or

two Weyl fermions. The case of two Weyl fermions yields the same as the addition of one

Dirac fermion or a gravitino.

5.1.1 One Weyl fermion

• Majorana neutrinos. The effect on the 3D Casimir vacua of the addition of one single

Weyl fermion is shown in figures 10, both for the case of NI and IH. Now the case

of Majorana neutrinos becomes viable as long as the lightest neutrino is lighter than

mν1 ≤ 10−2 eV (NI) or mν3 ≤ 3×10−3 eV (IH). The added Weyl fermion has also to be

lighter than those values respectively. Note that this values for the lightest neutrino

Majorana masses would make complicated the detection in ν-less double β-decay

experiments in the case of normal hierarchy. Planned experiments expect to reach

values of order 10 × 10−3 eV for the effective Majorana mass in the double β decay

amplitude. This would cover essentially all the IH problem in a model independent

way. However, in the case of normal hierarchy only if the lightest neutrino es heavier

than 10−2 eV the detection would be possible (see e.g. [64]).

• Dirac neutrinos. The effect on the 3D Casimir vacua of the addition of one single

Weyl fermion is shown in figures 11, for both cases NH,IH. Recall that this case of

Dirac neutrinos, unlike that of Majorana, was viable without the addition of any extra
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Figure 10. 3D vacua. Constraints on the lightest neutrino and Weyl fermion masses for the case of

Majorana neutrinos, assuming no AdS 3D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

Figure 11. 3D vacua. Constraints on the lightest neutrino and Weyl fermion masses for the case

of Dirac neutrinos, assuming no AdS 3D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

particle. We see that for Weyl fermion with mass mχ ≥ 10−2 eV one recover the limits

of table 1. For a lighter Weyl fermion the lower limit on the lightest neutrino mass

become slightly weaker, mν1 ≤ 10−2 eV. Otherwise the vacua are not much altered.

We have also worked out the same study for the case of 2D vacua. The results are

shown in figures 15 and 16. Compared to the case of 3D the results are very similar though

the obtained constraints are slightly stronger. Thus for the case of Majorana neutrinos,

the lightest neutrino has to be lighter than mν1 ≤ 5 × 10−3 eV for NI and even stronger

mν3 ≤ 10−3 eV for IH.
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Figure 12. Majorana neutrinos with a Weyl fermion. Lower bound on the value of the 4D

cosmological constant as a function of the lightest neutrino mass coming from absence of AdS 3D

vacua when a Weyl fermion of mass mχ = 10−3 eV is added. Left: NI. Right: IH.

Figure 13. 3D vacua. Constraints on the lightest neutrino and Dirac/gravitino fermion masses for

the case of Majorana neutrinos, assuming no AdS 3D vacua forms. NH and IH stand for normal

and inverted neutrino hierarchies respectively.
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Figure 14. 3D vacua. Constraints on the lightest neutrino and Dirac fermion masses for the case

of Dirac neutrinos, assuming no AdS 3D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

Given the fact that the addition of a Weyl fermion makes viable some regions of the

scenario with Majorana neutrinos developing non AdS vacua, it is interesting to study if

this is compatible with the observed value for the cc. As we studied in figures 5 and 9,

the current value of the cc is not compatible with the Majorana scenario, however this

situation changes with the addition of a Weyl fermion. In figure 12 the allowed values of

the lightest neutrino versus the cc are depicted. We see that in contrast with figures 5 and 9

there are areas compatible with the cc value when the lightest neutrino mass is lighter than

mν1 ≤ 9 × 10−3 eV for NH and mν3 ≤ 3 × 10−3 eV for IH for a mass of the Weyl fermion

of mχ = 10−3 eV. These limits are dependent on the mass of the Weyl fermion since larger

masses will reach the limit of figures 5 and 9.

5.1.2 One Dirac fermion/gravitino.

• Majorana neutrinos. The effect on the 3D Casimir vacua of the addition of one

Dirac fermion is shown in figures 13, both for the case of NI andIH. Now the case of

Majorana neutrinos is viable as long as the added Dirac fermion is sufficiently light,

lighter than the two heaviest neutrinos. Furthermore the upper bound on the mass

of the lightest neutrino essentially disappears. This is important because it means

that then a Majorana mass for the lightest neutrino could be detected in planned

ν-less double β-decay experiments [64] also for the NH case.

• Dirac neutrinos. The effect on the 3D Casimir vacua of the addition of one Dirac

fermion is shown in figures 14, both for the case of NI andIH. The results are similar

to those of an added Weyl fermion except for an important difference. As in the
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Figure 15. 2D vacua. Constraints on the lightest neutrino and Weyl fermion masses for the case of

Majorana neutrinos, assuming no AdS 2D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

Majorana case, the upper bound on the mass of the lightest neutrino essentially

dissappear if the added Dirac fermion has a mass smaller that 10−3 eV.

We have also worked out the same study for the case of 2D vacua. The results are

shown in figures 17 and 18. They are almost identical to those we found for the 3D vacua.

The limits are slightly stronger but one can barely note the difference.

As a summary, adding a Weyl or a Dirac fermion sufficiently light to Majorana neu-

trinos make the latter viable with the present constraints. The lightest Majorana neutrino

would be amenable to planned ν-less double β-decay if we add a Dirac fermion or a grav-

itino.

5.2 Axions

Axion-like particles are natural candidates for BSM states populating the infrared sector of

the SM. Their shift symmetry a→ a+2πfa protects their masses from quantum corrections

and make ultralight masses natural. The best motivated such particle is the QCD axion

which is introduced to solve the strong CP problem of QCD. The mass of the QCD axion

is given by (see e.g. [65] and references therein)

ma =
z1/2

1 + z

fπmπ

fa
, (5.2)

where fπ and mπ are the pion decay constant and pion mass respectively and z = mu/md.

The mass of the axion can be written

ma = 5.70 eV
106 GeV

fa
. (5.3)
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Figure 16. 2D vacua. Constraints on the lightest neutrino and Weyl fermion masses for the case

of Dirac neutrinos, assuming no AdS 2D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

Figure 17. 2D vacua. Constraints on the lightest neutrino and Dirac/gravitino fermion masses for

the case of Majorana neutrinos, assuming no AdS 2D vacua forms. NH and IH stand for normal

and inverted neutrino hierarchies respectively.
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Figure 18. 2D vacua. Constraints on the lightest neutrino and Dirac fermion masses for the case

of Dirac neutrinos, assuming no AdS 2D vacua forms. NH and IH stand for normal and inverted

neutrino hierarchies respectively.

Astrophysical and cosmological bounds for the QCD axion constraint its decay constant

to a range 108 − 1011 GeV, so that the mass of the QCD axion lies in the range ma =

(10−6−10−2) eV, well in the ballpark of the neutrino mass scale, so that the standard QCD

axion can significantly modify the lower dimensional radion potential, as we describe below.

In addition to the QCD axion, the existence of other axion-like particles (ALP) has

been suggested for a variety of purposes. For these ALP’s the mass can vary in a very wide

range. A recently popular ALP is the relaxion [66, 67] in which the minimal model has a

mass as low as ma ' 10−25eV. In the formulation of relaxion in terms of 4-forms [68, 69],

the mass of the relaxion is given by ma = F4/fa, where F4 ' (10−3eV )2 is the 4-form field

strength. An ALP coupled to 4-forms (a hierarxion [70]) and the Higgs particle has also

been recently suggested in order to construct a landscape of values for the Higgss mass.

In this case the ALP mass varies in a range 10−17eV < ma < 103eV . Axions or ALP’s

may constitute the dark matter in the universe. Recently the case of ultralight scalars with

mass ma ' 10−22 eV constituting what is called fuzzy dark matter has been studied (see

e.g. [71] and references therein). All these possible sources of axion-like particles could if

present contribute to the potential of the radion.

The axion contribution to the general effective potential would be negative due to its

bosonic nature. In principle the axion contribution to the 3D potential reads,

Va = − r
3

R3

m2
a

4π3R

∞∑
n=1

1

n2
K2(2πRman). (5.4)

However, besides the Casimir contribution to the potential, there is an extra contribution

to the potential from axionic fluxes [6]. The field strength of tha axion (da) can be non-
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vanishing around the compact circle S1,2∮
S1

da = f, (5.5)

with the flux f quantized as f = 2πnfa, with fa the axion periodicity (decay constant).

This flux contributes to the effective potential a piece

V ∝ f2r3

4πR4
, (5.6)

so that the full axion contribution to the potential is given by

V tot
a =

f2r3

4πR4
− r3

R3

m2
a

4π3R

∞∑
n=1

1

n2
K2(2πRman). (5.7)

Since the value of fa is enormously large in specific ALP’s, the flux contribution com-

pletely overwhelms the Casimir contribution for non-vanishing fluxes n 6= 0. This destroys

completely any possible Casimir induced vacua, and hence no constraint on low energy

parameters are obtained. However, the conjecture tell us that there cannot exist any AdS

vacua and hence we have to study the possible vacua arising in the fluxless case n = 0,

which we analyze below. The effect of the axions on the 3D vacua depends on its number

so we will distinguish two cases.

5.2.1 One axion

Let us consider first the case of one single axion.3 In the case of Majorana neutrinos the

addition of an axion does not change things. Since an axion contributes negatively, an AdS

vacuum still develops and becomes in fact deeper, since there are 6 fermionic degrees of

freedom and 5 bosonic.

In the case of Dirac neutrinos, the negative contribution of the axion slightly modifies

some of the vacua, some of them could also change its nature or even create new vacua

which were absent in the axion-less case. The results depend on the relative magnitude

of the axion mass and the mass of the heaviest neutrinos as well as whether the neutrino

hierarchy is normal or inverted. In figure 19 the effect of the axion for the different vacua

formation is shown in the lightest neutrino mass and axion mass plane. For this plot we

have assumed that n = 0 so there is no contribution from the flux term. We have analysed

masses of the axion from 10−6 eV to 105 eV. We can see the different effects that an axion

could produce for NH and IH hierarchies:

• NH Dirac neutrinos.

In the NH case we see that for axion masses above around 10−2 eV the number of

light states becomes the same as in the axion-less case, and we recover the limit

mν1 < 7.7× 10−3 eV. For axions lighter than 10−2 eV the effective number of degrees

of freedom decreases one unit and the bound becomes stronger, mν1 < 5.35 meV.

2Describing the axion in terms of its dual 2-form B2, this flux may be also understood as the flux of

H3 = dB2 through 3D space.
3Note that the bounds discussed in this section hold as well for other light scalars, not necessarily axionic.
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Figure 19. Contour plots for the appearence of different kind of 3D vacua in the mass of the

lightest neutrino — mass of the axion plane. The range of the QCD axion is shown as an area

delimited with dashed lines. On the left panel the case of NH is shown. For every mass of the axion

we can find a bound on the lightest neutrino mass for which we can evade the AdS vacuum. On the

right panel the case of IH is shown. In this case when the axion has a mass smaller than ma ≤ 30

meV, an AdS vacuum is always formed.

• IH Dirac neutrinos.

For IH, when we include an axion field an AdS vacuum is created even when the

lightest neutrino mass is set to zero, mν3 = 0 eV. The reason for this behaviour is

the fact that in IH there are two heavy states that even when the lightest neutrino

mass is set to zero their masses are mν1 ∼ mν2 ∼ 50 meV. In this case there are 5

bosonic degrees of freedom against 4 fermionic ones below 50 meV, so an AdS vacuum

is formed. Note that the QCD region of axion masses would then be excluded for

Dirac neutrino masses, which is a strong result. On the other hand, when the axion

mass reaches the heavy neutrino states masses the fermionic degrees of freedom start

contributing to the effective potential. In that sense, when the mass of the lightest

neutrino is set to zero, mν3 = 0 eV, one finds that for masses of the axion greater

than ma > 24.8 meV the AdS vacuum becomes a dS one. For instance, for an axion

mass of ma = 50 meV or larger the limit of the lightest neutrino mass in order to

avoid an AdS vacuum is mν3 = 2.5 meV.

A summary of the constraints for axion and lightest Dirac neutrino masses is shown in

table (3). Very similar results and constraints are obtained in the case of a compactification

down to 2D as can be seen from figure (20).

5.2.2 Multiple axions and axiverse

For more than one axion-like particle the situation may change in an important way. The

reason is that if a sufficiently large number of axions have their masses in the neutrino mass

range or below, they may make unstable any of the Casimir vacua here discussed. The
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ma NH IH

. 10−4 eV mν1 > 5.35 meV mν3 > 0.0 meV

10−3 eV mν1 > 5.4 meV mν3 > 0.0 meV

10−2 eV mν1 > 6.87 meV mν3 > 0.0 meV

& 10−1 eV mν1 > 7.7 meV mν3 > 2.55 meV

Table 3. Upper bound on the lightest neutrino mass for NH and IH up to which an AdS vacuum

is formed for different QCD axion masses.

Figure 20. Contour plots for the appearence of different kind of 2D vacua in the mass of the

lightest neutrino — mass of the axion plane. The range of the QCD axion is shown as an area

delimited with dashed lines. On the left panel the case of NH is shown. For every mass of the axion

we can find a bound on the lightest neutrino mass for which we can evade the AdS vacuum. On

the right panel the case of IH is shown.

reason is that they give rise to a negative contribution to the potential which may dominate

it if the total number of bosonic degrees of freedom exceeds the number of fermionic ones.4

Again, the number of axions required to destabilize the AdS vacua will depend on the

Majorana or Dirac nature of neutrinos:

• Majorana neutrinos plus multiaxions. If there are ≥ 2 light axions, the number of

fermionic degrees of freedom is smaller than the number of bosonic ones, and AdS

vacua do not form. So in principle this is a simple way in which Majorana neutrino

masses can be made compatible with the absence of dangerous AdS vacua. The

situation may be in fact slightly more complex. Indeed, as R decreases, other particle

thresholds become eventually relevant [6]. Up to the QCD scale we have the electron,

then the muon, the pion, the kaons and the η. Just above the electron threshold there

4Note that the discussion here also applies to the case of very light but massive gauge bosons, which

would contribute as three scalars.
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are 10 fermionic degrees of freedom, so we would need 6 or more axions for such local

minima not to develop. And above the muon threshold there are 14 fermionic degrees

of freedom so 10 or more axions are needed to avoid some local AdS minimum. Higher

thresholds involves bosons ( at least up to the QCD scale). So we may need more

than 10 light axions to make the AdS vacua not to form. Still these extra AdS vacua

involving higher thresholds may be unstable to decay into other vacua for larger R,

so that perhaps 2 axions may be enough to avoid stable AdS vacua.

• Dirac neutrinos plus multiaxions. In this case AdS vacua may be avoided already in

the absence of axions. Now if we have more than 8 = 12 − 4 axions any neutrino

Casimir AdS vacua becomes unstable, so that no constraints on neutrino masses is

obtained. To avoid formation of additional AdS at the muon threshold we would

need a total 8 + 4 + 4 = 16 axions. But again this may be too constraining if these

additional vacua are not stable.

In summary, a simple way to avoid unwanted Casimir AdS vacua both for Majorana

and Dirac neutrinos is to have multiple axions (and/or gauge bosons) in the ultralight spec-

trum of the theory. This would fit well with the idea of an Axiverse, as suggested in ref. [72].

6 The electro-weak hierarchy problem and the cosmological constant

The essential ingredient to minimally avoiding 3D, 2D AdS vacua is having 4 fermionic

degrees of freedom sufficiently light (lighter than ' Λ
1/4
4 ) so as to cancel the negative

contribution coming from the photon and graviton, before the radion potential becomes

negative, as the compact radii decrease. It is then clear that, for a fixed value of Λ4, the

mass of these lightest fermionic degrees of freedom is bounded from above as it is clearly

shown in figures 5 and 6. In the case of Majorana neutrinos, in addition to the ligthest

neutrino, an additional Weyl fermion state lighter than 10−3 eV must also be added if we

want to avoid AdS vacua. But again one observes in figure 12 that there is an upper

bound on the mass of the lightest neutrino (both in normal NI and IH). Similar results are

obtained in compactifications to 2D.

If neutrinos are Majorana one sees from table 5 that mν1 . 5(1)× 10−3 eV∼ 2(0.4)×
Λ

1/4
4 for NI (IH) respectively. If the lightest neutrino Majorana mass is induced from a

standard see-saw mechanism one obtains (e.g for NI)5

(Yν1〈H〉)2

M
. 2× Λ

1/4
4 −→ 〈H〉 .

√
2

Yν1

√
MΛ

1/4
4 . (6.1)

where M is the scale of lepton number violation in the see-saw. Thus one gets the inter-

esting conclusion that, for a given fixed c.c. Λ4 and fixed Yukawa coupling, the EW scale

is bounded above by the geometric mean of the cosmological constant scale and the lepton

number violation scale M . Thus, e.g. for Yν1 ' 10−3 and M ' 1010 − 1014 GeV, one gets

〈H〉 . 102 − 104 GeV. Larger EW scales would yield (for fixed Yukawa) too large lightest

5Of course, one only obtains a useful bound if the lightest neutrino has non-zero mass.
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Figure 21. Constraints on the EW scale and the cosmological constant. On the left panel the case

of Majorana neutrinos and normal hierarchy is shown, in the presence of an additional Weyl fermion

of mass mχ = 10−3 eV. We have assumed Y = 10−3 and M = 1010 GeV. On the right panel the

case of Dirac neutrinos and normal hierarchy assuming a Yukawa coupling Y = 10−14 is depicted.

neutrino mass and AdS vacua would be generated. In other words, consistency with quan-

tum gravity requires that a very small 4D cosmological constant should come accompanied

by a big hierarchy between the EW scale and M . On the left panel of figure 21 we depict the

constraints on the EW scale (parametrised by the Higgs vev) and the 4D cosmological con-

stant for fixed Y = 10−3 and M = 1010 GeV, leading to the aforementioned upper bound

on the EW scale. To obtain this figure we have used the bounds provided by figure 12.

Similar results apply for the case of inverted neutrino mass hierarchy and 2D vacua.

In the case of Dirac neutrinos one rather gets

〈H〉 . 1.6(0.4)
Λ

1/4
4

Yν1
(6.2)

for NI(IH). Now, for fixed Yukawa coupling the EW scale is again bounded above by the

4D cosmological constant. In the Dirac case, though, the Yukawa coupling needs to be

extremely small to match the scale of observed neutrino masses.6 But again, the smallness

of the cosmological constant implies in turn a small EW scale in order to be consistent with

quantum gravity. This relation is shown on the right panel of figure 21 for fixed Yukawa

coupling Y = 10−14.

Note that from the point of view a low energy Wilsonian field theorist the smallness of

the EW scale is surprising because there is apparently nothing preventing the Higgs mass

to grow up to the UV cut-off scale. That is the hierarchy problem. If that huge UV mass

6In the case of Dirac neutrinos, one can also apply the argument in the opposite direction, to explain

why at least one of the neutrinos has a Yukawa . 10−14. Indeed for fixed Λ4 and EW scale, one lightest

neutrino with a Yukawa coupling . 10−14 would be enough to avoid the existence of 3D, 2D AdS vacua.

However the other two neutrino generations would not be constrained from such arguments.
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NI IH

Dirac mν1 = 4.12× 10−3 eV mν3 = 1.0× 10−3 eV

Majorana mν1 = 5× 10−3 eV mν3 = 1.0× 10−3 eV

Table 4. Predictions for the mass of the lightest neutrino assuming the WGC constraint is saturated

and the EW hierarchy is thus explained by the bounds coming absence of 2D(3D) AdS vacua.

The Majorana case assumes the existence of an additional Weyl fermion with mass lighter than

4(2)× 10−3 eV (otherwise the Majorana case is already ruled out).

squared is negative, that would give rise to EW breaking close to the UV scale. We now

see that, from the WGC point of view here considered, that situation would not be possible

(for fixed Λ4) because AdS vacua would then be generated at 3D and 2D compactifications.

The smallness of the EW scale becomes, therefore, indirectly related to the smallness of

the cosmological constant.

The other option is having a positive UV scale mass for the Higgs, i.e., no Higgs at low

energies at all. That situation turns out to be also inconsistent with the WGC. Indeed,

starting with the SM with just fermions, gauge bosons and no Higgs, the theory has a

global accidental U(6)R × U(6)L symmetry in the quark sector. Once QCD condensation

takes place, the symmetry is broken to the diagonal U(6) and 36 Goldstone bosons appear.

Out of those 3 are swallowed by the W± and Z bosons. These large number of bosons

outnumbers the massless leptonic degrees of freedom which are 18 or 24 if neutrinos are

Dirac. This makes again an AdS vacuum to develop. In summary, for a SM with fixed

Yukawa couplings and the observed c.c., having a light Higgs is arguably the only way to

scape inconsistency with quantum gravity.

One can convert the above bound on the EW scale into a prediction if one assumes

that indeed this scale is fully fixed by this constraint. By this we mean that any slight

increase on the Higgs vev would put the theory into the swampland, so that the bounds

are saturated. If this is the case and the WGC provides the full explanation for the EW

gauge hierarchy, the mass of the lightest neutrino should be at the value given by its upper

bound. Then the predicted lightest neutrino masses are shown in table 4.

Thus e.g., if we were able to measure the mass of the electron neutrino at a ν-less

double beta decay experiment, and it was established that the neutrinos have NH(IH), a

mass mν1 = 5(1)×10−3 eV would be a strong indication that the origin of the EW hierarchy

lies in the above WGC arguments.

Note in closing that the above WGC arguments not necessarily imply the absence of any

new physics above the EW scale like e.g. low energy SUSY. The latter could be present for

other purposes like dark matter and in particular the stability of the Higgs potential at high

energies. In fact the WGC arguments could perhaps explain the existence of a little hierar-

chy problem in the MSSM or the fine-tuning in models like split SUSY or high scale SUSY.
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7 Discussion

In the present paper we have rexamined the implications of the recent conjecture of Ooguri

and Vafa suggesting that theories with consistent quantum gravity cannot have AdS stable

non-SUSY vacua. When applied to the vacua obtained from compactifications of the SM

to 3D and 2D studied by Arkani-Hamed et al. one obtains strong constraints on neutrino

masses and other possible BSM very light particles in terms of the c.c.. Furthermore one

also obtains a new understanding of the EW hierarchy problem from consistency with

quantum gravity.

As we have emphasized, a crucial point to obtain such constraints is the issue of the

stability of these AdS vacua. Although a decay of these SM vacua to a Witten bubble of

nothing is ruled out due to the periodic boundary conditions of the fermions, it is more

difficult to exclude other sources of instability. In particular, if the SM is embedded into a

landscape of vacua as suggested in string theory, the 4D vacuum transitions which should

occur to populate the vacua would have a reflection on lower dimensions, giving rise to

instabilities. However, as we discussed in section 2, our knowledge of the structure of the

landscape of vacua in string theory is far from complete and one could envisage a situation

in which the barriers around the SM are huge, and it could be that the lower dimensional

Casimir vacua here discussed were stable.

In spite of the uncertainties concerning vacuum stability, we think it is interesting to

work out in detail what would be the consequences if indeed the Ooguri Vafa conjecture is

correct and the Casimir AdS SM vacua were indeed stable. It turns out that this assumption

leads to quite interesting physical constraints for the 4D cosmological constant, the masses

of neutrinos, extra additional light particles BSM and even the possible origing of the EW

hierarchy.

One first interesting result is the existence of a lower bound on the value of the c.c.

in terms of the light degrees of freedom of the SM Casimir potential. One can obtain an

approximate analytic expression of the form

Λ4 ≥ A

(∑
i

m2
i

)2

− B
∑
i

m4
i . (7.1)

This is interesting because, as far as we are aware, this is the only known suggestion for a

non-vanishing value of the c.c. related to neutrino masses and independent of any cosmolog-

ical argument (dark energy). Before evidence for an accelerating universe was found, it was

widely believed that Λ4 = 0. The conjecture here studied would have implied the existence

of a 4D c.c. to avoid inconsistent AdS vacua, independently of any cosmological argument.

We find that the existence or not of dangerous lower dimensional SM AdS vacua is

very sensitive both to the value of Λ4, neutrino masses and possible BSM extensions. We

have done a systematic study of this dependence for both 3D and 2D SM vacua and the

summary is shown in table 5. The results for 2D and 3D vacua are quite similar, although

bounds coming from the absence of 2D vacua are slightly stronger.

Perhaps the most attractive setting for neutrino masses is that of Majorana neutrinos

(from a see-saw mechanism) in normal hierarchy. If no additional BSM states are around,
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Model Majorana (NI) Majorana (IH) Dirac (NH) Dirac (IH)

SM (3D) no no mν1 ≤ 7.7 × 10−3 mν3 ≤ 2.56 × 10−3

SM(2D) no no mν1 ≤ 4.12 × 10−3 mν3 ≤ 1.0 × 10−3

SM+Weyl(3D) mν1 ≤ 0.9 × 10−2 mν3 ≤ 3 × 10−3 mν1 ≤ 1.5 × 10−2 mν3 ≤ 1.2 × 10−2

mf ≤ 1.2 × 10−2 mf ≤ 4 × 10−3

SM+Weyl(2D) mν1 ≤ 0.5 × 10−2 mν3 ≤ 1 × 10−3 mν1 ≤ 0.9 × 10−2 mν3 ≤ 0.7 × 10−2

mf ≤ 0.4 × 10−2 mf ≤ 2 × 10−3

SM+Dirac(3D) mf ≤ 2 × 10−2 mf ≤ 1 × 10−2 yes yes

SM+Dirac(2D) mf ≤ 0.9 × 10−2 mf ≤ 0.9 × 10−2 yes yes

SM+1 axion(3D) no no mν1 ≤ 7.7 × 10−3 mν3 ≤ 2.5 × 10−3

ma ≥ 5 × 10−2

SM+1 axion(2D) no no mν1 ≤ 4.0 × 10−3 mν3 ≤ 1 × 10−3

ma ≥ 2 × 10−2

≥ 2(10) axions yes yes yes yes

Table 5. Conditions on neutrino, fermion and axion masses (in eV) from the absence of 3D and 2D

SM vacua. Here yes means that no AdS value forms independently of the values of parameters, no

means the opposite. Note that the 2D constraints are slightly stronger than the 3D constraints but

follow a similar patern. Majorana neutrino masses accessible to ν-less double β-decay require the

existence of either at least 2 additional weyl spinors or 2 or more scalars (e.g. axions or ultralight

vector bosons).

Majorana neutrinos are not consistent with the bounds from absence of AdS vacua here

discussed, as already pointed out in [36]. However we have found that slight modifications

like the addition of a Weyl fermion with mχ ≤ 4×10−3 eV is sufficient to ensure the absence

of dangerous vacua. This requires a lightest neutrino mass mν1 ≤ 5× 10−3 eV, difficult to

measure in planned ν-less double β-decay experiments, if the hierarchy is normal. However

if there are 2 light Weyl spinors (or a Dirac fermion or gravitino) this upper bound on

the lightest neutrino mass dissappears and Majorana masses may be detectable at those

experiments. This is also the case if in addition of the SM we have a sufficiently large num-

ber of light bosonic states making any would be AdS vacua to dissappear, for any value of

neutrino masses. These may come from a multiple set of axions or ultralight vector bosons.

If the neutrinos are Dirac, dangerous AdS vacua may be avoided even in the absence

of new physics as long as the lightest neutrino has mν1 ≤ 4.1 × 10−3 eV for NH (mν3 ≤
1× 10−3 eV for IH). If one Weyl fermions are added these bounds are increased to mν1 ≤
0.9×10−2 eV for NI (mν3 ≤ 0.7×10−2 eV for IH). If instead we add a light Dirac/gravitino

state, bounds on the lightest neutrino mass dissappear and dangerous AdS vacua are

altogether avoided.

An interesting light addition to the SM is that of an axion. If only one axion is added,

Majorana neutrinos still lead to undesired AdS vacua and would be ruled out. In the case

of Dirac neutrinos absence of dangerous vacua are obtained if the lightest neutrinos have

mν1 ≤ 4× 10−3 eV for NI (mν3 ≤ 1× 10−3 eV for IH). In this latter case however the axion

must have ma ≥ 2× 10−2 eV, so that it cannot be identified with a standard QCD axion.
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The existence of 3D,2D SM vacua can leave an imprint in cosmology (see [73]). Indeed if

our universe came from a lower dimensional one in 2+1 dimensions there could be some de-

tectable imprints, due to the anisotropy of space. This may affect the CMB if the last period

of inflation was not too long. This effect would appear at the highest multipoles. However

we have just seen that AdS SM vacua cannot be stable, so that such anisotropies could not

originate from such primordial vacua. Only dS 3D vacua would still be possible, but we have

seen that such vacua only appears for very narrow regions for the mass of the lightest neu-

trino. Thus e.g. in the case of Dirac neutrinos 3D dS vacua only appear in the region 6.7×
10−3eV ≤ mν1 ≤ 7.7×10−3eV for NI or 2.1×10−3eV ≤ mν3 ≤ 2.56×10−3eV (see table 1).

A further quite important result is that the upper bound on the neutrino masses can

be translated into un upper bound on the EW scale for fixed cosmological constant and

Yukawa couplings. This is a consequence of the dependence of the neutrino masses on the

Higgs vev. In the case of massive Majorana neutrinos with a see-saw mechanism associated

to a large scale M ' 1010−14 GeV and Yν1 ' 10−3, one obtains that the EW scale cannot

exceed MEW . 102 − 104 GeV. Similar constraints apply to the Dirac case. These results

are displayed in figure 21. From this perspective, the Higgs scale is small compared to the

UV scale because of the smallness of the c.c. Parameters yielding higher EW scales would

yield lower dimensional AdS vacua and would be inconsistent with an embedding into

quantum gravity. This can bring a new perspective into the issue of the EW hierarchy. If

indeed this is the explanation for the EW hierarchy problem, saturation of the bounds from

the WGC provides specific predictions for the lightest neutrino mass which are summarized

in table 4. Thus e.g., if a Majorana mass for the electron neutrino is eventually measured,

values mν1 = 5(1) × 10−3 eV for NH(IH) would give a strong indication that the present

WGC arguments play an important role in the understanding of the EW hierarchy problem.

On the other hand the above WGC arguments not necessarily imply the absence of any

new physics above the EW scale. Thus e.g. SUSY may be present for other reasons like

dark matter and in particular the stability of the Higgs potential at higher energies.

We find quite remarkable that a very abstract condition like the absence of stable

AdS vacua may give rise to such a wealth of implications on magnitudes of direct physical

relevance like the cosmological constant, neutrino masses and even the origin of the EW

hierarchy. In overall, our analysis is a clear example of how consistency with quantum grav-

ity can have important implications on IR physics. Not all points in the parameter space

leading to different quantum field theories are allowed when including gravity, and apparent

fine-tuning problems can turn out to be only mirages due to our ignorance of the actual

landscape of consistent theories. This can force us to review our notions of naturalness

and the hierarchy problems in particle physics when combined with quantum gravity.
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