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1 Introduction

A global quench is a simple setting in which we can study thermalization in isolated quan-

tum systems: at t = 0 we start with an atypical translationally invariant, short range

entangled initial state |ψ0〉, and let the state evolve in time.1 In a generic quantum system,

during the process of thermalization all simple observables converge to the value they take

in the Gibbs ensemble. A good characterization of thermalization is how close the reduced

density matrix of a small subsystem A, ρA[|ψ(t)〉] is to the reduction of the thermal density

matrix to the region A, ρth
A ∝ TrĀ e

−βH , where β is to be chosen such that the expecta-

tion value of the energy agrees between the two density matrices. One way to quantify

the proximity to thermal behavior is to calculate the von Neumann entropy of ρA(t), and

follow as it evolves from an area law value to saturation at the thermal entropy.

In a free theory, because of the infinitely many conserved charges the above picture

requires modification. The time evolution leads to simple observables converging to their

values in the Generalized Gibbs Ensemble (GGE) [1] instead of the Gibbs ensemble. In

1We use the word quench somewhat loosely; a more narrow definition describes a process in which the

abrupt change of the Hamiltonian turns the ground state of the pre-quench Hamiltonian into an excited

state of the post-quench Hamiltonian.
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this paper we will work with Gaussian states in free scalar field theories: for these states

it is known that the set of charges that one has to include in the GGE are the particle

numbers in each momentum mode [2].2 After the quench we focus on the case of massless

fields.

We investigate entanglement entropy growth of these fields for geometric subregions

in diverse dimensions. We discretize the theory on a lattice and use the correlator matrix

approach to numerically compute entanglement and Rényi entropies. The continuum limit

can be achieved by taking a scaling limit:

R

a
,
t

a
� 1 ,

βk
a
� 1 , (1.1)

where R is the characteristic size of the region A, t is the time measured from the quench,

a is the lattice constant, and βk is the inverse of the effective temperature in the mode

with wavenumber k. Let us introduce

ŜA(t) = SA(t)− SA(0) (1.2)

to get rid of the vacuum area law pieces in the entropy.3 In the limit of large region sizes

and times

R, t� βk , (1.3)

it is expected that the entropy obeys a scaling form:

ŜA(t) = s vol(A) f

(
t

R

)
f(0) = 0 , f(∞) = 1 ,

(1.4)

where s is the entropy density in the GGE,4 f(0) = 0 follows from the definition, and

f(∞) = 1 assumes that the entropy reaches the equilibrium value predicted by GGE. In

the limits (1.1), (1.3) the finite area law pieces in the entropy are suppressed by the factor

R/β. In summary, we want to work in the double scaling limit

R, t� βk � a . (1.5)

There is a useful toy model for entanglement growth introduced in [6, 7] and general-

ized to higher dimensions in [8]. This model assumes that the quench creates quasiparticle

2For non-Gaussian states the story is more complicated [3, 4].
3We want the subtracted entropy ŜA(t) to have a good continuum limit. In theories with low-dimension

scalar operators the entropy can exhibit a state-dependent divergence structure [5]. In these theories there

should exist a corresponding ambiguity in the definition of the entropy that allows us to regularize the

entropy in a way that ŜA(t) is finite for all times. In theories with state-independent divergence structure

any regularization will yield a finite result. Free scalar theories are of the latter type. Of course, SA(t)

itself is well-defined on the lattice.
4In a generic system without any conserved quantity other than the energy, it would be the thermal

entropy density.
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R

Figure 1. The two types of geometries we examine in this work. Regions A and Ā partition the

system into two distinct regions. Starting with a pure state, we trace out region Ā to obtain a

reduced density matrix ρA, from which we compute the entanglement and Rényi entropies. Left:

the strip geometry with two sides separated by a distance 2R. Right: a spherical geometry of

radius R.

EPR pairs5 localized on length scales O(β). In the scaling limit (1.5) the pairs can be

taken to be pointlike. In a massless theory, the pairs then propagate with the speed of

light,6 and ŜA(t) counts the number of pairs that have one member in A and the other

in Ā. While the model reproduces the entropy of one interval in any 1 + 1 dimensional

conformal field theory (CFT) [6], for more complicated geometries it only works in inte-

grable CFTs [11]. In this work we find overwhelming evidence that the quasiparticle model

reproduces the growth of entanglement in higher dimensional free massless scalar field the-

ories in the scaling limit (1.5), by comparing the predictions of the quasiparticle picture

to numerical computations in strip and sphere geometries, see figure 1. We study two

types of quenches: the boundary state quench corresponds to starting the evolution from

a regularized boundary state of the CFT, which leads to βk = β, while the mass quench

corresponds to abruptly changing the Hamiltonian of the system by changing the mass

parameter, and leads to a k-dependent effective temperature. The quasiparticle picture

works for both quenches equally well.

We emphasize three key features of our findings. First, we find (in the two geometries

we consider) that at early times the entropy exhibits linear growth of the form:

ŜA(t) = vE s area(A) t , βk � t� R , (1.6)

where by area(A) we mean the area of the entangling surface, vol(∂A). The dependence

on the shape only appears through area(A), and the entanglement velocity vE is shape

5In higher dimensions we can consider more complicated patterns of entanglement, as explored in [8].

Intuitively, however, for Gaussian states that we consider in this paper the bipartite entanglement structure

encoded in EPR pairs seems to be the appropriate choice.
6In massive integrable models, they follow a nontrivial dispersion relation [9, 10].
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independent.7 Second, we comment on the saturation time tS . For spherical geometries

entanglement saturates as fast as allowed by causality [15],

t
(sphere)
S = R . (1.7)

We find that tS is strongly shape dependent,8 and for a strip geometry9

t
(strip)
S =∞ . (1.8)

We reiterate that the results (1.6), (1.7), and (1.8) are in agreement with the quasiparticle

model. They are just simple properties of the function ŜA(t) in the limit (1.5), which

according to our findings is in complete agreement between the numerical computation in

the free massless scalar field theory and the quasiparticle model. Third, we point out an

unexpected aspect of our numerical results: we see a logarithmic growth of entropy even

after the saturation time (1.7), which however is subleading in the limit (1.5), and therefore

does not spoil the agreement with the quasiparticle model in the appropriate regime.10 We

identify the scalar zero mode as the source of this logarithmic growth, but the phenomenon

deserves further investigation.

Besides the intrinsic interest in the study of equilibration in free field theory, we are

also motivated by the scarcity of computations of entropy growth in field theories. Our

results elevate the status of the higher dimensional quasiparticle model from a toy model

to an actual description of entanglement growth in free massless scalar field theories.11,12

The results then provide a useful benchmark for strongly coupled theories: the conclusion

of [8] that in strongly interacting (holographic) theories entanglement spreads faster than

allowed by free streaming,

v
(free)
E < v

(holographic)
E , (1.9)

is reinforced. In general, collecting results on entanglement growth from various systems

could lead to further insight into the workings of equilibration in quantum systems, both

integrable and chaotic. For further discussion from this viewpoint see [16].

Using similar techniques, it is possible to study global quenches in free fermion theories.

The analytical and numerical techniques for analyzing global quenches in free scalar fields

could potentially be extended to interacting field theories either perturbatively [17] or

non-perturbatively [18, 19]. Such generalizations could shed new light on the dynamics of

entanglement in interacting systems. In this paper we restrict our attention to instantenous

7In the regime βk � t � R the curvature of A should be irrelevant for the process, so (1.6) is intu-

itive. (1.6) is also known to hold in strongly coupled theories with a holographic dual [12–14].
8In chaotic (holographic) examples the shape dependence of tS is mild, but still non-trivial [13, 14, 16].
9The intuition behind (1.8) is that there are quasiparticle pairs propagating almost parallel to ∂A that

take an arbitrary long time to start to contribute to the entropy.
10Unless we extrapolate this growth to exponentially large times.
11In 1 + 1 dimensions the quasiparticle model has already been solidly established as a valid description

of entanglement growth in integrable models.
12Of course, the outstanding problem is to give an analytic derivation of the quasiparticle picture from

the field theory.
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quenches. It would be very interesting to extend our analysis to smooth quenches, where

the duration of the quench δt introduces a new time scale. In the limit R, t, δt � β, we

expect the entropy to again obey a scaling form (1.4), but the scaling would become a

function of two variables f(t/R, δt/R). Correlation functions obey universal scaling laws

in this limit [20–23], and it would be interesting to explore, if those results carry over to the

case of entanglement entropy. It would also be interesting to see, if a modification of the

quasiparticle model could reproduce the scaling function f(t/R, δt/R). Perhaps, smearing

the time of origin of the EPR pairs could be a useful starting point [8].

The plan of the paper is as follows. In section 2 we provide an introduction to our setup:

we review the correlation matrix approach of computing entropies, and we discuss the

quenches considered, along with the quasiparticle model. Section 3 contains the numerical

results for the entanglement and Rényi entropies, and a comparison with the quasiparticle

model gives excellent agreement. A brief investigation into the logarithmically growing

mode is also included. Some further details of the setup are relegated to the appendices.

2 Time evolution of entanglement

We consider the time evolution of a Gaussian wave function in free scalar field theory

through a quench. What enables us to do the computation is that the time evolution of

an arbitrary Gaussian initial state remains Gaussian in a free theory. The computation

simplifies in the global quench setup due to the preservation of translational and rotational

symmetry: the kernel of the Gaussian remains diagonal for all times in momentum space.

We can then apply the machinery developed for Gaussian states in free field theories [24–27]

that we review below.

2.1 Gaussian wave function in free scalar field theory

Let us consider the Hamiltonian for a free massive scalar in d+ 1 spacetime dimensions

H =
1

2

∫
ddx
[
π2 + (∇φ)2 +m2φ2

]
, (2.1)

where π is the canonical momentum for φ. The Hamiltonian (2.1) can be discretized and

written in a general form

H =
1

2

N∑
i=1

π2
i +

1

2

N∑
i,j=1

φiKij φj . (2.2)

We will consider Gaussian wave functions13

ψ(t) = N(t) exp

[
− 1

2

N∑
i,j=1

φi Ωij(t)φj

]
, (2.3)

13For the purposes of computing entropies this is the most general Gaussian state. Linear terms in the

argument of the exponential (leading to non-vanishing one point functions) can be transformed away using

local unitaries leading to no change in the entropies.
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where N(t) includes the normalization of the wave function and an overall time dependent,

but φi-independent phase. If the wave function is of the form (2.3) at one instant in time,

it remains of the same form for all times when evolved by (2.2). The ground state of the

system is obtained by setting Ω =
√
K.

Let us diagonalize K by making the orthogonal transformation O on the fields φ and

canonical momenta π

q = Oφ , p = OT π , (2.4)

then K takes the form

K = OTKD O , (2.5)

where KD is diagonal. K is the discretized version of the operator −∇2 +m2 and O is the

discrete Fourier transform. Then it is clear that to describe translationally and rotationally

invariant quenches, it suffices to restrict to the case where Ω(t) commutes with K. In terms

of the new q variables the Gaussian (2.3) is diagonal:

ψ(t) = N(t) exp

[
− 1

2

N∑
i=1

fi(t) q
2
i

]
. (2.6)

A simple example to keep in mind is a mass quench: we prepare the initial state through an

abrupt change of the Hamiltonian H
∣∣
m2 → H

∣∣
m2=0

, which is implemented by the change

K0 → K = K0 −m21. All of our claims above are readily verified for this case.

As a warm-up problem for the time evolution, let us consider a quench in which we

change the frequency of a harmonic oscillator abruptly at t = 0, from frequency ω before

the quench to ω̃ after the quench. With initial state given by the pre-quench ground state

ψ0(q) =

(
ω

π

)1/4

exp

[
− ω

2
q2

]
, (2.7)

the solution to the time-dependent Schrödinger equation reduces to a complex Riccati

equation for the kernel Ω(t), which can easily be solved by standard methods to give the

post-quench wave function14

ψ(t, q) = N(t) exp

[
− ω̃

2

(
ω̃ + ω − (ω̃ − ω)e−2iω̃t

ω̃ + ω + (ω̃ − ω)e−2iω̃t

)
q2

]
. (2.8)

For the correlation matrix approach, we need to calculate all two-point functions.15 A

straightforward computation gives

Q ≡ 〈ψ(t, q)|q2|ψ(t, q)〉 =
1

4ω̃2ω

[
ω2 + ω̃2 − (ω2 − ω̃2) cos(2ω̃ t)

]
P ≡ 〈ψ(t, q)|p2|ψ(t, q)〉 =

1

4ω

[
ω2 + ω̃2 + (ω2 − ω̃2) cos(2ω̃ t)

]
R ≡ 〈ψ(t, q)|1

2
{q, p}|ψ(t, q)〉 =

ω2 − ω̃2

4ωω̃
sin(2ω̃ t) .

(2.9)

14There are two easy checks of this formula: at t = 0 it gives back the initial Gaussian, and for ω = ω̃ we

get the ground state wave function with trivial time dependence.
15One point functions vanish by construction.

– 6 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
6

Note that we do not lose any information by considering 1
2{q, p} instead of qp, because

1
2{q, p} = qp − i

2 . An important physical quantity is how much energy we inject into the

system when we quench this harmonic oscillator:

〈ψ(t, q)|Hω̃|ψ(t, q)〉 = 〈ψ(t, q)|
(
p2

2
+
ω̃2q2

2

)
|ψ(t, q)〉 =

ω2 + ω̃2

4ω
. (2.10)

Based on the solution (2.8) for a single harmonic oscillator, we immediately see that

for a collection of harmonic oscillators of the discretized scalar field theory, the initial and

post-quench wave functions are

Ψ0(q) =

N∏
i=1

(
ωi
π

)1/4

exp

[
− ωi

2
q2
i

]

Ψ(t, q) =
N∏
i=1

ψ(t, qi) ,

(2.11)

where ψ(t, q) is given in (2.8). In (2.11) it is understood that one should make the re-

placement q → qi, ω̃ → ω̃i, and ω → ωi, where ω2
i are the eigenvalues of Ω(0) that

characterize the initial state, and ω̃2
i are the diagonal elements of KD. Recall that as dis-

cussed around (2.5), Ω(0) and K can be simultaneously diagonalized. To be completely

explicit, we write out the φ-dependent part of the wave function as

Ψ(t, φ) = N(t) exp

[
− 1

2

N∑
ij=1

φi Ωij(t)φj

]

Ωij(t) ≡
N∑
k=1

ω̃k
ω̃k + ωk − (ω̃k − ωk)e−2iω̃kt

ω̃k + ωk + (ω̃k − ωk)e−2iω̃kt
OkiOkj .

(2.12)

2.2 The correlation matrix approach to quenches

For this wave function it is now easy to determine the two-point functions of the canonical

variables. The generalization of the single harmonic oscillator results for the two-point

functions (2.9) is

Qij ≡ 〈ψ|φiφj |ψ〉 =
N∑
k=1

OkiOkj〈ψ|q2
k|ψ〉

Pij ≡ 〈ψ|πiπj |ψ〉 =

N∑
k=1

OkiOkj〈ψ|p2
k|ψ〉

Rij ≡ 〈ψ|
1

2
{φi, πj}|ψ〉 =

N∑
k=1

OkiOkj〈ψ|
1

2
{qk, pk}|ψ〉 .

(2.13)

Let us introduce a vector of canonical variables in region A (we trace over Ā)

χI =

(
φi
πi

)
, (2.14)

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
6

where i, j = 1, . . . , n are restricted to region A and I, J = 1, . . . , 2n. The canonical

commutation relations read:[
χI , χJ

]
= i JIJ , JIJ =

(
0 1

−1 0

)
, (2.15)

and the correlators can be collected into a 2n× 2n matrix [24, 25, 27]:

ΓIJ =
1

2
〈ψ|{χI , χJ}|ψ〉 =

(
Qij Rij
Rji Pij

)
. (2.16)

Note that ΓIJ is a real symmetric positive definite matrix. Such matrices can be brought

to Williamson normal form, i.e. there exists a symplectic matrix M that diagonalizes them.

M implements a canonical transformation (that preserves (2.15)):

χ̃ = Mχ , MJMT = J ,

Γ̃ = M ΓMT =

(
diag(γk) 0

0 diag(γk)

)
.

(2.17)

The easiest way of determining γk is to obtain the eigenvalues of the matrix iJΓ, which

are {±γk}. We have now successfully mapped the problem to computing the entropy of n

harmonic oscillators at finite temperatures:

βk = log
γk + 1/2

γk − 1/2
. (2.18)

Thus the entropy S = −Tr[ρA log ρA] is

S =
n∑
k=1

S̃(γk) , S̃(γ) ≡
(
γ +

1

2

)
log

(
γ +

1

2

)
−
(
γ − 1

2

)
log

(
γ − 1

2

)
, (2.19)

and the Rényi entropies Sq = − 1
q−1 log Tr[ρqA] are

Sq =

n∑
k=1

S̃q(γk) , S̃q(γ) ≡ 1

q − 1
log

[(
γ +

1

2

)q
−
(
γ − 1

2

)q]
. (2.20)

In the symmetric geometries A that we consider in this paper, the matrix Γ is block

diagonal. In the case of the strip, the different blocks are labelled by the momenta parallel

to the entangling surface; in the case of a sphere, the labels are the angular momentum

quantum numbers. The matrix Γ is block diagonal as two point functions do not mix

different linear or angular momenta. In these cases, the above steps can be performed

block by block, and the entropy is just the sum of the contribution of each block. Details

of the different coordinate systems can be found in the appendices.

2.3 Different types of quenches

As discussed in the introduction, in free theories there are infinitely many conserved

charges, and equilibration only happens in the sense of the GGE. What this means for

our purposes is that any mode can be quenched independently, and they have their own

effective temperature. We shall focus on the case in which after the quench the mass of

the scalar field is zero (so ω̃(k) = k), so in the continuum limit (1.1) the time evolution is

governed by a CFT.

– 8 –



J
H
E
P
1
1
(
2
0
1
6
)
1
6
6

2.3.1 Boundary state quench

From the point of view of effective temperatures mode by mode, a particularly nice state

to consider is the conformal boundary state model of a quench [6]

|Ψ0〉 = exp

[
− β

4
H

]
|Dirichlet〉 , (2.21)

where |Dirichlet〉 is the Dirichlet boundary state. This state will have finite energy in any

dimensions, with mode-independent inverse temperature βk = β, and is specified by the

relation

ω(k)bdy =
k

tanh
(β k

4

) . (2.22)

The requirement that the quench is described by the continuum field theory translates into

β/a� 1, as discussed around (1.5).16

The Rényi entropy density arising from this quench is (in d spatial dimensions)

sq =
1

q − 1

∫
ddk

(2π)d
[

log(1− e−βkq)− q log(1− e−βk)
]

=
(qd+1 − 1)

qd(q − 1)

ζ(d+ 1) Γ
(
d+1

2

)
π(d+1)/2

1

βd

(2.23)

leading to the entropy density

s = lim
q→1

sq =
(d+ 1) ζ(d+ 1) Γ

(
d+1

2

)
π(d+1)/2

1

βd
=


π
3β (d = 1)

3 ζ(3)
2πβ2 (d = 2)

2π2

45β3 (d = 3)

. (2.24)

2.3.2 Mass quench

In contrast to the boundary state quench, the mass quench — although it may seem more

physical — has less favorable properties. In particular, the relation

ω(k)mass =
√
k2 +m2 (2.25)

produces a mode-dependent temperature [28]

βk =
4

k
arctanh

(
k

ω(k)

)
=


4
m k � m

4 log(k/m)
k k � m

, (2.26)

i.e., high energy modes have diverging effective temperature.17 Now the inequalities in (1.5)

will not be satisfied for all k. Nevertheless, we can intuit that the weaker condition

ma� 1 (2.27)

16Rewriting the inequality as 1
a
� 1

β
, we intuitively want the energy scale of a thermal excitation, which

is approximately 1/β, to be far less than the highest energy excitations which can be supported by our

lattice theory, which go as 1/a.
17The average energy in a high energy mode is still low.
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should guarantee that we stay close to the continuum limit, which corresponds to low

energies. However, additional complications arise for d ≥ 3, where the mass quench does

not produce a finite energy state, as the total injected energy (in excess of the vacuum

energy) is

∆E = 〈Ψ(t, y)|(H − Evac)|Ψ(t, y)〉 =
∑
k

(ωk − ω̃k)2

4ωk
, (2.28)

where we used (2.10). In the continuum limit the change in energy density is

∆E

V
=

∫
ddk

(2π)d

(
ω(k)− k

)2
4ω(k)

∼ md+1

(
ΛUV

m

)d−3

+ . . . , (2.29)

where ΛUV � m is some UV cutoff scale. For spatial dimensions d = 1, 2 the mass quench

produces a state with finite energy density as ΛUV → ∞, while for d ≥ 3 we encounter

ultraviolet divergences; in particular in d = 3 we find a logarithmic divergence. We may

summarize these results as

∆E

V
=


m2

2π (d = 1)

m3

6π (d = 2)

∞ (d ≥ 3)

. (2.30)

The Rényi entropy density for the mass quench is given by (2.23) with β → βk, leading to

sq =


−q+cot(π/4q)

2(q−1) m (d = 1)

2γE+ψ(1−1/2q)+ψ(1+1/2q)+2q(log 4−1)
16π(q−1) m2 (d = 2)

4q−3 cot(π/4q)+cot(3π/4q)
48π(q−1) m3 (d = 3)

, (2.31)

where γE is the Euler-Mascheroni constant and ψ(z) is the digamma function. The above

equations yield the entropy density

s = lim
q→1

sq =


1
4(π − 2)m (d = 1)

log 2
4π m2 (d = 2)

1
12π m

3 (d = 3)

, (2.32)

and s = ∞ is divergent for spatial dimensions d ≥ 4. Note that in d = 3 the entropy

density is finite, even though the energy density is infinite after a mass quench.

Furthermore, one also anticipates a divergent area law contribution to the entropy in

any number of dimensions. The entropy difference from before to after the quench (1.2) is

expected to result in an infinite area law correction for d ≥ 3. For example, for d = 3 there

should be a log divergence in the change of the area law contribution [29]

∆Sarea =
Am2

24π
log

(
ΛUV

m

)
. (2.33)

So we will only focus on mass quenches in 1 and 2 spatial dimensions.
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2.3.3 Other quenches

The above formalism extends to any quench in which the kernel of Ψ0 is diagonal in

Fourier space, meaning it takes the form (2.11). We have discussed boundary state and

mass quenches, since they are perhaps the most physical examples, but an arbitrary choice

of ω(k) is allowed. If we want to preserve translation and rotation invariance, we only need

to choose a function ω = ω(|k|). This can be parametrized by a type of mode dependent

initial mass that we quench

ω(k) =
√
k2 +m2(k) , (2.34)

for the initial wave function.18 Choosing a mass function that decays to zero (m2(k)→ 0)

fast enough for large k can make ∆E finite in any dimension.

Another generalization that we may consider is to replace the instantaneous quench

with a smooth quench of duration δt, which would render the energy density injected into

the system by a mass quench finite [23].

2.4 The quasiparticle model for a quench

In this section, we will review the dynamics of entanglement using the quasiparticle picture

in which entanglement is carried by a uniform density of noninteracting EPR pairs [6–8].

We assume that the two quasiparticles which comprise a pair travel in opposite directions

at the speed of light, with an isotropic angular distribution.

In the quasiparticle model one can first fix a point x and time t, and determine the

contribution to the entropy of region A coming from EPR pairs that originated from that

point. These pairs will be positioned on a sphere of radius t with center x. Let us denote

the part of this sphere incident in region A by LA(x, t), and by µ[LA(x, t)] the contribution

to the entropy of this region. We have to sum over the points of origin to obtain the entropy

of region A:

SA(t) =

∫
ddxµ

[
LA(x, t)

]
. (2.35)

For any region B on a sphere, let us denote the set of antipodal points as B′, and the

complement of this set on the sphere by B′. Then µ[B] is given by

µ[B] = s
vol(B ∩ B′)
vol(sphere)

. (2.36)

This formula is intuitive. If B is contained within a hemisphere, then B ∩ B′ = B, and

the quasiparticles in B will have pairs in B′, which lies entirely in Ā. Then the formula

counts the fraction of the EPR pairs vol(B)/ vol(sphere), which have one member inside

A and the other outside. If, however, B is a bigger (or more complicated) region, taking

vol(B ∩ B′) instead of vol(B) eliminates those pairs, whose both members are in A.

18The initial wave function can be thought of as the ground state of a (non-local) Hamiltonian with

dispersion relation (2.34).
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Although not discussed in [8], the computation presented here applies both to the

entanglement and Rényi entropies with the appropriate entropy density s (or sq) used

in (2.36).

In [8] the integral (2.35) was evaluated for symmetric entangling regions. Here we will

need the results for SA(t) in d = 1, 2, 3 spatial dimensions for a strip of width L = 2R and

a sphere of radius R. In d = 1, both cases degenerate to A being a finite interval of length

2R. For the the strip geometry in spatial dimension d, we have

S
(d=1)
strip (t)

s
=

2t (t < R)

2R (t > R)

S
(d=2)
strip (t)

sL
=


4
π t (t < R)

4
π

[
t−
√
t2 −R2 +R arccos

(
R
t

)]
(t > R)

S
(d=3)
strip (t)

sL2
=

t (t < R)

2R− R2

t (t > R)
.

(2.37)

Likewise for spherical geometries in spatial dimension d,

S
(d=2)
sphere(t)

s
=

2
[
t
√
R2 − t2 +R2 arcsin

(
t
R

)]
(t < R)

πR2 (t > R)

S
(d=3)
sphere(t)

s
=

2π
[
R2 t− 1

3 t
3
]

(t < R)

4π
3 R3 (t > R)

.

(2.38)

The saturation times (1.7) and (1.8) can be easily read off from these expressions. The

expression for the entanglement velocity in d spatial dimensions is

vE =
Γ
(
d
2

)
√
π Γ
(
d+1

2

) . (2.39)

In the next section, we will confirm the predictions of SA(t) (and hence for tS and vE) with

numerical simulations of global quenches of free scalar fields.

3 Numerical results for strips and spheres

3.1 Intervals in 1 spatial dimension

In d = 1 spatial dimension the results for the entropy for intervals of different sizes in a

boundary state and a mass quench can be found in figure 2. For convenience we impose

periodic boundary conditions at the ends of the 1 dimensional region. In this figure we have

used the subtracted entropy (1.2). Mass quenches for the similar systems were analyzed

in [27, 30]. Related analytical and numerical results for local and global quenches in [26]

and references therein.
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Figure 2. Quenches for strips (intervals) in 1+1 dimensions. The top figure is linear time and the

bottom figure is logarithmic time. We have taken intervals of length 2R/a = 100, 200, 300, where a

is the lattice unit, both for boundary state quenches with β = 10 a and for mass quenches. For the

mass quench we have chosen m = 4π
3(π−2)β such that the resulting entropy density matches that of

the boundary state quench, see (2.23), (2.24). Curves from lower to upper represent 2R/a = 100

(black), 2R/a = 200 (blue), and 2R/a = 300 (red). Curves with circle-markers represent boundary

state quenches; curves with star-markers represent mass quenches (almost indistinguishable from the

boundary state quenches). In the top figure, the lines with no markers represent the quasiparticle

model predictions (2.37), using the entropy density corresponding to the quench. Note that the

linear ramp of the quasiparticle model is indistinguishable from the numerical results. The lines in

the bottom figure with no markers show the fit (3.1) to the linear asymptotic behavior ∼ 1
2 log(t).

In figure 2 we see that the two types of quenches, the boundary quench and the

mass quench, give results that are nearly indistinguishable to the eye. The quasiparticle

prediction [6, 7] matches closely for t < R with the correct entropy density s (2.24).

However, instead of sharp saturation at t = R, we see that the entropy keeps increasing

as a logarithm of time. To understand this deviation, we reproduce the same quenches in
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figure 2 (bottom), but plotted in logarithmic time. From fitting we find that the coefficient

of the logarithm is independent of R, and appears to equal 1/2.19 Since the coefficient

of the logarithm is independent of R, in the limit (1.5) this 1
2 log t behavior is subleading.

Hence the prediction of the quasiparticle model is obeyed in the limit of large region size

and time.20

Nevertheless, it is interesting to understand the origin of this 1
2 log t behavior, since

näıvely we would have expected saturation in finite time (possibly with 1/t# power law be-

havior), and corrections to the quasiparticle model to be suppressed by β/R. The massless

free scalar theory is known to exhibit peculiar logarithmic corrections in the entanglement

entropy in static situations due to the presence of a zero mode.21 This motivated us to

modify our setup in an attempt at getting rid of the contribution of the soft modes. We

observe that the 1
2 log t growth disappears if the quench leaves the soft modes in their

ground state (i.e. we choose an appropriate m2(k) in (2.34)),22 or if we take the harmonic

chain to be finite and consider the interval to be at the end of the chain. Both cases are

analyzed in figure 3 and figure 4, and the logarithmic growth is clearly gone.

Based on these results, we can give a heuristic explanation of the 1
2 log t behavior based

on the dynamics of the zero mode. The following argument was suggested to us by A. Wall.

After all the other modes have saturated, we can concentrate on the noncompact zero

mode of the scalar field. Its wave function is initially localized, and it spreads under time

evolution. The width of the wave function should go as
√
t. Regarding the entropy as the

number of available states we immediately obtain the contribution log(#
√
t) = 1

2 log t+ . . .

to the entropy. That the zero mode contributes the logarithm of its target space volume

to the entropy was discussed before in [34, 35]. In the smooth mass quench analyzed in

figure 3, the zero mode is not excited, while for the finite chain analyzed in figure 4, the

zero mode is absent due to the Dirichlet boundary condition, see also [33].

While the detailed exploration of complicated entangling regions and finite volume

systems is outside the scope of this work, in figure 4 we follow the time evolution for long

times on a finite harmonic chain, where the interval is at one end of the chain. We have

included this geometry to demonstrate that the quasiparticle picture continues to hold

in more complicated setups. The entropy exhibits exact revivals with profile exactly in

agreement with the quasiparticle model, which we obtain by mirroring the chain at each

end infinite amount of times.

19In more detail, we have fitted

Ŝ(t) = S + c log

(
t−R
a

)
(3.1)

for the data points with t > R. (3.1) diverges for t = R, so we started the fitting procedure a couple of

lattice units later in time. One can also consider introducing a time shift as an additional fitting parameter,

but this hardly changes the value of S and c. We found that c = 1/2 within 2% accuracy. On figure 2

(bottom) we have plotted (3.1) with c = 1/2 and S fitted. The match is excellent.
20Unless we extrapolate this growth to exponentially large times.
21It was suggested to us by P. Calabrese that the behavior we observe here may be related to the

log
(

log R
a

)
correction to the one interval entropy in the vacuum discussed in [31–33].

22This is somewhat subtle, as the zero mode does not have a normalizable ground state.
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Figure 3. Modified mass quench for intervals of length 2R/a = 100, 200, 300, with m2(k) a

smoothed step function as shown in the inset graph. s in the quasiparticle formula (2.37) is adjusted

to match the numerical data points.
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Finite Harmonic Chain with Dirichlet Boundary Conditions

Figure 4. Time evolution of the entropy of a finite harmonic chain with Dirichlet boundary

conditions on both ends. The region at the end of the chain is of size 2R/a = 300, and the full

chain is chosen to be 2L/a = 1050 long in order to avoid any special ratio L/R. We follow the time

evolution for a long time and find exact revivals. Note that because the region is at the end of the

chain, the slope of the curves is half of that in (2.37).

3.2 Strips in 2 and 3 spatial dimensions

For the strip geometry in spatial dimensions d ≥ 2 we can decompose the fields in momen-

tum modes transverse to the entangling surface. Let us denote the entanglement entropy

of a massive scalar field of an interval by SI(R, t, β,m), where β is the effective tempera-

ture in the quench, 2R is the width of the interval, and t is the time. Then in d spatial
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dimensions (d⊥ = d − 1 transverse dimensions) the entropy of the strip is (for details see

appendix A.1):

S(R, t, β) = A⊥

∫
dd−1k⊥
(2π)d−1

SI(R, t, β, k⊥) , (3.2)

where A⊥ is the cross-sectional area of the sides of the strip and k⊥ is the transverse

momentum running parallel to the sides of the strip. We use this formula to compute the

entropy numerically. To get a quantity with a well-defined continuum limit we make the

subtaction (1.2).

The results are collected in figure 5. In the figures we have also plotted the time

evolution of Rényi entropies, in addition to the von Neumann entropies. The results are

compared to the predictions of the quasiparticle model (2.37), and precise agreement is

found. By precise agreement, we mean up to area law terms subleading in the large region

limit, which are not accounted for in the quasiparticle model. In the graphs below we have

allowed ourselves to shift the numerical data points by an arbitrary constant to match the

quasiparticle prediction.

We have checked that as we increase the region size this shift scales as the area, and

thus is negligible in the limit of large region sizes, see figure 9 for a demonstration of this in

the particular case of a boundary state quench for a spherical geometry, which are discussed

in a following section. We expect similar results for the strip geometries.23

The attentive reader may notice some deviation from the quasiparticle curve at early

times, t ∼ β in figure 5. Such times do not obey the double scaling limit (1.5), hence we

do not expect a precise match between the numerical results and quasiparticle curve. In

particular until t ∼ β the entropy grows quadratically [6, 13, 14, 30], while the quasiparticle

curve exhibits linear growth (1.6). By smearing the time of origin of the EPR pairs,

one can incorporate this quadratic growth into the quasiparticle model [8], but we chose

to work with the simplest version of the model, which does not involve any adjustable

parameters.24

Next we focus on an important aspect of the entropy growth, the entanglement velocity

defined in (1.6). Because the quasiparticle model predicts exact linear growth until t = R,

and because at early times we observe more deviation from linearity, we extract vE from

the slope of the curve at t = R:

vE =
1

2sA⊥

dS(R, t)

dt

∣∣∣∣
t=R

. (3.3)

Numerical results are given in figure 6 based on this equation, and they show very good

agreement with the quasiparticle value (2.39) even for fractional dimensions.

23Simulations with truly large region sizes are costly, and do not seem to be necessary to confirm the

overall picture.
24We do not regard the entropy density s as a fitting parameter of the quasiparticle model, as it can be

computed, see section 2.3.
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Figure 5. Time evolution for a boundary state quench with β = 10 a of entanglement entropy

(blue) and the Rényi entropies for q = 2, 3, 4 (in red, q increasing from top to bottom), for a strip

of width 2R = 300 a. The numerical data points (circles) are shifted to match the quasiparticle

curves (solid lines) at the single point t = R. Top figure is for 2 + 1 dimensions; bottom figure is

for 3 + 1 dimensions.

3.3 Spheres in 2 and 3 spatial dimensions

We complete the presentation of the numerical results with the sphere geometry. As dis-

cussed in the Introduction, it is important to consider different geometries for the entangling

region to confirm the quasiparticle model. The sphere is a particularly nice case to ana-

lyze because of its symmetries, which make the numerical computations for large regions

possible. See appendix A.2 for details of the setup.

In figure 7 we plot the results of a boundary state quench in spatial dimensions d = 2

and d = 3, and in figure 8 we plot the results of a mass quench in spatial dimensions d = 2.

All of these closely match the quasiparticle expectations for all times. Two highlights are
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Figure 6. The entanglement velocity vE as extracted from the early time behavior of (3.2) accord-

ing to the procedure (3.3). The numerical results are within 1% of the analytic prediction (2.39),

even for fractional dimensions.

that the linear regime is governed by the entanglement velocity (2.39), and the saturation

time is tS = R (1.7). We note that at late times we again see a logarithmic rise of the

entropy after tS , as in the one interval case in d = 1. This growth is most pronounced on

figure 8, but the volume law in d = 2 provides more suppression than in d = 1.25

Finally, for the example of a boundary state quench in d = 2, in figure 9 we demonstrate

that the additional shift we apply to the numerical data points to get a closer fit with the

quasiparticle model curves obeys the area law, hence it is subleading for large regions.
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Figure 7. Boundary state quench with β = 10 a in different dimensions for a sphere of radius

R = 300 a with an arbitrary area law shift to match the quasiparticle curve. The top figure is for

2 + 1 dimensions; the bottom is for 3 + 1 dimensions.

A Coordinate systems and mode decompositions

A.1 Coordinates for strip geometries

Consider a strip geometry in d+ 1 dimensions, where we are interested in tracing over a d

dimensional slab of width 2R and cross-sectional area A⊥.

This system factorizes into the physics along the direction x between the sides of the

slab and the d⊥ = d − 1 perpendicular directions we denote by the vector x⊥. We write

the position vector as

x = (x,x⊥) . (A.1)
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Figure 8. Mass quench in 2+1 dimensions with a sphere of radius R = 300 a with an arbitrary

area law shift to match the quasiparticle curve.
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Figure 9. Area law subtraction for a boundary state quench in a spherical (disk) geometry in 2+1

dimensions for different radii R of the disk. Because for spherical geometries tS = R, we require a

match between the numerical data points and the quasiparticle curve at t = R. Then the shift that

we apply to the numerical data is Ŝ(t = R) − Sqp(t = R). It is linear in the radius R of the disk,

as expected.

In the transverse directions we perform a Fourier transform as follows

φ̃(x,k⊥) ≡
∫
dd−1x⊥ φ(x,x⊥) eik⊥·x⊥

π̃(x,k⊥) ≡
∫
dd−1x⊥ π(x,x⊥) eik⊥·x⊥ .

(A.2)
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Inserting this into the Hamiltonian of a massive scalar field (2.1) and using the inverse

Fourier theorem, we obtain

H =
1

2

∫
dd−1k⊥
(2π)d−1

[
|π̃(x,k⊥)|2 + |∂xφ̃(x,k⊥)|2 + (m2 + k2

⊥)|φ̃(x,k⊥)|2
]
. (A.3)

The canonical commutation relation for these functions defined as a mix of position space

and momentum space is[
φ̃(x,k⊥), π̃(x′,k′⊥)

]
= i(2π)d−1δ(x− x′)δd−1(k⊥ − k′⊥) . (A.4)

Since this is a free theory, we know that only a single value of momentum k⊥ appears in

the Hamiltonian in eq. (A.3). This means we only need the canonical commutation relation

when k′⊥ = k⊥. When we take k′⊥ = k⊥ the delta function gives an infrared divergence

that is regulated by assuming a finite size transverse region area A⊥, i.e.,

(2π)d−1δd−1(k⊥ − k⊥ = 0)→ A⊥ . (A.5)

This motivates re-scaling the fields as follows

qk⊥(x) ≡ 1√
A⊥

φ̃(x,k⊥)

pk⊥(x) ≡ 1√
A⊥

π̃(x,k⊥) .

(A.6)

The corresponding commutation relation appears canonically normalized for a field depen-

dent only on the x variable, with k⊥ just an external parameter[
qk⊥(x), pk⊥(x′)

]
= i δ(x− x′) . (A.7)

The Hamiltonian may then be re-written in terms of these new fields as

H = A⊥

∫
dd−1k⊥
(2π)d−1

H1(qk⊥ , pk⊥ ,m
2 + k2

⊥) , (A.8)

where H1 is the Hamiltonian of a massive scalar field (of mass M2 = m2 + k2
⊥) in 1+1

dimensions

H1(q, p,M2) =
1

2

∫
dx
[
p∗p+ ∂xq

∗∂xq +M2q∗q
]
, (A.9)

where in this last equation we have suppressed writing the dependence on the transverse

momenta k⊥ to emphasize that this is really just a Hamiltonian defined in 1 spatial dimen-

sion with axis running from one side of strip to the other.

The discretization of modes in 1 spatial dimension is rather straightforward, as we now

explain. Slightly more complicated discretization that are relevant to the disk or sphere

will be discussed in the next subsection. With lattice spacing a, the Hamiltonian in 1

spatial dimension is

H1(q, p,M2) =
1

2a

N∑
j=1

[
p(j)2 +

(
q(j)− q(j + 1)

)2
+M2

a q(j)
2
]
, (A.10)
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where the physical lattice points are x = j a, an IR cutoff is ΛIR = N a, and we have defined

the dimensionless mass Ma ≡M a. We can also impose the conditions q(N+1) = q(1) and

p(N + 1) = p(1) to impose periodic boundary conditions where necessary. The non-zero

elements of the K matrix of eq. (2.2) are given by

Kjj = 2 +M2
a

Kj,j+1 = Kj+1,j = −1 ,
(A.11)

and if periodic boundary conditions are imposed K1N = KN1 = −1.

Since the different k⊥-modes decouple, and we are only tracing over the strip in the

x-direction, rather than the x⊥ direction, then just as the Hamiltonian decomposes as

in (A.8) then so too does the entanglement entropy

S(R, t,m2) = A⊥

∫
dd−1k⊥
(2π)d−1

SI(R, t,m
2 + k2

⊥) . (A.12)

Similar results go through for the boundary state quench, where the entropy depends on

the inverse temperature β, as given in (3.2).

We note that since the entropy SI is only a function of the magnitude and not the

direction of the transverse momenta k2
⊥ in (A.12), then the angular integration of k⊥ is

trivial. This gives a factor of the area of the d− 2 dimensional unit sphere, i.e.,∫
dd−1k⊥ =

2π(d−1)/2

Γ
(
d−1

2

) ∫ ∞
0

dk⊥ k
d−2
⊥ . (A.13)

A.2 Spherical coordinates and spherical harmonics

In 2+1 dimensions, for a spherical (disk) geometry, we use the Fourier expansions of the

field φ and conjugate momentum π

φ(r, θ) =

∞∑
`=−∞

φ`(r) e
−i`θ

π(r, θ) =

∞∑
`=−∞

π`(r) e
−i`θ

(A.14)

with Fourier coefficients

φ`(r) =

∫ 2π

0

dθ

2π
e−i`θφ(r, θ)

π`(r) =

∫ 2π

0

dθ

2π
e−i`θπ(r, θ) .

(A.15)

Since φ is real, φ∗` = φ−`, and similarly for π. Note that the harmonics φ`, π` satisfy the

canonical commutation relations[
φ`(r), π`′(r

′)
]

=
i

2πr
δ`+`′ δ(r − r′) . (A.16)
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In terms of these harmonics, the Hamiltonian for a free scalar field of mass m takes the

form H =
∑∞

`=−∞H`, where

H` =

∫ ∞
0

2πrdr
1

2

[
π∗` π` +

∂φ∗`
∂r

∂φ`
∂r

+

(
`2

r2
+m2

)
φ∗` φ`

]
. (A.17)

If we define the new variables

q`(r) =
√

2πr φ`(r)

p`(r) =
√

2πr π`(r) ,
(A.18)

then the canonical commutation relations take the standard form[
q`(r), p`′(r

′)
]

= i δ`+`′ δ(r − r′) , (A.19)

and the Hamiltonian modes are

H` =

∫ ∞
0

dr
1

2

[
p∗` p` + r

(
∂

∂r

q∗√̀
r

)(
∂

∂r

q`√
r

)
+

(
`2

r2
+m2

)
q∗` q`

]
. (A.20)

We may now discretize this Hamiltonian with a uniform lattice in the radial direction:

H` =
1

2a

N∑
j=1

[
p`(j)

2 +

(
j +

1

2

)(
q`(j)√
j
− q`(j + 1)√

j + 1

)2

+

(
`2

j2
+m2

a

)
q`(j)

2

]
, (A.21)

where a is the lattice spacing and r = ja, we introduced an IR cutoff ΛIR = Na, and we

have defined the dimensionless mass ma ≡ ma. The radius of the disk is taken to be:

R =

(
n+

1

2

)
a . (A.22)

So in 2+1 dimensions the non-zero elements of the K matrix for the discrete Hamiltonian,

which was defined earlier in (2.2), are

K11
` =

3

2
+ `2 +m2

a

Kjj
` = 2 +

`2

j2
+m2

a

Kj,j+1
` = Kj+1,j

` = − j + 1/2√
j(j + 1)

.

(A.23)

This matrix and its eigenvalues form the basis for the numerical computations in the

correlator method for the entanglement entropy. In the counting for the different modes in

the entropy calculations, we must sum over all ` ≥ 0, with the ` = 0 mode getting a factor

of 1 and the other modes a factor of 2:

S = S0 +

∞∑
`=1

2S` . (A.24)
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In 3+1 dimensions, for a spherical geometry, the development is similar to 2+1 dimen-

sions, with some important differences. We use the expansions of the field φ and conjugate

momentum π in terms of spherical harmonics

φ(r,Ω) =
∑
`,m

φ`m(r)Y`m(Ω)

π(r,Ω) =
∑
`,m

π`m(r)Y`m(Ω)
(A.25)

with inversion formulas

φ`(r) =

∫
dΩ

4π
Y ∗`m(Ω)φ(r,Ω)

π`(r) =

∫
dΩ

4π
Y ∗`m(Ω)π(r,Ω) .

(A.26)

In terms of these harmonics, the Hamiltonian for a free scalar field of mass m takes the

form H =
∑

`mH`m, where

H`m =

∫ ∞
0

4πr2dr
1

2

[
π∗`mπ`m +

∂φ∗`m
∂r

∂φ`m
∂r

+

(
`(`+ 1)

r2
+m2

)
φ∗`m φ`m

]
. (A.27)

If we define the new variables

q`m(r) =
√

4π r φ`m(r)

p`m(r) =
√

4π r π`m(r) ,
(A.28)

the Hamiltonian modes are

H`m =

∫ ∞
0
dr

1

2

[
p∗`m p`m + r

(
∂

∂r

q∗`m
r

)(
∂

∂r

q`m
r

)
+

(
`(`+ 1)

r2
+m2

)
q∗`m q`m

]
. (A.29)

Discretizing this Hamiltonian with a uniform lattice in the radial direction:

Hl =
1

2a

N∑
j=1

[
p`m(j)2 +

(
j +

1

2

)2(q`m(j)

j
− q`m(j + 1)

j + 1

)2

+

(
`(`+ 1)

j2
+m2

a

)
q`m(j)2

]
,

(A.30)

where again a is the lattice spacing, r = ja and the radius of the sphere, and the radius

of the sphere is given as in (A.22). So, in 3+1 dimensions the non-zero elements of the K

matrix for the discrete Hamiltonian are

K11
` =

9

4
+ `(`+ 1) +m2

a

Kjj
` = 2 +

1

2j2
+
`(`+ 1)

j2
+m2

a

Kj,j+1
` = Kj+1,j

` = −(j + 1/2)2

j(j + 1)
.

(A.31)

As in 2+1 dimensions, this matrix and its eigenvalues form the basis for the numerical

computations in the correlator method for the entanglement entropy. The entropy is finally

given by the sum over the entropies coming from each angular momentum sector:

S =

∞∑
`=0

(2`+ 1)S` . (A.32)
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