
J
H
E
P
1
1
(
2
0
1
6
)
1
5
6

Published for SISSA by Springer

Received: October 12, 2016

Accepted: November 21, 2016

Published: November 25, 2016

Wilson loops in 3d N = 4 SQCD from Fermi gas

Kazumi Okuyama

Department of Physics,

Shinshu University, Matsumoto 390-8621, Japan

E-mail: kazumi@azusa.shinshu-u.ac.jp

Abstract: We study 1/2 BPS Wilson loops in 3d N = 4 U(N) Yang-Mills theory with one

adjoint and Nf fundamental hypermultiplets from the Fermi gas approach. By numerical

fitting, we find the first few worldsheet instanton corrections to the Wilson loops with

winding numbers 1, 2 and 3. We verify that our Fermi gas results are consistent with the

matrix model results in the planar limit.

Keywords: Wilson, ’t Hooft and Polyakov loops, M-Theory, 1/N Expansion, Matrix

Models

ArXiv ePrint: 1610.02116

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)156

mailto:kazumi@azusa.shinshu-u.ac.jp
https://arxiv.org/abs/1610.02116
http://dx.doi.org/10.1007/JHEP11(2016)156


J
H
E
P
1
1
(
2
0
1
6
)
1
5
6

Contents

1 Introduction 1

2 Winding Wilson loops 3

2.1 Review of Nf matrix model 3

2.2 Wilson loops in Nf matrix model 5

2.3 Computation of trace 6

2.3.1 Odd winding number 8

3 Perturbative part 9

4 Instanton corrections 10

4.1 Fundamental representation 11

4.2 Winding number m = 2, 3 12

5 WKB expansion 13

6 Planar solution of Nf matrix model 16

6.1 Planar resolvent 18

6.2 Planar free energy 22

7 ’t Hooft limit of Wilson loops 23

7.1 Results of matrix model 23

7.2 Comparison with Fermi gas 25

8 Conclusions 27

A Exact values of Wilson loop VEVs 27

A.1 Fundamental representation 27

A.2 Winding number m = 2 28

A.3 Winding number m = 3 29

B A curious observation for Nf = 4 29

1 Introduction

Fermi gas approach [1] is a powerful technique to study large N behavior of the partition

functions of various three dimensional theories. Of particular interest is the so called

ABJ(M) theory [2, 3] which describes the worldvolume theory on N M2-branes on the

orbifold C4/Zk. It turns out that the partition function of ABJ(M) theory on a three sphere
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correctly reproduces the N3/2 scaling of free energy expected from the holographically dual

M-theory on AdS4 × S7/Zk [4]. The Fermi gas formalism enables us to go further beyond

this perturbative behavior, and now we have a complete understanding of the instanton

corrections to the free energy coming from wrapped M2-branes on the bulk M-theory side

(see [5, 6] for reviews). Also, Fermi gas formalism can be applied to the computation of

Wilson loops in ABJ(M) theory and many interesting properties were uncovered in the

last few years [7–12, 33]. However, for many theories with less supersymmetry than the

ABJ(M) case, we are still lacking a detailed understanding of the large N behavior of

free energy.

In [13–15], some progress has been made in the so called Nf matrix model which

describes the S3 partition function of d = 3 N = 4 U(N) Yang-Mills theory coupled to

one adjoint and Nf fundamental hypermultiplets. This theory naturally appears as the

worldvolume theory of N D2-branes in the presence of Nf D6-branes, which in turn is

holographically dual to M-theory on AdS4 × S7/ZNf in the large N limit. Here the ZNf
action on S7 is induced from the orbifold C2× (C2/ZNf ) with ANf−1 ALE singularity. By

the 3d N = 4 mirror symmetry, this theory is dual to a ÂNf−1 quiver gauge theory [16, 17].

As emphasized in [14], the Nf matrix model admits not only the ordinary ’t Hooft limit

(type IIA limit on the bulk side)

N,Nf →∞ with λ =
N

Nf
: fixed, (1.1)

but also the M-theory limit

N →∞ with Nf : fixed. (1.2)

Here 1/Nf plays the role of string coupling. An important consequence of the Fermi

gas description is that these two limits are actually smoothly connected since the grand

partition function of Nf matrix model is a completely well defined quantity for any value

of Nf . In [15], the first few instanton corrections to the grand potential were determined

in a closed form as a function of Nf ; it is found that the structure of instanton corrections

of Nf matrix model is quite different from the ABJM case, and in particular there is no

obvious connection with the topological string. However, the pole cancellation mechanism

between worldsheet instantons and membrane instantons, originally found in the ABJM

case [18], works also in the Nf matrix model [15].

In this paper, we will consider the Wilson loops in the Nf matrix model from the

Fermi gas approach. We will focus on the 1/2 BPS Wilson loop on S3 which wraps

m times around the equator. By the numerical fitting, we find the first few worldsheet

instanton corrections to the vacuum expectation value (VEV) of winding Wilson loops

with winding number m = 1, 2, 3. We find that our Fermi gas result is consistent with

the planar VEV of winding Wilson loops in the ’t Hooft limit (1.1) obtained from the

resolvent of Nf matrix model [14]. Our Fermi gas result suggests that there is no “pure”

membrane instanton corrections to the Wilson loop VEVs except for the contributions

from bound states of membrane instantons and worldsheet instantons. This is reminiscent

of the instanton corrections to the 1/2 BPS Wilson loops in ABJ(M) theory [8, 10].
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This paper is organized as follows. In section 2, we consider VEVs of 1/2 BPS winding

Wilson loops in Nf matrix model from the Fermi gas approach and explain our numerical

method to compute them. In section 3, we find the perturbative part of winding Wilson

loops in a closed from, and in section 4 we determine the first few worldsheet instanton

corrections for the Wilson loops with winding number m = 1, 2, 3. In section 5, we re-

produce the perturbative part of Wilson loop in the fundamental representation from the

WKB expansion of spectral traces. In section 6, we summarize the planar solution of Nf

matrix model obtained in [14]. We find that the planar resolvent in [14] can be vastly

simplified. In section 7, we compare the Fermi gas results and the matrix model results

of the Wilson loop VEVs in the planar limit and find a perfect agreement. Finally, we

conclude in section 8. In appendix A we list some exact values of Wilson loop VEVs and

in appendix B we mention some curious properties of Wilson loops for Nf = 4.

2 Winding Wilson loops

2.1 Review of Nf matrix model

First we review the S3 partition function of d = 3 N = 4 U(N) Yang-Mills theory with

one adjoint and Nf fundamental hypermultiplets. In d = 3, the gauge coupling has mass

dimension 1/2 and it flows to infinity in the IR. Thus the gauge kinetic term is irrelevant

in IR and the S3 partition function of this theory is independent of the gauge coupling.

This theory flows to a superconformal fixed point in the IR, which is conjectured to be

holographically dual to M-theory on AdS4 × S7/ZNf .

Using the supersymmetric localization, the S3 partition function is reduced to a finite

dimensional integral [19], which is dubbed the Nf matrix model in [14]

Z(N,Nf ) =
1

N !

∫
dNx

(4π)N

N∏
i=1

1

(2 cosh xi
2 )Nf

∏
i<j

tanh2 xi − xj
2

. (2.1)

Using the Cauchy identity, (2.1) can be rewritten as a partition function of N fermions on

a real line

Z(N,Nf ) =
1

N !

∫
dNx

∑
σ∈SN

(−1)σ
N∏
i=1

ρ(xi, xσ(i)) (2.2)

where the density matrix ρ is given by

ρ(x, y) =
1

2π

1

(2 cosh x
2 )Nf/2

1

2 cosh x−y
2

1

(2 cosh y
2 )Nf/2

. (2.3)

It is also useful to express ρ(x, y) as a matrix element of the quantum mechanical operator ρ̂

ρ(x, y) = 〈x|ρ̂|y〉, ρ̂ =
1

(2 cosh x̂
2 )Nf/2

1

2 cosh p̂
2

1

(2 cosh x̂
2 )Nf/2

, (2.4)
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with x̂ and p̂ being the coordinate and momentum of a fermion obeying the canonical

commutation relation

[x̂, p̂] = i~, ~ = 2π. (2.5)

As discussed in [1], it is more convenient to consider the grand canonical ensemble by

summing over N with fugacity κ = eµ. It turns out that the grand partition function is

written as a Fredholm determinant

Ξ(µ,Nf ) = 1 +

∞∑
N=1

κNZ(N,Nf ) = Det(1 + κρ) (2.6)

which in turn is physically interpreted as a grand canonical ensemble of ideal Fermi gas [1].

The large N behavior of canonical partition function Z(N,Nf ) can be deduced from the

large µ behavior of the modified grand potential J(µ,Nf ), which is related to the grand

partition function by [18]

Ξ(µ,Nf ) =
∑
n∈Z

eJ(µ+2πin,Nf ). (2.7)

Then the canonical partition function is recovered from J(µ,Nf ) by the integral

transformation

Z(N,Nf ) =

∫
C

dµ

2πi
eJ(µ,Nf )−Nµ (2.8)

where C is a contour on the µ-plane running from e
πi
3∞ to e−

πi
3∞.

The modified grand potential J(µ,Nf ) can be decomposed into several pieces:

J(µ,Nf ) = Jpert(µ,Nf ) + JWS(µ,Nf ) + JM2(µ,Nf ) + Jbound(µ,Nf ) (2.9)

The first term of (2.9) is the perturbative part

Jpert(µ,Nf ) =
Cµ3

3
+Bµ+A, (2.10)

where C,B, and A are given by [13–15]

C =
2

Nfπ2
, B =

1

2Nf
−
Nf

8
, A =

1

2
Ac(Nf ) +

1

2
Ac(1)N2

f . (2.11)

Here Ac(Nf ) is a certain resummation of the constant map contributions of topological

string [15, 20, 21]

Ac(Nf ) = −
N2
f ζ(3)

8π2
+ 4

∫ ∞
0

dx
x

ex − 1
log

(
2 sinh

2πx

Nf

)
. (2.12)

As shown in [15], Ac(Nf ) can be evaluated in a closed form for integer Nf . In particular,

for Nf = 1 we find

Ac(1) = −ζ(3)

8π2
+

1

4
log 2. (2.13)
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JWS(µ,Nf ) and JM2(µ,Nf ) in (2.9) denote the worldsheet instanton and membrane in-

stanton corrections, respectively, while the last term Jbound(µ,Nf ) in (2.9) represents the

contributions from the bound states of worldsheet instantons and membrane instantons.

In [15], the first few instanton corrections are determined: the worldsheet instantons are

given by

JWS(µ,Nf ) = −
4µ+Nf

2π sin 2π
Nf

e
− 4µ
Nf

+

[
−

(4µ+Nf )2

4π2
+

3 sin 6π
Nf

(8µ+Nf )

8π sin 2π
Nf

sin 4π
Nf

−
sin 8π

Nf

2 sin2 2π
Nf

sin 4π
Nf

]
e
− 8µ
Nf

+O(e
− 12µ
Nf )

(2.14)

and the membrane 1-instanton is given by

JM2(µ,Nf ) = −
Γ
(
−Nf

2

)2
4π2Γ(−Nf )

(2µ+ 1)e−2µ +O(e−4µ). (2.15)

At present, we do not know the exact form of the bound states in the Nf matrix model.

In the large N limit, the integral (2.8) can be evaluated by the saddle point approxi-

mation, where the saddle point value µ∗ of the chemical potential is given by

µ∗ ≈
√
N

C
= π

√
NNf

2
. (2.16)

Plugging this value µ∗ into the perturbative part of grand potential, we recover the N3/2

behavior of free energy

− logZ(N,Nf ) ≈ Nµ∗ − Jpert(µ∗, Nf ) ≈
π
√

2Nf

3
N3/2. (2.17)

Also, the free energy receives instanton corrections of order

worldsheet 1-instanton : e
− 4µ∗
Nf = e−2π

√
2N/Nf , (2.18)

membrane 1-instanton : e−2µ∗ = e−2π
√
NfN/2. (2.19)

2.2 Wilson loops in Nf matrix model

In this paper, we will study the VEV of 1/2 BPS Wilson loops in the Nf matrix model.

The 1/2 BPS Wilson loop in representation R is given by [22]1

TrR P exp

[∮
ds
(
Aµẋ

µ + σ|ẋ|
)]

(2.20)

where σ is one of the three scalar fields in the N = 4 vectormultiplet and xµ(s) parametrizes

the equator of S3. The VEV of such BPS Wilson loops can be reduced to a finite dimen-

sional integral by the supersymmetric localization [19]. Here we will focus on the Wilson

11/2 BPS Wilson loops in N = 4 Chern-Simons-matter theories are studied in [23].
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loop wound around the equator of S3 m times, which we will call the winding Wilson loop

with winding number m.

Now, let us consider the (un-normalized) VEV of winding Wilson loop2

Wm(N,Nf ) =

〈
N∑
i=1

emxi

〉
(2.22)

where the expectation value is defined by

〈O〉 =
1

N !

∫
dNx

(4π)N
O

N∏
i=1

1

(2 cosh xi
2 )Nf

∏
i<j

tanh2 xi − xj
2

. (2.23)

Note that the integral defining Wm(N,Nf ) is convergent if Nf satisfies the condition

Nf > 2m. (2.24)

As in the case of ABJM theory [7, 8], we can study the Wilson loop VEV of Nf matrix

model from the Fermi gas approach. As discussed in [8], using the relation

∞∑
N=0

κN

〈
N∏
i=1

(1 + εemxi)

〉
= Det

(
1 + κρ(1 + εemx)

)
(2.25)

and picking up the O(ε) term on both sides, we find that the grand canonical VEV of

winding Wilson loop is written as

Wm(µ,Nf ) =
∞∑
N=1

κNWm(N,Nf ) = Det(1 + κρ) Tr

(
κρ

1 + κρ
emx

)
. (2.26)

In the following, we will mainly consider the grand canonical VEV of winding Wilson loops

normalized by the grand partition function

Wm(µ,Nf )

Ξ(µ,Nf )
= Tr

(
κρ

1 + κρ
emx

)
. (2.27)

2.3 Computation of trace

To compute the grand canonical VEV of Wilson loop (2.27), we have to evaluate the trace

Tr(ρ`emx)

Wm(µ,Nf )

Ξ(µ,Nf )
=
∞∑
`=1

(−1)`−1κ` Tr(ρ`emx). (2.28)

2We define the Wilson loop VEV without dividing by the dimension N of representation

Wm 6=
1

N

〈
N∑
i=1

emxi

〉
(2.21)

Our definition will simplify the grand canonical VEV of Wm.
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Figure 1. Plot of the numerical error eN (2.32) of the fundamental Wilson loop for Nf = 6.

This can be done systematically using the Tracy-Widom lemma [24]. Noticing that ρ is

written as

ρ(x, y) =
E(x)E(y)

M(x) +M(y)
,

M(x) = ex, E(x) =

√
1

2π

ex

(2 cosh x
2 )Nf

,

(2.29)

one can show the `th power of ρ is given by [24]

ρ`(x, y) =
E(x)E(y)

M(x) + (−1)`−1M(y)

`−1∑
j=0

(−1)jψj(x)ψ`−1−j(y), (2.30)

where the functions ψj(x) (j = 0, 1, · · · ) are determined recursively starting from ψ0(x) = 1

ψj(x) =
1

E(x)

∫
dyρ(x, y)E(y)ψj−1(y). (2.31)

When Nf is an integer, one can compute the exact values of VEV by closing the contour and

picking up the residue of poles, as in the case of ABJM theory [18, 25–27]. In appendix A,

we list some examples of the exact values of Wilson loop VEVs.

As explained in [33], we can also compute the sequence of functions {ψj} numerically

with high precision by discrete Fourier transformations.3 We can estimate the accuracy

of our numerics by comparing with the exact values in appendix A. As an example, let

us consider the Wilson loop VEV in the fundamental representation (or winding number

m = 1) for Nf = 6. We have computed the exact values of W�(N,Nf = 6),4 up to N = 20,

and in figure 1 we plotted the relative error

eN =

∣∣∣∣W�(N, 6)numerical

W�(N, 6)exact
− 1

∣∣∣∣ , (2.32)

3We computed the Wilson loop VEVs numerically using a Mathematica program originally written by

Yasuyuki Hatsuda. We would like to thank him for sharing his program with us.
4Since the fundamental representation corresponds to the winding number m = 1, we will often use the

notation W1 = W�.
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between the exact and the numerical values. As we can see from figure 1, our numerics has

a high precision with an extremely small error

eN < 1.1× 10−163 (for N ≤ 20). (2.33)

On the other hand, the instanton factors (2.19) for Nf = 6, N = 20, are given by

worldsheet 1-instanton : e−2π
√

2N/Nf ≈ 9.0× 10−8,

membrane 1-instanton : e−2π
√
NfN/2 ≈ 7.3× 10−22.

(2.34)

From (2.33) and (2.34), one can see that our numerical computation has enough accuracy

to study instanton corrections to the Wilson loop VEVs. Also, from (2.34) we observe

that the membrane instanton correction is highly suppressed compared to the worldsheet

instanton correction. This is a generic phenomenon in the convergence region (2.24). Thus

it is difficult to study membrane instanton corrections to the Wilson loops numerically;

in this paper we will mainly consider the worldsheet instanton corrections to the Wilson

loop VEVs.

2.3.1 Odd winding number

It turns out that the grand canonical VEV in (2.27) for odd m can be rewritten in a simpler

form. Let us first consider the fundamental representation. We notice that Wilson loop

factor emx for m = 1 reduces to M(x) in (2.29). Then the trace Tr(ρ`M) can be simplified

using the formal operator relation

Mρ+ ρM = |E〉〈E|. (2.35)

Then we have

Tr(ρ`M) = Tr(ρ`−1ρM) = Tr(ρ`−1|E〉〈E|)− Tr(ρ`−1Mρ). (2.36)

Using the cyclicity of trace, we find

Tr(ρ`M) =
1

2
〈E|ρ`−1|E〉. (2.37)

Finally, we find that the grand canonical VEV of fundamental Wilson loop is written as

W�(µ,Nf )

Ξ(µ,Nf )
= Tr

(
κρ

1 + κρ
M

)
=

1

2
〈E| κ

1 + κρ
|E〉. (2.38)

This is reminiscent of the grand canonical VEV of 1/2 BPS Wilson loops in ABJM the-

ory [8]. More generally, for odd m one can show that

Wm(µ,Nf )

Ξ(µ,Nf )
= Tr

(
κρ

1 + κρ
Mm

)
=

1

2

m−1∑
j=0

(−1)j〈E|M j κ

1 + κρ
Mm−1−j |E〉, (2.39)

in a similar manner as (2.36). On the other hand, we could not find a similar expression

for even winding numbers.

– 8 –
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3 Perturbative part

In this section, we consider the large µ expansion of the grand canonical VEV (2.27) of

winding Wilson loops. It is useful to introduce the modified version of the grand canonical

VEV Ŵm(µ,Nf ) by

Wm(µ,Nf ) =
∑
n∈Z

eJ(µ+2πin,Nf )Ŵm(µ+ 2πin,Nf ). (3.1)

As in the case of modified grand potential, Ŵm(µ,Nf ) is written as a sum of perturbative

part and the exponentially suppressed instanton corrections.

We find that the leading term (perturbative part) of Ŵm(µ,Nf ) in the large µ limit is

given by

Ŵ pert
m (µ,Nf ) = cm(Nf )e

2mµ
Nf . (3.2)

The coefficient cm(Nf ) in (3.2) can be determined as follows. As in the case of partition

function (2.8), the canonical picture and the grand canonical picture of Wilson loop VEV

are related by the integral transformation

Wm(N,Nf ) =

∫
C

dµ

2πi
eJ(µ,Nf )Ŵm(µ,Nf ). (3.3)

Then expanding the integrand of (3.3)

eJ(µ,Nf )Ŵm(µ,Nf ) = e
Jpert(µ,Nf )+ 2mµ

Nf

∑
j,w

aj,wµ
je−wµ, (3.4)

the canonical VEV is written as a sum of Airy function and its derivatives

Wm(N,Nf ) = eAC−
1
3

∑
j,w

aj,w(−∂N )jAi

[
C−

1
3

(
N −B − 2m

Nf
+ w

)]
. (3.5)

In particular, the perturbative part of canonical VEV is given by

W pert
m (N,Nf ) = cm(Nf )eAC−

1
3 Ai

[
C−

1
3

(
N −B − 2m

Nf

)]
. (3.6)

By fitting the numerical value of Wm(N,Nf ) with the expression (3.6), we can determine

the coefficient cm(Nf ). In this way, we find that the coefficient in the perturbative part of

Ŵm(µ,Nf ) in (3.2) is given by

c1(Nf ) =
1

4 sin 2π
Nf

, c3(Nf ) =
sin2 π

Nf

4 sin 2π
Nf

sin 4π
Nf

sin 6π
Nf

,

c2(Nf ) =
1

2Nf sin 2π
Nf

sin 4π
Nf

, c4(Nf ) =
sin2 2π

Nf

2Nf sin 2π
Nf

sin 4π
Nf

sin 6π
Nf

sin 8π
Nf

,

(3.7)
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Figure 2. We show the plot of − logW2(N,Nf ) for Nf = 5, 6, · · · , 13. Note that the horizontal axis

is N3/2, and Nf increases from the bottom curve (Nf = 5) to the top curve (Nf = 13). The dots

are the numerical values of the Wilson loop VEV while the solid curves represent the perturbative

part given by the Airy function (3.6).

for winding numbers m = 1, · · · , 4. For general winding number m, we conjecture

cm(Nf ) =



∏m−1
2

j=1 sin2 (2j−1)π
Nf

4
∏m
n=1 sin 2πn

Nf

(odd m),

∏m
2
−1

j=1 sin2 2jπ
Nf

2Nf
∏m
n=1 sin 2πn

Nf

(even m).

(3.8)

We have checked this behavior numerically for m = 1, · · · , 8. In figure 2, we show the plot

of Wilson loop VEV with m = 2 as an example. As we can see from figure 2, the Airy

function in (3.6) exhibits a nice agreement with the numerical value of W2(N,Nf ), if we

use the correct coefficient c2(Nf ) in (3.7). We have also confirmed a similar agreement

between Wm(N,Nf ) and the Airy function (3.6) for m = 1, · · · , 8 with the coefficient

cm(Nf ) in (3.8).

4 Instanton corrections

We can continue the numerical fitting beyond the perturbative part and fix the instanton

coefficients in the expansion (3.4) and (3.5). As we will see below, we determine the first

few worldsheet instanton corrections to Ŵm(µ,Nf ) for m = 1, 2, 3 in a closed form as a

function of Nf . We conjecture that there is no “pure” membrane instanton corrections to

Ŵm(µ,Nf ) except for the contributions of bound states.

– 10 –
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(c) Nf = 11

Figure 3. We show the plot of δ for Nf = 7, 8, 11. Note that the vertical axis is log scale.

4.1 Fundamental representation

Let us first consider the fundamental representation. We find that the worldsheet instanton

corrections are given by

Ŵ�(µ,Nf ) = −
Nf

4
+ e

2µ
Nf

[
1

4 sin 2π
Nf

+
4µ+Nf

4π
e
− 4µ
Nf

+

(
sin 2π

Nf
(4µ+Nf )2

8π2
−

3 cos 2π
Nf

(8µ+Nf )

8π
+

cos2 2π
Nf

sin 2π
Nf

)
e
− 8µ
Nf

+

(
(sin2 2π

Nf
+ sin2 4π

Nf
)(4µ+Nf )3

24π3
−

3 sin 4π
Nf

sin 6π
Nf

sin 2π
Nf

(4µ+Nf )(8µ+Nf )

16π2

+
5 cos 4π

Nf
sin 6π

Nf

9 sin 2π
Nf

12µ+Nf

π
+

(
cos2 2π

Nf
+ cos2 4π

Nf

)
4µ+Nf

π

−
2(sin 6π

Nf
+ cos 6π

Nf
sin 8π

Nf
)

sin 2π
Nf

sin 4π
Nf

)
e
− 12µ
Nf +O

(
e
− 16µ
Nf

)]
. (4.1)

In figure 3 we plot the quantity

δ =
W�(N,Nf )−W pert

� (N,Nf )−W inst
� (N,Nf )

W pert
� (N,Nf )

e
12µ∗
Nf (4.2)

where W pert
� (N,Nf ) in (4.2) is the perturbative part given by the Airy function (3.6) and

µ∗ is the saddle point value of the chemical potential in (2.16), and W inst
� (N,Nf ) is the

instanton correction in the canonical picture up to worldsheet 3-instantons, obtained from

the grand canonical picture (4.1) using (3.4) and (3.5). If we have subtracted worldsheet

instantons correctly in (4.2), δ should decay exponentially as N becomes large. Indeed, in

figure 3 we find that δ decays exponentially for Nf = 7, 8, 11, as expected. We have also

checked a similar behavior of δ for other values of Nf . This confirms the correctness of the

instanton corrections in (4.1).

In (4.1), we observe that the worldsheet 1-instanton and 2-instanton have no poles in

the convergence region Nf > 2 (2.24). This suggests that there is no “pure” membrane

instanton corrections as in the case of 1/2 BPS Wilson loops in ABJM theory [8], since
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there is no need for the membrane instantons to appear to cancel the poles. On the other

hand, the worldsheet 3-instanton has a pole at Nf = 4. We conjecture that this pole is

canceled by the bound state of order e−2µ−4µ/Nf . It would be interesting to determine the

coefficient of this bound state contribution as a function of Nf .

Also, we observe that the grand canonical VEV (4.1) has two pieces which scale differ-

ently in the large µ limit: the constant term −Nf/4 and the remaining part whose leading

term gives rise to the perturbative part (3.2). One can translate this decomposition into

the canonical picture

W�(N,Nf ) = −
Nf

4
Z(N,Nf ) + W̃�(N,Nf ), (4.3)

where the second term behaves in the large N limit as

W̃�(N,Nf )

Z(N,Nf )
≈ c1(Nf )e

2µ∗
Nf . (4.4)

In section 7, we will show that this decomposition (4.3) is consistent with the genus-zero

result in [14].

4.2 Winding number m = 2, 3

Next we consider the worldsheet instanton corrections to the winding Wilson loops

Ŵm(µ,Nf ) for winding numbers m = 2, 3.

Winding number m = 2. For m = 2 we find

Ŵ2(µ,Nf ) =
2e

4µ
Nf

Nf sin 2π
Nf

[
1

4 sin 4π
Nf

+
cos 2π

Nf
(4µ+Nf )

4π
e
− 4µ
Nf

+

(
sin 4π

Nf
(4µ+Nf )2

8π2
−

3 cos 4π
Nf

(8µ+Nf )

8π
+

cos 2π
Nf

cos 4π
Nf

sin 2π
Nf

)
e
− 8µ
Nf

+O(e
− 12µ
Nf )

]
−Cµ2 +B − 8µ

πNf sin 2π
Nf

e
− 4µ
Nf +O(e

− 8µ
Nf ).

(4.5)

We observe that the last line of (4.5) is related to the derivative of the modified grand

potential

−∂µJ(µ,Nf ) + 2B, (4.6)

where B is the coefficient in the perturbative part (2.11). As in the case of fundamental

representation in the previous subsection, Ŵ2(µ,Nf ) consists of two parts with different

scaling behavior in the large µ limit, which implies that the Wilson loop VEV W2(N,Nf )

in the canonical picture can be decomposed as

W2(N,Nf ) = (−N + 2B)Z(N,Nf ) + W̃2(N,Nf ), (4.7)

where the second term in (4.7) behaves in the large N limit as

W̃2(N,Nf )

Z(N,Nf )
≈ c2(Nf )e

4µ∗
Nf . (4.8)

– 12 –



J
H
E
P
1
1
(
2
0
1
6
)
1
5
6

Winding number m = 3. For m = 3 we find

Ŵ3(µ,Nf ) =
sin2 π

Nf

sin 2π
Nf

sin 4π
Nf

e
6µ
Nf

[
1

4 sin 6π
Nf

−
sin 3π

Nf

sin π
Nf

(4µ+Nf )

4π
e
− 4µ
Nf

+

(
sin 6π

Nf
(4µ+Nf )2

8π2
−

3 cos 2π
Nf

sin2 3π
Nf

sin2 π
Nf

(8µ+Nf )

8π

+
sin 3π

Nf
cos 2π

Nf

sin π
Nf

sin 2π
Nf

(
cos

4π

Nf
− cos

2π

Nf
− 1
))

e
− 8µ
Nf +O(e

− 12µ
Nf )

]

−
Nf

4
+ 3e

2µ
Nf

[
1

4 sin 2π
Nf

+
4µ+Nf

4π
e
− 4µ
Nf +O(e

− 8µ
Nf )

]
.

(4.9)

In this case, we observe that Ŵ3(µ,Nf ) consists of three parts with different scalings in

the large µ limit. Noticing that the last term of (4.9) is proportional to W̃� in (4.1), we

conjecture that the canonical VEV W3(N,Nf ) for winding number m = 3 is decomposed as

W3(N,Nf ) = −
Nf

4
Z(N,Nf ) + 3W̃�(N,Nf ) + W̃3(N,Nf ), (4.10)

where the last term scales as

W̃3(N,Nf )

Z(N,Nf )
≈ c3(Nf )e

6µ∗
Nf . (4.11)

We have confirmed our result of instanton corrections (4.5) and (4.9) for m = 2, 3 by

performing a similar test as in figure 3. We have checked a correct exponential decay of

the quantity δ for various Nf ’s in the convergence region (2.24).

5 WKB expansion

In this section, we will consider the WKB expansion (small ~ expansion) of spectral trace

Tr(ρsex) and try to reproduce the perturbative part of fundamental representation. Our

starting point is the Mellin-Barnes representation of the grand canonical VEV [6, 28]

Ŵ�(µ,Nf ) =

∫ c+i∞

c−i∞

ds

2πi

π

sinπs
Tr(ρsex)esµ, (5.1)

where c is a positive constant in the region 2/Nf < c < 1. By picking up the poles at

s = ` ∈ N we recover the small κ expansion (2.28). On the other hand, closing the contour

in the direction Re(s) < c we can find the large µ expansion of Ŵ�(µ,Nf ).

In the quantum mechanical description of density matrix (2.4), the Planck constant

is fixed to ~ = 2π (2.5). However, one can formally introduce the parameter ~ in the

canonical commutation relation [x̂, p̂] = i~ and perform the WKB expansion of the spectral

trace Tr(ρsex). Finally we set ~ = 2π at the end of computation. This procedure was

successfully applied to several examples [29, 30].
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At the zero-th order of WKB expansion, the spectral trace is given by the classical

phase space integral

Z0(s) =

∫
dxdp

2π~

[
1

2 cosh p
2

1

(2 cosh x
2 )Nf

]s
ex =

Γ
(
s
2

)2
Γ
(
Nf s

2 + 1
)

Γ
(
Nf s

2 − 1
)

2π~Γ(s)Γ(Nfs)
, (5.2)

and the higher order corrections can be systematically computed by using the Wigner

transformation of operator ρ̂sex̂ [30–33]. In this way, we find the WKB expansion of

spectral trace as

Tr(ρsxx) = Z0(s)D(s), (5.3)

where D(s) is a formal power series in ~

D(s) = 1 +

∞∑
n=1

~2nDn(s). (5.4)

We find that the nth order term Dn(s) has the following structure:

Dn(s) =
(s− 1)pn(s)∏n

j=1(Nfs+ 2j − 1)
, (5.5)

where pn(s) is a (3n− 1)th order polynomial of s. The first three terms are given by

p1(s) = c1(N2
f s

2 − 4Nfs− 8),

p2(s) = c2

[
N4
f s

5 +
1

7
N3
f (3Nf − 32)s4 +

8

7
N2
f

(
N2
f − 2Nf − 18

)
s3

− 16

7
Nf

(
4N2

f + 5Nf − 24
)
s2 − 128

7

(
3N2

f −Nf − 9
)
s+

384

7

]
,

p3(s) = c3

[
N6
f s

8 +
4

31
N5
f (16Nf − 15)s7 +

1

31
N4
f

(
129N2

f − 176Nf − 1544
)
s6

+
4

31
N3
f

(
18N3

f − 129N2
f − 944Nf + 288

)
s5

+
8

31
N2
f

(
16N4

f − 44N3
f − 1275N2

f − 80Nf + 2640
)
s4

+
64

31
Nf

(
2N5

f − 24N4
f − 103N3

f − 53N2
f + 540Nf − 72

)
s3

− 128

31

(
12N5

f + 120N4
f − 32N3

f − 955N2
f + 48Nf + 1080

)
s2

− 1024

31

(
15N4

f − 120N2
f +Nf + 180

)
s− 30720

31

]
.

(5.6)

The coefficient cn of the highest order term N2n
f s3n−1 in pn(s) (5.6) is found to be

cn =
B2n(1/2)

24n(2n)!
, (5.7)
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where B2n(1/2) denotes the Bernoulli polynomial B2n(z) evaluated at z = 1/2. We have

computed Dn(s) up to nmax = 10.

As mentioned above, the large µ expansion of grand canonical VEV can be found by

closing the contour of (5.1) in the direction Re(s) < c. The perturbative part comes from

the pole at s = 2/Nf of Z0(s) in (5.2)

Ress= 2
Nf

[
π

sinπs
Z0(s)D(s)esµ

]
=

1

Nf~ sin 2π
Nf

Γ
(

1
Nf

)2
Γ
(

2
Nf

) D( 2

Nf

)
e

2µ
Nf . (5.8)

In order to reproduce the coefficient c1(Nf ) of the perturbative part of fundamental rep-

resentation in (3.7), we need to show that

D

(
2

Nf

)
=
πNfΓ

(
2
Nf

)
2Γ
(

1
Nf

)2 . (5.9)

Although we do not have an analytic proof of this relation, we can check this numerically

by using the Padé approximation

D(s) ≈ 1 +

nmax∑
n=1

~2nDn(s) ≈
1 + a1~2 + · · ·+ anmax/2

~nmax

1 + b1~2 + · · ·+ bnmax/2
~nmax

, (5.10)

and set ~ = 2π at the end. As we can see from figure 4(a), the Padé approximation exhibits

a nice agreement with the expected behavior in (5.9).

One can also repeat the same analysis for the constant part −Nf/4 in (4.1), which

comes from the pole at s = 0 in (5.1)

Ress=0

[
π

sinπs
Z0(s)D(s)esµ

]
= −2D(0)

π~
(2µ+Nf )− 4D′(0)

π~
. (5.11)

From the first few terms of the expansion of D(0), one can easily guess the closed form

of D(0)

D(0) = 1− ~2

48
− ~4

11520
− ~6

1935360
+ · · · = ~

4
cot

~
4
. (5.12)

After setting ~ = 2π, we find D(0) = 0 as expected. In order to reproduce the constant

−Nf/4, we need

D′(0) =
π2Nf

8
. (5.13)

Again, we can check this relation numerically using the Padé approximation for D′(0). We

find a nice agreement with the right hand side of (5.13) (see figure 4(b)).

We expect that the worldsheet `-instanton comes from the pole at s = (2 − 4`)/Nf .

In principle, we can find the instanton coefficients from the WKB analysis. However, it is

difficult in practice since both the classical part Z0(s) and the quantum corrections D(s)

should have poles at s = (2−4`)/Nf in order to reproduce the Fermi gas result (4.1).5 This

is different from the situation for the perturbative part and the constant term considered

above, where the poles only come from the classical part. By the same reason, it is difficult

to study the winding Wilson loop Ŵm(µ,Nf ) with m ≥ 2 from the WKB analysis.

5A similar problem occurs for the WKB analysis of the worldsheet instantons in ABJM theory [28].
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0.5 1.0 1.5 2.0
Nf

5

10

15

D (2 /Nf)

(a) Plot of D(2/Nf )

0.5 1.0 1.5 2.0
Nf

0.5

1.0

1.5

2.0

2.5

D ' (0)

(b) Plot of D′(0)

Figure 4. We show the plot of (a) D(2/Nf ) and (b) D′(0), against Nf . The dots are the numerical

values obtained from the Padé approximation, while the solid curves represent the exact functions

in (5.9) and (5.13) for (a) and (b), respectively.

6 Planar solution of Nf matrix model

In this section, we will summarize the planar solution of the Nf matrix model. This section

is mostly a review of the result in [14], but we find that the the planar resolvent in [14]

can be vastly simplified. Using this simplified expression of resolvent, we will directly show

that the resolvent satisfies the planar loop equation without referring to the relation to the

O(n) matrix model [34–36].

Let us consider the planar resolvent of Nf matrix model in the ’t Hooft limit (1.1)

ω(z) =
1

Z(N,Nf )

〈
1

Nf

N∑
i=1

z + exi

z − exi

〉
, (6.1)

where we have normalized the VEV (2.23) by the partition function.6 In the ’t Hooft

limit (1.1), the eigenvalue distribution becomes continuous. Since the integrand of the Nf

matrix model (2.1) is an even function of xi, the eigenvalues are distributed symmetrically

around the origin xi ∈ [−T, T ]. Noticing that the variable z in (6.1) is related to the

eigenvalue x by z = ex, ω(z) is expected to have a cut along z ∈ [a, b] with a = e−T , b = eT .

The resolvent ω(z) should satisfy several conditions. First of all, ω(z) should satisfy

the loop equation which comes from the saddle point equation of matrix integral (2.1)

ω(z + i0) + ω(z − i0)− 2ω(−z) = V ′(z) (6.2)

along the cut z ∈ [a, b]. Here V ′(z) is given by

V ′(z) =
z − 1

z + 1
. (6.3)

Also, from the definition (6.1) and the symmetry of the eigenvalue distribution we find

ω(0) = −λ, (6.4)

ω(z−1) = −ω(z). (6.5)
6We have change the notation of resolvent from v(z) in [14] to ω(z), in order to save the letter v for the

coordinate on the torus v ∈ C/(Z + τZ).
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Mapping to the torus C/(Z + τZ). To find the resolvent, it is convenient to map z

to the variable u by a Jacobi elliptic function

z = a sn(u, k), (6.6)

where the elliptic modulus k is given by

k =
a

b
= a2. (6.7)

In what follows we will suppress the dependence of k. We also need the derivative of z

∂uz = a cn(u)dn(u) = a
√

(1− a2z2)(1− a−2z2). (6.8)

Furthermore, the variable u is related to the flat coordinate v on the torus C/(Z+τZ) by

v =
u

2K
, (6.9)

where K = K(k2) is the elliptic integral of the first kind and the complex structure of the

torus is given by

τ =
iK ′

K
. (6.10)

Then the coordinate z and the end-point of the cut a is written in terms of the Jacobi

theta functions

z =
ϑ1(v, τ)

ϑ4(v, τ)
,

a =
ϑ2(0, τ)

ϑ3(0, τ)
.

(6.11)

We will use the variables z, u and v interchangeably. One can show that z(v) satisfies

z(−v) = − z(v),

z(v + 1) = − z(v),

z(v + τ) = z(v),

z

(
v +

τ

2

)
=

1

z(v)
,

z

(
v +

1

2

)
= a

√
1− a−2z(v)2

1− a2z(v)2
=
ϑ2(v, τ)

ϑ3(v, τ)
,

(6.12)

and the various points on the z-plane are mapped to the points on the v-plane as

z 0 ∞ a a−1 ±1 ±i

v 0 τ
2

1
2

1
2 + τ

2 ±1
2 + τ

4 ± τ
4
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Conditions obeyed by the resolvent ω(v). Here we will write down the conditions

for the resolvent ω(v) in terms of the variable v. The loop equation becomes

ω

(
1

2
+ v

)
+ ω

(
1

2
− v
)
− 2ω

(
−1

2
− v
)

= V ′
(

1

2
+ v

)
, for v ∈

[
0,
τ

2

]
. (6.13)

We also require that there are no cuts along z ∈ [−b,−a] and z ∈ [−∞,−b] ∪ [b,∞]. In

terms of the variable v these conditions become

ω

(
−1

2
+ v

)
= ω

(
−1

2
− v
)
, for v ∈

[
0,
τ

2

]
,

ω

(
τ

2
+ v

)
= ω

(
−τ

2
+ v

)
, for v ∈

[
− 1

2
,
1

2

]
.

(6.14)

Using the above conditions, ω(v) can be extended to a function on the torus obeying the

following functional relations

ω(v + 1) + ω(v − 1)− 2ω(v) = V ′(v + 1), (6.15)

ω

(
−1

2
+ v

)
= ω

(
−1

2
− v
)
, (6.16)

ω(v + τ) = ω(v). (6.17)

6.1 Planar resolvent

The resolvent ω(v) was obtained in [14] by taking a limit of the solution of O(n) matrix

model [34–36]. After massaging the expression in [14], we find a very simple formula for

the resolvent

ω(z) =
Ã(z)2

2π2

z2 + 1

z2 − 1
− 1

4

z + 1

z − 1
+ λ̂

z2 − 1

z2 + 1
. (6.18)

The function Ã(z) in (6.18) is given by

Ã(z) =
π

2
+A(u)−K ′ ∂uz

z(1 + z2)
, (6.19)

where K ′ = K(1− k2) and A(u) denotes the function introduced in [14]

A(u) =
πu

2K
+K ′Z(u) +K ′∂u log z, (6.20)

with Z(u) being the Jacobi zeta function

Z(u) = ∂u log ϑ4

(
u

2K
, τ

)
. (6.21)

In terms of the variable v, we find that Ã(v) in (6.18) is written as

Ã(v) =
π

2
+ πv − iτ

2
∂v log ϑ4(v, τ)− iτ

4
∂v log(1 + z2)

=
π

2
+ πv − iτ

4
∂v log

[
ϑ1(v, τ)2 + ϑ4(v, τ)2

]
.

(6.22)
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One can remove the linear term of v by performing the modular S-transformation

Ã(z) = − i

4
∂v′ log

[
ϑ3

(
v′ +

τ ′

2
, τ ′
)2

+ ϑ4

(
v′ +

τ ′

2
, τ ′
)2]

(6.23)

with

v′ =
v

τ
, τ ′ = −1

τ
. (6.24)

As discussed in [37], we could use the S-dual variables (v′, τ ′) from the beginning. However,

we will not do so and we will continue to use the original variables (v, τ).

In the following, we will show that ω(z) in (6.18) indeed satisfies the necessary func-

tional relations.

Symmetries of ω(v). First, let us consider the relation (6.5). In terms of v, (6.5) is

written as

ω

(
v +

τ

2

)
= −ω(v). (6.25)

This is satisfied since z(v + τ/2) = 1/z(v) and

Ã

(
v +

τ

2

)
= Ã(v), (6.26)

which follows from the identity of Jacobi theta functions

ϑ4

(
v +

τ

2
, τ

)
= ie−πi(v+ τ

4
)ϑ1(v, τ), ϑ1

(
v +

τ

2
, τ

)
= ie−πi(v+ τ

4
)ϑ4(v, τ). (6.27)

Then, the τ/2-shift relation (6.25) implies that ω(v) is periodic (6.17) with period τ . One

can also show the relation (6.16) by using

Ã

(
−1

2
+ v

)
= −Ã

(
−1

2
− v
)
,

z

(
−1

2
+ v

)
= z

(
−1

2
− v
)
.

(6.28)

Next let us consider the normalization condition (6.4). So far λ̂ in (6.18) is just a formal

parameter in the ansatz of solution. The relation between λ̂ and the ’t Hooft coupling λ is

fixed by the condition (6.4). Using Ã(0) = π/2, we find

λ̂ = λ+
1

8
. (6.29)

This shift by 1/8 is consistent with the Fermi gas result (2.11)

N −B = Nf

(
λ+

1

8

)
− 1

2Nf
, (6.30)

at the leading order in the ’t Hooft limit.
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Absence of poles at z = ±1. We also want to show that the resolvent is regular at

z = ±1. This requires

Ã

(
1

2
+
τ

4

)
= π, Ã

(
−1

2
+
τ

4

)
= 0. (6.31)

One can show that (6.31) is satisfied by using

∂vz
∣∣
z=±1

= 2i(a2 − 1)K,

∂v log ϑ4

(
±1

2
+
τ

4

)
= − iπ

2
± i(1− a2)K.

(6.32)

The second equality in (6.32) is a consequence of the formula in the appendix A of [14].

Absence of poles at z = ±i. The regularity of resolvent at z = ±i determines λ̂ as

a function of a. One can show that A(u) in (6.19) is regular at z = ±i, and hence near

z = ±i the resolvent behaves as

lim
z→±i

ω(z) =
1

2π2

(
K ′∂uz

z(z2 + 1)

)2 z2 + 1

z2 − 1
+ λ̂

z2 − 1

z2 + 1
+ (regular). (6.33)

From this behavior, the condition for the absence of pole at z = ±i is found to be

λ̂ =
t2

8π2
, (6.34)

where t is given by

t = K ′∂uz

∣∣∣∣
z=±i

. (6.35)

Using (6.8) we find that t is written as

t = (1 + a2)K ′. (6.36)

This reproduces the result in [14].

Loop equation. Finally, let us show that ω(v) in (6.18) satisfies the loop equation (6.15).

In [14], this was shown implicitly by taking a limit of the resolvent of O(n) matrix model.

Here we will show the loop equation (6.15) directly.

To do this, it is convenient to introduce the operator T± shifting v by ±1

T± ω(v) = ω(v ± 1). (6.37)

Then the planar loop equation is written as

Lω(v) = V ′(−z), (6.38)
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where L is given by7

L = T + T−1 − 2. (6.40)

On the right hand side of (6.38), we have also used T · z = −z and V ′(v + 1) = V ′(−z).

For a rational function f(z) of z, the action of L reads

L f(z) = 2f(−z)− 2f(z). (6.41)

However, we should be careful about Ã(z) which transforms inhomogeneously under T±

T± Ã(z) = Ã(z)± π, (6.42)

due to the linear term πv in (6.22). Then we find

L Ã(z)2 =
(
Ã(z) + π

)2
+
(
Ã(z)− π

)2 − 2Ã(z)2 = 2π2. (6.43)

Now we are ready to prove (6.15). It is natural to decompose ω(z) in (6.18) into three

parts

ω(z) = ω1(z) + ω2(z) + ω3(z), (6.44)

where

ω1(z) =
Ã(z)2

2π2

z2 + 1

z2 − 1
=
Ã(z)2

4π2

[
V ′(z) + V ′(−z)

]
,

ω2(z) = −1

4
V ′(−z),

ω3(z) = λ̂
z2 − 1

z2 + 1
.

(6.45)

One can easily show that the action of L on ω1,2,3 is given by

Lω1(z) =
1

2

[
V ′(z) + V ′(−z)

]
,

Lω2(z) = −1

2

[
V ′(z)− V ′(−z)

]
,

Lω3(z) = 0.

(6.46)

where we have used (6.43) in the first line. Adding these three equations (6.46), finally we

arrive at the desired loop equation (6.38).

7For the O(n) model with n = −2 cosπν, we have the operator

L = T + T−1 − n = T−1(T + eπiν)(T + e−πiν). (6.39)

Then it is natural to decompose the resolvent into the eigenfunctions G±(v) with eigenvalues T = −e±iν .

However, for n = 2 L has a double root at T = 1 which is a somewhat degenerate case. This is similar to

solving the linear differential equation (d/dx− 1)2y = 0: it is well known that one of the solution y = xex

is not an eigenfunction of d
dx

. One can think of the function Ã(z) as an analogue of this solution y = xex.

– 21 –



J
H
E
P
1
1
(
2
0
1
6
)
1
5
6

6.2 Planar free energy

In [14], the second derivative of the planar free energy is found explicitly as

∂2F0

∂λ2
= −2πK

K ′
= −2πi

τ
. (6.47)

From (6.34), (6.36) and (6.47), we find that the derivative of λ and ∂F0
∂λ with respect to t

have a simple form

∂λ

∂t
=

t

4π2
=

(1 + a2)K ′

4π2
,

∂2F0

∂t∂λ
= −(1 + a2)K

2π
.

(6.48)

Note that the role of A-period and B-period is opposite from the standard definition.

Using this relation (6.48), one can find the planar free energy F0 as a function of ’t Hooft

coupling λ. In particular, in the small λ or large λ regime F0 can be explicitly found as a

power series.

Let us first consider the large λ behavior of F0. In the large λ limit the size of the

cut [−T, T ] in the original variable x becomes large, which implies a = e−T → 0. More

precisely, we find that the large t expansion of a is given by

a = 2e−
t
2

[
1 + 2te−t + 2(5t2 − 3t− 1)e−2t +

4t

3
(49t2 − 63t− 3)e−3t +O(e−4t)

]
. (6.49)

Note that t and the shifted ’t Hooft coupling λ̂ = λ + 1/8 are related by (6.34) and the

exponential correction e−t in (6.49) is identified with the worldsheet instanton factor (2.19)

e−t = e−2π
√

2λ̂. (6.50)

Then, integrating the relation (6.48) the planar free energy becomes

−F0 =
t3

48π2
− a0 +

t+ 1

4π2
e−t +

8t2 + 14t+ 7

32π2
e−2t +

18t3 + 27t2 + 21t+ 7

27π2
e−3t +O(e−4t),

(6.51)

where a0 is a constant coming from the constant term A in the perturbative part (2.10) of

grand potential [15]

a0 = lim
Nf→∞

A

N2
f

= −ζ(3)

8π2
+

1

8
log 2. (6.52)

On the other hand, in the small λ limit the size of cut [−T, T ] in the x-variable becomes

small, which implies a→ 1. From (6.34) and (6.36), we find that the small λ expansion of

log a is given by

log a = −4
√
λ

(
1− λ

6
+

43λ2

40
− 621λ3

112
+

35027λ4

1152
+O(λ5)

)
, (6.53)

and the free energy becomes

−F0 = −λ
2

2
log λ+

3λ2

4
+
λ3

2
− 19λ4

24
+

9λ5

4
− 991λ6

120
+O(λ7). (6.54)
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7 ’t Hooft limit of Wilson loops

In this section, we consider the ’t Hooft expansion of normalized Wilson loop VEV

Wm(N,Nf )

Z(N,Nf )
=

∞∑
g=0

N1−2g
f W (g)

m . (7.1)

Note that our normalization of VEV is different from [14] (see footnote 2.2 for our defini-

tion). As we will see below, we find a perfect agreement between the matrix model result

and the Fermi gas result for the genus-zero part W
(g=0)
m of Wilson loop in (7.1).

7.1 Results of matrix model

We can read off the genus-zero VEV of Wilson loops from the small z expansion of the

resolvent (6.18)8

ω(z) = −λ− 2

∞∑
m=1

W (g=0)
m zm. (7.3)

To write down the small z expansion of ω(z) in (6.18), let us first consider the small u

expansion of Ã(z) in (6.19)

Ã(z) =
π

2
+ Iu+ t

[
−2

3
a2
(
a2 + 1

)
u3 +

2

15
a2
(
a2 + 1

) (
a4 + 6a2 + 1

)
u5 +O(u7)

]
, (7.4)

where t is defined in (6.36) and the factor I is given by

I =
π

2K
+ t

(
1− E

(1 + a2)K

)
. (7.5)

Here E = E(k2) denotes the elliptic integral of the second kind. By inverting the relation

z = a sn(u) in (6.6), we can write down the small z expansion of u

u =
z

a
+

(
a4 + 1

)
z3

6a3
+

(
3a8 + 2a4 + 3

)
z5

40a5
+O(z7). (7.6)

Combining (7.4) and (7.6), we find that Ã(z) is expanded as

Ã(z) =
π

2
+
I

a
z +

[(
a4 + 1

)
I

6a3
−

2
(
a2 + 1

)
t

3a

]
z3

+

[(
3a8 + 2a4 + 3

)
I

40a5
−
(
a2 + 1

) (
a4 − 4a2 + 1

)
t

5a3

]
z5 +O(z7).

(7.7)

8Using the symmetry ω(z−1) = −ω(z), one can read off the Wilson loop VEVs from the large z expansion

of resolvent as well

ω(z) = λ+ 2

∞∑
m=1

W
(g=0)
m

zm
. (7.2)
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We notice that the coefficients in this expansion (7.7) are some linear combinations of I

and t. Plugging this expansion (7.7) into (6.18) and read off the coefficient of zm in (7.3),

we can find the planar VEV of winding Wilson loops W
(g=0)
m up to arbitrary winding

number m, in principle. For instance, the planar VEV of Wilson loop in the fundamental

representation is given by

W
(g=0)
� = −1

4
+

I

4πa
. (7.8)

This agrees with the result of [14]. For the higher winding numbers we find

W
(g=0)
2 = −λ− 1

4
+

I2

4π2a2
,

W
(g=0)
3 = −1

4
− t(1 + a2)

6πa
+

(1 + 12a2 + a4)I

24πa3
,

W
(g=0)
4 = λ−

(
a2 + 1

)
tI

3π2a2
+

(
a4 + 6a2 + 1

)
I2

12π2a4
,

W
(g=0)
5 = −1

4
−

(a2 + 1)
(
3a4 + 8a2 + 3

)
t

60πa3
+

(
9a8 + 40a6 + 246a4 + 40a2 + 9

)
I

480πa5
,

W
(g=0)
6 = −λ− 1

4
+

(
a2 + 1

)2
t2

9π2a2
−
(
a2 + 1

) (
7a4 + 12a2 + 7

)
tI

45π2a4

+

(
8a8 + 30a6 + 97a4 + 30a2 + 8

)
I2

180π2a6
.

(7.9)

We observe that the planar VEV of winding Wilson loop is a linear polynomial of I for odd

m, and quadratic in I for even m. This structure originates from the linear dependence of

Ã(z) on I in (7.7).

Small λ expansion. From the small λ expansion of log a in (6.53), one can easily find

the small λ expansion of Wilson loop VEVs in (7.9). For general winding number m, we

find that the Wilson loop VEVs are expanded as

W (g=0)
m = λ+ 2m2λ2 +

4

3
m2(m2 − 1)λ3 +

2

9
m2(2m4 − 7m2 + 23)λ4

+
4

15
m2(m− 2)

(
7m4 − 47m3 + 151m2 − 213m+ 162

)
λ5 +O(λ6).

(7.10)

For instance, the small λ expansion of the fundamental representation is given by

W
(g=0)
� = λ+ 2λ2 + 4λ4 − 16λ5 +O(λ6), (7.11)

which reproduces the result in [14].9 We have checked that (7.10) correctly reproduces the

expansion of W
(g=0)
m for m = 1, · · · , 6 in (7.9). We conjecture that (7.10) holds for any

winding number m. It would be interesting to reproduce this expansion (7.10) from the

perturbative calculation of matrix model along the lines of [14].

9Note that our normalization is different from [14] by a factor of λ.
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Large t expansion. One can also study the large ’t Hooft coupling, or large t behavior

of Wilson loop VEVs (7.9). This large t regime is directly related to the Fermi gas result,

which we will consider in the next subsection.

The large t behavior of W
(g=0)
m can be found from the small a expansion of I in (7.5)

I = 1 + ta2 − 1 + 2t

4
a4 +

t

2
a6 − 5 + 28t

64
a8 +O(a10), (7.12)

together with the large t expansion of a in (6.49). For the first three winding numbers

m = 1, 2, 3, the large t expansion of W
(g=0)
m is given by

W
(g=0)
� = − 1

4
+
e

1
2
t

8π

[
1 + 2te−t + 2

(
t2 − t− 1

)
e−2t +

4t(5t2 − 9t− 3)

3
e−3t +O(e−4t)

]
,

W
(g=0)
2 = − λ− 1

4
+

et

16π2

[
1 + 4te−t + 4(2t2 − t− 1)e−2t +O(e−3t)

]
,

W
(g=0)
3 = − 1

4
+

e
3t
2

192π

[
1− 6(3t− 8)e−t + 6(3t2 − 17t+ 3)e−2t +O(e−3t)

]
. (7.13)

7.2 Comparison with Fermi gas

Let us compare the matrix model results (7.13) with the Fermi gas results in section 4. In

the grand canonical picture, the ’t Hooft limit is given by

Nf , µ→∞,
µ

Nf
: fixed (7.14)

As discussed in [14], at the level of genus-zero the Wilson loop VEV in the canonical

picture can be obtained by plugging the saddle point value µ∗ of the chemical potential

into the grand canonical VEV Wm(µ∗, Nf ) of Wilson loop. However, to study the instanton

corrections we have to include the exponentially small corrections to the saddle point value

µ∗ of the chemical potential, beyond the perturbative expression in (2.16). This is achieved

by identifying the saddle point value µ∗ with the derivative of the planar free energy F0 [14]

µ∗
Nf

= −∂F0

∂λ
=
t

4
− e−t − 1

2
(4t+ 3)e−2t − 4

3

(
6t2 + 3t+ 1

)
e−3t +O(e−4t). (7.15)

Plugging this expansion of µ∗ (7.15) into the grand canonical VEV Ŵm(µ = µ∗, Nf ) in

section 4 (eqs.(4.1), (4.5), (4.9) for m = 1, 2, 3, respectively), we have confirmed that the

Fermi gas results perfectly match the matrix model results (7.13) in the planar limit.

Let us take a closer look at the correspondence between the Fermi gas results and the

matrix model results. The perturbative part (3.2) in the Fermi gas picture corresponds to

the term Iγ/am in the matrix model result (7.9), where γ = 1, 2 for odd m and even m,

respectively. We find that the coefficient of this term in W
(g=0)
m is given by

2mΓ
(
m
2

)2
8π2Γ(m+ 1)

Iγ

am
. (7.16)
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In the large t limit this term (7.16) becomes

Γ
(
m
2

)2
8π2Γ(m+ 1)

e
mt
2 . (7.17)

One can see that this matrix model result (7.17) is correctly reproduced from the pertur-

bative part in the Fermi gas picture (3.2) in the ’t Hooft limit (7.14)

lim
Nf→∞

1

Nf
cm(Nf )e

2mµ
Nf =

Γ
(
m
2

)2
8π2Γ(m+ 1)

e
2mµ
Nf , (7.18)

where µ should be identified with the saddle point value µ∗ in (7.15).

Also, we observe that the matrix model result W
(g=0)
m (7.13) contains several pieces

with different scalings in the large t limit, which naturally corresponds to the similar

decomposition in the Fermi gas picture. For instance, the constant −1/4 in the fundamental

representation (7.8) corresponds to the first term in the decomposition (4.3) observed in the

Fermi gas picture. Similarly, the first two terms in the m = 2 VEV in (7.13) corresponds

to the genus-zero part of the first term in (4.7)

−N + 2B = Nf

(
−λ− 1

4

)
+

1

Nf
. (7.19)

For m = 3, the constant term −1/4 in W
(g=0)
3 (7.8) agrees with the Fermi gas result (4.10),

which further suggests the following decomposition of planar VEV

W
(g=0)
3 = −1

4
+ 3W̃

(g=0)
1 + W̃

(g=0)
3 (7.20)

with

W̃
(g=0)
3 =

e
3t
2

192π

[
1− 6(3t+ 4)e−t + 6(3t2 − 17t+ 3)e−2t +O(e−3t)

]
. (7.21)

We should stress that our Fermi gas results in section 4 have all-order information

of the genus expansion. In other words, one can predict the higher genus amplitudes

W
(g)
m from the Fermi gas results. For instance, from (4.1) the genus-one amplitude of the

fundamental representation is given by

W
(g=1)
� = 4πe

1
2
t

[
1

8t2
− 3

32t
+

1

48
+

(
3

8t
− 7

48

)
e−t+

(
− 1

4t2
− 39

16t
+

49

16
− 31t

48
− t2

24

)
e−2t

+

(
29

4t
− 287

8
+

185t

8
− 29t2

24
− 17t3

18

)
e−3t +O(e−4t)

]
. (7.22)

It would be interesting to see if this is reproduced from the matrix model calculation at

genus-one.
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8 Conclusions

In this paper, we have studied the Wilson loops in the Nf matrix model from the Fermi

gas approach. We have determined the first few worldsheet instanton corrections to the

winding Wilson loops for the winding number m = 1, 2, 3, and found that our Fermi gas

result is consistent with the planar limit of matrix model result. We find that the Wilson

loop VEVs can be decomposed into several pieces with different scaling behavior in the

large N limit. Also, we conjecture that the grand canonical VEVs of winding Wilson

loops do not receive “pure” membrane instanton corrections except for the bound state

contributions. This is reminiscent of the instanton corrections to the 1/2 BPS Wilson

loops in the ABJM theory [8, 10].

There are many interesting open problems. To study the partition functions and

Wilson loops in the Nf matrix model further, it is very important to understand the

structure of bound states. In the case of ABJM theory, the effect of bound states can be

removed by introducing the “effective” chemical potential µeff [38], which in turn is related

to the quantum period of the quantized mirror curve of local P1 × P1 [39, 40]. It would be

interesting to see if one can define a similar “effective” chemical potential in the Nf matrix

model as well.

Our study was limited to the single trace winding Wilson loops. It would be important

to develop a technique to analyze the Wilson loops in general representations and study

their instanton corrections. In particular, it would be interesting to consider the Wilson

loops in representations with large dimensions, which are expected to be holographically

dual to certain configurations of D-branes. Also, it would be interesting to study implica-

tions of our findings to the mirror symmetry between Wilson loops and vortex loops in 3d

N = 4 theories [22].
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A Exact values of Wilson loop VEVs

In this appendix, we list some exact values of Wilson loop VEVs for winding number

m = 1, 2, 3.

A.1 Fundamental representation

Below we list the exact values of W�(N,Nf ).

For Nf = 4 we find

W�(1, 4) =
1

12π
,

W�(2, 4) =
32− 3π2

1536π2
,
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W�(3, 4) =
32π2 − 315

161280π3
, (A.1)

W�(4, 4) =
−16800 + 11029π2 − 945π4

61931520π4
.

For Nf = 6 we find

W�(1, 6) =
1

80π
,

W�(2, 6) =
448− 45π2

122880π2
,

W�(3, 6) =
2283π2 − 22528

389283840π3
,

W�(4, 6) =
−93040640 + 50977776π2 − 4209975π4

5231974809600π4
.

(A.2)

For Nf = 8 we find

W�(1, 8) =
1

420π
,

W�(2, 8) =
77824− 7875π2

103219200π2
,

W�(3, 8) =
7419π2 − 73216

141699317760π3
,

W�(4, 8) =
−21615968518144 + 10372082726400π2 − 829002549375π4

18282612774666240000π4
.

(A.3)

A.2 Winding number m = 2

Here we list the exact values of W2(N,Nf ).

For Nf = 6 we find

W2(1, 6) =
1

20π
,

W2(2, 6) = −
7
(
45π2 − 448

)
122880π2

,

W2(3, 6) =
1623π2 − 16016

18923520π3
,

W2(4, 6) =
−22392832 + 18581400π2 − 1652805π4

174399160320π4
.

(A.4)

For Nf = 8 we find

W2(1, 8) =
1

168π
,

W2(2, 8) =
699904− 70875π2

103219200π2
,

W2(3, 8) =
812775π2 − 8021728

147603456000π3
,

W2(4, 8) =
−97971039502336 + 70939141382400π2 − 6181868818125π4

9141306387333120000π4
.

(A.5)
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A.3 Winding number m = 3

This is the list of the exact values of W3(N,Nf = 8)

W3(1, 8) =
1

28π
,

W3(2, 8) =
6075π2 − 59392

14745600π2
,

W3(3, 8) =
2760375π2 − 27243008

193226342400π3
,

W3(4, 8) =
15900762701824− 5780821056000π2 + 422482685625π4

2031401419407360000π4
.

(A.6)

B A curious observation for Nf = 4

We find a curious relation between the VEV of fundamental Wilson loop W̃�(N,Nf ) in (4.3)

withNf = 4 and the partition function Zp,q(N, k) of a certain circular quiver Chern-Simons-

matter theory with the gauge U(N)k×U(N)p−1
0 ×U(N)−k×U(N)q−1

0 , where the subscripts

denote the Chern-Simons level. We find that Zp,q(N, k) with (p, q, k) = (1, 2, 2) is exactly

equal to W̃�(N,Nf = 4). For instance, the first three terms are

W̃�(1, 4) =
1

8π
, W̃�(2, 4) =

π2 − 8

1024π2
, W̃�(3, 4) =

61π2 − 600

368640π3
, (B.1)

which agree with Z1,2(N, 2) computed in [31, 41]. Furthermore, by looking at the non-

perturbative part of grand potential of Nf = 4 in [15] and (p, q, k) = (1, 2, 2) model

in [31, 41]

J(µ,Nf = 4) = −2(µ+ 1)

π
e−µ +

[
−10µ2 + 7µ+ 7/2

π2
+ 1

]
e−2µ − 88µ+ 52/3

3π
e−3µ,

J1,2(µ, k = 2) =
2(µ+ 1)

π
e−µ +

[
−10µ2 + 7µ+ 7/2

π2
+ 1

]
e−2µ +

88µ+ 52/3

3π
e−3µ,

(B.2)

we find a curious similarity with the grand potential of local F2 with mass parameter

mF2 = 0 in the maximal supersymmetric case ~ = 2π [42]

JF2(µ,mF2 = 0) = −2µ+ 1

2π
e−2µ +

[
−10µ2 + 7/2µ+ 7/8

π2
+

7

4

]
e−4µ − 44µ+ 13/3

3π
e−6µ.

(B.3)

We observe that

J(µ,Nf = 4) ∼ 4JF2(µ/2,mF2 = 0), (B.4)

except for the difference of the coefficient of e−2µ without the 1/π2 factor: it is 1 for the

Nf = 4 model while 7/4 for the local F2. It would be interesting to see if there is a

connection between the (p, q) = (1, 2) model and the topological string on local F2.
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