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1 Introduction

The recent discovery of the Higgs boson at the LHC and the close proximity of its proper-

ties to the Higgs boson of the Standard Model, strongly suggest that electroweak symmetry

breaking is triggered by an elementary scalar field. However, since the Higgs sector of the

Standard Model is not very compelling and since there is a large number of theoretically

appealing alternatives, experimental exploration of the Higgs boson properties has a very

high priority for elementary particle physics. It is expected that the results of this research

program will allow us to sharply contrast the observed properties of the Higgs boson with

the Standard Model expectations. Because the Standard Model is a renormalizable theory,

we can predict the expected properties of the Higgs boson with a precision that is only lim-

ited by our ability to perform the required computations and by the lack of understanding of

non-perturbative phenomena that affect the outcomes of hadron collisions. The latter issue

will probably prevent us from doing sub-percent precision physics for the Higgs couplings,

but it is irrelevant for studying the proximity of the Higgs couplings to their Standard

Model values with a few percent precision. Reaching this, the few percent, precision in the-

oretical predictions for Higgs physics is non-trivial; it requires many ingredients including

improved perturbative predictions for major Higgs boson production processes. Providing

such predictions is the main motivation behind the computation reported in this paper.

The major Higgs boson production mechanism at the LHC is the gluon fusion gg → H.

The interaction of the Higgs boson with gluons is mediated by quarks; since the Higgs

Yukawa couplings are proportional to quark masses, the top quark provides the dominant

contribution to the ggH interaction vertex. Significant theoretical advances in describing
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this contribution enabled the prediction of the strength of the ggH interaction in the limit

of a very heavy top quark mt → ∞ with a residual uncertainty of about 4% [1]. At this

level of precision, many other effects have to be taken into account; a detailed discussion

can be found in ref. [1]. One such effect, that we focus on in this paper, is the modification

of the gg → H interaction strength by loops of bottom quarks.1

It may sound surprising that we need to care about the bottom quark loop contribution.

Indeed, simple power counting indicates that the bottom quark contribution is suppressed

relative to the top quark contribution by m2
b/m

2
H ∼ 10−3. However, a more careful analysis

of the bottom quark contributions reveals that it is enhanced by two powers of a logarithm

ln(m2
H/m2

b) ∼ 6.5. As the result, the relative suppression of the bottom quark loop relative

to the top quark loop becomes much weaker, m2
b/m

2
H ln2(m2

H/m2
b) ∼ 10−1, making a

detailed understanding of the bottom quark contribution quite relevant at the few-percent

precision level. Since the NLO QCD corrections to gg → H are known to be significant,

it is gratifying that these corrections are available for an arbitrary relation between the

quark mass and the mass of the Higgs boson [2, 3].

The situation becomes more complex if we consider less inclusive quantities, for ex-

ample the transverse momentum distribution of the Higgs boson or the cross section for

the production of the Higgs boson in association with a jet. In this case, the double

logarithmic enhancement becomes p⊥-dependent, i.e. some of the large ln(m2
H/m2

b) loga-

rithms turn into ln(p2⊥/m
2
b). These p⊥-dependent logarithms represent a serious problem

for p⊥-resummations since their origin and their structure in high orders of QCD are not

understood.2 In the absence of a clear understanding of how to resum these terms, the

extent to which these p⊥-dependent logarithms affect the Higgs transverse momentum dis-

tribution was studied empirically [6–9]. The results of these studies indicated a few percent

differences in predicted transverse momentum distribution of the Higgs boson, depending

on how these non-canonical log(p⊥/mb) terms are treated in the resummed calculations.

It is interesting to put these studies on a more solid ground. We believe that a good

starting point is the computation of the scattering amplitude for gg → Hg process in the

approximation where the mass of the quark that mediates the ggH interaction is treated

as the smallest kinematic parameter in the problem. Indeed, such a computation will give

us a solid perturbative result that can be used directly to improve the prediction for the

transverse momentum distribution of the Higgs boson in the region mb ≪ p⊥ and, at the

same time, an interesting data point for attempting the resummation of the Sudakov-like

logarithms described above. The goal of this paper is to compute the two-loop gg → Hg

amplitude in the approximation mb → 0.

We remark that the computation of the gg → Hg scattering amplitude for a nearly

massless internal quark is an interesting theoretical challenge. Indeed, in contrast to the

limit of a large internal quark mass, there is no algorithmic procedure to expand the Feyn-

man diagrams that contribute to gg → Hg around the vanishing quark mass. It is possible

1Our computation applies to any quark whose mass is small compared to the mass of the Higgs boson;

however, for clarity, we will refer to a light quark in the loop coupled to the Higgs boson as the bottom quark.
2For a recent discussion of how such logarithm arise in the abelian limit and in the high-energy limit,

see refs. [4, 5], respectively.
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to get around this problem by delaying the expansion in the small quark mass until it be-

comes clear how it can be performed. If one thinks about this problem keeping in mind the

established technology for higher-order computations that includes i) generation of Feyn-

man diagrams; ii) projection of scattering amplitude on Lorentz-invariant form factors;

iii) reduction of contributing Feynman integrals to master integrals and iv) derivation and

solution of the differential equations for master integrals, it is easy to realize that the safest

point to start the expansion in the small quark mass is when the differential equations for

the master integrals are about to be solved. Indeed, since the differential equations con-

tain all the information about the singular behaviour of the master integrals in the limit

of the vanishing quark mass, it should be possible to solve these equations by expanding

the solutions around this singular point without any assumptions about the behavior of

the integrals in the limit mb → 0. Proceeding along these lines, we can find the master

integrals by consistently neglecting all the terms that are power-suppressed in the mb → 0

limit and, at the same time, keeping all the non-analytic O(logmb) terms. This procedure

was recently discussed in ref. [10] in the context of the inclusive Higgs production in gluon

fusion. In this paper we describe how to generalize it to the case of gg → Hg.3

However, we would like to stress that performing the expansion at the level of the

differential equations is not optimal since the derivation of the differential equations requires

the reduction to master integrals for an arbitrary relation between the quark mass and other

kinematic parameters. As we explain in section 3, these reductions are so demanding in

terms of computing resources, that their successful completion should not be taken for

granted. It is clear that, for our purposes, the full reduction is an overkill since we are

interested in the limit mb → 0; nevertheless, it is non-trivial to take this limit consistently

at the time of the reduction. It will be important to develop a computational method that

will allow us to do that and we leave this interesting problem for the future.

The paper is organized as follows. In section 2 we introduce our notation, describe

the parametrization of the scattering amplitude in terms of invariant form factors and

explain how to apply the renormalization procedure to get the finite result. In section 3 we

describe how the invariant form factors are obtained from Feynman diagrams and how the

contributing integrals are expressed in terms of master integrals. The master integrals are

computed by solving the differential equations, as we discuss in section 4. By solving the

differential equations, we determine the integrals up to the integration constants. Some

of these constants can be obtained by imposing regularity conditions on the solutions, but

some can not and have to be computed separately. We discuss a few examples in section 5.

We present results for the helicity amplitudes in section 6, discuss analytic continuation in

section 7 and conclude in section 8.

2 The scattering amplitude

We consider the process

H(p4) → g(p1) + g(p2) + g(p3) (2.1)

3Recently, the planar master integrals with full mass dependence have been computed in [11].
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mediated by a bottom quark loop in a theory that includes gluons, Nf massless quarks

and the bottom quark. The masses of the bottom quark and the Higgs boson are denoted

by mb and mh, respectively. We define the Mandelstam variables

s = (p1 + p2)
2 , t = (p1 + p3)

2 , u = (p2 + p3)
2 , (2.2)

subject to the constraint s + t + u = m2
h, and note that for the process eq. (2.1) all

Mandelstam invariants are positive s > 0, t > 0 and u > 0. Following ref. [12], we define

the dimensionless variables

x =
s

m2
h

, y =
t

m2
h

, z =
u

m2
h

, κ = −m2
b

m2
h

. (2.3)

The scattering amplitude is a function of x, y, z, κ with an overall multiplicative factor

(−m2
h)

−ǫ per loop.

We would like to compute the scattering amplitude in the Euclidean kinematics. This

is achieved by taking m2
h < 0, s < 0, u < 0, t < 0 and keeping m2

b > 0. In terms of x, y, z,

this implies that for

0 < y < 1, 0 < z < 1 , x = 1− y − z > 0, κ > 0, m2
h < 0 , (2.4)

the scattering amplitude is explicitly real.

We denote the scattering amplitude for the process (2.1) as

A (pa11 , pa22 , pa33 ) = fa1a2a3 ǫµ1 ǫ
ν
2 ǫ

ρ
3Aµνρ(s, t, u,mb) , (2.5)

where fa1a2a3 are the SU(3) structure constants and ǫj(aj) is the polarization vector (color

label) of a gluon with momentum pj , j = 1, 2, 3. Using Lorentz symmetry and gauge

invariance, one can show that the scattering amplitude A is given by a linear combination

of just four form factors. In particular, using the transversality conditions ǫi · pi = 0,

i = 1, 2, 3, and imposing a cyclic gauge fixing condition

ǫ1 · p2 = ǫ2 · p3 = ǫ3 · p1 = 0, (2.6)

we can write the amplitude tensor in the following way

Aµνρ(s, t, u,mb) = F1 g
µν pρ2 + F2 g

µρ pν1 + F3 g
νρ pµ3 + F4 p

µ
3p

ν
1p

ρ
2 . (2.7)

The four form factors F1,...,4(s, t, u,mb) are Lorentz scalars; they admit a perturbative

expansion in the QCD coupling constant. The expansion of the unrenormalized form

factor reads

F un
i (s, t, u,m2

b) =

√

α3
0

π

[

F
(1),un
i +

(α0

2π

)

F
(2),un
i +O(α2

0)
]

, i = 1, . . . 4, (2.8)

where α0 is the bare QCD coupling constant.

To perform the ultraviolet (UV) renormalization of the form factors we proceed as

follows. First, we express the bare coupling constant and the bare bottom quark mass
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through their renormalized values. Note that this also applies to the renormalization of the

Yukawa coupling since gY = mb/v, where v is the vacuum expectation value of the Higgs

field. Second, each of the form factors is multiplied by the gluon field renormalization

constant raised to an appropriate power. This is sufficient to perform the ultraviolet

renormalization.

In practice, we subtract the contribution of the massless quarks to the bare coupling

constant in the MS scheme and the contribution of the b-quark to the bare coupling constant

at zero momentum transfer. This implies the following relation between the bare coupling

constant α0 and the renormalized one at the scale µR, αs = αs(µR)

α0 µ
2ǫ
0 Sǫ = αs µ

2ǫ
R

[

1− 1

ǫ
(β0 + δw)

(αs

2π

)

+O(α2
s)

]

, (2.9)

where Sǫ = (4π)ǫ e−ǫ γE , γE = 0.5772 . . ., β0 = 11/6 CA − 2/3TR Nf , CA = Nc is the

number of colors, TR = 1/2, Nf is the number of massless quark species employed in the

computation and δw = −2/3 TR(m
2
b/µ

2
R)

−ǫ.

The quark mass renormalization is performed by replacing the bare quark mass with

the on-shell renormalized quark mass. Technically, this amounts to making the following

substitution in the form factors

mb → mb

[

1 +
(αs

2π

)

δm +O(α2
s)
]

, (2.10)

where

δm = CF

(
m2

b

µ2
R

)−ǫ(

− 3

2ǫ
− 2 +O(ǫ)

)

, (2.11)

and expanding them to the appropriate order in the strong coupling constant. We find

F
(1)
j (mb) → F

(1)
j (mb) +

(αs

2π

)

mb δm
dF

(1)
j (mb)

dmb
+O(α2

s) .

Finally, the gluon wave function renormalization is performed by multiplying every form

factor by

Z
3/2
A =

(

1 +
(αs

2π

) δw
ǫ

+O(α2
s)

)3/2

= 1 +
3

2

(αs

2π

) δw
ǫ

+O(α2
s) ,

with δw defined after eq. (2.9), and expanding in αs. With these notations, the UV-

renormalized form factors become

FUV
j (s, t, u,mb) =

√

α3
s

π S3
ǫ

[

F
(1),UV
j +

(αs

2π

)

F
(2),UV
j +O(α3

s)
]

, (2.12)

with

F
(1),UV
j = F

(1),un
j ,

F
(2),UV
j = S−1

ǫ F
(2),un
j − 3β0

2 ǫ
F

(1),un
j + mb

dF
(1),un
j

dmb
δm . (2.13)
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The UV-renormalized form factors still contain poles in ǫ that are of soft and collinear

origin. For a generic NNLO QCD scattering amplitude, it was shown in ref. [13] that all

such poles can be written in terms of tree- and one-loop amplitudes of a given process.

Although we perform a two-loop computation, the one-loop amplitude for gg → Hg is the

leading term in the perturbative expansion; for this reason, it is sufficient to use the NLO

QCD results of ref. [13], to isolate the infra-red and collinear poles. We therefore write

F
(1),fin
j = F

(1),UV
j , F

(2),fin
j = F

(2),UV
j − I1(ǫ)F

(1),UV
j , (2.14)

where in the case of three external gluons the I1(ǫ) operator reads

I1(ǫ) = − CAe
ǫγ

2Γ(1− ǫ)

(
1

ǫ2
+

β0
CA

1

ǫ

)((

− s

µ2
R

)−ǫ

+

(

− t

µ2
R

)−ǫ

+

(

− u

µ2
R

)−ǫ
)

. (2.15)

We perform the UV renormalization at the scale µ2
R = m2

h. We verified explicitly that

the IR poles in the form factors are removed by the subtraction in eq. (2.14).

3 Calculation of the form factors

The direct computation of the decay amplitude A, using the standard methods for multi-

loop computations, is difficult because the amplitude depends on the polarization vectors

of the external gluons. We can get around this problem by computing the form factors

instead. To this end, we design projection operators to extract contributions of different

Feynman diagrams to the four form factors. We define four projection operators Pµνρ
j by

requiring that they satisfy the following equation

∑

pol

Pµνρ
j (ǫµ1 )

∗ǫµ1
1 (ǫν2)

∗ǫν12 (ǫρ3)
∗ǫρ13 Aµ1ν1ρ1(s, t, u,mb) = Fj(s, t, u,mb) , (3.1)

where, for consistency with eq. (2.6), sums over polarizations of external gluons are taken

to be

∑

pol

(ǫµ1 (p1))
∗
ǫν1(p1) = −gµν +

pµ1p
ν
2 + pν1p

µ
2

p1 · p2
, (3.2)

∑

pol

(ǫµ2 (p2))
∗
ǫν2(p2) = −gµν +

pµ2p
ν
3 + pν2p

µ
3

p2 · p3
, (3.3)

∑

pol

(ǫµ3 (p3))
∗
ǫν3(p3) = −gµν +

pµ1p
ν
3 + pν1p

µ
3

p1 · p3
. (3.4)

We stress at this point that all Lorenz indices in eq. (3.1) have to be understood as d-

dimensional. The explicit form of the projection operators can be found by making an

Ansatz in terms of the same linearly independent tensors as in eq. (2.7)

Pµνρ
j =

1

d− 3

[

c
(j)
1 gµν pρ2 + c

(j)
2 gµρ pν1 + c

(j)
3 gνρ pµ3 + c

(j)
4 pµ3p

ν
1p

ρ
2

]

, (3.5)
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Figure 1. Examples of two-loop Feynman diagrams that contribute to the process gg → Hg.

where j ∈ {1, 2, 3, 4}. The scalar functions c
(j)
i are unknown a priori; they are found by

requiring that eq. (3.1) is satisfied. We obtain

c
(1)
1 =

t

s u
, c

(1)
2 = 0 , c

(1)
3 = 0 , c

(1)
4 = − 1

s u
,

c
(2)
1 = 0 , c

(2)
2 =

u

s t
, c

(2)
3 = 0 , c

(2)
4 = − 1

s t
,

c
(3)
1 = 0 , c

(3)
2 = 0 , c

(3)
3 =

s

t u
, c

(3)
4 = − 1

t u
,

c
(4)
1 = − 1

s u
, c

(4)
2 = − 1

s t
, c

(4)
3 = − 1

t u
, c

(4)
4 =

d

s t u
.

(3.6)

With these results at hand, we can compute each of the form factors separately. Since

the form factors are independent of the external polarization vectors, all the standard tech-

niques employed for multi-loop computations can be applied. In practice, we proceed as

follows. We generate the relevant one- and two-loop Feynman diagrams with QGRAF [14].

A few examples of the two-loop Feynman diagrams that contribute to the gg → Hg ampli-

tude are shown in figure 1. The projection operators are applied diagram by diagram and

the polarization sums are computed following eqs. (3.2), (3.3), (3.4). Once this step is com-

pleted, each contributing diagram is written in terms of integrals that depend on the scalar

products of the loop momenta between themselves and the scalar products of the loop mo-

menta with the external momenta. We can assign all Feynman integrals that contribute to

the scattering amplitude to three integral families, two planar and one non-planar. These

integral families are given by

Itop(a1, a2, . . . , a8, a9) =
∫

D
dkDdl

[1]a1 [2]a2 [3]a3 [4]a4 [5]a5 [6]a6 [7]a7 [8]a8 [9]a9
, (3.7)

where top ∈ {PL1,PL2,NPL} is the topology label and the propagators [1], [2], . . . , [9] for

each topology are shown in table 1. The integration measure is defined as

D
dk = (−m2

h)
(4−d)/2 (4π)d/2

iΓ(1 + ǫ)

∫
ddk

(2π)d
. (3.8)
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Prop. Topology PL1 Topology PL2 Topology NPL

[1] k2 k2 −m2
b k2 −m2

b

[2] (k − p1)
2 (k − p1)

2 −m2
b (k + p1)

2 −m2
b

[3] (k − p1 − p2)
2 (k − p1 − p2)

2 −m2
b (k − p2 − p3)

2 −m2
b

[4] (k − p1 − p2 − p3)
2 (k − p1 − p2 − p3)

2 −m2
b l2 −m2

b

[5] l2 −m2
b l2 −m2

b (l + p1)
2 −m2

b

[6] (l − p1)
2 −m2

b (l − p1)
2 −m2

b (l − p3)
2 −m2

b

[7] (l − p1 − p2)
2 −m2

b (l − p1 − p2)
2 −m2

b (k − l)2

[8] (l − p1 − p2 − p3)
2 −m2

b (l − p1 − p2 − p3)
2 −m2

b (k − l − p2)
2

[9] (k − l)2 −m2
b (k − l)2 (k − l − p2 − p3)

2

Table 1. Feynman propagators of the three integral families.

We note that the loop momenta shifts required to map contributing Feynman diagrams

on to the integral families are obtained using the shift finder implemented in Reduze2 [15].

All algebraic manipulations needed at different stages of the computation are performed

using FORM [16]. Once the amplitude is written in terms of scalar integrals, we simplify

them using all possible loop momenta shifts with a unit Jacobian; this can also be done

using the momentum shift finder of Reduze2. When the contributions of all diagrams

to the form factors are summed up, significant simplifications occur; for example, only

integrals with up to three scalar products are left, although some individual diagrams

receive contributions from integrals with up to four scalar products.

Having determined all scalar integrals that contribute to the amplitude, we need to

reduce them to master integrals. The reduction procedure relies on a systematic application

of the so-called integration by parts identities (IBPs) [17, 18] to the integrals that belong to

the three topologies defined in table 1. This procedure is automated so that, as a matter of

principle, one can use the publicly available programs Reduze2 [15, 19–21], FIRE5 [22, 23]

and LiteRed [24] to perform the reduction. However, in practice, the reduction to master

integrals appears to be very challenging, due to the presence of a mass parameter in some

of the propagators. We stress that, although we will eventually obtain the result for the

amplitude assuming that the mass parameter is small, we retain the full mass dependence

at the intermediate stages of the computation, including the reduction to master integrals.

We have found that the publicly available reduction programs and, in some cases,

also their private versions, were unable to successfully complete the reduction of the most

complicated non-planar 7-propagator integrals. In order to reduce those integrals, we

wrote a FORM program that produces and solves the IBPs for the 7-propagator non-

planar integrals, thereby reducing them to 6-propagator integrals. We found that this

step by itself is relatively straightforward and not too time-consuming; however, once the

reduction of the produced 6-propagator integrals is attempted, the reduction procedure

stalls. In order to simplify this step as much as possible, we perform it only at the level

of combinations of integrals that are actually required for computing the amplitude or

– 8 –
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p1

p2

−p123

p3

p1

p3

p2 −p123

p1

p3

−p123 p2

−p123

p2

p3 p1

Figure 2. Seven-propagator Feynman integrals of the PL1 family, that appear in the form factors

and require IBP reduction. The two integrals at the top are irreducible and correspond to two

sectors in the family PL1 that contain master integrals with seven propagators. The integrals at

the bottom correspond to reducible integrals. All momenta are incoming.

p1

p2

−p123

p3

p1

p3

−p123 p2

−p123

p2

p3 p1

p1

p3

p2 −p123

Figure 3. Same as in figure 2, but for the integrals of the PL2 family.

the differential equations for the master integrals, but not for all contributing integrals

individually. Moreover, we want to work with as compact expressions as possible and we

do this by choosing wisely the basis of the 7-propagator master integrals. The main criterion

that we impose is that, upon reduction, all 7-propagator integrals are written in terms of

master integrals, whose coefficients do not contain any non-factorizable unphysical poles

which mix the Mandelstam variables (s, t, u) and the space-time dimensions d. We searched

for the right basis empirically, by fixing the Mandelstam variables s, t and u to numerical

values and performing the reductions with our code.4 On one hand, using numerical values

for the Mandelstam variables makes the reduction very fast; on the other hand, it does not

change the dependence of the final result on the space-time dimension. We found many

different bases which fulfill the d-factorization requirement and we have chosen the basis

that leads to the differential equations with the nicest properties, as explained in detail in

section 4. The steps described above allowed us to express all the integrals that contribute

to the scattering amplitudes in terms of master integrals and to derive the differential

equations for master integrals retaining full dependence on the internal quark mass. We

will now explain how these differential equations are used to compute the master integrals.

4This step can be equally well performed using any public reduction code.

– 9 –



J
H
E
P
1
1
(
2
0
1
6
)
1
0
4

p3

p2

−p123

p1

−p123

p2

p1

p3

−p123

p1

p3

p2

Figure 4. Same as in figure 2 but for the integrals of the NPL family. Note that in this case all the

three integrals are irreducible. The leftmost integral does not contribute to the form factors because

of the color structure of the corresponding Feynman diagrams. For this reason we do not compute it.

4 Solving the differential equations for the master integrals

Following the procedure outlined in the previous section, we write the form factors as linear

combinations of the master integrals. Examples of master integrals with seven propagators

that need to be computed are shown in figures 2, 3, 4. Master integrals with six or less

propagators are obtained from the ones with seven by removing some of the internal lines.

To compute these master integrals, we consider their derivatives with respect to the

kinematic variables that they depend upon. These derivatives are given by Feynman in-

tegrals that belong to the integral families that we discussed in the previous section; for

this reason they can be expressed through the master integrals. Following these steps, we

obtain a system of partial differential equations that the master integrals satisfy.

Derivation of the differential equations is facilitated by the fact that derivatives with

respect to kinematic invariants can be written as linear combinations of derivatives with

respect to the four-momenta of external particles; the latter derivatives can be easily com-

puted if we use eq. (3.7) to write down the master integrals. Specifically, treating s, t and

u as independent variables, we obtain

s ∂s =
1

2
(p1 · ∂p1 + p2 · ∂p2 − p3 · ∂p3) ,

t ∂t =
1

2
(p1 · ∂p1 − p2 · ∂p2 + p3 · ∂p3) , (4.1)

u ∂u =
1

2
(−p1 · ∂p1 + p2 · ∂p2 + p3 · ∂p3) ,

where pi · ∂pj = pµi ∂/∂p
µ
j . Partial derivatives with respect to y = t/m2

h and z = u/m2
h at

fixed m2
h are then related to the partial derivatives in eq. (4.1) in a straightforward manner

∂y = m2
h (∂t − ∂s) , ∂z = m2

h (∂u − ∂s) , (4.2)

The partial derivative with respect to the the b-quark mass is trivially related to the κ-

derivative, ∂κ = −m2
h∂m2

b
.

The differential equations are computed by applying eq. (4.2) and eq. (4.1) to the mas-

ter integrals and using the integration-by-parts identities to reduce the resulting integrals

to master integrals. In this way, coupled systems of differential equations in κ, y and z are

found for the list of master integrals that we denote by {Ii} throughout this section.

We can also compute the derivatives of the master integrals with respect to m2
h. How-

ever, these differential equations are not useful since, when the integrals are expressed
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in terms of the variables κ, y, z and m2
h, the m2

h-differential equations trivialize and only

provide the (already known) information on the canonical mass dimensions of the master

integrals. For this reason, we set m2
h = 1 at the beginning and re-introduce it back at the

very end of the computation.

The differential equations in κ, y and z take the following form

∂kIi(κ, y, z, ǫ) = Ak
ij(κ, y, z, ǫ) Ij(κ, y, z, ǫ), k ∈ {κ, y, z}. (4.3)

Matrices Ak are rational functions of κ, y, z and ǫ. It is essential that these matrices are

sparse and, to a large extent, triangular. This allows us to organize the process of solving

the differential equations by starting from the simplest integrals with smaller number of

propagators and gradually moving to more complex ones. The two-loop tadpole integral

is computed independently and used as an input for the differential equations for master

integrals with three or more propagators.

We are interested in solving the differential equations as an expansion in the normalized

b-quark mass squared κ, around κ = 0. From the structure of the differential equations it

follows that κ = 0 is a singular point; as the consequence, we have to look for the solutions

of the differential equations using the following Ansatz

Ii(κ, y, z, ǫ) =
∑

j,k∈Z,n∈N

ci,j,k,n(y, z, ǫ)κ
j−kǫ logn(κ). (4.4)

In practice we observed that for the computation of the master integrals that appear

in the form factors, a simpler Ansatz is sufficient5

Ii(κ, y, z, ǫ) =
∑

j≥−1

2∑

k=0

2∑

n=0

ci,j,k,n(y, z, ǫ)κ
j−kǫ logn(κ). (4.5)

As indicated in eq. (4.5), the strongest κ-singularity that we encountered in the master

integrals is κ−1; this is related to the fact that the master integrals that we have chosen

have at most one propagator raised to the second power. As a rule, integrals with higher

powers of propagators have stronger κ-singularities. In principle, since we are interested

in the computation of the scattering amplitude in the limit κ → 0 and since the scattering

amplitude has at most logarithmic κ-singularities in this limit, it would have seemed natural

to choose master integrals with similar or weaker singularities. However, if this is done, it

becomes more difficult to solve the system of differential equations. This can be understood

by a closer proximity of integrals that have similar singularity structure in κ, compared to

integrals whose structure of singularities is very different.

The coefficients ci,j,k,n are functions of y, z, ǫ. To determine them, we start with the

differential equations with respect to κ. We use the Ansatz eq. (4.5) in κ-differential

equations and require that the coefficients of the κj−kǫ logn κ terms vanish independently

5Some sectors in the non-planar family NPL contain master integrals that scale like (κ)−1/2 after ex-

panding in κ, namely the two sectors (1, 1, 0, 1, 0, 1, 1, 1, 0) and (1, 1, 1, 1, 0, 1, 1, 1, 0). However the integrals

in these sectors do not appear in the final reduced amplitude since their color factors vanish.
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of each other. This gives a system of linear algebraic equations for the coefficients ci,j,k,n
that can be solved straightforwardly.

Suppose that a particular sector has N coupled master integrals. Upon solving the

κ-differential equations in this sector, we are left with N unknown integration “constants”

that are, in fact, functions of y and z. If in the massless case6 there are N0 master integrals

in this sector, then there are N0 integration constants that can be determined by matching

the massive results to the massless ones. The massless limit of the integrals that we study

in this paper was computed in refs. [25, 26] and can be borrowed from there.

The remaining N − N0 coefficient functions have to be determined by considering

the differential equations in y and z. We use the Ansatz eq. (4.5) in the (y, z)-differential

equations and again demand that the coefficients of the κj−kǫ logn κ terms vanish; this gives

the required N−N0 (y, z)-differential equations for the coefficient functions. We solve these

differential equations order by order in ǫ. We find that, similar to the massless case [25, 26],

the coefficient functions can be expressed in terms of Goncharov polylogarithms (GPL). The

GPL’s are defined through the iterative formula

G(l1, · · · , ln
︸ ︷︷ ︸

weight n

;x) :=

∫ x

0
dx′

G(l2, · · · , ln;x′)
x′ − l1

, (4.6)

subject to additional constraints

G(;x) = 1, G(0, · · · , 0
︸ ︷︷ ︸

n times

;x) =
1

n!
logn(x). (4.7)

The denominators that appear in the recursive integrands of the GPL’s in eq. (4.6) are

the ones that appear in the matrices Ak after expanding around κ = 0; they assume the

following values

{1− y − z, y, z, y + z, y − 1, z − 1}. (4.8)

It is easy to see from the definitions of GPL’s that these denominators lead to branch points

at x = 1−y− z, y, z = 0, y = 1, z = 1 and y = −z. Physically, only the first three singular

points are allowed while the last three are not. This implies that the corresponding GPL’s

can appear in the results for the master integrals only in such combinations where these

unphysical singularities cancel. As we explain below, this feature allows us to simplify

calculation of master integrals in certain cases.

We expand the coefficient functions ci,j,k,n in ǫ through the weight four.7 We also

adjust the expansion of the master integrals in κ in such a way that the leading O(κ)

contribution to the amplitude can be computed. Note that this requires expanding some

of the integrals to relatively high order in κ since some master integrals appear in the

differential equations with coefficients that scale as κ−n, n > 0, in the κ → 0 limit.

6Note that by the “massless case” we mean the limit κ → 0 at fixed ǫ.
7For those branches where the expansion in ǫ results in only rational functions in y and z, we expanded

the solution of ci,j,k,n to exactly four orders higher in ǫ, starting from the highest pole in ǫ of that branch.
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Upon solving the differential equations, we write the solutions for each of the master

integrals in the following way

Ii(κ, y, z, ǫ) =
j
(i)
max∑

j=−1

2∑

k=0

2∑

n=0

r
(i,j,k,n)
0 +4
∑

r=r
(i,j,k,n)
0

ǫr c
(r)
i,j,k,n(y, z)κ

j−kǫ logn(κ). (4.9)

The lower limit of the ǫ expansion, r
(i,j,k,n)
0 , is bounded below by −4. We include ancillary

files with the paper that contain all master integrals required for computing the form fac-

tors, expanded in κ and ǫ as in eq. (4.9). Note that this form of the solution gives access to

different κ-branches, i.e. terms O(κ−2ǫ, κ−ǫ, κ0). Each of these branches should correspond

to contributions of distinct “regions”, using the language of the “strategy-of-regions” [27,

28], or “modes”, in the language of effective field theories. Knowing the results for each of

the κ-branches separately should be useful for understanding how to resum the log(κ) terms.

Note also that individual branches have stronger ǫ-singularities than the complete integral.

Finally, we note that after solving the (y, z)-differential equations, we can only deter-

mine the master integrals up to the constants of integration, that need to be computed

separately. We explain how to do this in the next section. However, once this is done, we

have the complete expression for the master integral and we can check it by comparing

numerically the expansions in κ and ǫ of all the master integrals in various kinematic points

in the Euclidean region with FIESTA [29]. For all integrals required for the calculation

of the gg → Hg amplitude, we found a perfect agreement between the analytical results

obtained in this paper and the numerical results obtained with FIESTA.

5 Boundary conditions

By solving the differential equations, we can only obtain the master integrals up to the inte-

gration constants. These constants have to be determined separately. To this end, it suffices

to compute the master integrals at an arbitrary kinematic point and then match the re-

sults to the solutions of the differential equations. However, this procedure is our last resort

since, usually, there are other, simpler, ways to obtain the required integration constants.

We have already mentioned some of them in the previous section. For example, if we

are able to determine a master integral from the κ-differential equation, the integration

constant is the massless branch of a particular integral known from refs. [25, 26].

Another way to determine the integration constants arises if the homogeneous parts

of the (y, z)-differential equations exhibit unphysical singularities in x, y and z variables.

Since, upon integration, singularities of differential equations become singularities of master

integrals and since only certain, physical, singularities in x, y and z can appear in master

integrals, we determine some of the integration constants by requiring that the unphysical

singularities of the differential equations do not appear in the master integrals.

When none of the above applies, the integration constants have to be computed by

matching the value of an integral to the solution of the differential equations for some

values of y and z. It is difficult to describe how this has been done since there is no

method that covers all the cases. In practice, we have used different techniques such as
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integration over Feynman parameters, expansion-by-regions, Mellin-Barnes integration and

fitting numerical values of the integrals to linear combinations of the fixed-weight irrational

numbers, to determine integration constants for master integrals. We give a few examples

below to illustrate how these techniques are applied.

Consider the integral IPL2(1, 1, 0, 0, 1, 0, 1, 0, 1). It is given by the following expression

IPL2(1, 1, 0, 0, 1, 0, 1, 0, 1) =
∫ Dk1Dk2

((k1 − p2)2 −m2
b)((k1 + p1)2 −m2

b)

× 1

(k1 − k2)2(k22 −m2
b)((k2 + p1)2 −m2

b)
.

(5.1)

In the limit of small κ = −m2
b/m

2
h, the integral behaves as

m2
hIPL2(1, 1, 0, 0, 1, 0, 1, 0, 1) = x−1

(
κ−2ǫC2 + κ−ǫx−ǫC1 +O(κ0)

)
. (5.2)

The singularity at x = 1 − y − z = 0 is allowed and the two constants of integration C1,2

can not be determined from the differential equations. To find these constants, we need to

extract the non-analytic terms that arise in the limit κ → 0.

We do this by first re-writing the integral over the loop momenta through an integral

over Feynman parameters. We obtain

m2
h IPL2(1, 1, 0, 0, 1, 0, 1, 0, 1) =

Γ(1 + 2ǫ)

Γ(1 + ǫ)2

1∫

0

dα dβ dξ dµβ−ǫ(1− β)ǫµǫ(1− ξ)1+ǫ

∆1+2ǫ
, (5.3)

where

∆ = x(1− µ(1− α))ξ(1− ξ)(1− β) + κ(1− β(1− µ(1− ξ))) . (5.4)

Inspecting the above equations, we conclude that the two branches, κ−ǫ and κ−2ǫ, appear

due to the integration over two distinct regions

Branch κ−2ǫ ↔ ξ ∼ κ, α ∼ β ∼ µ ∼ 1,

Branch κ−ǫ ↔ 1− β ∼ κ, α ∼ ξ ∼ µ ∼ 1.
(5.5)

To project the integrand on one of the two branches, one should Taylor expand the inte-

grand in a variable that is small for a particular branch and extend the integration over

this variable to the positive half of the real axis. Upon applying this procedure, we arrive

at the following expression for the branch κ−2ǫ and for the constant C2

C2 x
−1κ−2ǫ =

Γ(1 + 2ǫ)

Γ(1 + ǫ)2

1∫

0

dα dβ dµβ−ǫ(1− β)ǫµǫ

∞∫

0

dξ

∆̃1+2ǫ
, (5.6)

where

∆̃1+2ǫ = x(1− µ(1− α))(1− β)ξ + κ(1− β(1− µ)). (5.7)

The integration over ξ and α can be easily performed and we obtain

C2 =
Γ(1 + 2ǫ)

2ǫΓ(1 + ǫ)2

1∫

0

dµ

µ1−ǫ
ln(1− µ)

1∫

0

dβ
β−ǫ(1− β)ǫ−1

(1− β(1− µ))2ǫ
. (5.8)
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Upon writing

(1− β(1− µ))−2ǫ = µ−2ǫ +
[
(1− β(1− µ))−2ǫ − µ−2ǫ

]
, (5.9)

we split the integral into two parts; the first integral can be evaluated exactly and the

second can be evaluated upon expanding in ǫ. We find

C2 = − π2

12ǫ2
− ζ3

2ǫ
− π4

72
. (5.10)

To obtain the second constant, we need to understand how the branch O(κ−ǫ) arises

in the integral. As we already pointed out, this branch corresponds to the region where

1 − y ∼ κ. We therefore change variables y → 1 − f , Taylor expand the integrand in f

assuming that f ∼ κ ≪ α, µ, ξ and extend the integration over f to the positive half of the

real axis. We find

C1 x
−1−ǫκ−ǫ =

Γ(1 + 2ǫ)

Γ(1 + ǫ)2

∞∫

0

df

1∫

0

dα dξ dµ µǫ(1− ξ)−ǫf ǫ

(x(1− µ(1− α))ξf + κµ)1+2ǫ , (5.11)

Integrations over f, ξ and µ are straightforward and we obtain

C1 =
Γ(1− ǫ)2

ǫ3Γ(1− 2ǫ)
lim
ν→0

[
1

ν
−B(ν, 1− ǫ)

]

=

(

− π2

6ǫ2
− ζ3

ǫ
+

π4

60

)

. (5.12)

As the second, more complicated example, we consider the evaluation of one of the

non-planar, seven-propagator integrals. The integral reads

INPL(2, 1, 1, 1, 0, 1, 1, 1, 0) =

∫ Dk Dl

(k2 −m2
b)

2((k + p2)2 −m2
b)((k − p3)2 −m2

b)

× 1

((k − l − p1 − p3)2 −m2
b)((k − l + p2)2 −m2

b)l
2(l + p1)2

.

(5.13)

The constants of integration that need to be determined are in the branch κ−ǫ, including the

coefficient of the logarithmic term κ−ǫ log κ. To determine these constants, we compute the

integral at a particular kinematic point z → 1, y → 1. This implies that x = 1−y−z = −1,

so that the integral receives an imaginary part.

To compute the integral eq. (5.13) at the kinematic point described above in the limit

κ → 0, we write it as an integral over suitably chosen Feynman parameters. In particular,

we start by combining two pairs of propagators into single propagators

1

l2(l + p1)2
=

1∫

0

dη

((l + p1η)2)2
,

1

(k2 −m2
b)

2((k + p2)2 −m2
b)

= 2

1∫

0

dξ (1− ξ)

((k + p2ξ)2 −m2
b)

3
,

(5.14)
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and then shift the loop momenta l → l+ k− ηp1 and k → k+ (1− η)p1 + p3. The integral

becomes

INPL(2, 1, 1, 1, 0, 1, 1, 1, 0) = 2

1∫

0

dηdξ(1− ξ)

∫ DkDl

((k + pη1)
2 −m2

b)

× 1

((k + pη1 + p3 + p2ξ)2 −m2
b)

3(l2 −m2
b)((l − pH)2 −m2

b)(l + k)2
,

(5.15)

where pη1 = (1− η)p1 and pH = −p1 − p2 − p3. Next, we integrate over l and k, substitute

z = 1, y = 1 and arrive at the following representation for the integral

m8
hINPL(2, 1, 1, 1, 0, 1, 1, 1, 0) =

Γ(4 + 2ǫ)

Γ(1 + ǫ)2

∫
dη dξ dx3 df dρ dt

(∆ + κ(t+ (1− t)x3))4+2ǫ

× (1− ξ) x3+ǫ
3 (1− x3)

−ǫ−1 ρ2 t1+ǫ (1− t)3,

(5.16)

where

∆ = ηρ(1− t)tx3(1− ξ)+ρ(1− t)(1−ρ(1− t))x3ξ+(1−f)ft+f(f −2ρ)(1− t)tx3. (5.17)

We notice that the integrand is linear in η and ξ. We also notice that the coefficient of

O(η) term in ∆ is proportional to 1− ξ; this means that upon integration over η, it cancels

the (1− ξ) factor in the integrand eq. (5.16). As the result, the integrations over η and ξ

can be performed exactly. Integrating over η and ξ, we arrive at the following represention

of the non-planar integral at the kinematic point z = 1, y = 1

m8
hINPL(2, 1, 1, 1, 0, 1, 1, 1, 0) =

Γ(2 + 2ǫ)

Γ(1 + ǫ)2

(

Ĩa + Ĩb
)

,

Ĩa =

∫

dx3 df dρ dt
x1+ǫ
3 (1− x3)

−ǫ−1tǫ(1− t)

(1− ρ(1− t))

[
∆−2−2ǫ

00 −∆−2−2ǫ
01

]
,

Ĩb = −
∫

dx3 df dρ dt
x1+ǫ
3 (1− x3)

−ǫ−1tǫ

(1− ρ)

[
∆−2−2ǫ

10 −∆−2−2ǫ
11

]
,

(5.18)

where

∆00 = f(1− f)t+ f(f − 2ρ)(1− t)tx3 + κ(t+ (1− t)x3),

∆01 = f(1− f)t+ (1− t)x3(ρ(1− ρ) + (f − ρ)2t) + κ(t+ (1− t)x3),

∆10 = f(1− f)t+ (1− t)tx3((f − ρ)2 + ρ(1− ρ)) + κ(t+ (1− t)x3),

∆11 = f(1− f)t+ (1− t)x3((f − ρ)2t+ ρ(1− ρ)) + κ(t+ (1− t)x3).

(5.19)

To determine the coefficient of the κ−ǫ−1 branch, that arises in the limit κ → 0, we

need to consider two integration regions

Region 1 : t ∼ κ, x3 ∼ ρ ∼ f ∼ 1, Region 2 : t ∼ (1− ρ) ∼ κ, x3 ∼ f ∼ 1. (5.20)

As always, we perform the Taylor expansion of the integrand in all the variables that are

parametrically small and then extend the integration region over the small variables to the
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positive half of the real axis. An important comment worth making is that, in order to

be able to treat all the different terms in eq. (5.18) separately, one has to introduce an

additional regulator; in particular, the prefactors (1 − ρ(1 − t)) and (1 − ρ) in eq. (5.18)

must be modified in the following way

(1− ρ(1− t)) → (1− ρ(1− t))1+ν , (1− ρ) → (1− ρ)1+ν . (5.21)

Constructing the expansion of eq. (5.18) along the lines sketched above, we find that the

κ−ǫ−1 branch of limκ→0 INPL(2, 1, 1, 1, 0, 1, 1, 1, 0) is obtained as the sum of five integrals.

We write

m8
hIκ,−ǫ−1

NPL (2, 1, 1, 1, 0, 1, 1, 1, 0) = κ−1−ǫ lim
ν→0

(
I1 + κ−νI2 + I3 + I4 + κ−νI5

)
. (5.22)

All of these integrals involve integration over some “small” variables that can be easily per-

formed since the corresponding integration region extends from zero to infinity. We present

the expressions for the five integrals after these simple integrations are carried out. We find

I1 =

∫
dx3dfdρ(1− x3)

−ǫ−1f−1−ǫ

(1− ρ)1+ν(1− f + x3(f − 2ρ))1+ǫ
,

I2 =
Γ(1 + ǫ+ ν)Γ(1 + ǫ− ν)

νΓ(1 + ǫ)2

∫
dx3df (1− x3)

−ǫ−1x−ν

(f(1− f) + f(f − 2)x3)1+ǫ−ν
,

I3 = −
∞∫

0

dξ

1∫

0

dx3df (1− x3)
−ǫ−1(1− f)−ǫ(x3 + f(1− x3))

−ǫ

(1 + ξ)1+ǫ(x3 + (1− f)(x3 + f(1− x3))ξ)
,

I4 = −
∫

dx3dfdρ(1− x3)
−ǫ−1(1− ρ)−ν−1

(f(1− f) + ((f − ρ)2 + ρ(1− ρ))x3)1+ǫ
,

I5 =

1∫

0

dx3df

∞∫

0

dρ̄
(1− x3)

−ǫ−1(1− f)−ǫ−1

ρ̄1+ν(ρ̄+ 1)1+ǫ (f + x3(1− f))1+ǫ .

(5.23)

We compute these integrals directly. We note that through weight three, it is straight-

forward to calculate them analytically. However, at weight four, we compute some of the

integrals numerically and then fit them to a linear combination of the irrational constants

of weight four that include log 2 to an appropriate power and Li4(1/2). Working through

O(ν0, ǫ1), we obtain8

I1 =
1

ν

(
1

ǫ2
− 4π2

3
+ ǫ

(

−5π2 log 2− 13

2
ζ3

))

− 3π2

2ǫ
−
(
5π2

2
log 2 +

35

4
ζ3

)

+ ǫ

(
5π4

144
− 4π2

3
log2 2 +

5

6
log4 2 + 20Li4(1/2)

)

,

I2 =
1

ν

(

− 1

ǫ2
+

4π2

3
+ ǫ

(

π2 log 2 +
13

2
ζ3

))

− 1

ǫ3
− π2

3ǫ
+ 2ζ3

+ ǫ

(
37π4

120
+

4π2 log2 2

3
− log4 2

3
− 8Li4(1/2)

)

,

8We only show the real parts of the integrals I1,...,5.
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I3 =
π2

6ǫ
− 3ζ3 + ǫ

(

−37π4

360
− 2π2

3
log2 2 +

2 log4 2

3
+ 16Li4(1/2)

)

, (5.24)

I4 =
1

ν

(
1

ǫ2
+

π2

6
+ 4ζ3ǫ

)

− 1

ǫ3
+

π2

2ǫ
+ π2 log 2 +

3

2
ζ3

+ ǫ

(
11π4

72
+

2π2 log2 2

3
− 2

3
log4 2− 16Li4(1/2)

)

,

I5 =
1

ν

(

− 1

ǫ2
− π2

6
− 4ζ3ǫ

)

− π2

6ǫ
+ ζ3 −

7ǫπ4

180
.

Using these results in eq. (5.22), we obtain the coefficient of the κ−1−ǫ branch of the integral

limκ→0 INPL(2, 1, 1, 1, 0, 1, 1, 1, 0) that arises in the κ → 0 limit, at the point z = 1, y = 1.

This result is then matched to the solution found for this branch from the (y, z)-differential

equation and the constant of integration is determined. Other branches of this integral,

as well as other integrals, that require determination of the integration constants can be

studied along similar lines.

6 Helicity amplitudes

In this section, we present the results of the computation of the H → ggg scattering

amplitude. It is convenient to write the result fixing gluon helicities. We obtain the helicity

amplitudes from the general expression for theH → ggg amplitude given in eqs. (2.5), (2.7).

We write

Aλ1λ2λ3(s, t, u) = ǫµ1,λ1
(p1)ǫ

ν
2,λ2

(p2)ǫ
ρ
3,λ3

(p3)Aµνρ(s, t, u), (6.1)

where λ1,2,3 are helicity labels of gluons with momenta p1,2,3 respectively, and the de-

pendence of the amplitude on the b-quark mass is suppressed. Since each gluon has two

independent polarizations, there are eight helicity amplitudes in total but only two of them

are independent. The remaining six amplitudes can be obtained by permuting the external

gluons and applying parity and charge conjugation.

We choose the two amplitudes A++±(s, t, u) as independent and write them using

the spinor-helicity notations.9 The polarization vectors for external outgoing gluons with

momentum pj and the reference vector qj read

ǫµ,+j =
〈qj |γµ|j]√
2〈qjj〉

, ǫµ,−j = − [qj |γµ|j〉√
2 [qjj]

. (6.2)

We note that the reference vectors qj must be chosen for each gluon in accord with eq. (2.6).

Using these notations, we write the two independent helicity amplitudes as

A+++(s, t, u,mb) =
m2

h√
2〈12〉〈23〉〈31〉

Ω+++(s, t, u,mb) ,

A++−(s, t, u,mb) =
[12]3√

2 [13] [23]m2
h

Ω++−(s, t, u,mb) .

(6.3)

9See ref. [30] for a review.
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The helicity coefficients Ωj are linear combinations of the form factors defined in section 2;

they read

Ω+++ =
su

m2
h

(

F1 +
t

u
F2 +

t

s
F3 +

t

2
F4

)

, Ω++− =
m2

hu

s

(

F1 +
t

2
F4

)

. (6.4)

Similar to the form factors, the helicity coefficients Ωj can be written as an expansion

in the strong coupling constant. We write

Ω++± =
m2

b

v

√

α3
s

π

[

Ω
(1l)
++± +

( αs

2π

)

Ω
(2l)
++± +O(α2

s)
]

, (6.5)

where mb is the b-quark pole mass and αs is the strong coupling constant at the scale

µ = mh defined in the theory with Nf active flavors. The two-loop helicity coefficients are

not finite, but their infra-red divergent parts are described by the Catani’s formula

Ω
(2l)
++± = I1(ǫ) Ω

(1l)
++± +Ω

(2l),fin
++± , (6.6)

where the I1(ǫ) operator is defined in eq. (2.15).

We note that, originally, we defined the renormalized coupling constant in a scheme

with Nf active flavors since the contribution of the b-quark loop was subtracted at zero

momentum. This is not optimal since we are interested in a kinematic situation where all

momenta transfers are large compared to mb. In this case, the appropriate strong coupling

to use is the one defined in the scheme with Nf + 1 active flavors. The relation between

the two couplings at the scale µ = mh reads

α
(Nf )
s = α

(Nf+1)
s

[

1− α
(Nf+1)
s

6π
log

(
m2

h

m2
b

)

+O(α2
s)

]

. (6.7)

We use this relation to re-write the helicity amplitudes using the strong coupling constant

defined in a theory with Nf +1 active flavors. Since the relation between the two coupling

constants is finite, it induces changes in the finite parts of the two-loop helicity amplitudes.

We denote the helicity coefficients written with the strong coupling in the theory with

Nf + 1 active flavors as Ω. We obtain

Ω
(1l),fin
++± = Ω

(1l),fin
++± , Ω

(2l),fin
++± = Ω

(2l),fin
++± − 1

2
log

(
m2

h

m2
b

)

Ω
(1l),fin
++± . (6.8)

We also note that it is far from obvious that the on-shell renormalization scheme for the

b-quark mass is, indeed, physically appropriate. The helicity amplitudes are proportional

to m2
b , where one power comes from the Yukawa coupling constant and the other from

the helicity flip in the quark loop. It is most likely that the appropriate choice of the

mass parameter related to the Yukawa coupling is the MS mass defined at the scale mh.

However, the proper choice of the mass parameter responsible for the helicity flip is much

less clear. It will be very interesting to understand the scale and scheme choices in the

virtual amplitude that minimize the magnitude of the NLO QCD corrections to physical
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observables, for example to the Higgs transverse momentum distribution. We plan to

return to this question in the future work.

Full results for helicity coefficients Ω++± can be found in the ancillary files provided

with this submission. Although, on the scale of known two-loop helicity amplitudes, our

Ω’s are quite compact, they are nevertheless complex. It is therefore instructive to study

them in a few interesting limits, where they simplify dramatically.

One such limit is the soft limit. It describes a situation where the energy of one of the

gluons in the H → ggg amplitude becomes small. We take the gluon with momentum p3
to be soft; this implies the following hierarchical relations between the kinematic variables

m2
b ≪ t ∼ u ≪ m2

h ∼ s. For the dimensionless variables introduced earlier, the soft limit

implies κ ≪ y ∼ z ≪ 1.

It follows from eq. (6.3) that in the soft limit the helicity amplitudes diverge as 1/
√
yz ∼

1/
√

p2
⊥
, where we introduced the transverse momentum of the Higgs boson p2⊥ = ut/s. This

is the standard soft divergence present in any scattering amplitude.

The helicity coefficients Ω++± develop logarithmic singularities in the soft limit. It

is convenient to write these helicity coefficients in terms of the logarithms of the ratio of

the bottom quark mass and the Higgs boson mass log κ = log (−m2
b/m

2
h), logarithms of

the ratio of the transverse momentum p⊥ divided by the bottom quark mass log (y z/κ) =

log
(
−p2⊥/m

2
b

)
and the logarithms of the ratio of two small parameters u and t, log(y/z) =

log(t/u). To simplify the notation, we define

L = log (κ) = log

(−m2
b

m2
h

)

, τ =
log (y z/κ)

log (κ)
, ξ = log

(y

z

)

. (6.9)

In the soft limit, L ≫ 1, while τ and ξ, defined above, are quantities of order one. Ex-

panding the helicity coefficients in the soft limit and substituting Nc = 3, we find

Ω
(1l),fin
+++ = L2

(

1 +
τ2

2

)

+
π2 − 24

6
,

Ω
(1l),fin
++− = L2

(

1− 1

2
τ2
)

− π2 + 24

6
,

(6.10)

at the one loop and

Ω
(2l),fin
+++ = L4

(
13 τ4

144
+

τ3

24
− 17 τ2

48
− 3 τ

4
− 17

72

)

+ L3

(

β̄0

(

−τ3

4
− τ2

4
− τ

2
− 1

2

)

− 3τ3

4
+

τ2

6
− τ

6
+

5

3

)

+ L2

(

−τ2 ξ2

48
+

31π2 τ2

144
+

23 τ2

6
+

π2 τ

72
+ 3 τ +

3 ξ2

8
− 19π2

144
+

9

2

)

(6.11)

+ L

(

β̄0(τ + 1)

(

−π2

12
+ 2

)

− 4τζ3 −
π2τ

4
+

2τ

3
+

64ζ3
3

− 5π2

6
− 52

3

)

− π2ξ2

144
− 3 ξ2

2
+ 27 ζ3 +

131π4

270
+

16π2

9
− 188

3
+ i π

3

2
β̄0 Ω

(1l,Nf+1)
1 ,
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Ω
(2l),fin
++− = L4

(
3 τ4

16
+

17 τ3

72
− 19 τ2

48
− 3 τ

4
− 17

72

)

+ L3

(

β̄0

(
τ3

4
+

τ2

4
− τ

2
− 1

2

)

+
3τ3

4
− τ2

6
− τ

6
+

5

3

)

+ L2

(
τ2ξ2

48
+

43π2τ2

48
+

19π2τ

72
+ 3τ +

3 ξ2

8
− 7π2

48
+

9

2

)

(6.12)

+ L

(

β̄0(τ + 1)

(
π2

12
+ 2

)

− 16τζ3
3

+
π2τ

4
+

2τ

3
+

34ζ3
3

− 17π2

18
− 52

3

)

+
π2 ξ2

144
− 3 ξ2

2
+ 52 ζ3 +

20π4

27
+

7π2

9
− 188

3
+ i π

3

2
β̄0Ω

(1l,Nf+1)
2

at the two loops. Note that β̄0 = 11/2−2/3TR (Nf +1) is the QCD β-function in a theory

with Nf + 1 active flavors. We have checked that the abelian O(L4) part of the soft limit

of the helicity coefficients agrees with the results of ref. [4]; all other terms in that formula

are new.

A second interesting limit is the collinear one. Specifically, we are interested in the case

when the momenta of gluons 1 and 3 become parallel. This implies m2
b ≪ t ≪ m2

h ∼ s ∼ u

and y → 0, z ∼ O(1). Note that in this limit log (y/κ) ≈ log (−t/m2
b) is considered to be

large. Similarly to the soft limit, we introduce the notation

η =
log (y/κ)

log (κ)
. (6.13)

At one loop we find

Ω
(1l),fin
+++ = L2

(
η2

2
+ 1

)

+ Lη (log(z) + log(1− z))

+
1

2
log2(1− z) +

1

2
log2(z)− log(z) log(1− z) +

π2

6
− 4,

Ω
(1l),fin
++− = L2

(
η2

2(1− z)
− η2 + 1

)

+ Lη

(
log(1− z)− log(z)

1− z

)

+
2Li2(1− z)− 2Li2(z)− 8z − log2(1− z) + log2(z) + 8

2(z − 1)
.

(6.14)

The complete two-loop result in the y → 0 limit is not sufficiently compact to be

presented in the paper. For this reason, we write the amplitude retaining the coefficients

of leading and subleading logarithms. We find

Ω
(2l),fin
+++ = L4

(
5η4

72
+

5

36

)

+ L3

[(
13η3

36
+

η2

12
− 3η

2
− 3

2

)

(log(z) + log(1− z))

+ β̄0

(

−η3

4
− η2

4
− η

2
− 1

2

)

− 3η3

4
+

η2

6
− η

6
+

5

3

]

,
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Ω
(2l),fin
++− = L4

(

− 5η4

24(1− z)
+

5η4

12
− 5η3

18(1− z)
+

5η3

9
+

5

36

)

(6.15)

+ L3

[(

− 3η3

4(1− z)
+

3η3

2
− 3η2

4(1− z)
+

3η2

2
− 3η

2
− 3

2

)

(log(z) + log(1− z))

+
5η3

18(1− z)
log(1− z) + β̄0

(

− η3

4(1− z)
+

η3

2
− η2

4(1− z)
+

η2

2
− η

2
− 1

2

)

− 3η3

4(1− z)
+

3η3

2
+

η2

6(1− z)
− η2

3
− η

6
+

5

3

]

.

These results show that the structure of large logarithmic corrections in the collinear limit

is complicated; it does not appear that any one-loop structures get iterated even at the

level of the leading logarithms.

7 The analytic continuation

Up to this point, we studied the scattering amplitude in the decay kinematics. In this case

the imaginary part is generated by an overall prefactor (−m2
h − i δ)−n ǫ, where n is the

number of loops. However, this is not sufficient; indeed, to study Higgs boson production

in gluon fusion, we need to perform an analytic continuation of the scattering amplitude.

The analytic continuation of the gg → Hg amplitude for the point-like ggH interaction

vertex was described in ref. [31] and we closely follow that paper in our discussion below.

Following ref. [31], we consider three kinematic regions

region (1a)+ : H(p4) → g(p1) + g(p2) + g(p3) , (7.1)

region (2a)+ : g(p1) + g(p2) → H(p4) + g(−p3) , (7.2)

region (4a)+ : g(p2) + g(p3) → H(p4) + g(−p1) . (7.3)

The region (1a)+ is the decay kinematic region that we considered so far in this paper; the

region (2a)+ is the kinematic region required to describe Higgs production in gluon fusion

and the region (4a)+ is needed to determine all helicity amplitudes for the Higgs production

process from the two independent ones computed in the previous section. In ref. [31] it

was shown how to start from the helicity amplitudes defined in region (1a)+ and continue

them to any other kinematic configuration, including regions (2a)+ and (4a)+. While the

analytic continuation of the spinor structures is straightforward, some care has to be taken

in continuing the helicity coefficients Ω++±, which are written in terms of harmonic and

two-dimensional harmonic polylogarithms defined in [25]. The analytic continuation of the

polylogarithms can be achieved with a proper change of variables.

In the region (2a)+ the Mandelstam variables are

m2
h > 0 , s > 0 , t, u < 0 , (7.4)

and the analytic continuation from the decay kinematics is performed by providing small

and positive imaginary parts to all positive Mandelstam variables. In particular, we require
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s → s+ i δ. We define two auxiliary variables

u1 = − t

s
= − y

1− y − z
, v1 =

m2
h

s
=

1

1− y − z
, (7.5)

which fulfill the following condition

0 ≤ u1 ≤ v1 , 0 ≤ v1 ≤ 1 . (7.6)

In the region (4a)+, instead, we have

m2
h > 0 , s < 0 , t < 0 u > 0,

with u → u+ i δ. Similarly to eq. (7.5), we define the following auxiliary variables

u2 = − t

u
= −y

z
, v2 =

m2
h

u
=

1

z
, (7.7)

which fulfill

0 ≤ u2 ≤ v2 , 0 ≤ v2 ≤ 1 . (7.8)

One can show that, by changing the arguments of the polylogarithms from (y, z) to

(u1, v1) and (u2, v2) in regions (2a)+ and (4a)+ respectively, and rewriting the result ap-

propriately, one can extract all imaginary parts explicitly. In this way, the result for the

helicity amplitudes can be rewritten in terms of explicitly real one- and two-dimensional

harmonic polylogarithms of the new arguments u1, v1 and u2, v2, respectively. The one- and

two-loop helicity coefficients in the decay kinematics eq. (7.1) and analytically continued

to the scattering kinematics eqs. (7.2), (7.3) are available as ancillary files with the arXiv

submission of this paper.

8 Conclusions

We computed the two-loop helicity amplitudes for the process H → ggg, mediated by a

quark loop, in the approximation when the mass of the quark is small compared to other

kinematic parameters of the process. The expansion in the small quark mass is used to

solve the differential equations for the master integrals, while in all other steps of the

computation no approximations are made.

The methodological results of this paper establish a framework that allows one to

expand the scattering amplitudes around the limit where all or some of the particles in the

quantum loops can be treated as nearly massless. There are many potential applications

of this approach, including production of the Higgs boson at high transverse momentum

and the electroweak corrections in the Sudakov regime.

On the phenomenological side, there are several ways in which the results of the com-

putation reported in this paper can be used. The two-loop helicity amplitudes can be com-

bined with the real emission process gg → Hgg to study modifications of the Higgs boson

transverse momentum distribution due to the interference of top quark and bottom quark

loops in the process pp → H + j in higher orders in QCD. Such a study seems especially
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worthwhile given the recent proposals to constrain charm and bottom Yukawa couplings

from the kinematic distributions of Higgs bosons produced in proton collisions [32, 33].

Furthermore, it has been recognized long ago that conventional transverse momentum

resummation framework can not be applied to the production of the Higgs boson through

the loop of light quarks since large non-universal double logarithmic corrections are gener-

ated by the virtual amplitude itself. Although these double logarithms are of the Sudakov

origin, they are subtle as the process requires the helicity flip on the soft quark lines. It

would be interesting and instructive to understand if the resummation of these Sudakov-

like logarithms can be achieved. We expect that the computation of the helicity amplitudes

reported in this paper and the limits of these helicity amplitudes described in the previous

section, will contribute towards this goal.
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