
J
H
E
P
1
1
(
2
0
1
6
)
0
9
6

Published for SISSA by Springer

Received: September 10, 2016

Accepted: November 4, 2016

Published: November 17, 2016

Dualities in ABJM matrix model from closed string

viewpoint

Kazuki Kiyoshige and Sanefumi Moriyama

Department of Physics, Graduate School of Science, Osaka City University,

3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan

E-mail: kiyoshig@sci.osaka-cu.ac.jp, moriyama@sci.osaka-cu.ac.jp

Abstract: We propose a new formalism to study the ABJM matrix model. Contrary

to expressing the fractional brane background with the Wilson loops in the open string

formalism, we formulate the Wilson loop expectation value from the viewpoint of the

closed string background. With this new formalism, we can prove some duality relations

in the matrix model.

Keywords: Chern-Simons Theories, M-Theory, Matrix Models, String Duality

ArXiv ePrint: 1607.06414

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2016)096

mailto:kiyoshig@sci.osaka-cu.ac.jp
mailto:moriyama@sci.osaka-cu.ac.jp
https://arxiv.org/abs/1607.06414
http://dx.doi.org/10.1007/JHEP11(2016)096


J
H
E
P
1
1
(
2
0
1
6
)
0
9
6

Contents

1 Introduction and summary 1

2 Wilson loop as closed string background 6

3 Proof of generalized open-closed duality 9

4 Discussions 11

1 Introduction and summary

The most fundamental theory in theoretical physics is probably M-theory, which is an

eleven-dimensional theory considered to unify all of the five ten-dimensional perturbative

string theories. M2-branes and M5-branes are respectively fundamental and solitonic exci-

tations in M-theory. From the fundamental roles it plays in theoretical physics, we naturally

expect a large number of duality relations in M-theory. However, it is difficult to observe

these dualities directly, since only little is known for this mysterious theory.

Recently, it was proposed [1–3] that the N = 6 superconformal Chern-Simons theory

with gauge group U(N1)×U(N2), Chern-Simons levels (k,−k) and two pairs of bifunda-

mental matters describes the worldvolume theory of coincident min(N1, N2) M2-branes

and |N2 − N1| fractional M2-branes on a geometry C
4/Zk. The partition function and

vacuum expectation values of the half-BPS Wilson loop on S3, originally defined with the

infinite-dimensional path integral, are localized to a finite-dimensional matrix model [4]

〈sY 〉k(N1, N2) =
(−1)

1

2
N1(N1−1)+ 1

2
N2(N2−1)

N1!N2!

∫

RN1+N2

dN1µ

(2π)N1

dN2ν

(2π)N2
e

ik
4π

(∑N1
m=1

µ2
m−

∑N2
n=1

ν2n

)

×
[∏N1

m<m′ 2 sinh
µm−µm′

2

∏N2

n<n′ 2 sinh
νn−νn′

2∏N1

m=1

∏N2

n=1 2 cosh
µm−νn

2

]2
sY (e

µ|eν), (1.1)

and a hidden super gauge group U(N1|N2) was observed [2–6]. Here the half-BPS Wilson

loop is constructed from a superconnection of U(N1|N2) and transforms in the representa-

tion of U(N1|N2) labelled by a single Young diagram Y . After the localization, it reduces

to the character of U(N1|N2) or the supersymmetric Schur polynomial1 sY (x|y). For the

partition function without Wilson loop insertions, we regard it as an insertion of the Wilson

1The first few Schur polynomials in the power sum expression are given by s•(x) = 1, s✷(x) = trU ,

s✷✷(x) =
1

2

(
(trU)2+trU2

)
, s✷

✷
(x) = 1

2

(
(trU)2−trU2

)
, with U = diag(x1, x2, · · ·xN ). The supersymmetric

Schur polynomial sY (x|y) can be obtained from the original Schur polynomial sY (x) by replacing the matrix

diag(x1, x2, · · ·xN ) and the trace tr by the supermatrix diag(x1, x2, · · · , xN1
| − y1,−y2, · · · ,−yN2

) and the

supertrace Str (see [7]).
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loop in the trivial representation s•(x|y) = 1. We directly observe a relation under the

exchange of two sets of integration variables,

〈sY 〉k(N1, N2) = 〈sY T〉−k(N2, N1) = [〈sY T〉k(N2, N1)]
∗, (1.2)

because of sY (x|y) = sY T(y|x). Hereafter we shall fix k > 0. Also, we often consider

the case of M = N2 − N1 ≥ 0 unless otherwise stated and denote the expectation value

〈sY 〉k(N,M +N) as 〈sY 〉k,M (N).

It was then exciting to find that the partition function ([8–13] for the case of equal

ranks and [14, 15] for non-equal ranks) and vacuum expectation values of the half-BPS

Wilson loop [16, 17] are respectively expressed in terms of the free energy of the closed

and open topological string theories on local P1 × P
1, which implies a certain modular

invariance. Aside from the original computations in the ’t Hooft expansion [18–20], an

important approach that leads to these findings is to rewrite the matrix model into the

partition function of a Fermi gas system with N non-interacting particles whose dynamics

is governed by a non-trivial density matrix [9]. The success in formulating the partition

function in terms of that of the Fermi gas system leads to a vast amount of WKB small

k expansions [9, 11] and numerical computations for finite k [10, 21–23], from which the

relation to the topological strings was found [8, 10, 13].

For the partition function in a general background withM = N2−N1 fractional branes,

it was found that

〈1〉k,M (N)

〈1〉k,M (0)
=

1

N !

∫
dNx

(4πk)N

N∏

i<j

(
tanh

xi − xj
2k

)2 N∏

i=1

VM (xi), (1.3)

where VM (x) is defined as

VM (x) =
1

2 cosh x
2

∏

l∈L

tanh
x+ 2πil

2k
, (1.4)

with L = {M − 1
2 ,M − 3

2 , · · · , 32 , 12}. If we introduce the coordinate and momentum

operators satisfying the canonical commutation relation [q̂, p̂] = i~ with ~ = 2πk, the

grand canonical partition function 〈1〉GC
k,M (z) =

∑∞
N=0 z

N 〈1〉k,M (N) is expressed as

〈1〉GC
k,M (z)

〈1〉k,M (0)
= det(1 + zρ̂M ), (1.5)

with the density matrix ρ̂M given by

ρ̂M =
√
VM (q̂)

1

2 cosh p̂
2

√
VM (q̂). (1.6)

The expression (1.3) was first found for the case of equal ranks M = 0 in [9] and later ex-

tended to the case of non-equal ranks. Namely, for M 6= 0, (1.3) was originally conjectured

in [24] and proved in [25] with several steps of integrations. In this paper we shall rederive

the result with a more refined presentation motivated by [26, 27] as a byproduct of our

analysis.
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In the expansion of the determinant in (1.5) there appear many traces of powers of the

density matrix ρ̂M . In introducing a background with M fractional branes, all we have to

do is to modify the density matrix ρ̂M (1.6) by changing VM=0(x) into VM (x) (1.4) without

touching the structure of the determinant. In other words, we express the fractional branes

by dressing the density matrix so that the background where the closed strings propagate

changes. From this viewpoint, this formalism is called “closed string formalism” in [28].

Since some poles of
(
2 cosh x

2

)−1
in (1.4) at x ∈ 2πi

(
Z+ 1

2

)
are cancelled by the zeros

of the hyperbolic tangent functions at x = −2πil, we can shift the integration contour by

−Mπi [15]. This shift is essential to make contact with the orthosymplectic Chern-Simons

matrix model [26, 27, 29–32]. This matrix model is obtained from the localization of the

N = 5 superconformal Chern-Simons theory with the orthosymplectic gauge group [2, 3]

and the physical interpretation is the introduction of the orientifold plane in the type IIB

setup. In [26, 27, 31] it was proved2 that the partition function of the orthosymplectic

Chern-Simons matrix model is nothing but the chiral projection of the Chern-Simons ma-

trix model with the super unitary gauge group (see table 1 in [27] for an interesting pattern).

There is another formalism to study the matrix model [14] called “open string for-

malism”. Here we do not change the expression of the density matrix from the M = 0

case and instead introduce many extra contributions with endpoints. In this sense, as the

Wilson loop expectation values [17], we express the fractional brane background with the

open string endpoints. At present we stress that the open string formalism seems superior

to the closed string one because it is obtained only from the combinatorics and hence is

applicable not only to the partition function but also with the Wilson loop insertion. In

this formalism the expectation values of the half-BPS Wilson loop in the grand canonical

ensemble3

〈sY 〉GC
k,M (z) =

∞∑

N=r

zN−r〈sY 〉k,M (N), (1.7)

is reduced to

〈sY 〉GC
k,M (z)

〈1〉GC
k,0 (z)

= det
((

Hlp,−M+q− 1

2

(z)
)
(M+r)×M

(
H̃lp,aq(z)

)
(M+r)×r

)
, (1.8)

where both Hl,a(z) and H̃l,a(z) take the form of a certain matrix element of [1+ zρ̂M=0]
−1

(see [14] for the explicit form4). The indices aq, lp in (1.8) are the arm lengths and

the leg lengths appearing in the Frobenius notation, which is another description of the

Young diagram usually described by listing all of the arm lengths [α1, α2, · · · ] or the leg

2The proof for odd M is motivated by the studies in the Chern-Simons matrix models of the D̂

quiver [33–35].
3The integer r (satisfying 0 ≤ r ≤ N) is defined later in (1.9) for a general Young diagram Y . It is

known that the supersymmetric Schur polynomial sY (x|y) is vanishing for N < r.
4We have slightly changed the notation from [14]. In addition to changing the definition of the arm and

leg lengths by 1/2 as explained later in (1.9), we also drop the overall factor z from H̃l,a(z).
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lengths [λ1, λ2, · · · ]T,

aq = αq − q −M + 1/2, lp = λp − p+M + 1/2,

r = #{q|aq > 0} = #{p|lp > 0} −M. (1.9)

See figure 1 for a pictorial explanation of the Frobenius notation. Note that here we have

deliberately added 1
2 to the lengths to measure the distances between the midpoints of two

segments. As stressed in [17, 36], the integrations in Hl,a(z) and H̃l,a(z) are convergent only

for a1 + l1 < k/2 (which implies M ≤ k/2). We shall follow this condition in our analysis.

One advantage of the open string formalism (1.8) is that we can prove the Giambelli

compatibility for 〈sY 〉GC
k,M (z) generally when correctly normalized with 〈1〉GC

k,M (z) [37].

Although many identities were proved in this context, still a lot of important duality

relations await to be proved. One of them is the miraculous open-closed duality observed

recently in [36]. In [36], motivated by [38], starting from the simplest case with r = 1,M =

0, the authors arrive at a more general relation5

〈s[(M+r)r]〉GC
k,M (z) ∼ 〈1〉GC

k,M+2r(z), (1.10)

with numerical computations. Here ∼ means that the relation holds up to a numerical

factor independent of z. Since the partition function 〈1〉GC
k,M (z) and the normalized vacuum

expectation values 〈sY 〉GC
k,M (z)/〈1〉GC

k,M (z) are expressed respectively by the free energy of

the closed and open topological string theory [13, 17], this duality relates closed strings

and open strings. It can also be regarded as another realization of the spirit of the open

string formalism [14], which expresses the closed string background formed by fractional

branes with many open strings in the determinant. In the same paper, the authors also

observe a relation

〈s(a|l)〉GC
k,M (z) ∼ [〈s(l+M |a−M)〉GC

k,M (z)]∗, (1.11)

for the hook representation (a|l) with a > M . The complex conjugation applies only to

the coefficients of z.

In this paper, we shall generalize the closed string formalism (1.3), so that it incor-

porates the Wilson loop insertion. Namely, contrary to the open string formalism [14]

where we describe the fractional brane as a composite of the Wilson loops, here we pro-

pose an opposite formalism, which describes the Wilson loop by changing the closed string

backgrounds6

〈sY 〉k,M (N)

〈sY 〉k,M (r)
=

1

(N − r)!

∫
dN−rx

(4πk)N−r

N−r∏

i<j

(
tanh

xi − xj
2k

)2 N−r∏

i=1

V (xi), (1.12)

5In [36] the absolute values were taken for the expectation values in defining the grand canonical ensem-

ble (1.7). Hence, strictly speaking, the duality relation found in [36] is a consequence of (1.10). Similarly,

the relation (1.11) also needs the modification of the complex conjugation compared with [36].
6Note that N = r is the smallest case for the expectation value 〈sY 〉k,M (N) to be non-vanishing.
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Figure 1. Young diagram and Frobenius notation. The standard Frobenius notation is defined

by counting the boxes from the diagonal line. For the super case U(N1|N2), we shift the di-

agonal line by M = N2 − N1. For the Young diagram in the figure [α1, α2, α3] = [5, 4, 2] or

[λ1, λ2, λ3, λ4, λ5]
T = [3, 3, 2, 2, 1]T, the standard Frobenius notation is (42|21) and the shifted

one with M = 2 is (20|4310). Here we find it useful to define the arm and leg lengths

by adding 1

2
, or in other words, measuring the distances between the midpoints of two seg-

ments, (a1, a2|l1, l2, l3, l4) =
(
5

2
, 1

2
| 9
2
, 7

2
, 3

2
, 1

2

)
. We sometimes decompose the Young diagram as

([(M + r)r] + Y ) ∪ Y ′, which in the current case is ([42] + [1]) ∪ [2]. We also display the poles

of (2 cosh x

2
)−1 in (1.13) in our Fermi gas formalism (1.12). The green dots denote the poles at

x = 2πia and x = −2πil which are cancelled by the hyperbolic tangent functions in (1.13) and

hence harmless, while the red dots denote the real poles which are not cancelled.

with

V (x) =
1

2 cosh x
2

∏

a∈A

tanh
x− 2πia

2k

∏

l∈L

tanh
x+ 2πil

2k
. (1.13)

Here A and L denote respectively the set of all arm lengths and all leg lengths of the

Young diagram Y . Note that L appearing in (1.4) is the set of all leg lengths in the trivial

representation. From (1.13) it is easy to observe that although x ∈ 2πi(Z + 1
2) are poles

potentially, poles at x = 2πia and x = −2πil are cancelled by the zeros of the hyperbolic

tangent functions (see figure 1). Also, since a1 + l1 < k/2, a hyperbolic tangent does not

induce a new pole at the zero of another hyperbolic tangent.

Using this new formalism we are able to prove some untouched dualities without dif-

ficulties. Here we prove a generalized open-closed duality7

〈s([(M+r)r]+Y )∪Y ′〉GC
k,M (z) ∼ 〈s([(M+r+1)r−1]+Y )∪Y ′〉GC

k,M+2(z). (1.14)

In fact, from the expression (1.12) it is not difficult to find that we can shift the integration

contour as long as we do not cross the poles. Due to this reason, the expectation values of

7The generalization without Y was already observed in [36] without specifying the overall normalization.

After the generalization, it may more suitably be referred to as the “open-open” duality.
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two Young diagrams in the grand canonical ensemble, which share the same set of

{aq|q = 1, · · · , r} ∪ {−lp|p = 1, · · · ,M + r}, (1.15)

up to an overall shift of an integer, are identical.

This paper is organized as follows. In the next section, we propose a new formalism

to study the Wilson loop expectation values. In section 3, we use this formalism to prove

(a generalized version of) the open-closed duality. Finally in section 4, we conclude with

discussions on the future directions.

2 Wilson loop as closed string background

In this section, following the method developed in [26, 27], we shall rewrite the expectation

value of the half-BPS Wilson loop (1.1) into the partition function of a new Fermi gas

system, where the density matrix is modified while the determinant structure is kept fixed.

We shall rescale the integration variables by k as

〈sY 〉k,M (N) =
(−1)

1

2
N1(N1−1)+ 1

2
N2(N2−1)

N1!N2!

∫
dN1µ

~N1

dN2ν

~N2
e

i
2~

(
∑N1

m=1
µ2
m−

∑N2
n=1

ν2n)

×
[∏N1

m<m′ 2 sinh
µm−µm′

2k

∏N2

n<n′ 2 sinh
νn−νn′

2k∏N1

m=1

∏N2

n=1 2 cosh
µm−νn

2k

]2
sY (e

µ

k |e ν
k ), (2.1)

with ~ = 2πk and k > 0. We begin our analysis by assuming M = N2 −N1 ≥ 0 and have

denoted N1 = N , N2 = M +N and 〈sY 〉k(N,M +N) = 〈sY 〉k,M (N).

As in the open string formalism [14], our starting point is the following three determi-

nant formulas; the Cauchy-Vandermonde determinant

∏N1

m<m′(xm − xm′)
∏N2

n<n′(yn − yn′)
∏N1

m=1

∏N2

n=1(xm + yn)
= (−1)N1(N2−N1) det




[
1

xm + yn

]

(m,n)∈Z1×Z2[
y
l− 1

2
n

]
(l,n)∈L×Z2


 , (2.2)

where m, n and l are respectively elements of Z1 = {1, 2, · · · , N1}, Z2 = {1, 2, · · · , N2} and

L =
{
M − 1

2 ,M − 3
2 , · · · , 12

}
in this order; the same determinant

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1)

∏N1

m<m′(x
−1
m′ − x−1

m )
∏N2

n<n′(y
−1
n′ − y−1

n )
∏N1

m=1

∏N2

n=1(x
−1
m + y−1

n )

= (−1)N1(N2−N1) det

([
1

y−1
n + x−1

m

]

(n,m)∈Z2×Z1

[
y
−l+ 1

2
n

]
(n,l)∈Z2×L

)
, (2.3)

obtained by the substitutions xm → x−1
m and yn → y−1

n ; the determinantal formula for the

supersymmetric Schur polynomial due to Moens and Van der Jeugt [39]

sY (x|y)
(−1)r

= det




[
1

xm+yn

]

(m,n)∈Z1×Z2

[
x
a− 1

2
m

]
(m,a)∈Z1×A[

y
l− 1

2
n

]
(l,n)∈L×Z2

[0]L×A



/

det




[
1

xm+yn

]

(m,n)∈Z1×Z2[
y
l− 1

2
n

]
(l,n)∈L×Z2


 ,

(2.4)
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with A = {a1, a2, · · · , ar} and L = {l1, l2, · · · , lM+r} (see figure 1). After multiplying these

three formulas with the substitutions xm = e
µm
k and yn = e

νn
k , we find

(−1)
1

2
N1(N1−1)+ 1

2
N2(N2−1)

[∏N1

m<m′ 2 sinh
µm−µm′

2k

∏N2

n<n′ 2 sinh
νn−νn′

2k∏N1

m=1

∏N2

n=1 2 cosh
µm−νn

2k

]2 sY (e
µ

k |e ν
k )

(−1)r

= det




[
1

2 cosh µm−νn
2k

]

N1×N2

[
e

aµm
k

]
N1×r

[
e

lνn
k

]
(M+r)×N2

[0](M+r)×r


det

([
1

2 cosh νn−µm

2k

]

N2×N1

[
e−

lνn
k

]
N2×M

)
.

(2.5)

Next, as in [26], let us rewrite the components of the determinants with the coordi-

nate/momentum operators and the coordinate eigenstates 〈µ|, |ν〉 (normalized as 〈µ|ν〉 =
2πδ(µ−ν)) by using the Fourier transformation of (2 cosh p̂

2)
−1 and introducing the formal

states |h〉〉 and 〈〈h|, (h ∈ Z+ 1
2)

〈µ| 1

2 cosh p̂
2

|ν〉 = 1

k

1

2 cosh µ−ν
2k

, 〈µ|h〉〉 = e
hµ

k , 〈〈h|ν〉 = e
hν
k . (2.6)

Then, we can follow the standard tricks introduced in [26, 27]. Namely, we include the

Gaussian factor e
i
2~

(
∑

m µ2
m−

∑
n ν2n) in (2.1) into the brackets

〈µ|e i
2~

q̂2 1

2 cosh p̂
2

e−
i
2~

q̂2 |ν〉 = 1

k

e
i
2~

(µ2−ν2)

2 cosh µ−ν
2k

,

〈µ|e i
2~

q̂2 |a〉〉 = e
i
2~

µ2〈µ|a〉〉, 〈〈l|e− i
2~

q̂2 |ν〉 = e−
i
2~

ν2 〈〈l|ν〉, (2.7)

and apply the similarity transformation

1 =

∫
dq

2π
|q〉〈q| ⇒ 1 =

∫
dq

2π
e−

i
2~

p̂2 |q〉〈q|e i
2~

p̂2 , (2.8)

to the µ and ν integrations (even though the bra and ket states appear in different deter-

minants). After these manipulations, the expectation value is expressed as

〈sY 〉k,M (N) =
(−1)r

N !(M +N)!

∫
dNµ

~N

dM+Nν

~M+N

× det




[
k〈µm|e i

2~
p̂2e

i
2~

q̂2 1

2 cosh p̂
2

e−
i
2~

q̂2e−
i
2~

p̂2 |νn〉
]

N×(M+N)

[
〈µm|e i

2~
p̂2e

i
2~

q̂2 |a〉〉
]
N×r[

〈〈l|e− i
2~

q̂2e−
i
2~

p̂2 |νn〉
]
(M+r)×(M+N)

[
0
]
(M+r)×r




× det

([
k〈νn|e

i
2~

p̂2 1

2 cosh p̂
2

e−
i
2~

p̂2 |µm〉
]

(M+N)×N

[
〈νn|e

i
2~

p̂2 |−l〉〉
]
(M+N)×M

)
. (2.9)
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It is magical [26] that all of the components in the first determinant reduce to delta

functions8

k〈µ|e i
2~

p̂2e
i
2~

q̂2 1

2 cosh p̂
2

e−
i
2~

q̂2e−
i
2~

p̂2 |ν〉 = ~

2 cosh µ
2

δ(µ− ν),

〈µ|e i
2~

p̂2e
i
2~

q̂2 |a〉〉 = ~√
−ik

e
i
2~

(2πa)2δ(µ− 2πia),

〈〈l|e− i
2~

q̂2e−
i
2~

p̂2 |ν〉 = ~√
ik

e−
i
2~

(2πl)2δ(ν + 2πil). (2.10)

For the second determinant we have

〈ν|e i
2~

p̂2 |−l〉〉 = e−
i
2~

(2πl)2〈ν|−l〉〉 . (2.11)

For the expansion of the first determinant to be non-vanishing we need to choose r rows

out of N rows in the upper-right block and M + r columns out of M +N columns in the

lower-left block. Then, the remaining N − r components are chosen from the upper-left

block. In renaming the indices, we have r!(M + r)!(N − r)! identical terms with signs

(−1)(M+r)r. Combining these factors, we find

〈sY 〉k,M (N) =
(−1)

1

2
M(M−1)+Mr

(N − r)!

∫
dNµ

~N

dM+Nν

~M+N
e

i
2~

(2π)2(
∑

a2−
∑

l2−
∑

l
2
)

×
N−r∏

i=1

~

2 cosh µi

2

δ(µi − νi)
r∏

q=1

~√
−ik

δ(µN−r+q − 2πiaq)
M+r∏

p=1

~√
ik

δ(νN−r+p + 2πilp)

× e
M
2k

(
∑N

m=1
µm−

∑M+N
n=1

νn)

∏N
m<m′ 2 sinh

µm−µm′

2k

∏M+N
n<n′ 2 sinh

νn−νn′

2k∏N
m=1

∏M+N
n=1 2 cosh µm−νn

2k

, (2.12)

where we have used (−1)r
2

= (−1)r. After performing the integration of the delta functions

by substitutions, we arrive at the expression

〈sY 〉k,M (N)

〈sY 〉k,M (r)
=

1

(N − r)!

∫
dN−rx

(4πk)N−r

N−r∏

i<j

(
tanh

xi − xj
2k

)2

×
N−r∏

i=1

[
1

2 cosh xi

2

∏

a∈A

tanh
xi − 2πia

2k

∏

l∈L

tanh
xi + 2πil

2k

]
, (2.13)

where the normalization is given by9

〈sY 〉k,M (r) =
i
1

2
M(M−1)+Mre

πi
k
(
∑

a2−
∑

l2−
∑

l
2
)e

πi
k
M(

∑
a+

∑
l)

√
−ik

r√
ik

M+r

×
∏

a>a′ 2 sin
π(a−a′)

k

∏
l>l′ 2 sin

π(l−l′)
k∏

a

∏
l 2 cos

π(a+l)
k

. (2.14)

8Formally, the Gaussian factors e
i

2~
p̂2e

i

2~
q̂2 and e−

i

2~
q̂2e−

i

2~
p̂2 exchange the momentum with the coor-

dinate. The formal computation in the second and third formulas needs justification [26]. It is important

that the remaining factors (2 cosh µ−ν

2k
)−1 do not contain poles between Imµ = 2πa1 and Im ν = −2πl1 due

to the condition a1 + l1 < k/2. We are grateful to Takao Suyama for valuable discussions.
9The absolute value |〈sY 〉k,M (r)| is coincident with CY (k,M) in [36].
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We note that, although we originally start with the situation of N1 ≤ N2, both of the

formulas (2.13) and (2.14) are valid for the opposite case N1 > N2 as well10 if we stick to

the original notation N1 = N , N2 = M +N , #{q|aq > 0} = r, #{p|lp > 0} = M + r and

〈sY 〉k,M (N) = 〈sY 〉k(N,M + N) but M < 0. Therefore, no special care is needed when

crossing the diagonal line and we can extend to M < 0 directly.

Finally let us comment on the closed string formalism for the partition function (1.3).

In [25] the proof was done by several steps of integrations. Following the method of [26, 27],

we have generalized the formalism for the expectation values of the half-BPS Wilson loop.

The result of the partition function can be simply rederived by setting A=∅, L=L in (2.13).

3 Proof of generalized open-closed duality

In the previous section we have found that, after suitably normalized, the expectation value

〈sY 〉k,M (N) is given in (1.12) with V (x) defined by (1.13) and no special care is needed

when crossing M = 0. From figure 1 we know that V (x) contains poles periodically, though

some of them are cancelled by the zeros of the hyperbolic tangent functions. Therefore,

as long as we do not encounter the real poles, we can shift the integration contour or in

contrast the position of the poles by ±2πi freely, so that two expectation values which

share the same set of (1.15) up to an integral shift are identical. This identity induces the

duality relation we want to prove. Let us see this explicitly for the example in figure 1.

Here we assume that k is large enough so that we do not have to consider the poles of the

hyperbolic tangent functions in our shift of the integration contour.

In figure 2 we pick up the example in figure 1 and shift the integration contour in the

unit of 2πi. Starting from
(
5
2 ,

1
2 |92 , 72 , 32 , 12

)
, if we move the integration contour upwards (so

that the number of leg lengths increases), we find
(
3
2 |112 , 92 , 52 , 32 , 12

)
, where in this shift we

only move across the harmless green pole (x = πi in figure 1) and the expectation value

is not changed. If we move further into
(
1
2 |132 , 112 , 72 , 52 , 32

)
, now we need to cross the real

red pole (x = 3πi in figure 1) and the expectation value is changed. Similarly, we can

move downwards to
(
7
2 ,

3
2 ,

1
2 |72 , 52 , 12

)
and so on without changing the expectation values for

a while. We have classified the expectation values by the shaded green backgrounds in

figure 2. We can summarize the above duality relation as

〈s([(M+r)r]+Y )∪Y ′〉GC
k,M (z)

〈s([(M+r)r]+Y )∪Y ′〉k,M (r)
=

〈s([(M+r+1)r−1]+Y )∪Y ′〉GC
k,M+2(z)

〈s([(M+r+1)r−1]+Y )∪Y ′〉k,M+2(r − 1)
, (3.1)

if λ1 ≤ r − 1 and α1 ≤ M + r where λ1 = λ1(Y ) and α1 = α1(Y
′) denote the first leg

length of Y and the first arm length of Y ′. Using this recursively, we find

〈s
([(α1)M̃−α1 ]+Y )∪Y ′

〉GC
k,−M̃+2α1

(z)

〈s
([(α1)M̃−α1 ]+Y )∪Y ′

〉
k,−M̃+2α1

(M̃ − α1)
=

〈s
([(M̃−λ1)λ1 ]+Y )∪Y ′

〉GC
k,M̃−2λ1

(z)

〈s
([(M̃−λ1)λ1 ]+Y )∪Y ′

〉
k,M̃−2λ1

(λ1)
, (3.2)

with M̃ = M + 2r. For the special case λ1 = α1 = 0 this reduces to (1.10).

10Instead of the leg lengths for the trivial representation L, we introduce the arm lengths a ∈ A ={
−M − 1

2
,−M − 3

2
, · · · , 1

2

}
for the case M < 0. Hence, we need to interpret the phase factor e

πi

k
(−

∑
l
2)

in (2.14) as e
πi

k
(+

∑
a2).
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Figure 1

Figure 2. Shifting the integration contour across the harmless poles (denoted by the green arrows)

does not change the expectation values and hence induces the duality, while shifting across the

poles (denoted by the red arrows) is not allowed. We assume that k is large enough. When crossing

the real poles, the change of the expectation values is evaluated from the residues.

In [36] another interesting identity (1.11)

〈s(a|l)〉GC
k,M (z)

〈s(a|l)〉k,M (1)
=

[〈s(l+M |a−M)〉GC
k,M (z)

〈s(l+M |a−M)〉k,M (1)

]∗
, (3.3)

with a > M was found numerically. However, after generalizing the open-closed duality

into (3.2), we point out that this falls into the same class of the identity. Namely, since

the Young diagram (a|l) is decomposed as ([(M + 1)1] + [a−M − 1
2 ]) ∪ [1l−

1

2 ], we can use

our formula (3.2) to shift the integration contour to obtain ([1M+1] + [a−M − 1
2 ])∪ [1l−

1

2 ],

which is (a−M |l+M). After applying the conjugate relation (1.2), this reduces to (3.3).

Let us comment on the effect of crossing the real poles in shifting the integration

contour. Although this gives different values due to the effect of the poles, we note that

the difference is under control by taking care of the residues. The computation of the

difference is similar to [14, 17, 30].
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4 Discussions

In this paper we have proposed a new Fermi gas formalism to study vacuum expectation

values of the half-BPS Wilson loop. Compared with the open string formalism [14], which

expresses the partition function with fractional branes using the Wilson loops, our formal-

ism is the opposite of it. Namely, with the same method which leads to the closed string

formalism of the partition function, we end up with a new formalism that expresses the

Wilson loop expectation values using the modified density matrix which depends on the set

of arm lengths and leg lengths. With this formalism we can prove some important duality

relations proposed previously: the open-closed duality and its generalizations.

We comment that our formalism looks similar to the one conjectured in [40], though the

direct comparison is not easy. Also, although we have proved the identity (1.14) inspiring

the open-closed duality, it is not clear to us how this duality relates to those in [38, 41, 42].

Especially, it is remarkable to observe the similarity to the claim of bubbling Calabi-Yau

manifolds [43, 44], where the background toric Calabi-Yau manifold of topological strings

is modified by the introduction of the Wilson loop operator. It would be interesting to

clarify the relations.11

The computation of the half-BPS trace operators in D3-branes [45] has a nice in-

terpretation from the fermion droplets [46]. After obtaining a simple formalism for the

half-BPS Wilson loop in M2-branes, it is interesting to ask whether we can find a similar

interpretation from the supergravity viewpoint as well.

Unfortunately, because of the convergence condition M ≤ k/2, our formalism seems

not very helpful in proving the Giveon-Kutasov duality [47, 48] relating M to k − M .

In fact, previously the duality was used to define the formalism for M ≥ k/2. It is an

interesting open problem to improve this situation.

From a technical viewpoint, we have proposed another nice formalism for general

expectation values in the ABJM matrix model. Since there are some interesting related

models [49–53], we would like to apply a similar formalism to these models for the numerical

computations and find more relations to the topological string theories.
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