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1 Introduction

When the standard model (SM) is regarded as an effective field theory, the low energy effects

from physics beyond SM at a high energy scale can be organized in a tower of high dimen-

sional operators. These operators are composed of the SM fields, respect the SM gauge symmetry

SU(3)C×SU(2)L×U(1)Y , and have coefficients that are suppressed by relevant high energy scales.

This forms what is usually called standard model effective field theory (SMEFT) [1–6]. The ac-

cidental symmetries in SM such as lepton and baryon number conservation are generically not

preserved any longer by high dimensional operators; this is not surprising if one imagines that a

high scale supersymmetric or grand unification theory is responsible for those operators.

The tower of high dimensional operators starts at dimension five, and it turns out that there is

a unique operator [7], which violates lepton number by two units (∆L =±2) and can accommodate

a Majorana mass for neutrinos. There are much more operators at dimension six [8], and the

complete list contains 63 independent operators [9], among which 59 conserve both lepton and

baryon number and the other 4 violate both by one unit (∆L = ∆B = ±1). The latter can induce

nucleon decays such as p → e+π0, ν̄π+, and n → ν̄π0. The first systematic analysis on dimension

seven (dim-7) operators has been made recently in [10]; for earlier studies, see [12, 13], and for

a recent analysis of dim-7 operators in SM extended by right-handed neutrinos, see [11]. It is

found that there are altogether 20 operators, 13 of which violate lepton number but preserve baryon

number (∆L = 2, ∆B = 0) and 7 of which violate both but preserve their sum (−∆L = ∆B = 1). The

first set includes the dim-7 generalization of the dim-5 Majorana neutrino mass operator which

turns out to be also unique, consistent with the general analysis in [14]. The second set could

induce another type of rare nucleon decays such as p → νπ+ and n → e−π+, νπ0. The pursuit of

high dimensional operators can be continued. For instance, at dimension 9, operators that violate

baryon number by two units start to appear. These operators could induce phenomena such as

neutron-antineutron oscillation, and may bridge our understanding of some underlying theory and

the matter-antimatter asymmetry observed in the Universe [15]. For a recent discussion on the

relation between the dimension and lepton/baryon number of operators, see ref. [16].
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The high dimensional operators discussed above are generated at a high energy scale where

one integrates out certain heavy degrees of freedom from an underlying theory. When studying the

physical effects of those operators in low energy experiments, it is necessary to run them down to

the scale at which their matrix elements are evaluated. This can be accomplished by renormaliza-

tion group equations (RGEs), and it boils down to the computation of the anomalous dimension

matrix for relevant operators. For the unique dim-5 operator the one-loop analysis has been carried

out previously in ref. [17] with the final answer reported in [18]. The situation becomes com-

plicated for dim-6 operators as there are too many of them and strong interactions also set in.

The computation of the anomalous dimension matrix has been recently accomplished in a series

of papers [19–25]. The purpose of our current work is to initiate the evaluation of the one-loop

anomalous dimension matrix for dim-7 operators. Since, as mentioned above, these operators fall

into two sets according to whether baryon number is conserved or not, the two sets do not mix

under one-loop renormalization. We report our result in this work on the second set of operators

that violate baryon number conservation and defer the discussion on the first set of operators in a

future publication. In so doing, we also find that the basis of operators established in [10] can be

further shortened, with one less operator in each set.

This paper is organized as follows. In section 2 we set up our conventions and show the

redundancy of the basis given in [10] by establishing two linear relations that can be used to reduce

one operator in each of the two sets of operators. We compare our count of independent operators

with those in the literature. Then in section 3, we present our result on the one-loop RGEs for

the Wilson coefficients of the 6 dim-7 operators in the second set. We discuss briefly its possible

implications on proton decays that violate both baryon and lepton numbers but conserve their sum,

such as p → νπ+. We recapitulate our results in section 4. Some useful Fierz identities employed

in sections 2 and 3 are collected in the appendix.

2 Basis of operators

We start with some preliminary discussions. L, Q are the SM left-handed lepton and quark doublet

fields, u, d, e are the right-handed up-type quark, down-type quark and charged lepton singlet

fields, and H denotes the Higgs doublet. Dropping gauge-fixing terms, the SM Lagrangian is

L4 = −1

4
GA

µνGAµν − 1

4
W I

µνW Iµν − 1

4
BµνBµν +

(

DµH
)†
(DµH)−λ

(

H†H − 1

2
v2

)2

+ ∑
Ψ=Q,L,u,d,e

Ψ̄i /DΨ−
[

Q̄YuuH̃ + Q̄YddH + L̄YeeH +h.c.
]

. (2.1)

Here the superscripts A and I count the generators of the SU(3)C and SU(2)L group, respectively,

Yu, Yd , Ye are the Yukawa couplings which are complex matrices in flavor space, and H̃i = εi jH
∗
j .

The covariant derivative is defined by

Dµ = ∂µ − ig3T AGA
µ − ig2T IW I

µ − ig1Y Bµ , (2.2)

where T A, T I, Y are the generator matrices appropriate for the fields to be acted on. From eq. (2.1)

one can derive the following equations of motion (EoMs) which will be used to remove redundant
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ψ2H4 +h.c. ψ2H3D+h.c.

OLH εi jεmn(L
iCLm)H jHn(H†H) OLeHD εi jεmn(L

iCγµe)H jHmiDµHn

ψ2H2D2 +h.c. ψ2H2X +h.c.

OLHD1 εi jεmn(L
iCDµL j)Hm(DµHn) OLHB εi jεmn(L

iCσµνLm)H jHnBµν

OLHD2 εimε jn(L
iCDµL j)Hm(DµHn) OLHW εi j(ετ I)mn(L

iCσµνLm)H jHnW Iµν

ψ4D+h.c. ψ4H +h.c.

Od̄uLLD εi j(d̄γµu)(LiCiDµL j) OēLLLH εi jεmn(ēLi)(L jCLm)Hn

OL̄QddD (L̄γµQ)(dCiDµd) Od̄LQLH1 εi jεmn(d̄Li)(Q jCLm)Hn

OēdddD (ēγµd)(dCiDµd) Od̄LQLH2 εimε jn(d̄Li)(Q jCLm)Hn

Od̄LueH εi j(d̄Li)(uCe)H j

OQ̄uLLH εi j(Q̄u)(LCLi)H j

OL̄dudH̃ (L̄d)(uCd)H̃

OL̄dddH (L̄d)(dCd)H

OēQddH̃ εi j(ēQi)(dCd)H̃ j

OL̄dQQH̃ εi j(L̄d)(QCQi)H̃ j

redundant operators

O
(2)

d̄uLLD
εi j(d̄γµu)(LiCσ µνDνL j) OL̄dQdD (L̄iDµd)(QCγµd)

Table 1. The basis of the twenty dim-7 operators in ref. [10] is reproduced here with some modifications.

The flavor and summed color indices are not shown. (1) We label operators in a more symmetric manner. (2)

We associate a factor of i with the gauge covariant derivative Dµ (but drop i2 from the Ψ2H2D2 operators)

for convenience of later RGE analysis. (3) We replace the original operator εi j(L
iCγµ e)(d̄γµ u)H j by the new

one, Od̄LueH , so that all operators in the Ψ4H sector are products of scalar bilinears. (4) The two redundant

operators listed in the last row are to be removed. The equivalence of the two operators in (3) and redundancy

in (4) are established in the main text.

operators at one-loop level,

i /DL = YeeH, (2.3)

i /Dd = Y
†
d H†Q, (2.4)

or more explicitly in flavor indices,

iγµDµLi
t = (Ye)tueuH i, (2.5)

iγµD
µ
σρdρt =

(

Y
†
d

)

tu
δklQkσuH∗

l . (2.6)

We use the letters p,r,s, t,u,v,w for flavors, i, j,k, l and α ,β ,σ ,ρ for indices in the fundamental

representations of SU(2)L and SU(3)C respectively. A repeated index is always implied to be

summed over.

The twenty dim-7 operators listed in ref. [10] are shown in table 1 with some modifications.

Our notations for operators are such that the fermion fields and their flavors are identically ordered

and follow the chains of the two bilinears involved. For instance, the six independent and complete
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operators in the second set that violate both baryon and lepton numbers but preserve their sum, i.e.,

−∆L = ∆B = 1, are written as,

O
prst

L̄dudH̃
= εαβσ εi j (L̄ipdαr)(uβ sCdσ t)H

∗
j ,

O
prst

L̄dddH
= εαβσ δi j (L̄ipdαr)

(

dβ sCdσ t

)

H j,

O
prst

ēQddH̃
= −εαβσ δi j (ēpQiαr)

(

dβ sCdσ t

)

H∗
j ,

O
prst

L̄dQQH̃
= −εαβσ δklδi j

(

L̄kpdαr

)(

Qlβ sCQiσ t

)

H∗
j ,

O
prst

L̄QddD
= εαβσ δi j

(

L̄ipγµQ jαr

)(

dβ sCiD
µ
σρdρt

)

,

O
prst
ēdddD = εαβσ

(

ēpγµdαr

)(

dβ sCiD
µ
σρdρt

)

. (2.7)

We often use the notation (ΨCχ) = ΨCχ for a bilinear involving charge-conjugated fields to avoid

too many indices on the fields. The charge-conjugated field is defined as ΨC =CΨ̄T with (ΨC)C =

Ψ, where the matrix C satisfies the relations CT =C† =−C and C2 =−1. Note that some operators

involving identical fields can vanish in special cases; for instance, with one generation of down-type

quarks, both O
prst

L̄dddH
and O

prst

ēQddH̃
vanish since their second bilinear factor vanishes.

We are now in a position to verify the claims in the caption to table 1. First of all, we prove

the equivalence between the original operator εi j(L
iCγµe)(d̄γµu)H j and the operator Od̄LueH . In

the course of our computation we have made free use of the Fierz identities derived in refs. [26,

27] for uncontracted products of bilinears and products of bilinears involving charge-conjugated

fields respectively. Some identities are collected in the appendix. Note that the Fierz identities are

basically algebraic identities for gamma matrices though we need here those written for fermion

fields. Using the Fierz identity for chiral fields,

(

ΨC
1LγµΨ2R

)

(

Ψ3RγµΨ4R

)

= 2
(

Ψ3RΨ1L

)

(

ΨC
4RΨ2R

)

, (2.8)

where anticommutativity of fermion fields has been taken into account, we have indeed

εi j

(

LiCγµe
)(

d̄γµu
)

H j = 2εi j

(

d̄Li
)

(uCe)H j = 2Od̄LueH . (2.9)

Now we demonstrate that the operators O
(2)

d̄uLLD
and OL̄dQdD can be expressed in terms of

other operators and can thus be dropped as redundant operators. Writing σ µν = iγµγν − igµν and

employing eq. (2.9) and the EoM (2.5), we obtain

O
(2)prst

d̄uLLD
= εi j

(

d̄pγµur

)

(

Li
sCσ µν DνL

j
t

)

= εi j

(

d̄pγµur

)

(

Li
sCγµγν iDνL

j
t

)

− εi j

(

d̄pγµur

)

(

Li
sCiDµL

j
t

)

= (Ye)tu εi j

(

d̄pγµur

)(

Li
sCγµeu

)

H j −O
prst

d̄uLLD

= 2(Ye)tuO
psru

d̄LueH
−O

prst

d̄uLLD
, (2.10)

where we have attached the flavor indices but suppressed the color indices. We can thus remove

O
(2)

d̄uLLD
in favor of Od̄LueH and Od̄uLLD. To show that the operators OL̄dQdD, OL̄QddD, and OL̄dQQH̃

are not independent, we employ the Fierz identity,

(

Ψ1LγµΨ2L

)

(Ψ3RCΨ4R) =
(

Ψ1LΨ3R

)(

Ψ2LCγµΨ4R

)

+
(

Ψ1LΨ4R

)(

Ψ2LCγµΨ3R

)

. (2.11)
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Replacing (Ψ1L,Ψ2L,Ψ3R,Ψ4R) by (Lip,Qiαr,dβ s, iD
µ
σρdρs) and applying the EoM (2.6), the oper-

ator O
prst

L̄QddD
can be reduced as follows:

O
prst

L̄QddD
= εαβσ δi j

(

L̄ipγµQ jαr

)(

dβ sCiD
µ
σρdρt

)

= εαβσ δi j

((

L̄ipdβ s

)(

Q jαrCiγµD
µ
σρdρt

)

+
(

L̄ipiD
µ
σρdρt

)(

Q jαrCγµdβ s

))

=
(

Y
†
d

)

tu
εαβσ δi jδkl

(

L̄ipdβ s

)

(Q jαrCQkσu)H∗
l +O

ptrs

L̄dQdD

=
(

Y
†
d

)

tu
O

psru

L̄dQQH̃
+O

ptrs

L̄dQdD
. (2.12)

The second equality in the above can also be established by first employing a pure algebraic Fierz

identity
(

γµP±
)

ρσ
(P∓)αβ = (P∓)ρβ

(

γµP±
)

ασ
+
(

P∓C−1
)

ρα

(

CγµP∓
)

σβ
, (2.13)

where P± projects out the right- and left-handed chirality respectively, and then attaching the spinor

components of the above fields. Note that a spinor being acted upon beforehand by a covariant

derivative or gamma matrices does not hinder this application. One can confirm the above identity

by using, e.g., eqs. (27) and (30) in [26], and multiplying the C matrix judiciously. Equation (2.12)

implies that we can remove OL̄dQdD as redundant as shown in table 1.

In summary, there are 18 independent dim-7 operators, out of which 6 are in the set of −∆L =

∆B= 1 and 12 in the set of ∆L= 2, ∆B= 0. We thus have one less operator in each set than ref. [10],

and both redundant operators are in the class ψ4D in table 1. The number of operators has also

been counted previously in [28] by Hilbert series methods and in [29] by conformal algebra. Those

papers count independent operators that also take into account independent flavor indices for n

generations of fermions. We here summarize the differences. While ref. [29] only counts the total

number of operators in each class, ref. [28] counts each type of operators in each class (except for

the class ψ2H2D2 and part of the class ψ4H). The difference arises in the class ψ2H2D2, as already

pointed out in [29]: ref. [29] finds n(n+1) operators in total while ref. [28] finds n(n+3)/2. (We

do not include factor of two accounting for Hermitian conjugate of each operator since all dim-7

operators are non-Hermitian.) Using our basis of 18 operators, we have also counted independent

operators that take into account flavor indices. We have managed to do so by exhausting all flavor

symmetries for each operator, with the simplest ones shown in eqs. (3.3), that can be employed to

remove redundancy. We confirmed separate counts for each operator in [28] with the exception for

the class ψ2H2D2: we found the same number n(n+ 1)/2 of OLHD1 and OLHD2, thus confirming

the total number in [29]. (In passing, we note a typo in [28] concerning the number of OēLLLH ,

with the correct number being n2(2n2+1)/3.) Had the two redundant operators in table 1 not been

deleted, the number of operators in the class ψ4D would not match with refs. [28, 29].

3 Renormalization group equations for Wilson coefficients

The effective Lagrangian for dim-7 operators is written symbolically as

L7 = ∑
i

CiOi +h.c., (3.1)

where Ci is the Wilson coefficient associated with the operator Oi. The index i enumerates all 18

operators shown in table 1 which are all non-Hermitian, and the sum over i also covers the flavor

– 5 –
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indices of quark and lepton fields. To study the effects of the above interactions in low energy

processes, it is necessary to run the operators from the high scale at which they are generated to the

low scale at which their matrix elements are evaluated. The running effect is governed by RGEs

and is incorporated in their Wilson coefficients. In this work, we study the RGEs for the subset

of operators in eq. (2.7) at one-loop level. This is self-consistent since those six operators violate

baryon number and do not mix at one loop with the remaining twelve operators which conserve

baryon number.

The renormalization group equations for the Wilson coefficients Ci are

Ċi ≡ 16π2µ
dCi

dµ
=

6

∑
j=1

γi jC j, (3.2)

where µ is the renormalization scale, γi j is the 6× 6 anomalous dimension matrix, and i j enu-

merate the six operators in eq. (2.7). We will work with dimensional regularization in D = 4−2ε

dimensions and adopt the minimal subtraction (MS) scheme. We compute in general Rξ gauge

with three separate gauge parameters ξ1,2,3 for three gauge fields. The complete cancellation of

all ξ1,2,3 dependence in the γ matrix serves as a strong check on our result. Before presenting our

results, we notice some symmetries in flavor indices. The operators have the following relations,

O
prst

L̄dddH
+O

prts

L̄dddH
= 0, O

prst

L̄dddH
+O

pstr

L̄dddH
+O

ptrs

L̄dddH
= 0, O

prst

ēQddH̃
+O

prts

ēQddH̃
= 0, (3.3)

where the first and last ones are obvious by inspection and the second one is obtained by further

using the last identity in eq. (A.1). These relations are helpful to organize our computational results

in the standard basis.

We are now ready to study the one-loop renormalization of the dim-7 interactions L7 due to

the SM interactions L4. We will not present the lengthy computational details; for the purpose

of illustration, let us consider the one-loop Feynman diagrams with the insertion of the effective

interaction CL̄dudH̃OL̄dudH̃ . The representative diagrams are shown in figure 1, and are classified

into six categories from (B) to (H3). The diagrams with the insertion of other three operators

involving a Higgs field are similarly classified, but those with the insertion of an operator involving

a covariant derivative have more categories. We compute graphs as a contribution to the relevant

amplitude. For instance, the first graph in figure 1 that involves the exchange of a B gauge field

between the lepton doublet L (of hypercharge yL) and the singlet d quark (of hypercharge yd) yields

a term in the amplitude,

M =C
prst

L̄dudH̃
εαβσ εi jµ

4−D

∫

dDk

(2π)D

(

L̄ipig1yLγµ
i

/k1

i

/k2

ig1ydγνdr

)

(

uβ sCdσ t

)

H∗
j

−i

k2
G

µν
ξ1
(k),

(3.4)

where G
µν
ξ1
(k) = gµν +(ξ1 −1)kµkν/k2 and the Higgs field is attached for clarity. For the sake of

isolating ultraviolet divergences, k1,2 can be identified with k. Finishing the above loop integral

yields a term that is regarded as a contribution from the effective interaction, g2
1/(16π2ε)(ξ1 +

3)Cprst

L̄dudH̃
O

prst

L̄dudH̃
. After all one-loop diagrams are finished, the relevant counterterms are required

to cancel the divergences. Finally, we include field strength renormalization constants and compute

the γ-function in the standard manner.

Using the shortcuts for easier identification of terms,

C...
1,2,...,6 =C...

L̄dudH̃
, C...

L̄dddH
, C...

ēQddH̃
, C...

L̄dQQH̃
, C...

L̄QddD
, C...

ēdddD, (3.5)
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L d L d L d

dududu

H H H
~ ~ ~

WB I

GA

e

Q

d

d

H
~

L

u

d

d

H
~

H H

B GA

H

(B)

(H1) (H2)

(W) (G)

(H3)

L

Q

d

d

L

u

L
e

u

Figure 1. Representative one-loop Feynman diagrams with an insertion of the effective interaction

CL̄dudH̃OL̄dudH̃ , shown as a box, from L7. They are organized into six categories, (B)–(H3). Categories (B),

(W), and (G) stand for the insertion of an internal B, W I , and GA gauge boson propagator, respectively; cat-

egories (H1), (H2), and (H3) stand for the insertion of an internal scalar H between two fermions in various

ways with the release of a scalar H or gauge field (B, W I , GA). The total numbers of Feynman diagrams for

those six categories in this example are 10 for (B), 1 for (W), 3 for (G), 3 for (H1), 4 for (H2), and 1 for (H3).

our final result is summarised by the RGEs for the above six Wilson coefficients,

Ċ
prst
1 = +

(

−4g2
3 −

9

4
g2

2 −
17

12
g2

1 +WH

)

C
prst
1 − 10

3
g2

1C
ptsr
1 − 3

2

(

YeY
†
e

)

pv
Cvrst

1

+3
(

Y
†
d Yd

)

vr
C

pvst
1 +3

(

Y
†
d Yd

)

vt
C

prsv
1 +2

(

Y †
u Yu

)

vs
C

prvt
1 −2

(

Y
†
d Yu

)

vs

(

C
pvrt
2 + v ↔ r

)

+4(Ye)pv(Yu)wsC
vwrt
3 −2

(

(Yu)vs(Yd)wt + s ↔ t
)

C
prvw
4 − 1

6

(

11g2
1 +24g2

3

)

(Yu)vsC
pvrt
5

+
1

6

(

13g2
1 +48g2

3

)

(Yu)vsC
pvtr
5 − 3

2
(Yd)vt

(

Y
†
d Yu

)

ws
C

pvrw
5

−3(Yu)vs

((

Y
†
d Yd

)

wt
C

pvrw
5 − r ↔ t

)

+
3

2
(Ye)pv

(

Y
†
d Yu

)

ws
Cvrtw

6 , (3.6)

Ċ
prst
2 = +

(

−4g2
3 −

9

4
g2

2 −
13

12
g2

1 +WH

)

C
prst
2 +

5

2

(

YeY
†
e

)

pv
Cvrst

2

+2
((

Y
†
d Yd

)

vr
C

pvst
2 +

(

Y
†
d Yd

)

vs
C

prvt
2 +

(

Y
†
d Yd

)

vt
C

prsv
2

)

−1

4

[((

Y †
u Yd

)

vs
C

prvt
1 +

(

Y †
u Yd

)

vr
C

psvt
1 +

(

Y †
u Yd

)

vs
C

ptvr
1

)

− s ↔ t
]

+

{[(

1

3

(

g2
1−6g2

3

)

(Yd)vrC
pvst
5 −1

4
g2

1(Yd)vsC
pvrt
5 −3

4
(Yd)vr

(

Y
†
d Yd

)

wt
C

pvsw
5

)

+r ↔ t

]

−s ↔ t

}

+
1

2
(Ye)pv

{[

g2
1

(

Cvrst
6 +r ↔ s

)

+
3

4

((

Y
†
d Yd

)

wt
(Cvrsw

6 +r ↔ s)+
(

Y
†
d Yd

)

wr
Cvtsw

6

)

]

−s ↔ t

}

,

(3.7)
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Ċ
prst
3 = +

(

−4g2
3 −

9

4
g2

2 +
11

12
g2

1 +WH

)

C
prst
3

+

[(

(

Y †
e Ye

)

pv
Cvrst

3 +
5

4

(

YuY †
u +YdY

†
d

)

vr
C

pvst
3 +3

(

Y
†
d Yd

)

vs
C

prvt
3 −

(

Y
†
d

)

wr
(Yd)vsC

pvwt
3

)

−s ↔ t

]

−1

2

(

Y †
e

)

pv

[(

(

Y †
u

)

wr
Cvtws

1 +2(Yd)wsC
vtwr
4 +(Yd)wtC

vsrw
4 +3g2

1Cvrst
5 +3

(

Y
†
d Yd

)

wt
Cvrsw

5

)

−s ↔ t
]

+
1

4

(

g2
1 +12g2

3

)

(

Y
†
d

)

vr

[(

C
pvst
6 +C

psvt
6 +C

pstv
6

)

− s ↔ t
]

−3

4

{[(

Y
†
d Yd

)

vs

(

Y
†
d

)

wr

(

C
ptvw
6 −r ↔ v

)

+
(

Y
†
d Yd

)

ws

(

Y
†
d

)

vr

(

C
ptvw
6 +2C

pvtw
6

)

]

− s ↔ t
}

,

(3.8)

Ċ
prst
4 = +

(

−4g2
3 −

15

4
g2

2 −
19

12
g2

1 +WH

)

C
prst
4 −3g2

2C
prts
4 +3

(

Y
†
d Yd

)

vr
C

pvst
4

−1

2

(

YeY
†
e

)

pv

(

4Cvrts
4 −Cvrst

4

)

+
(

2
(

YuY †
u

)

vt
−
(

YdY
†
d

)

vt

)

C
prvs
4

+
1

2

(

5
(

YuY †
u

)

vs
+
(

YdY
†
d

)

vs

)

C
prvt
4 +

1

2

(

5
(

YdY
†
d

)

vt
−3

(

YuY †
u

)

vt

)

C
prsv
4

−(Yd)wr

((

Y
†
d

)

vs
C

pvwt
4 +

(

Y
†
d

)

vt
C

pvsw
4

)

−
(

(

Y †
u

)

vs

(

Y
†
d

)

wt

(

2C
prvw
1 +C

pwvr
1

)

+ s ↔ t
)

−2(Ye)pv

(

Y
†
d

)

ws
Cvtwr

3 − 1

6

(

g2
1 −24g2

3

)

(

Y
†
d

)

vt

(

C
psvr
5 + r ↔ v

)

− 3

2

(

YeY
†
e

)

pv

(

Y
†
d

)

ws
Cvtrw

5

+
3

2

(

Y
†
d Yd

)

vr

(

Y
†
d

)

wt

(

C
psvw
5 + v ↔ w

)

+
3

2

(

(

YuY †
u

)

vs

(

Y
†
d

)

wt
+ s ↔ t

)

C
pvrw
5

+
3

2
(Ye)pv

(

Y
†
d

)

ws

(

Y
†
d

)

xt
(Cvxrw

6 +Cvrwx
6 +Cvrxw

6 ) , (3.9)

Ċ
prst
5 = +

(

5

9
g2

1 −
4

3
g2

3

)

C
prst
5 −

(

1

9
g2

1 −
8

3
g2

3

)

C
prts
5 +

1

2

(

YeY
†
e

)

pv
Cvrst

5 +
1

2

(

YuY †
u +YdY

†
d

)

vr
C

pvst
5

+
(

Y
†
d Yd

)

vs
C

prvt
5 +

(

Y
†
d Yd

)

vt
C

prsv
5 −

(

Y
†
d

)

wr

(

(Yd)vsC
pvwt
5 +(Yd)vtC

pvsw
5

)

−(Ye)pv

(

Y
†
d

)

wr

(

Cvwst
6 +Cvswt

6 +Cvstw
6

)

, (3.10)

Ċ
prst
6 = −

(

4

27
g2

1 +
8

3
g2

3

)

C
prst
6 −

(

2

9
g2

1 −
4

3
g2

3

)

(

C
prts
6 +C

psrt
6 +C

pstr
6 +C

ptrs
6 +C

ptsr
6

)

+
(

Y †
e Ye

)

pv
Cvrst

6 +
(

Y
†
d Yd

)

vr
C

pvst
6 +

(

Y
†
d Yd

)

vs
C

prvt
6 +

(

Y
†
d Yd

)

vt
C

prsv
6 −2

(

Y †
e

)

pv
(Yd)wrC

vwst
5 ,

(3.11)

where WH = Tr(3Y †
u Yu +3Y

†
d Yd +Y †

e Ye) arises from the Higgs field wavefunction renormalization

constant due to Yukawa interactions. We see from the above results that while operators involving

a covariant derivative renormalize those involving a Higgs field the opposite does not occur. This

interesting phenomenon is consistent with the nonrenormalization theorem formulated recently

in ref. [30].

The above dim-7 operators violate both baryon and lepton numbers by one unit but preserve

their sum, and would contribute to the rare nucleon decays such as p → νπ+, νK+, n → e−π+, and

p→ e−π+π+, and so on. We will not attempt here a complete analysis on this which would involve

a sequence of low energy theories below the electroweak scale, but instead illustrate potential

impact of the above RGEs by estimating typical running effects. We take the decay p → νπ+ as an

– 8 –
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Figure 2. Feynman diagram relevant for the decay p → νπ+ due to dim-7 effective interactions.

example. We ignore the operators OL̄QddD and OēdddD which are subleading at low energies, and

set the Higgs field H to its vacuum expectation value v/
√

2 for the other four operators. Then, a

potentially contributing operator would involve ν̄udd simply by charge conservation, as is shown

in figure 2. An inspection of eq. (2.7) shows that only the operators O
p111

L̄dudH̃
and O

p111

L̄dQQH̃
contain

such a term, where the superscript p refers to the neutrino flavor and 1 to the quarks in the first

generation.

To go further, we make some plausible approximations. We ignore quark flavor mixing, and

drop all Yukawa couplings except for the top quark. Then RGEs (3.6) and (3.9) are decoupled,

µ
d

dµ
C

p111

L̄dudH̃
=

1

4π

(

−4α3 −
9

4
α2 −

57

12
α1 +3αt

)

C
p111

L̄dudH̃
, (3.12)

µ
d

dµ
C

p111

L̄dQQH̃
=

1

4π

(

−4α3 −
27

4
α2 −

19

12
α1 +3αt

)

C
p111

L̄dQQH̃
, (3.13)

where αi = g2
i /(4π) (i = 1,2,3) and αt = Y 2

t /(4π). The solutions for running from a high energy

scale M ∼ 1015 GeV of order grand unification scale to a low energy scale µ ∼ mp ∼ 1 GeV of the

proton mass are

C
p111

L̄dudH̃
(mp) =

[

α3(mp)

α3(M)

]2/β3
[

α2(MZ)

α2(M)

]9/(8β2)[α1(MZ)

α1(M)

]57/(24β1)

(0.787)Cp111

L̄dudH̃
(M), (3.14)

C
p111

L̄dQQH̃
(mp) =

[

α3(mp)

α3(M)

]2/β3
[

α2(MZ)

α2(M)

]27/(8β2)[α1(MZ)

α1(M)

]19/(24β1)

(0.787)Cp111

L̄dQQH̃
(M), (3.15)

where we have solved numerically the running effect of αt from M to the electroweak scale of the

Z-boson mass MZ (factor 0.787) using the one-loop βi functions,

β3 = 7, β2 =
19

6
, β1 =−41

10
, (3.16)

and the MS values of αi (i = 1,2,3, t) at MZ [31],

α1(MZ) = 0.0169225±0.0000039, α2(MZ) = 0.033735±0.000020,

α3(MZ) = 0.1173±0.00069, αt(MZ) = 0.07514 (3.17)

The overall RGE running results are

C
p111

L̄dudH̃
(mp) = (2.034)(1.158)(1.262)(0.787)Cp111

L̄dudH̃
(M) = 2.34C

p111

L̄dudH̃
(M), (3.18)

C
p111

L̄dQQH̃
(mp) = (2.034)(1.551)(1.081)(0.787)Cp111

L̄dQQH̃
(M) = 2.68C

p111

L̄dQQH̃
(M), (3.19)
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where the numerical factors come from the three gauge interactions and top quark Yukawa cou-

pling, respectively. We see that while gauge interactions tend to enhance the effective interactions

at low energies, the top quark Yukawa coupling suppresses it, with a balanced enhancement factor

of about two.

4 Conclusion

We have studied dimension-seven operators in the framework of standard model effective field

theory. All of these operators violate lepton number conservation. We found that the basis of twenty

operators listed in ref. [10] can be further reduced using the equations of motion in the standard

model and Fierz identities. The final basis contains twelve operators that conserve baryon number

and six operators that break it. We have computed for the first time the anomalous dimension matrix

for the latter set of operators by taking into account all interactions in the standard model. We

illustrated its possible effect in the rare proton decay p → νπ+ and found that the renormalization

running effect in the relevant Wilson coefficients is about a factor two enhancement from the grand

unification scale to the nucleon mass scale.
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A Some useful Fierz identities

We here summarize Fierz identities for field operators, which are useful for our analysis of op-

erator redundancy and in bringing one-loop renormalized operators back to the standard basis.

Our notation for charge conjugation of chiral fields is, ΨC
L,R ≡ (ΨL,R)

C, which has the properties,

ΨC
L,R = (ΨL,R)

TC and ΨL,R = (ΨC
L,R)

C. The identities are, valid also for L ↔ R,
(

Ψ1LγµγνΨ2R

)(

Ψ3LγµγνΨ4R

)

= 8
[(

Ψ1LΨ2R

)(

Ψ3LΨ4R

)

+
(

Ψ1LΨ4R

)(

Ψ3LΨ2R

)]

,
(

Ψ1LγµγνΨ2R

)(

Ψ3LγνγµΨ4R

)

= −8
(

Ψ1LΨ4R

)(

Ψ3LΨ2R

)

(

Ψ1LγµγνΨ2R

)(

Ψ3RγµγνΨ4L

)

= 4
(

Ψ1LΨ2R

)(

Ψ3RΨ4L

)

(

Ψ1LγµγνΨ2R

)(

Ψ3RγνγµΨ4L

)

= 4
(

Ψ1LΨ2R

)(

Ψ3RΨ4L

)

(

Ψ1LγµΨ2L

)(

Ψ3LγµΨ4L

)

=
(

Ψ1LγµΨ4L

)(

Ψ3LγµΨ2L

)

,
(

Ψ1LγµΨ2L

)(

Ψ3LγµΨ4L

)

= 2
(

Ψ1LΨC
3L

)

(

ΨC
4LΨ2L

)

,
(

Ψ1LγµΨ2L

)(

Ψ3RγµΨ4R

)

= −2
(

Ψ1LΨ4R

)(

Ψ3RΨ2L

)

(

Ψ1LγµΨ2L

)

(

ΨC
3RΨ4R

)

=
(

Ψ1LΨ3R

)

(

ΨC
2LγµΨ4R

)

+
(

Ψ1LΨ4R

)

(

ΨC
2LγµΨ3R

)

(

Ψ1LΨ2R

)

(

ΨC
3LγµΨ4R

)

=
(

Ψ1LγµΨ3L

)

(

ΨC
4RΨ2R

)

−
(

Ψ1LΨ4R

)

(

ΨC
3LγµΨ2R

)

(

Ψ1RγµΨ2R

)

(

ΨC
3RΨ4R

)

= −
(

Ψ1RγµΨ3R

)

(

ΨC
2RΨ4R

)

−
(

Ψ1RγµΨ4R

)

(

ΨC
2RΨ3R

)

(

Ψ1LΨ2R

)

(

ΨC
3RΨ4R

)

= −
(

Ψ1LΨ3R

)

(

ΨC
4RΨ2R

)

−
(

Ψ1LΨ4R

)

(

ΨC
3RΨ2R

)

(A.1)
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From the basic relations for bilinears involving charge conjugation,

Ψ1Lγµ1γµ2 · · · γµn−1γµnΨ2R = ΨC
2Rγµnγµn−1 · · · γµ2γµ1ΨC

1L, for n even (L ↔ R)

Ψ1Lγµ1γµ2 · · · γµn−1γµnΨ2L =−ΨC
2Lγµnγµn−1 · · · γµ2γµ1ΨC

1L, for n odd (L ↔ R) (A.2)

we have the special cases

Ψ1LΨ2R = ΨC
2RΨC

1L (L ↔ R)

Ψ1LγµΨ2L = −ΨC
2LγµΨC

1L (L ↔ R)

Ψ1LγµγνΨ2R = ΨC
2RγνγµΨC

1L (L ↔ R) (A.3)

Open Access. This article is distributed under the terms of the Creative Commons Attribution Li-

cense (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided

the original author(s) and source are credited.
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