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1 Introduction

The Cachazo-He-Yuan (CHY) formulae [1–5] are a remarkable set of formulae, express-

ing the tree-level scattering amplitudes of a variety of theories (scalar, gauge, gravity) as

worldsheet integrals localized onto the solutions of the so-called scattering equations. The

Mason-Skinner ambitwistor string [6, 7] gave a rationale for these formulae as a holomor-

phic string subjected to the constraint P (z)2 = 0, which enforces the scattering equations.1

This stringy origin allowed the CHY formalism to be extended in several directions [8–10],

including, very interestingly, loops [11–14].

So far, all the theories describable in this formalism turned out to be related to com-

pactifications of type II supergravity or super-Yang-Mills. It is therefore natural to expect

that the ambitwistor string could correspond to some field theory limit, i.e. α′ → 0, of

string theory.

However, the scattering equations are also famously known to govern the dynamics of

the opposite limit of string theory, the Gross-Mende limit, where the tension T = 1/(2πα′)

goes to zero [15, 16]. How then could these two limits have anything in common?

In this paper, we argue that this paradox is clarified when the ambitwistor string is

seen as a tensionless string. By the end of the 80’s [17, 18] it was already noticed that null

1Pµ(z) is the momentum of the string.
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strings [19], or tensionless strings, possess a quantization ambiguity that can lead to two

very different theories. The first one is a higher-spin like theory [20], in accordance with the

high energy picture of [21]. The other is a theory with a truncated spectrum that contains

only a few states. In the case of the RNS — or spinning — null string, this spectrum was

observed to be that of type II supergravity in [17]. We review these constructions in this

paper and relate them to the ambitwistor string and the scattering equations.

In the tensionless limit, the classical tensionful string constraint P 2 + T 2(∂σX)2 = 0,

reduces to P 2 = 0, therefore it seems natural to believe that both the Gross-Mende limit and

the ambitwistor string have the scattering equations at the heart of their dynamics. This

happens to be true even though, as well explain below, they are different quantum theories

with Fock-spaces built from different vacua. In order for the reader to appreciate this

point already now, we give below the definitions of the two different vacua of the quantized

tensionless string in terms of the Fourier modes of the momentum and coordinate fields

Pµ and Xµ;

pµn|0〉HS = 0 , ∀n ∈ Z vs

{
xµn|0〉A = 0

pµn|0〉A = 0
∀n > 0 , (1.1)

where the indices HS and A stand for “higher-spin like” and “ambitwistor”, respectively. A

significant part of this paper is concerned with a study of the various relationships between

these theories, at the classical and quantum level.

Interestingly, the constraint algebra of the tensionless string has been studied recently

in particular in the context of the flat holography, and is nowadays known as the Galilean

Conformal Algebra [22, 23]. This algebra usually appears from the non-relativistic limit

of a conformal field theory, but there exists an interesting coincidence in two dimensions.

Two different contractions of the Virasoro algebra, a non-relativistic one where the world-

sheet speed of light goes to infinity, and a ultra-relativistic one where it goes to zero, give

isomorphic algebras. One could therefore expect that these two limits should, naively, cor-

respond to the two different tensionless theories. But this is not necessarily the case. In

fact, both limits give locally gauge-equivalent versions of the same theory. Interestingly,

there is yet another gauge choice which wasn’t considered before and will give rise to the

ambitwistor string. This choice of gauge is crucial in allowing us to identify one of the null

string constraint with the holomorphic stress tensor of a chiral conformal field theory.

The ambitwistor string is therefore not the limit of the usual string at the quantum

level, but rather the limit of an alternatively quantized string as will be expanded below.

This quantization scheme was also used by Siegel in [24], where it was referred to as a

‘change of boundary conditions’.

In the following sections we review the classical and quantum aspects of the tensionless

or null string, based on older results in the literature. We then reinterpret the ambitwistor

string as a gauge-choice of the null string, clarifying some of its geometrical aspects re-

garding the interplay between its intrinsically degenerate metric and emergent light-cone

structure. The relationship with the usual tensionful string is tackled next, where we relate

it to a twisted quantization of the string and show how the normal ordering constant is
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Figure 1. Diagram that illustrates the ambiguity of the order between the limit α′ → ∞ or

Gross-Mende limit and quantization.

affected by such quantization scheme. The main message of our work is summarized in

figure 1.

One of the most interesting applications of our work is that it should pave the way to

a more complete understanding of the moduli problem of the ambitwistor string, following

in particular [25]. This should allow a geometrical determination of the integration cycle

at loop-level [26], something that cannot be done from purely conformal field theoretic

considerations. This would also clarify the question of modular invariance in these theories.

2 The tensionless limit

The tensionless limit of the bosonic string has been studied in the past from a variety of

points of view. Here we summarize the parts of the literature relevant to the ambitwistor

string.

2.1 Classical action

We start with the Nambu-Goto action

SNG = −T
∫
M
d2ξ
√
−g , (2.1)

where T is the tension, ξα = (τ, σ) for α = 0, 1 are the coordinates on the worldsheet M ,

and g = det gαβ where

gαβ =
∂Xµ

∂ξα
∂Xν

∂ξβ
ηµν (2.2)

is the pull-back of the space-time metric to the worldsheet. We take the target space metric

ηµν = Diag(−,+, . . . ,+) to be the usual flat metric on Minkowski space. We use standard

periodicity σ+ 2π ' σ, so the worldsheet is a cylinder. In this paper we only deal with the

closed string. There are tensionless versions of the open string, see [27] in particular, but

their geometry is not fully understood, and we leave their connection to a potential open

ambitwistor string to future study.

In this action, taking T = 0 directly is not meaningful. So, as in the relativistic particle

case, one should take a detour and either introduce auxiliary fields, as in [17, 28], or go to

the Hamiltonian formulation. In both approaches, the tension T appears linearly in the

resulting action and the limit is trivial. Here, we follow the latter, as in [29]. From the

action (2.1) we obtain canonical momenta

Pµ = T
√
−ggα0∂αXµ (2.3)

– 3 –
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that obey the following first class constraints

P 2 + T 2gg00 = 0 , (2.4)

P ·X ′ = 0 . (2.5)

We use the standard notation ∂τX ≡ Ẋ and ∂σX ≡ X ′.
The theory given by the Nambu-Goto action (2.1) has reparametrization invariance,

so the canonical Hamiltonian vanishes. Time evolution is completely governed by the

constraints, and the Hamiltonian is given by

H = λ(P 2 + T 2gg00) + µ(P ·X ′), (2.6)

where λ and µ are Lagrange multiplier fields. Their arbitrariness reflects the gauge freedom

of the system: setting them to particular values amounts to choosing a particular coordinate

system on the worldsheet. The phase-space or Hamiltonian form of the action reads

SH =

∫
d2ξ

(
PẊ −H

)
=

∫
d2ξ

(
P · (Ẋ − µX ′)− λ(P 2 + T 2gg00)

)
. (2.7)

Integrating out P gives the second order action

S =
1

2

∫
d2ξ

1

2λ

(
(Ẋ − µX ′)2 − 4λ2T 2gg00

)
(2.8)

which can be rewritten in the Polyakov form

SP = −T
2

∫
d2ξ
√
−hhαβ∂αX · ∂βX (2.9)

with the auxiliary metric

hαβ =

(
−1 µ

µ −µ2 + 4λ2T 2

)
. (2.10)

The choice λ = 1
2T , µ = 0 is the conformal gauge. Upon setting T = 0, the constraints (2.4)

reduce to

P 2 = 0 , P ·X ′ = 0 , (2.11)

and the metric degenerates. Note that these are just the constraints of the ambitwistor

string, if we replace the prime with a holomorphic derivative ∂. It is then possible to

rewrite the action (2.10) in terms of an auxiliary field V α, defined by

V α =
1

2
√
λ

(1,−µ). (2.12)

We then obtain the Lindström-Sundborg-Theodoris [29] (LST) tensionless string action

S =

∫
d2ξV αV β∂αX∂βX. (2.13)

The equations of motion (EOM) for V α imply that the metric gαβ has a null eigenvector.

Therefore det g = 0 which implies that the worldsheet of the tensionless string is a null
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surface, hence the name “null strings”. Note that V α transforms as a vector density under

worldsheet diffeomorphisms;

ξα → ξα + εα =⇒ δV α = −V · ∂εα + ε · ∂V α +
1

2
(∂ · ε)V α. (2.14)

This transformations maintains the diffeomorphism invariance of the original string, though

not its Weyl invariance. Although the metric degenerates in the null string, it is never-

theless possible to obtain its stress energy tensor using the Noether procedure and a local

translation transformation. This gives;

Tα
β = V βV γ∂γX · ∂αX −

1

2
δα
βV γV δ∂γX · ∂δX . (2.15)

By construction, the components of the stress energy tensor are the T → 0 limit of the

constraints (2.4). So there is no change in the fact that gravity is being gauged in the

worldsheet, but in the absence of a background non-degenerate metric,2 the moduli problem

becomes more complicated.

In the literature, the commonly studied gauges are

V α = (1, 0) or V α = (0, 1) (2.16)

which we call transverse gauge and dual transverse gauge, respectively, following [23, 30].

The question of whether these gauges can be achieved globally or not has not been studied

for the null string. We know however that from the ambitwistor string quantization, the

obstruction to gauge fixing precisely furnishes the moduli of the problem. In [25] it is

was argued that the vector fields (2.12) have no moduli. While the ambitwistor does have

moduli, they are completely fixed by the scattering equations and the resolution of the

apparent conflict might lie on this point. We will address the question of moduli for the

null string in future work.

2.2 Constraint algebra

We review here the construction of [17, 20]. Imposing the transverse gauge yields the action

S =
1

2

∫
Ẋ2, (2.17)

which is supplemented by the first-class constraints

Ẋ2 = Ẋ ·X ′ = 0. (2.18)

The EOM read

Ẍ = 0 . (2.19)

Together with the constraints, we see that this action describes a collection of massless

particles moving at the speed of light, bound together by a constraint forcing their velocities

2Or equivalently a background complex structure.
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to be orthogonal to the string. This last constraint is a remnant of the stringy character

of the original tensionful string. The EOM are solved by3

X(τ, σ) = Y (σ) + τP (σ). (2.20)

The mode expansion for each field is defined as

Y (σ) =
1√
2π

∑
n∈Z

yne
inσ , P (σ) =

1√
2π

∑
n∈Z

pne
inσ , (2.21)

with Poisson brackets

{yn, pm}PB = δn+m,0. (2.22)

The zero modes y0 and p0 are the centre of mass and momentum of the string. In terms

of these, the mode expansion of the constraints read

Ẋ2 =
1

2π

∑
n

(∑
m

pn+mp−m

)
einσ = − 1

π

∑
n

Mne
inσ

Ẋ ·X ′ = 1

2π

∑
n

(∑
m

pn+m(−imy−m − imτp−m)

)
einσ

=
1

2π

∑
n

(Ln − inτMn)einσ = 0

(2.23)

where we have defined the following classical modes for the constraints;

Ll = −i
∑
n

(l − n)pn · yl−n , Ml = −1

2

∑
n

pn · pl−n . (2.24)

They generate the constraint algebra

{Lk, Ll}PB = −i(k − l)Lk+l , {Lk,Ml}PB = −i(l − k)Mk+l , {Mk,Ml}PB = 0 ,

(2.25)

which is nowadays known as the 2d Galilean Conformal Algebra (GCA) [22, 31]. This

algebra can be obtained starting from the two copies of the Virasoro algebra and taking a

ultra-relativistic contraction of their generators. In this limit, the small parameter is always

accompanied by the tension, so in practice, it is the same as taking the tension to zero.

Note that in the GCA there is a single Virasoro left over, which indicates the chiral nature

of the null string. This leftover Virasoro cannot be identified with either the left or the

right moving Virasoro of the original tensionful string, it is a non-chiral linear combination

of both. This symmetry algebra is also the first connection between the null string and

the ambitwistor string since the algebra of constraints of the bosonic ambitwistor string is

precisely a GCA.

3We omit the Lorentz index where they can be understood from context.
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Geometrically the ultra-relativistic limit of the string is obtained by scaling τ → ετ

and taking ε → 0. Thus instead of the two Virasoro algebras which locally generate the

diffeomorphisms in time and space we have

Ln = ieinσ(∂σ + inτ∂τ ), Mn = ieinσ∂τ . (2.26)

The relativistic algebra of the string also has another limit, a non-relativistic one. The

contracted algebra is isomorphic to the GCA of the ultra-relativistic limit; this is a coinci-

dence that happens in two spacetime dimensions and it is not true in higher dimensions.

This limit corresponds to contracting the spatial dimension by σ → εσ and taking ε → 0.

Locally, there is no difference between taking this limit or the ultra-relativistic one, so it

is no surprise that the contracted algebras coincide. In terms of the null string, this con-

traction can be thought of as corresponding to picking the dual transverse gauge, since the

roles of τ and σ are exchanged compared to the ultra-relativistic limit. Here this limit will

not play a role so we shall not discuss it further, for more details see [23, 30, 31]. It is also

known that the GCA2 algebra is isomorphic to the BMS3 algebra, [32–35]. Asymptotic

symmetry algebras also appears in the ambitwistor string when written in coordinates ap-

propriate for a description as having as target space I , the null boundary of Minkowski

spacetime [36]. Furthermore, there are four dimensional models which have I as their

target space from the very beginning [37, 38]. There seems to be an interesting connection

between the asymptotic geometry and these models which would be nice to understand.

2.3 Quantization and spinning string

The quantization of the null string is done in the standard way by replacing Poisson brackets

by commutators { , }PB → −i[ , ]. But this only defines the quantum algebra, which now

allows certain central terms in the constraint algebra (2.25). In order to define the quantum

theory it is also necessary to pick a representation space for this algebra, that is, a choice of

vacuum, or equivalently an ordering prescription for the operators. Here, contrary to the

tensionful string, there are two inequivalent consistent choices. The first one, discovered

in [20], prescribes that the pn’s should be on the right of the yn’s, and accordingly defines

the vacuum as the state annihilated by all the pn modes

pn|0〉 = 0 , ∀ n ∈ Z . (2.27)

This is the so-called Weyl ordering. With this choice of vacuum, it can be shown that

the quantized GCA algebra (2.25) does not have a central extension. In particular, the

Virasoro subalgebra has zero central charge, implying that Weyl-ordered null strings have

no critical dimension [20]. It was proposed in [17, 20] that the spectrum of this theory

consists of a mass continuum of free-particles of arbitrary integer higher spins.

This theory is not the ambitwistor string, which has a finite spectrum of massless par-

ticles and critical dimension 26 in the bosonic case. But there exists another quantization

prescription, which corresponds to pulling to the right all the positive modes of both yn
and pn, and shifting the negative modes to the left [17, 18]. This is known as the normal

– 7 –
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ordering prescription. The vacuum is then defined as the state annihilated by the positive

modes

pn|0〉 = yn|0〉 = 0 iff n > 0. (2.28)

Let us try to give more substance to the fact that string theory is related to the first

theory. In the usual string, the left and right-moving creation/annihilation operators can

be defined as

αn =
1

2
√
T
pn − in

√
Tyn (2.29)

α̃n =
1

2
√
T
p−n − in

√
Ty−n. (2.30)

In the tensionless limit the vacuum conditions αn|0〉 = α̃n|0〉 = 0, ∀n > 0 reduce to

pn|0〉 = 0 for all n ∈ Z. However, this limit is singular and it is not at all clear that

the modes α, α̃ are defined at all in the limit. Nevertheless, the spectrum in the Weyl

quantization is closer to the high-energy string, since it contains an infinite tower of higher

spin states.

The normal ordering prescription is closer to what we would get from a chiral CFT.

If we imagine that the modes yn and pn are packaged in chiral fields, the usual radial

quantization would give the vacuum (2.28). With this prescription, it can be shown,

using a variety of methods [17, 18, 39], that the GCA has a central extension given by a

central charge in the Virasoro subalgebra. This gives a critical dimension of 26 for the null

string, the same as for the usual string and for the ambitwistor string. Moreover, in this

prescription the spectrum is truncated to a finite number of massless modes, which turn

out to be the same states as the ones present in the ambitwistor string. The analysis that

we present below will also shed some light on why the bosonic (or heterotic) ambitwistor

string does not work at the quantum level.

In terms of the spectrum, the key difference between these two quantizations lies in

the definition of the quantum operator L0 =
∑

n yn ·p−n. In the Weyl ordering, the normal

ordering constant turns out to be zero, but in the normal ordering its value is −2. Recall

that L0, being the zero mode of Ẋ ·X ′, generates global translations around σ, so in the

latter quantization scheme the spectrum is truncated to operators with angular momentum

−2. This is in essence the same phenomenon that arises in the bosonic ambitwistor string,

where the physical states are required to have conformal weight 2 when the ghosts are

stripped off. We omit the proofs of these assertions since they can be easily found in the

literature, see [17] for instance. We also sketch the calculation for the spinning string below.

The three physical states are pµ−1p
ν
−1|0〉, (pµ−1y

ν
−1 − yµ−1p

ν
−1)|0〉 and pµ−1p

µ
−1|0〉, they

correspond to a graviton, a two-form and a dilaton, as in the bosonic ambitwistor string.

Note that using the usual hermitian conjugation, it is evident that these states have zero

norm, which points to some inconsistency of the quantum theory. If the bosonic ambitwistor

string and the null string are, as we argue below, the same then this inconsistency is to be

expected, since from [9] we know that the bosonic ambitwistor string is not target-space

diffeomorphism invariant at the quantum level.

– 8 –
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From the same work, we know that the spinning version of the ambitwistor string,

with two real fermions on the worldsheet, is target-space diffeomorphism-invariant, which

suggest that the spinning null string should not suffer from these issues. Indeed, the authors

of [17, 40], studied the spinning null string, and showed how it appears classically from the

T → 0 limit of the N = (1, 1) string. The ungauge-fixed LST action [41] is given by

S =

∫
d2σ

(
(V α∂αX

µ + iΨaµχa)(V β∂βX
ν + iΨbνχb) + iΨa,µV α∂αΨa

µ

)
, (2.31)

where the fermions Ψaµ transform as densities of weight −1/4. The index a takes values

in {1, 2} reflecting the two supersymmetries from the tensionful N = (1, 1) string. In the

transverse gauge, the bosonic mode expansion is the same as (2.21), while the fermions (in

the NS sector) are expanded as

Ψaµ(σ) =
∑

r∈Z+ 1
2

ψaµr eirσ. (2.32)

The constraint algebra of these models was studied thoroughly in [17, 18, 42]. The con-

straints, written in terms of the canonical momenta, read

P 2 = 0

P ·X ′ + i

2

∑
a=1,2

Ψa ·Ψ′a = 0

Ψa · P = 0 (a = 1, 2) .

(2.33)

They are nearly the same as the ambitwistor string. As for the bosonic ambitwistor string,

the difference is that in the ambitwistor string the primes in the second constraint are

replaced by holomorphic derivatives. Nevertheless the modes algebra is the same for both

sets of constraints
[Lm,Mn] = (m− n)Mm+n

[Lm, Ln] = (m− n)Lm+n

[Lm, G
a
r ] =

(m
2
− r
)
Gam+r

[Gar , G
b
s]+ = δabMr+s

(2.34)

where Gan are the modes of Ψa · P .

The quantization ambiguity is still present in this case. Choosing t he normal order-

ing prescription for the bosonic and fermionic modes implies a non-zero normal ordering

constant in the constraint P · X ′ + i
2Ψa · Ψ′a, which in turn gives a critical dimension

d = 10 in the case of two fermions.4 The spectrum in the NS vacuum is given by p−1|0〉
and ψa−1/2ψ

b
−1/2|0〉, but after a GSO projection it is truncated to only ψ1

−1/2ψ
2
−1/2|0〉. This

state, together with the NS-R, R-NS and R-R states, give the spectrum of type II A/B

supergravity. As expected these results are the same as for the type II ambitwistor string.

4Mixed boundary conditions turn out to be inconsistent [17].
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What seems to have prevented the authors of [17] from calculating scattering amplitudes

for the null string was a lack of knowledge of the vertex operators in their formalism. Here

is where the ambitwistor string shines. Since it is written as a CFT, constructing vertex

operators is standard, and scattering amplitudes can be easily calculated via OPE’s. Mod-

els with more supersymmetry were studied in [42], where it is seen that the N = 4 model

has the same critical dimension as found by Ohmori in [26] for the ambitwistor string with

extra SUSY. These connect to the zoo of CHY models [4, 8]. All of this is overwhelming

evidence that the ambitwistor string and the null string are the same physical system,

provided the correct quantization scheme is chosen for the null string. In the next section

we show that how the ambitwistor string can be obtained from the null string.

3 The ambitwistor string

We turn now to the ambitwistor string. Our objective here is to describe how it fits into

the framework of the null string as introduced above, and thus clarify its relation to the

usual tensionful string.

So far, we have avoided discussing a crucial point concerning boundary conditions.

Starting from a tensionful string with the standard periodicity σ ' σ+2π, we took the null

limit and kept this periodicity throughout the process. However, the null string worldsheet

has a degenerate metric, so there are no canonical time-like and space-like directions. A

time-like direction is needed to perform the usual canonical quantization, and to identify a

worldsheet Hamiltonian. It is also not guaranteed from the start that space-like periodicity

is not going to clash with the choice of time-like direction. The Schild gauge essentially

assumes that the time is given by the direction of V α. Given the natural pairing ZαW
α =

Z0W
0+Z1W

1, a natural choice for the periodic coordinate is in the direction of a Uα in the

kernel of V α. But this solution is not forced upon us and other choices are possible. Indeed

the ambitwistor string is one. We will see that the choice µ = 1, and the requirement of

periodicity along the 1 (or σ) direction will be possible only in the gauge λ = 0.

3.1 The ambitwistor string action

The ambitwistor string was originally formulated as a holomorphic CFT in Euclidean

signature. In order to make contact with the null string, we Wick-rotate back to Lorentzian

signature and write the original action as

SA =

∫
d2σ P · ∂−X , (3.1)

where σ± = τ ± σ and ∂± = 1
2(∂τ ± ∂σ). This action is supplemented by the constraints

T++ = P · ∂+X = 0, P 2 = 0. (3.2)

The null string first order action is

S =

∫
d2σ(P · Ẋ − µP ·X ′ − λP 2). (3.3)

– 10 –
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Taking µ = 1 and λ = 0 we get the ambitwistor string action, but the slightly different

constraints of eq. (2.11). However, using the ambitwistor equation of motion ∂−X = 0 the

triviality

P ·X ′ = P · (∂− − ∂+)X = P · ∂+X (3.4)

shows that they are equivalent on-shell. This does not affect the character of the con-

straints, both the ambitwistor one (3.2), and the null string ones (2.11) are first-class.

The relationship between these constraints come from a delicate gauge choice as shown in

section 3.4 below.

The importance of the ambitwistor gauge choice is essential. First, choosing the gauge

µ = 1 effectively picks a background light-cone structure for the worldsheet. In the Wick

rotated framework, this is equivalent to a choice of background complex structure, and a

choice of a metric.5 This is an emergent metric coming purely from the gauge-fixing, the

null string has no such non-degenerate metric. Then, let us look at the components of the

null string stress tensor (2.15);

T1
0 = P ·X ′

T0
0 = −T11 = 2λP 2 + µP ·X ′ (3.5)

T0
1 = −µ(4λP 2 + µP ·X ′) .

The crucial point is that in the ambitwistor gauge (λ = 0, µ = 1) and on-shell, the stress

tensor of this emergent complex structure coincides with the null string stress-energy tensor.

This significantly simplifies finding the moduli for the gauge-fixed null string, as it now

coincides with finding the moduli for the effective complex structure. It also enables us

to use standard CFT methods to study the null string and compute correlation functions.

We expect that a similar mechanism is at work in the other four dimensional twistor

strings [43–46], and that they all fit in the framework of null strings. In this regard we

mention that in [47, 48], a relationship between the four dimensional twistor strings and

the null string was already noted.

A more geometrical picture is given by the second-order LST action (2.13). The

ambitwistor gauge is singular in the second-order framework since the action is proportional

to λ−1. In order to study it, we fix first an intermediary gauge, where µ = 1 and λ is

unfixed;6

V α =
1

2
√
λ

(1,−1). (3.6)

The (partially) gauge-fixed action reads

S = −2

∫
d2ξ

1

λ
(∂−X)2 . (3.7)

Since λ has the correct dimension to be a worldsheet loop-counting parameter (like ~ or

α′), the limit λ → 0 appears as a classical limit, where the action is expected to localize

5More precisely, a conformal class of metrics.
6This is similar to what is called the HSZ gauge in Siegel’s papers [24, 49], although there it was used

in the tensionful string.
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on the extremal field configurations, i.e. the classical solutions. In other words, the string

partition function
∫
DXe−

1
λ
S[X] is independent of λ, which we can be taken to zero.

3.2 Residual gauge symmetry

We follow here an analysis of [27], which we perform in the ambitwistor gauge. In the

tensionful string, the leftover symmetries that remain after gauge fixing are the conformal

transformations of z and z̄. Here the residual symmetries form the Galilean Conformal

transformations, generated by the vector field εα or ε± = ε0 ± ε1 with

(ε+, ε−) = (σ−f ′(σ+) + g(σ+), f(σ+)) (3.8)

where, in this section only, prime is the ordinary derivative, not the σ derivative. By com-

parison, conformal transformation are generated by vector fields (ε+, ε−) = (f(σ+), g(σ−)).

On a function F (σ−, σ+), the vector field (3.8) generates the following transformations;

δF =
[
(σ−f ′(σ+)∂− + f(σ+)∂+) + g(σ+)∂−

]
F (3.9)

from which we define

L(f) = σ−f ′(σ+)∂− + f(σ+)∂+, M(g) = g(σ+)∂− (3.10)

whose algebra is obtained by decomposing f and g in modes

f =
∑
n

fne
inσ+

g =
∑
n

gne
inσ+

(3.11)

such that

L(f) = −i
∑
n

fnLn , M(g) = −i
∑
n

gnMn (3.12)

where

Ln = ieinσ
+

(∂+ + inσ−∂−) , Mn = ieinσ
+
∂− . (3.13)

They satisfy the following commutation relations;

[Ln, Lm] = (n−m)Ln+m, [Ln,Mm] = (n−m)Mn+m, [Mn,Mm] = 0 . (3.14)

It seems that in the ambitwistor gauge we have lost the periodicity of the original null

string. In the next section we shall see that this is merely an artifact of this gauge choice.

3.3 Equations of motion in the second order form

Using the second order action in chiral gauge (3.7), the equations of motion are

∂−∂−X = 0, (3.15)

subject to the constraints

(∂−X)2 = 0 (3.16)

∂−X · ∂σX = 0 (3.17)
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where the constraint (3.16) is the EOM for V α, just like in the standard string, where the

EOM for the auxiliary metric condition gives the Virasoro constraints Tαβ = 0. The EOM

are solved by

X(σ−, σ+) = Y (σ+) + σ−K(σ+) (3.18)

with mode expansion

Y (σ+) =
1√
2π

∑
n

yne
−inσ+

, K(σ+) =
1√
2π

∑
n

kne
−inσ+

. (3.19)

It seems that the solution (3.18) breaks the string’s periodicity σ± ' σ± ± 2π. In order to

restore it we impose the periodicity conditions

K(σ+ + 2π) = K(σ+) (3.20)

Y (σ+ + 2π) ' Y (σ+) + 2πK(σ+), (3.21)

or in terms of the modes yn ' yn + 2πkn. This condition is consistent with the Poisson

brackets

{yn, ym} ' {yn + 2πkn, ym + 2πkm} = 0 (3.22)

{yn, km} ' {yn + 2πkn, km} = δm+n,0. (3.23)

One might worry about the constraint algebra, and indeed at first sight it seems that there

will be problems in defining the modes for ∂−X · X ′. Ultimately, these issues stem from

a tension between the periodicity in the gauge µ = 1 and the singularity of the gauge

λ = 0 that we are trying to impose in the second-order action. Note that the canonical

momentum depends on λ

P =
1

λ
∂−X =

1

λ
K (3.24)

so, in order to have a finite canonical momenta when λ→ 0 we need to rescale the modes

of K by λ. Therefore, this rescaling leaves the P 2 constraint invariant, but does affect the

P ·X ′ constraint

1

λ
∂−X ·X ′ = P · (Y ′ −K − σK ′) = P · (Y ′ − λP − λσP ′)→ P · Y ′ (3.25)

where all the constraints are evaluated at τ = 0 for simplicity. We see that in the limit

we recover the first-order constraints, as expected, and that the periodicity condition on

the modes yn disappears. This shows that to work with the more geometric second-order

Lagrangian we should be very careful in order not to run into inconsistencies. Next we

rephrase the same question in the first order form, where the subtleties are absent.

3.4 Equations of motion in the first order form

Using the first order action in the µ = 1 gauge, with λ yet unfixed, the EOM for P and

X read

∂−X = 2λP , ∂−P = 0 (3.26)
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still subject to the constraints eq. (2.11). The EOM are solved by

P = P (σ+) , X = Y (σ+) + 2λσ−P (σ+) (3.27)

with mode expansion

Y (σ+) =
1√
2π

∑
n

yne
−inσ+

, P (σ+) =
1√
2π

∑
n

pne
−inσ+

. (3.28)

It seems a priori that the solution (3.27) breaks the periodicity σ± ' σ±± 2π. But setting

λ = 0, the σ-periodicity is restored and the mode expansion of the PX ′ constraint simplifies

to the following;

P ·X ′
∣∣
λ=0

= P (σ+) · ∂σY (σ+) = − i

2π

∑
n,m

ny−m · pn+me−inσ
+

=
1

2π

∑
Lne

−inσ+
(3.29)

(P 2 does not change).

We give now a somewhat heuristic argument to support the idea that the singular

gauge λ = 0 really allows one gauge the stress-tensor of a chiral CFT and not just the

P ·X ′ constraint. For arbitrary λ, it is not hard to see that

P · ∂+X ∝
∑
n

(Ln − inλσ−Mn)e−inσ
+
. (3.30)

with Ln and Mn defined as in eq. (2.24). Hence, at λ = 0, we see that the Ln’s, which are

the modes of the null string constraints really do coincide with the modes of the stress-

tensor.

On the other hand, it is evident, from looking at the Lie algebra representation of the

L and M ’s in eq. (3.13), that the combination L′n ≡ (Ln − inσ−Mn) = −ie−inσ
+
∂+ are

the generators of conformal transformations on σ−. Moreover, the L′n generator obey the

same algebra with the Mn’s, so this is an automorphism of the GCA algebra.7 So it seems

that the singular gauge choice λ = 0 automatically enforces that the constraint algebra of

the tensionless string does become that of the holomorphic stress-tensor of a chiral CFT.

4 Relation to tensionful strings

4.1 The bosonic string

At the classical level, the relationship between the ambitwistor string and the tensionful

string is straightforward. As we have shown above, the classical ambitwistor string is

nothing else than the tensionless limit of the usual string in an unusual gauge. It is at the

quantum level that the relationship becomes interesting. This is due to the non-standard

(from the tensionful string point of view) choice of vacuum for the ambitwistor string.

Recall that the ambitwistor vacuum is defined as the state annihilated by the positive

7We are grateful to Blagoje Oblak for a discussion on this point.
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modes of P and X, see (2.28). To make contact with the usual string, recall the definition

of the modes

αn =
1

2
√
T
pn − in

√
Tyn

α̃n =
1

2
√
T
p−n − in

√
Ty−n

(4.1)

which inherit the commutation relations

[αn, αm] = [α̃n, α̃m] = nδm+n,0 (4.2)

from the canonical ones [yn, pm] = iδn+m,0. In terms of these modes, the ambitwistor

vacuum obeys

αn|0〉A = α̃−n|0〉A = 0 , ∀n > 0 , (4.3)

in stark contrast to the string theory vacuum, defined by

αn|0〉S = α̃n|0〉S = 0 , ∀n > 0. (4.4)

The alternative choice of vacuum (4.3) for the tensionful string was briefly considered

in [39]. The authors noted that, although the vacuum is not BRST-invariant, there are

physical massless states. Unfortunately, these have negative norm. Interestingly this choice

of vacuum changes the normal ordering constant of the L̃0 mode from −1 to 1. This is due

to the fact that a consistent BRST quantization of this vacuum requires that c̃−m|0〉A = 0

for all n > 0, in contrast to the right-handed condition cm|0〉A = 0 for m > 0. Recall the

definition of the Virasoro generators;

Lm =
1

2

∑
n

: αm−n · αn : +
∑
n

(2m− n) : bncm−n : +aδm,0 (4.5)

L̃m =
1

2

∑
n

: α̃m−n · α̃n : +
∑
n

(2m− n) : b̃nc̃m−n : +ãδm,0 . (4.6)

The normal ordering constant is obtained by standard methods which we reproduce here

to highlight the difference with the usual string. Starting from (L0 − a)|0〉A = 0 and

(L̃0 − ã)|0〉A = 0, we use

2L0|0〉A = (L1L−1 − L−1L1)|0〉A = L1L−1|0〉A = −(2b0c1)(b−1c0)|0〉A (4.7)

= −|0〉A

2L̃0|0〉A = (L̃1L̃−1 − L̃−1L̃1)|0〉A = −L̃−1L̃1|0〉A = (2b̃0c̃−1)(b̃1c̃0)|0〉A (4.8)

= +|0〉A .

Therefore, the normal ordering ambiguity of the operator L0+L̃0, which contains the mass-

shell condition, is transferred to the angular momentum operator L0− L̃0. Physical states

are then restricted to those with angular momentum 2 and the spectrum is truncated.

Contrary to the null string the spectrum is not all massless, there are two massive states
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with the same, but opposite mass proportional to the tension T .8 Consistency of the

quantization procedure also requires that the vacuum obeys

Ln|0〉A = L̃−n|0〉A = 0 , ∀n > 0, (4.9)

this, in particular, effectively exchanges the roles of translations and special conformal

transformations in the left-handed part of the conformal algebra. That is, we are pick-

ing different representation spaces for the right-handed Virasoro and for the left-handed

Virasoro.

Going one step further we can define the modes

Ln = (Ln − L̃−n) = −i
∑
k

kpn−k · yk − 2δn,0 (4.10)

Mn = T (Ln + L̃−n) =
1

2

∑
k

(
1

2
pn−k · pk + 2T 2(k − n)kyn−k · yk

)
. (4.11)

In the T → 0 limit they coincide with the constraint modes of the ambitwistor string,

including the normal ordering constant. This change of sign of the zero mode constant was

also noted in [24, 50], where it was attributed to a ‘change in boundary conditions’ for the

bosonic string X field. As explained above our point of view is that this is the result of a

twisted quantization schemes for the string.

We further note that the ambitwistor vacuum |0〉A and the string theory vacuum |0〉S
are not related by a Bogolioubov transformation, they give inequivalent quantizations of

the classical string. That is, these vacua live in different, unitarily inequivalent, Hilbert

spaces. This implies that the quantum ambitwistor string is not a subsector of the usual

string in any natural way. This also explains why the ambitwistor string does not come

from the T → ∞ limit of the string (field theory or α′ → 0 limit), since it is in fact the

null string in disguise. One last thing to note is that the combination of modes (4.10)

corresponds to the well-defined modes in the ultrarelativistic limit of the Virasoro algebra,

which is equivalent to the tensionless limit of the algebra [23, 30].

To close this section we mention that the above alternative quantization of the string

can be achieved by a deformation of the ambitwistor string. We keep the chiral action (3.1),

but we deform the P 2 constraint to

H =
1

2
(P 2 + (∂X)2). (4.12)

Using the free OPEs, it is easy to see that the algebra of constraints is modified to

T (z)T (w) ' 2T
(z − w)2

+
∂T

(z − w)

T (z)H(w) ' 2H
(z − w)2

+
∂H

(z − w)

H(z)H(w) ' 2T
(z − w)2

+
∂T

(z − w)
(4.13)

8This was also noted in [39, 50].
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where T = −P · ∂X is the stress-energy tensor. The massless sector consists of the BRST

closed vertex operators

U = cc̃εµν(PµP ν − ∂Xµ∂Xν)eik·X

B = cc̃εµνP
[µ∂Xν]eik·X (4.14)

plus an scalar operator. In lightcone gauge it is easy to see that these correspond to a

graviton, b-field and dilaton. The fields c and c̃ are the ghosts for the constraints, see [6].

Contrary to the original bosonic ambitwistor string the cohomology now allows for massive

states. There are two massive spin two states given by

V = cc̃εµν(PµP ν + ∂Xµ∂Xν ± P (µ∂Xν))eik·X (4.15)

with masses k2 = ∓4 in our conventions as well as two massive scalars also with masses

k2 = ∓4. These can be interpreted as the trace part of the above massive spin two

states. Besides being a realization of the alternative quantization of the string, this is very

reminiscent of the HSZ theory [49–51], thought the spectrum of massive scalars in [51] is

double what we’ve found. Nevertheless, above CFT might help in calculating higher-point

amplitudes in this theory. The tension T might be restored by dimensional analysis, and in

the T → 0 limit the two massive spin two states become massless and indistinguishable from

the graviton vertex operator. In this limit the model reduces to the original ambitwistor

string.

4.2 The spinning string

The bosonic string in the alternative quantization scheme (4.3) has negative normed states

which are the same as the ones found in the null string. The next step is then to add super-

symmetry and see if the resulting model has only positive normed states in analogy with

the null string. We will see that this is indeed the case, though the resulting quantization

procedure looks strange from the original worldsheet perspective.9

Classically the supersymmetry is the same as the usual (1, 1) string, that is, the

fermionic generators are

Gr =
∑

αn · ψr−n , G̃r =
∑

α̃n · ψ̃r−n. (4.16)

To have a consistent BRST quantization their action on the vacuum must be different

form the usual string, in particular ψ̃r|0〉A = 0 for all r > −1
2 . This has a cascading effect

for the left-handed fields. The bosonic ghost vacuum now obeys γ̃−n|0〉A = 0 for n > 0

which contributes + 1
2 to the normal ordering constant of L̃0. The end result is that all

the left-handed fields have their quantization flipped, that is, their positive modes now

annihilate the vacuum, and the spectrum is truncated to states with angular momentum 1.

This is analogous to the bosonic case, but now the GSO projected physical states are built

9Instead of the requirement that right movers are holomorphic around the origin and left movers anti-

holomorphic around the origin, the twisted quantization requires right movers to be holomorphic around

the origin and left movers to be antiholomorphic around infinity.
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out of the fermions, ψ−1/2ψ̃1/2|k〉A, instead of the modes of X. Once gauge-invariances

are taken into account10 the physical states have positive norm. This reflects the situation

for the null spinning string, but here the tension has been kept finite. It is interesting to

note that, like in the bosonic case, there are possible massive states, of the form ψψ and

ψ̃ψ̃. However, they are projected out by the GSO projection. So, even at finite T the only

physical states in the spectrum are massless.

It is easy to see that the algebra of constraints limits nicely into the ambitwistor string

constraint algebra. Define the modes

Ln = (Ln − L̃−n) , Mn = T (Ln + L̃−n) ,

Gr =
√
TGn , G̃r =

√
T G̃−n .

(4.17)

The bosonic part of the algebra mimics what happens in the bosonic string. The relevant

fermionic anticommutators are

{Gr, Gs} = {G̃r, G̃s} = Mr+s (4.18)

{Gr, G̃s} = TLr+s. (4.19)

When T = 0, this algebra is isomorphic to that of the spinning ambitwistor string [6], and

also coincide with the commutators found in [17] for the worldsheet supersymmetrization

of the null string. As seen in the bosonic case, the tensionless limit mixes left and right-

handed generators in a non-trivial way. We note that this algebra does not coincide with a

supersymmetrization of the GCA algebra used in [52]. In our case, we are interested in the

T → 0 limit of the algebra, which corresponds to the ultra-relativistic limit of the bosonic

part of the string, while in [52], the limit studied also involves contracting the odd sector.

In the purely bosonic case the algebras obtained from these two limits are isomorphic.

In the supersymmetric case there seems to be some freedom in how the fermionic generators

are rescaled and combined in order to get finite, non-trivial generators. Clearly, the scalings

above are the correct ones in order to reproduce the spinning tensionless string, but it would

be interesting to study if the other possible scalings give interesting theories. This limit can

also be taking at the quantum level in a similar way to the bosonic case, and the central

charge is seen to still vanishes only in ten dimensions.

We close this section by noting that the construction of [53]11 appears as a hybrid

formulation, somehow close to Fairlie & Robert’s original paper [55]. The string integrand

is computed at finite tension, but the nearest neighbour interaction term T 2X ′2 is dropped

in the constraint eq. (2.4). It remains to be understood how this fits exactly in the rich

network of theories that were discussed here and in the aforementioned references.

5 Discussion

We showed that the ambitwistor string is only related to the usual string at the classical

level, being a way of describing the T → 0 limit of the string, i.e. the null string. This

10This is most easily done by going to lightcone gauge.
11Some observations about the connection between integration by parts in string theory and the scattering

equations were also made in [54].
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also explains why the scattering equations, a feature appearing in the high energy limit of

strings, also appears in a crucial way in the ambitwistor string. Though a more complete

treatment of the moduli problem for the null string is left for future work. It is at the

quantum level that these theories differ in a profound way. The quantization procedures

for the two theories are inequivalent and there is no canonical way of relating the vacuum

in one theory to the vacuum in the other. Nevertheless, one might still hope to find α′

corrections to the ambitwistor string keeping in mind the issues addressed in this paper.

There are also other questions to address in future works; like other possible null strings

and their ambitwistor description, including the tensionless limit of heterotic and open

strings, and especially the construction of the measure on the moduli space.
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