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1 Introduction

Run I of the Large Hadron Collider (LHC) has concluded with the discovery of the last

missing piece of the Standard Model (SM) — the Higgs boson [1, 2]. It has tested the valid-

ity of the SM in a previously unexplored regime of energy, and has not found any significant

deviations from the SM, hinting at a gap in the mass spectrum from the SM to whatever lies

beyond it. This picture is consistent with the absence of indications of New Physics (NP)

coming from indirect searches (e.g. electroweak precision or flavour observables). Certainly

Run I of the LHC did not address all the shortcomings of the SM — among which are the

hierarchy problem, dark matter and an explanation for the flavour pattern. In order to find

a solution for these problems the presence of NP is inevitable. One of the key questions for

Run II of the LHC is then at what scale the NP appears. The measured value of the Higgs

mass, mh ≈ 125 GeV [3], hints at an answer to this: it tells us that the Higgs potential

of the SM is not stable up to very high energy scales [4, 5]. Thus one has to introduce

an additional mechanism or new degrees of freedom to stabilize the Higgs potential if one

wants to exclude the possibility of vacuum metastability. Furthermore, to keep the SM

Higgs mass natural, new degrees of freedom around the TeV scale are required [6].

One well motivated direction for discovering physics beyond the SM is to search for

additional Higgs bosons. These particles often arise in natural theories of electroweak
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symmetry breaking, e.g. the Higgs sector of the minimal supersymmetric Standard Model

(MSSM) [7–9], twin Higgs models [10–14], composite Higgs models [15, 16]. Also, there is

no fundamental reason for the minimality of the SM scalar sector, and multiple generations

are known to exist in the fermion sector. Furthermore, the uncertainties in the SM Higgs

coupling measurement [17] do not exclude the presence of additional scalars.

After the SM, the simplest and most straightforward extension of the SM is the addition

of another Higgs doublet, the so-called Two-Higgs-Doublet model (2HDM) [18–20], which

has been analysed in great detail in the literature, see for instance [21–47]. It is interesting

to study the unitarity bounds in the 2HDM because the scale at which new particles are

expected to appear based on naturalness arguments is the same scale as the Lee, Quigg,

Thacker upper limit [48, 49] on the Higgs mass in the SM, which is of order of 1 TeV. In fact,

there exists a large number of works studying the tree-level unitarity bounds on the quartic

couplings, λi, and Higgs masses of the 2HDM, see e.g. [50–56]. Unlike in the SM, extracting

the bounds on the masses of the Higgs boson from the bounds on the quartic couplings is

not straightforward because in the 2HDM the quartic couplings are in general functions

of more parameters than just the masses of the Higgs bosons and their corresponding

vacuum expectation values (VEVs). Recently, the perturbative unitarity bounds in the

CP-conserving softly-broken Z2 symmetric 2HDM were analyzed at the one-loop level [57].

This calculation settled a particular issue regarding how to estimate higher-order effects on

available upper limits on the quartic couplings: in the SM, the unitarity bounds had been

determined beyond the leading order (LO), and the typical result was that the bounds

on the (RG-improved) quartic coupling of the SM were improved by a factor of a few

with respect to the tree-level analysis [58–61]. While it was known that the tree-level

unitarity bounds in NP models were likely to be overly conservative, there was no well

defined way to implement stricter bounds using only tree-level results. Inspired by the SM

results, it was advocated to re-scale the tree-level conditions by a factor of 1/4 to estimate

higher order contributions [34]. A renormalization group analysis at next-to-leading order

(NLO) confirmed this prescription if one wants a stable Higgs potential beyond 10 TeV [44].

However, now that an explicit NLO computation is at hand, this uncertainty on how to

treat higher order corrections to the partial-wave amplitudes has been removed.

In this article, we improve on the results currently available in the literature in two

main ways: regarding the unitary constraints, we go beyond the leading order precision

by employing one-loop corrections which are enhanced, O(λiλj/16π2), in the limit s �
|λi|v2 � M2

W , s � m2
12 to all the 2 → 2 longitudinal vector boson and Higgs boson

scattering amplitudes. Secondly, we perform global parameter fits including the most up-

to-date Run I ATLAS and CMS results, rather than only using a handful of benchmark

scenarios, which might not cover the whole spectrum of interesting features.

The structure of this article is as follows: we give a short introduction to the model

and its constraints in sections 2 and 3, respectively. The statistical framework is presented

in section 4. Section 5 contains the results of the fits. We conclude in section 6. Sup-

plementary figures can be found in appendix A, while we list the formulae for the NLO

unitarity criteria and the fit inputs in appendices B and C, respectively.
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2 Model

The two-Higgs-doublet model (2HDM) [18–20] is a simple and straightforward extension of

the Standard Model (SM), obtained through the addition of a second Higgs doublet to the

SM field content. A characteristic of general 2HDMs is the existence of flavour-changing

neutral currents (FCNC) mediated by tree-level exchange of neutral Higgs bosons. A

natural way to eliminate these potentially dangerous FCNC is to require that the Yukawa

interactions respect a discrete Z2 symmetry, which can be broken softly. The Z2 symmetry

can be chosen in four independent ways, depending on the Z2 charge assignments for quarks

and charged leptons; this lead to four different types of 2HDM which are referred to as type

I, type II, type X (lepton specific) and type Y (flipped). The type II model is of particular

interest because the Higgs sector of the MSSM is a 2HDM of type II. The models we

focus on in this paper are the CP-conserving 2HDM of type I and II with a softly broken

Z2 symmetry. The most general Higgs potential in a CP-conserving 2HDM with a softly

broken Z2 symmetry reads

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m
2
12(Φ†1Φ2 + Φ†2Φ1) +

1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) +
1

2
λ5

[
(Φ†1Φ2)2 + (Φ†2Φ1)2

]
, (2.1)

where Φ1 and Φ2 are the two complex SU(2)L Higgs doublets with hypercharge Y = 1/2

and the eight scalar potential parameters are real to avoid explicit CP-violation, with m2
12

being the Z2 soft-breaking parameter. At the global minimum of the scalar potential V the

neutral components of Φ1 and Φ2 acquire VEVs, v1/
√

2 and v2/
√

2, respectively, which are

fixed by the minimization of the scalar potential and must satisfy v2
1+v2

2 ≡ v2 ≈ (246 GeV)2.

The ratio of the two VEVs is defined as tan β = v2/v1, where 0 ≤ β ≤ π/2. Assuming

no CP-violation in the Higgs sector, the physical scalar spectrum consists of two CP-even

states h and H with mh < mH , the CP-odd state A and the charged state H±. The masses

of these scalar bosons are denoted as mφ with φ ∈ {h, H, A, H±}. Throughout this paper

we interpret the observed Higgs resonance as the light CP-even scalar h and thus treat

mh as fixed by measurements, mh = 125.09 GeV [3]. We choose the independent physical

parameters of the model to be

tanβ, β − α, m2
12, mH , mA, mH± , (2.2)

where α is the mixing angle of the neutral CP-even 2HDM Higgs bosons. In this

parametrization, the tree-level couplings of the Higgs bosons to vector bosons and fermions

only depend on tan β and β − α. Moreover, for β − α = π/2 the couplings of h to SM

fermions and vector bosons are SM-like and H does not couple to vector bosons at tree-

level; the literature refers to this as the alignment limit [19, 62–64].

Considering only the third generation of fermions, the Yukawa Lagrangian under the

above-mentioned Z2 symmetry takes the following shape:

LY = −YtQLiσ2Φ∗2tR − YbQLΦkbR − YτLLΦkτR + h.c., (2.3)
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Parameter tanβ β − α m2
12 mH ,mA,mH±

Range [0.25; 100] [0;π] [−5 · 104; 7 · 105] GeV2 [130; 1100] GeV

Table 1. Priors on the 2HDM parameters.

where the top quark couples to Φ2 by convention and the index k is 2 in type I and 1 in

type II. The top Yukawa coupling is related to the SM value Y SM
t by Yt = Y SM

t / sinβ,

while Yf = Y SM
f / sinβ in type I and Yf = Y SM

f / cosβ in type II for f = b, τ .

3 Constraints

In this section we list and discuss the theoretical and experimental constraints we impose

on the 2HDM parameter space. Since we want to combine them in a Bayesian fit, we list

the priors on the parameters from (2.2):

3.1 Theoretical constraints

On the theory side, constraints on the 2HDM come from the following requirements:

• the Higgs potential must be bounded from below [65] between MZ and 750 GeV,

• the minimum of the Higgs potential at 246 GeV should be the global minimum [66],

• the 2HDM quartic couplings λi (i = 1, 2, 3, 4, 5) and the Yukawa couplings are

assumed to be perturbative (i.e. smaller than 4π and
√

4π in magnitude, respectively)

at least up to 750 GeV,

• the S-matrix of 2→ 2 scattering processes for Higgs bosons and longitudinal vector

bosons should be unitary up to NLO, and its NLO eigenvalues should not exceed the

LO eigenvalues in magnitude [57].

Requiring positivity and perturbativity of the couplings to hold at least up to 750 GeV

is motivated by the fact that this scale is well above the electroweak symmetry breaking

scale and we can safely use the NLO unitarity conditions. For the renormalization group

running we use NLO renormalization group equations (RGE) [44].

The first three bullet points have already been used in the literature and will be referred

to as “stability up to 750 GeV” in the following. The fourth set of constraints has never

been applied in a general 2HDM fit, which is why we want to explain the details of our

approach in the following, referring to [57].

The unitarity of the S-matrix leads to constraints on the partial wave amplitudes of a

theory, ∣∣∣∣a2→2
` − 1

2
i

∣∣∣∣2 +
∑
n>2

|a2→n
` |2 =

1

4
, (3.1)

where a2→n
` are the eigenvalues of the matrix of the `-th, 2→ n partial wave amplitudes, a`.

Considering only 2→ 2 scattering (and dropping the superscript) this constraint becomes
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an inequality, ∣∣∣∣a` − 1

2
i

∣∣∣∣ ≤ 1

2
. (3.2)

The 2HDM one-loop corrections necessary to use this inequality were recently computed

in ref. [57]. Prior to this computation, the inequalities |Re(a0)| ≤ 1
2 or |a0| ≤ 1 were used

to constrain the tree-level partial wave amplitudes [50–56]. Comparing with the discussion

of higher order corrections in the SM, stronger bounds were estimated and used for the

2HDM [34, 44], but this ansatz was controversial. Having at hand the calculated NLO

unitarity conditions, we can determine the upper bound on the quartic couplings without

any ambiguity of method.

The computation of ref. [57] was performed in the high energy limit, s� |λi|v2 �M2
W ,

s � m2
12, where the SU(2)L × U(1)Y symmetry is manifest. In this limit, a0 is block

diagonal at leading order, with blocks of definite weak isospin (σ) and hypercharge (Y )

(a`>0 = 0 at leading order in this limit). Furthermore, the Z2-even and -odd states do

not mix at tree-level, leading to smaller blocks. Due to the manifest symmetry at high

energies, the calculation can be simplified by computing the amplitudes in the Z2 basis

using the non-physical Higgs fields, w±j , n
(∗)
j [54],

Φj =

(
w+
j

nj + vj/
√

2

)
, nj =

hj + izj√
2

, (j = 1, 2). (3.3)

The elements of a0 are given by

(a0)i,f =
1

16πs

∫ 0

−s
dtMi⊗f (s, t), (3.4)

where, for example,

M 1√
2

(Φ†1Φ1)⊗ 1√
2

(Φ†2τ
3Φ2)

=
1

2

(
Mw+

1 w
−
1 →w

+
2 w
−
2
−Mw+

1 w
−
1 →n2n∗2

(3.5)

+Mn1n∗1→w
+
2 w
−
2
−Mn1n∗1→n2n∗2

)
.

In general, the block diagonal structure of a0 does not hold beyond tree-level. However,

it turns out that in the high energy limit, this structure is only broken by diagrams that

correct the wavefunctions of the external legs, not by 1PI diagrams. Ref. [57] showed

that the external wavefunction corrections are numerically subdominant with respect to

the 1PI diagrams in some special cases. We confirm this and find it to be generalizable

for all 2HDM scenarios with a softly broken Z2 symmetry. Due to this relative numerical

unimportance, we neglect the external wavefunction corrections throughout this work. In
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this approximation, the one-loop eigenvalues take the following form,1

32πaeven
00± = B1 +B2 ±

√
(B1 −B2)2 + 4B2

3 , (3.6)

32πaodd
00± = 2B4 ± 2B6,

32πaeven
01± = B7 +B8 ±

√
(B7 −B8)2 + 4B2

9 ,

32πaodd
01± = 2B13 ± 2B15,

32πaodd
10 = 2B19,

32πaeven
11± = B20 +B21 ±

√
(B20 −B21)2 + 4B2

22,

32πaodd
11 = 2B30,

with the eigenvalues labeled as follows, aZ2
Y σ±, and dropping the index ` = 0. BN is

the block-diagonal element, (a0)i,f , from eq. (B.N) in [57], which can also be found in

appendix B. In order to satisfy unitarity, the aZ2
Y σ± have to individually fulfill the condi-

tion (3.2). Note that at LO, the eigenvalues are related to the ones defined in [54] by

aZ2
Y σ± = −32π2ΛZ2

Y σ∓ for λ5 > 0.

Another constraint is the requirement that higher order corrections to the partial wave

amplitudes are suppressed. In particular, following [57] we define,

R′1 =

∣∣∣aZ2,NLO
Y σ±

∣∣∣∣∣∣aZ2,LO
Y σ±

∣∣∣ , (3.7)

where the (N)LO label denotes the pure (N)LO contribution. Similar criteria were used in

the perturbative unitarity analysis of the SM in ref. [60]. Assuming that the power series is

perturbatively stable, we want to require the NLO contribution to be smaller than the LO

expression, hence R′1 < 1. However, we need to avoid the exclusion of accidentally small

leading-order contributions. (For instance, aodd,LO
10 = (λ4 − λ3)/(8π) is small if λ3 ≈ λ4,

while aodd,NLO
10 also depends on the other quartic couplings.) Therefore, we decided to use

the R′1 criterion only if |aZ2,LO
Y σ± | > 0.02 ≈ 1/(16π).

The 2HDM is unitary, so let us explain what we mean when we say unitarity con-

straints. Inequality (3.2) requires the couplings of a theory to be smaller than a certain

value in magnitude, or else the theory will no longer appear to be unitary at the finite

order of the perturbative expansion to which we are working. In this sense both the “per-

turbativity bound,” R′1, and the “unitarity bound” test the same thing, namely where the

breakdown of perturbation theory occurs.

3.2 Experimental constraints

The experimental constraints included in our analysis are:

• the Peskin-Takeuchi parameters S, T , and U [67],

1Ref. [57] used the differential operator DGMU = 16π2µ2(d/dµ2) in its definition of the beta functions.

In this work we use the traditional definition of the beta function, βλi ≡ Dλi = µ(dλi/dµ).

– 6 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
6

• the h signal strengths,

• the non-observation of H and A at the LHC and

• the Bs meson mass difference ∆mBs [68, 69] and the branching ratio B(B̄ →
Xsγ) [70].

As we saw in the previous section, the 2HDMs introduce new Higgs bosons which couple to

the gauge bosons and which, thereby, can give contributions, through loops, to the gauge

boson self-energies. Thus, the 2HDMs yield new contributions to S, T and U that generally

move them away from their SM values. For the 2HDM predictions of the Peskin-Takeuchi

parameters in the CP-conserving limit we make use of the formulae of [67]. As input values

for the oblique parameters S, T and U and their correlation coefficients we take the most

recent results obtained in a fit to electroweak precision data with HEPfit [71], see table 2

in appendix C.

In order to confront the 2HDM with the latest ATLAS and CMS Run I data on

Higgs signal strengths, we compute in the narrow-width approximation for each final state

f ∈ {γγ, ZZ, WW, bb, ττ} the signal strengths2

µfggF+tth =
∑

i=ggF, tth

σ2HDM
i

σSM
i

· B
2HDM(h→f)

BSM(h→f)
, (3.8)

µfVBF+Vh =
∑

i=VBF,Vh

σ2HDM
i

σSM
i

· B
2HDM(h→f)

BSM(h→f)
, (3.9)

having grouped the Higgs production modes in just two effective modes, ggF + tth and

VBF + Vh, where “ggF”, “tth”, “VBF” and “Vh” stand for “gluon fusion”, “tt̄ associated

production”, “vector boson fusion” and “Higgstrahlung”, respectively. The SM Higgs boson

production cross sections are taken at a centre-of-mass energy of 8 TeV from [72]; the SM

branching ratios were calculated with HDecay 6.10 [73]. In order to express the 2HDM

cross sections and branching ratios in terms of the SM ones, we make use of the formulae

of [74] for the loop induced decays of the neutral Higgs bosons. Central values, errors

(Gaussian approximation) and correlations for the signal strengths in (3.8) and (3.9) were

obtained from figure 13 and table 14 of [17] and can be found in table 3 in appendix C.

Direct H and A searches are taken into account as follows: given the X → H/A→ Y

process, we define the ratio

R
(X→H/A→Y )
Gauss =

σB|theo − (σB|95%,obs − σB|95%,exp)

σB|95%,exp

,

where σB = σ(X → H/A) · B(H/A → Y ) and the subscripts denote the theoretical

2HDM value of σB and its observed and expected exclusion limit at 95% CL by the

experiments. With this definition, we can assume the R
(X→H/A→Y )
Gauss ratios to be Gaussian

with a standard deviation of 1. Note that these quantities depend on mH/A; furthermore

we neglect the error on σB|95%,exp.

2For the sake of simplicity, we refrain from writing obvious antiparticle and charge attributions explicitly.
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The H and A search exclusion limits included in our analysis and their mass ranges,

along with the exclusion plots from which they were digitalized, are listed in table 4 in

appendix C. Most SM Higgs production cross sections are taken from the LHC Higgs Cross

section Working Group [75]; the remaining ones are calculated with HIGLU 4.34 [76], Sushi

1.5 [77], and Madgraph5 2.2.2 [78]. The branching ratios were calculated with HDecay

6.10 [73] while the decay widths for both Higgs-to-Higgs decays and Higgs decays into a

Higgs boson and a gauge boson are taken from [79].

From the plethora of flavour observables we only use the most relevant two for our

2HDM discussion: the mass difference in the Bs meson system, ∆mBs and the branching

fraction B(B̄ → Xsγ). The former is calculated according to [68, 69] at LO. For the

inclusive measurement of B(B̄ → Xsγ), NNLO corrections are important [70]. As for

fixed SM parameters this observable only depends on the two 2HDM parameters tan β

and mH± , we store the B(B̄ → Xsγ) values for various inputs of these two parameters in

tables, and interpolate them linearly in the fits. A theoretical error of 7% is applied, which

corresponds to the uncertainty in the SM parameters. The experimental inputs for the

flavour observables can be found in table 5 in appendix C.

4 HEPfit

As numerical set-up we use the open-source code HEPfit [80], interfaced with the release

version of the Bayesian Analysis Toolkit (BAT) [81]. The former calculates all mentioned

2HDM observables and feeds them into the parallelized BAT, which applies the Bayesian

fit with Markov chain Monte Carlo simulations. The complete global fit with all theoretical

bounds runs for approximately 60 hours with 12 parallel chains generating 2 ·107 iterations

each. Adding the experimental observables as described above slows down the same fit to

roughly 90 hours.

A fundamental difference between the Bayesian and the frequentist approach is the

treatment of fine-tuning: if one changes the parametrization of a model, flat priors on the

former parameters usually do not translate into flat distributions of the new basis in a

Bayesian fit. Some values for a new parameter might only be obtained by a very specific

constellation of the old parameters, which in that sense would mean that they require a

certain amount of fine-tuning. A frequentist fit is not sensitive to this bias, but one could

argue that it is also less natural. HEPfit makes use of the Bayesian approach assuming flat

priors for the physical parameters (2.2), and the posterior distribution of the parameters

in the Higgs potential (2.1) are “distorted” by the Jacobian of the change of parameters.

However, the posterior intervals only have a well-defined meaning once experimental data

is included, and that is when the dependence on the priors disappears. In the first part of

the following section, when we only discuss theoretical constraints, the reader should bear

in mind that our results depend on the priors (and thus on the parametrization). Also, we

will present the 99.7% allowed regions for fits to only theoretical constraints, while after

the inclusion of experimental data we show the 95.4% probability contours, which then

have a statistical meaning.
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5 Results

In the following we will present the results of our fits of theoretical and experimental

constraints to the 2HDM of type I and II. Before we address the physical 2HDM parameters

we want to compare the effects of the unitarity constraints. As explained in section 3.1,

we impose these bounds at a scale of 750 GeV; thus a stable Higgs potential at least up to

this scale is implicitly assumed. Nonetheless, all quantities shown in the figures are to be

understood at the scale MZ .

In figure 1 we show the 99.7% probability regions for all λi vs. λj planes with three

different unitarity conditions: the green areas are allowed if we impose only LO unitarity,

the red regions show the remaining parameter space if we use the NLO unitarity conditions,

and the blue contours result from additionally requiring the NLO unitarity conditions to be

perturbative (R′1 < 1). Generally one can see that perturbative NLO unitarity is a stronger

constraint than NLO unitarity with arbitrary R′1, which itself is always stronger than LO

unitarity. Numerically the largest possible absolute values for any of the quartic couplings

from (2.1) are 8.10, 7.21, or 5.75, if we apply LO, NLO or perturbative NLO unitarity,

respectively. Especially in the λ4 vs. λ3 plane, but also in the λ5 vs. λ3 and λ5 vs. λ4

planes one can see that for particular constellations, NLO unitarity features sharp incisions

towards the origin of the plane, whereas those indentations are absent if we use LO unitarity.

A closer look at different variations of our conditions explained in section 3.1 is shown

in the left panel of figure 2 in the λ4 vs. λ3 plane. The green, red and blue solid lines

correspond to the contours of the same colour in the previous figure; all lines are the 99.7%

probability boundaries. As explained above, previous studies used 1/4 rather than 1/2 as

upper limit for the real part of the LO unitarity eigenvalues. This choice is represented

by the green dashed line and is almost always less stringent than R′1-perturbative NLO

unitarity. The red dashed line uses LO RGE instead of the NLO RGE which apply in all

other cases. As already stated in ref. [44], the NLO RGE “stabilize” the potential with

respect to the LO expressions in the sense that for the same starting point one runs into

non-perturbative values for the quartic couplings at much lower scales with LO RGE. That

is why larger values for the λi are accessible at the electroweak scale if one uses the NLO

RGE. What happens if one only requires that R′1 < 1 without imposing NLO unitarity

can be seen at the pink contour. In other words, the blue line should be interpreted as the

combination of the red (NLO unitarity) and the pink one. Only for λ3 > 4, one can see

that the combination of both sets of constraints is stronger than their individual impacts.

Finally, the cyan contour is the result of using a ten times smaller threshold for the LO part

of R′1. However, compared to our typical limit of 0.02 this is not substantially different.

Again in the λ4 vs. λ3 plane, we also show the individual contributions of the relevant

single NLO eigenvalues in the right panel of figure 2. The shaded areas are excluded at

99.7% probability by the eigenvalues indicated in the legend. It is worth noting that only

“−” solutions seem to be important in this plane.

Going from the potential parametrisation to the physical parameters, one can see

how the different constraints on the λi couplings translate into restrictions on the mass

differences between the heavy Higgs bosons H, A and H+ in figure 3. Like in figure 1,

we observe a hierarchy between LO unitarity, NLO unitarity and NLO unitarity with the
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Figure 1. 99.7% probability regions in the λi vs. λj planes. The green contours show the possible

ranges if we impose a stable potential up to 750 GeV and unitarity at LO; the red contours mark

the allowed regions if we take the NLO expressions instead, and the blue lines are obtained with

the additional assumption that the ratio of NLO and LO unitarity is smaller than one (if the LO

value is sufficiently large). The λi values are at the scale MZ .

perturbativity requirement R′1 < 1, with the first set of constraints being the weakest bound

and the last being the strongest bound. While LO unitarity allows for maximal |mH−mA|,
|mH −mH+ | and |mA −mH+ | of 500 GeV, the perturbative NLO unitarity conditions sets

upper limits on the mass splittings of around 360 GeV. mH+ > mH and mA > mH are

already almost excluded by LO unitarity for λ3 < 0 and λ5 > 0, respectively; we can see

that after the inclusion of NLO unitarity with the R′1 condition also other constellations

like λ3 = 0 feature significantly smaller possible mass differences.
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green, red, and blue curves have the same meaning here as the shaded regions of the same colour

in figure 1. The dashed green curve shows the effect of (arbitrarily) requiring the LO unitarity

condition to be more restrictive. The pink curve demonstrates the impact of the perturbativity

bounds without the unitarity bounds. The cyan curve requires |aZ2,LO
Y σ± | > 0.002 in order for the

perturbativity bounds to be enforced, rather than 0.02, leading to no significant change in the

allowed parameter space. Right: breakdown of the single effects of the unitarity constraints. Only

the most constraining eigenvalues are displayed.

Figure 4 contains the same quartic coupling planes as figure 1, but additionally the

experimental data has been taken into account. The blue region survives all theoretical

constraints as mentioned at the beginning of section 3.1 and is identical with the blue

contours of the previous figures. The unfilled contours have been obtained using only

one of the following three sets of inputs in combination with the requirement that the

scalar potential is stable up to 750 GeV: the oblique parameters (labelled “STU”); h signal

strengths and H and A searches (“Higgs”); ∆mBs and B(B̄ → Xsγ) (“Flavour”). For

the latter two the coloured dashed lines represent type I fits, while the solid lines are

the type II contours. In both types, the first set is most constraining for negative λ3 or

– 11 –
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Figure 3. 99.7% probability regions in the λi vs. (mj −mk) planes. The colours of the regions

have the same meaning as those of figure 1.
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Figure 4. λi vs. λj planes including experimental constraints. The blue shaded regions are the

same 99.7% probability areas as in figure 1, while the orange, pink and light blue lines mark the

95.4% probability boundaries of fits using only the oblique parameters (STU), all direct Higgs

observables (that is h signal strengths and searches for H and A) or the flavour observables ∆mBs

and B(B̄ → Xsγ). The grey contours are compatible with all theoretical and experimental bounds

at a probability of 95.4%. The solid lines are understood as the type II contours, the coloured

dashed lines represent the corresponding type I fits.
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Figure 5. The β−α vs. tan β planes of type I (left) and type II (right) with the single contributions

of the most important constraints: the h signal strengths in light green, the heavy neutral Higgs

searches in pink and the mass difference between the Bs and B̄s mesons in dark blue; the grey

contours stem from the combined fit to all constraints. The dashed lines represent the 95.4% prob-

ability boundaries, the grey solid and dash-dotted ones the 68.3% and 99.7% contours, respectively.

The grey dotted line indicates the alignment limit β − α = π/2.

positive λ4, the second set excludes λ5 > 0.4, and the third set of inputs yields λ2 < 3.5

and λ3 > −2. Finally, the grey regions denote the combination of all theoretical and

experimental constraints in type II and the grey dashed lines correspond to the type I

fits. The allowed λ1 and λ4 intervals are similar to the ones obtained in figure 1, but

the other three receive significant additional restrictions from the experimental bounds:

with a probability of 95.4%, λ2 cannot exceed 1.6 (1.2), λ3 has to be within −1.6 and 3.0

(−1.3 and 3.1) and the allowed λ5 interval is between −2.7 and 0.3 (−2.7 and 0.5), when

marginalizing over all parameters in type I (type II).

Again turning towards the physical parameters, we show the allowed parameter space

in the β − α vs. tan β plane for type I and II in the left and right panels of figure 5,

respectively. The most important bounds in this plane comes from the h signal strengths,

the heavy Higgs searches and ∆mBs ; their 95.4% bounds are also depicted individually.

The Higgs observables strongly constrain the difference between α and β. In the final fit

with all constraints, the deviation from the alignment limit, |β − α − π/2|, cannot exceed
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0.15 in type I and 0.04 in type II. (This corresponds to a maximal deviation of sin(β − α)

from 1 by 0.01 and 7 ·10−4, respectively.) The mass difference in the Bs system sets a type

independent lower bound on β for the chosen mass priors. More details about the effects

of the signal strengths can be found in figures 8 and 9 in appendix A.

In figure 6, we plot the allowed ranges for the heavy Higgs boson masses and their

mass differences after imposing the theoretical and experimental constraints for type I

and type II. The green, red and blue regions depict the 99.7% allowed parameter space

for the various unitarity conditions discussed above. The orange region is the allowed by

the STU observables at 95.4%. Finally, the grey region is the available parameter space

after all the theoretical and experimental constraints are taken into consideration. Even if

the perturbative NLO unitarity contour represents a larger probability boundary than the

oblique parameter contour (99.7% for the former, 95.4% for the latter), it is more stringent

for masses above 400 GeV and thus the dominant constraint in the high mass regime. It

allows for maximal mass splittings between mH , mA andmH+ of around 100 GeV for masses

above 600 GeV. After the inclusion of the LHC searches for heavy neutral Higgs bosons, we

observe that the remaining parameter space is disconnected. The largest gap occurs around

mH,A ≈ 550 GeV. The reason for this discontinuity is that our fits are incompatible with the

observed ATLAS and CMS diphoton cross sections around this mass. For details, we refer

to figures 10 and 11 in appendix A. With a probability of 95.4%, H and H+ can be as light

as 210 GeV, and mA cannot be smaller than approximately 400 GeV in type I. In type II,

masses below 600 GeV are excluded at 95.4% after the inclusion of B(B̄ → Xsγ) to the fit.

Finally, we address the soft Z2 symmetry breaking parameter m2
12. In figure 7 we show

its dependence on tan β and the H Higgs mass in the two discussed types. While for the

theoretical set of constraints a strong correlation between the heavy Higgs mass and m2
12

is visible, this gets somewhat relaxed if one adds experimental data to the fit. This is due

to the flavour constraints, which favour larger tan β and mH+ values. The most important

result here is that an unbroken Z2 symmetry can be excluded with a probability of 95.4%

in the combined fit to the type II; the single sets of constraints are individually compatible

with an exact Z2 symmetry. The lowest 95.4% allowed value for m2
12 is (370 GeV)2, if we

marginalize over all other parameters.

6 Conclusions

The determination of the NLO unitarity constraints to the 2HDM with a softly broken

Z2 symmetry mitigates the problem of how to tame higher order contributions involving

large quartic couplings. The expressions have been derived in ref. [57], and in this article

we perform the first general fits to them in the 2HDM of type I and II, making use of the

publicly available package HEPfit. One important result is that wavefunction renormal-

ization contributions can be safely neglected in these models. In our fits we also apply

the suppression of non-perturbative higher order contributions with the R′1 condition, re-

quiring that the NLO part cannot be larger in magnitude than the LO contribution if the

latter is not accidentally small. We find that both steps, going from LO to NLO unitarity

and comparing NLO unitarity with R′1-perturbative NLO unitarity, individually put strong
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Figure 6. Allowed regions in the heavy Higgs boson masses and their mass differences planes in

the 2HDM of type I (dashed lines) and type II (solid lines). The unitarity bounds to the green,

red and blue regions are meant at a probability of 99.7%, and the orange and grey lines mark the

95.4% boundaries.
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Figure 7. m2
12 vs. tan β and m2

12 vs. mH planes in type I (left) and type II (right). The colours

have the same meaning than in figure 4 with the difference that also the grey type I contour was

filled here.
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bounds on the 2HDM parameters. If we add all other relevant theoretical constraints, that

is stability and positivity of the scalar potential up to a scale of 750 GeV, the quartic λi
couplings cannot exceed 5.8 in magnitude and the mass differences between mH , mA and

mH+ cannot be larger than approximately 360 GeV. (The latter even reduces to maxi-

mally 100 GeV for heavy Higgs masses above 800 GeV.) To our knowledge, this currently

represents the strongest reliable bound on the mass splittings.

Moreover, we have added the most relevant experimental constraints to the fit: the

electroweak precision data in form of the oblique parameters, the complete set of LHC Run

I results and the most important flavour observables. These bounds constrain the quartic

couplings even further: the allowed intervals for the quartic couplings are

0 ≤ λ1 < 4.2, 0 ≤ λ2 < 1.6, −1.6 < λ3 < 3.0, −2.5 < λ4 < 2.9, −2.7 < λ5 < 0.3

in type I and

0 ≤ λ1 < 4.2, 0 ≤ λ2 < 1.2, −1.3 < λ3 < 3.1, −2.5 < λ4 < 2.9, −2.7 < λ5 < 0.5

in type II with a probability of 95.4%. For the physical parameters, we find that tan β

cannot be smaller than 1 in both discussed types of the 2HDM. The deviation from the

alignment limit |β − α − π/2| cannot exceed 0.15 (0.04) in type I (type II). In type I the

global fit produces lower 95.4% bounds of 210 GeV for mH and mH+ and 410 GeV for mA,

while these limits are around 650 GeV for all three heavy Higgs masses in type II. In the

latter case, also an unbroken Z2 symmetry can be ruled out at 95.4%; the soft Z2 breaking

parameter m2
12 has to be larger than (370 GeV)2.
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A Additional figures

In this appendix, we present supplementary figures of the 2HDM parameter space: ded-

icated fits of the different signal strength measurements and H and A searches in type I

and II in figures 8 to 11, and the quartic couplings of the so-called Higgs basis in figures 12

and 13.

In figure 8, we show the effect of the h signal strengths on the β − α vs. tan β plane

for 2HDM of type I. In the top left panel of figure 8, the effect of considering all the five

signal strengths in the “ggF+tth” production modes on this plane is represented by the

orange shaded region, considering all the five signal strengths in the “VBF+VH” production
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Figure 8. 68.3% (solid) and 95.4% (dashed) regions in the β − α vs. tan β plane and different

signal strengths in type I. The colours of the single decay channels match the ones chosen for the

official combination of ATLAS and CMS signal strengths [17], which are also approximated by the

black dotted ellipses. In the top left panel, we also mark the alignment limit β − α = π/2 by a

grey dotted line.
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modes are shown in the pink region, and the light green shaded region depicts the allowed

parameter space when all the ten signal strengths are taken into consideration. In order to

compare the latter with the effect of each of the five decay modes individually, we separately

plot the single decay modes at a time on the rest of the panels of figure 8 overlaid with the

fit with all signal strengths. For each of these additional panels we also indicate the latest

8 TeV signal strength correlation contours at 68% CL taken from ref. [17]. In all the panels,

the filled regions with solid (dashed) lines represent the 68.3% (95.4%) probability contours

as obtained from the fits. Figure 9 displays the same panels as figure 8 but for type II.

Figures 10 and 11 compare the most important constraints on the heavy Higgs masses

vs. tan β planes (left column) and on the heavy Higgs masses vs. β−α planes (right column)

in type I and type II, respectively. In the first four panels, the relevant H (top row) and

A (second row) searches are represented by the shaded regions, which they exclude. For

the attribution of the colours, we refer to the legends. The left panel of the bottom row of

figures 10 and 11 shows in beige the constraint from the mass difference in the Bs system on

the charged Higgs mass vs. tan β plane, which excludes tan β < 1 for the chosen mH+ range.

Figure 11 additionally features the constraint from B(B̄ → Xsγ) disfavouring charged Higgs

masses below 410 GeV. The grey contours in all the panels of figures 10 and 11 depict the

allowed parameter space after all of the theoretical and experimental constraint have been

taken into account. All contours represent the 95.4% probability boundaries. In the mH

and mA planes, the searches for neutral Higgs particles mainly disfavour very small and very

large values of tan β. Around 550 GeV even all tan β values are incompatible with the mea-

sured diphoton events at ATLAS and CMS. In the data of both collaborations, the observed

upper limits on σB are significantly larger than the expected exclusion limits at this invari-

ant mass; an excess which cannot be explained in the context of a 2HDM of type I or II. The

grey contours reflect the features of all important constraints as well as their interplay: also

in the mH/A vs. tan β planes, small tan β values are excluded in the fit with all constraints.

Light mH and mA are excluded in type II (figure 11) because the masses of the neutral

Higgs bosons cannot be very different from the H+ mass due to unitarity (see figure 6).

Instead of the general parametrisation of the potential in (2.1), one is free to choose a

basis in which only one of the two transformed doublets, H1 and H2, obtain a VEV. This

basis is called the Higgs basis [82, 83], and its potential can be written as

V = Y1H
†
1H1 + Y2H

†
2H2 + Y3(H†1H2 +H†2H1) +

1

2
Z1(H†1H1)2 +

1

2
Z2(H†2H2)2

+ Z3(H†1H1)(H†2H2) + Z4(H†1H2)(H†2H1) +
1

2
Z5

[
(H†1H2)2 + (H†2H1)2

]
+
[
Z6(H†1H1) + Z7(H†2H2)

]
(H†1H2 +H†2H1). (A.1)

Only five of the seven quartic couplings Zi are linearly independent. One can see from

figure 12 that they get constrained by the different unitarity conditions in a similar way

than the λi in figure 1, with the R′1-perturbative NLO expressions being stronger than

simple NLO unitarity, which itself is an improvement of LO unitarity. While the latter

does not allow for |Zi| > 9, NLO unitarity (with R′1) sets upper limits of approximately

8 (5) on the absolute values of the Zi. Analogous to figure 4, we also show the impact of
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Figure 9. Same as figure 8 but for type II.
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Figure 10. Exclusion boundaries for type I fits in the heavy Higgs mass vs. tan β (left column)

and heavy Higgs mass vs. β−α (right column) at 95.4% probability. The grey contour denotes the

available parameter space at 95.4% probability, after imposing all the theoretical and experimental

constraints.
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Figure 11. Like figure 10 but for type II fits.
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Figure 12. Planes of the quartic couplings Zi of the Higgs basis parametrisation from (A.1). The

colours are analogous to figure 1.

the experimental constraints on the Zi vs. Zj planes in figure 13. Especially Z1, Z6 and

Z7 suffer strong additional restrictions from the experiments.

B Diagonal entries of the NLO S-matrix

For the reader’s convenience we list the minimal set of elements of the matrix a0 needed

to write its eigenvalues, a0, at next-to-leading order accuracy in the limit that the wave-

function renormalization contribution is neglected. In what follows, each BN corresponds

in this approximation to eq. (B.N) of appendix B of ref. [57]. The complete expressions for
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Figure 13. Planes of the quartic couplings Zi of the Higgs basis parametrisation from (A.1)

including experimental inputs. The colours are analogous to figure 4.

a0 can be found in appendices B and C of ref. [57].

B1 = −3λ1 +
9

2
βλ1 +

1

16π2
(iπ − 1)

(
9λ2

1 + (2λ3 + λ4)2
)

B2 = −3λ2 +
9

2
βλ2 +

1

16π2
(iπ − 1)

(
9λ2

2 + (2λ3 + λ4)2
)

B3 = − (2λ3 + λ4) +
3

2
(2βλ3 + βλ4) +

3

16π2
(iπ − 1) (λ1 + λ2) (2λ3 + λ4)

B4 = − (λ3 + 2λ4) +
3

2
(βλ3 + 2βλ4) +

1

16π2
(iπ − 1)

(
λ2

3 + 4λ3λ4 + 4λ2
4 + 9λ2

5

)
B6 = −3λ5 +

9

2
βλ5 +

6

16π2
(iπ − 1) (λ3 + 2λ4)λ5

– 25 –



J
H
E
P
1
1
(
2
0
1
6
)
0
2
6

B7 = −λ1 +
3

2
βλ1 +

1

16π2
(iπ − 1)

(
λ2

1 + λ2
4

)
B8 = −λ2 +

3

2
βλ2 +

1

16π2
(iπ − 1)

(
λ2

2 + λ2
4

)
B9 = −λ4 +

3

2
βλ4 +

1

16π2
(iπ − 1) (λ1 + λ2)λ4

B13 = −λ3 +
3

2
βλ3 +

1

16π2
(iπ − 1)

(
λ2

3 + λ2
5

)
B15 = −λ5 +

3

2
βλ5 +

2

16π2
(iπ − 1)λ3λ5

B19 = − (λ3 − λ4) +
3

2
(βλ3 − βλ4) +

1

16π2
(iπ − 1) (λ3 − λ4)2

B20 = −λ1 +
3

2
βλ1 +

1

16π2
(iπ − 1)

(
λ2

1 + λ2
5

)
B21 = −λ2 +

3

2
βλ2 +

1

16π2
(iπ − 1)

(
λ2

2 + λ2
5

)
B22 = −λ5 +

3

2
βλ5 +

1

16π2
(iπ − 1) (λ1 + λ2)λ5

B30 = − (λ3 + λ4) +
3

2
(βλ3 + βλ4) +

1

16π2
(iπ − 1) (λ3 + λ4)2

For completeness, the leading terms of the beta functions appearing in the above equations

are

16π2βλ1 = 12λ2
1 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5,

16π2βλ2 = 12λ2
2 + 4λ2

3 + 4λ3λ4 + 2λ2
4 + 2λ2

5,

16π2βλ3 = 4λ2
3 + 2λ2

4 + (λ1 + λ2) (6λ3 + 2λ4) + 2λ2
5,

16π2βλ4 = (2λ1 + 2λ2 + 8λ3)λ4 + 4λ2
4 + 8λ2

5,

16π2βλ5 = (2λ1 + 2λ2 + 8λ3 + 12λ4)λ5.

It is worth mentioning that here only the LO expressions for the β functions should be

used in order to be consistent with the order of perturbation theory. For the running in

the fits we apply NLO RGE.

C Experimental inputs

In the tables 2 to 5 we list all used experimental inputs for our fits with their corresponding

references.
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Pseudo-observable Value Correlation matrix

S 0.09± 0.10 1 0.86 −0.54

T 0.10± 0.12 0.86 1 −0.81

U 0.01± 0.09 −0.54 −0.81 1

Table 2. S, T , and U values and correlations from [71].

Signal strength Value Correlation matrix

µγγggF+tth 1.16± 0.26 1 −0.30

µγγVBF+Vh 1.05± 0.43 −0.30 1

µbbggF+tth 1.15± 0.97 1 4.5 · 10−3

µbbVBF+Vh 0.65± 0.30 4.5 · 10−3 1

µττggF+tth 1.06± 0.58 1 −0.43

µττVBF+Vh 1.12± 0.36 −0.43 1

µWW
ggF+tth 0.98± 0.21 1 −0.14

µWW
VBF+Vh 1.38± 0.39 −0.14 1

µZZggF+tth 1.42± 0.35 1 −0.49

µZZVBF+Vh 0.47± 1.37 −0.49 1

Table 3. h signal strengths from figure 13 and table 14 of [17].
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Channel Experiment Source Mass range (GeV)

gg → H/A→ ττ
ATLAS Figure 11a of [84] 90-1000

CMS Figure 10 (left) of [85] 90-1000

bb̄→ H/A→ ττ
ATLAS Figure 11b of [84] 90-1000

CMS Figure 10 (right) of [85] 90-1000

gg → H/A→ γγ
ATLAS Figure 4, [86] 65-600

CMS Figure 7 (left) of [87] 150-850

bb̄→ H/A→ bb̄ CMS Figure 6 of [88] 100-900

gg → H →WW ATLAS Figure 13 (left) of [89] 300-1500

WW/ZZ → H →WW ATLAS Figure 13 (right) of [89] 300-1500

gg → H → ZZ ATLAS Figure 12a of [90] 140-1000

WW/ZZ → H → ZZ ATLAS Figure 12b of [90] 140-1000

pp→ H → ZZ3 CMS Figure 7 (bottom right) of [91] 150-1000

gg → H → hh ATLAS Figure 6 of [92] 260-1000

pp→ H → hh[→ (bb̄)(ττ)] CMS Figure 5a of [93] 300-1000

pp→ H → hh→ (γγ)(bb̄) CMS Figure 8 of [94] 250-1100

pp→ H → hh→ (bb̄)(bb̄) CMS Figure 5 (left) of [95] 270-1100

gg → A→ hZ → (ττ)(``) CMS Figure 10 (left) of [96] 220-350

gg → A→ hZ → (bb̄)(``) CMS Figure 3 of [97] 225-600

gg → A→ hZ → (ττ)Z ATLAS Figure 3a of [98] 220-1000

gg → A→ hZ → (bb̄)Z ATLAS Figure 3b of [98] 220-1000

pp→ A→ Zγ → (``)γ CMS Figure 2 of [99] 200-1200

Table 4. The exclusion (upper) limits at 95% CL on the production cross-section times branching

ratio of the processes considered in the H and A searches. The first four exclusion limits are

employed in both, H and A searches.

Observable Value Source

∆mBs 17.757± 0.021 ps−1 [100]

B(B̄ → Xsγ) 3.43 · 10−4 ± 0.21 · 10−4 ± 0.07 · 10−4 [100]

Table 5. Flavour inputs.

3Signal strength (normalized to the SM expectation).
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