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1 Introduction

In many approaches to compactifications of F-theory, the identification of the fiber and

base of the internal manifold is built in from the start. Typically, one begins with a choice

of base manifold, and then fibers an elliptic curve, described in terms of an appropriate

complete intersection in some toric variety, over that space. Systematic scans over Calabi-

Yau (CY) geometries constructed in this manner can be found in refs. [2–12]. Such a

construction has many advantages, including the fact that one is guaranteed that the

associated manifold is genus-one fibered and therefore is indeed suitable for use in F-

theory. Nevertheless, this methodology has the drawback that, instead of simply using the

large data sets of Calabi-Yau manifolds that have already been constructed (for example

in refs. [13–23]), one is essentially starting all over again in reconstructing those manifolds

with the desired internal structure. In addition, as we will discuss, certain properties of

the resulting compactifications can be hard to see in such descriptions.

In this paper we present tools for systematically pursuing a different approach to F-

theory compactification. We describe how to take any smooth Calabi-Yau manifold and

extract the F-theory physics associated to this “resolved space” directly (for some related

work see ref. [22]). In particular we describe how to do the following:

1. Isolate genus-one fibrations in one of the conventional data sets of Calabi-Yau mani-

folds. Here we build on technology first developed in refs. [2, 19, 22, 24].

2. Determine whether or not each of these fibrations have a section. In cases where a

section is present we describe how to obtain an explicit form for it in terms of the

original description of the manifold. This methodology is closely related to descrip-

tions of holomorphic functions used in recent constructions of “generalized complete

intersection CY manifolds” (gCICYs) [25].

3. Obtain an explicit Weierstrass model associated to blowing down all components of

the fibers in the original manifold that have generic vanishing intersection number

with a chosen zero section. Here we follow the construction of refs. [28, 29].

– 1 –
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which are visible directly in the configuration
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Figure 2. The abundance of CICY fourfold

configuration matrices, in the standard list, ex-

hibiting a given number of genus-one fibrations

which are visible directly in the configuration

matrix [19].

4. Obtain the Jacobian manifold associated to the original compactification, making use

of techniques from [2, 30, 31].

Once this data has been obtained, standard techniques can be employed to study the

F-theoretical physics of the compactifications in question. We illustrate all of this with

concrete examples taken from the data set of complete intersection Calabi-Yau (CICY)

manifolds [13–19]. We expect that similar techniques should allow the methodology to

be generalized to other data sets such as that due to Kreuzer and Skarke [20–23], or the

gCICYs [25–27], in a straightforward manner. Note that some steps in this direction have

already been taken with Jacobian forms associated to complete intersection fibers ref. [30].

In addition to utilizing pre-existing data sets of Calabi-Yau manifolds, this approach

to analyzing global F-theory compactifications makes evident some features of fibrations

that are not as obvious in more standard methodologies. One of the most important of

these features, which will be explored extensively in the context of dualities in a com-

panion paper [1] to this one, is that of multiple fibrations in a single CY geometry. It is

known [8, 12, 19, 22] that the vast majority of known Calabi-Yau manifolds are genus-one

fibered. It is also suspected that essentially all such manifolds can be written in a myriad

of different ways as such a fibration — indeed this has been proven in the case of complete

intersections in products of projective spaces [19, 32]. This abundance of possible rewrit-

ings of the CICY geometries is illustrated in figures 1 and 2. If one simply constructs a

Calabi-Yau manifold as a particular fiber type over a given base (e.g. in Weierstrass form),

the existence of other descriptions of the manifold as fibrations over different bases can be

difficult to see. In the approach we are following here, such collections of descriptions are

manifest, and thus the obviously closely related F-theory models that they correspond to

can be studied as a set [1, 22].

As a simple illustration of multiple genus one fibrations, consider the following Calabi-

Yau threefold, described as a complete intersection of two polynomial equations in P1 ×

– 2 –
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P2 × P1 × P1.

X =


P1 1 1

P2 1 2

P1 1 1

P1 1 1

 , (1.1)

Here the columns describe the two defining relations of the Calabi-Yau manifold by giving

their polynomial degree in the homogeneous coordinates of the ambient projective spaces.

This construction is described in detail in the next section. The manifold X can be writ-

ten in two different ways as a genus-one fibration. Below the fiber is described by the

configuration matrix above the dotted line:
P1 1 1

P2 1 2

P1 1 1

P1 1 1

 ,


P1 1 1

P1 1 1

P1 1 1

P2 1 2

 . (1.2)

The base of the fibration is then simply P1 × P1 in the first case and P2 in the second.

For the first of these fibrations we will provide, in section 6, an explicit description

of the associated Weierstrass model (over P1 × P1) as one simple example of our method.

The second of these fibrations is genus one but does not have a section. We provide several

examples in sections 5–8 with some exhibiting multiple elliptic fibrations giving rise to the

same total space.

A second feature that we have observed in applying this approach to the CICY data

set, is that a great deal of these manifolds exhibit at least one fibration with a relatively

high rank Mordell-Weil group. Indeed, even for the very simple example given above, the

first fibration discussed admits two sections. As will be detailed in section 6, these can

be described as the global holomorphic sections of the line bundles OX(−1, 1, 1, 1) and

OX(2,−1, 4, 4), respectively. Here we are using the standard notation where the integers

represent the coefficients in an expansion of the first Chern class of the line bundle in a

basis provided by restricting the ambient Kähler forms to the Calabi-Yau manifold. As a

somewhat larger example, in section 8 we provide a case with Mordell-Weil rank 4.

As a final comment, it is clear that certain features — such as the exact nature of

the resolved geometry corresponding to an F-theory model, and thus its M-theory limit —

are obvious in this construction. In the more conventional approach to building F-theory

models this information can be highly non-trivial to obtain and a lot of interesting work

has been carried out in this regard (see refs. [37–44] for some recent advances).

The outline of this paper is as follows. In section 2, we describe how to identify genus-

one fibrations of CICYs and obtain explicit expressions for their sections, if present. In

section 3, we describe how to use this information to obtain the Weierstrass models and

the Jacobians associated to the initial Calabi-Yau manifolds. We also give some more

information on the resolved geometries and discuss the decomposition of the Picard lattice

according to the theorem of Shioda-Tate-Wazir [45]. Sections 5–8 contain explicit examples

of these techniques as applied to cases taken from the CICY data set.

– 3 –
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2 Elliptic fibrations and sections

Consider a Calabi-Yau n-fold Xn embedded as a complete intersection of K hypersurfaces

in a product of projective spaces A =
∏m
r=1 Pnr

xr
, where the subscripts xr = (xr,0 : · · · : xr,nr)

denote the homogeneous coordinates of the corresponding projective space Pnr . Then, it

can be characterized by a so-called configuration matrix,

Xn =


Pn1
x1

a11 · · · a1K
Pn2
x2

a21 · · · a2K
...

...
. . .

...

Pnm
xm

am1 · · · amK

 . (2.1)

Here the matrix entry arj denotes the degree of the j-th hypersurface equation in the

homogeneous coordinates of the r-th projective space factor of the ambient space. The

Calabi-Yau condition leads to the degree constraints,

nr + 1 =
K∑
j=1

arj , (2.2)

for each r = 1, · · · ,m, while the condition that the Calabi-Yau be an n-fold is given as

m∑
r=1

nr = n+K . (2.3)

In this paper, we will be analyzing such Calabi-Yau manifolds realized as a CICY.1 Further,

since we wish to study F-theory vacua, we will restrict our considerations to those CICYs

with at least one “obvious” genus-one fibration, as we will describe in the next subsection.

To avoid potential confusions, before we proceed, however, we clarify the terminology that

we will use throughout the paper. “Genus-one fibration” refers to a fibration of genus-one

curves, whether or not it has a section, while “elliptic fibration” implies the existence of

a section. Note also that we will oftentimes hide the manifold subscripts that indicate

dimensions, for example Xn and X will be used interchangeably unless confusions arise.

2.1 Genus-one fibration structures in CICYs

In general it is rather difficult to take a CICY configuration matrix and enumerate all of the

ways in which the associated variety can be written as a genus-one fibration. However, there

exists a class of genus-one fibrations which can be readily classified from the configuration

matrix alone.

It is possible to perform arbitrary row and column permutations on a configuration ma-

trix without changing the geometry that is described. These operations simply correspond

to relabelling the Pnr ambient factors and the hypersurface equations, respectively. Let us

1In many computations we have made use of the “CICY Package” [46], based on methods described

in [47–51].
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suppose that upon appropriate use of such permutations, the configuration matrix (2.1)

can be put in the following block form,

Xn =

[
AF O F
AB B T

]
, (2.4)

where AF and AB are two products of projective spaces such that

AF ×AB =
m∏
r=1

Pnr
xr
≡ A , (2.5)

while F , B, T , and O = 0 are submatrices of the full configuration matrix. Such a

configuration describes a fibration of the fiber F = [AF ||F ] over the base B = [AB||B],

where T describes the variation of the fiber over the base. Since the top-left block is a zero

matrix, the Calabi-Yau condition (2.2) guarantees that the fiber F obeys the analogous

degree constraints and hence is Calabi-Yau itself too. Therefore, as long as the number

of columns of F and the dimension of AF are such that F is of complex dimension 1, the

fibers will be Calabi-Yau one-folds: that is genus-one curves as desired. It follows that the

base will then be of complex dimension n− 1.

Such genus-one fibration structures can easily be found at the level of configuration

matrix via permutations of rows and columns, and will hence be referred to as “obvious

genus-one fibrations” (OGFs).2 Almost all CICY configurations have an OGF, and in many

cases multiple such structures [19, 32]. For example, among the 7, 890 CICY threefolds,

7, 837 can be brought into the OGF form (2.4) and a CICY threefold admits 9.85 OGFs

on average, with the number of OGFs per configuration ranging from 0 to 36. Similarly,

among the 921, 497 CICY fourfolds, all but 477 have an OGF and a CICY fourfold admits

54.6 OGFs on average, with the number of OGFs per configuration ranging from 0 to 354.

As an illustration of OGF, let us consider the K3 surface with the following configu-

ration matrix,

X2 =


P1
x1

1 1

P2
x2

1 2

P1
x3

1 1

 . (2.6)

The K3 surface X2 admits an OGF structure over the base B1 = P1
x3

, where the configu-

ration of the fiber is given as

F =

[
P1
x1

1 1

P2
x2

1 2

]
. (2.7)

In this particular example the matrix B has 0 columns. For the rest of this section and

the next two, we will use this configuration as a simple and explicit example with which

to clarify various techniques. The entire analysis for this K3 surface is put together in

2Note that in ref. [19] such OGFs were referred to as obvious elliptic fibrations (OEFs). In this paper,

however, we need to carefully distinguish between fibrations with and without sections and thus will avoid

this earlier nomenclature.
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section 5 in a self-contained manner for the reader who prefers a complete worked example

to an illustrated general analysis.

One further point that should be made before we proceed is that the OGFs just

described need not be flat fibrations. As a simple example consider the following configu-

ration,

X3 =


P1
x1

1 1 0

P1
x2

1 0 1

P2
x3

1 0 2

P2
x4

1 1 1

 . (2.8)

Here we can take the fiber to be described by

F =


P1
x1

1 1 0

P1
x2

1 0 1

P2
x3

1 0 2

 , (2.9)

with P2
x4

being the base. Consider the defining relation given by the second column in

eq. (2.8). This takes the following form,

P2 = x1,0l0(x4) + x1,1l1(x4) , (2.10)

where l0 and l1 are linear functions in the homogeneous coordinates of the base P2
x4

. For

general choices of complex structure, at a certain point in the base we have l0 = l1 = 0.

At such point P2 = 0 holds automatically, and this equation does not provide a constraint

in AF = P1
x1
× P1

x2
× P2

x3
. Thus over that point in the base the fiber is actually two

dimensional, not a curve, and thus the fibration is not flat.

More generally, if there is any choice of point on the base, such that the associated

choice of complex structure describing the fiber eq. (2.9) is not a complete intersection, then

the fibration will not be flat. For most of this paper, we will restrict ourselves to examining

flat fibrations for ease and physical motivations. However, in appendix A, we will apply our

methods to a non-flat fibration and make some comments about the connection between

non-flatness of fibrations and singularities in the associated Weierstrass model in which f

and g vanish to orders 4 and 6.

Finally, it should be noted that although the statistics described above focused on

OGFs in CICYs, an elliptic fibration structure can also be found via a set of criteria purely

in terms of the intersection theory:

Conjecture [52]: Let X be a Calabi-Yau n-fold. Then X is genus-one fibered iff there exists

a (1, 1)-class D in H2(X,Q) such that (D · C) ≥ 0 for every algebraic curve C ⊂ X,

(Ddim(X)) = 0 and Ddim(X)−1 6= 0.

For n = 3 (i.e. a CY 3-fold) this conjecture has been proven subject to the additional

constraints that D is effective or (D · c2(X)) 6= 0 [53, 54]. It is straightforward to see

in the case of many CICYs, including for example the 3-fold given in (1.1), the criteria

– 6 –
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above can be used to verify that the OGF fibrations are in fact all fibrations for the given

CICY (see [55, 56] for general formulas on intersection numbers and topology of CICYs).

In summary, the CICY dataset provide a rich data set of examples of multiply genus-one

fibered Calabi-Yau manifolds which we will exploit in ref. [1] with the techniques developed

in this paper.

2.2 Putative sections to genus-one fibrations

Given a smooth, genus-one fibered Calabi-Yau n-fold, Xn → Bn−1, the fibration may or

may not have a section. Although many of the techniques in this paper apply also to the

cases without a section, for a clearer interpretation of the corresponding F-theory vacuum,

we will always start our geometric exploration by determining whether or not a section

exists (see, e.g., refs. [57–70] for examples of recent work on the physics of genus-one

fibrations without a section). We will separate the procedure of finding a section into two

steps. In the first step we will find a candidate divisor class in which a section could live by

imposing topological constraints. In the second step the section itself will be constructed

explicitly as a map from the base to the fiber.

We call a codimension-one subvariety S ⊂ Xn a “putative section” if it is an element

of a divisor class [S] that meets the following two criteria, both of which necessarily hold

for a section:

(a) Let D̂b
α for α = 1, · · ·h1,1(B) be a basis of divisor classes in the base and Db

α their pull

backs to X. Then, due to Oguiso [53], the following equality between two intersection

products, one on Xn and the other on Bn−1, should hold,

[S] ·
n−1∏
k=1

Db
αk

=
n−1∏
k=1

D̂b
αk
, (2.11)

for each (n − 1)-tuple (α1, · · · , αn−1) with αk = 1, · · · , h1,1(B). This is necessary if

the fiber Fp at a generic point p ∈ B is to intersect S at a single point. We will

oftentimes refer to the criterion (a) as the Oguiso criterion.

(b) For S to be a section it should be birational to the base B, and thus necessarily obeys

the following intersection criterion [72],

[S] · [S] ·
n−2∏
k=1

Db
αk

= − [c1(B)] · [S] ·
n−2∏
k=1

Db
αk
, (2.12)

for each (n− 2)-tuple (α1, · · · , αn−2) with αk = 1, · · · , h1,1(B). Note that this crite-

rion has been well-established for n = 2 and 3, and is believed to also hold for CY

n-folds with n > 3.

When applied to any particular case, the two criteria above lead to a family of possible

divisor classes for putative sections. Given that any putative section S is an element

of a divisor class [S], there exists a corresponding line bundle OX(S). In what follows

– 7 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
4

we will frequently find it useful to consider these line bundles rather than the associated

divisor classes.

As an illustration, let us consider the K3 configuration of eq. (2.6). If the first Chern

class of OX(S) is c1(OX(S)) = b1J1 + b2J2 + b3J3, where Jr=1,2,3 are the harmonic (1, 1)-

forms descending from the ambient projective pieces Pnr
xr

, then we will denote the line

bundle as OX(S) = OX(b1, b2, b3). Here we have labeled the basis of forms such that the

base B = P1
x3

has a unique harmonic (1, 1)-form generator J3. The right hand side of

criterion (a) is then simple to compute:

1∏
k=1

D̂b
1 =

∫
P1
x3

J3 = 1 . (2.13)

Here we have computed the intersection number of the divisor class in the base by inte-

grating the dual (1, 1) form, which we take to be normalized in the usual manner, over that

manifold. The left hand side of eq. (2.11) can be computed in terms of a similar integral

over wedge products of dual forms — this time over the Calabi-Yau manifold itself. Re-

membering that our unique divisor in the base is dual to J3 and how we are parameterizing

the first Chern class of OX(S) we find

[S] ·
1∏

k=1

Db
1 =

∫
X

(b1J1 + b2J2 + b3J3) ∧ J3 . (2.14)

We will denote the form dual to the Calabi-Yau manifold itself, inside the ambient space,

as µX . In general this form can be read directly off from the configuration matrix (2.1) as

µX =
∧
j a

r
jJr. Using this, we find that the integral in eq. (2.14) can now be rewritten as

follows,

[S] ·
1∏

k=1

Db
1 =

∫
P1
x1
×P2

x2
×P1

x3

[(b1J1 + b2J2 + b3J3) ∧ J3] ∧ µX (2.15)

=

∫
P1
x1
×P2

x2
×P1

x3

[(b1J1 + b2J2 + b3J3) ∧ J3] ∧ [(J1 + J2 + J3) ∧ (J1 + 2J2 + J3)]

= 2b1 + 3b2 .

Combining eqs. (2.13) and (2.15) we finally find that condition (2.11) results in the following

constraint on the divisor class of any potential section,

2b1 + 3b2
!

= 1 . (2.16)

The criterion (b) can be written in terms of br via a very similar intersection compu-

tation and leads to

6b1b2 + 2b22 + 4b1b3 + 6b2b3
!

= −2 . (2.17)

These two putative-section criteria, (2.16) and (2.17), can be solved as

b1 = −1− 3k , b2 = 1 + 2k , b3 = 1 + 11k + 14k2 , (2.18)

with an integer parameter k ∈ Z. For some small values of k = {1, 0,−1,−2}, for instance,

we obtain the putative section classes, OX(−4, 3, 26), OX(−1, 1, 1), OX(2,−1, 4), and

OX(5,−3, 35), respectively.

– 8 –
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2.3 Sections to elliptic fibrations

To make further progress towards finding a section, beyond the necessary topological

conditions imposed in the previous subsection, we must fix a complex structure for the

Calabi-Yau manifold Xn. This is simply achieved by choosing an explicit set of defin-

ing equations Pj(xr) = 0 where j = 1, . . . ,K, in terms of the homogeneous coordinates,

xr = (xr,0 : · · · : xr,nr), of the ambient space, A =
∏m
r=1 Pnr

xr
.

Given a parameterization of putative section classes, such as eq. (2.18), and a choice

of complex structure, the next step is to select a divisor S0 satisfying criteria (a) and (b)

which also has h0(X,OX(S0)) = 1.3 The unique global holomorphic section (GHS),

z = z(x1, · · · ,xm) ∈ Γ(X, OX(S0)) , (2.19)

will then be explicitly found and proven to yield a true section to the fibration, whether

holomorphic or rational.4

The condition h0(X,OX(S0)) = 1 follows, in the case where the section describes a

smooth element of an effective divisor class, from the birationality of the desired section

to the base. For an elliptically fibered Calabi-Yau manifold the cohomology of the trivial

bundle over the base is always zero, except for the presence of a single global section. This

is a simple consequence of the Calabi-Yau condition and the fact that pulling back any

further cohomology elements under the projection map would lead to harmonic forms on

the total space that are known not to exist [73]. Since these cohomologies are a birational

invariant, and the section is birational to the base, we require that these statements should

also hold for S0. For a smooth section we can then use the Koszul sequence to relate trivial

bundle cohomology on S0 to that of OX(S0) as follows. The short exact Koszul sequence

describing the section inside the Calabi-Yau gives rise to

0→ OX(−S0)→ OX → OX |S0 → 0 . (2.20)

The associated long exact sequence in cohomology then contains the following piece.

0→ H3(X,OX(−S0))→ H3(X,OX)→ 0 (2.21)

Using Serre duality on the Calabi-Yau manifold, together with h3(X,OX) = 1, we then

find that h0(X,OX(S0))
!

= 1 as claimed.5

3It should be noted that the criterion (a) together with the line-bundle cohomology condition,

h0(X,OX(S)) = 1, are not sufficient conditions for the existence of a section. In particular, it happens for

some divisors that these two conditions are satisfied while the putative-section criterion (b) in eq. (2.12)

is not.
4Note that for the rest of the paper we will use the acronym GHS for global holomorphic section of a

line bundle and reserve the word “section” for the (putative) section to a genus-one fibration.
5The condition h0(X,OX(S0)) = 1 will in fact also hold in the case of singular sections. In the case of

smooth sections, the higher cohomology groups also vanish: hj(X,OX(S0)) = 0 ∀j > 0. These vanishings

are not a necessity for us however, since rational sections to an elliptic fibration may be singular, in which

case OX(S0) may have a non-trivial higher cohomology (see eq. (6.13) for an example). We do not add the

condition h0(X,OX(S0)) = 1 to our definition of a putative section, since the cohomology condition does

not lead to a closed-form constraint unlike the criteria (a) and (b) and thus it is practically employed in a

different manner.
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It should be noted that putative-section criteria (a) and (b), even when equipped with

the cohomology condition, h0(X,OX(S0)) = 1, do not guarantee that the zero locus of

eq. (2.19) is a section to the genus-one fibration. Therefore, in order to ensure that the

putative section S0 leads to a true section, it is desired to provide an explicit rational map

from B to S0, specified by parametrization of the form,

xF = xF (xB) , (2.22)

where xF and xB collectively denote the ambient homogeneous coordinates of AF and AB,

respectively. Once an explicit expression for the GHS is found in terms of the ambient

coordinates xr, as implied by eq. (2.19), one can indeed solve for the fiber coordinates

in terms of the base coordinates (up to some subtleties which we will discuss further in

the Example sections). However, the Oguiso criterion (a), together with the fact that the

intersection numbers in the projective-space product AF are non-negative, tend to force

the line bundle OX(S0) to simultaneously have positive and negative degrees along the AF
direction. For example, in the K3 case above, the resulting constraint was eq. (2.16), which

indeed forces one of b1 and b2 to be negative and the other positive. Thus, the GHS of

OX(S0) cannot be written as a polynomial in xr. Instead, it takes a rational form and can

be constructed using the techniques developed in the context of generalized CICYs [25].

Let us briefly review how such a rational expression for the GHS of OX(S0) can be

obtained, in the presence of both positive and negative degrees. We first label the line

bundle OX(S0) in terms of its first Chern class as OX(b1, · · · , bm) as in section 2.2. We

then take the following rational ansatz for its GHS,

N(x1, · · · ,xm)

D(x1, · · · ,xm)
∈ Γ(X,OX(b1, · · · , bm)) , (2.23)

where N and D are polynomials in x1, · · · ,xm of multi-degree (b1, · · · , bm)+ and

(b1, · · · , bm)−, respectively. Here, the signs in subscript indicate that only the degrees

with the specified sign are extracted (and are flipped to be positive for the ‘−’ case). For

example, for OX(−1, 1, 1), which is one of the putative sections we found for our simple K3

case (2.6)–(2.7), the polynomials N and D are of multi-degrees (−1, 1, 1)+ = (0, 1, 1) and

(−1, 1, 1)− = (1, 0, 0), respectively. For a given denominator D with the right degree, one

is not allowed to choose a generic numerator N . This is because the ratio N/D would then

behave irregularly at a generic point where D vanishes, while the GHS of the line bundle

O(−1, 1, 1) is known to be associated to a polynomial in coordinates on X itself which can

not exhibit any such singularities. Instead N must be chosen such that on the complete

intersection X the vanishing of D is completely cancelled by that of N , yielding a regular

function. Such a tuning of coefficients in N provides an explicit GHS in terms of xr.

As an illustration, let us go back to the K3 example and take the putative sec-

tion OX(−1, 1, 1) from eq. (2.18) with k = 0, whose cohomology is computed as

h•(X,OX(−1, 1, 1)) = (1, 0, 0). To find the (unique) rational expression of the form (2.23),

where D(x1) is linear in x1 and N(x2,x3) is bi-linear in x2 nd x3, we need to make use of

the first defining equation of K3, which we denote by P1(x1,x2,x3). This defining equation
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can be expanded as

P1 = x1,0 p1(x2,x3) + x1,1 p2(x2,x3) , (2.24)

for bi-linear polynomials p1 and p2 (note from the first column of eq. (2.6) that P1 is tri-

linear). Without loss of generality, we may choose to use D(x1) = x1,0+10x1,1, for example,

and proceed to determine the bi-linear polynomial N(x2,x3), that vanishes whenever D

does in X. Substituting the solution x1,0 = −10x1,1 to D(x1) = 0 into P1 we immediately

have a perfect candidate for a numerator, −10p1 + p2 which vanishes on X whenever D

does. This particular choice of N can be thought of as a tuning of the coefficients of the

six bi-linear monomials in P2
x2
× P1

x3
. Thus, the GHS in this case is constructed (uniquely

as a function on X) as

N(x2,x3)

D(x1)
=
−10p1(x2,x3) + p2(x2,x3)

x1,0 + 10x1,1
. (2.25)

In particular, this expression can be proven equivalent when evaluated on X to any other

expression obtained from a different choice of the denominator polynomial D [25]. In

some cases, the GHS can have sufficiently complex dependence on the defining equations

of the CY that it can be difficult to determine the section analytically along the lines

above. In this case it is still possible to determine the appropriate regular rational function

numerically. This can be done by locating a large number of points on the denominator, D

— found by intersecting the CY defining equations, together with the denominator, with

an appropriate number of generic multi-linear hypersurface constraints. By requiring that

the numerator also vanish (along with the denominator) for this collection of points, the

coefficients of a generic numerator can be fully fixed, leading to a complete description of

the GHS [25].

It is worth mentioning that there is a related method for the numerator tuning, which

shares the same spirit as the previous method, and which is applicable specifically when

the base X of the line bundle in question is a fibration itself (as in our case). Again, one

starts from the ansatz (2.23), together with a choice of D with the right degree. At a

generic point p ∈ B, D = 0 can be solved for a discrete set of points on the fiber Fp over p.

Then, the numerator polynomial N , when evaluated at each of these fibral points, should

vanish. By choosing sufficiently many points on the base B one can then obtain enough

constraints on the coefficients in N to uniquely determine the numerator. Despite being

essentially the same as the first method described above, this approach benefits from the

fact that one does not need to spot the correct combination of defining relations that must

be used in order to derive the appropriate numerator. This method therefore lends itself

better to automation on a computer. This alternative method will be used in section 5

for the same K3 geometry and will be shown to give the same global section expression

as in eq. (2.25).

Using any of the above methods, one can obtain the GHS expression and hence, also

the explicit section map of the form (2.22). If the section map can explicitly be shown to

be rational this way, we will have found a legitimate section. It should be noted, however,

that the corresponding divisor is not necessarily smooth. For example, putative sections

may be reducible, containing a genuine section as an irreducible component as well as a
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vertical divisor therein (see appendix A for explicit examples); these cases can (and will)

be ruled out by testing the irreducibility of the divisor. In general, even a genuine section

can be a singular divisor and some CY geometries presented in this paper will include such

instances.

As has been mentioned above, the sections that are found may be rational and thus

wrap fibral P1’s over certain points of the base. For the case of smooth sections, therefore,

where the Euler number χ(S0) of S0 is well-defined, this number should be closely related

to that of the base χ(B) via the manner in which those P1’s are wrapped. In particular, for

X2 → B1, the sections are always holomorphic, while for X3 → B2, the sections may wrap

P1’s over a finite number of base points. For the latter case, the Euler number difference,

χ(S0)−χ(B), counts the total number of fibral P1’s being wrapped by the rational section,

S0. All of these statements will be confirmed for explicit examples in later sections.

Finally, let us fix some nomenclature. Since eq. (2.19) is to define the z coordinate of

the Weierstrass model in section 3.1, we denote the associated line bundle as

Lz := OX(S0) . (2.26)

Likewise, we further define the two line bundles,

Lx := OX(2S0)⊗K−2B , (2.27)

Ly := OX(3S0)⊗K−3B , (2.28)

where KB is the canonical bundle of the base B pulled back to X. The remaining Weier-

strass coordinates x and y will then be constructed as GHS’s of Lx and Ly, respectively, in

manner similar to the method described above. This will be discussed further in section 3.1.

3 Singular fiber analysis

In order to understand the F-theory effective physics associated to an elliptically fibered

Calabi-Yau manifold, X it is necessary to obtain a minimal limit of the geometry in which

the fibers are irreducible and possibly singular. The structure of the singular fibers encodes

information about non-Abelian gauge symmetries, charged matter and more in the effective

theory [80, 81, 83].

In general, for an elliptically fibered CY n-fold, X → B, with section there are three

possible routes to a “minimal” form the geometry suitable for an F-theory limit. 1) By

Nakayama’s theorem, any such elliptic fibration is birational to a Weierstrass model [29]. 2)

To X we can associate the Jacobian, J(X) [31] and finally 3) All reducible components of

fibers can be explicitly blown down to form a “minimal model” in the sense of the Minimal

Model Program (MMP) (see e.g. [33]). In the case of smooth, elliptically fibered CY 2-folds

these three procedures all lead to the same simple/minimal geometry. However, in the case

of CY n-folds with n ≥ 3 these approaches can differ (and “minimal models” in the sense

of the MMP are non-unique). For example, while the Weierstrass models of smooth CY

3-folds are birational to X, the topology of J(X) and X may differ still further. Moreover,

all three approaches can lead to different singular fibers at codimension 2 and higher in
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the base. As a result, our focus will be primarily on Weierstrass models as constructed

by Nakayama [29], however, as we will discuss below, the discriminant loci, ∆ ⊂ B, of

these different forms are in fact identical and this observation, as well as information from

the different approaches will be used to simply extract the gauge symmetries and charged

matter from the original geometry.

We summarize below the ways that these three different approaches can be used to

analyze the singular fibers of X. The first approach will be to construct a Weierstrass model

XW (built as a hypersurface defined in an ambient P2-bundle defined by the projectivization

of three line bundles over B), the second will be to form the Jacobian J(X) of X (or that

of its blow down), and the third will be to analyze the smooth (resolved) geometry X itself

in order to directly study the singular fibers. A key object in studying the singular fibers

of our manifolds is the discriminant locus for the elliptic fibration, and the following is

expected of the triple of geometries, XW , J(X), and X:

• X is birational to its Weierstrass model XW . Since the singular fibers of X remain

singular after blowing down any P1’s therein, the discriminant loci of the two elliptic

fibrations agree as an algebraic variety in the base B. We then have, in particular,

∆res = ∆W , (3.1)

where ∆res and ∆W denote the discriminant polynomials in B for X and XW , re-

spectively.

• The Jacobian6 J(X) of X is constructed as a fibration over the same base B, in

such a way that the fiber over each point is the Jacobian of the curve defined by the

original fiber (that is, the moduli space of degree zero line bundles on that curve).

This construction insures that the j-invariant of each fiber of J(X) agrees with that

of the original fiber of X. The two discriminant loci in B are identified and it is

expected that

∆res = ∆J , (3.2)

where ∆J denotes the discriminant polynomial in B for J(X). Furthermore, at

generic points on a codimension-one locus in the base, the singular fibers have the

same Kodaira type [34, 35] in both geometries. As described above, the behaviors of

the singular fibers at codimension two (or higher) may differ in general.

• Due to the two points made above, the Weierstrass model XW and the Jacobian

J(X) also share the discriminant loci in B and we have

∆W = ∆J . (3.3)

Furthermore, the singular fibers of XW and J(X) are of the same Kodaira type

generically at a codimension-one locus in the base.

6To avoid confusion it should be noted that in the mathematics literature, the “Jacobian” of a genus one

fibered manifold X → B is sometimes taken to refer to any fibration of the form X → B with a section.

Here we will reserve the terminology of “Jacobian” (or J(X)) to refer explicitly to a fibration constructed

via the variable changes/procedure outlined in [2, 30, 31].
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In what follows, we will sketch how the codimension-one locus in the base is obtained

for each of the three approaches in turn, oftentimes returning to our simple K3 example

whenever illustration is in need.

3.1 Weierstrass models

An elliptic fibration with a section can be associated to a Weierstrass model. Here we

will follow a procedure due to Deligne (for elliptic curves) and Nakayama (for elliptic

fibrations) [28, 29] which is well known in the physics literature (see refs. [72, 74] for some

explicit examples of its application in such contexts).7 Schematically, a Weierstrass model

for an elliptic fibration is built as a hypersurface constraint (with cubic fiber) within a

projectivization of three line bundles P(OB ⊕ L2 ⊕ L3). The Calabi-Yau condition on X

fixes L = K−1B and a change of variables makes it possible to describe the elliptic fiber as

a degree 6 hypersurface in a weighted P123. In this description then, the fiber coordinates

z, x, y (of weights (1, 2, 3)) are associated to global holomorphic sections of the following

line bundles over X:

z ∼ O(S0) , x ∼ O(2S0)⊗ L2 , y ∼ O(3S0)⊗ L3 (3.4)

We first choose a zero section, with respect to which a Weierstrass model will be found,

and denote the associated line bundle as Lz, which in particular satisfies h0(X,Lz) = 1.

• Using the technique reviewed in the previous section (see the paragraph including

eq. (2.23)), we can obtain the rational expression for the unique GHS of Lz. This will

be the z coordinate of the Weierstrass form, expressed in terms of the coordinates of

our original ambient space:

z = z(x1, · · · ,xm) . (3.5)

• Next we take the line bundle Lx as defined in eq. (2.27). The dimension of the

space of global sections of this bundle, h0(X,Lx), is such that it is one larger than

the subset of elements of that space that is spanned by a basis that can be written

as z2 multiplied by polynomials in the base coordinates. In essence, that additional

element will describe the x coordinate of the Weierstrass model in terms of the original

ambient space coordinates.

In practice one may take a generic element of H0(X,Lx) to describe x. This is simply

because such a generic element will indeed not be proportional to z2, containing some

portion of the remaining basis element in the cohomology group. There are of course

a plethora of different generic elements that could then be chosen. This freedom

simply corresponds to making different choices of the Weierstrass coordinate x, which

are related under coordinate transformations mixing x and z which maintain the

Weierstrass form. After choosing a generic element of H0(X,Lx) we can now employ

7We would like to thank T. Pantev for very useful conversations about algorithmically applying this

procedure.
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the methodology described in the proceeding section to obtain an explicit description

of the x coordinate of the Weierstrass form.

x = x(x1, · · · ,xm) (3.6)

• The final Weierstrass coordinate y is obtained in a very similar manner as a generic

element of H0(X,Ly). In this instance, the dimension of the cohomology group,

h0(X,Ly), is such that it is one larger than the subset of elements of that space that

is spanned by a basis that can be written as z3 or xz multiplied by a polynomial in

the base. As before, different choices for the coordinate y will lead to Tate forms

for the fibration which are related by coordinate transformations mixing x, y and z

which leave the Weierstrass form invariant. Once more, we employ the technology of

the previous section to obtain the explicit description of the coordinate at hand in

terms of those of the original description of the ambient space of the manifold.

y = y(x1, · · · ,xm) (3.7)

• Finally, given that we now have explicit expressions for x, y and z in terms of our

original ambient space coordinates, we can now, by straightforward calculation, find

a relationship between them that is of the Tate form [36] (up to scaling),

y2 + c1xyz + c3yz
3 + c0x

3 + c2x
2z2 + c4xz

4 + c6z
6 = 0 . (3.8)

Here, the ci’s are GHS’s of K−iB , that is functions of the base coordinates of specific

degrees. That there is a unique such relation follows from similar arguments to those

given in the previous bullet points. The left hand side of the relation eq. (3.8) is

associated to an element of H0(OX(6S0) ⊗ K−6B ). The dimension of this space is

one less than that naively spanned by elements of appropriate degree that can be

written as y2, xyz, yz3, x3, x2z2, xz4 and z6 multiplied by elements of the relevant

H0(X,K−iB ). Thus there must be one relation between these quantities which vanishes

as in eq. (3.8).

Practically to find the relationship in eq. (3.8) we employ a similar technique to that

discussed in the paragraph under eq. (2.25). We write out a generic relation of the

correct form with undetermined numerical coefficients. In particular, we form a basis

M li of H0(X,K−iB ) where li = 1, . . . , h0(X,K−iB ). Expanding the ci’s we then have

the following,

ci = ci liM
li , (3.9)

which is taken to define the ci li — our numerical coefficients.

Writing eq. (3.8) in terms of the ci li and the ambient coordinates of the original

description of the manifold, we then substitute in coordinates of a point on the man-

ifold (solved for using our original description of the space) to obtain a relationship

between the ci li . Repeating this procedure with sufficient numbers of points on the
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manifold we obtain a system of linear equations in the numerical coefficients which,

by a naive counting of equations, would seem to be over-constrained. Nevertheless,

this system can then be solved to uniquely determine the ci li , and thus the rela-

tionship eq. (3.8). The fact that such parameter values can be found satisfying the

equation system is, in itself, a reassuring check of the method.

As an illustration, let us return to the K3 geometry with configuration (2.6) with

the line bundle Lz = OX(−1, 1, 1), which has already been proven to give a section to

the elliptic fibration. The GHS z of Lz can be obtained explicitly as eq. (2.25), and

similarly, one may easily find the generic GHS’s associated to x and y using the same

technique. Here we will simply note that, in performing this computation, since K−1B =

O(0, 0, 2) and OX(S0) = OX(−1, 1, 1), the other relevant line bundles are given as Lx =

OX(2S0) ⊗ K−2B = OX(−2, 2, 6) and Ly = OX(3S0) ⊗ K−3B = OX(−3, 3, 9), respectively.

Similarly, the relationship eq. (3.8) is associated with an element of the zeroth cohomology

of OX(6S0) ⊗ K−6B = OX(−6, 6, 18). We omit the explicit expressions for x and y here,

and the detailed form of the final Weierstrass form due to their length. More details can

be found for this specific example in section 5.2.1.

Once the relation (3.8) is obtained, via an appropriate rescaling of x we can put eq. (3.8)

into the standard Tate form,

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 , (3.10)

where ai ∈ Γ(B,K−iB ), and then also into the Weierstrass form,

y2 = x3 + fWxz
4 + gW z

6 , (3.11)

where

fW = − 1

48
(b22 − 24b4) , (3.12)

gW = − 1

864
(−b32 + 36b2b4 − 216b6) , (3.13)

with

b2 = a21 + 4a2 , (3.14)

b4 = 2a4 + a1a3 , (3.15)

b6 = a23 + 4a6 . (3.16)

In particular, the discriminant polynomial for such a Weierstrass model is given as

∆W = 4f3W + 27g2W . (3.17)

Once the Tate form/Weierstrass form has been obtained one can use the standard

techniques in order to analyze the singular fibers.
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3.2 Jacobians

In the case where the fiber of a CICY is realized as a complete intersection of codimension

one or two, the Jacobian of Xn can be formed by using the results in refs. [2, 30, 31].8 This

work provides a list of Jacobians for all elliptic fibers realized as a complete intersection

of codimension 1 or 2 in any toric variety, thus including products of projective spaces

as a special case. More generally, however, the fibers we will encounter can be of higher

codimension. Rather than generalizing the results of refs. [2, 30, 31] in these cases, we

find it more expedient to blow down the fiber until it reaches a codimension one or two

description by utilizing the process of “contraction” [15].

Contraction refers to the procedure of making the configuration matrix smaller by

removing a row of 1’s as follows,[
Pa 1 · · · 1 0

A′ u1 · · · ua+1 C

]
−→

[
A′

a+1∑
i=1

ui C

]
. (3.18)

Here the first a + 1 polynomials have merged to a single determinantal polynomial. We

perform this procedure in such a manner that, while the description of the fiber in eq. (2.4)

is changed, the description of the base, B = [AB||B], remains invariant. As has been

described in ref. [15], this procedure corresponds to blowing down P1’s in a manner that

may or may not be associated with a geometric transition. In the case where the final

manifold is different from the initial one we say the contraction is effective and otherwise

it is ineffective. In our case we are clearly blowing down P1’s in the fiber.

Even though the final manifold after completing this contraction may be different from

our starting configuration it will have the same discriminant locus in the same base (and

thus, so will its Jacobian). This is simply because the P1’s in the fiber that are being

blown down are singular before and after the process and therefore project to a point on

the discriminant in both cases. Since the discriminant is what we are trying to obtain here,

we are able to contract to get a codimension one or two fiber and then make use of the

aforementioned existing results without any loss of information.

In making use of the results of refs. [2, 30, 31], for a given complex structure for Xn

(or its blow down), we consider the defining equations for the fiber as polynomials in the

fibral homogeneous coordinates, demoting the base coordinates to parameters. Then the

Jacobian of the form,

y2 = x3 + fJxz
4 + gJz

6 , (3.19)

can be immediately read off, and its discriminant locus is obtained in turn by the zero

locus of

∆J = 4f3J + 27g2J , (3.20)

in the normal way. This is a polynomial in the base coordinates that we now promote to

variables again.

8The results of [30] can be searched from the following website: http://wwwth.mpp.mpg.de/members/

jkeitel/Weierstrass/.
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For an illustration, let us return to our toy example of the K3 configuration (2.6). Its

fiber configuration (2.7),

F =

[
P1
x1

1 1

P2
x2

1 2

]
, (3.21)

is already a complete intersection of codimension two in AF = P1
x1
× P2

x2
. The defining

relations are bi-degree (1, 1) and (1, 2) polynomials and this codimension-two fiber has the

PALP ID (4, 0), which, via the result of ref. [30], can straightforwardly be transformed into

the Jacobian. The two defining polynomials, due to the base twist in the full configura-

tion (2.6), also depend on x3 in our case. However, we demote these variables to parameters

so that the various monomial coefficients in the defining equations can be thought of as

a polynomial parameterized by the base coordinates x3. The expressions for fJ and gJ
in terms of those monomial coefficients are immediately found and thereby one obtains

fJ ∈ Γ(B,K−4B ) and gJ ∈ Γ(B,K−6B ) explicitly.

In every case we have computed the discriminant obtained in this manner has matched

that obtained by the other two methods discussed in this section. This is a highly non-

trivial check of the above procedure, several explicit examples of which will be provided in

later sections.

3.3 Resolved geometries

One of the benefits to the approach being espoused here for constructing F-theory com-

pactifications is that the resolved space associated to the models is known from the start.

Bertini’s theorem (see refs. [75, 76]) guarantees that a CICY of the form being considered

is smooth, presuming of course that a generic enough complex structure is chosen.

In the original description of the manifold, the discriminant locus of the fibration can

be explored by directly computing where over the base the fiber becomes singular. Starting

with the configuration matrix of the form (2.4),

Xn =

[
AF O F
AB B T

]
, (3.22)

one can perform such a computation as follows.

• We will denote the coordinates of the base ambient space, AB by xB, and the coor-

dinates of the fiber ambient space, AF by xF .

• We write as Pĵ those defining relations associated to the last block of columns in

eq. (3.22), that is those defining equations associated to the following portion of the

configuration matrix.

Xn =

[
AF F
AB T

]
. (3.23)

• We then form the equation system

P1 = · · · = PK = 0 , ∧ĵdFPĵ = 0 , (3.24)
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where the exterior derivative dF is only taken with respect to the variables xF and

not with respect to xB. The differentiated conditions here describe when the normal

form to the fiber is ill defined — that is they describe for what values of the ambient

space coordinates the fiber becomes singular. Including the defining relations in the

equation system then gives us the points on the Calabi-Yau itself where the fiber

becomes singular.

• Finally we want to project the equation system eq. (3.24) to obtain those points on

the base above which their are singularities in the fiber. This projection is equivalent

algebraically to the process of elimination. We must eliminate the variables xF to

obtain a necessary and sufficient set of relations on the xB such that there is a solution

to eq. (3.24) for some value of the fiber coordinates. Thinking of the equations as

generators of an ideal we wish to form〈
P1, . . . , PK ,∧ĵdFPĵ

〉
∩ C[xB] . (3.25)

Here by an abuse of notation we have denoted the polynomial coefficients of an

expansion of ∧ĵdFPĵ in a basis of forms of an appropriate degree by the expression

itself. Such an elimination can easily be performed with a Gröbner basis computation

and results in a set of equations in the variables xB describing the discriminant locus

in the base of the fibration.

The last step in this procedure, the elimination process, is computationally expensive in

large examples. Nevertheless, the full description (3.24) of location of fiber singularities in

the total space of the Calabi-Yau manifold is already useful in comparing to computations

performed using the proceeding methods described in this section. We will return to

comparing the discriminants we have found in various ways, which, as expected, have

matched in every case we have investigated, in the Example sections to follow. It should

also be noted that, given a discriminant locus derived using one of the other methods in

this section, one could use the initial description of the manifold to investigate the nature

of the associated singular fibers. One would simply choose values of xB which lie on

the discriminant and substitute these into the Pj to obtain an explicit description of the

singular fiber as a variety in AF . We will return to this point later.

4 The Mordell-Weil group

4.1 Decomposition of the Picard lattice

For an elliptic Calabi-Yau manifold Xn with a section, the Shioda-Tate-Wazir theorem [45]

states that the Picard lattice of Xn is generated by linearly independent basis elements of

the following four types:9 (1) base divisor classes pulled back to Xn, (2) “fibral” divisors

associated to blow-ups in the fiber (i.e., vertical divisor classes that are not pulled back

from the base), (3) the zero section, and (4) a basis of the rational sections generating (the

9The statement is for the Nerón-Severi lattice, which coincides with the Picard lattice for a Calabi-Yau

manifold.
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free part) of the Mordell-Weil (MW) group (the additive group of sections to the elliptic

fibration — see, for example, ref. [77]). This in particular implies the following dimensional

relation for n ≥ 3:

h1,1(Xn) = h1,1(Bn−1) +
∑
A

rkGA + 1 + rkMW (Xn) . (4.1)

Here GA are the non-abelian Lie groups, each associated with the reducible fiber type over

an irreducible component of the discriminant locus in Bn−1, and MW (Xn) denotes the

Mordell-Weil group of Xn.

It is worth emphasizing how useful eq. (4.1) is for our purposes. Given a specific con-

figuration for Xn and Bn−1 in the form (2.4), it is a straightforward exercise in algebraic

topology to compute h1,1(Xn) and h1,1(Bn−1). Furthermore, factorization of the discrim-

inant equation is straightforward, from which one can easily read off the enhancement

pattern of the fiber singularity, and in particular, rkGi. On the other hand, determination

of rkMW (Xn) involves a careful analysis of the section structure, which in many cases is

a difficult task. Thus, in analyzing the MW group structure, the relation (4.1) can be used

as either a consistency check on a direct computation or an indirect method to determine

the MW rank, as will be illustrated with examples in later sections.

From the physical perspective, eq. (4.1) also plays an important role in systematic

exploration of the F-theory vacua from the plethora of elliptically fibered CICY threefolds

and fourfolds [19, 32]. Upon compactifying F-theory over an elliptic Calabi-Yau manifold

Xn, one obtains a (12− 2n)-dimensional effective theory with gauge group of the form,

G = U(1)rkMW (X) ×
∏
A

GA . (4.2)

Since h1,1(Xn) and h1,1(Bn−1) can be computed in a systematic manner for CICYs, eq. (4.1)

makes it easy to classify the F-theory vacua with a fixed total rank, rkG, of the gauge

group. Furthermore, a relatively straightforward analysis of the discriminant locus and of

the enhancement pattern of the fiber singularities of the manifold can be used to determine

the non-abelian part of the gauge group in a systematic manner. Thus, it is possible to

systematically explore F-theory vacua with a fixed gauge group in the context of CICY

manifolds, which is a topic that we will return to in future work [32].

4.2 Arithmetic of the sections

Although the decomposition of the Picard lattice described in subsection 4.1 reveals the

rank of the MW group in a systematic manner, it is a rather indirect procedure in that

one still does not have explicit forms for the generating sections. In this subsection, we

review what is known about the arithmetic of rational sections which, when combined with

the section construction technology described in section 2, allows us to obtain an explicit

description of the MW group.

The arithmetic of sections was derived at the level of divisor classes in refs. [67, 71, 72],

resulting in the following group law under the section addition, ‘⊕’:

Div(σ1 ⊕ σ2 ⊕ · · · ⊕ σ2︸ ︷︷ ︸
k times

) = S1 + k(S2 − S0)− kπ((S1 − kS0) · (S2 − S0)) . (4.3)
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Here, Sm := Div(σm), for m = 0, 1, 2, denote the divisor classes associated to the sections

σm and we have chosen to identify the zero section as σ0. The projection π of the intersec-

tion, D ·D′, of two divisors D and D′ in Xn is defined in refs. [67, 71]. In particular, for

the n = 3 case, which we will give examples of in sections 6–8, the projection is given by

π(D ·D′) := (D ·D′ ·Db,α)Db
α , (4.4)

where the index α = 1, · · · , h1,1(B) is raised and lowered by the intersection matrix,

ηαβ = D̂b
α · D̂b

β (4.5)

of the base two-fold. For the simpler case of n = 2, one can also show that the appropriate

projection has to be defined as

π(D ·D′) := (D ·D′)Db , (4.6)

where Db is the pull-back of a hyperplane class in the base.

The procedures described in section 2 can be used to find divisor classes corresponding

to true sections for a given elliptically fibered Calabi-Yau manifold. If enough sections are

found this way, given the rank of the MW group, one can choose a zero section and then

use the remaining rkMW (X) generators and the addition law (4.3) to form a complete

basis of the MW group.

As an illustration, we return to the K3 example. Let us choose the zero section σ0
to be the one we have obtained in section 2 with the class OX(S0) = OX(−1, 1, 1). In

section 5, it will also be shown that OX(S1) = OX(2,−1, 4) represents another section,

call it σ1, and here we will use this fact. The divisor classes of kσ1 are then given by

substituting σ1 → σ0 and σ2 → σ1 in the formula (4.3),

Div(kσ1) = S0 + k(S1 − S0) + k(k − 1) π(S0 · (S1 − S0)) , (4.7)

= (−1 + 3k)J1 + (1− 2k)J2 + (1− 11k + 14k2)J3 , (4.8)

which reproduces all the putative sections in eq. (2.18). Therefore, given that S0 and S1
are sections, each of those putative section classes has to also correspond to a true section,

and furthermore, this proves that σ1 fully generates the rank-one MW group.

In the remaining sections of this paper we will demonstrate the details of the above

discussions with a series of explicit examples.

5 Example 1: a K3 example

In this section, we provide a complete analysis of the K3 geometry, (2.6), that we used to

illustrate our general analysis in the preceding sections

X2 =


P1
x1

1 1

P2
x2

1 2

P1
x3

1 1

 . (5.1)
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This K3 surface admits an obvious genus-one fibration structure over the base B1 = P1
x3

,

where the configuration of the fiber is given by,

F =

[
P1
x1

1 1

P2
x2

1 2

]
. (5.2)

For the purpose of giving explicit examples of results for this configuration, we choose the

following generic complex structure:

P1(x1,x2,x3) = 5x1,0x2,0x3,0 + 9x1,1x2,0x3,0 − 11x1,0x2,1x3,0 + 13x1,0x2,2x3,0 + 7x1,1x2,2x3,0

− 17x1,0x2,0x3,1 − 17x1,1x2,0x3,1 + 19x1,0x2,1x3,1 − 14x1,1x2,1x3,1 + 6x1,0x2,2x3,1

− 12x1,1x2,2x3,1 , (5.3)

P2(x1,x2,x3) = −8x1,0x
2
2,0x3,0−5x1,1x

2
2,0x3,0−11x1,0x2,0x2,1x3,0+5x1,1x2,0x2,1x3,0+7x1,0x

2
2,1x3,0

+ 16x1,1x
2
2,1x3,0 − 13x1,0x2,0x2,2x3,0 + x1,1x2,0x2,2x3,0 − 20x1,0x2,1x2,2x3,0

− 20x1,1x2,1x2,2x3,0+15x1,0x
2
2,2x3,0−12x1,1x

2
2,2x3,0+12x1,0x

2
2,0x3,1+ 6x1,1x

2
2,0x3,1

− 8x1,0x2,0x2,1x3,1 − 13x1,1x2,0x2,1x3,1 − 9x1,0x
2
2,1x3,1 − 16x1,1x

2
2,1x3,1

− 16x1,0x2,0x2,2x3,1 + 19x1,1x2,0x2,2x3,1 + 9x1,0x2,1x2,2x3,1 + 13x1,1x2,1x2,2x3,1

− 13x1,0x
2
2,2x3,1 + 15x1,1x

2
2,2x3,1 . (5.4)

5.1 Section analysis

Putative sections. Let us start with the classification of putative sections. For a puta-

tive section S labelled by OX(S) = OX(b1, b2, b3), given that the minimal base-point form

integrates to unity, ∫
P1
x3

J3 = 1 , (5.5)

the intersection of S with the generic fiber Fp is computed, as in section 2.2, as follows.∫
P1
x1
×P2

x2
×P1

x3

[(b1J1 + b2J2 + b3J3) ∧ J3] ∧ [(J1 + J2 + J3) ∧ (J1 + 2J2 + J3)] = 2b1 + 3b2 ,

(5.6)

Here J1 and J2 are the Kähler forms of P1
x1

and P2
x2

, respectively. Therefore, the Oguiso

criterion (a) demands that

2b1 + 3b2
!

= 1 . (5.7)

Via a similar intersection computation, the second criterion (2.12) leads to10

6b1b2 + 2b22 + 4b1b3 + 6b2b3
!

= −2 , (5.8)

where eq. (5.7) has been used in simplifying the result. These two putative-section condi-

tions, (5.7) and (5.8), can be solved as

b1 = −1− 3k , b2 = 1 + 2k , b3 = 1 + 11k + 14k2 . (5.9)

10For a smooth divisor S, the left hand side of eq. (5.8) is −χ(S) and hence, the criterion is equivalent

to χ(S) = χ(B) unless singularities are involved.
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with an integer parameter k ∈ Z. For instance, with k = 1, 0,−1,−2, we obtain the follow-

ing putative section classes, OX(−4, 3, 26), OX(−1, 1, 1), OX(2,−1, 4), and OX(5,−3, 35),

respectively.

Now the question arises as to whether the putative section classes in eq. (5.9) indeed

correspond to sections. In what follows, we will first show that two of them do by providing

explicit expressions for the sections themselves (the rest will also prove to be a section later

in section 5.3).

Explicit expressions for the sections. Let us proceed with the methodology described

in section 2. Here we will use the alternative approach discussed in the paragraph under

eq. (2.25) and show that it gives the same result as the method employed explicitly in

that section. We will focus on the line bundle OX(S) = OX(−1, 1, 1), taking the solution

(b1, b2, b3) = (−1, 1, 1) from the family (5.9). The divisor class [S] = −J1+J2+J3 naturally

splits into two effective pieces, Szero and Spoles, such that

[Szero] = J2 + J3 , [Spole] = J1 , (5.10)

that intersect with the generic fiber at 3 and 2 points, respectively (see eq. (5.6)). The

GHS of OX(S) can then be constructed by appropriately choosing two GHS’s,

szero ∈ H0(X,OX(Szero)) , spole ∈ H0(X,OX(Spole)) , (5.11)

of OX(Szero) = OX(0, 1, 1) and OX(Spole) = OX(1, 0, 0) so that along the generic fiber Fp
over p ∈ B the two points of Fp ∩ Spole match with two of the three points of Fp ∩ Szero.
The unmatched point of Fp ∩ Szero should be the single intersection point of Fp ∩ S.

To be more concrete, let us illustrate the procedure with explicit expressions, given

the complex structure in eqs. (5.3) and (5.4). For a generic random choice of GHS of

OX(Spole) = OX(1, 0, 0), for example,

spole(x1,x2,x3) = x1,0 + 10x1,1 , (5.12)

we shall look for an appropriate section of OX(Szero) = OX(0, 1, 1),

szero(x1,x2,x3) = C1x2,0x3,0+C2x2,0x3,1+C3x2,1x3,0+C4x2,1x3,1+C5x2,2x3,0+C6x2,2x3,1 ,

(5.13)

for which Fp ∩ Spole ⊂ Fp ∩ Szero. Demoting the base coordinates x3 = (x3,0 : x3,1) to

parameters and solving the system,

P1(x1,x2,x3) = 0 , (5.14)

P2(x1,x2,x3) = 0 , (5.15)

spole(x1,x2,x3) = 0 , (5.16)

for x1 and x2, one obtains two solutions (x
(a)
1 , x

(a)
2 ) = (x

(a)
1 (x3), x

(a)
2 (x3)), for a = 1, 2.

We then substitute each of these to eq. (5.13) and demand that szero(x
(a)
1 ,x

(a)
2 ) ≡ 0 as a

function of x3, for a = 1, 2. This turns out to fix the section szero uniquely (up to scaling) as

(C1, C2, C3, C4, C5, C6) = λ (41,−153,−110, 204, 123, 72) , with λ ∈ C . (5.17)
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As promised in the general discussion of section 2.3, one can immediately confirm that this

is equivalent to eq. (2.25), where the numerator is given as

−10p1+p2 =−10(5x2,0x3,0 − 11x2,1x3,0 + 13x2,2x3,0 − 17x2,0x3,1 + 19x2,1x3,1 + 6x2,2x3,1)

+(9x2,0x3,0 + 7x2,2x3,0 − 17x2,0x3,1 − 14x2,1x3,1 − 12x2,2x3,1) (5.18)

=−41x2,0x3,0+153x2,0x3,1+110x2,1x3,0−204x2,1x3,1−123x2,2x3,0−72x2,2x3,1,

which agrees with eq. (5.17) for λ = −1.

Finally, having specified the two divisors, Szero and Spole, of X as the vanishing loci of

szero and spole, respectively, we can now explicitly parameterize the section, S = Szero\Spole,
of the elliptic fibration in terms of the base coordinates x3. We obtain the following explicit

parametric expression for the section,

x1,0 = A1,0(x3) , x1,1 = A1,1(x3) ; x2,0 = A2,0(x3) , x2,1 = A2,1(x3) , x2,2 = A2,2(x3) .

(5.19)

Here, the polynomials A1,i(x3) for i = 0, 1, as well as A2,i(x3) for i = 0, 1, 2, are, respec-

tively, quintic and quadratic polynomials given by

A1,0(x3) = 241226x53,0 − 2444409x43,0x3,1 + 6970327x33,0x
2
3,1 − 4889388x23,0x

3
3,1

−2858859x3,0x
4
3,1 + 992331x53,1 ,

A1,1(x3) = 152844x53,0 − 1296506x43,0x3,1 + 3553577x33,0x
2
3,1 − 8289055x23,0x

3
3,1

+11322255x3,0x
4
3,1 − 5290227x53,1 ,

A2,0(x3) = 77x23,0 − 447x3,0x3,1 + 144x23,1 ,

A2,1(x3) = −82x23,0 − 12x3,0x3,1 + 306x23,1 ,

A2,2(x3) = −99x23,0 + 428x3,0x3,1 − 561x23,1 . (5.20)

These expressions define a rational map from the base, parameterized by x3, to the fiber,

parameterized by x1 and x2. The map is well defined over every point on the base. That is,

for every choice of x3 on the base manifold, we obtain a valid set of homogeneous coordinates

x1 and x2 on the fiber. In particular, for no point on the base do we find that all of the

homogeneous coordinates in a fiber ambient projective space factor simultaneously vanish.

We thus conclude that the map is a holomorphic section, and confirm that the line bundle

OX(S) = OX(−1, 1, 1) is associated to this holomorphic section to the elliptic fibration.

We can perform the same analysis for the second putative section, OX(2,−1, 4). In

order to find the associated rational map, we first need to find the rational expression for

the GHS of this line bundle. With the negative degree in the P2
x2

, however, the naive

ansatz with the linear denominator in x2 does not work.11 It turns out that the GHS can

11With a generic linear denominator, global holomorphicity of the rational expression, when imposed on a

numerator polynomial of multi-degree (2, 0, 4), leads to an identically vanishing holomorphic section. For a

brief hint as to why this degree shifting is frequently necessary consider a generic polynomial defining relation

of multi-degree (d1, 1, d3) in Pn1
x1
× P2

x2
× Pn3

x3
with linear dependence in the P2 direction: x2,0p0 + x2,1p1 +

x2,2p2 = 0. For a regular rational function defined over this coordinate ring, a linear monomial denominator

— x2,0 for instance — implies an associated vanishing polynomial of the form x2,1p1 + x2,2p2 = 0, which
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be found once we shift both the numerator and the denominator multi-degrees by (0, 2, 0),

i.e., with the modified ansatz,

z =
N(x1,x2,x3)

D(x2)
, (5.21)

where N ∈ Γ(X,OX(2, 2, 4)) and D ∈ Γ(X,OX(0, 3, 0)). Let us take D(x2) = x2,0x2,1x2,2
and tune the 90 monomial coefficients in N . That is, we demand that N vanishes on each of

the three divisors {x2,i = 0} ⊂ X. Practically, we achieve this by substituting a sufficiently

large number of points on these loci into the equation for the divisor. Furthermore, we

also demand that N appropriately vanishes to order 2 on all of the points in X with

x2 = (1 : 0 : 0), (0 : 1 : 0), or (0 : 0 : 1). Then we find that only 9 of the 90 coefficients

are undetermined. With such a tuning, z = N/D is globally holomorphic. This may at

first sound strange since we know that h0(X,OX(2,−1, 4)) = 1. The only way to make

sense of this result is that the 9-parameter expression we have obtained for the GHS’s of

OX(2,−1, 4) should only span a one-dimensional vector space of GHS. Indeed, this turns

out to be the case and in the coordinate ring of X they all lead to one and the same

GHS up to scaling. Having specified z = N/D, we can now proceed to find a generic

parametrization of its zero locus in terms of the base coordinates x3. This results in a

parametric expression of the form,

x1,i = A′1,i(x3,x4) ∈ Γ(B,OB(5)) , for i = 0, 1 , (5.22)

x2,i = A′2,i(x3,x4) ∈ Γ(B,OB(16)) , for i = 0, 1, 2 , (5.23)

where A′1,i coincide with the A1,i from eq. (5.20) and A′2,i are some fixed degree-16 poly-

nomials, which we do not display in this paper (each of the 17 integer coefficients has

17 to 24 digits). The map is holomorphic and we thus confirm that the line bundle

OX(S) = OX(2,−1, 4) corresponds to another holomorphic section to the elliptic fibration.

5.2 Locating the singular fibers

5.2.1 Weierstrass model

Having proven that the unique GHS of the line bundle,

Lz := OX(S0) = OX(−1, 1, 1) , (5.24)

is a holomorphic section to the elliptic fibration, we choose to use Lz as the bundle, which

the Weierstrass coordinate z is a GHS of. Then the other Weierstrass coordinates, x and

y, should respectively be a GHS of the following line bundles,

Lx := OX(2S0)⊗K−2B = OX(−2, 2, 6) , (5.25)

Ly := OX(3S0)⊗K−3B = OX(−3, 3, 9) . (5.26)

In order to obtain the explicit Weierstrass model, we first need to construct an ex-

pression for the three Weierstrass coordinates, z, x, and y, in terms of the homogeneous

still generically contains x2-dependence. For denominators valued in Pn with n > 1, in general the form of

the rational function is more complicated, with a precise form that is in principle determined by the Koszul

sequence associated to the line bundle in question.
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coordinates, x1, x2 and x3. We have already obtained an explicit expression for z in the

previous subsection. One can similarly choose a quadratic and a cubic polynomial in x1 for

the denominators of global sections of Lx and Ly, respectively and tune appropriate degree

numerators to construct their GHS’s. In this way, we obtain explicit rational expressions,

z = z(x1,x2,x3) ∈ Γ(X,Lz) , (5.27)

x̃ = x̃(x1,x2,x3) ∈ Γ(X,Lx) , (5.28)

ỹ = ỹ(x1,x2,x3) ∈ Γ(X,Ly) , (5.29)

where z is uniquely fixed up to an overall constant and x̃ and ỹ are expressed as a linear

combination of 6 and 11 independent rational expressions, respectively. Note that the

tilded variables correspond to general sections of the appropriate line bundles. The specific

sections corresponding to Weierstrass coordinates will then simply be denoted as x and y,

respectively. One can independently compute the dimensions of these line bundles as

h•(X,Lz) = (1, 0, 0) , h•(X,Lx) = (6, 0, 0) , h•(X,Ly) = (11, 0, 0) , (5.30)

and hence confirm that a complete basis has been obtained for each space of GHS’s.

We are now ready to construct the Weierstrass model via the procedure described in

subsection 3.1. Before we start off, however, let us first convince ourselves, via cohomology

dimension count, that the procedure will work. In the one-dimensional space, H0(X,Lz),

we find the unique z. Next we consider H0(X,Lx). It has h0(X,Lx) = 6 independent

GHS’s, 5 of which are of the form,

t(4)(x3)z(x1,x2,x3) , (5.31)

with t(4) ∈ Γ(B,K−2B ) = Γ(P1,OP1(4)). The procedure tells us that there are GHS’s in

Γ(X,Lx), which cannot be written in the form (5.31), and such a GHS can be obtained as

a generic linear combination of the 6 basis elements for Γ(X,Lx). We denote that choice

by x. Similarly, we consider H0(X,Ly). It has h0(X,Ly) = 11 independent GHS’s, 10 of

which are of the form,

t(6)(x3) z(x1,x2,x3)
3 , t(2)(x3) z(x1,x2,x3) x(x1,x2,x3) , (5.32)

where t(6) ∈ Γ(P1,OP1(6)) and t(2) ∈ Γ(P1,OP1(2)). Again, there exists GHS’s in Γ(X,Ly),

which cannot be written in the form (5.32), and such a GHS can be obtained as a generic

linear combination of the 11 basis elements for Γ(X,Ly). We denote that choice by y. Fi-

nally, let us consider H0(X,OX(−6, 6, 18)), which turns out to be 38 dimensional. Making

use of z, x, and y, one can construct a total of 39 GHS’s as follows:

y2 , t(2)yxz , t(6)yz3 , x3 , t(4)x2z2 , t(8)xz4 , t(12)z6 , (5.33)

where t(k) ∈ Γ(P1
x3
,OP1

x3
(k)). Therefore, there must be a linear relation among these 39

GHS’s. This can be found by writing down a generic linear combination of the GHS’s with

unspecified coefficients. We then substitute a number of points on X into this combination

– 26 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
4

and constrain the coefficients such that the linear combination is zero on each point. If this

procedure is repeated for enough points then the coefficients will be completely specified

up to an overall scale. Upon an appropriate choice of that overall scale, one thus obtains

the following Tate form,

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 . (5.34)

In the case at hand, we obtain the explicit Tate coefficients below.

a1 = (251− 435i)x23,0 − (479− 829i)x3,0x3,1 + (143− 247i)x23,1 ,

a2 = (29600 + 51200i)x43,0 + (−113000− 195000i)x33,0x3,1 + (150000 + 260000i)x23,0x
2
3,1

+(−59100− 102000i)x3,0x
3
3,1 + (8490 + 14700i)x43,1 ,

a3 =−4250x63,0 − 24500x53,0x3,1+3.13×106x43,0x
2
3,1−7.25× 106x33,0x

3
3,1+6.28×106x23,0x

4
3,1

−4.33× 106x3,0x
5
3,1 + 1.23× 106x63,1 ,

a4 = (352000− 609000i)x83,0 + (973000− 1.69× 106i)x73,0x3,1

+(−3.49× 108 + 6.05× 108i)x63,0x
2
3,1

+(1.46× 109 − 2.52× 109i)x53,0x
3
3,1 + (−2.44× 109 + 4.23× 109i)x43,0x

4
3,1

+(2.11× 109 − 3.65× 109i)x33,0x
5
3,1 + (−1.30× 109 + 2.25× 109i)x23,0x

6
3,1

+(4.26× 108 − 7.37× 108i)x3,0x
7
3,1 + (−4.63× 107 + 8.01× 107i)x83,1 ,

a6 = 3.61× 106x123,0 + 9.68× 107x113,0x3,1 + 2.91× 109x103,0x
2
3,1

−6.86× 109x93,0x
3
3,1 − 1.85× 1012x83,0x

4
3,1

+8.48× 1012x73,0x
5
3,1 − 1.71× 1013x63,0x

6
3,1 + 2.08× 1013x53,0x

7
3,1 − 1.87× 1013x43,0x

8
3,1

+1.16× 1013x33,0x
9
3,1 − 5.20× 1012x23,0x

10
3,1 + 1.50× 1012x3,0x

11
3,1 − 1.62× 1011x123,1 .

Note that here we have only reproduced the numerical coefficients in these expressions to

three significant figures in order to keep the equations of a manageable size.

Via a reparameterization it is possible to obtain the Weierstrass form,

y2 = x3 + fWxz
4 + gW z

6 , (5.35)

where fW ∈ Γ(B,K−4B ) = Γ(P1,OP1(8)) and gW ∈ Γ(B,K−6B ) = Γ(P1,OP1(12)). The

discriminant locus is then located at the vanishing of ∆W := 4f3W + 27g2W , which is a

homogeneous polynomial of degree 24 in x3 = (x3,0 : x3,1) and which has 24 distinct roots.

We confirm that at these 24 points, fW and gW do not vanish and ∆W vanishes to order

1. Therefore, the singular fibers are of type I1 from the Kodaira’s classification.

5.2.2 Jacobian

The configuration (5.2) describing the fiber in this example represents a complete intersec-

tion in the toric variety AF = P1
x1
×P2

x2
of a bi-linear and a multi-degree (1, 2) polynomials.

This codimension-two fiber has the PALP ID (4, 0), which, via the results of ref. [30], can

straightforwardly be transformed into the Jacobian as follows. The defining equations can

be viewed as a function of the fiber coordinates, x1 and x2, with the base coordinates
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x3 being demoted to parameters. Then, the various monomial coefficients in the defining

equations are expressed in terms of the base coordinates x3. The expressions for f and g

of the Jacobian in terms of those coefficients are found from ref. [30] with the PALP ID

(4, 0), and thereby one obtains the Jacobian in the form,

y2 = x3 + fJxz
4 + gJz

6 , (5.36)

where fJ ∈ Γ(B,K−4B ) and gJ ∈ Γ(B,K−6B ). The discriminant ∆J := 4f3J + 27g2J of the

Jacobian is a homogeneous polynomial of degree 24. We confirm explicitly that this dis-

criminant agrees with that obtained from the Weierstrass equation derived in the previous

subsection:

∆W ∼ ∆J . (5.37)

5.2.3 Resolved geometry

Finally, we may find the discriminant locus at the level of the smooth geometry, given by

eqs. (5.3) and (5.4). As described in subsection 3.3, the fiber is singular at points in X

that obeys eqs. (3.24). In this case these equations are the two fiber-defining relations,

P1(x1,x2,x3) = 0 , P2(x1,x2,x3) = 0 , (5.38)

together with the condition for the degeneration of the normal form,

dFP1 ∧ dFP2 = 0 . (5.39)

Eq. (5.39) gives rise to three polynomial equations as the fiber is embedded in a threefold

P1
x1
× P2

x2
, along which the exterior derivatives, dF, are taken. Given this system of five

polynomials in x1, x2, and x3, we can immediately eliminate the fiber coordinates to locate

the discriminant locus in the base, using Gröbner basis techniques. As a consequence, we

obtain a single degree-24 polynomial, ∆res(x3), which can easily be seen to agree with the

other two discriminant equations that we have already found:

∆res ∼ ∆W ∼ ∆J . (5.40)

5.3 Arithmetic of the sections

The sections to the elliptic fibration form an additive group. Let us take OX(−1, 1, 1) as

the line bundle associated to the zero section, σ0, and OX(2,−1, 4) as that associated to the

generator section, σg, of the MW group. Note that with this choice, σg could potentially

only generate a subgroup of the MW group. However, we will see shortly that this is not

the case in this example. Denoting their divisor classes by S0 and Sg, the divisor classes

of kσg are given as [67, 72]

Div(kσg) = S0 + k(Sg − S0) + k(k − 1) π(S0 · (Sg − S0)) , (5.41)

= (−1 + 3k)J1 + (1− 2k)J2 + (1− 11k + 14k2)J3 . (5.42)

This reproduces all of the putative sections in eq. (5.9). Note that the addition law in

eq. (5.41) is guaranteed to give true sections corresponding to multiples of σg as long as

– 28 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
4

the two divisors σ0 and σg are indeed both sections themselves. Since S0 and Sg have

both been proven to be sections, we find that each of the putative sections in eq. (5.9) is

a section too, and that these sections exhaust the MW group.

This in particular proves that the MW group is of rank 1. The consistency of this

result can be checked by analyzing the decomposition of the rank-three Picard lattice of

X. According to the Tate-Shioda-Wazir theorem, the Picard lattice of X is comprised of

linearly independent basis elements of the following four types:

(1) Base divisor classes: B = P1 has a unique generator for the base divisor classes in

this example.

(2) Fibral divisors: as was shown by an analysis of the discriminant in the previous

subsection, it turns out that there are no enhancements of fiber singularities at codi-

mension one in this example and hence, blow-up divisors do not exist.

(3) The zero section: OX(−1, 1, 1) has proven to lead to a (holomorphic) section, σ0,

which we may take as the zero section.

(4) Rational sections: the arithmetic (5.41) of putative sections shows that the MW group

has rank 1 and is generated by σg, associated with the line bundle OX(2,−1, 4).

We find then, that the contributions from these four different types of generators indeed

give rise to the Picard lattice of rank 1 + 0 + 1 + 1 = 3, as desired in this example.

6 Example 2: a threefold example

We now consider an elliptic Calabi-Yau threefold example, X3 with the configuration,

X3 =


P1
x1

1 1

P2
x2

1 2

P1
x3

1 1

P1
x4

1 1

 . (6.1)

This threefold can be obtained by fibering the K3 surface in the previous section over

P1
x4

. This corresponds to the CICY #7675 in the list of complete intersection Calabi-Yau

threefolds [78] and has the Hodge numbers (h1,1, h2,1) = (4, 50). From the configuration

matrix, an obvious genus-one fibration structure with the base B2 = P1
x3
×P1

x4
can be seen,

where the fiber has the same configuration as eq. (5.2),

F =

[
P1
x1

1 1

P2
x2

1 2

]
. (6.2)

We start by fixing a generic complex structure, for which the threefold is smooth. Instead

of writing out the long expressions for the two defining equations, we will provide the list of

coefficients for a given monomial ordering. Firstly, the monomial GHS’s of OA(d1, · · · , d4)
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are given the lexicographic ordering applied to the exponent list. For instance, to com-

pare the two monomial GHS’s, m1 = x1,0x
2
2,1x3,0x4,0 and m2 = x1,0x2,0x2,2x3,1x4,1, of

OA(1, 2, 1, 1), we first read their exponents as a list of degree vectors,

m1 = x
(1,0)
1 x

(0,2,0)
2 x

(1,0)
3 x

(1,0)
4 ∼ {(1, 0), (0, 2, 0), (1, 0), (1, 0)} , (6.3)

m2 = x
(1,0)
1 x

(1,0,1)
2 x

(0,1)
3 x

(0,1)
4 ∼ {(1, 0), (1, 0, 1), (0, 1), (0, 1)} , (6.4)

then the exponent order leads to m2 > m1 and hence, m2 will come earlier. With respect

to this ordering for the basis monomials, our choice of the two defining equations,

P1 ∈ Γ(A,OA(1, 1, 1, 1)) , with h0(A,OA(1, 1, 1, 1)) = 24 , (6.5)

P2 ∈ Γ(A,OA(1, 2, 1, 1)) , with h0(A,OA(1, 2, 1, 1)) = 48 , (6.6)

are specified by the two lists of the monomial coefficients,

cP1 ={45, 4, 17, 7, 35, 69, 82, 43, 44, 46, 19, 95, 74, 100, 36, 71, 4, 43, 95, 2, 36, 9, 50, 28}, (6.7)

cP2 ={97, 60, 78, 22, 11, 27, 36, 15, 12, 53, 65, 81, 64, 12, 81, 70, 17, 9, 12, 89, 91, 43, 38, 43,

6, 99, 66, 3, 58, 26, 62, 62, 43, 23, 76, 6, 40, 63, 2, 85, 42, 80, 63, 37, 75, 33, 74, 67} . (6.8)

6.1 Section analysis

Putative sections. We begin by writing down the criteria that a putative section S,

labelled by OX(S) = OX(b1, b2, b3, b4), must satisfy. Firstly, the Oguiso criterion, that S

must have a single intersection point with a generic fiber, leads to

2b1 + 3b2
!

= 1 . (6.9)

The base topology criteria (2.12), one for each base divisor, Db
α ∼ J3, J4, are

6b1b2 + 2b22 + 4b1bα + 6b2bα
!

= −2 , for α = 3, 4 , (6.10)

where eq. (6.9) has been used in simplifying the result. These three equations (6.9)

and (6.10) then lead to the one-parameter family of divisor classes,

b1 = −1− 3k , b2 = 1 + 2k , b3 = 1 + 11k + 14k2 , b4 = 1 + 11k + 14k2 , (6.11)

with an integer parameter k ∈ Z. This family gives us, for the values k = {1, 0,−1,−2}, the

putative sections, OX(−4, 3, 26, 26), OX(−1, 1, 1, 1), OX(2,−1, 4, 4) and OX(5,−3, 35, 35),

respectively. In what follows, in order to prove that the MW group is of rank 1, we will

provide an explicit description of the associated section maps for the simplest two putative

sections,

OX(−1, 1, 1, 1) , with h•(X,OX(−1, 1, 1, 1)) = (1, 0, 0, 0) , (6.12)

OX(2,−1, 4, 4) , with h•(X,OX(2,−1, 4, 4)) = (1, 6, 0, 0) . (6.13)

– 30 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
4

Explicit expressions for the sections. Let us start with the simplest putative section,

OX(−1, 1, 1, 1). We take the ansatz,

z =
N(x2,x3,x4)

D(x1)
, (6.14)

where N ∈ Γ(X,OX(0, 1, 1, 1)) and D ∈ Γ(X,OX(1, 0, 0, 0)). As a specific example, we

may choose D = x1,0 − x1,1. Then, the numerator polynomial N has to be fixed up to

scaling so that z can be globally holomorphic. Organizing the first defining relation, P1 as

P1 = x1,0 p0(x2,x3,x4) + x1,1 p1(x2,x3,x4) , (6.15)

where p0 and p1 are tri-linear polynomials, we see that on the divisor of vanishing denom-

inator, D(x1) = x1,0 − x1,1 = 0, the tri-linear polynomial p0 + p1 must vanish. Therefore,

upon choosing

N := p0 + p1 (6.16)

= 119x2,0x3,0x4,0 + 39x2,1x3,0x4,0 + 80x2,2x3,0x4,0 + 53x2,0x3,1x4,0 + 177x2,1x3,1x4,0

+ 69x2,2x3,1x4,0 + 104x2,0x3,0x4,1 + 112x2,1x3,0x4,1 + 55x2,2x3,0x4,1 + 78x2,0x3,1x4,1

+ 45x2,1x3,1x4,1 + 123x2,2x3,1x4,1 ,

we obtain the desired GHS, the zero locus of which can easily be seen to have no singularities

via the patch-wise analysis developed in ref. [25] (note that in the above we have utilized

the specific choice of complex structure that we have made in this case).

Having specified z = N/D, we can now try to explicitly parameterize the zero locus in

terms of the base coordinates x3,x4, resulting in the following generic parametrization,

x1,i = A1,i(x3,x4) ∈ Γ(B,OB(5, 5)) , for i = 0, 1 , (6.17)

x2,i = A2,i(x3,x4) ∈ Γ(B,OB(2, 2)) , for i = 0, 1, 2 ,

which we specify by their coefficient list for the basis monomials, as given in appendix B.1.

Unlike for the K3 case, this section map is not holomorphic and is a rational section to the

elliptic fibration. In particular, there arise 32 points on the base P1
x3
× P1

x4
where the map

is ill-defined for the P1
x1

direction and 6 points where it is ill-defined for the P2
x2

direction;

the latter 6 points turn out to entirely belong to the former set. More specifically, at

each of these base points, eq. (6.17) returns a vanishing value for all of the homogeneous

coordinates of the Pn’s mentioned above. Note that the map eq. (6.17) gives a single point

on the fiber over all of the base except for these 32 points. The issue here is that we have

naively tried to solve the system given by setting z = 0 to find a unique value of the fiber

ambient coordinates as a function of the variables in the base. At points on the base where

a rational section has vertical components such a procedure can give spurious results. Let

us elaborate upon this further.

Upon investigating each of the problematic base points, we observe two qualitatively

different behaviors: over the 6 base points where the rational map is ill-defined along both
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P1
x1

and P2
x2

directions, the rational section wraps a P1 with the following configuration

matrix, [
P1
x1

1 0

P2
x2

2 1

]
, (6.18)

while over the other 26 points it wraps a copy of P1
x1

. This explicitly shows that the rational

section is a blowup of the base, B = P1
x3
× P1

x4
at 32 points, which conforms with their

Euler number difference,

χ(S)− χ(B) = 36− 4 = 32 . (6.19)

Another observation related to the above structure is as follows. Upon blowing down

the smooth Calabi-Yau threefold X via the contraction of the first row of its configuration

matrix, one obtains a hypersurface of multi-degree (3, 2, 2) in P2
x2
× P1

x3
× P1

x4
, which is

a deformation of a smooth Calabi-Yau threefold with Euler number −144, while χ(X) is

computed to be −92. The difference of these two Euler numbers is 52 = 2 × 26. Thus

the ambient P1 that we are blowing down is associated with 26 P1’s in the Calabi-Yau

geometry. This conforms with the fact that a degeneration associated with this P1 in the

section map was associated with exactly 26 P1’s above specific points in the base.

Let us now move on to analyzing the second putative section, OX(2,−1, 4, 4). In order

to find the explicit map, we first need to find the rational expression for the GHS of this

line bundle. With the negative degree in the P2
x2

, however, the naive ansatz with the

linear denominator in x2 does not work. It turns out that the GHS can be found once we

shift both the numerator and the denominator multi-degrees by (0, 2, 0, 0), i.e., with the

modified ansatz,

z =
N(x1,x2,x3,x4)

D(x2)
, (6.20)

where N ∈ Γ(X,OX(2, 2, 4, 4)) and D ∈ Γ(X,OX(0, 3, 0, 0)). As a choice of denominator,

we may take D(x2) = x2,0x2,1x2,2 and tune the 450 monomial coefficients in N . That is, we

demand that N vanishes on each of the three divisors {x2,i = 0} ⊂ X, in practice employing

the same techniques as we have in previous sections. Then, only 129 coefficients of the 450

remain free. This does not guarantee that the rational form tuned as such is regular yet,

since the denominator may vanish to order 2 on the loci in X with x2 = (1 : 0 : 0),

(0 : 1 : 0), or (0 : 0 : 1). Interestingly, we find that N also vanishes to order 2 on such loci.

We therefore conclude that the tuned form is indeed regular and corresponds to GHS’s.

This may at first sound strange since we know that h0(X,OX(2,−1, 4, 4)) = 1. The only

way to make sense of this result is that the 129-parameter expression we have obtained

for the GHS’s of OX(2,−1, 4, 4) should only span a one-dimensional vector space, and it

indeed turns out that in the coordinate ring of X they all lead to one and the same GHS

up to scaling.

Having specified z = N/D for this section, we can now proceed to find a generic

parametrization of its zero locus in terms of the base coordinates x3,x4, resulting in the
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parametric expression of the form,

x1,i = A′1,i(x3,x4) ∈ Γ(B,OB(5, 5)) , for i = 0, 1 , (6.21)

x2,i = A′2,i(x3,x4) ∈ Γ(B,OB(16, 16)) , for i = 0, 1, 2 . (6.22)

Here A′1,i coincide with the A1,i from eq. (6.17) and A′2,i are some fixed polynomials, which

we do not display in this paper (each of the 289 integer coefficients has 27 to 37 digits).

Equipped with such an explicit map, one can show that this defines a rational section to the

elliptic fibration. The map eq. (6.21) is ill-defined in the same manner as for the previous

GHS in this section for the P1
x1

direction at 32 points on the base P1
x3
× P1

x4
and for the

P2
x2

direction at 92 points on the base, the former 32 points entirely belonging to the latter

set. As before, this corresponds to the GHS giving rise to a rational section wrapping P1’s

in the fiber over some points on the base.

6.2 Locating the singular fibers

All the steps in this subsection are a straightforward analogue of those in subsection 5.2.

We will thus be brief here and will mainly state the results of the analysis.

6.2.1 Weierstrass model

Having proven that the unique GHS of the line bundle,

Lz := OX(S0) = OX(−1, 1, 1, 1) , (6.23)

is a rational section to the elliptic fibration, we choose to use Lz as the bundle, which the

Weierstrass coordinate z is a GHS of, and take

Lx := OX(2S0)⊗K−2B = OX(−2, 2, 6, 6) , (6.24)

Ly := OX(3S0)⊗K−3B = OX(−3, 3, 9, 9) , (6.25)

to which the other Weierstrass coordinates, x and y, are associated.

We first need the explicit expressions for the three Weierstrass coordinates z, x and

y in terms of the homogeneous coordinates xr=1,··· ,4. We have already performed this

computation for z in the previous subsection. Using similar techniques to those outlined

already we can choose a quadratic and a cubic polynomial in x1 for the denominator and

tune the numerator, to construct the other GHS’s, x and y, respectively. In this manner,

we obtain explicit rational expressions,

z = z(x1,x2,x3,x4) ∈ Γ(X,Lz) , (6.26)

x = x(x1,x2,x3,x4) ∈ Γ(X,Lx) , (6.27)

y = y(x1,x2,x3,x4) ∈ Γ(X,Ly) , (6.28)

where z is uniquely fixed up to an overall constant, while x and y are expressed as a

linear combination of 26 and 59 independent rational expressions, respectively. One can

independently compute the cohomology dimensions of these line bundles as

h•(X,Lz) = (1, 0, 0, 0) , h•(X,Lx) = (26, 32, 0, 0) , h•(X,Ly) = (59, 128, 0, 0) , (6.29)

and hence confirm that a complete basis has been obtained for each space of GHS’s.
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We are then ready to construct the Weierstrass model via the procedure of subsec-

tion 3.1. The cohomology dimension count works out as in previous examples, with a GHS

of Lx not being proportional to z2 and a GHS of Ly not being constructed from terms pro-

portional to z3 or xz. The Weierstrass relation itself is a section of Lw := L⊗2y whose zeroth

cohomology is one less in dimension than the space that can be spanned by monomials in

x, y, z and the base coordinates of the correct degree, as expected.

As in the K3 case, one can find a unique linear relation among the 335 GHS’s of Lw,

using the same techniques that have been employed in that case. Upon an appropriate

rescaling, one thus obtains the Tate form,

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6 , (6.30)

with the explicit Tate coefficients ai, and via the reparameterization, gets to the Weier-

strass form,

y2 = x3 + fWxz
4 + gW z

6 , (6.31)

where fW ∈ Γ(B,K−4B ) = Γ(P1 × P1,OP1(8, 8)) and gW ∈ Γ(B,K−6B ) = Γ(P1 ×
P1,OP1(12, 12)). The discriminant locus is then located at the vanishing of ∆W :=

4f3W + 27g2W , which is a homogeneous polynomial of multi-degree (24, 24) in (x3,x4).

The expression for the Tate form and the discriminant are rather large and so we do

not reproduce them here. The only explicit information we will require going forward

with this example is that, given the discriminant polynomial ∆W , we confirm that all the

codimension-one singularities are of type I1.

6.2.2 Jacobian

The configuration (6.2) of the elliptic fiber is the same as the K3 case and is a complete

intersection in the toric variety AF = P1
x1
×P2

x2
, with the PALP ID (4, 0). Via the results of

ref. [30], it can straightforwardly be transformed into the Jacobian as follows. The defining

equations can be viewed as a function of the fiber coordinates, x1 and x2, with the base

coordinates x3 and x4 demoted to parameters. Then, the various monomial coefficients in

the defining equations are expressed in terms of the base coordinates x3 and x4. Using

the expressions for f and g of the Jacobian in terms of those coefficients, one obtains the

Jacobian in the form,

y2 = x3 + fJxz
4 + gJz

6 , (6.32)

where fJ ∈ Γ(B,K−4B ) and gJ ∈ Γ(B,K−6B ). The discriminant ∆J := 4f3J + 27g2J of the

Jacobian is a homogeneous polynomial of bi-degree (24, 24) and we confirm that it agrees

with the Weierstrass form:

∆W ∼ ∆J . (6.33)

6.2.3 Resolved geometry

Finally, we can explore the discriminant locus at the level of the smooth geometry associated

with the choice of complex structure in eq. (6.7). Elliptic fibers admit a singularity at
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points in X obeying eqs. (3.24), which, much like the K3 case, are the defining relations

for the fiber,

P1 = 0 , P2 = 0 , (6.34)

together with the degeneration condition,

dFP1 ∧ dFP2 = 0 , (6.35)

where the latter gives rise to three polynomial equations as the fiber is embedded in a

threefold P1
x1
× P2

x2
. Given this system of five polynomials in xr, we could in principle

eliminate the fiber coordinates as in the K3 case to obtain a single polynomial ∆res ∈
Γ(B,K−12B ) for the discriminant locus embedded in B. However, the elimination process

never finishes in a reasonable amount of time. In order to compare this discriminant locus

with the previous ones, we take a numerical analysis based on a set of generic points. That

is, first we choose a large number of random points that solve the system (6.34) and (6.35)

and substitute them into the previously obtained polynomial, ∆W ∼ ∆J to confirm that it

vanishes on all of those points. This shows that the discriminant obtained from the smooth

geometry is a subset of that obtained from the Weierstrass and Jacobian forms. Similarly

by choosing random points on the base that solve ∆W = 0(= ∆J) and substituting them

into eqs. (6.34) and (6.35) we can show that the discriminant obtained from the Weierstrass

form is a subset of that obtained from the analysis of the resolved geometry. In this manner,

we can conclude that

∆res ∼ ∆W ∼ ∆J . (6.36)

6.3 Arithmetic of the sections

We have so far obtained two legitimate sections, associated with OX(−1, 1, 1, 1) and

OX(2,−1, 4, 4), respectively. Let us take OX(−1, 1, 1, 1) as the line bundle for a zero

section, σ0, and OX(2,−1, 4, 4) for the generator section, σg, of (potentially a subgroup of)

the MW group. Denoting their divisor classes by S0 and Sg, the divisor classes of kσg are

given by applying eq. (4.3) as

Div(kσg) = S0 + k(Sg − S0) + k(k − 1) π(S0 · (Sg − S0)) , (6.37)

= (−1 + 3k)J1 + (1− 2k)J2 + (1− 11k + 14k2)J3 + (1− 11k + 14k2)J4 , (6.38)

which reproduces all the putative sections in eq. (6.11). Note that the addition law guar-

antees to give the divisor classes of multiples of σg in the MW group. Given that S0 and Sg
have both proven to be a section, we learn that each of the putative sections in eq. (6.11)

is a section, too, and that there are no more sections.

As in the previous example, we can check what we have learned about this geometry

for consistency by analyzing the splitting of the rank-four Picard lattice of X. The four

different types of the divisor classes of X are as follows:

(1) Base divisor classes: B = P1 × P1 has two independent generators.

(2) Fibral divisors: we have seen that there are no enhancement of fiber singularities at

codimension one and hence, appropriate vertical divisors do not exist.
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(3) Zero section: OX(1,−1, 1, 1) has proven to be a rational section, which we may take

as the zero section.

(4) Rational sections: it has also been shown in the previous paragraph that the MW

group has rank 1.

Then, the contributions from these four different types of generators indeed give rise to the

correct rank, 2 + 0 + 1 + 1 = 4, as desired.

7 Example 3: a threefold example with non-abelian symmetry

In the two simple examples we have so far looked at, the discriminant locus is irreducible

and the singular fibers are only of type I1. For a more non-trivial example with enhanced

fiber singularities, in this section, we analyze another threefold case with the configuration,

X3 =



P1
x1

1 1 0 0 0 0

P1
x2

1 0 1 0 0 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

P1
x5

1 0 0 1 0 0

P1
x6

0 1 0 0 1 0


. (7.1)

This case corresponds to the CICY #5075 of the CICY threefold list [78] and has the

Hodge numbers (h1,1, h2,1) = (7, 30). Note in particular that the complete intersection is

not “favorable” in that h1,1(X) = h1,1(A)+1. However, much of our analysis of the sections

and fiber types are insensitive to favorability and we can still apply our techniques to this

configuration. There also exists, as with almost all CICY threefolds, a nested Calabi-Yau

fibration structure of the form,

X3 −→ B2 = P1
x5
× P1

x6
−→ B1 = P1

x6
, (7.2)

and hence can be explored for the Heterotic/F-theory duality (see ref. [1]). Note that the

elliptic fibration has the fiber with the following configuration,

F =


P1
x1

1 1 0 0 0 0

P1
x2

1 0 1 0 0 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

 . (7.3)

We start by fixing a generic complex structure, for which the threefold is smooth. We spec-

ify our choice of the six polynomials, P1-P6, each by a list of monomial coefficients, again,
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in the lexicographic order for the monomial exponents that was introduced in section 6:

cP1 = {20, 6, 8, 19, 6, 17, 18, 14} , (7.4)

cP2 = {8, 2, 6, 18, 6, 3, 5, 8, 8, 19, 13, 15, 15, 11, 18, 20, 6, 3, 14, 2, 16, 17, 9, 11} , (7.5)

cP3 = {2, 7, 10, 18, 7, 19, 14, 9} , (7.6)

cP4 = {7, 5, 3, 19, 3, 1, 17, 2} , (7.7)

cP5 = {10, 1, 11, 19, 13, 4, 15, 19} , (7.8)

cP6 = {4, 3, 11, 20, 19, 4, 8, 17, 7, 7, 12, 16} . (7.9)

7.1 Section analysis

Putative sections. A putative section S, which we label as OX(S) = OX(b1, · · · , b6),
must have a single topological intersection with a generic fiber, leading to

2b1 + 2b2 + 3b3 + 2b4
!

= 1 . (7.10)

In addition, we have the base topology criteria (2.12), one for each base divisor, Db
α ∼ J5, J6,

which give the following conditions,

6b1b3 + 6b2b3 + 2b23 + 4b1b4 + 4b2b4 + 8b3b4 + 2b24 + 4b1b6 + 4b2b6 (7.11)

+6b3b6 + 4b4b6
!

= −2 ,

4b1b2 + 8b1b3 + 6b2b3 + 2b23 + 8b1b4 + 4b2b4 + 8b3b4 + 2b24 + 4b1b5 + 4b2b5

+6b3b5 + 4b4b5
!

= −2 ,

where eq. (7.10) has been used for a simplification. These three equations (7.10) and (7.11)

then lead to the following three-parameter family of divisor classes,

b1 = −1− 3k1 − k2 − k3 , (7.12)

b2 = k2 ,

b3 = 1 + 2k1 ,

b4 = k3 ,

b5 = 2 + 16k1 + 20k21 + 3k2 + 8k1k2 + 2k22 + 4k3 + 12k1k3 + 4k2k3 + 3k23 ,

b6 = 1 + 11k1 + 14k21 + k3 + 4k1k3 + k23 ,

with k1, k2, k3 ∈ Z, which, for some small parameter values, (k1, k2, k3) = (0, 0,−1),

(0,−1, 0), (0, 0, 0), for example, give the putative sections, OX(0, 0, 1,−1, 1, 1),

OX(0,−1, 1, 0, 1, 1), OX(−1, 0, 1, 0, 2, 1), respectively, all of which turn out to have

the line-bundle cohomologies,

h•(X,OX(S)) = (1, 0, 0, 0) . (7.13)

We must now confirm that these putative sections do indeed correspond to genuine

sections of the fibration.
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Explicit expressions for the sections. We will analyze the simplest putative section

associated with Lz := OX(0, 0, 1,−1, 1, 1), whose GHS of the form,

z =
N(x3,x5,x6)

D(x4)
∈ Γ(X,Lz) , (7.14)

is sought for, where N ∈ Γ(X,OX(0, 0, 1, 0, 1, 1)) and D ∈ Γ(X,OX(0, 0, 0, 1, 0, 0)). We

choose D = x4,0 and proceed to determine the numerator polynomial by combining the

last three defining equations, P4-P6. We can write these without loss of generality as,

P4 =

3∑
i=0

x4,i ui(x5) , P5 =

3∑
i=0

x4,i vi(x6) , P6 =

3∑
i=0

x4,iwi(x3) , (7.15)

where ui, vi and wi are linear in x5, x6 and x3, respectively. Then, on the divisor {x4,0 =

0} ⊂ X, we have

3∑
i=1

x4,i ui(x5) = 0 ,

3∑
i=1

x4,i vi(x6) = 0 ,

3∑
i=1

x4,iwi(x3) = 0 . (7.16)

Therefore, with the denominator D = x4,0, if the numerator polynomial is chosen as

N := −u3v2w1 + u2v3w1 + u3v1w2 − u1v3w2 − u2v1w3 + u1v2w3 (7.17)

= 1154x3,0x5,0x6,0 + 534x3,1x5,0x6,0 + 568x3,2x5,0x6,0 + 1794x3,0x5,1x6,0 (7.18)

+ 1864x3,1x5,1x6,0 + 543x3,2x5,1x6,0 + 1993x3,0x5,0x6,1 + 1319x3,1x5,0x6,1

+ 2395x3,2x5,0x6,1 − 2380x3,0x5,1x6,1 − 1571x3,1x5,1x6,1 − 2887x3,2x5,1x6,1 ,

the rational expression (7.14) for z is the desired GHS, the zero locus of which can easily

be seen to have no singularities via a direct calculation. With this expression, we obtain

an explicit parametrization of its zero locus of the form,

x1,i = A1,i(x5,x6) ∈ Γ(B,OB(2, 3)) , for i = 0, 1 , (7.19)

x2,i = A2,i(x5,x6) ∈ Γ(B,OB(3, 3)) , for i = 0, 1 ,

x3,i = A3,i(x5,x6) ∈ Γ(B,OB(1, 1)) , for i = 0, 1, 2 ,

x4,i = A4,i(x5,x6) ∈ Γ(B,OB(4, 4)) , for i = 0, 1, 2, 3 ,

which we present in appendix B.2 for concreteness. These parameterizations provide a

rational section to the elliptic fibration. In particular, the map is ill-defined, in a similar

manner to what has been seen in previous sections, for the P3
x4

direction at 22 points on

the base P1
x5
× P1

x6
. Amongst these 22 points, for 15 the map is ill-defined also for the P2

x3

direction, for 9 the map is ill-defined also for the P1
x1

and the P2
x3

directions, and for 1

point the map is ill defined for all four ambient projective-space directions. Note that the

Euler number difference,

χ(S)− χ(B) = 26− 4 = 22 , (7.20)

indicates that the rational section wraps a P1 in the fiber over these 22 base points.
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One can perform similar computations for the other two small putative sections,

OX(0,−1, 1, 0, 1, 1), OX(−1, 0, 1, 0, 2, 1). Interestingly, both of them lead to exactly the

same section map as in eqs. (7.19). However, they should be understood as vertical di-

visors attached to the genuine section and provide the first explicit examples of putative

sections failing to be a section, even when the strong cohomology condition in eq. (7.13)

holds. For more detailed analysis of this geometry, we refer the readers to appendix A.

7.2 Locating the singular fibers

It is possible to apply all three of the different techniques for analyzing singular fibers

that we have discussed in this paper to this case. However, in practice, the procedure to

compute the Weierstrass model in larger cases is rather expensive in terms of computational

resources. The time cost is also high in analyzing the resolved geometry; eliminating the

fiber coordinates from the criterion for the fiber singularity to obtain the hypersurface

equation for the discriminant locus in the base B2 is a Gröbner basis calculation and

therefore scales badly with the size of the problem. On the other hand, the Jacobian in

this case can be analyzed quickly, upon blowing the geometry down until the codimension

of the elliptic fiber becomes less than or equal to 2. Therefore, for this example, we only

present our exploration of Jacobian to analyze the singular fibers.

Since the fiber configuration (7.3) has codimension 6, Jacobian of X cannot be obtained

by the prescription in refs. [2, 30, 31]. We therefore first blow the fiber geometry down by a

chain of contractions along fiber directions as described in section 3.2. Let us consider the

following chain of three blow downs along the fiber directions, P1
x1

, P1
x2

and P3
x4

, in turn:

P1
x1

1 1 0 0 0 0

P1
x2

1 0 1 0 0 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

P1
x5

1 0 0 1 0 0

P1
x6

0 1 0 0 1 0


→



P1
x2

1 1 0 0 0

P2
x3

2 0 0 0 1

P3
x4

0 1 1 1 1

P1
x5

1 0 1 0 0

P1
x6

1 0 0 1 0


→


P2
x3

2 0 0 1

P3
x4

1 1 1 1

P1
x5

1 1 0 0

P1
x6

1 0 1 0

→

P2
x3

3

P1
x5

2

P1
x6

2

 , (7.21)

to get the fiber blown down to a cubic hypersurface in P2
x3

, with which we can immediately

form the Jacobian of the form,

y2 = x3 + fJxz
4 + gJz

6 , (7.22)

where fJ ∈ Γ(B,K−4B ) and gJ ∈ Γ(B,K−6B ). The discriminant ∆J := 4f3J + 27g2J of the

Jacobian is a homogeneous polynomial of bi-degree (24, 24). Upon analyzing the singular

fibers of the resolved geometry, without eliminating the fiber coordinates to obtain the

discriminant locus in the base, we have numerically compared the two discriminant loci

and have shown that they are the same:

∆J ∼ ∆res . (7.23)
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Figure 3. Schematic picture of the discriminant locus, L ⊂ B = P1
x5
× P1

x6
, where ∆(x5,x6)

vanishes. The locus decomposes to four pieces L(I), I = 1, 2, 3, 4.

Note that there are five more chains of blow downs that lead to a cubic fibration by

performing contractions in different orders. We find that all of these lead to the same

Jacobian.

7.3 Discriminant locus analysis

An explicit analysis of the discriminant locus ∆J in this example reveals that it has the

following factorization structure,

∆24,24(x5,x6) = (F
(1)
1,0 (x5,x6))

2 (F
(2)
1,0 (x5,x6))

2 (F
(3)
1,1 (x5,x6))

2 F
(4)
18,22(x5,x6) . (7.24)

Here, the subscript pairs denote the bi-degrees. The vanishing locus L = {∆ = 0} ⊂ B

thus decomposes accordingly as

L =

4⋃
I=1

L(I) , (7.25)

where L(I) = {F (I) = 0} ⊂ B are the vanishing loci of the individual factors in eq. (7.24).

By further analyzing the vanishing orders of f , g and ∆, we see the following singularity

structure and the enhancement pattern (characterized by Kodaira type [34, 35]):

• L(I), for I = 1, 2, 3, are of type I2 and L(4) is of type I1;

• |L(I) ∩ L(3)| = 1, for I = 1, 2, and at each of the two points the singularity enhances

to I4;

• |L(I) ∩L(4)| = 18, for I = 1, 2, and at 14 points the singularity enhances to I3 and at

the remaining 4 points (each with multiplicity 2) to III;

• |L(3)∩L(4)| = 32 and at 24 points the singularity enhances to I3 and at the remaining

8 points (each with multiplicity 2) to III.

The decomposition of the discriminant locus is schematically depicted in figure 3.
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7.4 Arithmetic of the sections

Since we have presented a complete section analysis in several other cases, in this example

we will simply content ourselves with an analysis of the decomposition of the rank-seven

Picard lattice of X. The four different types of the divisor classes of X are as follows:

(1) Base divisor classes: B = P1 × P1 have two independent generators,

OX(0, 0, 0, 0, 1, 0) , (7.26)

OX(0, 0, 0, 0, 0, 1) .

(2) Fibral divisors: as we have seen, there are three codimension-one loci of singularity

enhancement to I2 and hence, three vertical/blow-up divisors. For completeness, we

provide a choice of three independent vertical-divisor classes,

OX(−1, 1, 0, 0, 1, 0) , (7.27)

OX(1,−1, 0, 0, 1, 0) ,

OX(0,−1, 0, 1, 0, 0) ,

each of which is effective with a unique GHS. Note that they do not meet with a

generic fiber (when substituted into the left hand side of eq. (7.10) we obtain zero).

(3) Zero section: OX(0, 0, 1,−1, 1, 1) is a rational section, which we may take as the zero

section.

(4) Rational sections: in order for the above six independent divisor classes of three

different types, together with the rational sections, to span the rank-seven Picard

lattice, there must exist an additional rational section generating a MW group of

rank one. Given that the other six divisor classes, all obtained from the favorable

sector, generate the rank-six sub-lattice, the Mordell-Weil generator must lie (in

part) in the non-favorable sector of the Picard lattice, which we will not discuss in

this paper. Nevertheless, the decomposition of the Picard lattice alone is enough to

demonstrate that such a group of sections exists.

8 Example 4: a threefold example with higher rank Mordell-Weil group

In this section, we will present an example of an elliptic CICY threefold with rkMW (X) =

4. The configuration of this geometry (CICY #7907 of the CICY threefold list [78]) is

given by

X3 =



P2
x1

1 0 1 0 0 0 1 0

P2
x2

0 1 0 1 0 0 0 1

P3
x3

0 0 0 0 1 1 1 1

P1
x4

0 0 1 1 0 0 0 0

P1
x5

1 1 0 0 0 0 0 0

P1
x6

0 0 0 0 1 1 0 0

P1
x7

0 0 0 0 2 0 0 0


−→ B2 = P1

x6
× P1

x6
, (8.1)
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where the elliptic fibers have the following configuration,

F =



P2
x1

1 0 1 0 0 0 1 0

P2
x2

0 1 0 1 0 0 0 1

P3
x3

0 0 0 0 1 1 1 1

P1
x4

0 0 1 1 0 0 0 0

P1
x5

1 1 0 0 0 0 0 0


. (8.2)

It has the Hodge numbers (h1,1, h2,1) = (7, 30). We start our analysis by first choosing a

generic complex structure, described by the following monomial coefficients listed in the

lexicographic order for the monomial exponents described in section 6,

cP1 = {18, 14, 14, 13, 14, 13} , (8.3)

cP2 = {18, 16, 19, 13, 9, 15} ,
cP3 = {2, 20, 7, 16, 2, 15} ,
cP4 = {4, 15, 3, 2, 5, 19} ,
cP5 = {6, 7, 12, 20, 4, 15, 15, 2, 16, 20, 2, 1, 4, 15, 19, 14, 10, 10, 6, 9, 16, 19, 7, 16} ,
cP6 = {11, 4, 10, 7, 11, 8, 17, 9} ,
cP7 = {10, 7, 5, 7, 1, 13, 20, 7, 3, 13, 18, 3} ,
cP8 = {3, 4, 6, 6, 20, 4, 17, 3, 4, 20, 20, 20} .

8.1 Section analysis

Putative sections. A putative section S, which we label as OX(S) = OX(b1, · · · , b6),
must have a single topological intersection with a generic fiber, leading to

3b1 + 3b2 + 2b3 + 2b4 + 2b5
!

= 1 , (8.4)

and the base topology criteria (2.12), one for each base divisor, Db
α ∼ J6, J7, give the

following conditions,

2b21 + 8b1b2 + 2b22 + 12b1b3 + 12b2b3 + 4b23 + 4b1b4 + 4b2b4 + 8b3b4 + 4b1b5

+4b2b5 + 8b3b5 + 4b4b5 + 6b1bα + 6b2bα + 4b3bα + 4b4bα + 4b5bα
!

= −2 , (8.5)

for α = 6, 7, where eq. (8.4) has been used for a simplification. These two equations, (8.4)

and (8.5), then lead to the following four-parameter (km ∈ Z, for m = 1, 2, 3, 4) family of

divisor classes.

b1 =−1− 2k1 − k2 , (8.6)

b2 = k2 ,

b3 = k3 ,

b4 = k4 ,

b5 = 2 + 3k1 − k3 − k4 ,
b6 = 2 +10k1+8k21 + 2k2 + 4k1k2 + 2k22− 4k3− 4k1k3 + 2k23 − 4k4 − 6k1k4 + 2k3k4 +2k24 ,

b7 = 2 +10k1+8k21 + 2k2 + 4k1k2 + 2k22 − 4k3−4k1k3 + 2k23 − 4k4− 6k1k4 + 2k3k4 + 2k24 .
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With some small parameter values, this family of putative sections gives rise to the following

possibilities:

S (k1, k2, k3, k4) OX(S)

S0 (0,−1, 0, 1) OX(0,−1, 0, 1, 1, 0, 0)

S1 (0,−1, 1, 0) OX(0,−1, 1, 0, 1, 0, 0)

S2 (0,−1, 1, 1) OX(0,−1, 1, 1, 0, 0, 0)

S3 (−1, 0, 0,−1) OX(1, 0, 0,−1, 0, 0, 0)

S4 (0, 0, 0, 1) OX(−1, 0, 0, 1, 1, 0, 0)

, (8.7)

all of which turn out to have the line-bundle cohomologies,

h•(X,OX(S)) = (1, 0, 0, 0) . (8.8)

We must next ensure that these putative sections do correspond to true sections of the

fibration.

Explicit expressions for the sections. We will fully analyze the putative section

associated with the first line bundle in eq. (8.7), Lz := OX(S0) = OX(0,−1, 0, 1, 1, 0, 0),

whose GHS is of the form,

z =
N(x4,x5)

D(x2)
∈ Γ(X,Lz) . (8.9)

Here N ∈ Γ(X,OX(0, 0, 0, 1, 1, 0, 0)) and D ∈ Γ(X,OX(0, 1, 0, 0, 0, 0, 0)). We choose D =

x2,0 and consider the second and the fourth defining equations,

P2 = x2,0q0(x5) + x2,1q1(x5) + x2,2q2(x5) , (8.10)

P4 = x2,0u0(x4) + x2,1u1(x4) + x2,2u2(x4) , (8.11)

where qi and ui, for i = 0, 1, 2, are linear in x5 and x4, respectively. Then, on the divisor

{x2,0 = 0} ⊂ X, we have

x2,1q1(x5) + x2,2q2(x5) = 0 , (8.12)

x2,1u1(x4) + x2,2u2(x4) = 0 , (8.13)

and hence, with the choice,

N := q1u2 − q2u1 = 68x4,0x5,0 + 343x4,1x5,0 + 20x4,0x5,1 + 217x4,1x5,1 , (8.14)

the rational expression (8.9) for z is the desired GHS. The zero locus of this GHS can

easily be seen to have no singularities via a patch-wise analysis of the system. With

this expression, we obtain the explicit parameterization of its zero locus of the divisor of

the form,

x1,i = A1,i(x6,x7) ∈ Γ(B,OB) , for i = 0, 1, 2 , (8.15)

x2,i = A2,i(x6,x7) ∈ Γ(B,OB(2, 2)) , for i = 0, 1, 2 ,

x3,i = A3,i(x6,x7) ∈ Γ(B,OB(2, 2)) , for i = 0, 1, 2, 3 ,

x4,i = A4,i(x6,x7) ∈ Γ(B,OB) , for i = 0, 1 ,

x5,i = A5,i(x6,x7) ∈ Γ(B,OB) , for i = 0, 1 ,
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which we present in appendix B.3 for concreteness. These parameterizations provide a

rational section to the elliptic fibration. In particular, the section map is ill-defined, in the

same manner as has been seen in preceding sections. This phenomenon occurs for the P2
x2

direction at 8 points on the base P1
x6
× P1

x7
, amongst which are 4 points where the map is

ill-defined also for the P3
x3

direction. Note that the Euler number difference,

χ(S)− χ(B) = 12− 4 = 8 , (8.16)

indicates that the rational section indeed wraps a P1 in the fiber over these 8 base points.

Similarly, one can analyze the other smooth, rational sections, Sm=1,2,3,4, using the

same procedures. We thereby obtain the explicit rational maps for each of those MW

generators and also confirm the way in which fibral P1’s are wrapped by each rational

section.

8.2 Locating the singular fibers

As in section 7, exploration of the Jacobian is the simplest way in which to obtain the

information we need about the singular fibers. With the fiber (8.2) being of codimension 8,

to easily read off the Jacobian of X we first need to blow the fiber geometry down. Let us

consider the following chain of three contractions along the P2
x1

, P3
x3

, and P1
x4

directions,

in turn: 

P2
x1

1 0 1 0 0 0 1 0

P2
x2

0 1 0 1 0 0 0 1

P3
x3

0 0 0 0 1 1 1 1

P1
x4

0 0 1 1 0 0 0 0

P1
x5

1 1 0 0 0 0 0 0

P1
x6

0 0 0 0 1 1 0 0

P1
x7

0 0 0 0 2 0 0 0


→



P2
x2

0 1 1 0 0 1

P3
x3

1 0 0 1 1 1

P1
x4

1 0 1 0 0 0

P1
x5

1 1 0 0 0 0

P1
x6

0 0 0 1 1 0

P1
x7

0 0 0 2 0 0


(8.17)

→



P2
x2

1 1 1

P1
x4

1 0 1

P1
x5

1 1 0

P1
x6

2 0 0

P1
x7

2 0 0


→


P2
x2

2 1

P1
x5

1 1

P1
x6

2 0

P1
x7

2 0

 .

After this procedure the fiber has been blown down to a complete intersection of two

hypersurfaces in P2
x2
× P1

x5
of degrees (2, 1) and (1, 1), respectively. This blown-down fiber

has the PALP ID (4, 0) and, based on the results of ref. [30], we can read the Jacobian of

the form,

y2 = x3 + fJxz
4 + gJz

6 , (8.18)

where fJ ∈ Γ(B,K−4B ) and gJ ∈ Γ(B,K−6B ). The discriminant ∆J := 4f3J + 27g2J of

the Jacobian is a homogeneous polynomial of degree (24, 24). Upon going through the
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analysis of the resolved geometry, without eliminating the fiber coordinates, we are able to

numerically compare the the two discriminant loci and confirm that

∆J ∼ ∆res . (8.19)

Having obtained the explicit discriminant polynomial ∆J , one can proceed to analyze its

factorization properties and we find that all the codimension-one fibers are of type I1.

8.3 Arithmetic of the sections

Let us denote sections corresponding to Sm, m = 0, 1, · · · , 4 in (8.7), by σm ∈ MW (X).

Here we will show that the MW group is of rank 4, and that the lattice is generated by

these σm. Specifically, based on the group law (4.3) at the level of divisor classes, we will

show, upon choosing σ0 to be the zero section, the following:

• σ1, · · · , σ4 span a lattice of rank 4;

• σ1, · · · , σ4 generate all the putative section classes in the family (8.6).

These two combined will prove not only that σm=1,2,3,4 is a basis of the MW group, but

also that all of the putative section classes in eq. (8.6) correspond to a genuine section.

Both of the bullet points above can be shown by forming the divisor class of a most general

linear combination of σm. Upon sequentially applying the addition law (4.3), one sees that

Div(

4⊕
m=1

lmσm) =

7∑
r=1

βrJr , (8.20)

where the coefficients βr are given in terms of the lm as

β1 = l3 − l4 , (8.21)

β2 = −1 + l3 + l4 ,

β3 = l1 + l2 ,

β4 = 1− l1 − 2l3 ,

β5 = 1− l2 − l3 ,
β6 = −2l1 + 2l21 − 2l2 + 2l1l2 + 2l22 − 2l3 + 2l1l3 + 2l23 − 2l4 + 2l24 ,

β7 = −2l1 + 2l21 − 2l2 + 2l1l2 + 2l22 − 2l3 + 2l1l3 + 2l23 − 2l4 + 2l24 .

With eqs. (8.20) and (8.21), one can immediately see that

4⊕
m=1

lmσm = σ0 ⇒ Div(
4⊕

m=1

lmσm) = S0 ⇒ lm = 0, for m = 1, 2, 3, 4 , (8.22)

which proves the first bullet point. In addition, the br from eq. (8.6) equal βr for r =

1, · · · , 7, with the following choice of lm,

l1 = 1 + 2k1 − k4 ; l2 = −1− 2k1 + k3 + k4 ; l3 = −k1 ; l4 = 1 + k1 + k2 , (8.23)

which proves the second bullet point. Therefore, we have in particular shown rkMW (X) =

4, which is consistent with the following decomposition of the independent divisor classes:
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(1) Base divisor classes: B = P1 × P1 has two independent generators,

OX(0, 0, 0, 0, 0, 1, 0) , (8.24)

OX(0, 0, 0, 0, 0, 0, 1) .

(2) Fibral divisors: as we have seen, there do not arise any enhancement of fiber singu-

larities at codimension one and hence, no blow-up divisors either.

(3) Zero section: σ0 has been proven to be a rational section, which we may take as the

zero section with the divisor class,

OX(0,−1, 0, 1, 1, 0, 0) . (8.25)

(4) Rational sections: MW (X) has been proven to be generated by σm, m = 1, 2, 3, 4,

with the respective divisor classes,

OX(0,−1, 1, 0, 1, 0, 0) , (8.26)

OX(0,−1, 1, 1, 0, 0, 0) ,

OX(1, 0, 0,−1, 0, 0, 0) ,

OX(−1, 0, 0, 1, 1, 0, 0) .

Then, the contributions from these four different types of generators give rise to the correct

rank for the Picard lattice, 2 + 0 + 1 + 4 = 7. Furthermore, the seven divisor classes in

eqs. (8.24), (8.25) and (8.26) indeed span the entire Picard lattice and hence form a basis.
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A Reducible putative sections and non-flat fibers

In this section, we provide examples of reducible putative sections that decompose into

a genuine section and a vertical divisor. Let us consider the CICY threefold discussed

in section 7, with the elliptic fibration given by the CICY and the fiber configuration

matrices (7.1) and (7.3), respectively,

X3 =



P1
x1

1 1 0 0 0 0

P1
x2

1 0 1 0 0 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

P1
x5

1 0 0 1 0 0

P1
x6

0 1 0 0 1 0


; F =


P1
x1

1 1 0 0 0 0

P1
x2

1 0 1 0 0 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

 , (A.1)
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with the base B = P1
x5
×P1

x6
. Recall that in section 7 we have identified a family of putative

sections (see eq. (7.12)), from which three line bundles with small degrees,

L1 = OX(0, 0, 1,−1, 1, 1) , L2 = OX(0,−1, 1, 0, 1, 1) , L3 = OX(−1, 0, 1, 0, 2, 1) , (A.2)

were chosen for discussion. Note that all these three line bundles have the cohomology,

h•(X,Li) = (1, 0, 0, 0) , for i = 1, 2, 3. (A.3)

The unique global holomorphic section of L1 is of the form,

s1 =
N(x3,x5,x6)

x4,0
, (A.4)

with the numerator polynomial N given in eq. (7.18), and its vanishing locus has proven

smooth, leading to a genuine section to the elliptic fibration (see eq. (7.19) and ap-

pendix B.2). On the other hand, the other two putative sections associated with the

line bundles, L2 and L3, are neither smooth nor irreducible, while leading to the same

section map as the L1 case. As claimed in the main text, they should be thought of as

the genuine section attached with an additional vertical divisor. Since the two cases are

similar in nature, we will only present a full analysis for one of them, L2. We start with

the following injective mapping for cohomology groups,

H0(X,L1)×H0(X,L) −→ H0(X,L2) , (A.5)

where L := OX(0,−1, 0, 1, 0, 0) satisfies L1 ⊗ L = L2 and h0(X,L) = 1. Given such an

injection, the unique GHS of L2 should be of the form,

s2 = s1 s , (A.6)

where s is the GHS of L that can be written, for instance, as

s =
r1(x4)

x2,0
, (A.7)

with r1(x4) read from the expansion of the third defining equation for X,

P3 = x2,0r0(x4) + x2,1r1(x4) . (A.8)

The divisor {s = 0} ⊂ X does not intersect with a generic fiber and is in fact vertical.

One way to see this is to compute the left hand side of the Oguiso criterion (2.11) and

notice that one obtains zero. Via numerical algebraic geometry techniques, one can further

check that the singular locus of the putative section associated with L2 is of dimension 1,

which is consistent with the fact that the genuine section and the vertical divisor meets at

a curve.

Similarly, the relevant injection for the L3 case is,

H0(X,L1)×H0(X,L′) −→ H0(X,L3) , (A.9)
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where L′ := OX(−1, 0, 0, 1, 1, 0) satisfies L1 ⊗ L′ = L3 and h0(X,L′) = 1. The argument

for this case follows along exactly analogous lines.

The decomposition structure described above is rather clean. For some configurations,

however, one may face a more exotic situation where the elliptic fiber is non-flat and a

point on the base pulls back to a vertical divisor. As an illustration, let us consider the

CICY threefold (with CICY #5075 [78]), in which an elliptic fibration can be found with

the CICY and the fiber configurations,

X3 =



P1
x1

1 0 1 0 0 0

P1
x2

0 1 0 0 1 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

P1
x5

1 1 0 0 0 0

P1
x6

1 0 0 1 0 0


; F =


P1
x1

1 0 1 0 0 0

P1
x2

0 1 0 0 1 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

 , (A.10)

over the base B = P1
x5
× P1

x6
. Note that this is the same CICY geometry as the one

analyzed in section 7, with the rows appropriately interchanged (i.e., the total space is the

same but we are examining a different fibration structure here). One can easily confirm,

via the simple topological checks of section 2.3, that the two line bundles,

L1 = OX(1, 0, 1,−1, 0, 1) , L2 = OX(0, 0, 1,−1, 1, 2) , (A.11)

correspond to putative sections. Furthermore, they both have the cohomology,

h•(X,Li) = (1, 0, 0, 0) , for i = 1, 2 . (A.12)

Let us expand the first, the third, the fourth, and the sixth defining equations for X as

P1 =

1∑
i=0

x1,i pi(x5,x6) , (A.13)

P3 =
3∑
i=0

x4,i ri(x1) , (A.14)

P4 =
3∑
i=0

x4,i ui(x6) , (A.15)

P6 =

3∑
i=0

x4,iwi(x3) , (A.16)

where ri, ui, and wi, for i = 0, 1, 2, 3, are all linear in their respective variables and pi, for

i = 0, 1, are bilinear in x5 and x6. Then, the GHS of L1 can be constructed as

s1 =
−r3u2w1 + r2u3w1 + r3u1w2 − r1u3w2 − r2u1w3 + r1u2w3

x4,0
, (A.17)
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and its zero locus can easily be proven smooth. Then, exactly the same steps as those used

for all the examples in the main text can be applied to show that this putative section is

a genuine section to the elliptic fibration (A.10).

For the GHS of L2, we consider the injection,

H0(X,L1)×H0(X,L) −→ H0(X,L2) , (A.18)

where L := OX(−1, 0, 0, 0, 1, 1) satisfies L1⊗L = L2 and h0(X,L) = 1. The GHS s2 of L2

then factors as

s2 = s1 s , (A.19)

where s is the section of L that can be written, for instance, as

s =
p1(x5,x6)

x1,0
∼ −p0(x5,x6)

x1,1
. (A.20)

Thus, the putative section {s2 = 0} ⊂ X decomposes into the genuine section {s1 = 0}
and the vertical divisor {s = 0}. However, the vertical divisor in this case is the non-flat

fiber over the two points in the base with p0(x5,x6) = 0 = p1(x5,x6).
12

It is interesting to look in more detail at the structure associated to these two points.

In order to do so, we proceed to analyze the Jacobian of the blown-down geometry, obtained

via the following chain of contractions:

P1
x1

1 0 1 0 0 0

P1
x2

0 1 0 0 1 0

P2
x3

0 2 0 0 0 1

P3
x4

0 0 1 1 1 1

P1
x5

1 1 0 0 0 0

P1
x6

1 0 0 1 0 0


→



P1
x2

0 1 0 1 0

P2
x3

0 2 0 0 1

P3
x4

1 0 1 1 1

P1
x5

1 1 0 0 0

P1
x6

1 0 1 0 0


→


P2
x3

2 0 0 1

P3
x4

1 1 1 1

P1
x5

1 1 0 0

P1
x6

0 1 1 0

→

P2
x3

3

P1
x5

2

P1
x6

2

 .

The Jacobian of the resulting cubic fibration [31] has a Weierstrass form whose fJ , gJ , and

∆J , at these two base points, vanish to order 4, 6, and 12, respectively. Conversely, one may

analyze non-generic codimension-two points as follows. The ∆J turns out to factorize as

∆24,24(x5,x6) = (F
(1)
1,2 (x5,x6))

2F
(2)
22,20(x5,x6) , (A.21)

where the subscript pairs denote the bi-degrees. One may then go through all of the

codimension-two points obtained by intersecting F (1) and F (2), and analyze the vanishing

orders of fJ , gJ , and ∆J there. It then turns out that at exactly two of those codimension-

two points they vanish to order 4, 6, and 12, respectively, and these two points are exactly

where the fiber goes non-flat. We take this as a non-trivial piece of evidence that vanishing

of f , g, and ∆ to those orders is intimately related to the non-flat fibers.

12In order to see that this fiber is non-flat at these points note that, when these two terms vanish, the

first defining equation in the fiber configuration in eq. (A.10) becomes trivial (see eq. (A.13)).
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The above results are somewhat to be expected given results in both the

physics [2, 79, 81–84] and mathematics [85, 86] literatures. It is well known that non-

flat fibers are dangerous in that they lead to SCFTs when they are blown down to obtain

the associated Weierstrass model. So called “(4, 6, 12)” points are also well known to be

associated with SCFTs, dual to heterotic small instantons, and so it is not surprising that

this is what we obtain. Note that, while normally in the physics literature (4, 6, 12) points

are dealt with by blowing up the base, here we see that resolving via a non-flat fiber may

also be an option. Indeed it is known that non-flat fibers can always be birationally related

to a flat fibration, by going to the Weierstrass model and then blowing up the base [85, 86].

Thus if one can blow up to a non-flat fiber to resolve some given (4, 6, 12) points, then

removing them by blowing up the base will also be an option.

B Explicit rational maps

B.1 The rational map in eq. (6.17)

The coefficients for the respective basis monomials in the expression (6.17) are given as

cA1,0 = {374645428, 2459924454, 6041201902, 6757197031, 3506712251, 580810171, 924301148, 8199431465,

25264031186, 36372427880, 22779823774, 4908357591, 1452188771, 13033199001, 40135221388,

66573888839, 54108574906, 15515879412, 1248897453, 12094877912, 34197169604, 54193633181,

55266938999, 22696202323, 215837430, 6368649137, 15892630074, 22118006553, 22024966369,

15692070369, 237121534,−325372751, 6378759403, 1293660759, 3196094763, 3924307629} ,
cA1,1 = {−734944740,−4326339166,−11130294298,−13907839771,−9009394083,−2347190168,

−1675319136,−14776875073,−46120017979,−63136826781,−36725168560,−7668395811,

−2113655527,−18322779267,−72678726227,−110406161553,−65489903673,−10031189305,

−1349647374,−11165685192,−53929588927,−95298609096,−59057362305,−9086250737,

−625397263,−1377088015,−21506754436,−41349413418,−24925221695,−5744117643,

−270489017, 1411511282,−5280035471,−6318376072,−4098094623,−1500696270} ,
cA2,0 = {1084, 723,−1357, 446, 1061,−1858, 2295,−4617, 1014} ,
cA2,1 = {1636, 7255, 4564, 128, 11845, 12591,−166, 3943, 6549} ,
cA2,2 = {−2410,−6655,−6728,−2985,−15122,−8890,−1337,−6671,−3039} ,

where the coefficients are listed in the lexicographic order of the monomial exponents

described in section 6.

B.2 The rational map in eq. (7.19)

The coefficients for the respective basis monomials in the expression (7.19) are given as

cA1,0 = {2221064631, 11917255459, 28570974597, 16495328929, 8210461686, 7704389866,

−49864858414,−52760626002, 8036361006,−15034898100, 6923938379, 37655021444} ,
cA1,1 = {−2813621667,−13737694558,−23649388867,−13410639788,−10885604364,−16063185502,

34747606348, 35848540654,−10733842857, 14828715552, 4172982765,−22394056833} ,
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cA2,0 = {32876672958, 151940458372, 197121202830, 109428884752, 127447660413, 193402090199,

−438295120157,−348851016375, 125317972440,−68136505562, 330460624192, 602425176324,

−2417059116, 78061046172,−189976587911,−401928611774} ,
cA2,1 = {27539562618, 155918941832, 429523158738, 249442739852, 64390426983,−104328590424,

−1019425293349,−969130178938,−39468341094,−438573483026, 455036821602, 911597522988,

−134257162533, 161878775784, 112484337279,−154768837497} ,
cA3,0 = {7357, 26839, 10114,−49331} ,
cA3,1 = {537, 15147,−1059, 1817} ,
cA3,2 = {−15452,−30676,−29780, 39679} ,
cA4,0 = {26125015333068, 14093705690638,−253407065151880,−1392929418892058,−969784333605016,

44111282567346,−403354228064373, 154876615769747, 5112562529762937, 4813145357835159,

−171100860164100,−616912937629296, 868417042593585,−6973432524385874,−8327868925909157,

−436942930362768, 56095959480934,−1955852891330594, 3018949340241019, 5939379450686520,

−233507718098055,−349570577705856, 1272688939129888, 369255734060038,−1443023739731898} ,
cA4,1 = {52147316163654, 182788360653752, 31326182511870,−568882677708652,−448279427660016,

196582084116597, 18967518423364,−1149983213111555, 512164610746422, 1360945691525348,

196592267852520,−250589375084200, 1437953867180930, 1652250053613618,−567580289130554,

32425178124081, 442219027542972,−56965838050663,−1358907015270799,−779145891064596,

46248190501128, 118523292993366,−333807482278694,−124559271657028, 390617948985922} ,
cA4,2 = {−51721845976638,−211044216465212,−185467081673182, 770647194632056, 613395005398400,

−85575733018929, 267990300915931, 868293730827257,−1937085042649463,−2902140503357580,

217465884106170, 270811223476316,−3411572449024905, 364374416960336, 3657090237062633,

361920509039658,−1037318384139832, 2066163139747743, 1800958612708262,−1942857053473884,

−61786399417851, 407958330780186,−684815876214366,−858431195253898, 730146388419428} ,
cA4,3 = {−10832442228972,−816963082358, 131545420796888, 537953669498482, 370184917765880,

−99402081447330,−80480182341872, 20890954975173,−916841939725634,−1003292183336129,

−218570855874462, 341593139545558, 1176891692757061, 661234289887252, 235975445849429,

−46147618216851, 487317156800170,−1349531840686582,−1215954798086102, 875569510180860,

175304685193347,−456024004562430, 331856671930056, 689389343218620,−468384360246228} ,

where the coefficients are listed in the lexicographic order of the monomial exponents

described in section 6.

B.3 The rational map in eq. (8.15)

The coefficients for the respective basis monomials in the expression (8.15) are given as

cA1,0 = {−651897} ,
cA1,1 = {61934} ,
cA1,2 = {548944} ,
cA2,0 = {21105788506648,−11775044280804, 6163099181603, 29703669175731,−14775894485118,

−9206484163372, 9487229871540,−4625233450212,−7147022545227} ,
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cA2,1 ={−4435876022168, 1454959565556,−2028437292847,−6978840453732, 1754250504522,421432378118,

−2379663273177, 466722799641, 457564831947} ,
cA2,2 = {−14587835867512, 8657245681028,−3886990601851,−20156267237980, 10899890597746,

7132962137614,−6361220860757, 3453847947797, 5471027603303} ,
cA3,0 = {1836343820,−1284971884, 348994373, 2279657494,−1578310010,−1230865198, 611200657,

−492599473,−835170489} ,
cA3,1 = {−347211138,−689099572,−736001231,−1590588657,−718071560,−1330998724,−950616680,

−206565160,−573918245} ,
cA3,2 = {798897195,−82629092, 494287724, 1618408765,−182328463, 276360492, 726380168,−72433064,

−4829618} ,
cA3,3 = {−1500914105, 1290270968,−112711221,−1457099424, 1503524551, 1448568784,−177947468,

443979836, 821860735} ,
cA4,0 = {67} ,
cA4,1 = {4} ,
cA5,0 = {−92} ,
cA5,1 = {247} ,

where the coefficients are listed in the lexicographic order of the monomial exponents

described in section 6.
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