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Figure 1. Example of box diagram that contributes to K0 − K̄0 mixing in the SM.

1 Introduction

The investigation of neutral kaon mixing has been an important area for our understanding

of the Standard Model (SM) of particle physics. CP-violation was first observed in KS

regeneration experiments [1] and the small value of the KL − KS mass difference led to

the prediction of the charm quark at the GeV scale [2, 3]. Neutral kaon mixing within the

SM is dominated by W -exchange box diagrams as illustrated in figure 1. By performing

an operator product expansion, one can factorise the long-distance effects into the matrix

element 〈K̄0|O1|K
0〉 of the four quark operator.

O1 = (saγµ(1− γ5)da) (sbγµ(1− γ5)db) , (1.1)

where a and b are colour indices and the summation over Dirac indices is implicit. In the

SM, the only Dirac structure which contributes is “(Vector-Axial)×(Vector-Axial)” arising

from the W-vertices. The four-quark operator given in eq. (1.1) is invariant under Fierz

re-arrangement, therefore gluonic exchanges do not introduce new four-quark operators.

In a massless renormalisation scheme which preserves chiral symmetry the four-quark

operator O1 does not mix with other four-quark operators, nor with lower dimensional

operators. The importance of the matrix element given in eq. (1.1) has motivated many

lattice studies of the SM kaon bag parameter (defined in some renormalisation scheme at

some scale µ)

BK(µ) ≡
〈K̄0|O1(µ)|K

0〉
8
3f

2
Km2

K

, (1.2)

which have now achieved accuracies at the few-percent level [4–7]. (Our convention for

the decay constant is such that fK = 156.1MeV.) Combined with the value of the Wilson

coefficient C(µ), computed in perturbation theory, and experimental observables such as

the mass difference ∆MK
= mKL

− mKS
and εK , the determination of BK(µ) provides

important constraints on the Cabibbo-Kobayashi-Maskawa (CKM) matrix. Schematically,

one obtains

εK = C(µ)×BK(µ)×F(V CKM
ij ,mK , fK ,∆MK , . . .) , (1.3)

where F is a known function of the CKM factors and of well-measured quantities. In the

framework of the SM, the experimental value of εK (which parametrizes indirect CP viola-

tion) together with the theoretical determination of BK provides an important constraint

on the apex of one the CKM unitary triangles — in the (η̄, ρ̄) plane — and on the overall
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consistency of the CKM picture. εK is also a powerful probe of potential new physics,

with sensitivity to energies well beyond those being explored directly at the LHC (see for

example [8–11]). Beyond the SM, both left-handed and right-handed currents may con-

tribute in the K0 − K̄0 mixing process and the CP-violation parameter εK is sensitive to

new CP violating phases generically predicted by these models. Here we assume that the

new-physics effects occur at energy scales much higher than the interaction scale of QCD

and that QCD remains a valid description of the strong interaction in the non-perturbative

regime. In addition to the SM operator O1 given in eq. (1.1), seven four-quark operators

appear in a generic effective ∆S = 2 Hamiltonian [12]1

H =
5

∑

i=1

Ci(µ)Oi(µ) +
3

∑

i=1

C̃i(µ) Õi(µ) , (1.4)

where
O2 = (sa(1− γ5)da) (sb(1− γ5)db)

O3 = (sa(1− γ5)db) (sb(1− γ5)da)

O4 = (sa(1− γ5)da) (sb(1 + γ5)db)

O5 = (sa(1− γ5)db) (sb(1 + γ5)da) ,

(1.5)

and Õi=1,2,3 are obtained from the Oi=1,2,3 by swapping chirality (1 − γ5) → (1 + γ5).

The Wilson coefficients Ci(µ) and C̃i(µ) depend on the details of the new-physics model

under consideration but the matrix elements 〈K̄0|Oi|K
0〉 are model independent. (In our

framework parity is conserved, therefore the operators Õi=1,2,3 are redundant). In terms

of the representation of SUL(3) × SUR(3), it is straightforward to show that in the chiral

limit O2 and O3 transform like (6, 6̄) while O4 and O5 belong to (8, 8). Therefore these

new operators mix pair-wise under renormalisation: O2 with O3, and O4 with O5.

In contrast to BK(µ), studies of the extended set of matrix elements are relatively few.

The first computation performed with dynamical fermions was reported by our collabora-

tion in [15] and was done with nf = 2 + 1 DW fermions at a single lattice spacing. It was

followed by a nf = 2 computation by the European Twisted Mass (ETM) collaboration

using twisted-mass Wilson fermions with several lattice spacings [16]. These two compu-

tations reported results in decent agreement (the matrix elements of O2,3,4 agree within

errors, O5 only within ∼ 2σ), suggesting that these quantities are not very sensitive to

the number of flavours. However, another study by the Staggered Weak Matrix Element

(SWME) collaboration using nf = 2+1 flavours of improved staggered fermions [17] found

a noticeable disagreement for two of these matrix elements (O4 and O5). The ETM col-

laboration has since repeated their computation with nf = 2 + 1 + 1 flavours and found

bag parameters compatible with their nf = 2 results (only within ∼ 2σ for O5) [18]. The

SWME collaboration has extended their previous study by adding more ensembles and im-

proving extrapolations to the physical point [19], confirming their disagreement with the

other studies. Since the results have been extrapolated to the continuum limit, one does

not expect the fermion discretisation used (Domain-Wall, Twisted-Mass, or Staggered) to

be responsible for the discrepancy.

1Several basis conventions exist in the literature, here we choose the “SUSY” basis [12–14].
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Central to this work is an explanation for this disagreement. Our arguments and

preliminary results have been presented in [20, 21] and discussed with the authors of [19].

We improve upon our earlier DWF result [15] in two important ways: by adding a second

lattice spacing, allowing us to take the continuum limit (with a resonable handle on the

lattice artefacts) and by renormalizing the four-quark operators through non-exceptional

momentum schemes. As we will show, the second point is of great importance and is often

overlooked. Some systematic errors in the original RI-MOM schemes which are very hard

to control are absent in the RI-SMOM schemes we present here.

In the next section, we give an overview of our strategy and make explicit our choice

of conventions (choice of basis, normalisation). Sections 2 and 3 contain our global fit pro-

cedure and the method for determining the bare hadronic matrix elements 〈K̄0|Oi(µ)|K
0〉.

In section 4 we present our final results and compare with previous works.

2 Extrapolations to the physical point

In this work we have considered data with pion masses in the range of mP ∼ 300–430MeV

and performed a chiral extrapolation to the physical value of mπ = 140MeV (we take the

mass of the charged pions). The spatial extent our the simulated lattice is L ∼ 2.66 fm, so

within this range of pion masses LmP > 4, therefore the finite volume effects are expected to

be negligible compared to our systematic errors. We work in the isospin limit, mu = md ≡

mud and for the same reason we do not consider isospin corrections. Furthermore, we also

require a continuum extrapolation to reach the physical point (a = 0,mπ = 140MeV). Since

we work with Domain-Wall fermions, we expect the dominant lattice artefacts to be linear in

a2 (we remind the reader that a3 corrections of the fermionic action are forbidden by chiral

symmetry2). Before the continuum extrapolation can be performed, a renormalisation

step is also necessary: we employ the non-perturbative Rome-Southampton method [22],

as explained in detail in a companion paper [23]. Below we list our strategy to extract the

physical quantities of interest from our lattice simulations:

1. Compute the bare matrix elements, at two values of the lattice spacing and several

values of the quark masses (on already existing RBC-UKQCD ensembles).

2. Renormalise these bare quantities.

3. Interpolate/extrapolate to the physical value of the strange quark mass.

4. Extrapolate to the physical point (Continuum/Chiral extrapolation in the light quark

sector).

Central to this work is an investigation of the extrapolations to the physical point

(details can be found in section 4). In particular we have studied several parametrisations

of the four-quark operator matrix elements. Ideally, one would like to find a dimensionless

quantity which can smoothly be extrapolated to the physical point and be free of large

systematic errors. For the SM matrix element one usually defines the bag parameter

2See the footnote in section 4 about the effects of the residual mass.
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BK as in eq. (1.2): the matrix element of the four-quark operator is normalised by its

Vacuum Saturation Approximation (VSA). This normalisation is widely accepted for the

SM contribution, however this is not the case for the BSM matrix elements, for which

different possibilities have been proposed (see for example [17, 24–26]). We investigate

several strategies which differ by the choice of normalisation and global fit procedure,

allowing us to estimate the systematic uncertainties of our work.

2.1 The ratios Ri

A possible parameterisation of the matrix elements has been proposed in [26]. Denoting by

P the simulated strange-light pseudo-scalar particle (kaon) of mass mP and decay constant

fP , the ratios Ri are defined by

Ri

(

m2
P

f2
P

, µ, a2
)

=

[

f2
K

m2
K

]

Exp.

[

m2
P

f2
P

〈P̄|Oi(µ)|P〉

〈P̄|O1(µ)|P〉

]

Lat.

, (2.1)

such that at the physical point
(

mP = mK , a2 = 0
)

Ri(µ) = Ri

(

m2
K

f2
K

, µ, 0

)

=
〈K̄0|Oi(µ)|K

0〉

〈K̄0|O1(µ)|K0〉
, (2.2)

is the ratio of the BSM matrix element to the SM one. Previous studies have shown that

these ratios are large (∼ O(10)) as the BSM matrix elements are enhanced compared to

the SM one [16, 26, 27] (this is expected from Chiral Perturbation Theory: the SM matrix

element vanishes in the chiral limit whereas the BSM matrix elements remain finite). An

advantage of this method compared to the bag parameters is that the denominators do not

depend on the quark masses. The BSM matrix elements can be reconstructed from the

ratios Ri, the SM bag parameter BK , the kaon mass and decay constant only. Moreover,

since the numerator and the denominator are very similar, one expects some cancellations

of the statistical and systematic errors to occur in the ratio.

2.2 The bag parameters Bi

The renormalised bag parameters are defined as the ratio of the weak matrix elements

normalised by their VSA values:

Bi(µ) =
〈K̄0|Oi(µ)|K

0〉

〈K̄0|Oi(µ)|K0〉VSA

. (2.3)

For the SM bag parameter B1(µ) = BK(µ) with our conventions,

〈K̄0|O1(µ)|K
0〉 =

8

3
m2

Kf2
KB1(µ) , (2.4)

and for the BSM ones,3

〈K̄0|Oi(µ)|K
0〉 = Ni

m4
Kf2

K

(ms(µ) +md(µ))2
Bi(µ) , i > 1 . (2.5)

3More precisely, the BSM matrix elements are normalised by a large N approximation of the VSA, see

for example the discussion in [13].
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The factors Ni>1 depend on the basis, as we work in the SUSY basis we have Ni>1 =
{

−5
3 ,

1
3 , 2,

2
3

}

.

For the SM bag parameter BK , the denominator consists of the precisely known quan-

tities fK and mK . This contrasts with the BSM Bi, for which the denominator is not

uniquely defined, it depends on the scheme and the renormalisation scale.

2.3 The combinations Gij

Another possibility, advocated for example in [17, 25] is to define products and ratios of bag

parameters such that the leading chiral logarithms cancel out. For some of these quantities

(called “golden combinations”), this cancellation actually occurs at every order of the chiral

expansion. For the other ones (“silver combinations”), only the leading logarithms cancel.

Such quantities were introduced in [25] for SU(3) chiral perturbation theory and later in the

context of SU(2) staggered chiral perturbation theory in [28]. The relevant NLO continuum

SU(2) chiral expansions can be found in appendix C. We follow [17] and define4

G21(µ) =
B2(µ)

BK(µ)
, G23(µ) =

B2(µ)

B3(µ)
,

G24(µ) = B2(µ)B4(µ) , G45(µ) =
B4(µ)

B5(µ)
.

(2.6)

As can be seen in the appendix C, the quantities G23 and G45 have no chiral logarithms,

whereas in G21, G24 the cancellation only occurs for the leading logarithms.

2.4 Continuum and chiral fitting strategies

We start by adjusting our (renormalised) results to the physical strange mass. On the

coarse lattice we perform a linear interpolation whereas a tiny extrapolation is necessary

on the fine one (the numerical values are given in the next section). Then we perform a

combined chiral-continuum extrapolation to the physical point. In order obtain a reliable

estimate of our systematic error we follow three different strategies:

• Method A. We perform a global fit according to NLO SU(2) chiral perturbation

theory (see appendix C). The general form of the fit function we use is (we drop the

renormalisation scale dependence µ for clarity)

Yi(m
2
P , a

2) = Yi(m
2
π, 0)

[

1 + αia
2 +

m2
P

f2

(

βi +
Ci

16π2
log

(

m2
P

Λ2

))]

. (2.7)

Where in this expression mP is the mass of the pseudoscalar meson made of two light

quarks and f the corresponding decay constant. The values Yi, αi and βi are free

parameters and fit simultaneously between ensembles of different lattice spacings. Λ

is an energy scale which makes the argument of the chiral logarithm dimensionless (its

numerical value does not matter as it can absorbed in βi). The values for Ci are listed

in table 1 below. We have checked that for f , using the chiral value, the physical

4Within our conventions, these definitions match the ones of [17], except for G23. This is discussed in

section 4.
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R2,3 R4,5 B1,2,3 B4,5

Ci
3
2

5
2 −1

2
1
2

Table 1. Chiral logarithm factors Ci for Ri and the Bi.

value or the simulated value fP give compatible results. The numerical values given

in this paper are for f = fP . We apply this procedure to the ratios Ri and to the

bag parameters Bi.

• Method B. We perform a continuum/chiral extrapolation of Ri and Bi using a global

fit procedure according to the following Ansatz (κi and δi are free parameters simul-

taneously fit between ensembles)

Yi

(

m2
P , a

2
)

= Yi(m
2
π, 0) + κia

2 + δim
2
P . (2.8)

• Method C. We first extrapolate the combinations Gij according to Method B (linearly

in the pion mass squared), and then reconstruct the bag parameters.

Methods A and B are equivalent up to the chiral logarithm terms, the difference allows

us to estimate how strong the chiral effects from being at non-physical pion mass are. The

corresponding analysis is presented in great detail in section 4. Method C allows us to

determine the bag parameters with no leading chiral logarithm, except from the standard

model one, whose effect is benign (as explained in section 4). Furthermore, the quantities

Gij have different statistical and systematic errors. Performing the analysis using different

quantities and extrapolation methods allows us to check the consistency of our final results

and ensure our systematics are understood. The results for Method C are presented in

appendix F.

3 Lattice implementation

Our measurements are performed on nf = 2 + 1 gauge ensembles generated by RBC-

UKQCD using the Iwasaki gauge action [29, 30] and the Shamir DWF formulation [31].

These ensembles have been described extensively in [32] and references therein.

The finer of the two lattices used in this study has a lattice volume of 323 × 64 ×

16 with inverse lattice spacing a−1 = 2.383(9)GeV. There are three values of light sea

quark masses amsea
ud = 0.004, 0.006, and 0.008, corresponding to unquenched pion masses

of approximately 300, 360, and 410MeV respectively. For the light valence quarks we

use only unquenched data, amval
ud = amsea

ud . The simulated strange quark mass for this

ensemble is amsea
s = 0.03. To reach the physical kaon mass we extrapolate using unitary

(amval
s = amsea

s = 0.03) and partially quenched (amval
s = 0.025) data, which is close to its

physical value of 0.02477(18) [5].

The coarser lattice has an extent of 243 × 64 × 16, and inverse lattice spacing a−1 =

1.785(5) GeV. There are three values of light sea quark mass used in the simulations,

amsea
ud = 0.005, 0.01 and 0.02 (we drop the heaviest of these in the chiral extrapolations).

– 7 –
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Volume a−1 [GeV] amsea
ud (= amval

ud ) mπ [MeV] amsea
s amval

s amphys
s

243 × 64× 16 1.785(5) 0.005, 0.01, 0.02 340, 430, (560) 0.04 0.04,0.035, 0.03 0.03224(18)

323 × 64× 16 2.383(9) 0.004, 0.006, 0.008 300, 360, 410 0.03 0.03, 0.025 0.02477(18)

Table 2. Summary of our lattice ensembles. The heaviest mass of the coarse ensemble is not used

in the chiral extrapolations. For the coarse lattice, we use 155, 152 and 146 configurations for the

am = 0.005, 0.01 and 0.02 ensembles respectively. For the fine lattice, we use 129, 186 and 208

configurations for the am = 0.004, 0.006 and 0.008 ensembles respectively. The 560MeV pion-mass

ensemble on the 244 is deemed too heavy for use in the chiral extrapolations and is only shown in

the plots for illustration purposes.

We again use only unquenched light valence quarks, corresponding to pion masses of ap-

proximately 340 and 430MeV. The simulated strange quark mass for the ensemble is

amsea
s = 0.04, while the physical value has been determined to be amphys

s = 0.03224(18).

As with the fine ensemble, we interpolate between unitary (amval
s = amsea

s = 0.04) and

partially-quenched (amval
s = 0.035, 0.03) data to the physical kaon mass. The parameters

for these ensembles are summarised in table 2.

3.1 Correlation functions

We have used Coulomb gauge fixed wall-source propagators, which allow for much greater

statistical resolution at similar cost to a point-source propagator inversion and should have

better overlap of the ground state. The fine ensemble results were generated as part of the

calculation of BK in [4]. The coarse ensemble configurations were first Coulomb gauge fixed

using the time-slice by time-slice FASD algorithm of [33] (to an accuracy of Θ < 10−14).

Working in Euclidean space, we define the two-point functions,

cs1s2O1O2
(t, ti) =

∑

x

〈Os1
1 (x, t)Os2

2 (0, ti)
†〉 , (3.1)

where Oi represents a bilinear operator. For the present analysis we only consider flavour

non-singlet operators with two different Dirac structures: either P the pseudo-scalar density,

or A0 the temporal component of the local axial current. The superscripts (si) denote the

source type, either (L)ocal or (W)all source. The two-point functions are fit to their

asymptotic form (T is the temporal extent of the lattice):

cs1s2O1O2
(t, ti) −−−−−→

ti≪t≪T
a3N s1s2

O1O2

(

e−mP (t−ti) ± e−mP (T−(t−ti))
)

. (3.2)

Our conventions are such that

a3N s1s2
O1O2

=
1

2amP
a4〈0|Os1

1 |P〉〈P|Os2
2 |0〉, (3.3)

and P = ψ̄1γ5ψ2 (and therefore P̄ = ψ̄2γ5ψ1) denotes a (flavour non-singlet) pseudo-scalar

sate of mass mP .

The corresponding decay constant fP is defined (at finite lattice spacing and zero

momentum) by

〈0|AR
0 |P〉 = mP fP , (3.4)

– 8 –
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and can be extracted from an appropriate ratio of two-point functions. The superscript R

denotes the fact that a finite (re)-normalisation factor is required to connect the local axial

current ALocal
µ = ψ̄1γµγ5ψ2 to the conserved current AR

µ

A
R
µ = ZV A

Local
µ . (3.5)

We prefer to renormalise the axial current with ZV rather than ZA for numerical reasons,

(ZA and ZV should be identical if chiral symetry is exact, however ZV is numerically easier

to extract). In a similar way, the bare matrix elements 〈P̄|Oi|P〉 are determined from

three-point correlation functions where the operator is inserted between two well separated

wall sources,

cWLW
k (tf , t, ti) = 〈(PW (tf ))

†OL
k (t) (P

W (ti))
†〉 . (3.6)

In order to have a better handle on our systematics, we extract the quantities of interest

in different ways (which are in principle equivalent up to lattice artifacts). Our key results

are obtained through the ratio of three-point functions (k = 2, . . . , 5) which we fit to a

constant in the asymptotic region:

RLat
k (tf , t, ti) =

cWLW
k (tf , t, ti)

cWLW
1 (tf , t, ti)

−−−−−−−−→
ti≪t≪tf≪T

〈P̄|O∆S=2
k |P〉

〈P̄|O∆S=2
1 |P〉

= RBare
k . (3.7)

We also define the ratios of three-point over two-point functions, which at large times allows

us to obtain the bare BSM bag parameters:

BLat
k (tf , t, ti) =

1

Nk

cWLW
k (tf , t, ti)

cWL
P̄P

(tf , t)c
LW
P P̄

(t, ti)
−−−−−−−−→
ti≪t≪tf≪T

1

Nk

〈P̄|O∆S=2
k |P〉

〈P̄|P|0〉〈0|P|P〉
= BBare

k , k > 1 .

(3.8)

We show some examples of plateaux in figures 2 and 3. The simulated time extent is

T/a = 64 on both lattices, but for the fine lattice we implement the Periodic ± Anti-

periodic trick which is designed to reduce the round the world artifacts. Effectively this

trick doubles the number of accessible points [34] (see also the discussion in [32]). Although

the signal obtained from the coarse lattice time slice per time slice is different from the one

of the fine lattice, the precision obtained on the ratio RLat
k (by a correlated fit) is of the

same order.

3.2 Non-Perturbative Renormalisation (NPR)

Once the bare matrix elements have been obtained, they need to be renormalised in order

to have a well-defined continuum limit. We opt for the framework which is now standard

within the RBC-UKQCD collaboration: the non-perturbative Rome-Southampton renor-

malisation method [22], with non-exceptional kinematics (we use the symmetric RI-SMOM

schemes) [35], momentum sources [36] and twisted boundary conditions [37–39]. Similarly

to what was done for BK and K → ππ, we define two schemes: the RI-SMOM-(γµ, γµ)

and RI-SMOM-(/q, /q) schemes5 (we drop the “RI” in the following). We refer to these

schemes as “intermediate schemes”. Our final results are the ones given in these SMOM

5The running of the relevant operators in the RI-SMOM-(γµ, γµ) scheme has been discussed in [40].
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Figure 2. Example of the plateau for RLat

i (T, t, 0) as a function of the operator insertion time t/a.

We show our results for the lightest kaon mass on our coarse lattice.

schemes; however the matrix elements of interest are conventionally given in a MS scheme

at a reference scale of 2 or 3GeV. Although the computation of the bare matrix elements

and of the renormalisation factors is done non-perturbatively, this matching step involves

(continuum) perturbation theory. MS results obtained via different intermediate schemes

should be consistent, up to higher-order PT matching corrections (and lattice artifacts if

the resutls are given at finite lattice spacing). The use of multiple intermediate schemes

allows one to gain a better handle on these uncertainties.6

We also implement the original RI-MOM scheme [22], however we find that the results

are not consistent with the SMOM ones. As shown in detail in the companion paper [23], we

find that the RI-MOM Z-matrices exhibit large violations of the block diagonal structure

expected from the chiral-flavour properties of the four-quark operators. This seems to be

6We thank Christoph Lehner for computing the matching factor of the (6, 6̄) operators, the details will

be given in [23].
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Figure 3. Same as the previous figures but for our fine lattice.

due to important infrared artefacts which go as inverse powers of the quark mass. These

pole “contaminations” require a hard subtraction and render results significantly more

unreliable than their SMOM counterparts. This is indicated in table 6 by the discrepancies

of the RI-MOM scheme results with the SMOM ones and with the ones obtained by the

SWME collaboration, whose (1-loop) perturbative matching is free from IR contamination

(see [19, 20]). We do not advocate the use of these RI-MOM results, indeed we show

that this choice of intermediate scheme is probably the cause of the disagreement observed

between different collaborations.

Another advantage of the SMOM schemes is that the perturbative matching factors

connecting them to the MS scheme are much closer to the identity matrix. This suggests

a better behaved perturbative series with less matching uncertainty than for the MOM

case, which would demand a higher matching scale. Referring again to table 6, the close

compatibility of the SMOM-(γµ, γµ) and (/q, /q) results provides strong evidence that the

matching uncertainty for the SMOM schemes is negligible within our error budget.
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4 Results at the physical point and discussions

We report here our main results for the ratios Ri, the bag parameters Bi and the combi-

nations Gij . We consider the main results of this work to be the ratios Ri, because at the

physical point they directly provide the ratio of the BSM matrix element to the SM one.

They do not depend on the quark masses, nor on our ability to renormalise the pseudo-

scalar density as the bag parameters and some of the combinations Gij do. The results for

the bag parameters extracted from the combinations Gij (Method C) are reported in ap-

pendix F. We also compute the matrix elements 〈K̄0|Oi|K
0〉 using the different strategies.

The quality of the fits can be judged from the χ2 reported in appendix A, table 9.

4.1 The ratios Ri

In figure 4, we show the results using the combined continuum-chiral fits discussed in

section 2, both Method A and Method B in the non-exceptional SMOM-(γµ, γµ) scheme.

We show all of our results in this scheme, however we note that the SMOM-(/q, /q) scheme

gives very similar results. The RI-MOM results have already been presented in [15, 41],

they are just reported for comparison with previous work. In the figures, the dashed line

represents the chiral extrapolation performed linearly in m2
P (the pion mass squared) at

fixed lattice spacing and the a2 → 0 extrapolation is shown as a solid black line. The

magenta lines represent the one-sigma band of the Method A fit, in which we take the

leading chiral logarithms into account. The physical results obtained by this method are

the filled circles.

We note that the fit quality is very good with chi-square per degree-of-freedom (χ2/

d.o.f) of order one or less as shown in table 9 of appendix A. We also note that although

the ratios Ri have the largest coefficients for the chiral logarithms, the effect of these terms

is mild and the difference between the linear fit in m2
P and the chiral one is at most of

the order of a few per cent. The fits for Method A and Method B show similar quality as

indicated by by their χ2/d.o.f , hence we do not see significant curvature. We take the fact

that the fit quality for Method A is good as an indication that NLO Chiral Perturbation

Theory is a decent description of the mass dependence of our data, this is our choice for

our central values. We use the difference of the results obtained from Methods A and B

to estimate the effects of the chiral logarithms. As shown in the plots, the two methods

give very close results. This might be because the ensembles we have used are at relatively

heavy pion mass. However we give another argument below based on Method C, to justify

that the chiral extrapolations to the physical quark masses are well under control, and that

the chiral extrapolation effect is one of the most benign compared to the other systematics

in this calculation.

For some of these quantities we see significant cut-off effects, especially R5 which

requires an extrapolation of the order of 15% from the fine ensemble’s data to reach a2 = 0.

We observe that this is largely due to the 3-GeV renormalisation factors (for this quantity

our estimate for the discretisation error is almost a factor two smaller at 2GeV). From

figure 4 it is interesting to note that as we approach the continuum limit R2, R4 and R5

of our BSM matrix elements are larger (in magnitude) than we previously determined just
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Figure 4. Continuum/chiral extrapolation Methods A and B of the ratio Ri in the SUSY basis

and renormalised in the (γµ, γµ)-scheme. The conventions here and in the following plots are: red

squares are the fine lattice data points, the blue squares the coarse ones. Open symbols represent a

point which was omitted in the fit procedure. All the points have been interpolated/extrapolated

to the corresponding physical strange quark mass. The magenta curves show the one-sigma region

of the chiral fit and the solid point is its chiral-continuum value. The black line is the linear fit

at a2 = 0. We keep the relative scale constant for the vertical axis (around fifty percent of the

extrapolated value).

from our fine ensemble’s data in [15]. As other previous studies have noted, the BSM

matrix elements are an order of magnitude larger than the SM one.

4.2 The bag parameters Bi

The combined chiral-continuum plots for the Bi are shown in figure 5 using the same

conventions as in the previous section. We show our results again for the (γµ, γµ) scheme.

We observe that the fit quality is a bit worse for the Bi compared to the Ri with χ2/d.o.f

ranging between 0.4 to 1.9 (table 9). We also note that while the effect of chiral logarithms

is almost invisible, the discretisation effects are larger than anticipated for two of these

quantities B3 and B5: we observe a deviation of more than 10% between the fine ensemble

and the a2 → 0 extrapolation.
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Figure 5. Continuum/chiral extrapolation of the bag parameters renormalised at µ = 3 GeV.

Results are renormalised in the (γµ, γµ)-scheme. The absolute scale on the vertical axis is kept

constant.

4.3 The combinations Gij

Figure 6 shows the results obtained in the (γµ, γµ) scheme, using the same conventions as

in the previous figures. Firstly, we see that there is no noticeable chiral curvature which

is unsurprising as these quantities were designed for this purpose. We observe that the

combinations Gij can be numerically very different. For G23 and G45, we find a rather

good χ2/d.o.f , a linear behaviour in m2
P (with a very small slope), however the lattice

artefacts for G45 are clearly visible (with again a difference of order 10% between the fine

lattice and the extrapolated value). We have also computed an alternative combination,

G̃23, in order to compare our results with the SWME collaboration. Similarly to G23, it is

defined as the ratio of the two bag parameters B2 and B3, but computed in a different basis,

the one introduced by Buras, Misiak, and Urban in [42]. We call this basis the “BMU basis”

in the following. This is also the choice of the SWME collaboration, therefore what we call

G̃23 here is called G23 in [17] and [19]. Only B3 differs between the two sets of operators.

Within our convention the operator O3 is defined as the colour partner of O2, whereas

in the BMU basis, it is purely a “tensor-tensor” operator. Although in principle the two

definitions are equivalent (thanks to Fierz theorem), the cutoff effects can be very different.

Indeed we observe that the sign of the a2 coefficient of two-colour partner operators are
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identical: positive for B2, B3 and negative for B4, B5. This results in some cancellation of

these artefact in the ratio G23 (whereas in G45, the cutoff effects are completely dominated

by B5 and taking the ratio does improve very much from that point of view). We now turn

to G̃23, which reads in terms of bag parameters

G̃23 = GBMU
23 =

BBMU
2

BBMU
3

=
3B2

5B2 − 2B3
, (4.1)

where B2 and B3 refer to the SUSY basis. In this peculiar combination, the cutoff-effects

do not cancel, but on the contrary they add up, as illustrated in figure 7. We note that

the authors of [19] also found this combination difficult to fit. The fit of the product

G24 is very reasonable with a χ2/d.o.f of around 1.4, the pion mass dependence is very

mild, and there is clearly an important cancellation of the lattice artefacts in the product

as the a2 coefficients have a different sign. However, we believe that this cancellation is

purely accidental. We find that the ratio G21 is much more difficult to fit, with a χ2/d.o.f

of order seven. The difficulty comes mainly from the coarse ensemble, where the results

seem to fluctuate around a constant value of the mass. This effect could be due to some

unfortunate statistical fluctuation or lattice artefact and need to investigated further in the

future. This is rather unfortunate because the quantity G21 is needed to reconstruct the bag

parameters from the Gij . Therefore in appendix F, we propose alternative combinations

of bag parameters, which improve the determination of B4 and B5 (with respect to the

combinations Gij used in this section). In the same appendix F, we compare the results

for the bag parameters extrapolated directly (Methods A and B), to the ones extracted

from the combinations Gij . We find that the combinations G do not provide more precise

results (within our sytematic error budget) except for one quantity, B3 (if G23 is computed

in the SUSY basis).

Finally, we point out that one could also first perform a continuum extrapolation of

the bag parameters in the range of simulated pion mass, then compute the combinations

Gij and finally perform the chiral extrapolation. We leave this for future investigations.

4.4 Error budget

Our central results are the BSM quantities non-perturbatively renormalised through the

SMOM-(γµ, γµ) and (/q, /q) schemes, given in tables 3 and 4. For these quantities, we have

identified two main sources of systematic error: discretisation effects and chiral extrapola-

tion to the physical pion mass. We have illustrated that some of our results have larger than

expected O(a2) lattice artefacts; since we have only two lattice spacings, we take half the

difference between the fine ensemble’s result (at the physical pion mass) and the continuum

extrapolation’s result as an estimate of a potential curvature due to O(a4) artefacts.7

In the future, it will be crucial to include a third lattice spacing to reduce (or eliminate)

this error and check that these quantities approach their continuum values linearly in a2.

7Exact chiral symmetry would guarantee the absence of O(a) and O(a3) artefacts. Strictly speaking with

Domain-Wall fermions there could be O(amres) and O((amres)
3) terms, however all our numerical studies

show that these terms are numerically irrelevant, if not absent, as expected from naive power counting.
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Figure 6. Continuum/Chiral extrapolation of the combinations Gij renormalised at µ = 3GeV in

the (γµ, γµ) scheme.
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Figure 7. Alternative definition for one for the combinations, G̃23 = B2/B3 where B2 and B3 are

computed in the BMU basis. The discretisation effects are enhanced in the ratio, illustrating the

fact the size of the cutoff effects depends on the choice of basis, see the discussion in the text.
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Scheme R2 R3 R4 R5 B1 B2 B3 B4 B5 G21 G23 G24 G45

(γµ, γµ)

central −19.11 5.76 40.12 11.13 0.523 0.526 0.774 0.940 0.786 1.005 0.664 0.502 1.175

Stat. 2.2% 2.5% 2.1% 1.9% 1.7% 1.5% 1.9% 1.2% 1.2% 1.3% 0.3% 2.5% 0.6%

Discr. 1.0% 2.5% 4.1% 7.1% 1.3% 3.4% 8.4% 1.1% 4.8% 4.6% 3.2% 2.0% 4.8%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.3% 0.4% 0.4% 0.4% — — — —

Total∗ 2.8% 3.8% 5.1% 7.7% 2.2% 3.8% 8.6% 1.7% 5.0% 4.7% 3.2% 3.2% 4.8%

(/q, /q)

central −20.31 6.12 42.74 10.68 0.541 0.523 0.770 0.937 0.708 0.967 0.664 0.498 1.296

Stat. 2.3% 2.5% 2.1% 1.9% 1.8% 1.5% 1.9% 1.2% 1.2% 1.3% 0.3% 2.6% 0.6%

Discr. 0.8% 2.9% 4.0% 7.3% 1.0% 3.5% 8.5% 1.1% 5.3% 4.3% 3.2% 2.1% 5.6%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Total∗ 2.7% 4.0% 5.0% 7.9% 2.1% 3.9% 8.8% 1.7% 5.5% 4.5% 3.2% 3.3% 5.6%

MS← SMOM

central −19.48 6.08 43.11 10.99 0.525 0.488 0.743 0.920 0.707 0.930 0.642 0.456 1.278

Stat. 2.3% 2.5% 2.1% 1.9% 1.7% 1.5% 1.9% 1.3% 1.2% 1.3% 0.3% 2.5% 0.6%

Discr. 1.0% 2.7% 4.1% 7.1% 1.3% 3.4% 8.6% 1.0% 4.9% 4.5% 3.4% 2.0% 4.8%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

PT 2.2% 2.3% 2.6% 2.9% 2.1% 0.9% 1.0% 1.4% 3.9% 2.3% 1.4% 1.7% 4.1%

Total 3.5% 4.5% 5.7% 8.2% 3.0% 3.9% 8.9% 2.2% 6.3% 5.2% 3.6% 3.6% 6.4%

RI-MOM

central −15.77 5.39 30.75 7.24 0.517 0.571 0.950 0.947 0.677 1.105 0.590 0.549 1.266

Stat. 2.1% 2.4% 1.9% 1.6% 1.7% 1.3% 1.7% 1.1% 1.2% 1.2% 0.4% 1.9% 1.4%

Discr. 3.6% 1.2% 6.7% 12% 1.7% 1.0% 5.1% 5.2% 12% 0.5% 4.6% 6.3% 14%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Total∗ 4.3% 3.0% 7.3% 13% 2.5% 1.7% 5.4% 5.3% 12% 1.3% 4.6% 6.5% 14%

MS← RI-MOM

central −16.44 5.31 34.56 8.50 0.526 0.417 0.655 0.745 0.555 0.793 0.621 0.316 1.267

Stat. 2.2% 2.5% 2.0% 1.7% 1.7% 1.4% 1.8% 1.1% 1.1% 1.2% 0.4% 2.1% 1.0%

Discr. 2.4% 2.5% 5.5% 10.2% 1.7% 0.4% 6.8% 3.7% 9.5% 2.0% 4.5% 3.7% 9.9%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Table 3. Central values and error budget for our final results renormalised at µ = 3GeV. Note that for our non-perturbatively renormalised results

in the SMOM-(γµ, γµ) and (/q, /q) scheme, the error Total∗ does not include any perturbative uncertainty (PT). We also show the error budget for

our MS results where only SMOM-schemes have been considered. The central value is obtained using SMOM-(γµ, γµ) as intermediate scheme. For

illustration, in the second part of the table, we give the error budget if we only use the RI-MOM scheme. See text for details.
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Scheme R2 R3 R4 R5 B1 B2 B3 B4 B5 G21 G23 G24 G45

(γµ, γµ)

central −15.77 4.88 30.68 8.27 0.533 0.563 0.866 0.922 0.736 1.057 0.647 0.527 1.240

Stat. 2.3% 2.4% 2.1% 2.0% 1.7% 1.5% 1.7% 1.3% 1.3% 1.3% 0.4% 2.5% 0.6%

Discr. 0.6% 1.1% 2.9% 4.4% 1.3% 2.2% 4.1% 0.8% 2.5% 3.3% 1.5% 1.1% 1.8%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Total∗ 2.7% 2.9% 4.2% 5.4% 2.2% 2.6% 4.4% 1.6% 2.9% 3.5% 1.5% 2.7% 1.9%

(/q, /q)

central −17.19 5.30 33.43 7.79 0.565 0.561 0.862 0.920 0.635 0.994 0.648 0.524 1.434

Stat. 2.3% 2.4% 2.1% 2.0% 1.7% 1.5% 1.7% 1.3% 1.3% 1.3% 0.4% 2.5% 0.6%

Discr. 0.6% 1.1% 2.9% 4.5% 1.3% 2.3% 4.2% 0.8% 2.6% 3.4% 1.5% 1.2% 2.0%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Total∗ 2.7% 2.9% 4.2% 5.4% 2.2% 2.7% 4.6% 1.5% 2.9% 3.6% 1.6% 2.8% 2.1%

MS← SMOM

central −16.14 5.20 33.45 8.15 0.536 0.509 0.816 0.888 0.640 0.950 0.621 0.459 1.373

Stat. 2.3% 2.4% 2.1% 2.0% 1.7% 1.5% 1.7% 1.3% 1.3% 1.3% 0.4% 2.5% 0.6%

Discr. 0.6% 1.1% 2.9% 4.5% 1.3% 2.1% 4.1% 0.8% 2.5% 3.2% 1.6% 1.0% 1.9%

Chiral 1.3% 1.3% 2.2% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

PT 3.9% 3.9% 4.2% 4.6% 4.3% 2.1% 2.2% 2.5% 6.2% 4.8% 3.1% 3.3% 6.7%

Total 4.7% 4.9% 5.9% 7.1% 4.8% 3.4% 5.0% 2.9% 6.8% 5.9% 3.5% 4.2% 7.0%

RI-MOM

central −14.16 5.00 26.24 5.62 0.530 0.536 0.940 0.841 0.529 1.010 0.572 0.448 1.555

Stat. 1.9% 2.1% 1.8% 1.7% 1.7% 1.2% 1.5% 1.0% 1.3% 1.1% 0.5% 1.6% 1.1%

Discr. 6.1% 4.3% 8.7% 10.8% 1.7% 4.3% 2.3% 7.6% 10.0% 2.9% 2.2% 10.7% 3.3%

Chiral 1.3% 1.3% 2.3% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Total∗ 6.5% 4.9% 9.1% 11.2% 2.4% 4.5% 2.8% 7.7% 10.1% 3.1% 2.2% 10.8% 3.5%

MS← RI-MOM

central −15.80 5.20 32.21 7.41 0.541 0.423 0.693 0.731 0.497 0.782 0.613 0.308 1.448

Stat. 1.9% 2.1% 1.8% 1.7% 1.7% 1.2% 1.5% 1.0% 1.2% 1.1% 0.5% 1.6% 0.8%

Discr. 6.1% 4.3% 8.7% 10.2% 1.7% 4.5% 2.5% 7.7% 9.4% 3.1% 2.2% 10.9% 2.4%

Chiral 1.3% 1.3% 2.3% 2.2% 0.4% 0.4% 0.4% 0.4% 0.4% — — — —

Table 4. Same as table 3 for our µ = 2GeV results.
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Our chiral extrapolations are well under control, as illustrated in figures 4 and 5. We

find that both a chiral perturbation theory prediction (Method A) and a linear Ansatz

(Method B) in m2
P give very good χ2/d.o.f . We take half the difference between these to

estimate our chiral extrapolation error. We also observe that the results of the bag parame-

ters extrapolated with a chiral fit are very similar to those obtained from the combinations

Gij (Method C), see appendix F. Since the combinations Gij are free from leading chiral

logarithms we conclude that the chiral extrapolation to the physical quark masses are well

under control. In the future, we plan to perform the computation at physical values of the

light quark mass [5] and therefore eliminate this error.

Our simulations are performed at a single value of the sea strange quark mass, which

is slightly different from its physical value, and a small interpolation/extrapolation is nec-

essary to reach the physical strange. This is done by changing the value of the strange

quark mass in the valence sector only and therefore this procedure introduces a systematic

error due to partial quenching. This error is hard to quantify, however we believe it to be

negligible with respect to the other uncertainties and did not include it our error budget.

In tables 3 and 4, we give the breakdown of our error budget. For our main results,

the ratios Ri renormalised in SMOM-(γµ, γµ) and (/q, /q) schemes at µ = 3GeV, we give

the statistical errors together with our estimate of the discretisation and chiral errors. We

emphasise that these quantities are completely non-perturbative. We determine R2 and

R3 with a precision better than 5%, whereas R4 and R5 have an error of 5% and 8%

respectively. The latter are largely dominated by the discretisation errors, therefore we

expect an important improvement with the future inclusion of a third lattice spacing in

our analysis.

We have also converted our results to MS; since this matching is done in perturbation

theory, there is an uncertainty due to the truncation of the perturbative series, in this case

of order O(α2
s). We estimate this error by taking the difference:

δPTi (µ) =

∣

∣

∣

∣

R
MS←(γµ,γµ)
i (µ)−R

MS←(/q,/q)

i (µ)

∣

∣

∣

∣

1
2

(

R
MS←(γµ,γµ)
i (µ) +R

MS←(/q,/q)

i (µ)

) . (4.2)

In tables 3 and 4, this error refers to as “PT” (Perturbation Theory). Although the

conversion can be done in the continuum limit, we checked that the applying the conversion

to MS on the data before continuum/chiral extrapolation give the same results as if we

apply it in the continuum (the difference is smaller than our statistical errors). In table 3,

these results are denoted by (MS ← SMOM). We observe that the matching has very

little effect on the central values and on the error budget (except of course that there is

a perturbative error in addition). For the central value and the errors given in tables 3

and 4, we quote the results obtained using SMOM-(γµ, γµ) as an intermediate scheme.8

8If we use the SMOM-(/q, /q) as an intermediate scheme, the results are very close and the error budget

almost identical, therefore we do not repeat it here. The interested reader can find the corresponding central

values in table 5.
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The effect of the intermediate SMOM scheme is less than 3% for µ = 3GeV and 4–5%

for µ = 2GeV. Regarding the total error, we find that all together, after conversion to MS,

the µ = 2GeV results are of the same size as the 3GeV ones. (Although we also note

that in general if we lower the scale, the perturbative errors increase and the discretisation

errors decrease, as expected).

We also give the error budget for the bag parameters B and their combinations G.

Not surprisingly, we also find that the discretisation effects are larger than anticipated.

In particular for the quantities B3 and B5 we quote an error of ∼ 8% and ∼ 5% at

µ = 3GeV. Clearly these errors come mainly from the NPR procedure as we observe a

reduction of a factor two when we lower the scale to µ = 2GeV. However, as for the

ratios Ri, the perturbative errors increase if we lower the scale and — apart from B3

— we observe that the µ = 2 and µ = 3 results have similar total uncertainty, after

conversion to MS. We expect the systematic uncertainty associated with the discretisation

effects to drop drastically in the future with the inclusion of a third (finer) lattice spacing.

The µ = 3GeV results should then have have significantly reduced systematic errors in

comparison to results renormalised at µ = 2 GeV.

4.5 Final results and comparison with previous works

We report our final results for the ratios R, the bag parameters B and the combinations

G in table 5. The first error is statistical and the second combines the various systematic

errors. Our main results are those given in the intermediate SMOM-(γµ, γµ) and (/q, /q)

schemes. The RI-MOM results are only given for comparison with previous work. All these

results are purely non-perturbative. The corresponding correlation matrices are given in

appendix G.

For completeness, we also give our results after conversion to MS; in order to keep

track of the intermediate scheme dependence, we denote them by MS ← scheme, where

scheme can be one of the three intermediate schemes. We remind the reader that this

conversion is done in perturbation theory, therefore the systematic errors also include an

estimate of the perturbative error (except for the RI-MOM scheme as we do not find these

results to be reliable). After conversion to MS at µ = 3GeV, one expects the results to be

independent from the intermediate scheme, up to small perturbative corrections. Table 5

shows that upon matching to MS the conversion has very little effect on the ratios for the

non-exceptional schemes. Furthermore we find that the MS ← (γµ, γµ) and MS ← (/q, /q)

are compatible within statistical fluctuations (in the worst case within ∼ 1.5 standard

deviations). This is highly suggestive that the perturbative series for these schemes are

well-behaved at this matching scale.

However, as shown in tables 3, 4 and 5, we observe that our new results using the non-

exceptional schemes differ significantly from the ones renormalised though the RI-MOM

scheme. This could be due to large higher order terms in the perturbative series for the

matching of RI-MOM to MS that we neglect, although at the high matching scale we

use this seems unlikely, which leaves this discrepancy to being some systematic inherent

to the exceptional scheme renormalisation technique itself, such as the subtraction of the

Goldstone pole (absent in the SMOM schemes). We argue below that the non-perturbative
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— R2 R3 R4 R5

(γµ, γµ) — −19.11(43)(31) 5.76(14)(16) 40.12(82)(188) 11.13(21)(83)

(/q, /q) — −20.31(46)(31) 6.12(15)(19) 42.74(88)(195) 10.68(20)(82)

RI-MOM — −15.77(33)(60) 5.39(13)(9) 30.75(59)(217) 7.24(11)(91)

B1 B2 B3 B4 B5

(γµ, γµ) 0.523(9)(7) 0.526(8)(18) 0.774(14)(65) 0.940(12)(11) 0.786(9)(38)

(/q, /q) 0.541(9)(6) 0.523(8)(19) 0.770(14)(66) 0.937(12)(11) 0.708(8)(38)

RI-MOM 0.517(9)(9) 0.571(8)(6) 0.950(17)(49) 0.947(10)(49) 0.677(8)(81)

— G21 G23 G24 G45

(γµ, γµ) — 1.005(13)(46) 0.664(2)(21) 0.502(13)(10) 1.175(6)(56)

(/q, /q) — 0.967(13)(42) 0.664(2)(21) 0.498(13)(10) 1.296(8)(72)

RI-MOM — 1.105(13)(6) 0.590(2)(27) 0.549(11)(34) 1.266(18)(181)

— R2 R3 R4 R5

MS← (γµ, γµ) — −19.48(44)(32)(42) 6.08(15)(18)(14) 43.11(89)(201)(112) 10.99(20)(82)(32)

MS← (/q, /q) — −19.91(45)(30)(43) 6.22(16)(20)(14) 44.25(91)(202)(115) 10.68(20)(82)(31)

MS← RI-MOM — −16.44(36)(44) 5.31(13)(15) 34.56(68)(204) 8.50(14)(89)

B1 B2 B3 B4 B5

MS← (γµ, γµ) 0.525(9)(7)(11) 0.488(7)(17)(4) 0.743(14)(64)(8) 0.920(12)(10)(13) 0.707(8)(35)(27)

MS← (/q, /q) 0.536(9)(6)(11) 0.492(7)(17)(5) 0.751(14)(66)(8) 0.932(12)(17)(13) 0.680(8)(37)(26)

MS← RI-MOM 0.526(9)(9) 0.417(6)(2) 0.655(12)(44) 0.745(9)(28) 0.555(6)(53)

— G21 G23 G24 G45

MS← (γµ, γµ) — 0.930(12)(42)(41) 0.642(2)(22)(26) 0.456(12)(9)(18) 1.278(7)(62)(15)

MS← (/q, /q) — 0.920(12)(40)(40) 0.641(2)(22)(26) 0.467(12)(10)(19) 1.342(8)(76)(16)

MS← RI-MOM — 0.793(10)(16) 0.621(2)(28) 0.316(7)(12) 1.267(12)(125)

Table 5. Final results for Ri, Bi and Gij renormalised at µ = 3GeV. The first error is statistical, the second one is an estimate of the systematic

error (chiral and discretisation errors combined in quadrature). When present, the third one is the perturbative error coming from the matching

to MS. Our best results are the ones obtained through the SMOM-(γµ, γµ) and (/q, /q) schemes. The RI-MOM results are presented here only for

illustration and comparison purposes, we did not attempt to estimate the perturbative error for the MS← RI-MOM case.
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ETM12 ETM15 RBC−UKQCD12 SWME15 This work

nf 2 2 + 1 + 1 2 + 1 2 + 1 2 + 1 2 + 1

interm.
RI-MOM RI-MOM RI-MOM 1-loop RI-SMOM RI-MOM

scheme

B2 0.47(2) 0.46(3)(1) 0.43(5) 0.525(1)(23) 0.488(7)(17) 0.417(6)(2)

B3 0.78(4) 0.79(5)(1) 0.75(9) 0.772(5)(35) 0.743(14)(65) 0.655(12)(44)

B4 0.76(3) 0.78(4)(3) 0.69(7) 0.981(3)(61) 0.920(12)(16) 0.745(9)(28)

B5 0.58(3) 0.49(4)(1) 0.47(6) 0.751(8)(68) 0.707(8)(44) 0.555(6)(53)

Table 6. Comparison of the bag parameters Bi at 3GeV in the SUSY basis in the MS scheme of [42].

When only one error is quoted, it means that the errors have been already combined. If not, the

first errors are statistical and the second systematic. We argue that the renormalisation procedure

is the cause of the disagreement observed for B4 and B5 between the different collaborations and

that it is due to some underestimated systematic errors present in the RI-MOM scheme. For the

RI-SMOM results, we choose the (γµ, γµ) scheme.

renormalisation procedure is the cause of the disagreement between the different collabo-

rations and that it is due to systematic errors inherent in the RI-MOM scheme.

We finalise this section with a comparison of our results with previous measurements

shown in table 6. We report the two most recent results of the ETM collaboration, who

renormalised their results non-perturbatively using the intermediate, exceptional, RI-MOM

scheme. We also compare our results to those of the SWME collaboration, who used 1-loop

continuum perturbation theory. We choose to compare the bag parameters because the

ratios Ri are in general not reported by these collaborations. First, looking at the first

three columns, ETM 12, ETM 15, and RBC-UKQCD 12, we see that the nf = 2 results

are compatible with the nf = 2 + 1 and nf = 2 + 1 + 1 ones (only within ∼ 2.8σ for B5),

suggesting that these quantities do not depend strongly on the number of flavours. However

the values of B4 and B5 quoted by the SWME collaboration differ significantly from the

other determinations. In this work we show that our values of B4 and B5 are compatible

with those of the ETM collaboration if we use the RI-MOM intermediate scheme. However,

if we use an SMOM scheme (as we strongly advocate in this work) our results are then

compatible with the SWME collaboration . The fact that we are compatible with ETM

whilst using the same renormalisation scheme suggests that the scheme dependence we see

is legitimate.

4.6 Matrix elements of the BSM four-quark operators

We end this section with the matrix elements of interest 〈K̄0|Oi|K
0〉. They can be obtained

from the ratios Ri, the bag parameters Bi or the combinations Gij with different source of

systematic errors. We find that the methods give consistent results, but the errors can be

very different. We find that the (6, 6̄) operators are more precise when computed from the

Ri whereas the bags Bi give smaller systematic errors for the the (8, 8) operators. Our best

estimates are given in table 7, where we also convert to MS for the reader’s convenience.

The corresponding correlation matrix is given in table 8. As expected, there are important
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SMOM-(γµ, γµ) MS

〈K̄0|O2|K
0〉 −0.1597(42)stat(34)syst 3.4% −0.1636(43)stat(49)syst(36)PT 4.5%

〈K̄0|O3|K
0〉 0.0482(14)stat(15)syst 4.2% 0.0510(14)stat(20)syst(12)PT 5.3%

〈K̄0|O4|K
0〉 0.3377(42)stat(77)syst 2.6% 0.3781(47)stat(113)syst(48)PT 3.5%

〈K̄0|O5|K
0〉 0.0941(11)stat(49)syst 5.4% 0.0969(12)stat(54)syst(27)PT 6.9%

Table 7. Our best results for the matrix elements of the BSM four-quark operators. The numbers

are given in units of GeV4, in the SMOM-(γµ, γµ) scheme (left) and in MS (right) at µ = 3GeV.

Results are obtained from the ratios Ri for O2,3 and from the bag parameters Bi for O4,5 as

explained in the text. The systematic errors combine the chiral and the discretisation errors, the

percentage error is obtained by adding all the different errors in quadrature.

SMOM-(γµ, γµ) MS

〈K̄0|O3|K
0〉 〈K̄0|O4|K

0〉 〈K̄0|O5|K
0〉 〈K̄0|O3|K

0〉 〈K̄0|O4|K
0〉 〈K̄0|O5|K

0〉

〈K̄0|O2|K
0〉 −0.9950 −0.3400 −0.2762 −0.9902 −0.3384 −0.2763

〈K̄0|O3|K
0〉 0.3210 0.2480 0.3202 0.2466

〈K̄0|O4|K
0〉 0.9016 0.8984

Table 8. Correlation matrix for the matrix elements given in table 7.

correlations between operators of same chirality which have to be taken into account in

phenomenological applications. The non-perturbative results are obtained with a precision

of 5% or better, this is the most precise computation of these matrix elements. The details

of this computation are given in appendix E.

5 Conclusions

We have computed the matrix elements necessary for the study of neutral kaon mixing

beyond the Standard Model. We confirm that the ratio of BSM contribution to SM is of

order O(10), as previous studies have shown and as expected from Chiral Perturbation

Theory. We also find that the colour mixed operators are significantly smaller than their

colour unmixed partners, as one would naively expect from the VSA. However some bag

parameters differ significantly from their VSA (up to a factor 2), showing the importance

of using lattice QCD for such a computation.

This work improves on previous studies in various ways:

• We use a nf = 2+ 1 fermion discretisation that has good chiral-flavour properties at

finite lattice spacing.

• We have extended our previous work with the addition of a second lattice spacing,

allowing us to extrapolate our results to the continuum.
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• The renormalisation is performed non-perturbatively and we have introduced two

new SMOM schemes which use non-exceptional kinematics rather than the previously

used RI-MOM (exceptional) scheme.

• We used different parametrisations of the matrix elements in order to control the

extrapolation to the physical point (extrapolation to the continuum and to physical

values of the quark masses). We show that the choice of parametrisation can affect

the systematic errors in a drastic way (see for example the difference between G23

and G̃23).

We see that our systematics are dominated by the continuum extrapolation. One could

argue that our estimate of the discretisation effects is rather conservative because — in

principle — O(a3) lattice artefacts are absent with chiral fermions. However we believe

that our choice is appropriate because we have only two lattice spacings and we observe

that the lattice artefacts are larger than anticipated. We do not believe an increase in

statistics or simulation at physical pion and strange masses will be as beneficial as a third,

finer lattice spacing.

A very important point of this work comes from the renormalisation. We argue that

discrepancies observed between previous results are due to the choice of intermediate mo-

mentum scheme. We show that if use the RI-MOM scheme we can reproduce the ETMc

results and that the RI-SMOM results are compatible with those of the SWME collabora-

tion. We strongly advocate the use of the non-exceptional schemes defined in this work. We

show in a companion paper that the RI-MOM results rely strongly on a pole-subtraction

procedure which is hard to control, whereas such an infra-red contamination is highly sup-

pressed in the RI-SMOM vertex functions. It is highly desirable that other collaborations

check this statement.
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A χ2/d.o.f for our measurements

In table 9 we give the χ2 per degree-of-freedom of the global fit used in Methods A, B

and C (see section 2). Method A corresponds to fitting the ratios Ri or the bag parameters

Bi using Chiral Perturbation theory (χPT). Method B uses a linear fit in m2
P , where mP is

the simulated pion mass. We find that the fit of the ratios Ri are of very good quality with

– 24 –



J
H
E
P
1
1
(
2
0
1
6
)
0
0
1

Scheme
χPT Linear χPT Linear χPT Linear χPT Linear

R2 R3 R4 R5

(γµ, γµ) 0.45 0.55 0.35 0.43 0.51 0.45 0.45 0.45

(/q, /q) 0.44 0.53 0.34 0.41 0.51 0.44 0.46 0.47

RI-MOM 0.56 0.68 0.39 0.48 0.64 0.63 0.71 0.88

B2 B3 B4 B5

(γµ, γµ) 1.48 1.39 1.72 1.66 0.71 0.55 0.49 0.37

(/q, /q) 1.42 1.40 1.72 1.66 0.71 0.55 0.48 0.36

RI-MOM 1.32 1.29 1.72 1.64 0.71 0.54 0.25 0.18

G21 G23 G24 G45

(γµ, γµ) — 6.86 — 0.97 — 1.37 — 0.09

(/q, /q) — 6.86 — 0.97 — 1.36 — 0.10

RI-MOM — 6.84 — 0.87 — 1.25 — 0.46

Table 9. χ2/d.o.f of the global fits using a chiral fit (χPT) or a linear fit in m2

P . Since the

combinations Gij are designed to cancel (at least) the leading chiral logarithms, we did not perform

a chiral fit on these quantities. The results presented here are for the fits performed on quantities

renormalised in the RI-SMOM and RI-MOM schemes.

ZMS CMS←RI-SMOM ZRI-SMOM scheme

0.92022(26) 1.00414 0.91642(26) (γµ, γµ)

0.94796(34) 0.99112 0.95645(34) (/q, /q)

Table 10. Z/Z2

V factors for the (27, 1) operator O1 at 3GeV on the coarse lattice, a = a24.

a χ2 per-degree-of freedom of order 0.5. The fits for B2 and B3 are a bit worse, although

the χ2 are still reasonable (of order 1.5). It is important to stress that our data do not seem

to prefer either of the method, the effects of the chiral logs are not statistically significant.

We also show the χ2 for the linear fits of the combinations Gij , (Method C). There we find

that G21 is very hard to fit, with a χ2 per degree of freedom of order 6. We can see from

figure 6 that the problem seems to come from the coarse ensemble and could be due to

some lattice artefacts. The other Gij have a much more reasonable χ2.

B Renormalisation factors

We give the Z matrices obtained though the SMOM-(γµ, γµ) and SMOM-(/q, /q) schemes,

together with their conversion to MS in tables 10–15.

C Chiral extrapolations

We only consider physical (unitary) quarks, so mval = msea. We use the following notation

ml = mu = md,

χl = 2B̄χ
0ml.

(C.1)
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ZMS CMS←RI-SMOM ZRI-SMOM scheme




0.9066(14) −0.05376(52)

−0.03801(99) 1.18811(69)





(

1.02973 0.01937

0.01306 1.10237

)





0.8813(14) −0.07249(49)

−0.04493(91) 1.07864(62)



 (γµ, γµ)





0.9635(13) −0.05595(54)

−0.0399(10) 1.26728(103)





(

0.97764 0.01937

0.01306 1.05029

)





0.9866(14) −0.08115(54)

−0.0502(10) 1.20761(97)



 (/q, /q)

Table 11. Z/Z2

V matrices for the (6, 6̄) operators O2 and O3 at µ = 3GeV on the coarse lattice,

a = a24.

ZMS CMS←RI-SMOM ZRI-SMOM scheme




0.9535(19) −0.11307(46)

−0.14099(19) 1.050434(66)





(

1.08781 −0.03152

−0.00253 1.00084

)





0.8725(17) −0.07354(42)

−0.13866(19) 1.049363(66)



 (γµ, γµ)





1.0195(18) −0.13876(41)

−0.14372(20) 1.051161(65)





(

1.02921 −0.01199

−0.00253 1.00084

)





0.9889(17) −0.12259(40)

−0.14110(20) 1.049965(65)



 (/q, /q)

Table 12. Z/Z2

V matrices for the (8, 8) operators O4 and O5 at µ = 3GeV on the coarse lattice,

a = a24.

ZMS CMS←RI-SMOM ZRI-SMOM scheme

0.94526(26) 1.00414 0.94137(26) (γµ, γµ)

0.96999(32) 0.99112 0.97868(32) (/q, /q)

Table 13. Z/Z2

V factors for the (27, 1) operators at 3GeV on the fine lattice, a = a32.

ZMS CMS←RI-SMOM ZRI-SMOM scheme




0.8535(12) −0.02489(35)

0.01553(70) 1.22329(79)





(

1.02973 0.01937

0.01306 1.10237

)





0.8288(11) −0.04505(34)

0.00426(65) 1.11022(72)



 (γµ, γµ)





0.8996(11) −0.02511(39)

0.01719(73) 1.2945(14)





(

0.97764 0.01937

0.01306 1.05029

)





0.9201(12) −0.05011(39)

0.00492(71) 1.2331(13)



 (/q, /q)

Table 14. Z/Z2

V matrices for the (6, 6̄) operators at µ = 3GeV on the fine lattice, a = a32.

ZMS CMS←RI-SMOM ZRI-SMOM scheme




0.8739(16) −0.08782(29)

−0.13909(38) 1.04740(14)





(

1.08781 −0.03152

−0.00253 1.00084

)





0.7994(15) −0.05041(27)

−0.13695(38) 1.04639(14)



 (γµ, γµ)





0.9282(16) −0.10992(50)

−0.14143(42) 1.04908(16)





(

1.02921 −0.01199

−0.00253 1.00084

)





0.9002(15) −0.09459(49)

−0.13903(42) 1.04795(16)



 (/q, /q)

Table 15. Z/Z2

V matrices for the (8, 8) operators at µ = 3GeV on the fine lattice, a = a32.
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such that at leading order (LO)

m2
π = 2B̄0

χml = χl. (C.2)

The parameter B̄ related to the chiral condensate should not be confused with the bag

parameter (noted B in this appendix). We consider kaon SU(2)L × SU(2)R χPT, i.e.

mu = md ≪ ms,ΛQCD. At next to leading order (NLO) we have [25, 28]

m2
K = B̄χms

(

1 +
a

f2
χl

)

,

fK = fχ

(

1 +
b

f2
χl −

3

4

χl

(4πf)2
log

χl

Λ2

)

,

BK = B1 = Bχ
1

(

1 +
c1
f2

χl −
χl

2(4πf)2
log

χl

Λ2

)

.

(C.3)

Denoting the matrix element 〈K̄0|Oi|K
0〉 by 〈Oi〉, we have

〈O1〉 =
8

3
m2

Kf2
KB1 , (C.4)

thus for the Standard Model matrix element, we find

〈O1〉 =
8

3
Bχ
1 B̄

χ2msf
χ2

(

1 +
a+ 2b+ c1

f2
χl − 2

χl

(4πf)2
log

χl

Λ2

)

,

≡ 〈O1〉
χms

(

1 +
A1

f2
χl − 2

χl

(4πf)2
log

χl

Λ2

)

.

(C.5)

We now turn to the BSM operators (Oi>1) in the SUSY basis. They read

〈Oi〉 = NiBi

(

m2
KfK

ms +ml

)2

, N2,...,5 =

{

−
5

3
,
1

3
, 2,

2

3

}

. (C.6)

Rewriting eq. (C.3)

m2
K

ms +ml
= B̄χ

(

1 +
ã

f2
χl

)

. (C.7)

The expansions for the Bag parameters read

Bi = Bi
χ

(

1 +
ci
f2

χl + si
χl

2(4πf)2
log

χl

Λ2

)

. (C.8)

where s2,3 = −1 and s4,5 = 1.

It is then clear that the combinations,

B2

B3
,

B4

B5
,

B2,3

BK
, B4,5BK and B2,3B4,5 (C.9)

have no leading order chiral logarithm.
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For the matrix elements of the operators, we obtain the following expansions:

〈O{2,3}〉 = N{2,3}B
χ
i B̄

χ2
(

1 +
a+ 2b+ c{2,3}

f2
χl − 2

χl

(4πf)2
log

χl

Λ2

)

,

≡ 〈O{2,3}〉
χ

(

1 +
A{2,3}

f2
χl − 2

χl

(4πf)2
log

χl

Λ2

)

,

〈O{4,5}〉 = N{4,5}B
χ
i B̄

χ2
(

1 +
a+ 2b+ c{4,5}

f2
χl −

χl

(4πf)2
log

χl

Λ2

)

,

≡ 〈O{4,5}〉
χ

(

1 +
A{4,5}

f2
χl −

χl

(4πf)2
log

χl

Λ2

)

.

(C.10)

Finally we consider the ratios Ri:

Ri =
〈Oi〉

〈O1〉

m2
K

f2
K

, (C.11)

this gives

R1 =
B̄χms

fχ2

(

1 +
C{2,3}

f2
χl +

3

2

χl

(4πf)2
log

χl

Λ2

)

,

R{2,3} =
〈O{2,3}〉

χ

〈O1〉χ

(

1 +
C{2,3}

f2
χl +

3

2

χl

(4πf)2
log

χl

Λ2

)

,

R{4,5} =
〈O{4,5}〉

χ

〈O1〉χ

(

1 +
C{4,5}

f2
χl +

5

2

χl

(4πf)2
log

χl

Λ2

)

.

(C.12)

We note that the chiral logarithms in R2 and R3 have the same coefficients as in R1. For

completeness, we also give the following expressions:

〈O{2,3}〉

〈O1〉
=

1

ms

〈O{2,3}〉
χ

〈O1〉χ

(

1 +
D{2,3}

f2

)

,

〈O{4,5}〉

〈O1〉
=

1

ms

〈O{4,5}〉
χ

〈O1〉χ

(

1 +
D{4,5}

f2
+

χl

(4πf)2
log

χl

Λ2

)

,

〈O{2,3}〉〈O{4,5}〉

f4
K

=
〈Oχ

{2,3}〉〈O
χ
{4,5}〉

fχ
K

4

(

1 +
(C{2,3} + C{4,5} − 2b)

f2
χl

)

.

(C.13)

D Bare results

Tables 16 and 17 show the fit results for the ratios of bare three-point function as described

in section 3. These quantities are obviously correlated, not only they have been computed

on the same gauge ensembles, but they are normalised by the same quantity. Furthermore

O2 and O3 only differ by their colour structure (and similarly for O4 and O5), hence one

expects them to have similar statistical fluctuations. We find that the correlations depend

very mildly on the quark masses, so we only give the correlation matrices for the lightest

unitary ensembles. The numerical values can be found in tables 18 and 19.

We also observe that the covariance matrices are very similar for the two lattice spac-

ings. We find almost 100% correlation between the colour partners (O2, O3) and (O4, O5).

The remaining correlation coefficients are of order 60–70%.
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amud 0.005 0.010 0.020 0.005 0.010 0.020

ams 〈O2〉/〈O1〉 〈O3〉/〈O1〉

0.030 −17.272(97) −15.836(52) −13.194(35) 4.1889(241) 3.8336(130) 3.1779(86)

0.035 −15.327(83) −14.212(44) −12.094(31) 3.7105(206) 3.4342(110) 2.9081(74)

0.040 −13.782(73) −12.895(38) −11.168(27) 3.3307(180) 3.1105(95) 2.6812(65)

ams 〈O4〉/〈O1〉 〈O5〉/〈O1〉

0.030 32.418(124) 29.079(87) 23.805(51) 10.703(40) 9.6505(279) 7.9879(166)

0.035 28.749(109) 26.081(76) 21.798(45) 9.5504(355) 8.7068(244) 7.3565(145)

0.040 25.826(98) 23.639(68) 20.101(39) 8.6312(319) 7.9374(218) 6.8219(128)

Table 16. Fit results for the ratio of bare matrix elements on the coarse ensembles. The corre-

sponding correlation matrix can be found in the text.

amud 0.004 0.006 0.008 0.004 0.006 0.008

ams 〈O2〉/〈O1〉 〈O3〉/〈O1〉

0.025 −18.947(92) −17.548(62) −16.762(53) 4.6834(237) 4.3303(159) 4.1325(135)

0.030 −16.105(78) −15.096(53) −14.526(46) 3.9713(200) 3.7166(136) 3.5709(118)

ams 〈O4〉/〈O1〉 〈O5〉/〈O1〉

0.025 38.267(185) 35.416(116) 33.398(87) 12.557(59) 11.651(36) 11.033(28)

0.030 32.541(171) 30.371(102) 28.933(75) 10.760(55) 10.065(32) 9.625(24)

Table 17. Same as 16 for the fine ensembles.

〈O3〉/〈O1〉 〈O4〉/〈O1〉 〈O5〉/〈O1〉

〈O2〉/〈O1〉 −0.9947 −0.7008 −0.6906

〈O3〉/〈O1〉 0.6961 0.6861

〈O4〉/〈O1〉 0.9948

Table 18. Correlation matrix for the coarse lattice with ams = 0.04 and amud = 0.005.

〈O3〉/〈O1〉 〈O4〉/〈O1〉 〈O5〉/〈O1〉

〈O2〉/〈O1〉 −0.9821 −0.5683 −0.5653

〈O3〉/〈O1〉 0.5684 0.56451

〈O4〉/〈O1〉 0.9907

Table 19. Same as table 18 for the fine lattice with ams = 0.03 and amud = 0.004.
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from Ri from Bi

〈K̄0|O2|K
0〉 −0.1597(42)stat(34)syst 3.4% −0.1575(24)stat(63)syst 4.3%

〈K̄0|O3|K
0〉 0.0482(14)stat(15)syst 4.2% 0.0464(9)stat(40)syst 8.9%

〈K̄0|O4|K
0〉 0.3354(81)stat(163)syst 5.4% 0.3377(42)stat(77)syst 2.6%

〈K̄0|O5|K
0〉 0.0930(21)stat(70)syst 7.9% 0.0941(11)stat(49)syst 5.4%

Table 20. Four-quark operators Matrix elements in units of GeV4 in the SMOM-(γµ, γµ) scheme

at µ = 3GeV. Results are obtained from the ratios Ri and from the bag parameters Bi. The

systematic errors combine the chiral and the discretisation errors, the percentage error is obtained

by adding statistical and systematic errors in quadrature.

E Matrix elements from Methods A and B

The SM matrix element is computed from B1 = BK :

〈K̄0|O1|K
0〉 =

8

3
B1m

2
Kf2

K . (E.1)

For the BSM matrix elements (i > 1), we can either use the ratios Ri

〈K̄0|Oi|K
0〉 = Ri 〈K̄

0|O1|K
0〉 , (E.2)

or the bag parameters Bi

〈K̄0|Oi|K
0〉 = Ni

m4
Kf2

K

(ms +md)2
Bi . (E.3)

In eqs. (E.1), (E.2) and (E.3), we take mK = 495.6MeV, fK = 156.2MeV. For the value

of BK , we take the results obtained in this work, but we checked that if we use the most

recent value [5], the results are compatible within error and that the error remains the

same. For the quark masses, we take advantage of the precise values quoted in [5], md =

3.162(51)MeV, ms = 87.35(89)MeV for the SMOM-(γµ, γµ) scheme, md = 3.011(50)MeV,

ms = 83.19(87)MeV in the SMOM-(/q, /q) scheme and ms = 81.64(117)MeV and md =

2.997(49)MeV in MS. Our results are reported in tables 20, 21 and 22.

The two methods give very consistent results. We also observe that for O2,3 the ratios

Ri give more precise results, whereas for O4,5, the results obtained from the bag parameters

Bi have smaller error bars. With this choice, we obtain the matrix elements with a precision

of 5% or better.

F Method C: computing Bi from Gij

The results for the quantities Gij given in section 3 have been obtained by a linear extrap-

olation in m2
π. Combining these results with the numerical value of B1, we can can recon-

struct the BSM bag parameters (see 2.6). We observe that the effect of the chiral logarithm

for B1 is negligible within our uncertainties. This has been confirmed by our recent compu-

tation in which physical quark masses are included [5]. Here we find B
(γµ,γµ)
1 = 0.523(11)
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from Ri from Bi

〈K̄0|O2|K
0〉 −0.1756(47)stat(33)syst 3.2% −0.1726(26)stat(70)syst 4.4%

〈K̄0|O3|K
0〉 0.0529(15)stat(18)syst 4.4% 0.0509(10)stat(45)syst 9.0%

〈K̄0|O4|K
0〉 0.3696(89)stat(173)syst 5.3% 0.3715(46)stat(87)syst 2.6%

〈K̄0|O5|K
0〉 0.0924(21)stat(72)syst 8.1% 0.0935(11)stat(54)syst 5.9%

Table 21. Same as the previous table but for the SMOM-(/q, /q) scheme at µ = 3GeV.

from Ri from Bi

〈K̄0|O2|K
0〉 −0.1636(43)stat(49)syst(36)PT 4.5% −0.1671(25)stat(74)syst(8)PT 4.8%

〈K̄0|O3|K
0〉 0.0510(14)stat(20)syst(12)PT 5.3% 0.0509(10)stat(46)syst(4)PT 9.3%

〈K̄0|O4|K
0〉 0.3619(87)stat(191)syst(94)PT 6.4% 0.3781(47)stat(113)syst(48)PT 3.5%

〈K̄0|O5|K
0〉 0.0923(21)stat(72)syst(27)PT 8.7% 0.0969(12)stat(54)syst(27)PT 6.9%

Table 22. Same as the previous tables but the results have been converted to MS at µ = 3GeV.

The third error is the estimate of the error due the perturbative matching and is kept separate from

the other systematic errors. For the percentage error, all the errors have been added in quadrature.

at µ = 3GeV, in complete agreement with our new value B
(γµ,γµ)
1 = 0.517(2). Therefore

the difference between the direct fit of the BSM bag parameters and the bag parameters

reconstructed from the quantities Gij is a direct indicator of the the chiral logarithms

potentially present in the BSM operators. Using eq. (2.6) we find that

B2 = G21BK , B3 =
G21BK

G23
,

B4 =
G24BK

G21
, B5 =

G24BK

G45G21
.

(F.1)

For three of the BSM bag parameters, we implement an alternative strategy, called

Method C ′. We define other combinations of bag parameter (also free of leading chiral

logarithm)

G31 =
B3

BK
, G41 = B4BK , G51 = B5BK . (F.2)

After extrapolation to the physical point, we extract the corresponding B3,4,5 by inverting

the previous system of equations. The results can be found in table 23.

A couple of remarks are in order:

• The difference between the various methods is smaller than our errors (actually

smaller than the statistical error), showing that our chiral extrapolations are well

under control within our precision.

• The direct fit of the bag parameters give more precise results than the reconstruction

from the combinations Gij , with one notable exception: if we reconstruct B3 from
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Method A C C ′

B2 0.526(20) 0.526(26) —

B3 0.774(67) 0.791(47) 0.774(76)

B4 0.940(16) 0.955(51) 0.954(29)

B5 0.786(39) 0.812(58) 0.801(52)

Table 23. Collection of results for the bag parameters using different methods. Results are given

in (γµ, γµ) scheme at 3GeV and the errors combine statistical and systematic.

G23, we obtain B
(γµ,γµ)
3 = 0.791(11)stat(45)syst = 0.791(47)combined . However the

corresponding matrix element is better determined from the ratio R3.

• As mentioned in section 4, we have also computed G̃23 (which is denoted by G23

in [19]), the results are shown in figure 7, We observe that G̃23 exhibit large a
2 lattice

artefacts, see the discussion in section 4. Then B3 can be computed from

B3 =

(

5−
3

G̃23

)

G21B1 . (F.3)

and we find

B3 = 0.767(82) . (F.4)

Not surprisingly, the error quoted here is much larger than the obtained from G23. Indeed,

by changing the basis, the error varies by a factor two.

G Correlations

To provide the correlations between measurements we compute the correlation matrix

from our bootstrapped data. We represent this data visually by a matrix plot for our

various measurement techniques, orange illustrates positive correlation and blue indicates

anti-correlation, the darker the colour the stronger the correlation. Black squares are by

definition 1. The analysis is done with 500 bootstrap samples.

In figure 8 we compare the correlations between the ratios Ri for our two SMOM

schemes. We observe that R2 is strongly anti-correlated with all of the others due to the

difference in sign with the others, this has operator signature SS − PP and most of the

other ratios are strongly correlated with one-another.

We note that the correlations for the (γµ, γµ) and (/q, /q) schemes are very similar, this

is in fact a feature for the other measurements so we will only show the (γµ, γµ) scheme

evaluations for the Bs and Gs.

Similarly to what we found for the correlation between bare ratios, we observe that

the colour partners (R2, R3) and (R4, R5) are almost 100% correlated. (More precisely

anti-correlated in the former case because there is an relative sign in R2 compared so the

other ratios). However the correlation between operators of different chirality is enhanced

compared to the bare rations (∼ 90%). As illustrated in table 24, the correlation matrix
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R2

R3

R4

R5

R2 R3 R4 R5

(a) (γµ, γµ) scheme Ri.

R2

R3

R4

R5

R2 R3 R4 R5

(b) (/q, /q) scheme Ri.

Figure 8. Ratios Ri for our two intermediate SMOM schemes renormalised at µ = 3 GeV, orange

indicates positive correlation and blue anti-correlation, darker colours show a stronger correlation.

These are a visualisation of the data from table 24.

B1

B2

B3

B4

B5

B1 B2 B3 B4 B5

(a) (γµ, γµ) scheme Bi.

G21

G23

G24

G45

G21 G23 G24 G45

(b) (γµ, γµ) scheme Gij .

Figure 9. Correlation matrices in the (γµ, γµ) scheme renormalised at µ = 3 GeV for the bag

parameters Bi and the combinations Gij . This is a visualisation of the data in table 25.

R3 R4 R5

R2 −0.9951 −0.9438 −0.9366

R3 0.9342 0.9216

R4 0.9937

(a) (γµ, γµ) scheme Ri.

R3 R4 R5

R2 −0.9882 −0.9398 −0.9329

R3 0.9338 0.9208

R4 0.9935

(b) (/q, /q) scheme Ri.

Table 24. Correlation matrices for the ratios Ri in our SMOM schemes at µ = 3GeV.
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B2 B3 B4 B5

B1 0.6762 0.6252 0.5961 0.5486

B2 0.9673 0.6356 0.5772

B3 0.5723 0.4974

B4 0.9016

(a) Bi.

G23 G24 G45

G21 −0.1883 −0.0333 0.0512

G23 −0.0325 −0.2834

G24 0.0739

(b) Gij .

Table 25. Correlation matrices for the bag parameters Bi and the combinations Gij at µ = 3GeV.

We only show the SMOM-(γµ, γµ) results because the (/q, /q) ones are almost identical.

does not depend on the renormalisation scheme. Although not shown here, the matching

to MS also has almost no visible effects on the correlations.

For the bag parameters Bi, we observe a similar pattern, however the correlations

between B4 and B5 drops to 90%, see figure 9 and table 25. The correlations between

operators of different chirality are significantly lower than the ones for the ratios Ri, namely

around 50–60%. As expected, the quantities Gij do not exhibit significant correlation.
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