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Abstract: Systems of D3-branes at orientifold singularities can receive non-perturbative

D-brane instanton corrections, inducing field theory operators in the 4d effective theory.

In certain non-chiral examples, these systems have been realized as the infrared endpoint

of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong

gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-

brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral

examples are interesting because the instanton fermion zero mode sector is topologically

protected, and therefore lead to more robust setups. As an application of our results, we

provide a UV completion of certain D-brane orientifold systems recently claimed to produce

conformal field theories with conformal invariance broken only by D-brane instantons.
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1 Introduction

D-brane instantons can generate superpotential contributions to gauge theories on D-

branes, which are forbidden to all orders in perturbation theory by global symmetries [1–3],

see [4, 5] for reviews. These global symmetries, often anomalous, arise from the U(1) factors

inside the U(Ni) groups associated to Ni fractional branes of a given type. The contri-

butions of D-brane instantons are exponentially sensitive to the volume of the cycles they

wrap. There is a vast list of scenarios in which such effects are crucial. Just to mention a
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few, they can generate neutrino masses [1, 2] (see also [6]), Yukawa couplings [7], the µ-term

in SUSY extensions of the Standard Model [8, 9], or be crucial in SUSY breaking [10–12]

or its mediation [13], as well as in rare processes [14–17] (see [4, 5] for reviews of these

and other applications). Achieving these effects typically requires introducing orientifold

projections to remove additional fermion zero modes associated to the otherwise underlying

N = 2 supersymmetry [6, 18, 19] and [4, 5] for reviews.

In some cases, when D-brane instantons sit on top of gauge D-branes, they can be

interpreted as ordinary gauge instantons. In other more general situations, the D-brane

instantons are a consequence of the UV completion of the theory. In other words, restricting

the dynamics to the naive low-energy gauge theory one loses the information about the

possible presence of these D-brane instantons. These two possibilities have led to distinction

between ‘gauge’ and ‘exotic’ D-brane instantons. Interestingly, in some situations, it is

also possible to derive exotic instantons from an alternative, fully gauge theoretic, UV

completion [20], showing that the distinction is to some extent an artifact of the low-energy

truncation. This completion involves a cascade of Seiberg dualities and some non-trivial

IR dynamics of the gauge theories.

By now, there are various explicit examples in the literature for which this has been

achieved [20, 21].1 However, all these examples correspond to theories that, before ori-

entifolding, are non-chiral. This may be problematic in certain applications when these

theories are combined with extra ingredients, which may remove the non-chiral instanton

fermion zero modes, and consequently the insertions of charge matter fields in the instanton

amplitude evaporate. An interesting analysis of the last Seiberg duality transformations,

but not the full cascades, leading to D-brane instantons in some chiral theories has appeared

in [24].

One of the main goals of this article is to construct similar UV completions for chiral

theories.2 This is can be taken as a mere proof of existence, but can be relevant for the

applications mentioned above, in which now the chiral nature of the theory protects the

instanton fermion zero modes, and the presence of charged matter fields in the instanton

induced operator is also protected. Another novel feature of some of the theories we

consider, absent from previous constructions in the literature, is the presence of D-brane

instanton couplings involving flavors.

As an application of the ideas introduced in this paper, we provide a UV duality

cascade completion and gauge theory derivation for the exotic D-brane instantons that

break conformal invariance in the models considered in [25].

This paper is organized as follows. Section 2 contains a lightning review of D-brane

instantons and the field theory couplings they can generate. Section 3 summarizes the

general approach used for finding cascading UV completions of D-brane instantons. In sec-

tion 4 we describe chiral IR theories that can be directly completed in terms of cascades,

which maintain the underlying geometry at which D3-branes are located. We present an

explicit example of this kind based on an orientifold of a Z2 orbifold of the conifold (the

1See also [22, 23] for similar conclusion in different approaches.
2For brevity, in what follows we refer as chiral to theories that are indeed chiral even before orientifolding

or adding flavors.
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F0 theory). In section 5 we consider chiral IR theories that do not correspond directly to

cascading geometries, but can be UV completed in terms of a duality cascade which, upon

complex deformation (confinement in a subset of their nodes) produced the IR theory of

interest. We present an explicit example based on an orientifold of a Z3 orbifold of the SPP

singularity deformed to an orientifold of C3/Z3. Since the earlier examples correspond to

orientifolds by line reflections in the dimer diagram representation of the field theory, sec-

tion 6 briefly discusses models based on orientifold actions corresponding to point reflection

in the dimer diagram. In section 7 we discuss the introduction of flavor D7-branes under

which some of the instanton fermion zero modes are charged, and provide an illustrative

example providing a UV completion of the models argued in [25] to have conformal invari-

ance only broken by D-brane instanton effects. We conclude and discuss future directions

in section 8. Appendix A describes some aspects of the SPP theory and its orientifolds.

2 Superpotential couplings from D-brane instantons

In this section we will quickly review the basic ideas on how gauge theories on stacks

of space-time filling D-branes can be perturbed by superpotential couplings generated by

Euclidean Dp-brane instantons [1–3].3 More detailed techniques will be explained in later

sections as needed.

Let us first consider the extended quiver diagram in figure 1(a), which encodes the

relevant field content for a configuration with D-brane instantons and 4d spacetime filling

gauge D-branes. In this figure, circles correspond to two SU(N) gauge groups in the

quiver living on 4d space-filling branes which, in principle, might contain additional nodes

and chiral fields. The ranks of both nodes need to be equal for a non-vanishing instanton

contribution to exist.4 Xij can correspond to a single bifundamental field or, more generally,

to a product of them of the form Xij = Xik1Xk1k2 . . . Xknj , where intermediate color indices

are summed. The explicit form of Xij is controlled by the geometry of the D-brane instanton

under consideration. We refer the reader to [4, 5] for thorough discussions of this point.

The D-brane instanton is represented by the triangular node in figure 1. There are charged

fermionic zero modes αi and βj at the intersections between the instanton and the gauge

D-branes. The instanton action contains the following term

L = αiXijβj . (2.1)

Strings with both endpoints on the instanton give rise to neutral zero modes. Instan-

tons break 1/2 of the N = 1 SUSY preserved by the D-branes at the Calabi-Yau and hence

there are two fermionic zero modes, the corresponding goldstinos, which are represented

by Grassmann variables θα. However, the sector of open strings with both endpoints on

the instanton D-brane sees an enhanced N = 2 SUSY so we should generically expect two

3D-brane instantons can lead to other modifications of these gauge theories, by higher derivative opera-

tors, but this is beyond the focus of this article. For some examples, see e.g. [26].
4Clearly, there may be situations where the instanton may have incoming and/or outgoing arrows from/to

more nodes, in which case their ranks can be unequal, only the total numbers should match.
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Figure 1. (a) Quiver for an instanton with zero modes coupling to a field not invariant under the

orientifold action. The green line represents the fixed locus under the orientifold action. No D-brane

instanton coupling is generated if the ranks of the nodes connected by Xij differ. (b) Quiver for an

instanton with zero modes coupling to a field mapped to itself under the orientifold action.

additional fermionic zero modes. In order to generate non-vanishing superpotential cou-

plings, it is necessary to have only two fermionic zero modes, which are used to saturate

the superspace measure. It is possible to imagine various ways in which the two extra zero

modes can be in principle eliminated. A particularly clean way of getting rid of them,

which will be realized in the theories we consider, is by projecting them out with an ori-

entifold plane reducing the instanton worldvolume group to O(1) (these are dubbed O(1)

instantons). We are thus lead to consider configurations in which the D-brane instanton

is on top of an orientifold plane, figure 1.a. Consider first the case where the orientifold

is not relating the two SU(N) nodes under which fermion zero modes are charged (i.e. the

operator Xij is not mapped to itself under the orientifold action). Integrating out the zero

modes, the following contribution to the gauge theory superpotential is generated

Winst = M3−N
s e−VΣ/gs detXij , (2.2)

with Ms the string scale and VΣ the volume of the cycle Σ wrapped by the instanton in

string units and have assumed a numerical constant in front of the expression is O(1).

Consider now the case that the orientifold identifies the two SU(N) nodes of the quiver,

figure 1(b) For O(1) instantons, the orientifold we are interested in is such that the oper-

ator Xij is projected down to the antisymmetric representation (or its conjugate) of the

surviving SU(N). The orientifold also identifies the fermions zero modes βj ∼ αjT , so the

instanton action now contains an interaction of the form

L = αiXiiαi
T . (2.3)

After integration over all fermionic zero modes, the superpotential picks a contribution of

the following form

Winst = M3−N/2
s e−VΣ/gsPf Xij . (2.4)

It is important to emphasize an important difference between non-chiral and chiral quivers.

Non-chiral quivers can be regarded as a subset of the theories described above for which

both SU(N) nodes happen to be the same, whereas chiral examples correspond to the
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generic case. This has an impact on the behavior of the instantons with respect to U(1)

symmetries. Actually, the gauge groups on the gauge D-branes are U(N) = SU(N)×U(1).

The U(1) factors either become massive due to the Green-Schwarz anomaly cancellation

mechanism [27] or become free in the IR. For non-chiral theories, the operator Xij is

uncharged under the U(1)’s, and so is the field theory operator induced by the instanton.

On the other hand, chiral examples produce field theory operators violating the U(1)

symmetries. It is therefore in the chiral examples that U(1) symmetries forbid couplings

such as (2.2) and (2.4) perturbatively, and are generated by the instantons. The fact that

the instanton amplitude implies some charge violation is related to the chiral nature of the

charged fermion zero modes, and is robust under deformations of the theory.

3 General approach to field theoretic UV completions

Before presenting a detailed analysis of a cascading UV completion of the theories of

interest, it is useful to present a general roadmap summarizing its key points. While this

class of theories has novel features which will be emphasized as they appear, the general

approach is similar to the one used in other examples [20, 21, 24]. Some readers might also

find this outline handy for applications to other theories.

The starting point is a gauge theory, which we regard as the IR of a more complete

UV configuration that includes extra ingredients to support the instanton generating the

non-perturbative correction. In principle, it is possible to take a bottom-up approach and

try to guess a UV quantum field theory that results in the desired one at low energies.

This is however rather challenging, since some of the gauge groups may disappear while

flowing to the IR, by confinement or other strong coupling phenomena. Our strategy is

based in instead using string theory constructions to determine the UV theory. Namely, we

describe string theory configurations of D-branes at singularities to engineer the IR theory,

and use well-established tools inspired by holography to construct UV completions with

the appropriate IR flow. We anticipate that we will focus on the very tractable setup of

D3-branes at toric CY threefold singularities, which have been extensively studied using

brane tilings (a.k.a. dimer diagrams) [28, 29] (see also [30, 31] and references therein).5

Their orientifold quotients can be constructed systematically using the tools in [43].

The general strategy we follow to construct such UV completions can be summarized

as follows:

• The first step is to engineer the geometry probed by the D-branes realizing the IR

gauge theory. This typically corresponds to a quiver gauge theory, which must involve

additional empty nodes to support the stringy instantons. As explained in section 2,

the instantons need to have an O(1) orientifold projection, hence the opposite ori-

entifold action on spacefilling D-branes leads to USp gauge groups. For the cases

considered in this article, the gauge group takes the form
∏
i SU(Ni)×

∏
a USp(Na).

6

5For generalizations known as Bipartite Field Theories, see [32–39]. In addition, these theories have also

appeared recently in the context of class Sk theories in [40–42].
6Even restricting to D-branes at toric singularities, it is possible to have multiple USp nodes, and also
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• The next step is to construct the corresponding duality cascade. In principle, it is

necessary to specify the ranks and dynamical scales of the gauge groups (even for

those empty in the IR theory) at some UV scale, since this information determines the

sequence of dualizations. In practice, we will exploit examples where this analysis has

already been carried out (or orbifolds thereof), and apply the dualities with the rule of

thumb that the node that is dualized at each step is asymptotically free. Cascades are

typically periodic, i.e. all nodes in the quiver are dualized in the cascade and produce,

after a ‘period’ involving a number of dualities, a theory of the same form as the origi-

nal one, up to an overall decrease in the ranks of all the gauge groups. If the IR theory

does not admit a direct UV completion with a duality cascade (we dub them ‘non-

cascading ’ systems), one must embed them as the IR result of a confinement process

of a more involved theory with additional nodes, such that the latter does admit a cas-

cade completion in its UV. We will find explicit examples of both kinds of behaviors.

• In some of our models, we will be interested in introducing additional flavors, ob-

tained by enriching the systems of D3-branes at singularities with additional D7-

branes. These extra flavors modify the strict periodicity of the cascades, by O(1/Ni)

corrections, where Ni denotes the ranks of the gauge factors. In the gravity dual

counterpart, they correspond to numbers of D3-branes, and the corrections are due

to one-loop effects from the D7-brane backreaction; ignoring them corresponds to

the familiar probe approximation, in which the D7-branes simply probe the geome-

try generated by the fractional D3-brane duality cascade and their IR deformation.

• The last step is to verify that, upon running the cascade down, one recovers the orig-

inal IR gauge theory of interest (modified by the non-perturbative operator). This

heuristically corresponds to the extrapolation of the cascade until the number of

D3-branes reaches a lower bound. More rigorously, the procedure takes the theories

beyond the range of validity of Seiberg duality; so we must instead analyze the strong

dynamics of the last steps in the cascade. This sometimes involves confinement and

a complex deformation of the moduli space, reflecting geometric transitions in the

underlying singularities.

All these ideas are illustrated in detail in the explicit examples considered in the next

sections.

4 Cascading geometries

4.1 Cascading versus non-cascading geometries

It is convenient to classify IR theories according to whether they admit fractional branes,

which trigger duality cascades, or not. We refer to the two resulting classes as cascading

and non-cascading geometries, respectively. All examples in the literature in which D-

brane instanton couplings have been UV completed by cascading geometries associated to

to simultaneously include SO ones. Since the latter do not support interesting instantons in the IR, for

notational simplicity we ignore the SO factors in the discussions.
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Figure 2. Quiver diagram for F0.

non-chiral theories. Since fractional branes are related to anomaly free rank assignments

for gauge groups, non-cascading geometries can only arise when considering chiral theories.

The UV completion of non-cascading geometries requires additional ingredients, which will

be presented in section 5. In this section, we consider the simpler case of chiral theories

for cascading geometries.

4.2 D-brane instanton couplings

For concreteness we carry out the discussion for a prototypical example, the F0 theory,

which corresponds to a chiral Z2 orbifold of the conifold. The quiver diagram for one of the

two toric phases of F0 is given in figure 2, where the ranks Ni of the gauge groups correspond

to the numbers of (fractional) branes wrapped at the singularity and are constrained by

the cancellation of non-abelian anomalies.7 The anomaly constraints are modified in the

presence of flavor branes, which will be introduced later on, so for the moment we keep the

ranks general and focus on the structure of the quiver theory. The superpotential is

W = X1
12X

1
23X

2
34X

2
41 −X1

12X
2
23X

2
34X

1
41 −X2

12X
1
23X

1
34X

2
41 +X2

12X
2
23X

1
34X

1
41 . (4.1)

Here and throughout the article, we leave an overall trace over color indices in the superpo-

tential implicit. The theory has an SU(2)× SU(2) global symmetry under which the fields

on each side of the square transform as doublets, whose components are indicated by the

superindices.

In order to properly analyze orientifolds of toric CY 3-folds, it is convenient to consider

brane tilings, and their dual periodic quivers [43]. We show them for this theory in figure 3.

The orientifold corresponds to a Z2 symmetry of the periodic quiver, flipping the orientation

of the arrows. In the following we consider the orientifold associated to a reflection with

respect to the line shown in figure 3. This theory also admits orientifolds associated to fixed

points in the dimer, but we will not consider this possibility (see section 6 for orientifolds

with fixed points in the dimer).

We choose the orientifold line charge such that the instanton has a worldvolume O(1)

group to get rid of unwanted fermion zero modes; then the action on gauge branes is of

7The F0 theory has another toric phase [44], related to this gauge theory by Seiberg duality [45]; it will

appear in intermediate steps of the duality cascade in section 4.3.
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Figure 3. The periodic quiver and dimer diagram for the F0 theory.

USp kind. The orientifolded theory has three gauge groups8

USp(N1)×USp(N3)×U(N2) (4.2)

and four bifundamental chiral multiplets, since the orientifold identifies nodes 2 ↔ 4 and

relates Xa
41 ↔ Xa

12
T and Xa

34 ↔ Xa
23
T for a = 1, 2. We choose the convention of preserving

fields (and coupling) on the right hand side of the orientifold line in the dimer. The

corresponding superpotential can be obtained by truncating (4.1) onto invariant states,

and becomes

W = X1
12X

1
23X

2
23
TX2

12
T −X1

12X
2
23X

2
23
TX1

12
T −X2

12X
1
23X

1
23
TX2

12
T , (4.3)

with appropriate contractions of the color indices.9 Two of the original terms are identified,

resulting in three terms. The transposition arises when relating fields to their orientifold

images and allows the standard contraction of color indices. This is in agreement with the

structure of the superpotential in the orientifolded dimer, shown in figure 3, as two of the

nodes in the dimer are identified by the orientifold.

We are interested in configurations such as the one shown in figure 4, where the verti-

cal green dashed line schematically represents the effect of the orientifold projection in the

quiver and we added two stacks of flavor branes represented by square nodes (actually, one

stack and its orientifold image). Node 1 is taken to be empty in order to support a ‘exotic’

D-brane instanton. With our above choice of orientifold charge, the instanton has a world-

volume O(1) group and the orientifold removes extra neutral fermion zero modes. Since the

action on gauge branes is of USp kind, we must introduce at least two D3-branes at node 3.

8We take the convention in which USp(Nc) = Sp(Nc/2), where Nc is an even number. This convention

has the advantage of capturing the number of branes in the configuration in a simple way: USp(Nc) gauge

group arises from Nc D-branes in the parent theory at the corresponding node, which is fixed under the

orientifold. The number of flavors Nf is defined as the number of number of chiral multiplets in the

fundamental representation (equivalently, half the chiral multiplets in the fundamental representation in

the covering space), which is Nc-dimensional.
9Since we have SU and USp groups, one must contract each kind of index in a different way. SU indices

are directly contracted, while USp ones are contracted with the USp invariant tensor J .
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Figure 4. The F0 quiver with an empty node, supporting a D-brane instanton. Here N3 is an even

number since the group 3 is of USp kind.

We include N2 deformation fractional branes, which are responsible for driving the duality

cascade in the UV, and additional O(1) D3- and D7-branes to render the structure anomaly

free.10 We keep the ranks of nodes 2 and 3 and the number of D7-branes as general as pos-

sible, while consistent with anomaly cancellation. The D7-branes introduce D7-D3 flavors,

with cubic couplings 73-33-37 to the D3-D3 chiral multiplets, described by triangles of ar-

rows in the quiver. We will not need the detailed structure of these couplings since the pur-

pose of the D7-D3 flavors is to cancel anomalies and play no further role in our analysis.11

The structure of zero modes and their couplings to D3-D3 fields are identical to those

on space-filling D-branes. Hence, from (4.1) we can infer the following couplings in the

instanton partition function of the unorientifolded theory

λ1
12X

1
23X

2
34λ

2
41 − λ1

12X
2
23X

2
34λ

1
41 − λ2

12X
1
23X

1
34λ

2
41 + λ2

12X
2
23X

1
34λ

1
41 . (4.4)

In addition to the D3-D3 field identifications, the orientifold relates λa12 ↔ λa41
T , for a = 1, 2.

Then, (4.4) becomes

λ1
12X

1
23X

2
23
Tλ2

12
T − λ1

12X
2
23X

2
23
Tλ1

12
T − λ2

12X
1
23X

1
23
Tλ2

12
T , (4.5)

which can equivalently be obtained from (4.3) by replacing some fields by zero modes.

Integrating out the charged fermionic zero modes, we obtain the following non-

perturbative D-brane instanton superpotential:

W ∼ PfN22 , (4.6)

10Throughout this article we adopt the classification of fractional branes according to the IR dynamics

they generate introduced in [46]. In this classification, fractional branes are divided into three types: i)

deformation branes, which trigger complex deformations in the supergravity dual, ii) N = 2 branes, which

lead to N = 2 dynamics, and iii) DSB branes, which produce dynamical supersymmetry breaking.
11In addition, generically, mesons that are bifundamental of a pair of D7-brane nodes can be generated

whenever a gauge group is dualized in a flavored quiver. Depending on the theory, such mesons can become

massive after a number of steps in the cascade or accumulate. These chiral fields are neutral under all

gauge symmetries and do not affect our analysis, so we will not include them in our discussion of any of

the models in this article.
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Figure 5. (a) Quiver diagram for one of the phases of F0 for N regular D3-branes and M fractional

branes. (b) The quiver diagram after Seiberg dualizing node 1.

where N22 is the matrix of D3-D3 mesons of node 3 (note that it does not include the

D3-D7 flavors)

N22 =

(
N 11

22 N 12
22

N 21
22 N 22

22

)
=

(
X1

23X
1
23
T X1

23X
2
23
T

X2
23X

1
23
T X2

23X
2
23
T

)
. (4.7)

In constructing N22 we should take into account the appropriate contractions of color

indices at node 3 we alluded to before. The subindices emphasize that the resulting N22

transforms in the adjoint representation of node 2.

Before concluding, let us emphasize that the origin of (4.6) is the stringy instanton

sitting on node 1, and not the strong dynamics of node 3.

4.3 The cascade

This theory has a periodic cascade of Seiberg dualities, which we now explain.

The parent cascade

It is convenient to discuss the cascade in the unorientifolded theory first. This cascade has

been investigated in detail in [47–49], so our presentation will be brief.

Consider starting from the quiver in figure 5(a), which corresponds to N regular D3-

branes and M fractional branes, at some point in the UV. The periodic cascade corresponds

to repeating the sequence of dualizations (1,3,2,4), i.e. sequentially dualizing pairs of diag-

onally opposite nodes.

Let us consider the first step. Starting from figure 5(a) and dualizing node 1, we obtain

the quiver shown in figure 5(b). The four chiral fields in the diagonal connecting nodes 4

and 2 arise as mesons of node 1. Dualizing node 3, we generate four new mesons stretching

between nodes 2 and 4, in the opposite orientation. The superpotential contains mass

terms for all fields in the diagonal, which disappear after integrating them out. After these

two dualizations, we thus recover the original theory, up to a reversal of the direction of all

arrows and a reduction in the ranks of nodes 1 and 3. It is hence clear that completing a

period in the cascade by further dualizing nodes 2 and 4 brings us back to the original the-

ory, where the number of D3-branes is reduced N → N −2M and the number of fractional
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Figure 6. The orientifolded cascade alternates between these three quivers. As explained below,

the theory (c) is actually equivalent to (a).

branes M remains constant. The effective number of D3-branes decreases logarithmically

as a function of energy along the cascading RG flow. The cascade is just a Z2 orbifold

version of the conifold cascade in [50].

The orientifolded cascade

The orientifolded cascade starts from the quiver in figure 6(a) and repeats the sequence of

dualizations (1,3,2), alternating between the quivers shown in figure 6.12 In this quivers,

arrows are oriented to keep track of the representation under the U(N) gauge factor from

nodes 2, 4 (but note that representations of the USp groups at nodes 1, 3, are real, so the

orientation at those nodes is meaningless).

In general lines, the dualizations of nodes 1 and 3 work as in the parent theory, although

using the USp version of Seiberg duality [51]. Let us first recall how Seiberg duality works

for a USp(Nc) gauge group with Nf flavors, namely Nf chiral fields in the fundamental

representation (cf. footnote 8 for conventions). The dual theory has USp(Nf − Nc − 4)

gauge group, Nf flavors, and mesons with cubic superpotential couplings to the flavors.

We refer the reader to [52] for additional details. In our present setup, when we dualize

node 1, there appear mesons connecting nodes 4 and 2, as shown in figure 6(b). These

mesons transform in the conjugate antisymmetric representation of node 2. They become

massive by combining with the oppositely oriented mesons that appear upon dualization

of node 3. The result is a diagram similar to figure 6(a), up to reversal of arrows.

When we subsequently dualize node 2, we obtain the quiver shown in figure 6(c). This

step gives rise to mesons connecting nodes 1 and 3. In terms of the parent quiver, this step

actually also involves the dualization of its orientifold image, node 4, which would give rise

to the dashed fields in figure 6(c). Moreover, the superpotential (4.3) gives rise to masses for

all the mesons and the theory becomes the one in figure 6(a) after integrating them out. We

conclude that the sequence of dualizations (1,3,2) corresponds to a period in the cascade.

12More precisely, at some steps in the cascade we obtain quivers that are identical to those in figure 6 up

to an overall flip in the orientation of arrows. Also, note that 4 is the image of 2, so we can think both are

dualized simultaneously.
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Figure 7. The quiver of the orientifolded F0 theory, two steps before the IR bottom of the cascade.

4.4 The IR bottom of the cascade

We now explain how (4.6) can be alternatively understood as resulting from the gauge

dynamics at the IR bottom of the duality cascade discussed in section 4.3, in which the

instanton is realized in terms of a standard gauge instanton. To do so, let us consider the

theory a couple of steps before the one in figure 4. We can quickly determine the corre-

sponding quiver by Seiberg dualizing nodes 3 and 1. The latter is just a formal dualization

of an empty node, but it will acquire more physical significance when we consider how the

strong dynamics of the UV gauge theory indeed reproduces the properties of the empty

node, as shown in section 4.5.

This formal Seiberg duality on nodes 1 and 3 in figure 4 produces the quiver shown in

figure 7. All arrows connected to the dualized nodes have been inverted. We note that the

dualization of node 3 produces several mesons. First, there are mesons connecting node 2 to

its orientifold image, which become massive with mesons arising upon dualization of node 1.

In addition, some of the flavors of the final theory connected to node 2 are mesons that arise

when node 3 is dualized. There is an O(N2) excess in the numbers of branes at nodes 1 and

3. This is the fractional brane triggering the cascade and ultimately responsible for the end

of the cascade via strong dynamics (the capping of the warped throat in the gravity dual).

The perturbative superpotential is just the one that follows from (4.3) by reversing

the direction of arrows and the cyclic order in the trace and adding an overall minus sign

W = −X1
32X

1
21X

2
21
TX2

32
T +X2

32X
1
21X

1
21
TX2

32
T +X1

32X
2
21X

2
21
TX1

32
T . (4.8)

For simplicity, and since they do not participate in the dynamics we are interested in, here

and in the remaining analysis of this model we will not consider the flavors.

Node 1 has Nf = Nc + 4 and hence confines, disappearing from the quiver, and

generates a 1-instanton superpotential

Wgauge inst ∼ Pf M22 , (4.9)
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with M22 the matrix of mesons for node 1

M22 =

(
M11

22 M12
22

M21
22 M22

22

)
=

(
X1

21X
1
21
T X1

21X
2
21
T

X2
21X

1
21
T X2

21X
2
21
T

)
. (4.10)

Note that this matrix is antisymmetric due to insertions of the invariant tensor J in the

USp color index contractions.

Notice that (4.9) is not the desired coupling (4.6), which instead involves mesons of

node 3. For clarity, we will reserve the calligraphic font for the operators generated by

D-brane instantons. Combining (4.9) and (4.8) expressed in terms of the mesons M ij
22, we

obtain the following superpotential

W = Pf M22 −M12
22X

2
32
TX1

32 +M11
22X

2
32
TX2

32 +M22
22X

1
32
TX1

32 . (4.11)

Next, dualizing node 3 we arrive at the theory we were originally interested in, whose

quiver is shown in figure 4. This dualization generates the following mesons of node 3

N22 =

(
N11

22 N12
22

N12
22 N22

22

)
=

(
X1

32
TX1

32 X1
32
TX2

32

X2
32
TX1

32 X2
32
TX2

32

)
, (4.12)

and inverts the direction of all arrows connected to node 3. This is not the full meson

matrix since there are mesons involving the flavors. These mesons are responsible for

flipping the direction of the arrows connecting the D7-branes to node 2, but do not show

up in the non-perturbative term generated by the instanton, so we ignore them here. Note

that N22 from (4.12) should not be confused with N22 from (4.7). Both of them are mesons

of node 3, but in different theories: N22 is made out of fields in the quiver of figure 7 (after

confining node 1), while N22 is made out of fields in figure 4.

In terms of these mesons, the superpotential becomes

W = Pf M22 −M12
22N

21
22 +M11

22N
22
22 +M22

22N
11
22

+N21
22X

1
23X

2
23
T −N22

22X
1
23X

1
23
T −N11

22X
2
23X

2
23
T . (4.13)

The M ij
22 and N ij

22 mesons are massive, and can be integrated out using their equations of

motion, i.e. vanishing of their F-terms. From ∂W/∂N ij
22 = 0 we obtain

M11
22 = X1

23X
1
23
T M22

22 = X2
23X

2
23
T M12

22 = X1
23X

2
23
T . (4.14)

Recalling (4.7), we have that M ij
22 = N ij

22. Plugging this into (4.13), we precisely obtain

the D-brane instanton contribution (4.6).

It is straightforward to include the D7-brane flavors throughout the analysis and check

that the flavor superpotential is correctly reproduced.

4.5 A useful trick

In the above analysis we did not have to deal with the complications of using the F-terms

of fields entering the Pfaffian superpotential. However, such operations are necessary in

more complicated examples. In this section we introduce a simple trick to recast Pfaffian
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Figure 8. (a) Quiver diagram for a USp(Nc) electric theory with Nf = Nc + 4. (b) The magnetic

dual, with the empty node supporting an instanton, whose zero modes are shown as dashed arrows.

superpotentials, which allows to perform these operations in a straightforward manner,

with results which amount to combinatorial operations in the periodic quiver/dimer. This

trick provides an explanation of the formal process of dualizing empty nodes.

Let us consider a USp(Nc) theory with Nf chiral multiplets in the fundamental, and

no superpotential, for Nf = Nc + 4. The theory confines and develops a superpotential

W ∼ PfM for its mesons M = QQ. The trick is to rewrite this contribution as a path

integral over a set of auxiliary Grassmann variables λi, transforming under the flavor group,

and with a cubic coupling to the mesons λMλT . Many field theory computations regarding

F-terms can be carried out at the level of this description, and the eventual integration

over the Grassmann variables reconstructs the Pfaffian at the end.

Before discussing explicit examples, we would like to mention that this description is

closely related to the magnetic description of this theory: in quiver language, it contains

an empty node which supports an O(1) instanton, with fermion zero modes coupling as

dictated by the magnetic quiver, and which agree with the properties of the above auxiliary

Grassmann variables. A graphical representation of the trick, which thus amounts to a

formal Seiberg duality, is shown in figure 8.

Let us apply the trick to the UV gauge theory of the earlier section, with the quiver

shown in figure 7. As above, node 1 confines and generates the Pfaffian superpotential (4.9)

for its mesons. This can be rewritten by introducing a set of Grassmann variables λ1
12 and

λ2
12, transforming in the antifundamental of U(N2). Their coupling to the mesons of (4.10)

can be formally combined with the original tree level superpotential, leading to

+λ1
12M

12
22λ

2
12
T − λ1

12M
11
22λ

1
12
T − λ2

12M
22
22λ

2
12
T

−X1
32M

12
22X

2
32
T +X1

32M
11
22X

1
32
T +X2

32M
22
22X

2
32
T . (4.15)

This is just as dictated by the quiver of the Seiberg dual theory. Dualizing now node 3 and

defining its mesons N as in (4.12), we have

+λ1
12M

12
22λ

2
12
T − λ1

12M
11
22λ

1
12
T − λ2

12M
22
22λ

2
12
T (4.16)

−M12
22N

21
22 +M11

22N
11
22 +M22

22N
22
22 +N21

22X
1
23X

2
23
T −N11

22X
1
23X

1
23
T −N22

22X
2
23X

2
23
T .

Upon integrating out the massive fields, the F-terms of N ij
22 impose M ij

22 = Xi
23X

j
23
T .

The superpotential becomes precisely (4.5). It is then manifest that integration over the
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auxiliary Grassmann variables finally reconstructs the superpotential of the D-brane in-

stanton (4.6).

The lesson is that confinement and the introduction of the Pfaffian superpotential

for USp nodes with Nf = Nc + 4 is, via this trick, equivalent to performing the Seiberg

duality leaving the node with the instanton and the corresponding charged zero modes.

This effectively brings the duality cascade one step down towards the IR theory. This idea

will be useful in the analysis of more involved examples in coming sections.

5 Non-cascading geometries: C3/Z3 examples

The second class of examples we want to consider involves theories that naively do not

cascade. By this we mean theories that do not cascade, even if we consider the full quiver

associated to the singularity and allow arbitrary ranks for all its nodes and the addition

of flavors. Prototypical examples of this situation are provided by e.g. C3/(Zn × Zm)

chiral orbifolds, and orientifolds thereof. Earlier works studying other aspects of D-brane

instantons on orbifolds of C3 can be found in [13, 19, 53, 54].

This problem of UV completing such systems was considered (for oriented quivers)

in [55] (see also [56] for applications and [49] for earlier related work), where it was shown

that such theories can emerge after partial confinement in a more complicated quiver, which

can now correspond to the IR limit of a duality cascade. In the dual gravity language, the

UV geometry reduces to the IR one via a complex deformation, which for toric singularities

can be described very easily using dimer diagrams [57]. Hence, although the final geometry

naively appears non-cascading, it can emerge from a cascade as a result of the same type

of dynamics that works in more conventional examples.

5.1 D-brane instanton couplings

For concreteness we focus on a prototypical example, namely gauge theories arising from

orientifolds of D3-branes (and possibly D7-branes) at the C3/Z3 singularity. This simple

geometry gives rise to many interesting chiral theories, which have appeared in widely

varied applications (see e.g. [55, 58, 59] for some of them).13

The periodic quiver and dimer of the C3/Z3 are shown in figure 9. There we have

also shown an orientifold line that will be used later on. The superpotential of the theory

without the orientifold is given by

W = εijkX
i
12X

j
23X

k
31 . (5.1)

The superindices (which label the representation under an SU(3) global symmetry) have

a range i = 1, 2, 3 and we use them to label the arrows going south, north-west, and

north-east, respectively.

13Here we consider the 4d N = 1 preserving orbifold of C3, which has geometric action (1, 1,−2) on the

three complex coordinates. A globally consistent chiral Type I theory this kind of orbifold was originally

constructed in [60]. There is an additional SUSY preserving C3/Z3 orbifold. It has geometric action

(1,−1, 0), preserves 4d N = 2 SUSY and hence gives rise to a non-chiral gauge theory.
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Figure 9. The periodic quiver and dimer diagram for the orientifold of C3/Z3.

We consider the orientifold theory defined by the line reflection in the dimer. In order

to obtain non-trivial superpotentials from D-brane instantons, we choose the orientifold

charge such that the fixed gauge factor 1 is projected down to a USp factor. Using the

rules in [43], this implies that the bifundamental on top of the orientifold, which we denote

by X1
22, is projected down to a two-index antisymmetric of the U(N2). In addition, the two

other bifundamentals X2
22, X3

22 are exchanged by the orientifold action, and produce one

symmetric and one antisymmetric representations under U(N2). Other fields are related

to their orientifold images by transposition, e.g. X2
31 = X3

12
T , X1

31 = X1
12
T , etc.

The superpotential of the orientifold theory reads (we express it in terms of fields above

the orientifold line)

W = X3
12X

1
22X

3
12
T −X2

12X
1
22X

2
12
T −X3

12X
2
22X

1
12
T +X1

12X
2
22X

2
12
T . (5.2)

Here and in what follows X2
22 is understood to split into a symmetric plus an antisymmetric

representation.

Let us focus on the theory with node 1 empty, shown in figure 10. This node can

support an O(1) instanton (thus with two neutral fermion zero modes) and a set of charged

fermion zero modes depicted as dashed arrows in the figure. Even though the node is empty,

we must cancel the Witten global anomaly of the USp node, and demand that the number

of incoming arrows is even, so p is forced to be even in this model. In string theory, this

requirement arises from cancellation of RR tadpoles in K-theory [61].

The fermion zero mode couplings can be obtained from the above superpotential by

replacing chiral bifundamentals by zero modes, so we get

λ3
12X

1
22λ

3
12
T − λ2

12X
1
22λ

2
12
T − λ3

12X
2
22λ

1
12
T + λ1

12X
2
22λ

2
12
T . (5.3)
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Figure 10. The C3/Z3 orientifold quiver supporting a D-brane instanton. There are p fractional

branes, which cannot trigger a duality cascade, and a number of D7-branes to render the theory

anomaly-free. Consistency requires p to be even.

Integrating the instanton partition function over these fermion zero modes we obtain

the non-perturbative superpotential

Winst ∼ PfM , (5.4)

where M is a matrix built out of the fields Xi
22.

Since (5.2) vanishes when node 1 is empty, the full superpotential is the sum of (5.4)

and the flavor superpotential. It is then given by

W = QD7,2A1QD7,2
T + PfM , (5.5)

where the precise form of the flavor couplings is dictated by the embedding of the D7-branes,

as explained in detail in [62], and we have used the notation in figure 10 to emphasize we

chose to couple the flavors to one of the antisymmetric fields. This theory is closely related

to a model considered in [25], as we explain in section 7.

As already mentioned, this theory cannot be directly embedded in a UV duality cas-

cade, since the C3/Z3 does not admit complex deformations (conversely, the gauge theory

does not admit deformation fractional branes). In the following sections we study the

embedding of this model into a different quiver theory (that reduces to this one by con-

finement), which in turn does admit a UV completion in terms of a duality cascade.

5.2 The parent theory and its complex deformation

It is convenient to first consider the unorientifolded parent theory to understand the basic

ingredients to be used later for the orientifold model. The oriented C3/Z3 theory can be

obtained from a richer quiver theory, a Z3 orbifold of the suspended pinch point (or SPP/Z3

for short). Geometrically this occurs by a geometric transition inducing a complex defor-

mation from SPP/Z3 to C3/Z3. From the field theory viewpoint, this process corresponds
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Figure 11. Starting from the web diagram for SPP/Z3 (a) produces, via a complex deformation,

the diagram for C3/Z3 (b).

to partial confinement at the endpoint of a duality cascade, triggered by deformation frac-

tional branes, which disappear in the IR C3/Z3 theory.

Complex deformations of toric singularities are characterized very easily as splitting of

the web diagram into subdiagrams [49]. This is illustrated for the deformation of SPP/Z3

to C3/Z3 in figure 11.

This construction for SPP/Z3 → C3/Z3 has been extensively studied in [55, 56] as a

toy model in which a Standard Model-like theory emerges at the IR bottom of a throat.

The possibility of a chiral theory at the end of the cascade follows from having a remnant

singularity. In the following we review some aspects (and derive some new ones) that are

most relevant for our present purposes.

The gauge theory on D3-branes over SPP was originally derived in [63]. The gauge

theory for D3-branes at SPP/Z3 can be obtained from it by standard orbifold techniques

and is fully encoded in the dimer diagram shown in figure 12. Every superpotential term

of the theory is represented by a node in the dimer, or equivalently a plaquette in the

dual periodic quiver, according to the dictionary introduced in [28]. Hence, we will follow

the standard approach of dealing with dimer diagrams/periodic quivers for most of our

discussion and only writing the explicit expressions for the superpotential that can be

straightforwardly read from them when necessary. The choice of unit cell in figure 12 is

different from the one used in [55, 56] for convenience to impose the orientifold action later

on (already anticipated as the green line in the figure). Note that although the model is

fully chiral, it is related to the non-chiral SPP by orbifolding, as in [64]. This is a recently

rediscovered tool in the context of class Sk theories [40–42].

Following [55, 56], the duality cascade of the SPP/Z3 theory and its deformation to

the C3/Z3 theory corresponds, even in the presence of extra flavors, to a Z3 orbifold of

the cascade and complex deformation of the underlying SPP geometry to a smooth space,

described in appendix A. The cascade in SPP/Z3 is obtained by dualizing gauge factors in

whole columns of squared faces in the dimer, which turn the squares in one of the adjacent

columns into hexagons, and the hexagons in the other adjacent column into squares. This

has been recently studied in the context of class Sk theories in [41, 42]. A similar pattern

will hold in the orientifold theory, considered in the next section.
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Figure 12. The dimer for the SPP/Z3 theory. The green line is included for later use to describe

the orientifold projection.

5.3 The orientifolded theory and its cascade

Let us describe the orientifold of the SPP/Z3 theory we are interested in.14 The orientifold

is described as a line reflection in the dimer diagram, as shown in figure 12. The orientifold

action maps gauge groups 1, 2 and 3 onto themselves, while it identifies the pairs 4 ↔ 7,

5 ↔ 8 and 6 ↔ 9. We choose negative orientifold plane charge, in notation of [43],

so invariant gauge factors project onto USp groups, and invariant fields onto two-index

antisymmetric representations.

At this point it is possible to introduce flavors from D7-branes. Their behavior follows

very closely the unorientifolded case, and for simplicity we omit them until the study of

the IR behavior of the cascade in section 5.4.

The resulting gauge theory thus has six gauge groups

USp(N1)×USp(N2)×USp(N3)×U(N4)×U(N5)×U(N6) , (5.6)

where to facilitate comparison, we have preserved the node labels in the parent theory.

The rules to read out the spectrum and superpotential interactions are described in [43].

We simply mention that the bifundamental ( 5, 8), which is mapped to itself under

the orientifold, turns into a two-index (conjugate) antisymmetric of U(N5), 5. Fields

not invariant under the orientifold, like e.g. ( 3, 8), combined with their image fields,

e.g. ( 5, 3), descend to bifundamentals of the corresponding group in the orientifold

quotient. In these operations it is important to keep in mind that the orientifold maps

gauge factors by relating their representations by conjugation, e.g. U(N4) ↔ U(N7) such

that the 4 ↔ 7.

The final result is shown as a quiver in figure 13. In order to simplify its interpretation,

we color code nodes and arrows. Blue nodes are of SU type (with their images in grey),

while pink nodes are their own orientifold images and hence USp. Black arrows from node

14There are other possible orientifolds, with fixed points in the dimer diagram, but these are not com-

patible with the eventual complex deformation of SPP/Z3 to C3/Z3.
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Figure 13. The quiver diagram for the line orientifold of the SPP/Z3 theory.

a to b correspond to fields in the ( a, b) (with their images depicted as light color

arrows). The orientation of arrows at pink nodes is irrelevant, since USp has not complex

representations, but we preserve it as a useful bookkeeping device. Finally, the blue arrow

transforms as 5. It is important not to double count these fields.

It is useful to recall that the SPP theory admits a T-dual [64] in terms of a type

IIA Hanany-Witten (HW) configuration [65] of two NS-branes (along 012345) and one

rotated NS-brane (denoted as NS’-brane, along 012389), with D4-branes (alond 01236)

suspended among them in the periodic coordinate x6. In this picture, the orientifold we

are describing corresponds to the introduction of an O8-plane (along 012345689) [66]. The

orbifolded theory is realized by an additional Z3 orbifold of the HW configuration, acting

in the directions 45, 89.

The discussion of the cascade is analogous to the parent SPP/Z3 theory without the

orientifold. Namely, as each column of squares is preserved by the line orientifold, the

cascade of Seiberg dualities is formally compatible with the orientifold. In a similar way

to what we described in section 4.3, the original cascade sequentially dualizes the three

nodes in each column, namely a period corresponds to the sequence (1,4,7) (2,5,8) (3,6,9).

Due to the identification of nodes, in the orientifolded theory the cascade involves the two

surviving nodes from each of these columns, namely: (1,4) (2,5) (3,6).

In the following we describe some details of the dualization procedure. A nice property

of this particular example is that it avoids having to dualize nodes with matter in the

antisymmetric representation.15

15The dual of gauge theories with antisymmetric matter is only known in very few cases, see e.g. [67–70].
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Figure 14. Dualization of node 1, which is a USp gauge group. In this figure and the ones that

follow, it is important to keep in mind that in the orientifold, nodes 7 and 9 are identified with

nodes 4 and 6, respectively.

5.3.1 Basic step in the duality cascade

Let us discuss the dualization of nodes on a column of squares in the dimer in more detail.

As in the unorientifolded case, we will see its effect is to shift the line of vertical arrows

sideways. For concreteness, let us focus on the column consisting of nodes 1 and 4 (of type

USp and SU, respectively).

Dualizing node 1. Consider dualizing the USp type node 1, as shown in figure 14. The

rules for Seiberg duality in quivers were described in [45], and recast in terms of dimer

diagram in [28]. Upon dualization, we invert the orientation of arrows connected to node

1, effectively introducing the dual quarks, which transform in conjugate representations

under the symmetries of nodes 5 and 6. In addition, we introduce arrows corresponding to

meson fields in representations ( 5, 6), 6 and 5. The superpotential pairs up the

latter with the original 5 in a mass term, and the pair can be integrated out. We have

indicated these fields using dotted arrows to indicate that they disappear at low energies.

In figure 14, the dark blue arrow on the right figure represents the antisymmetric field

charged under node 6, and the light blue one represents the same field at a different unit cell.

Dualizing node 4. In the second step, we dualize node 4 (and its orientifold image in

the Z2 covering). This is an SU gauge group and its dualization, which is rather standard,

is shown in figure 15. As before, dotted lines indicate pairs of field that become massive

and can be integrated out.

The final results is shown in figure 16. The net effect of dualizing a column of nodes is

a horizontal shift of the vertical arrows. An identical analysis applies to the dualizations

of nodes (2,5) and (3,6), resulting in a periodic Seiberg duality cascade. To leading order

in 1/N , the change in ranks in as in the parent oriented theory, namely the reduction in

the number of D3-branes is N → N − 6M . The precise numbers actually depend on the

pattern of D7-brane flavors, and will be discussed in explicit examples below.
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Figure 15. Dualization of nodes 4 and 7, which are SU gauge groups.
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Figure 16. Final result after dualizing the vertical column consisting of nodes 1 and 4.

5.4 The instanton

We now choose a rank assignment and D7-brane content in the SPP/Z3 theory that relates,

upon inclusion of strong dynamics, to the C3/Z3 orientifold theory introduced in section

section 5.1, and shown in figure 10. Basically, the strong dynamics of nodes 1, 4 and 7,

which is responsible for the complex deformation, recombines the factors 2 and 3, and 8

and 9 (and their images 5 and 6), respectively. Hence, we set those numbers pairwise equal,

and related to those of the resulting C3/Z3 theory, namely

N2 = N3 = 0 , N5 = N6 = N8 = N9 = p . (5.7)

In order to verify the cancellation of anomalies, it is important to appropriately take into

account the orientifold identifications of gauge groups and chiral fields. The confining nodes

1, 4 and 7 are taken to have a large number of branes, of order M � p. The precise values

are obtained by demanding cancellation of anomalies, once we account for the D7-branes,

which we locate on the edge 58.16 We obtain

N1 = M , N4 = N7 = M + p . (5.8)

16For a discussion on how to describe D7-branes in terms of dimer models we refer the reader to [37, 62].

D7-branes are described by paths traversing edges in the dimer model, which indicate the operator made

out of D3-D3 chiral fields the flavors are coupled to in the superpotential.
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Figure 17. Quiver for the orientifold of SPP/Z3 theory with an instanton. The configuration

includes 3p − 4 flavor D7-branes, which are represented by the square node. Consistency requires

M and p to be even.

The quiver right before the SPP/Z3 → C3/Z3 deformation is shown in figure 17,

including the O(1) D-brane instantons at the empty nodes 2, 3. The requirement to cancel

RR K-theory charge tadpoles [61] (i.e. cancellation of Witten anomaly for the empty USp

nodes) requires p even (as obtained already in the C3/Z3 orientifold) and M even.

We will later on derive the relation of this SPP/Z3 orientifold theory with the C3/Z3

orientifold theory in figure 10. Now we instead proceed to construct the UV gauge theory

in which the D-branes instanton effects are realized as gauge instanton effects. This is done

by moving up the cascade of SPP/Z3 until the empty nodes are filled. This occurs after

two steps of dualization of whole columns, and the resulting quiver is shown in figure 18(a).

The dualities are essentially as in the cascade in section 5.3, with the only modification

that we must include the D7-brane flavors in the discussion of some dualizations.

We now study the strong gauge dynamics of the theory in figure 18(a). Consider

node 2, which is a USp group with Nc = 2M + p − 4, and its number of fundamentals is

Nf = 2M + p. Thus it has Nf = Nc + 4 and generates a non-perturbative superpotential

W ∼ Pf M for its mesons M . Rather than adding this superpotential to the tree level one

and using the F-terms by brute force, we prefer to take advantage of the trick in section 4.5,

and introduce a set of auxiliary Grassmann variables as arrows of opposite orientation to

the original quarks, with cubic couplings to the mesons. As shown there, this is actually

equivalent to performing a formal duality on node 2, leaving it as an empty node whose

chiral multiplets are played by the Grassmann variables. In addition, we can dualize the

nodes 5 and 8, to complete a duality in a whole column. This operation can be carried out

very easily in the quiver, as in the discussion in section 5.3, and with the inclusion of D7-

brane flavors in the dualization of nodes 5, 8. The resulting quiver is shown in figure 18(b).
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Figure 18. (a) Quiver for the orientifold of SPP/Z3 theory two steps up the duality cascade. (b)

Quiver obtained after considering the strong dynamics of node 2 and dualizing nodes 5 and 8. It

corresponds to the SPP/Z3 orientifold in the next to last setp in the cascade.

In this quiver, the node 3 is a USp gauge factor with Nc = M+2p−4, and Nf = M+2p,

hence it has Nf = Nc + 4 so it confines and generates a non-perturbative superpotential

W ∼ Pf M ′ for its mesons. We can use again the trick in section 4.5 and introduce

Grassmann variables as arrows of opposite orientation to the original quarks, with cubic

coupling to the mesons. We must now dualize nodes 6 and 9, but this requires some

care, since there are fermion zero modes of the instanton 2 charged under them. The

change in the fermion zero mode spectrum is given in figure 19. It is easily obtained

by demanding conservation of the net number of fermion modes on the corresponding

instanton, and results in a formal duality reversing the Grassmann arrows and introducing

‘mesonic’ ones. Applying this additional rule to the theory in figure 18(b), we get a

quiver which corresponds precisely to figure 17. Clearly the trick to rewrite the Pfaffian

superpotentials in terms of Grassmann variables makes it trivial to recover the right IR

physics, as it effectively takes the theory one step down of the duality cascade.

The next step is to consider the strong dynamics of the nodes 1, 4 and 7 in the quiver

theory with two empty nodes, and show that after confinement it reduces to the C3/Z3

orientifold. Consider the theory in figure 17 in the absence of the instantons on nodes 2,

3. The superpotential in this case is

W = Q5,D7
TX ′55Q5,D7 +X ′55X51X

T
51 −X51X16X64X45 , (5.9)

where the prime on X ′55 denotes that it transforms in the conjugate antisymmetric of node

5. The first term in the superpotential corresponds to the coupling of the flavors. The

two other terms are obtained by restricting the SPP/Z3 superpotential to the non-empty

nodes. It can be directly read from the surviving plaquettes in the periodic quiver shown in

figure 17. In our regime of interest, M � p, the groups 1 and 4 (and its image 7) generate
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Figure 19. Transformation of the fermion zero mode set upon Seiberg duality of a node under

which they are charged.

non-perturbative Affleck-Dine-Seiberg (ADS) superpotentials. We introduce the mesons

N =

(
N55 N56

N65 N
′
66

)
=

(
X51X51

T X51X16

X16
TX51

T X16
TX16

)
, Ñ = X64X45 ≡ Ñ65 . (5.10)

The superpotential for the theory in terms of these mesons is

W = Q5,D7
TX ′55Q5,D7 +X ′55N55 −N56Ñ65

+M(det Ñ)−
1
M + (M − p+ 2)(Pf N)

− 2
M−p+2 , (5.11)

where we ignore the constants associated to the strong dynamics scale and some numerical

prefactors.

The F-term for N55 fixes X ′55 in terms of detN , the F-terms for N56 fixes Ñ65 in

terms of detN and the F-term for Ñ65 fixes N56 in terms of det Ñ . These mesonic vevs

break the gauge symmetries of 5 and 6 (and those of the images 8 and 9) to their diagonal

combination. Finally, the F-term for the antisymmetric X ′55 sets N55 = −Q5,D7Q5,D7
T .

The left over massless fields are the field X65 (which decomposes as a 5 + 5) and

N ′66 (which transforms as a 6).

The final superpotential can be read out by restricting to the simplest case, where the

meson matrix N of the USp group is 4 × 4, with entries Nij given by 2 × 2 blocks. The

Pfaffian in this case reads

Pf N ∼ N55N
′
66 −N56N65 , (5.12)

which allows us to write the F-term of N55 as

X ′55 ∼ (Pf N)
− 2
M−p+2

−1
N ′66 . (5.13)

Using this we are left with a superpotential

W = Q5,D7
TN ′66Q5,D7 , (5.14)

reproducing the perturbative piece of superpotential (5.5) for the C3/Z3 orientifold with

flavors in figure 10, after the obvious map of fields.
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Figure 20. The complex deformation of the geometry translates into strong gauge dynamics in

the field theory. Nodes 1 and 4 (and its image 7) confine, whereas the pairs (2,3) and (5,6) (as

well as its image pair (8,9)) are higgsed by non-zero expectation values of mesonic operators. The

disappearance of part of the gauge symmetry due to confinement of nodes 1 and 4 is represented

graphically by the shrinking and consequent disappearance of the corresponding faces in the dimer.

This process is represented by the contraction of the dotted ovals. Higgsing translates into the

combination of faces in the dimer. We use pink, blue and green shades to identify the faces of the

resulting dimer. As expected, they describe a line orientifold of C3/Z3.

The strong dynamics responsible for the complex deformation we have just discussed

can be nicely reproduced graphically in terms of the dimer as shown in figure 20, using

a procedure developed in [46, 57]. The confinement of faces 1 and 4 (and its image 7) is

represented by shrinking the corresponding faces, first into the dotted ovals and finally into

a single edge. The disappearance of the faces is the dimer counterpart of the elimination of

the associated gauge symmetry. In addition, as a result of these shrinking, the pairs (2,3)

and (5,6) (as well as its image pair (8,9)) get recombined. This is precisely the pattern of

higgsing triggered by the non-zero vevs we explained above. In figure 20 we indicate the

faces that result from this process in color. The final unit cell has three hexagonal faces

and an orientifold line, which identifies the blue and pink faces. This is precisely the dimer

representation of the orientifold of C3/Z3 presented in figure 9.

It is now easy to follow the fate of the instanton fermion zero modes of the complete

quiver in figure 17 in this confinement process. The fact that the node 4 (and its image

7) confines implies that fermion zero modes charged under them have to be saturated

using gauge invariant couplings. In particular, the fermion zero modes λ34 and λ24 (and

their images) must be saturated using the quartic coupling λ34λ24
Tλ24λ34

T . This pattern of

saturation of fermion zero modes reflects the fact that the two instantons act simultaneously

in a 2-instanton process, very much in the spirit of [26, 71]. This is in agreement with the

intuition that confinement of nodes 1, 4, 7 triggers the recombination of nodes 2 and 3.

Once gauge groups 1, 4 and 7 confine, and after saturating the zero modes in the quartic
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coupling, the remaining fermion zero modes are λ53, λ62 and λ52, with couplings17

λ53
TN ′66λ53 − λ62

TN ′66λ62 − λ62
TX65λ52 + λ52

TX65λ53 , (5.15)

where as usual X65 is understood to split into symmetric and antisymmetric parts.

This is precisely in agreement with the fermion zero modes of the instanton on the

orientifold of C3/Z3, cf. figure 10. Indeed, by comparing (5.15) with (5.3), one sees that

the structure of the couplings in both cases is the same, and it is easy to map the fields

and zero modes of the SPP/Z3 theory to the C3/Z3 one.

The conclusion is that the original non-perturbative gauge dynamics in the SPP/Z3 ori-

entifold theory of two steps up the cascade will reproduce exactly the same non-perturbative

superpotential as the stringy D-brane instanton of the infrared C3/Z3 orientifold theory,

given by (5.4). Combining this with (5.14), the full superpotential (5.5) is recovered.

Additional remarks on the complex deformation

The precise choice of ranks and flavors in the previous discussion was motivated by our

goal of reproducing the theory in figure 10 in the IR and understanding the emergence of

D-brane instantons from gauge theory dynamics. As we explained, in this case the complex

deformation is translated into higgsing triggered by ADS superpotentials.

It is interesting to mention that the complex deformation can be alternatively under-

stood in terms of different strong dynamics. In particular, generalizing [50] (see e.g. [49]),

it is possible to consider a setup with different ranks and flavors such that the fractional

brane nodes do not generate ADS superpotentials but rather have complex deformed mod-

uli spaces. On the mesonic branch, we precisely recover the theory of D3-branes probing

the deformed geometry. Since our focus is on D-brane instantons, we will not discuss this

interesting possibility any further.

6 Models with orientifold points

The examples in the previous sections are based on orientifold quotients that have fixed

lines in their action on the dimer diagram. In [43] there is a second kind of orientifold

quotients, whose action on the dimer diagram has fixed points. It is easy to find chiral

examples of this kind with duality cascades and deformations, providing a UV completion

where D-brane instantons are realized as standard gauge instantons up in the cascade.

Since the analysis of these questions is very similar to our earlier explicit examples, we

restrict the discussion to the construction of the basic dimer models.

It is easy to see that the SPP/Z3 singularity admits orientifolds with fixed points in the

dimer, but they are not compatible with the complex deformation to C3/Z3. At the level

of the gauge theory, the deformation fractional branes used in the previous section are not

mapped to themselves. Instead, they map to a second kind of deformation fractional brane.

Introducing both kinds of fractional branes however does not lead to a complex deforma-

tion; rather, it is equivalent (by the addition/removal of regular D3-branes) to introducing

17Until here we took the convention of representing the sets of Grassmann variables as row vectors. From

here on we will change the convention since it is more convenient to write them as column vectors.
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Figure 21. Hanany-Witten configuration of NS5-branes, D4-branes and an O6-plane that is T-dual

to D3-branes at an orientifold of the real cone over L2,3,2.

N = 2 fractional branes, whose strong dynamics does not give complex deformations, but

enhancon phenomena [72].

In the Hanany-Witten (HW) T-dual, orientifolds with fixed points in the dimer cor-

respond to O6-planes (e.g. in the directions 0123789), sitting at opposite points in the x6

direction. For the SPP, the only orientifold invariant configuration of the two NS- and one

NS’-brane is to have the NS’-brane stuck on top of an O6, and have the two NS-branes away

forming a Z2 invariant pair. The two kinds of deformation fractional branes are D4-branes

stretched between the NS’- and one of the two NS-branes. There is no Z2 invariant way to

recombine one NS- and one NS’-brane to account for the T-dual of the complex deformation.

Using this HW perspective, it is however easy to device a different model admitting

an orientifold quotient with fixed points in the dimer, and compatible with the complex

deformation. Consider a HW T-dual with three NS-branes and two NS’-branes, and locate

one NS-brane on top of an O6-plane, and two (NS,NS’) pairs away from it, forming a Z2

invariant system. This configuration is shown in figure 21. This configuration admits a

recombination of the NS- and NS’-branes in a pair (accompanied by the recombination of

the orientifold image pair). In the picture of D3-branes at toric singularities, the geometry

is xy = z3w2, see [64], and it admits a complex deformation to C3 compatible with the

orientifold. Now, we can perform a Z3 quotient of these systems, as in the recently intro-

duced class Sk theories [41], and obtain a theory that admits a complex deformation to

C3/Z3, compatible with the orientifold.

In the picture of D3-branes at toric singularities, the corresponding geometry is a

Z3 quotient of xy = z3w2, which is also known as the real cone over L2,3,2 [29]. It is

straightforward to construct the dimer diagram describing the gauge theory, which is shown

in figure 22. The picture also displays the fixed points of the orientifold action, which

is clearly compatible with the complex deformation to the C3/Z3 theory, because the

fractional branes (corresponding to faces 21, 22, 23, 41, 42, 43) form an invariant set under

the orientifold action. The final dimer faces after complex deformation are depicted as

three hexagons with different background colors).

There is one face of the original dimer that is mapped to itself under the orientifold ac-

tion. If empty, and for suitable choice of orientifold charges, it can support instantons that

contribute to the superpotential. Up in the cascade, when the corresponding face is filled,

the effect should be generated by a standard gauge instanton. In the infrared, some nodes
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Figure 22. The dimer for a fixed point orientifold of the Z3 quotient of xy = z3w2. The faces

21, 22, 23, 41, 42 and 43 correspond to the deformation fractional brane, and form an invariant set

under the orientifold action. The deformation is depicted as shrinking those faces as indicated by

the dotted ovals. The pink, blue and green shades correspond to the faces of the resulting dimer

after the complex deformation, and describe a point orientifold of C3/Z3.

confine and force non-trivial mesonic vevs which recombine certain faces and reconstruct

the dimer for C3/Z3. By an analysis similar to that in earlier sections, it is easy to show that

the gauge non-perturbative effects of the UV theory flow to the D-brane instanton effects

of the infrared C3/Z3 theory. We refrain from a more detailed discussion of these and other

similar examples, which can easily constructed with the techniques we have presented.

7 Flavoring the non-perturbative superpotential

In this section we consider an alternative flavor configuration for the class of models studied

in section 5. An interesting application of D-brane instantons has been proposed in [25],

where it was argued that certain 4d N = 1 superconformal gauge theories arising from

D3-branes at orientifold singularities actually suffer a non-perturbative breaking of super-

conformal invariance by D-brane instanton effects. This occurs because the gauge theories

are realized in terms of quivers that contain empty nodes with formally ‘non-zero beta-

functions’; these do not produce gauge factors, but can support D-brane instantons whose

contribution to the effective action is weighted by a non-trivial scale. The example we con-

sider is one of the simplest theories that have been argued to realize this scenario. Indepen-

dently of this application, this theory is also interesting because it exhibits a novel feature:

a D-brane instantons generates a non-perturbative superpotential involving the flavors.
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Figure 23. The quiver for the orientifold of C3/Z3 theory with flavors. Consistency requires p odd

in this case.

In this section, we provide a UV embedding of one such example in [25], based on an

orientifold of C3/Z3, using a duality cascade of an orientifold of the SPP/Z3 theory, in

which the IR D-brane instanton is realized as a standard gauge instanton at some higher

step up in the cascade.

The example we consider is the orientifold of C3/Z3 is the last model in table 3 of [25],

whose quiver we reproduce in figure 23 in our notation for convenience. The gauge group

is SU(p), the D7-brane SU(3) × SO(3p − 1) behaves as a global symmetry, and the fields

transform as

SU(p)D3 × SU(3)D7 × SO(3p− 1)D7

( ; 1, 1) + 2( ; 1, 1) + ( ; , 1) + ( ; 1, ) . (7.1)

This model can be realized using the orientifold of C3/Z3 in section 5. Notice that in this

case the RR K-theory charge cancellation conditions require odd p instead. The dimer

diagram for this theory is the one in figure 9, and the SPP/Z3 orientifold theory providing

its UV completion is shown in figure 12.

The setup in figure 23 is very similar to the one presented in section 5.1, figure 10,

with the only difference being the inclusion of extra stacks of three flavor branes in the

regular representation of the orbifold (thereby neither contributing to the net anomaly nor

to the RR tadpoles). Using this relation, it is easy to find a UV completion of this theory

by following the analysis in section 5. We keep the discussion brief and omit some of the

details that were already given in the previous analysis.

Note from figure 23 that the 3 additional D7-branes can couple to any of the three types

of charged zero modes discussed in the end of section 5.4, that we dubbed λ53, λ62 and λ52.

In what follows we focus on one of these cases, namely coupling the flavor branes to λ52.

The other cases can easily be analyzed by following the same ideas explained in this section,

and give rise to different non-perturbative terms that we discuss by the end of this section.
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Figure 24. Periodic quiver for the orientifold of the SPP/Z3 theory with extra flavor branes and

D-brane instantons sitting on nodes 2 and 3. Consistency requires p odd and M even.

Given that the IR theory only differs from figure 10 by the introduction of three

regular D7-branes, it is natural to construct the UV theory as the SPP/Z3 orientifold

therein, with three additional regular D7-branes. The corresponding quiver for the case we

are considering is shown in figure 24. There is a stack of (3p− 1) D7-branes on top of the

orientifold plane (as compared with (3p− 4) in figure 17), and three D7-branes coupled to

nodes 5 and 2 (and their image D7-branes). Note that the D3-brane numbers remain as in

figure 10. Cancellation of K-theory RR charge requires p odd (as already obtained for the

C3/Z3 orientifold) and M even.

In order to find a UV theory in which the D-brane instanton effects arise from standard

gauge dynamics, we must move up the duality cascade until the nodes 2 and 3 are filled.

This is done by applying Seiberg duality to whole columns, as described in section 5.3.

Since the new regular D7-branes do not introduce flavors for the nodes 3, 6 and 9, the

result of the first duality up the cascade is given by figure 25(b), with the addition of 3

regular D7-branes. The next step up the cascade requires dualizing the nodes 2, 5 and 8,

which receive new flavors from the D7-branes. The resulting theory is given by figure 25(a),

with the 3 additional regular D7-branes, and with the numbers of D3-branes on the dual

nodes increased by 3 units for nodes 5, 8 and 2 when compared to figure 18.

It is clearly straightforward to continue dualizing up to the UV to reconstruct a duality

cascade where the inclusion of the flavor branes only produce O(p/N) corrections, with N

the number of regular D3-branes.

We can use by now familiar arguments to show that the strong gauge dynamics of the

theory in figure 25(a) reproduces the D-brane instanton effect in the final C3/Z3 orientifold.
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Figure 25. (a) Periodic quiver for the orientifold of SPP/Z3 theory with the extra flavor brane

stacks that leads to the setup in figure 23 in the IR. (b) The same periodic quiver obtained after

considering the strong dynamics of node 2 and dualizing node 5 and its image 8. The triangle on

node 2 represents the stringy instanton.

First, node 2 is a USp gauge group with Nf = Nc+4 that confines and generates a Pfaffian

non-perturbative term in the superpotential. By using the trick in section 4.5, the inclusion

of this term is equivalent to performing a Seiberg duality on node 2. Dualizing also nodes

5 and 8, we get the quiver diagram of figure 25(b).

At this point, node 3 is a USp group with Nf = Nc + 4, so it confines. Using again

the trick in section 4.5, we end up dualizing node 3. Then we dualize nodes 6 and 9 taking

into account the transformation of fermion zero modes in figure 19. The resulting theory

is precisely figure 24.

Finally, the last step in the RG flow is the strong dynamics of nodes 1 and 4 (and its

image 7). This process triggers the complex deformation that takes the theory from the

orientifold of SPP/Z3 to the orientifold of C3/Z3. Since the D7-branes do not introduce

flavors for these nodes, this process is as described at the end of section 5.4. At this point it

is important to note that the only difference between the quivers in figure 24 and figure 17

is that the former contains extra flavor branes that give rise to the new coupling

λ2,D7′QD7′,5λ52 , (7.2)

where the prime in the D7 flavor index represents that this stack of D7 branes is differ-

ent from the one we had in the setup of section 5, which gave rise to the superpotential

term (5.14). This coupling was not present in the theory we analyzed in section 5. For-

tunately, since this coupling contains no field or zero mode charged under groups 1 and 4

(and its image 7), it is a mere spectator of the deformation process. Therefore, we can just

borrow the analysis in section 5 and add the extra coupling in the end. This leaves a final
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superpotential given by (5.14) and the couplings

λ53
TN ′66λ53 − λ62

TN ′66λ62 − λ62
TX65λ52 + λ52

TX65λ53 + λ52λ2,D7′QD7′,5 . (7.3)

This is precisely one of the possible sets of couplings described by the quiver in figure 23.

The other possibilities arising from that quiver differ from this one in coupling the new

stack of three D7-branes to λ53 or λ62 instead of λ52. In these cases the effect of this new

stack on the IR is generating a new coupling of the form of (7.2), involving the desired

charged zero mode. This leaves a series of couplings for e.g. λ53:

λ53
TN ′66λ53 − λ62

TN ′66λ62 − λ62
TX65λ52 + λ52

TX65λ53 + λ53λ3,D7′QD7′,5 . (7.4)

This series of couplings leads to a different non-perturbative term compared to (7.3) once

we saturate the zero mode integral over the instanton partition function. Noting that

the non-perturbative term will be of the form (2.4), this means that the matrices on the

Pfaffian arising from (7.3) and (7.4) will be different and will have different Pfaffians. For

completeness, we mention that coupling the three D7-branes to λ62 leads to the same

non-perturbative term as the one obtained from (7.4). These two cases generate different

matrices, but their Pfaffians are the same. This is a consequence of the dimer in figure 9

being left-right symmetric, which implies that coupling the D7-branes to a zero mode on the

left (i.e. λ62) has the same effect as coupling them to the zero mode on the right (i.e. λ53).

8 Conclusions

We have presented the first UV completions in terms of duality cascades and gauge dynam-

ics of D-brane instanton effects in chiral gauge theories arising on D-branes at singularities.

Previously existing examples only concerned non-chiral theories. Our examples also include

the first gauge theory completions of D-brane instantons couplings involving flavors. Al-

though we focused on instantons contributing to the superpotential, it is clear that the

results are general, and apply also to other instantons correcting other terms of the 4d

effective action.

We studied both cascading and non-cascading IR geometries. The latter do not admit

fractional branes and hence, naively, do not allow duality cascades. This obstacle can

be bypassed by obtaining them by complex deformations of UV geometries that support

cascades. We have discussed in detail how the complex deformations translate into strong

dynamics of the field theories. An interesting aspect is that, since the UV and IR theories

are related by recombination of gauge factors, the IR instanton is reproduced by a multi-

instanton process in the UV theory.

In general, deriving D-brane instanton couplings from gauge theory dynamics involves

the intricacies of integrating out fields participating in Pfaffian terms in the superpotential

using their F-terms. In section 4.5 we introduced a simple trick that recasts Pfaffian

contributions as path integrals over auxiliary Grassmann variables. With such rewriting,

Seiberg dualities and all other necessary manipulations of the gauge theories reduce to the

standard ones for general ranks of the gauge groups, i.e. for ranks that do not give rise to
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Figure 26. Web diagram for the SPP and its deformation to a smooth geometry.

non-perturbative superpotentials. These transformations can be efficiently implemented in

terms of the dimer or periodic quiver. The auxiliary variables precisely correspond to the

fermionic zero modes in the D-brane construction.

We have primarily presented our ideas in terms of explicit examples. However, we do

not foresee any obstruction preventing them from applying to general orientifolds of toric

CY3 singularities.
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A The SPP cascade and orientifolds thereof

Our examples in the main text are based on (orientifolds of) the SPP/Z3 singularity.

Several of their properties can be discussed in the parent SPP (or orientifolds thereof),

before orbifolding. In this appendix we review some of these parent systems.

A.1 The SPP, its cascade and its complex deformation

The web diagram for the SPP singularity and its complex deformation are shown in fig-

ure 26. The corresponding quiver and dimer diagrams are depicted in figure 27.

The theory is non-chiral, so the ranks of the gauge factors are arbitrary, leading to

two independent kinds of fractional branes. We consider the following choice or regular

and fractional branes, which leads to a duality cascade and the IR complex deformation in

figure 26(b)

N1 = N3 = N , N2 = N +M . (A.1)

The cascade proceeds with a period given by the consecutive dualizations in a sequence

(2, 1, 3, 2, 1, 3), as shown in figure 28. In each period, the number of regular D3-branes

decreases as N → N − 3M .
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Figure 27. Quiver and dimer diagrams for the SPP theory.
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Figure 28. Sequence of quivers in one period of the SPP cascade. We have indicated in blue the

dualized node at each step.

At the IR end of the cascade (and for suitable choice of the UV value of N) the theory

runs out of D3-branes and the strong dynamics of the gauge factor 2 triggers a complex

deformation of the geometry. Its effect on the gauge theory can be easily displayed on the

dimer diagram, see figure 29. This results in the dimer of C3, showing that the complex

deformation smoothes out the singularity completely.

The theory of D3-branes at an SPP singularity admits a T-dual description [64] in

terms of a Hanany-Witten configurations [65] of D4-branes stretched between NS5-branes,

see figure 30(a). In this picture, the duality cascade corresponds to the motion of the

NS’-brane around the S1, with crossings with the NS-brane describing Seiberg dualities,

which change the number of D4-branes by (the reverse) brane creation effect. The IR

deformation corresponds to the recombination of the NS’-brane and one of the NS-branes

when the number of regular D4-branes is exhausted, see figure 30(b).
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Figure 29. Strong dynamics of the SPP theory (a), triggering a complex deformation to the C3

theory (b).

NS NS 

NS’ 

N 

N 

N+M 

D4 

NS 

N 

N D4 

(a) (b) 

Figure 30. (a) Hanany-Witten configuration of NS5-branes and D4-branes, providing the T-dual

to D3-branes at the SPP singularity. Figure (b) describes the T-dual of the complex deformed

geometry by the recombination of relatively rotated NS5-branes.

A.2 Adding orbifolds

The Z3 orbifold in the main text belongs to a general class of orbifolds of SPP. It is possible

to quotient the HW picture of the SPP by a Zk action

z → e
2πi
k z , w → e−

2πi
k w , (A.2)

where z, w denote the coordinates along the NS-, NS’-branes respectively. This class of

orbifolds (originally proposed in [73]), has been recently studied in [41] in the context of

class Sk theories [40], in setups with non-compact x6.

These theories still correspond to toric geometries, and have a simple dimer diagram.

Following the recipe in [28], one simply increases (by a factor k) the basic unit cell of the

parent theory. Therefore each ingredient of the original dimer (face, edge or vertex) has

N copies under the quantum Zk symmetry of the orbifold. The orbifold theories inherit

certain phenomena from the parent theory, like the duality cascades or the IR complex

deformations, as described in section 5.2.

A.3 SPP with an orientifold line

In this section we discuss the SPP in the presence of an extra orientifold projection. Orien-

tifolds of toric singularities can be systematically classified and studied using the techniques
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Figure 31. Dimer diagram for SPP with a line orientifold.
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Figure 32. Complex deformation of the SPP with a line orientifold.

in [43], based on symmetries of the dimer diagrams. In this section we focus on an orien-

tifold with a fixed line, shown in figure 31, which is related to the model of section 5.3 before

orbifolding. As in there, we choose the orientifold sign projecting invariant gauge factors

onto symplectic ones, and invariant edges onto two-index antisymmetric representations.

The model has a T-dual Hanany-Witten construction, corresponding to the addition

of an O8-plane stretching in the 4d spacetime, times the S1 direction times the z and w

complex planes [66]. Therefore each NS- or NS’-brane is mapped to itself, and so is each

D4-brane interval, i.e. each gauge factor. This agrees, with the dimer in figure 31. In the

resulting theory each face describes a symplectic factor, the bifundamentals Xij and Xji

are exchanged, so one linear combination survives, and the adjoint chiral multiplet X11 is

projected down to the antisymmetric representation.

We can also introduced flavor from D7-branes in the original theory, which in the HW

T-dual correspond to D8-branes on top of the O8-plane. In the dimer diagram they are

described following [37] (see also [62]).

As is clear from the dimer, the fractional branes triggering the cascade and complex

deformation are invariant under the orientifold action. Hence the orientifold theory has a

duality cascade and a complex deformation to an orientifold of C3. This is also manifest

in the HW T-dual, since the recombination of the NS- and NS’-branes into a smooth curve

zw = ε is compatible with the O8-plane projection (which leaves z and w invariant. The
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description of the complex deformation in the field theory can be carried out in detail, and

amount to the dimer diagram operation shown in figure 32. In other words, the deformation

proceeds as a Z2 invariant version of the deformation in the parent oriented SPP theory.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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