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1 Introduction

Supersymmetric quantum field theories in various numbers of spacetime dimensions have

been the subject of intense study in the last few decades, and they exhibit many interesting

properties. One striking example is the phenomeon of duality, where two naively quite

different QFTs are actually equivalent, or flow to the same CFT at low energies. In

attempting to organize the web of known dualities, one observes many apparent relations

between dualities in different numbers of dimensions. It is natural to try to explain such

relations by analyzing compactifications of the higher dimensional theories, but there are

many subtleties in this analysis, as discussed for example in [1–3]. In the present paper we

attempt to understand the compactification of four dimensional N = 1 theories on S2 to

obtain two dimensional theories with (at least) N = (0, 2) supersymmetry. In particular,

given a four dimensional duality, we can find evidence for the existence of a corresponding

two dimensional duality.

Given two four dimensional theories related by an IR duality, we can compactify some

of the spacetime dimensions on a compact manifold M. At scales below the size of M,

the two theories should look as effective lower dimensional theories. If, moreover, the com-

pactification scale associated to M is sufficiently small (i.e., M is sufficiently large), each

of the theories can be approximated by their IR fixed point at the scale of the compacti-

fication, and thus the lower dimensional theories should be equivalent. In some situations

these effective theories may have useful lower dimensional UV completions, which will then

be IR dual. Such a completion might or might not coincide with the naive dimensional
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reduction of the four dimensional theory, i.e., the theory we get by taking M infinitely

small. In other words, the limits of going to infrared and sending the size of the compact

manifold to zero might or might not commute.1 Our main result in this paper is derivation

of a necessary condition for the two limits to commute in the case of 4d N = 1 theories

compactified on S2. We then will discuss several reductions with this condition satisfied

and bring arguments in favor of certain two dimensional dualities, some of which are well

known and some of which are new.

An important set of tools in understanding supersymmetric QFTs are the supersym-

metric partition functions on compact manifolds, which can often be computed exactly by

localization. These can also be used to gain some insight into compactification, since in

some cases partition functions defined in higher dimensions approach those in lower di-

menisons as certain limits of the geometry are taken. For example, one can take a limit of

the S3×S1 index of a four dimensional theory as the radius of the S1 is taken to zero, and in

this way one obtains the S3 partition function of its compactification [4–6]. The main tool

of our analysis here will be the S2×T2 partition function computed recently in [7, 8], and its

relation to the elliptic genus of the two dimensional theory we obtain by compactification.

We will use these to derive the condition under which the limits above commute.

Let us state the main result here. If we take a 4d N = 1 theory with a choice of U(1)R
symmetry such that all chiral multiplets have non-negative integer R-charges, then the

effective 2d theory we obtain after compactifying on S2 with a certain twist is described

by an N = (0, 2) gauge theory with the same gauge group, and with matter content

determined by eq. (2.3).

The outline of this paper is as follows. In section 2 we describe the compactification of

four dimensional N = 1 theories on S2. To study this we will use in a crucial way the ellip-

tic genus and S2×T2 partition function, which we review. We derive a rule for determining

a two dimensional N = (0, 2) theory describing the compactification of a given four dimen-

sional N = 1 theory. In the subsequent sections we apply this observation to various four

dimensional dualities to find evidence for two dimensional dualities. In section 3 we consider

Seiberg duality, and show that it implies the U(N) triality of [9], as well as a new SU(N) du-

ality. In section 4 we consider theories with N = 2 supersymmetry, and find they can reduce

to two dimensional theories with additional supersymmetry, i.e., N = (0, 4) or N = (2, 2).

2 Reduction of four dimensional theories to two dimensions

Let us consider a four dimensional N = 1 theory placed on the curved background S2×R2.

The metric is,

ds2 = R2(dθ2 + sin2 θdφ2) + dx2 + dy2 . (2.1)

At low energies compared to R−1, only low energy excitations on the R2 will survive, and

these will be described by an effective two dimensional theory. We will argue that in certain

cases, this theory will be supersymmetric, and we can determine its matter content. More

1Note that even in the case of a conformal duality, taking the size of M to zero in the classical action

need not produce the same theory as flowing to low energies on the compactified geometry.
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precisely, we will determine the matter content of a 2d UV description which flows to the

same fixed point.

In order to preserve some supersymmetry, as in [7, 8, 10] we consider theories which

possess a U(1) R-symmetry, and turn on a background R-symmetry gauge field,

A =
1

2
cos θdφ , (2.2)

which has unit magnetic flux through the S2. Then in the references above it was shown

that this background preserves two supercharges, which transform as scalars under diffeo-

morphisms of the S2, and have the same chirality on the R2. Thus the effective theory at

low energies is a two dimensional theory with N = (0, 2) supersymmetry.2

Because of the R-symmetry flux, the R-symmetry we choose must assign integer charges

to all of the basic fields in the Lagrangian, so that they take values in well-defined bundles

over S2. In practice this means we must take a combination of the superconformal R-

symmetry with various U(1) flavor symmetries, including those in the maximal torus of

non-abelian flavor symmetries, which will typically break some of the flavor symmetry. As

we will see below, this choice of R-symmery will play a large role in determining the matter

content of the resulting two dimensional theory.

Consider a single free chiral multiplet of R-charge r. Then this chiral feels a magnetic

flux r on the S2, and the KK modes on the S2 of its component fields can be expanded in cer-

tain monopole spherical harmonics. Taking only the zero mode components, it was shown

in [10] that the modes along the R2 organize themselves into 2d fields by the following rule,

4d N = 1 chiral multiplet of R-charge r →
1− r × N = (0, 2) chiral multiplets, r < 1

r − 1 × N = (0, 2) fermi multiplets, r > 1 (2.3)

and there is no contribution if r = 1.

Next consider a gauge theory. If we consider a limit where the S2 is very small, then

naively one expects configurations where the gauge multiplet has any non-trivial depen-

dence on the S2 to be strongly suppressed in the path integral by the Yang-Mills term:3

SYM =

∫
S2×R2

d4xTr

(
1

4
FµνF

µν +
i

2
λ†γµDµλ+

1

2
D2

)
(2.4)

The modes of the vector multiplet along the R2 can be seen by a similar analysis as above

to give rise to an N = (0, 2) vector multiplet in two dimensions. Thus in this limit, one

expects to find a 2d gauge theory with the same gauge group as the 4d theory, and with

the matter content determined from the 4d matter content by applying (2.3) to each chiral

multiplet [12].

2In [11] a similar setup was considered, where one compactifies a 4d N = 1 theory on T2 with flux

turned on for background flavor symmetries (rather than the R-symmetry), and one obtains an effective 2d

N = (0, 2) description. This will lead to different 2d theories than the ones we obtain here.
3Here Dµ is a derivative covariant with respect to diffeomorphism, gauge, and R-symmetry transforma-

tions, with the connection (2.2) above.
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However this argument turns out to be a bit fast. As argued in [7] in the context of

the S2 × T2 partition function, there may be BPS configurations with a constant flux for

the gauge field through the S2 which contribute to the path integral, despite naively being

suppressed by the Yang-Mills term. In their computation, this is achieved by shifting the

contour of integration of the field D in the N = 1 vector multiplet to complex values such

that it cancels against the contribution from Fµν in the classical contribution (2.4) (see

also [13]). These configurations comprise saddle points of the path integral which, though

they lie off the contour of integration, may still contribute to the result, and a careful

analysis shows that they indeed sometimes do. Thus we must consider more carefully the

contribution of such flux sectors when we take the two dimensional limit.

We will take the computation of the S2 × T2 partition function as a crucial guide in

determining when these flux sectors need to be taken into account in the reduction. As

above, one performs a topological twist on the S2, and as a result the partition function is

independent of the size of the S2. Thus it can be reinterpreted as the T2 partition function,

or elliptic genus, of the 2d theory we obtain by reducing on the S2. As we will see below,

the zero flux sector of the S2 × T2 index looks indentical to the elliptic genus of the 2d

theory we obtain by the naive procedure described above, but in general there may be other

flux sectors which contribute. However, in some cases one finds that the contribution of all

non-zero flux sectors vanishes, and only the zero flux contribution remains. In such cases,

we propose that the naive reduction gives the correct description of the reduced theory.

Indeed, this conclusion is consistent (by construction) with the interpretation above that

the S2×T2 index computes the elliptic genus of the reduced theory. The matching of elliptic

genera of 2d theories is a strong indication of their equivalence. For example, it implies

that all mixed ’t Hooft anomalies between flavor symmetries, and between the R-symmetry

and flavor symmetries, agree.4 Below we will derive the necessary condition that the zero

flux sector is the only one which contributes.

In cases where non-zero fluxes do contribute, one no longer finds an expression for the

elliptic genus which look like that of a single 2d N = (0, 2) theory, but rather it looks like

a direct sum of such theories, with one for each BPS gauge flux configuration. It is an

important problem to understand the two dimensional origin of the terms coming from the

higher flux sectors, and though we leave the precise resolution of the problem to future

work, let us briefly present a speculation. The zero flux sector can be understood as the

sector of zero-modes coming from the Kaluza-Klein reduction on S2 with R symmetry flux.

The other flux sectors in two dimensions could come from defect operators that wrap the

S2 and support a transverse gauge flux. If quantizing their moduli space produces the same

spectrum that one can read off from the elliptic genus then it will provide a good support to

this speculation. In this picture, the local operators in 2d associated to a given flux sector

are closed under operator product expansion because their parent surface operators wrap

homologous cycles and hence support the same gauge flux. This could explain why the

4However, it should be stressed that the elliptic genus is insensitive to the D-terms in the action, and

so, e.g., does not detect the metric at infinity on the moduli space, which one would expect to match for

dual theories. We will not address the role of D-terms in the dualities we consider below, but see [14] for a

related discussion.
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S2×T2 partition function is the elliptic genus of a direct sum of two dimensional theories.

Below we will focus on the less exotic cases where only a single flux sector contributes.5

Let us now review the partition functions which we will use in this analysis, the elliptic

genus for N = (0, 2) theories and the S2 × T2 partition function for N = 1 theories.

2.1 Elliptic genus

Let us start by reviewing the computation of the elliptic genus of 2d theories withN = (0, 2)

supersymmetry. This was computed in the RR sector in [17, 18] and in the NSNS sector

in [19]; in this paper we will use the former convention. We work on a torus with complex

structure τ . Since the background is flat, all the supercharges are preserved, and we can

attempt to localize the path integral to BPS configurations. It was shown in [17] that these

are given by flat connections for the gauge fields, with holonomies which we may take to lie

in the Cartan. For a U(1) gauge field, we define a complexified fugacity, z = e2πiu where

u =
∫

1A− τ
∫

2A.

The 1-loop determinant of a chiral multiplet with unit charge in this background is,

Zchi(z; q) =
1

θ(z; q)
, (2.5)

where q = e2πiτ and θ(z; q) = q
1
12 z−

1
2
∏∞
k=0(1 − zqk)(1 − z−1qk+1). For a fermi-multiplet,

we have,

Zferm(z; q) = θ(z; q) . (2.6)

For dynamical gauge fields, we find a contribution of:

Zgauge(z; q) = η(q)2rG
∏

α∈Ad(G)

θ(zα; q) . (2.7)

Here η(q) = q
1
24
∏∞
k=1(1− qk), and the prefactor comes from the contribution of the gauge

multiplet components along the Cartan. We use the shorthand zα =
∏rG
j=1 zj

αj , where rG
is the rank of the group, zj runs over a basis of the Cartan, and αj are the components of

the roots in this basis.

After collecting the 1-loop determinant factors for all the matter and gauge fields,

which depend on zj as well as fugacities µa for background gauge fields coupled to flavor

symmetries, we integrate this over a certain half-dimensional contour C in the complex

space of zj ’s,

I(µa) =

∮
C

dzj
zj
Z1−loop(zj , µa) . (2.8)

We will describe the contour C in a moment. In order for the gauging to be well-defined, the

gauged symmetry must not have any mixed ’t Hooft anomalies with itself or the remaining

flavor symmetries. This condition translates in the genus to the condition that the 1-loop

determinant be elliptic in zj , i.e., invariant under zj → qzj . Thus it suffices to consider the

function in a single fundamental domain.

5See [14] for further discussion on the appearance of direct sums of theories when reducing to two

dimensions. For appearance of direct sums of theories in different contexts see for example [15, 16].
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The contour C is determined by the Jeffrey-Kirwan (JK) residue prescription, which

we briefly review. Note from the 1-loop determinant expressions above that poles in the in-

tegrand are contributed only by chiral multiplets, and correspond to choices of holonomies

for which one or more chirals develop zero modes. These singularities occur along codimen-

sion one subspaces in zj space, and when rG or more of these subspaces intersect at a point,

we may find a non-trivial residue there. Then the JK prescription tells us which of these

residues we should count. First, in the rank one case, the prescription is simply to count the

residues in the fundamental domain from those chirals which have positive charge, or equiv-

alently, the negative of the residues from those with negative charge. These are the same

since the sum of residues of poles in the fundamental domain of an elliptic function is zero

In the higher rank case the situation is somewhat more complicated. To each chiral

we can associate a charge vector, Qj , such that the argument of the theta function corre-

sponding to this chiral depends on the zj through zQ. Consider a point where m ≥ rG of

chirals develop a zero mode, i.e., m ≥ r of the codimension one singular subspaces inter-

sect, and let Qa, a = 1, . . . ,m be the corresponding charge vectors. In the neighborhood

of the singular point (which we may take to lie at zj = 1 for simplicity), the function we

integrate looks like a sum of terms of the form (writing zj = e2πiuj ),

f(u)
du1

Qa1(u)
∧ du2

Qa2(u)
∧ . . . ∧ durG

QarG (u)
, (2.9)

for some choice of ai ∈ {1, . . . ,m}, and with f(u) holomorphic. Then to define the JK

residue, we must pick an auxiliary rG-vector ηj , and then we count the contribution from

this singular point as,

JK-Resu→0 . . . =

{
f(0) |det(Qa1Qa2 . . . QarG )|−1 η ∈ Cone(Qai)

0 else
, (2.10)

where Cone(Qai) is the positive cone spanned by the Qai . The final answer, obtained by

summing this over all singular points in the fundamental domain, is independent of the

choice of η. Eg, in the rank one case, the sign of η tells us whether to count poles from

positively or negatively charged chirals.

2.2 S2 × T2 partition function

Next we consider the computation of the S2 × T2 partition function of N = 1 theories

in [7].6 An N = 1 theory with a suitable choice of R-symmetry can be placed on a

certain SUGRA background on S2 × T2, with a background R-symmetry gauge field with

unit flux through the S2, while preserving two of the supercharges, as we saw for S2 × R2

above. After placing the theory on this background, one can use standard localization

arguments to reduce the path integral to a finite dimensional integral and/or sum over

6This partition function was also computed in [8], however there is an important difference in the

prescription between the two papers, namely, the sum over fluxes we will review below is absent in the

latter. We find this sum plays a crucial role for the computations to be consistent, and so we will use the

prescription of the former paper below.
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BPS configurations. The BPS configurations relevant here are flat connections for the

gauge field on the T2, labeled by the holonomies around the two cycles, and a flux through

the S2. The flux and holonomies must all commute, and so can be labeled by two elements

of the maximal torus and a coweight, respectively. Eg, for a U(1) gauge field they are

labeled by a complex fugacity, z = e2πiu, u =
∫
aA − τ

∫
2A, as with the elliptic genus

above, and an integer flux, m = 1
2π

∫
S2 F .

The partition function we compute has the following index interpretation,

I(a`, s`; y, q) = TrHS2×S1;s`
(−1)F qL0yJ

3
∏
`

a`
q` , (2.11)

where L0 is the momentum along spatial S1, J3 is the Cartan of the SU(2) isometry of S2, q`
are charges under global flavor symmetries, with complexified fugacities a`, and HS2×S1;s`

is the Hilbert space on S2×S1 with fluxes s` for gauge fields coupled to global symmetries.

Below we will set the fugacity y to one for simplicity.

The 1-loop determinant of an N = 1 chiral multiplet of R-charge r, which must be

integer, coupled to the U(1) background above is given by,(
1

θ(z; q)

)m+1−r
. (2.12)

The contribution of the gauge field is,

η(q)2rG
∏

α∈Ad(G)

θ(zα; q) . (2.13)

Then the S2 × T2 index is given by taking the 1-loop determinant factor from the chirals

and vectors, which depend on fugacities and fluxes for both the dynamical and background

gauge multiplets, and summing over the fluxes and integrating over holonomies for the

dynamical gauge fields,

I(µa, sa) =
∑

mj∈Λcw

∮
C

dzj
zj
Z1−loop(zj ,mj ;µa, sa) . (2.14)

Here zj and µj are holonomies for dynamical and background gauge fields, as in the elliptic

genus above, and mj and sa are fluxes. Also, C is a certain half-dimensional contour in

the space of complexied fugacities zj .

To define this contour, let us first note that, for a given mj , the integrand is precisely

what appears in the the elliptic genus of a certain N = (0, 2) gauge theory with matter

content determined by the rules (here G and H are the gauge and flavor symmetry groups,

respectively),

N = 1 vector multiplet → N = (0, 2) vector multiplet (2.15)

N = 1 chiral multiplet transforming with weight (ρ, ω) under G×H →

→


m N = (0, 2) chiral multiplets m > 0

|m| N = (0, 2) fermi multiplets m < 0

does not contribute m = 0

 with weight(ρ, ω) under G×H

– 7 –
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where m = ρ(m) + ω(s) + 1 − r is the flux felt by the chiral, with r its R-charge. This

follows from comparing the 1-loop determinants in (2.12) and (2.13) to those for the elliptic

genus in (2.5), (2.6), and (2.7). Then the contour C is identical to the one appropriate

for computing the elliptic genus of this N = (0, 2) theory, i.e., it is determined by the JK

prescription. Note if we set to zero all fluxes for the dynamical and background gauge

fields, this is precisely the rule we found in (2.3).

To summarize, we see that the S2 × T2 partition function is identical to the infinite

sum of elliptic genera of N = (0, 2) field theories, whose matter content is determined by

the matter content of the 4d theory, the choice of R-symmetry, and the magnetic flux of

the gauge field.

2.3 Truncation of sum over fluxes

However, an important simplification occurs, which is that this infinite sum truncates to a

finite sum. In favorable cases, it even truncates to a single term, which we can then interpret

as the elliptic genus of a unique N = (0, 2) theory. Let us argue how this truncation occurs,

first starting for simplicity with the rank one case.7

Rank one case

For a rank one gauge theory, the index is given explicitly by,

I(µa, sa) =
∑
m∈Z

∮
C

dz

z

∏
α

(
1

θ(zeαµafα,a ; q)

)eαm+fα,asa+1−rα
, (2.16)

where eα and fα,a are the gauge and flavor charges of the αth chiral, and rα is its R-charge.

Here the contour C should be taken to encircle only those poles contributed by positively

charged chirals, with eα > 0, or equivalently, encircling only those from the negatively

charged chirals (with the opposite orientation).

Now, note that the αth chiral only contributes a pole when,

eαm+ fα,asa − rα ≥ 0

⇒


m ≥ 1

|eα|
(−fα,asa + rα), eα > 0,

m ≤ 1

|eα|
(fα,asa − rα), eα < 0.

. (2.17)

Thus when m is sufficiently positive, the negatively charged chirals do not contribute any

poles. If we choose to count the poles coming from them, we get zero, and so we see the sum

truncates for sufficiently large m. Similarly, when m is sufficiently negative, the positively

7In [13] it was also observed, in the context of the A-twisted S2 partition function, which is computed by

a similar prescription, that for certain choices of the parameter η, many of the flux sectors do not contribute.

However, we expect that in this case, as well as the case of S2×S1, the sum does not, in general, truncate to

a finite sum. In particular, interpreting the S2×S1 partition function as computing the index of the 1d quan-

tum mechanics we get by reducing on the S2 seems to be less straightforward than in the 4d to 2d reduction.
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charged fields do not contribute poles, and so if we count poles from them, we see the sum

truncates below. Thus the sum which was naively infinite actually simplifies to a finite sum.

We can get an even more drastic simplification if we do not turn on any flavor fluxes

and make the key assumption that the R-charge of all chiral multiplets is non-negative.

In this case, we see that for m > 0, none of the negatively charged chirals have poles,

and similarly for m < 0 and the positively charged chirals. Thus in this case we have a

contribution only from the term m = 0. This term looks like the elliptic genus of a 2d (0, 2)

theory with a chiral multiplet for each field of R-charge 0, no contribution from R-charge

1 fields, and r − 1 fermi multiplets for each field of R-charge r > 1.

Higher rank case

Next consider the higher rank case, and let us determine which fluxes may contribute in

the sum defining the S2 ×T2 index. Specifically, we are interested in finding the condition

when only the contribution from the sector with all mj = 0 is non-zero, so let us fix some

non-zero vector of fluxes, mj , and see whether it contributes. For simplicity, we do not turn

on any flavor fluxes. As described above, we compute the contribution from this term using

the JK residue prescription, which depends on a choice of rG-vector ηj , and a convenient

choice for us will be to take ηj = −mj .
8

Similar to above, the condition for the αth chiral to contribute a pole is ejαmj−rα ≥ 0,

where ejα, j = 1, . . . , rG, are the gauge charges and rα is the R-charge. Now suppose we

find a point where rG chirals simultaneously get poles.9 Then we must have,

ejαmj − rα ≥ 0, α = 1, . . . , rG . (2.18)

From (2.10), in order for this pole to actually contribute, η must lie in the positive cone of

the ejα, i.e.,

ηj = −mj =
∑
α

cαejα , (2.19)

where cα > 0. Now if we sum the inequality (2.18) over α, weighted by the positive

coefficients cα, we find,

0 ≤
∑
α

cα(ejαmj − rα) = −
∑
j

mj
2 −

∑
α

cαrα . (2.20)

We can see that, for sufficiently large mj , this inequality will be violated (since the second

term depends only linearly on the mj), and so this pole can’t contribute. Thus the sum over

mj must truncate to a finite sum. If we assume, moreover, that all the rα are non-negative,

then we can see that only the term with all mj = 0 can possibly contribute.

8More precisely, we must choose an ηj which does not lie on the boundary of the positive cone of any

set of rG Qa vectors, for then the prescription in (2.10) will not be well-defined. If this choice of ηj lies on

such a boundary, we can simply deform it slightly to fix this, and this will not affect the argument below.
9If more than rG chirals get poles, we should first write the integrand near the singular point as a sum

of terms of the form (2.9), and apply the argument below to each of them.
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To summarize, if we take a 4d theory for which we assign all fields non-negative R-

charges,10 the S2 × T2 index is identical to the elliptic genus of a certain 2d (0, 2) theory,

with matter content determined by the rules (2.15). In particular, a 4d duality will imply

the identity of elliptic genera of the corresponding 2d theories, and can be taken as evidence

for a 2d duality. Let us now look at some examples.

3 Reduction of Seiberg dualities

Let us here illustrate how the simple criterion discussed above can be used to find evidence

in favor of two dimensional dualities.

3.1 SU(Nc) dualities

As a first example, take N = 1 SU(Nc) SQCD with Nf flavors (Qa, Q̃a). We need to

pick an assignment of non-negative integer R-charges for the flavors, which must obey the

anomaly-free condition,
Nf∑
a=1

ra + r̃a = 2(Nf −Nc) , (3.1)

where ra = R(Qa) and r̃a = R(Q̃a). Let us pick ra > 1, a = 1, . . . , ` for the first ` chirals, R-

charge 1 for the next k, and R-charge zero to the remaining Nf−`−k, and similarly with r̃a,

a = 1, . . . , ˜̀ and k̃ for the anti-fundamentals. The theory we find in 2d consists of Nf−`−k
chirals in the fundamental, Nf − ˜̀− k̃ chirals in the antifundamental, and Nferm fermis in

the fundamental/anti-fundamental (these are equivalent for fermi multiplets), where,

Nferm =
∑̀
a=1

(ra − 1) +

˜̀∑
a=1

(r̃a − 1) = 2(Nf −Nc)− `− ˜̀− k − k̃

= Nchi − 2Nc , (3.2)

where we used the anomaly-free condition, and Nchi is the total number of chirals. Note

this relation between Nchi and Nferm is required so that the SU(Nc)
2 anomaly cancels in 2d.

Now consider the Seiberg dual of the 4d theory [20]. This is an SU(Nf−Nc) theory with

Nf fundamental flavors and Nf
2 mesons. In general, given the R-charge assigments of the

quarks in the original theory, we can read off the R-charge assigments of the dual fields as,

R(qa) = 1− ra + β, R(q̃a) = 1− r̃a − β, R(Mab) = ra + r̃ , (3.3)

where β = 1
2(Nf−Nc)

∑
a(ra − r̃a), which we may assume without loss of generality to be

non-negative. For the choice of R-charges above, one can see that non-negativity of the

R-charges implies β = 0 or 1.11

Let us discuss the solutions we find in the two cases. For β = 1, non-negativity of the

R-charges of the q̃’s requires k̃ = ˜̀ = 0, and for Qa, a = 1, . . . , `, non-negativity requires

10We also note that taking the R-charges to be in addition not bigger than two implies that the partition

function does not depend on the fugacity coupled to the isometry of S2.
11Reductions with no restriction of non-negativity were first discussed in [12].
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ra = 2. The anomaly-free condition is then k+ 2` = 2(Nf −Nc), which also ensures β = 1.

Note k must be even, and let us write k = 2n. Thus the 2d N = (0, 2) theories we get on

the two sides, which we conjecture to be dual, are:

(A) : SU(Nc) with Nc − n fund. chirals, Nf −Nc − n fund. fermis, and Nf anti-fund. chirals

(B) : SU(Nf−Nc) with Nc−n fund. fermis, Nf−Nc−n fund. chirals, and Nf anti-fund. chirals,

with Nf (Nc − n) chiral mesons and Nf (Nf −Nc − n) fermi mesons (3.4)

For β = 0, we see we must take ` = ˜̀= 0. Then imposing the anomaly-free condition

and β = 0 gives k = k̃ = Nf −Nc. Thus we see the 2d N = (0, 2) theories we get in this

case, which we also conjecture to be dual, are:

(A′) : SU(Nc) with Nc fund. chirals and Nc anti-fund. chirals

(B′) : SU(Nf −Nc) with Nf −Nc fund. chirals and Nf −Nc anti-fund. chirals,

with Nc
2 chiral mesons and (Nf −Nc)

2 fermi mesons (3.5)

Note Nf does not appear at all on the first side. We claim this duality follows from two

instances of a special case of the previous duality. Namely, if we take Nf = Nc there, as

well as n = 0, we find:

SU(Nc) with Nc fund. chirals and Nc anti-fund. chirals ↔ Nc
2 chiral mesons (3.6)

By moving the (Nf − Nc)
2 fermi multiplets in (3.5) to the other side by adding a mass

term, we see it is just given by taking two copies of (3.6).

In [9], the authors studied similar theories, but with gauge group U(Nc) rather than

SU(Nc). The ranks of the flavor symmetry groups above correspond in their notation to

N1 = Nf , N2 = Nc − n, and N3 = Nf −Nc − n. There they found a triality corresponding

to cyclic permutations of N1, N2, N3 (the remaining permutations are related to these by

charge conjugation). The duality above corresponds to the exchange of N2 and N3. The

theory which would naively be the third theory in the triality would have rank −n, which

is an indication of SUSY breaking in the original theories for the U(N) version of these

theories (or, for n = 0, that the theories are free). For the SU(N) versions this is no longer

the case, and these theories have non-trivial fixed points, however it does imply that we

are only able to find a duality, and not a triality.

3.1.1 Global symmetries

Let us understand how the reduction works in more detail by studying the global symme-

tries of these theories. In the parent 4d theories there is an SU(Nf )× SU(Nf )× U(1)B ×
U(1)R symmetry under which the fields are charged as:
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SU(Nf ) SU(Nf ) U(1)B U(1)R

Qa Nf 1 1
Nc

1− Nc
Nf

Q̃a 1 Nf − 1
Nc

1− Nc
Nf

qa N̄f 1 1
Nf−Nc

Nc
Nf

q̃a 1 N̄f − 1
Nf−Nc

Nf
Nc

Mab Nf Nf 0 Nc
Nf

Now let us see what happens when we redefine the R-symmetry as above. Let us first

consider the case n > 0. Then our choice of R-charges breaks the SU(Nf ) symmetry acting

on Q̃a to SU(Nc−n)×SU(2n)×SU(Nf −Nc−n)×U(1)1×U(1)2. Following [9] we write:

N1 ≡ Nc − n, N2 ≡ Nf , N3 ≡ Nf −Nc − n (3.7)

and rename the fields. Then we find:

SU(N2) SU(N1) SU(2n) SU(N3) U(1)1 U(1)2 U(1)B U(1)R

Φa N2 1 1 1 0 0 1
Nc

0

Pa 1 N1 1 1 2n 0 − 1
Nc

0

∆a 1 1 2n 1 −(N1) (N3) − 1
Nc

1

Ψa 1 1 1 N3 0 −2n − 1
Nc

2

Φ̂a N̄2 1 1 1 0 0 1
N̂c

0

Ψ̂a 1 N̄1 1 1 −2n 0 − 1
N̂c

2

∆̂a 1 1 2̄n 1 N1 −(N3) − 1
N̂c

1

P̂a 1 1 1 N̄3 0 2n − 1
N̂c

0

MP
ab N2 N1 1 1 2n 0 0 0

M∆
ab N2 1 2n 1 −(N1) (N3) 0 1

MΨ
ab N2 1 1 N3 0 −2n 0 2

where Nc = 1
2(N2 +N1 −N3), and N̂c = 1

2(N2 +N3 −N1)

After reducing to 2d, we can eliminate the R-charge 1 fields which don’t contribute,

and correspondingly the SU(2n) symmetry disappears. We also move the fields MP
ab to the

first side by adding a superpotential, and rename these to Γab, and rename MΨ
ab to Γ̂ab.

Finally, we renormalize the U(1)1 and U(1)2 symmetries so all fields have charge ±1. We

are finally left with a 2d N = (0, 2) theory with fields charged as:
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SU(N2) SU(N1) SU(N3) U(1)1 U(1)2 U(1)B

Φa N2 1 1 0 0 1
Nc

Pa 1 N1 1 1 0 − 1
Nc

Ψa 1 1 N3 0 −1 − 1
Nc

Γab N̄2 N̄1 1 −1 0 0

Φ̂a N̄2 1 1 0 0 1
N̂c

Ψ̂a 1 N̄1 1 −1 0 − 1
N̂c

P̂a 1 1 N̄3 0 1 − 1
N̂c

Γ̂ab N2 1 N3 0 −1 0

Figure 1. Quivers for the dual theories. Here the central node is an SU(N) gauge group, while

the outer nodes are U(N) flavor groups, with Nc = 1
2 (N1 +N2 −N3) and N̂c = 1

2 (N3 +N2 −N1) .

Here we must impose N2 ≥ N1 +N3, and as a result we obtain a duality rather than a triality.

One can compute the matrix of abelian anomalies as,

U(1)1 U(1)2 U(1)B

U(1)1
1
2N1(N1 −N3 −N2) 0 −N1

U(1)2 0 1
2N3(N3 −N1 −N2) −N3

U(1)B −N1 −N3 2

We can see this is consistent with the duality, where N1 ↔ N3 and U(1)1 ↔ U(1)2.
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Next consider the case n = 0, i.e., N2 = N1 + N3. Then the choice of R-symmetry

only breaks the SU(Nf ) to SU(N1)×SU(N3)×U(1), i.e., there is only a single U(1) factor.

The charges in 2d in this case are,

SU(N2) SU(N1) SU(N3) U(1)1 U(1)B

Φa N2 1 1 0 1
Nc

Pa 1 N1 1 N3 − 1
Nc

Ψa 1 1 N3 −N1 − 1
Nc

Γab N̄2 N̄1 1 −N3 0

Φ̂a N̄2 1 1 0 1
N̂c

Ψ̂a 1 N̄1 1 −N3 − 1
N̂c

P̂a 1 1 N̄3 N1 − 1
N̂c

Γ̂ab N2 1 N3 −N1 0

In fact naively each of these theories has an additional axial U(1)A symmetry in 2d

under which all the quarks have the same charge. This symmetry is anomalous in the parent

4d theory. We thus would not expect the U(1)A to be the symmetry of the dimensionally

reduced theory. A possible way for this to happen is for the dimensionally reduced theory

to have a superpotential explicitly breaking U(1)A symmetry. An analogous effect happens

when reducing four dimensional theories on S1, where in general a monopole superpotential

is generated in the theory in three dimensions which explicitly breaks the symmetries which

were anomalous in four dimensions [2, 3]. A similar phenomenon may occur here, possibly

involving a local defect operator in two dimensions, such as the dimensional reduction of

the codimension two Gukov-Witten operator in 4d [21]. Although we do not pursue this

issue here, we think it would be an interesting topic for future investigation.

We have checked in many examples that the elliptic genera, refined by fugacities for

all the symmetries, agree between the two theories. Note this serves as a check not only of

our proposed 2d duality, but also of the 4d Seiberg duality, for which these computations

can be interpreted as the S2 × T2 index with a certain choice of U(1)R symmetry.

3.2 U(N) version

Let us comment on what happens in the reduction of the U(N) version of this duality. In

4d we can obtain a U(N) version of Seiberg duality by gauging the U(1)B flavor symmetry

on both sides. However, there is a U(1)B U(1)B U(1)R anomaly, so the theory has no non-

anomalous R-symmetry, and so we will not be able to compactify the theory on R2×S2. To

fix this, it is convenient to introduce additional fields charged under the U(1)B. Namely,

we find the following theories are dual, and have non-anomalous U(1)R,
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SU(Nf ) SU(Nf ) U(1)B U(1)R

Qa Nf 1 1
Nc

1− Nc
Nf

Q̃a 1 Nf − 1
Nc

1− Nc
Nf

Ω± 1 1 ±1 2

qa N̄f 1 1
Nf−Nc

Nc
Nf

q̃a 1 N̄f − 1
Nf−Nc

Nf
Nc

Mab Nf Nf 0 Nc
Nf

Ω± 1 1 ±1 2

If we restrict to all R-charges non-negative, we are led to the same analysis as above,

and in particular we only find theories which are free or SUSY breaking. However, suppose

we impose this restriction only on the fundamentals, but do not impose any restriction on

the R-charges of the anti-fundamentals. Then we claim we can only get contributions to

the S2 × T2 index from fluxes {mj} with all mj ≥ 0. Namely, suppose that, say, m1 < 0.

Then η1 > 0, and so the only way an intersection of singular subspaces can contribute is if

it involves a pole from the 1st component of a fundamental chiral. But given our restriction

on R-charges such poles do not appear, and so there is no such contribution.

In fact we can do better, and truncate further to mj = 0. Namely, in the S2 × T2

index of a theory with a U(1) gauge factor, we can introduce an FI parameter ζ in the

action, and in the index this enters as a factor wm weighing the sum over fluxes m, where

w = e2πiζ . Using ζ we can isolate a term with fixed m, and argue that these must map

across the duality. In the present case this allows us to restrict to
∑

jmj = 0, and then

from the last paragraph we see only the mj = 0 sector contributes here.

With this extra freedom, one can in fact obtain the full U(N) triality of [9], at the level

of the elliptic genus, starting from equality of S2 × T2 indices in 4d. Namely, in [8, 12], an

R-charge assignment of the above form was picked and it was argued that one recovers the

triality.

3.3 Sp(2Nc) Seiberg duality

Next consider the Sp version of Seiberg duality [22], which relates the Sp(2Nc) theory with

2Nf fundamental chirals, and the Sp(2(Nf −Nc−2)) theory with 2Nf fundamental chirals

and Nf (2Nf − 1) mesons.

We must choose an assigment of integer R-charges ra to the fundamental chirals. The

anomaly free condition is, ∑
a

ra = 2(Nf −Nc − 1) .

Under duality, the R-charges of the dual quarks are given as,

r̂a = 1− ra .

Thus the only way to guarantee non-negative R-charges on both sides is to take ra = 0 or

1. Then the anomaly free condition forces us to take 2(Nf −Nc − 1) of the chirals to have
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R-charge 1, and the remainder to have R-charge zero, leaving a 2d theory with 2(Nc + 1)

flavors. On the dual side, we find a theory with 2(Nf −Nc + 1) fundamental chirals. After

some rearranging, we find the following 2d duality:

Sp(2Nc) with 2(Nc + 1) fundamental chirals↔ Nc(2Nc − 1) chiral mesons (3.8)

Thus in the Sp case we are not able to find dualities between non-trivial CFTs, rather, we

can demonstrate that the above Sp(2Nc) theory is free in the IR.

4 Reductions of N = 2 models

Next we consider four dimensional theories with N = 2 supersymmetry. Recall that a

Lagrangian for such a theory can be constructed from hypermultiplets, which in N = 1

language consist of a pair of chiral multiplets, qa and q̃a, as well as N = 2 vector multiplets,

consisting of an N = 1 vector multiplet and an adjoint chiral multiplet Φ. These theories

classically have an SU(2)R×U(1)r R-symmetry, as well as a U(1)Fa flavor symmetry acting

on each hypermultiplet. These act on the fields and supercharges as,12

U(1)R ⊂ SU(2)R U(1)r U(1)Fa

qb 1 0 δab

q̃b 1 0 −δab
Φ 0 2 0

Q±α ±1 1 0

Q̃±α̇ ±1 −1 0

Here the U(1)r symmetry will be anomalous unless the theory is conformal.

In order to compactify the theory on R2 × S2, we must pick an N = 1 R-symmetry.

There are several choices, leading to different theories in 2d with various types of super-

symmetry.

Coulomb reduction. First consider taking the N = 1 R-symmetry to be U(1)R, the

Cartan of the SU(2)R symmetry, which is always non-anomalous. This gives the hypermul-

tiplets fields q, q̃ an R-charge of 1 and the adjoint chiral Φ R-charge zero. The supercharges

which are preserved are Q+
α and Q̃+

α̇ , and the resulting theory has N = (2, 2) supersymme-

try. We see the hypermultiplets do not contribute in 2d, while an N = 2 vector multiplet

contributes a (0, 2) adjoint chiral and vector multiplet, i.e., an N = (2, 2) vector multiplet.

The theory we obtain is, at least for Lagrangian theories in 4d, a pure N = (2, 2) gauge

theory with the same gauge group as in 4d.

“Flavored” reductions. Starting from this choice, we can further mix the R-symmetry

with some N = 2 flavor symmetry without changing the supersymmetry that is preserved.

Take a free hypermultiplet, for example. If we mix the R-symmetry with the U(1)F sym-

metry with one sign, we find that q gets R-charge 0 and contributes a (0, 2) chiral multiplet,

12Here we write the charges of the bottom component of the corresponding multiplet.
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and q̃ gets R-charge 2 and contributes a (0, 2) fermi multiplet, and so (after replacing the

fermi multiplet by its conjugate) these contribute an N = (2, 2) chiral multiplet in the

representation of q. If we take the other sign choice, we find a chiral in the representation

of q̃. In a general Lagrangian theory, we can make such a choice for each hypermultiplet

in the theory, i.e., whether it contributes a chiral multiplet in the representation of q, in

that of q̃, or does not contribute at all. A generic choice will break some of the non-abelian

flavor symmetry. All these choices give theories with N = (2, 2) SUSY.

Suppose the four dimensional theory we start with is conformal. Then the symmetry
1
2(R − r) is a non-anomalous flavor symmetry, and acts on q, q̃,Φ as 1

2 ,
1
2 , and −1, respec-

tively. This becomes the the U(1)V R-symmetry of the N = (2, 2) algebra, and acts on each

chiral multiplet with charge 1
2 . In the non-conformal case, we expect a superpotential is

generated dynamically in the compactification which breaks this U(1)V symmetry, similar

to the N2 = N1 +N3 case of the SU(N) Seiberg duality described above.

Higgs reduction. Another choice, only possible in the conformal case, is to take the

R-symmetry to be U(1)r. This preserves the supercharges Qα
±, i.e., 4 supercharges of the

same chirality, and so we obtain a theory with N = (0, 4) supersymmetry. The hyper-

multiplets fields q, q̃ get R-charge 0 and the adjoint chiral Φ R-charge 2. Thus the hyper

contributes a (0, 4) hypermultiplet in 2d and the N = 2 vector multiplet contributes a

(0, 4) vector multiplet. Note there is no further mixing we can do with flavor symmetries

here, as it would result in fields of negative R-charge. As in the N = (2, 2) case, the

flavor symmetry 1
2(R − r) gives rise to a subgroup of the extended R-symmetry group of

(0, 4). In this reduction we obtain the theories considered in [23], which were observed to

be N = (0, 4) sigma models with target space (a certain bundle over) the Higgs branch of

the 4d theory. In the case of the E6 theory, the N = 1 Lagrangian discussed in [24] gives

rise upon reduction to an N = (0, 2) Lagrangian which flows to the N = (0, 4) reduction

of the E6 theory, and this was checked to have the expected E6 symmetry in [24].

Schur-like reductions. Finally, again in the conformal case, suppose we take the R-

symmetry as 1
2(r + R). Here only the supercharges Q+

α survive, and so the theory has

only N = (0, 2) supersymmetry. This choice assigns the adjoint chiral R-charge 1, and so

it doesn’t contribute in 2d, and so the N = 2 vector multiplet contributes a (0, 2) vector

multiplet. However, it assigns the hypers a fractional R-charge 1
2 . To make their R-charge

integer, we must further mix with the flavor symmetry acting on them with coefficient

±1
2 . For one sign q and q̃ get R-charges 0 and 1, and contribute a (0, 2) chiral in the

representation of q, and for the other they contribute a chiral in the representation of q̃.

In other words, the matter content is the same as a corresponding “flavored reduction”,

but with all N = (2, 2) multiplets replaced by N = (0, 2) multiplets. The symmetry
1
2(R− r) is a flavor symmetry which we call U(1)y. With this choice and taking y = q, the

elliptic genus of this theory has exactly the same integrand appearing in the Schur limit of

the superconformal index. However we emphasize the contour of integration here is given

by the JK prescription (and is different for the different ways of mixing with the flavor

symmetries), while that for the Schur index is the unit circle.

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
1
6
3

4.1 Example: SU(N) Nf = 2N S-duality

As an example, consider the S-duality acting on SU(N) with 2N flavors. This is a self-

duality, but acts in a non-trivial way on the SU(N)a × SU(N)b × U(1)c × U(1)d ⊂ U(2N)

flavor symmetry of the theory, exchanging U(1)c and U(1)d. Let us study the partition

functions of this theories and its various two dimensional reductions.

The S2 × T2 index of this theory is given by (writing only the mj = 0 term, as we

always pick R-charges which truncate to this term),

I(aj , bj , c, d; y) = (4.1)∮ ∏
j

dzj
zj

∣∣∣∣∏
j zj=1

N∏
j=1

N∏
α=1

(
1

θ(y1/2zjaα−1c)

)1−rα( 1

θ(y1/2(zjaα−1c)−1)

)1−r̃α
×

×
N∏
j=1

N∏
β=1

(
1

θ(y1/2zj−1bβd)

)1−r′β
(

1

θ(y1/2(zj−1bβd)−1)

)1−r̃′β∏
i 6=j

θ(zi/zj)

θ(y−1zi/zj)1−rΦ
.

Then the statement of the four dimensional duality is that this is equal to the same ex-

pression with c↔ d, and R-charges mapped appropriately.

Let us consider the various choices of R-symmetry described above. In each case we will

reinterpret (4.1) as the elliptic genus of the two dimensional theory we obtain by reduction.

Then the four dimensional duality will imply an identity among two such elliptic genera,

which we will interpret as evidence for a two dimensional duality.

If we take the Coulomb reduction, where the R-symmetry is taken to be the Cartan

of the SU(2)R, the dependence on flavor symmetries drops out and the identity becomes

trivial. A more interesting choice is the “flavored” reduction, where we mix the SU(2)R
Cartan with U(1)c and U(1)d symmetries, with the same sign. Then we obtain,

I2d,A(aj , bj , c, d; y) = (4.2)∮ ∏
j

dzj
zj

∣∣∣∣∏
j zj=1

N∏
j=1

N∏
α=1

θ(y−1/2zjaα
−1c)

θ(y1/2zjaα−1c)

N∏
j=1

N∏
β=1

θ(y−1/2zj
−1bβd)

θ(y1/2zj−1bβd)

∏
i 6=j

θ(zi/zj)

θ(y−1zi/zj)
.

This is the genus of an N = (2, 2) SU(N) theory with N fundamental and N antifunda-

mental chirals. The 4d duality implies the genus is symmetric under c ↔ d, or, in more

standard notation, that the U(1)B baryon symmetry maps to itself with a change of sign,

with all other flavor symmetries fixed. This gives evidence for a N = (2, 2) duality, which

was noticed also in [23]. Note that, since the theories have N = (2, 2) supersymmetry, we

can also compute their S2 partition functions as a function of twisted masses for the flavor

symmetries, which comprises an independent check of this duality. We have computed

these for some low rank cases and found it has the expected symmetry under flipping the

sign of the U(1)B twisted mass.

Alternatively, we can mix the R-symmetry with U(1)c and U(1)d with opposite signs.

Then we find,

I2d,B(aj , bj , c, d; y) = (4.3)∮ ∏
j

dzj
zj

∣∣∣∣∏
j zj=1

N∏
j=1

N∏
α=1

θ(y−1/2zjaα
−1c)

θ(y1/2zjaα−1c)

N∏
j=1

N∏
β=1

θ(y−1/2zjbβ
−1d−1)

θ(y1/2zjbβ
−1d−1)

∏
i 6=j

θ(zi/zj)

θ(y−1zi/zj)
.
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This is the genus of a (2, 2) SU(N) theory with 2N fundamental chirals. The 4d duality

implies this is symmetric under replacing αa → αa
−1, βa → βa

−1, and c ↔ d. This is one

of the dualities discussed in [25]. One could also consider choices of R-symmetry which

break some of the SU(N)× SU(N) flavor symmetry, but we will not discuss them here.

Next let us discuss the Schur-like reduction where we admix the diagonal combination

of the U(1)c and U(1)d to the 1
2(r +R) R-symmetry. The partition function becomes,

I2d,C(aj , bj , c, d; y) = (4.4)∮ ∏
j

dzj
zj

∣∣∣∣∏
j zj=1

N∏
j=1

N∏
α=1

1

θ(y1/2zjaα−1c)

N∏
j=1

N∏
β=1

1

θ(y1/2z−1
j bβd)

∏
i 6=j

θ(zi/zj) .

This expression is symmetric under exchanging c and d, which corresponds to a (0, 2)

duality of a SU(N) theory with N fundamental and N anti-fundamental chirals.

Finally, we take the Higgs limit,

I2d,D(aj , bj , c, d; y) =

∮ ∏
j

dzj
zj

∣∣∣∣∏
j zj=1

N∏
j=1

N∏
α=1

1

θ(y1/2(zjaα−1c)±1)
(4.5)

×
N∏
j=1

N∏
β=1

1

θ(y1/2(z−1
j bβd)±1)

∏
i 6=j

θ(zi/zj)θ(y
−1zi/zj) .

This is symmetric under exchanging c and d. This gives one of the (0, 4) dualities considered

in [23]. Since the two dimensional theory we obtain in the Higgs limit does not depend on

a choice of flavor symmetry, it gives in some sense the most natural analogue of the N = 2

class S theories in two dimensions.
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