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Abstract: In this paper, we study massive gravity in the presence of Born-Infeld nonlinear

electrodynamics. First, we obtain metric function related to this gravity and investigate

the geometry of the solutions and find that there is an essential singularity at the origin

(r = 0). It will be shown that due to contribution of the massive part, the number, type and

place of horizons may be changed. Next, we calculate the conserved and thermodynamic

quantities and check the validation of the first law of thermodynamics. We also investigate

thermal stability of these black holes in context of canonical ensemble. It will be shown

that number, type and place of phase transition points are functions of different parameters

which lead to dependency of stability conditions to these parameters. Also, it will be

shown how the behavior of temperature is modified due to extension of massive gravity

and strong nonlinearity parameter. Next, critical behavior of the system in extended phase

space by considering cosmological constant as pressure is investigated. A study regarding

neutral Einstein-massive gravity in context of extended phase space is done. Geometrical

approach is employed to study the thermodynamical behavior of the system in context

of heat capacity and extended phase space. It will be shown that GTs, heat capacity

and extended phase space have consistent results. Finally, critical behavior of the system

is investigated through use of another method. It will be pointed out that the results

of this method is in agreement with other methods and follow the concepts of ordinary

thermodynamics.
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1 Introduction

Regarding experimental agreements of Einstein gravity (EN) in various area of astrophysics

and cosmology, motivates one to consider it as an acceptable theory. In addition, adding

a constant term Λ in the EN-Hilbert action may lead to agreement between the results of

EN-Λ gravity with dark energy prediction.

On the other hand, general relativity is consistent with interaction of massless spin 2

fields, in which related gravitons are massless particles with two degrees of freedom. Since

the quantum theory of massless gravitons is non-renormalizable [1], one may be motivated

for modifying general relativity to massive gravity. In order to build up a massive theory

with a massive spin 2 particle propagation, one can add a mass term to the EN-Hilbert

action. This will result into graviton having a mass of m which in case of m → 0, the

effect of massive gravity will be vanished. A class of massive gravity theory in flat and

curved background which leads to absence [2, 3] and existence [4] of ghost, have been

investigated. Also, the quantum aspects of the massive gravity and a nonlinear class of

massive gravity in ghost-free field [5, 6] have been explored in refs. [7–10]. Generalization

to nonlinearly charged massive black holes was done in refs. [11, 12]. More details regarding

the motivations of massive gravity is given in refs. [13–18].

In this paper, we are interested in studying the nontrivial adS massive theory that was

investigated in [19, 20]. The motivation for this consideration is due to fact that graviton
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shows similar behavior as lattice in holographic conductor [21–23]. In other words, a Drude

like behavior is observed for the case of massless graviton in this theory which makes the role

of graviton similar to lattice. Another interesting subject for study in this theory is metal-

insulator transition [24–27]. Recently, charged massive black holes with consideration of

this theory have been investigated in [28]. The P −V criticality of these solutions and their

geometrical thermodynamic aspects have been studied [29, 30]. Also, the generalization to

Gauss-Bonnet-Maxwell-massive gravity and its stability, geometrical thermodynamics and

P − V criticality have been investigated [31].

One of the main problems of Maxwell’s electromagnetic field theory for a point-like

charge is that there is a singularity at the charge position and hence, it has infinite self-

energy. To overcome this problem in classical electrodynamics, Born and Infeld in ref. [32]

introduced a nonlinear electromagnetic field, with main motivation, to solve infinite self-

energy problem by imposing a maximum strength of the electromagnetic field. Then,

Hoffmann in ref. [33] investigated EN gravity in the presence of Born-Infeld (BI) electrody-

namics. In recent two decades, exact solutions of gravitating black objects in the presence

of BI theory have been vastly investigated [34–48]. Another interesting property of BI is

that, BI type effective action arises in an open superstring theory and D-branes are free of

physical singularities [49–53]. For a review of aspects of BI theory in the context of string

theory see ref. [54]. Recently, there has been growing interest in Eddington-inspired BI

gravity in context of black holes and cosmology [55–61]. Also, it was proposed that one

can consider BI theory as a gravitational theory [62, 63]. Dualization of the BI theory and

some of the special properties of this theory have been investigated in refs. [64–68].

There are several approaches for studying and obtaining critical behavior and phase

transition points of black holes: first method is based on studying heat capacity. It was

pointed out that roots and divergencies of the heat capacity are representing phase transi-

tion points. In other words, in place of roots and divergencies of the heat capacity system

may go under phase transition. Another important property of the heat capacity is inves-

tigation of the thermal stability. Systems with positive heat capacity are denoted to be

in thermally stable states. Therefore, the stability conditions are indicated by changes in

sign of heat capacity [69–72]. This is known as canonical ensemble.

In the second method, by using the renewed interpretation of cosmological constant

as thermodynamical variable, one can modify the thermodynamical structure of the phase

space [73, 74]. One of the most important property of this method is the similarity of

critical behavior of the black holes and ordinary thermodynamical Van der Waals liquid/gas

systems [75–87]. Recently, it was pointed out that the extended phase space should be

interpreted as an RG-flow in the space of field theories, where isotherm curves codify

how the number of degrees of freedom N (or the central charge c) runs with the energy

scale [88]. On the other hand, it was shown that variation of cosmological constant could

be corresponded to variation of number of the colors in Yang-Mills theory residing on the

boundary spacetime [89–92].

The third method is using geometrical concept for studying critical behavior. In other

words, by employing a thermodynamical potential and its corresponding extensive parame-

ters, one can construct phase space. The divergencies of Ricci scalar in constructed metric
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are denoted as phase transition points. There are several metrics for this method that

one can name: Weinhold [93, 94], Quevedo [95–97] and HPEM [98, 99] which has mass

as thermodynamical potential and Ruppeiner [100, 101] in which entropy is considered

as thermodynamical potential. These metrics are used in context of heat capacity. An-

other set of metrics was introduced in ref. [102] which can be used in context of extended

phase space.

Finally, a fourth method was introduced in ref. [102] which is based on denominator

of the heat capacity. In this method by replacing cosmological constant with pressure in

denominator of the heat capacity and solving it with respect to pressure, a new relation

is obtained for pressure. The existence of maximum for obtained relation, represents the

critical pressure and volume in which phase transition takes place. The behavior of system

in case of this method is consistent with ordinary thermodynamical concepts [30, 102].

The outline of the paper will be as follow. In section 2, we introduce action and basic

equations related to EN-BI-massive gravity. Section 3 is devoted to obtain the black hole

solutions of this gravity and investigation of the geometrical structure of them. In the

next section, we calculate conserved and thermodynamic quantities related to obtained

solutions and check the validation of the first law of thermodynamics. In section 5, we

study thermal stability of the EN-BI-massive black hole solutions in canonical ensemble.

Next, we consider cosmological constant as pressure and study the critical behavior of

the system. Then we employ the geometrical methods for investigating thermodynamical

behavior of the system and extend this study by another method. In the last section we

present our conclusions.

2 Basic equations

The d-dimensional action of EN-massive gravity with negative cosmological constant and

a nonlinear electrodynamics is

I = − 1

16π

∫

ddx
√−g

[

R− 2Λ + L(F) +m2
4

∑

i

ciUi(g, f)

]

, (2.1)

where R and m are the scalar curvature and massive parameter, respectively, Λ =

− (d−1)(d−2)
2l2

is the negative cosmological constant and f is a fixed symmetric tensor. In

eq. (2.1), ci are constants and Ui are symmetric polynomials of the eigenvalues of the d× d

matrix Kµ
ν =

√
gµαfαν which can be written as follow

U1 = [K] , U2 = [K]2 −
[

K2
]

, U3 = [K]3 − 3 [K]
[

K2
]

+ 2
[

K3
]

,

U4 = [K]4 − 6
[

K2
]

[K]2 + 8
[

K3
]

[K] + 3
[

K2
]2 − 6

[

K4
]

.

Here, we want to study a particular model of nonlinear electrodynamics called BI

theory which has attracted lots of attentions due to its relation to effective string actions.

The function L(F) for BI theory is given as

L(F) = 4β2

(

1−
√

1 +
F
2β2

)

, (2.2)
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where β is the BI parameter, the Maxwell invariant is F = FµνF
µν in which Fµν =

∂µAν − ∂νAµ is the electromagnetic field tensor and Aµ is the gauge potential.

Variation of the action (2.1) with respect to the metric tensor gµν and the Faraday

tensor Fµν , leads to

Gµν + Λgµν −
1

2
gµνL(F)− 2FµλF

λ
ν

√

1 + F

2β2

+m2χµν = 0, (2.3)

∂µ





√−gFµν

√

1 + F

2β2



 = 0, (2.4)

where Gµν is the EN tensor and χµν is the massive term with the following form

χµν = −c1
2
(U1gµν −Kµν)−

c2
2

(

U2gµν − 2U1Kµν + 2K2
µν

)

− c3
2
(U3gµν − 3U2Kµν+

6U1K2
µν − 6K3

µν)−
c4
2
(U4gµν − 4U3Kµν + 12U2K2

µν − 24U1K3
µν + 24K4

µν). (2.5)

3 Black hole solutions in EN-BI-massive gravity

In this section, we obtain static nonlinearly charged black holes in context of massive

gravity with adS asymptotes. For this purpose we consider the metric of d-dimensional

spacetime in the following form

ds2 = −f(r)dt2 + f−1(r)dr2 + r2hijdxidxj , i, j = 1, 2, 3, . . . , n , (3.1)

where hijdxidxj is a (d − 2) dimension line element for an Euclidian space with constant

curvature (d− 2) (d−3)k and volume Vd−2. We should note that the constant k, which indi-

cates that the boundary of t = constant and r = constant, can be a negative (hyperbolic),

zero (flat) or positive (elliptic) constant curvature hypersurface.

We consider the ansatz metric [28]

fµν = diag(0, 0, c2hij), (3.2)

where c is a positive constant. Using the metric ansatz (3.2), Ui’s are in the following

forms [28]

U1 =
d2c

r
, U2 =

d2d3c
2

r2
, U3 =

d2d3d4c
3

r3
, U4 =

d2d3d4d5c
4

r4
,

in which di = d − i. Using the gauge potential ansatz Aµ = h(r)δ0µ in electromagnetic

equation (2.4) and considering the metric (3.1), we obtain

h(r) = −
√

d2
d3

q

rd3
H, (3.3)

in which H is the following hypergeometric function

H = 2F1

([

1

2
,
d3
2d2

]

,

[

3d7/3

2d2

]

,−Γ

)

, (3.4)
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where Γ = d2d3q2

β2r2d2
and q is an integration constant which is related to the electric charge.

Also, the electromagnetic field tensor in d-dimensions is given by

Ftr =

√
d2d3q

rd2
√
1 + Γ

. (3.5)

Now, we are interested in obtaining the static black hole solutions. One may use com-

ponents of eq. (2.3) and obtain metric function f(r). We use the tt and x1x1 components

of the eq. (2.3), which can be written as

ett =
{

d2m
2c

[

c1r
3 + d3c2cr

2 + d3d4c3c
2r + d3d4d5c4c

3
]

− 2Λr4

−d2d3r
2f − d2r

3f ′ + 4β2r4 + d2d3r
2k
}

√

1−
(

h′

β

)2

− 4β2r4 = 0, (3.6)

ex1x1
= d3m

2c
[

c1r
3 + d3d4c2cr

2 + d3d4d5c3c
2r + d3d4d5d6c4c

3
]

− 2Λr4

− 2d3r
3f ′ − d3d4r

2f − r4f ′′ + 4β2r4 − 4βr4
√

β2 − h′2 + d3d4r
2k = 0. (3.7)

We can obtain the metric function f(r), by using the eqs. (3.6) and (3.7) with the

following form

f (r) = k − m0

rd3
+

(

4β2 − 2Λ

d1d2

)

r2 − 4β2r2

d1d2

√
1 + Γ +

4d2q
2H

d1r2d3

+m2

{

cc1
d2

r + c2c2 +
d3c

3c3
r

+
d3d4c

4c4
r2

}

, (3.8)

where m0 is an integration constant which is related to the total mass of the black hole. It

should be noted that, obtained metric function (3.8), satisfy all components of the eq. (2.3),

simultaneously.

Now, we are in a position to review the geometrical structure of this solution, briefly.

We first look for the essential singularity(ies). The Ricci scalar and the Kretschmann

scalar are

lim
r−→0

R −→ ∞, (3.9)

lim
r−→0

RαβγδR
αβγδ −→ ∞, (3.10)

and so confirm that there is a curvature singularity at r = 0. The Ricci and Kretschmann

scalars are 2d
d2
Λ and 8d

d1d22
Λ2 at r −→ ∞. Therefore, the asymptotic behavior of these

solutions is adS for Λ < 0.

On the other hand, in the absence of massive parameter (m = 0), the solution (3.8)

reduces to an d-dimensional asymptotically adS topological black hole with a negative, zero

or positive constant curvature hypersurface in the following form

f (r) = k − m0

rd3
− 4β2r2

d1d2

√
1 + Γ +

(

4β2

d1d2
+

1

l2

)

r2 +
4d2q

2H
d1r2d3

. (3.11)

In order to study the effects of the EN-BI-massive gravity on metric function, we have

plotted various diagrams (figures 1–3).
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Figure 1. f(r) versus r for Λ = −0.8, q = 1, β = 0.6, m = 1.4, c = −0.8, c1 = 2, c3 = −4, c4 = 0,

k = 1, and d = 4. Left diagram for m0 = 5, c2 = 1.00 (dashed line), c2 = 1.22 (continues line) and

c2 = 1.35 (dotted line). Right diagram for c2 = 1.40, m0 = 5.80 (dashed line), m0 = 5.64 (continues

line) and m0 = 5.5 (dotted line).

Figure 2. f(r) versus r for Λ = −1, q = 0.5, β = 7, m = 0.5, c = 0.4, c1 = −40, c2 = 60, c3 = 1,

c4 = 0, k = 1 and d = 6. Diagrams for m0 = 1.75 (dashed line), m0 = 1.67 (continues line) and

m0 = 1.61 (dotted line).

By considering specific values for the parameters, metric function has different behav-

iors. Depending on the choices of the parameters, EN-BI-massive black holes can behave

like Reissner-Nordström black holes. In other words, these black holes may have two hori-

zons, one extreme horizon and without horizon (naked singularity) (see figure 1 for more

– 6 –
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details). On the other hand, by adjusting some of the parameters of EN-BI-massive black

holes, we encounter with interesting behaviors. The solutions may have three or higher

horizons (figures 2 and 3). The existence of three or higher horizons for black holes is

due to the presence of massive gravity [30, 31]. In addition to the significant effects of

massive term, we should note that the nonlinearity parameter can affect on the number of

horizons. In addition, β can change the type of singularity. In other words, depending on

the parameters, one can find a βc in which singularity is spacelike for β < βc, and it would

be timelike for β > βc (see [47, 48] for more details).

Now, we give a brief discussion regarding Carter-Penrose diagrams. In order to study

the conformal structure of the solutions, one may use the conformal compactification

method through plotting the Carter-Penrose (conformal) diagrams. As we mentioned be-

fore, depending on the value of nonlinearity parameter, β, one may encounter with timelike

or spacelike singularity. Penrose diagrams regarding to timelike singularity was discussed

in [31] (see conformal diagrams in [31]). Here we focus on special case in which singularity

is spacelike (β < βc). In other words, the singularity of this nonlinearly charged black holes

behaves like uncharged Schwarzschild solutions (see figure 3). This means that, although

massive and nonlinearity parts of the metric function can change the type of singularity

and horizon structure of black holes, they do not affect asymptotical behavior of the solu-

tions. Drawing the Carter-Penrose diagrams, we find the causal structure of the solutions

are asymptotically well behaved.

4 Thermodynamics

In this section, we calculate the conserved and thermodynamic quantities of the static

EN-BI-massive black hole solutions in d-dimensions and then check the first law of ther-

modynamics.

By using the definition of Hawking temperature which is related to the definition of

surface gravity on the outer horizon r+, one can find

T =
m2c

4πr3+

[

c1r
3
++d3c2cr

2
++d3d4c3c

2r++d3d4d5c4c
3
]

+

(

2β2−Λ
)

r+

2πd2
+

d3k

4πr+
−β2r+

πd2

√

1+Γ+,

(4.1)

where Γ+ = d2d3q2

β2r
2d2
+

. The electric charge, Q, can be found by calculating the flux of the

electric field at infinity, yielding

Q =
Vd2

√
d2d3

4π
q. (4.2)

In order to obtain the entropy of the black holes, one can employ the area law of

the black holes. It is a matter of calculation to show that entropy has the following

form [103–106]

S =
Vd2

4
rd2+ , (4.3)

It was shown that by using the Hamiltonian approach or counterterm method, one can

find the mass M of the black hole for massive gravity as

M =
d2Vd2

16π
m0 , (4.4)
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Figure 3. Metric functions and Carter-Penrose diagrams for the asymptotically adS black holes

with spacelike singularity. Three horizons (continuous line of metric function and related Carter-

Penrose diagram in right-up panel), two horizons which inner one is extreme (dotted line of metric

function and related Carter-Penrose diagram in left-down panel) and two horizons which outer one

is extreme (dashed line of metric function and related Carter-Penrose diagram in right-down panel).

in which by evaluating metric function on the horizon (f (r = r+) = 0), one can obtain

M =
d2Vd2

16π

(

krd3+ − 2rd1+
d1d2

Λ− 4β2rd1+
d1d2

[

√

1 + Γ+ − 1
]

+
4d2q

2

d1r
d3
+

H+

+
cm2rd5+

d2

[

d2d3d4c4c
3 + d2d3c3c

2r+ + d2c2cr
2
+ + c1r

2
+

]

)

, (4.5)

where H+ = 2F1

([

1
2 ,

d3
2d2

]

,
[

3d7/3
2d2

]

,−Γ+

)

.

It is notable that, U is the electric potential, which is defined in the following form

U = Aµχ
µ |r→∞ −Aµχ

µ
∣

∣

r→r+ =

√

d2
d3

q

rd3+
H+. (4.6)

– 8 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
7

Having conserved and thermodynamic quantities at hand, we are in a position to

check the first law of thermodynamics for our solutions. It is easy to show that by using

thermodynamic quantities such as charge (4.2), entropy (4.3) and mass (4.4), with the first

law of black hole thermodynamics

dM = TdS + UdQ, (4.7)

we define the intensive parameters conjugate to S and Q. These quantities are the tem-

perature and the electric potential

T =

(

∂M

∂S

)

Q

and U =

(

∂M

∂Q

)

S

, (4.8)

which are the same as those calculated for temperature (4.1) and electric potential (4.6).

5 Heat capacity and stability in canonical ensemble

Here, we study the stability conditions and the effects of different factors on these con-

ditions. The stability conditions in canonical ensemble are based on the signature of the

heat capacity. The negativity of heat capacity represents unstable solutions which may

lead to following results: unstable solutions may go under phase transition and acquire

stable states. This phase transition could happen whether when heat capacity meets a

root(s) or has a divergency. Therefore, the roots of regular numerator and denominator

of the heat capacity are phase transition points. In the other scenario, the heat capacity

is always negative. This is known as non-physical case. But there is a stronger condition

which is originated from the temperature. The positivity of the temperature represents

physical solutions whereas its negativity is denoted as non-physical one. Therefore, in or-

der to getting better picture and enriching the results of our study, we investigate both

temperature and heat capacity, simultaneously.

The heat capacity is given by

CQ =
T

(

∂2M
∂S2

)

Q

=
T

(

∂T
∂S

)

Q

. (5.1)

Considering eqs. (4.1) and (4.3), it is a matter of calculation to show that

(

∂T

∂S

)

Q

= − d3k

d2r
d1
+

+
2
(

2β2 − Λ
)

πd22r
d3
+

− d3m
2c

πd2r
d2
+

[

3d4d5c4c
2 + 2d4c3cr+ + c2cr

2
+

]

− 4β2

πd22r
d3
+

(1 + Γ+)
3

2 +
4d3q

2 (d1 + Γ+)

πd2r
3d−7
+

√
1 + Γ+

. (5.2)

In order to study the effects of different parameters on stability conditions and tem-

perature, we have plotted various diagrams (figures 4–8).

Interestingly, in the absence of the massive parameter (figure 4 right panel), temper-

ature starts from −∞ and it is only an increasing function of horizon radius with a root.
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Figure 4. For different scales: CQ (left panel) and T (right panel) versus r+ for q = 1, Λ = −1

c = c1 = c2 = c3 = 2, c4 = 0, β = 0.5, d = 5 and k = 1; m = 0 (continues line), m = 0.25 (dotted

line), m = 0.35 (dashed line) and m = 0.40 (dashed-dotted line).

Figure 5. For different scales: CQ (left and middle panels) and T (right panel) versus r+ for q = 1,

Λ = −1, c = c1 = c2 = c3 = 2, c4 = 0, m = 0.30, d = 5 and k = 1; β = 2 (continues line), β = 3

(dotted line), β = 4 (dashed line) and β = 5 (dashed-dotted line).

Therefore, we have two regions of physical and non-physical solutions. Adding massive

gravity could modify the behavior of the temperature into an U shape diagram starting

from +∞ without any root. The extremum is an increasing function of massive param-

eter (figure 4 right panel), dimensions (figure 8 right panel) and k (figure 6 right panel),

whereas, it is a decreasing function of electric charge (figure 7 right panel). The only ex-

ception for this behavior is for strong nonlinearity parameter. Interestingly, for large values

of nonlinearity parameter, a massive-less like behavior is observed (figure 5 right panel).

In other words, the temperature starts from −∞ but the effect of the massive could be

seen through two extrema. The root of temperature and smaller extremum are increasing

functions of β and larger extremum is a decreasing function of it. Another interesting prop-

erty of temperature is the effect of dimensions. Studying figure 8 (right panel) shows that
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Figure 6. For different scales: CQ (left and middle panels) and T (right panel) versus r+ for q = 1,

Λ = −1, c = c1 = c2 = c3 = 2, c4 = 0, m = 0.4, d = 5 and β = 0.5; k = 1 (continues line), k = 0

(dotted line) and k = −1 (dashed line).

Figure 7. For different scales: CQ (left panel) and T (right panel) versus r+ for Λ = −1, c = c1 =

c2 = c3 = 2, c4 = 0, β = 0.5, m = 0.4, d = 5 and k = 1; q = 0 (continues line), q = 0.5 (dotted

line), q = 1 (dashed line) and q = 2 (dashed-dotted line).

the temperature for every two sets of dimensions will coincide with each other. In other

words, there are places in which despite differences in dimensions, two black holes with two

different dimensions and same values for other parameters will have same temperature in

a special r+.

In absence of massive gravity, black holes could acquire temperature from zero to +∞,

whereas adding massive, will cause the black holes never acquire some temperature. This

effect is vanished in case of large nonlinearity parameter. In other words, the strength
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Figure 8. For different scales: CQ (left and middle panels) and T (right panel) versus r+ for q = 1,

Λ = −1, c = c1 = c2 = c3 = 2, c4 = 0, β = 0.5, m = 0.4 and k = 1; d = 5 (continues line), d = 6

(dotted line) and d = 7 (dashed line).

of nonlinearity parameter has opposing effects to massive’s ones. Also, the U shape dia-

gram indicates that for every temperature that black holes can acquire two horizons exist

except for the extremum. Therefore, considering Hawking radiation, one is not able to

recognize the size of these black holes by measuring their Hawking radiation. It is worth-

while to mention that extrema and root(s) of temperature are phase transition points of

heat capacity.

Regarding stability, it is evident that in absence of the massive gravity, there exists a

region of the instability which is located where the temperature is negative. Therefore, this

is a non-physical solution (figure 4 left panel). Interestingly, by adding massive gravity, the

non-physical region is vanished and heat capacity acquires divergence point without any

root. Before divergence point, the heat capacity is negative. Therefore, in this region black

holes are unstable. In divergence point, black holes go under phase transition of smaller

unstable to larger stable black holes. The divergence point is an increasing function of

massive parameter (figure 4 left panel), dimensions (figure 8 left panel) and k (figure 6 left

panel), whereas, it is a decreasing function of electric charge (figure 7 left panel).

Interestingly, in strong nonlinearity parameter, the mentioned behavior is modified. In

this case black holes enjoy one root and two divergence points. Before root and between

two divergencies, heat capacity is negative and between root and smaller divergence point

and after larger divergence point, heat capacity is positive. According to thermodynamical

concept, systems go under phase transition to acquire stable states. Therefore, following

phase transitions take place: non-physical unstable to physical stable (in root), large un-

stable to smaller stable (in smaller divergence point) and smaller unstable to larger stable

black holes (in larger divergency). Root and smaller divergence point are increasing func-

tions of β (figure 5 left panel), whereas, larger divergency is a decreasing function of it
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(figure 5 middle panel). It is worthwhile to mention that larger divergency is not highly

sensitive to variation of nonlinearity parameter.

Comparing obtained results for heat capacity (regarding phase transitions) and the

behavior of the temperature, one can see that larger to smaller phase transition takes place

at maximum (compare figure 5 left diagram with right) and smaller to larger one happens

at minimum (compare figure 5 middle diagram with right) of temperature. Therefore, one

is able to recognize the type and number of phase transition by only studying temperature’s

diagrams.

6 P − V criticality of charged black holes in EN-BI-massive gravity

Now, we are in a position to study the critical behavior of the system through phase

diagrams. Using the renewed interpretation of the cosmological constant as thermodynam-

ical pressure, one can use following relation to rewrite thermodynamical relations of the

solutions in spherical horizon [75–87]

P = − Λ

8π
, (6.1)

which results into following conjugating thermodynamical variable corresponding to pres-

sure [75–87]

V =

(

∂H

∂P

)

S,Q

. (6.2)

Due to existence of the pressure in obtained relation for total mass of the black holes,

one can interpret the total mass as thermodynamical quantity known as Enthalpy. This

interpretation will lead to the following relation for Gibbs free energy [75–87]

G = H − TS = M − TS. (6.3)

Now by using eqs. (4.4) and (6.1) with the relations of volume and Gibbs free energy

(eqs. (6.2) and (6.3)), one finds

V =
ωd2

d1
rd1+ , (6.4)

and

G =
rd1+
d1d2

P +
m2c2rd5+
16π

(

3d3d4c4c
2 + 2d3c3cr+ + c2r

2
+

)

+
d22q

2H+

2πd1r
d3
+

+

β2rd1+
4πd1d2

√

1 + Γ+ +
rd3+
16π

. (6.5)

Obtained relation for volume indicates that volume of the black holes is only a function

of the topology of the solutions and independent of electrodynamics and gravitational

extensions, directly.

In order to obtain critical values, one can use P − V diagrams. In other words, by

studying inflection point properties one can obtain critical values in which phase transitions

may take place. Therefore, one can use
(

∂P

∂r+

)

T

=

(

∂2P

∂r2+

)

T

= 0. (6.6)
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m rc Tc Pc
Pcrc
Tc

0.000000 1.8264628 0.1334354 0.02200146 0.3011558

0.100000 1.8263848 0.1334835 0.02200495 0.3010822

1.000000 1.7953522 0.1382092 0.02233685 0.2901581

5.000000 1.6278897 0.2562956 0.03187871 0.2024811

10.000000 0.7052643 0.7329062 0.13205092 0.1270705

Table 1. q = 1, β = 0.5, c1 = c2 = c3 = 0.2, c4 = 0 and d = 5.

β rc Tc Pc
Pcrc
Tc

1.000000 1.7819632 0.1693410 0.0296043 0.3115245

2.100000 1.8174387 0.1677996 0.0290170 0.3142835

3.500000 1.8235114 0.1675323 0.0289161 0.3147386

4.000000 1.8256045 0.1674399 0.0288813 0.3148944

5.000000 1.8265678 0.1673974 0.0288653 0.3149659

Table 2. q = 1, m = 0.1, c1 = c2 = c3 = 2, c4 = 0 and d = 5.

Considering obtained values for temperature (4.1) and pressure (6.1), one can obtain

pressure as

P =
d2T

4r+
− m2c

16πr4+

[

c1r
3
++d3c2cr

2
++d3d4c3c

2r++d3d4d5c4c
3
]

− d2d3
16πr2+

+
β2

4π

(

√

1+Γ+−1
)

.

(6.7)

Now, by considering eq. (6.6) with the relation of pressure (6.7), one can obtain two

relations for finding critical quantities. Due to economical reasons, we will not present

them. Regarding the contribution of electromagnetic part, it is not possible to obtain

critical horizon analytically, and therefore, we use numerical method. Considering the

variation of β and massive parameter, one can draw tables 1 and 2.

In addition, we plot figures 9–12 to investigate that obtained values are the ones in

which phase transition takes place or not.

The formation of swallow tail in G − T diagrams for pressure smaller than critical

pressure (figures 9 and 11 right panels), subcritical isobars in T − r+ diagrams for critical

pressure (figures 9 and 11 middle panel) and isothermal diagrams in case of critical tem-

perature in P − r+ diagrams (figures 9 and 11 left panels), show that obtained values are

critical ones in which phase transition takes place.

It is evident that critical pressure (figure 10 left panel) and temperature (figure 10

middle panel) are increasing functions of the massive parameter, whereas the critical hori-

zon (figure 10 left and middle panels) and universal ratio of Pcrc
Tc

are decreasing functions

of this parameter.

It is worthwhile to mention that length of subcritical isobars (which is known as phase

transition region) is a decreasing function of massive parameter (figure 10 middle panel). In

– 14 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
7

Figure 9. P − r+ (left), T − r+ (middle) and G− T (right) diagrams for β = 0.5, q = 1, m = 0.1,

c = c1 = c2 = c3 = 0.2, c4 = 0 and d = 5. P − r+ diagram, from up to bottom T = 1.1Tc, T = Tc

and T = 0.9Tc, respectively. T−r+ diagram, from up to bottom P = 1.1Pc, P = Pc and P = 0.9Pc,

respectively. G− T diagram for P = 0.5Pc (continuous line), P = Pc (dotted line) and P = 1.5Pc

(dashed line).

Figure 10. P − r+ (left), T − r+ (middle) and G − T (right) diagrams for β = 0.5, q = 1,

c = c1 = c2 = c3 = 0.2, c4 = 0, d = 5, m = 0 (continuous line), m = 1 (dotted line) and m = 5

(dashed line). P − r+ diagram for T = Tc, T − r+ diagram for P = Pc and G − T diagram for

P = 0.5Pc.

opposite, the size of swallow tail and the energy of different phases are increasing functions

of m (figure 10 right panel).

Interestingly, the effects of variation of nonlinearity parameter is opposite of massive

parameter. In other words, critical pressure (figure 12 left panel), temperature (figure 12

middle panel) and the size of swallow tail (figure 12 left panel) are decreasing functions of β,

whereas, the critical horizon radius (figure 12 left and middle panels), length of subcritical

isobars (figure 12 middle panel) and universal ration of Pcrc
Tc

are increasing functions of

nonlinearity parameter.

It should be pointed that the length of subcritical isobars affects single regions of

different states which in our cases are smaller and larger black holes. In other words,

increasing the length of subcritical isobars (phase transition region) decreases the single

state regions.
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Figure 11. P − r+ (left), T − r+ (middle) and G− T (right) diagrams for β = 2, q = 1, m = 0.1,

c = c1 = c2 = c3 = 2, c4 = 0 and d = 5. P −r+ diagram, from up to bottom T = 1.1Tc, T = Tc and

T = 0.9Tc, respectively. T − r+ diagram, from up to bottom P = 1.1Pc, P = Pc and P = 0.9Pc,

respectively. G− T diagram for P = 0.5Pc (continuous line), P = Pc (dotted line) and P = 1.5Pc

(dashed line).

Figure 12. P − r+ (left), T − r+ (middle) and G − T (right) diagrams for m = 0.1, q = 1,

c = c1 = c2 = c3 = 0.2, c4 = 0, d = 5, β = 1 (continuous line), β = 2 (dotted line) and β = 3

(dashed line). P − r+ diagram for T = Tc, T − r+ diagram for P = Pc and G − T diagram for

P = 0.5Pc.

6.1 Neutral massive black holes

In this section, by cancelling the electric charge (q = 0), we will study the critical behavior

of the system. Previously, it was shown that Schwarzschild black holes do not have any

phase transition in context of extended phase space. Now, we are investigating the effects

of massive gravity in case of EN-massive gravity. Using obtained relation for calculating

critical horizon radius in previous part and setting q = 0, one can find following relation

for calculating critical horizon radius

m2
(

6d4d5c4c
4 + 3d4c3c

3r+ + c2c
2r2+

)

+ r2+ = 0. (6.8)
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It is a matter of calculation to show that this relation has following roots which are

critical horizon radii

rc = −
mc2

(

3d4mc3c±
√

−3d4
[

8d5 (1 + c2c2m2) c4 − 3d4m2c23c
2
]

)

2 (1 + c2c2m2)
. (6.9)

Obtained relation shows that in absence of massive gravity, critical horizon radius

will be zero which is not of our interest. This result consistent with Schwarzschild case.

Now, for the simplicity, we consider the case of c4 = 0. This leads into following critical

horizon radius

rcc = − 3d4mc3c

1 + c2c2m2
. (6.10)

It is evident that for the cases of d = 4 and d > 4 with vanishing c3, the critical

horizon radius will be zero. Therefore, there is no phase transition for these black holes.

Interestingly for case of d > 4, the condition for having a positive critical horizon radius

will be c3 < 0 and 1+ c2c
2m2 > 0. By employing obtained value for critical horizon radius,

one can find critical temperature and pressure in the following forms

Tcc =

(

3d4c1c3 − d3c
2
2

)

m4c4 − d3
(

2c2m
2c2 + 1

)

12πd4m2c3c3
, (6.11)

Pcc = −
(

c2m
2c2 + 1

)3
d2d3

432πd24m
4c23c

6
. (6.12)

Considering obtained values, one can show that following equality is hold

Pccrcc
Tcc

=

(

c2m
2c2 + 1

)2
d2d3

12
(

3d4c1c3 − d3c22
)

m4c4 − 12d3 (2c2m2c2 + 1)
, (6.13)

which shows that in this case, Pccrcc
Tcc

is a function of massive parameter and coefficients. Us-

ing obtained critical values (eqs. (6.10), (6.11) and (6.12)) with eqs. (4.1), (6.1), (6.3), (6.7)

and setting q = 0, we plot following diagrams for 5 and 6 dimensions (figures 13 and 14).

In ref. [107], it was shown that in context of neutral Gauss-Bonnet black holes, no phase

transition is observed in 6-dimensions. Here, the extension of the massive gravity enables

the black holes to enjoy the existence of second order phase transition in 6-dimensions. Also,

we observed that contrary to Gauss-Bonnet case, Pccrcc
Tcc

is a function of massive gravity.

7 Geometrical phase transition in context of heat capacity and extended

phase space

In this section, we employ the geometrical concept for studying thermodynamical behavior

of the obtained solutions. In order to do so, we employ HPEM method. In this method,

the thermodynamical phase space is constructed by considering mass of the black holes

as thermodynamical potential. By doing so, the components of the phase space will be

extensive parameters such as electric charge, entropy and etc. The general form of HPEM

metric is [98, 99]

ds2New =
SMS

(

Πn
i=2

∂2M
∂χ2

i

)3

(

−MSSdS
2 +

n
∑

i=2

(

∂2M

∂χ2
i

)

dχ2
i

)

, (7.1)

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
7

Figure 13. P − r+ (left) and G − T (right) diagrams for m = 5, c = 0.2, c1 = c2 = 2, c3 = −2,

c4 = 0 and d = 5.

P − r+ diagram, from up to bottom T = 1.1Tc, T = Tc and T = 0.9Tc, respectively. G−T diagram

for P = 0.5Pc (continuous line), P = Pc (dotted line) and P = 1.5Pc (dashed line).

Figure 14. P − r+ (left) and G − T (right) diagrams for m = 5, c = 0.2, c1 = c2 = 2, c3 = −2,

c4 = 0 and d = 6.

P − r+ diagram, from up to bottom T = 1.1Tc, T = Tc and T = 0.9Tc, respectively. G−T diagram

for P = 0.5Pc (continuous line), P = Pc (dotted line) and P = 1.5Pc (dashed line).

where MS = ∂M/∂S, MSS = ∂2M/∂S2 and χi (χi 6= S) are extensive parameters which

are components of phase space. Now, we will investigate whether the phase transition

points that were obtained in section (IV ) coincide with all divergencies of the Ricci scalar

of HPEM metric. For economical reasons, we only plot diagrams correspond to variation

of massive and nonlinearity parameters. To do so, we use eqs. (4.2), (4.3) and (4.4) with

HPEM metric (eq. (7.1)). This leads into following diagrams (figure 15).

It is evident that employed metric has consistent results with what were found in case

of heat capacity (compare figures 4 and 5 with 15). In other words, the divergencies of the

Ricci scalar are matched with phase transition points of the heat capacity. An interesting

characteristic behavior of the diagrams is the different divergencies for different types of

phase transition. In case of larger to smaller black holes phase transition, the divergency

of the Ricci scalar is toward +∞ (compare figure 5 left panel with figure 15 middle panel),

whereas in case of smaller to larger phase transition, the divergency is toward −∞ (compare
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Figure 15. For different scales: R versus r+ diagrams for q = 1, c = c1 = c2 = c3 = 2, c4 = 0,

d = 5 and k = 1. Left: β = 0.5, m = 0 (continues line), m = 0.25 (dotted line), m = 0.35 (dashed

line) and m = 0.40 (dashed-dotted line). Middle and right: m = 0.3, β = 2 (continues line), β = 3

(dotted line) and β = 4 (dashed line).

Figure 16. For different scales: R (continuous line), CQ (dashed line) diagrams for q = 1, c =

c1 = c2 = c3 = 2, c4 = 0, β = 0.5, d = 5, k = 1 and m = 0.1. P = 0.9Pc left and middle panels,

P = Pc left and right panels and P = 1.1Pc left panel.

figure 5 middle panel with figure 15 right panel). This specific behavior enables us to

recognize the type of phase transition independent of heat capacity.

Next, we employ another geometrical metric for studying the critical behavior of the

system in context of extended phase space. In this metric, Due to consideration of the

cosmological constant as thermodynamical pressure, we have three extensive parameters;

electric charge, entropy and pressure. In order to construct phase space we employ following

metric [102]

ds2 = S
MS

M3
QQ

(

−MSSdS
2 +MQQdQ

2 + dP 2
)

. (7.2)

Considering eqs. (4.4), (5.2), (6.1) and (7.2), we plot following diagram (figure 16) with

respect to figure 9.

Due to existence of a root for heat capacity, in all plotted diagrams, a divergency

is observed (figure 16 left panel). It is evident that for pressures smaller than critical
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pressure, system goes under two phase transitions with different horizon radii (figure 16

middle panel). This is consistent with what was observed in studying T − r+ diagrams of

figure 9. On the other hand, for critical pressure system goes under a phase transition.

The place of this divergency is exactly located at the critical horizon which is obtainable

through T − r+ diagrams of figure 9 (figure 16 right panel). Finally, for pressures larger

than critical pressure no phase transition is observed and the behavior of Ricci scalar will

be what is plotted in figure 16 (left panel). These results are consistent with ordinary

thermodynamical concepts and indicates that these three pictures (phase diagrams, heat

capacity and geometrical thermodynamics) are in agreement.

8 Heat capacity and critical values in the extended phase space

The final section of this paper is devoted to calculation of the critical pressure in extended

phase space by using denominator of the heat capacity. It was shown that one can calculate

critical pressures that were obtained in section (V ) by using denominator of the heat

capacity [102]. To do so, one should replace the cosmological constant in denominator of

the heat capacity (5.2) with its corresponding pressure (6.1). Then, solve the denominator

of the heat capacity with respect to pressure. This will lead into following relation

P =
d2d3c4m

2c2

16πr4+

(

3d4d5c4c
2 + 2d4c3cr+ + c2r

2
+

)

− d2d
2
3q

2

8πr2d2+

√
1 + Γ+

−
(√

1 + Γ+ − 1
)

β2

4π
√
1 + Γ+

+
d2d3
16πr2+

. (8.1)

Obtained relation for pressure is different from what was obtained through use of

temperature (6.7). In this relation, the maximum(s) of pressure and its corresponding

horizon radius are critical pressure and horizon radius in which phase transition takes

place. Now, by using indicated values in table 1 and eq. (8.1), we plot following diagram

(figure 17).

It is evident that obtained maximums are critical pressures in which phase transitions

take place. The thermodynamical concept that was mentioned in last section (pressure

being smaller than critical pressure leads to existence of two phase transitions and for

pressures larger than critical pressure no divergency is observed) is also hold in case of

this approach. In other words, this approach is an additional method for studying critical

behavior of the system and the results of this approach is consistent with GTs, heat capacity

and extended phase space.

9 Conclusions

In this paper, we have considered EN-massive gravity in presence of BI nonlinear electro-

magnetic field. It was shown that considering this configuration leads to modification of

the number and place of horizons that black holes can acquire. In other words, cases of

multiple horizons were observed with different phenomenologies. Next, conserved and ther-

modynamical quantities were obtained and it was shown that first law of thermodynamics

hold for these black holes.
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Figure 17. P versus r+ diagrams for q = 1, c = c1 = c2 = c3 = 2, c4 = 0, d = 5 and k = 1.

Left panel:β = 0.5 and m = 0 (bold-continues line), P = 0.02200146 (continues line), m = 5 (bold-

dashed line) and P = 0.03187871 (dotted line). Right panel: m = 0.1 and β = 1 (bold-continues

line), P = 0.0296043 (continues line), β = 5 (bold-dashed line) and P = 0.0288653 (dashed line).

Next, we studied the thermodynamical behavior of the system. It was shown that

temperature in the presence and absence of massive gravity presents different behaviors.

Adding massive put limitations on values that temperature can acquire, while, there was no

limitation for temperature in the absence of it. Interestingly, this behavior was modified

in the presence of strong nonlinearity parameter. In strong nonlinearity parameter, the

behavior of temperature returned to a massive-less like behavior but the effects of the

massive were observed in existences of extrema. It was also seen, that in case of different

dimensions, for each pair of dimensions, one can find a point in which temperature for both

dimensions are equal.

Regarding the stability, it was seen that in the presence of massive gravity, black holes

enjoy one phase transition of the smaller unstable to larger stable. The phase transition was

related to the divergency of heat capacity. Then again, in strong nonlinearity parameter,

this behavior was modified. In this case, black holes had three phase transitions of smaller

non-physical unstable to larger physical stable (in place of root), larger unstable to smaller

stable (in place of smaller divergency) and smaller unstable to larger stable (in place of

larger divergency).

Clearly, one can conclude that nonlinear electromagnetic field has an opposing effect

comparing to massive gravity. Strong nonlinearity parameter modifies the effects of the

massive gravity and return the system to the massive-less like behavior, although the effects

of massive still observed through extrema.

It was pointed out that at maximums of the temperature, larger unstable to smaller

stable and at minimums, smaller unstable to larger stable phase transitions take place.

Therefore, studying temperature provides an independent picture for studying phase tran-

sitions and stability of the solutions.
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Next, we extended phase space by considering cosmological constant as thermodynam-

ical variable known as pressure. It was shown that volume of the black holes is independent

of generalization of the electromagnetic field and extension of the massive gravity. Obtained

values were critical points in which phase transitions took place. It was shown that the

effect of variation of nonlinearity parameter was opposite of the massive parameter. In

other words, these two factors put restrictions on each others effects.

Interestingly, in ref. [30] variation of massive gravity highly modified the critical tem-

perature and pressure. In case of obtained solutions in this paper, the modification was

not as considerable as what was observed in case of Gauss-Bonnet-Maxwell-massive black

holes. This shows that generalization of electromagnetic field puts stronger restrictions

on the effects of the massive gravity. In other words, in order to have stronger con-

trol over contributions of the massive gravity one should increase the nonlinearity of the

electromagnetic sector.

In addition, a study in context of neutral solutions was conducted. It was shown that

due to contribution of the massive gravity, the chargeless solutions of this gravity also

enjoy the existence of phase transition. In other words, black holes in EN-massive gravity

go under phase transitions in extended phase space. Also, it was shown that ratio of Pcrc
Tc

was a function of massive gravity. It was also pointed out that in 6-dimensions, contrary

to case of Gauss-Bonnet black holes, these black holes enjoy second order phase transition.

In addition, it was shown that in case of d = 4, no phase transition for massive black holes

is observed.

Next, geometrical approach was used for studying critical behavior of the system in

context of heat capacity and extended phase space. It was shown that employed metrics for

both cases have consistent results and follow the concepts of ordinary thermodynamics. The

characteristic behavior of divergencies in Ricci scalar of the geometrical thermodynamical

metrics, enabled us to recognize the type of phase transition (smaller to larger or larger

to smaller).

Finally, another method which was based on denominator of the heat capacity was

used to calculate critical pressure and horizon radius. It was shown that this method has

consistent results with extended phase space and follow the concepts of ordinary thermo-

dynamics. In other words, this method provides an independent approach for investigating

critical behavior of the system.

Due to generalization of Born-Infeld for electromagnetic sector of the solutions, it will

be worthwhile to study the effects of this generalization on conductivity of these black holes

and their corresponding superconductors phase transition. Specially, it will be interesting

to see how this generalization will affect the interpretation of graviton as lattice and the

Drude like behavior. Also, it will be worthwhile to study the metal-insulator transition in

context of these solutions.
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[26] M. Baggioli and O. Pujolàs, Electron-Phonon Interactions, Metal-Insulator Transitions and

Holographic Massive Gravity, Phys. Rev. Lett. 114 (2015) 251602 [arXiv:1411.1003]

[INSPIRE].

[27] M. Baggioli and D.K. Brattan, Drag Phenomena from Holographic Massive Gravity,

arXiv:1504.07635 [INSPIRE].

[28] R.-G. Cai, Y.-P. Hu, Q.-Y. Pan and Y.-L. Zhang, Thermodynamics of Black Holes in

Massive Gravity, Phys. Rev. D 91 (2015) 024032 [arXiv:1409.2369] [INSPIRE].

[29] J. Xu, L.-M. Cao and Y.-P. Hu, P-V criticality in the extended phase space of black holes in

massive gravity, Phys. Rev. D 91 (2015) 124033 [arXiv:1506.03578] [INSPIRE].

[30] S.H. Hendi, S. Panahiyan, B.E. Panah and M. Momennia, Geometrical thermodynamics of

phase transition: charged black holes in massive gravity, arXiv:1506.07262 [INSPIRE].

[31] S.H. Hendi, S. Panahiyan and B.E. Panah, Charged Black Hole Solutions in

Gauss-Bonnet-Massive Gravity, arXiv:1507.06563 [INSPIRE].

[32] M. Born and L. Infeld, Foundations of the New Field Theory,

Proc. Roy. Soc. Lond. 144 (1934) 425.

[33] B. Hoffmann, Gravitational and Electromagnetic Mass in the Born-Infeld Electrodynamics,

Phys. Rev. 47 (1935) 877 [INSPIRE].

[34] M. Demianski, Static electromagnetic geon, Found. Phys. 16 (1986) 187 [INSPIRE].

[35] H.P. de Oliveira, Nonlinear charged black holes, Class. Quant. Grav. 11 (1994) 1469

[INSPIRE].

[36] S. Fernando and D. Krug, Charged black hole solutions in Einstein-Born-Infeld gravity with

a cosmological constant, Gen. Rel. Grav. 35 (2003) 129 [hep-th/0306120] [INSPIRE].

[37] R.-G. Cai, D.-W. Pang and A. Wang, Born-Infeld black holes in (A)dS spaces,

Phys. Rev. D 70 (2004) 124034 [hep-th/0410158] [INSPIRE].

[38] D.J. Cirilo Lombardo, Rotating charged black holes in Einstein-Born-Infeld theories and

their ADM mass, Gen. Rel. Grav. 37 (2005) 847 [gr-qc/0603066] [INSPIRE].

[39] T.K. Dey, Born-Infeld black holes in the presence of a cosmological constant,

Phys. Lett. B 595 (2004) 484 [hep-th/0406169] [INSPIRE].

– 24 –

http://arxiv.org/abs/1301.0537
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0537
http://dx.doi.org/10.1007/JHEP07(2011)009
http://arxiv.org/abs/1103.6055
http://inspirehep.net/search?p=find+J+"JHEP,1107,009"
http://dx.doi.org/10.1103/PhysRevD.88.086003
http://arxiv.org/abs/1306.5792
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D88,086003"
http://dx.doi.org/10.1103/PhysRevD.88.106004
http://arxiv.org/abs/1308.4970
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D88,106004"
http://dx.doi.org/10.1103/PhysRevB.89.245116
http://arxiv.org/abs/1311.2451
http://inspirehep.net/search?p=find+J+"Phys.Rev.,B89,245116"
http://dx.doi.org/10.1007/JHEP05(2014)101
http://arxiv.org/abs/1311.5157
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.5157
http://dx.doi.org/10.1140/epjc/s10052-014-3176-9
http://arxiv.org/abs/1406.4870
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4870
http://dx.doi.org/10.1103/PhysRevLett.114.251602
http://arxiv.org/abs/1411.1003
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,114,251602"
http://arxiv.org/abs/1504.07635
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.07635
http://dx.doi.org/10.1103/PhysRevD.91.024032
http://arxiv.org/abs/1409.2369
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D91,024032"
http://dx.doi.org/10.1103/PhysRevD.91.124033
http://arxiv.org/abs/1506.03578
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D91,124033"
http://arxiv.org/abs/1506.07262
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07262
http://arxiv.org/abs/1507.06563
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.06563
http://dx.doi.org/10.1098/rspa.1934.0059
http://dx.doi.org/10.1103/PhysRev.47.877
http://inspirehep.net/search?p=find+J+"Phys.Rev.,47,877"
http://dx.doi.org/10.1007/BF01889380
http://inspirehep.net/search?p=find+J+"Found.Phys.,16,187"
http://dx.doi.org/10.1088/0264-9381/11/6/012
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,11,1469"
http://dx.doi.org/10.1023/A:1021315214180
http://arxiv.org/abs/hep-th/0306120
http://inspirehep.net/search?p=find+J+"Gen.Rel.Grav.,35,129"
http://dx.doi.org/10.1103/PhysRevD.70.124034
http://arxiv.org/abs/hep-th/0410158
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D70,124034"
http://dx.doi.org/10.1007/s10714-005-0071-6
http://arxiv.org/abs/gr-qc/0603066
http://inspirehep.net/search?p=find+J+"Gen.Rel.Grav.,37,847"
http://dx.doi.org/10.1016/j.physletb.2004.06.047
http://arxiv.org/abs/hep-th/0406169
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B595,484"


J
H
E
P
1
1
(
2
0
1
5
)
1
5
7

[40] M.H. Dehghani and H.R. Rastegar Sedehi, Thermodynamics of rotating black branes in

(n+1)-dimensional Einstein-Born-Infeld gravity, Phys. Rev. D 74 (2006) 124018

[hep-th/0610239] [INSPIRE].

[41] S.H. Hendi, Rotating Black Branes in Brans-Dicke-Born-Infeld Theory,

J. Math. Phys. 49 (2008) 082501 [arXiv:0808.2347] [INSPIRE].

[42] Y.S. Myung, Y.-W. Kim and Y.-J. Park, Thermodynamics of Einstein-Born-Infeld black

holes in three dimensions, Phys. Rev. D 78 (2008) 044020 [arXiv:0804.0301] [INSPIRE].
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