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1 Introduction

Motivated by the success of fluid/gravity correspondence [1–3], we explore the connection

between supergravity and a hypothetical supersymmetric fluid (we intend a fluid which is

a long range approximation of a supersymmetric theory) on the boundary of the AdS space

where a black hole (BH) is located. The reason for this analysis is rooted in the idea that

by performing some perturbations around the black hole and promoting the parameters of

the infinitesimal isometry transformations to local parameters on the boundary, one is able

to derive a set of partial differential equations for these parameters which can be identified

with Navier-Stokes equations. The fluid/gravity correspondence is obtained as follows: at

first, one considers a solution of gravity equations such as a black hole or a black brane (in

our case a solution of supergravity with all fermionic zero modes), then one performs an

isometry transformation of AdS space to obtain a new solution which, of course, will depend

upon some constant parameters (such as the position or the scale). Then, those parameters

are promoted to fields of the boundary and the solution will no longer solve the equations

of motion. Nonetheless, one can see new partial differential equations emerging from that

procedure which have an interpretation as Navier-Stokes equations for the boundary fluid.
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For that, one needs to interpret the parameters of the isometries, namely the translations

or the scale, as the four velocity or the temperature of the fluid.

In some recent papers [4, 5], we generalize that scheme to supergravity and to su-

persymmetric fluids on the boundary. In particular, we have to recall that AdS space is

endowed with superisometries which introduce new constant parameters in the solution.

Again by promoting them to local fields on the boundary, the solution will no longer solve

the supergravity equations and new equations emerge from imposing them. There are two

problems to solve: 1) we have to start with a complete supergravity solution, namely we

have to take into account the full supermultiplet — of which the black hole is the bosonic

component — in order to take into account the full orbit of the superisometries, 2) we have

to promote the parameters of the superisometries to local fields on the boundary and then

interpret them as boundary fluid quantities.

In order to solve these problems, we adopt a simplifying framework where the compu-

tations can be done analytically. We consider N = 2, D = 3 supergravity with cosmological

term which has two solutions, the AdS3 space and the BTZ black hole [6, 7]. In a previous

paper [8], we computed the full supermultiplet of the BTZ black hole by performing a

finite susy transformation. Notice that only by finite susy transformations, we are able

to compute the complete orbit (wig) starting from the black hole solutions [9–14]. That

susy transformation truncates at the forth order. In the present paper, we parametrize the

order of computation by the powers of bilinears in Grassmann parameters.

In order to generate the complete wig we start from the susy transformations associ-

ated to the Killing spinors of AdS space. Since the BTZ black hole is non-extremal any

transformation will produce a change in the solution. Multiple applications of the susy

transformations generated by Killing spinors will result in the application of the corre-

sponding Killing vector generating the complete supergroup of isometries of AdS space

which is OSp(2|2)×OSp(2|2)/SO(2)×OSp(2|2).1

Given the new solution, one can observe that the some isometries of the black hole such

as the translation invariance in the time direction and in the angular coordinate (or in the

space coordinate in the Poincaré patch) are preserved. That implies that the mass M and

the angular momentum J are still conserved charges. Indeed, we can compute them using

the ADM formalism and that gives a mass and an angular momentum which is shifted by

fermionic bilinears. In the case of extremal black hole, M = |J |, the fermionic corrections

will not spoil the extremality condition. In the same way, we can compute also the entropy

of the black hole which is modified by fermionic bilinears.

Having set up the stage for the computation, we promote the fermionic parameters

of the superisometries to local parameters on the boundary. Then, by inserting the fields

in the supergravity equations we find two sets of new equations which should be satisfied:

Navier-Stokes equations (which we also computed in previous paper [4]) and new differential

equations for the fermionic degrees of freedom. In order to interpret the result obtained we

also perform the bosonic isometries associated to the dilatation and to the translation on the

1AdS space considered here is actually a superspace with 3 bosonic coordinates and 4 fermionic coordi-

nates, it can be viewed as OSp(2|2)/SO(2) (since Sp(2) ∼ SL(2,R) ∼ SO(1, 2)).
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boundary reproducing the usual linearized version of relativistic Navier-Stokes equations.

On the other side, by inserting the solution in the gravitino equation, we finally derive

a new set of partial differential equations for the fermionic degrees of freedom which we

interpret as Dirac-type equation for the fluid.

With the complete metric, we can finally compute the extrinsic curvature and, using

Brown-York procedure [15, 16] we derive the boundary energy-momentum tensor. The

form of the latter resemble the tensor for a perfect fluid, except for a term (violating the

chirality). Nonetheless a redefinition of the velocity of the fluid takes the energy momentum

tensor to the standard formula for a perfect fluid and the temperature is shifted by terms

dependent on bilinears. The computation has been performed at the first level in the

isometry parameters and it shows the absence of dissipative effects, as expected from a

conformal fluid in 1 + 1 dimensions. To see the emergence of new structures in the fluid

energy-momentum tensor one needs a complete second order computation.

In section 1, we set up the stage for the computation. In section 2 we present the

complete wig solution of the black hole. We also provide the expressions for large r which

are useful for checking the structure of the solution. In section 3, we derive the new

differential equations on the boundary of AdS and we compute the Dirac-type equation on

the boundary. In section 4, we compute the energy-momentum tensor and we discuss the

redefinition of the fluid velocity to reabsorb the parity-violating term.

2 Setup

2.1 Action and equations of motion

As mentioned in the introduction, we consider the supersymmetric N = 2, D = 3 of [17, 18]

whose field content is described by the vielbein eA, the gravitino (complex) ψ, an abelian

gauge field A and the spin connection ωAB. Those are the gauge fields of the diffeo-

morphism, the local supersymmetry, the local U (1) transformations and of the Lorentz

symmetry. The gauge symmetry can be used to gauge out all local degrees of freedom and

the remaining d.o.f. are localized singular solutions [6, 7, 19, 20].

The invariant action has the following form

S =

∫
M

(
RAB ∧ eCεABC −

Λ

3
eA ∧ eB ∧ eCεABC − ψ̄ ∧ Dψ − 2A ∧ dA

)
, (2.1)

where the curvature 2-form is defined as RAB = dωAB+ωAC∧ωCB andM is a 3d manifold.

In components, the action reads

S =

∫
d3x

[
e (R+ 2Λ)− ψ̄MDNψRεMNR − 2AM∂NARε

MNR
]
, (2.2)

where e is the vielbein determinant and R is the Ricci scalar.2 The action, is invariant

under all gauge transformations and it can be cast in a Chern-Simons form [17].3 The

2{A,B, . . . } label flat indices and {M,N, . . . } refer to curved ones.
3Note that AdS3 radius is set to one and (8πG3)−1 = 1.
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covariant derivative DM is defined as

DM = DM + iAM −
Λ

2
eAMΓA , (2.3)

where D = d+ 1
4ω

ABΓAB is the usual Lorentz-covariant differential. It can be easily shown

that (2.2) is invariant under the local supersymmetry transformations

δεψ = Dε , δεe
A =

1

4

(
ε̄ΓAψ − ψ̄ΓAε

)
, δεA =

i

4

(
ε̄ψ − ψ̄ε

)
. (2.4)

The spin connection transforms accordingly when the vielbein postulate is used to compute

ωAB. The signature for the flat metric ηAB is (−,+,+) and the gamma matrices ΓA are real

Γ0 = iσ2 , Γ1 = σ3 , Γ2 = σ1 , {ΓA , ΓB} =2ηAB . (2.5)

From (2.2) we deduce the following equations of motion

Dψ = 0 ,

dA =
i

4
ψ̄ ∧ ψ ,

deA + ωAB ∧ eB =
1

4
ψ̄ ∧ ΓAψ ,

dωAB + ωAC ∧ ωCB − ΛeA ∧ eB = −Λ

4
εABCψ̄ΓCψ . (2.6)

The third equation is the vielbein postulate, from which the spin connection ωAB is com-

puted. It is possible to check the above equations against the Bianchi identities. Note

that the theory, being topological, can be written in the form language.4 The gravitino

equation simply implies the vanishing of its field strength. The second equation fixes the

field strength of the gauge field and the fourth one fixes the Riemann tensor. Note that

for AdS3, the cosmological constant is Λ = −1.

2.2 AdS3 and BTZ black hole

The supergravity equations of motion admit as solution the AdS3 space

gMN = (gAdS)MN , AM = 0 , ψM = 0 , (2.7)

where the AdS3 metric in global coordinates reads

ds2 = −(1 + r2)dt2 +
1

1 + r2
dr2 + r2dφ2 , (2.8)

Another solution is the so called BTZ black hole5 whose global metric reads:

ds2 = −N2dt2 +N−2dr2 + r2
(
Nφdt+ dφ

)2
, (2.9)

4Using the forms, the gauge symmetries are obtained by shifting all fields eA → eA + ξA, ψ → ψ + η,

ω → ωAB + kAB and A→ A+ C and consequently the differential operator d→ d + s. ξA, η, kAB and C

are the ghosts associated to diffeomorphism, supersymmetry, Lorentz symmetry and U (1) transformation,

respectively and s is the BRST differential associated to those gauge symmetries.
5We refer the reader to the vast literature on the subject for the geometry of this solution.
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where N and Nφ are defined as

N =

√
−M0 + r2 +

J2
0

4r2
, Nφ =− J0

2r2
. (2.10)

The non-zero vielbein components are

e0 =Ndt , e1 =N−1dr , e2 =rNφdt+ rdφ , (2.11)

and the non-zero spin connection components read

ω0
1 =rdt− J0

2r
dφ , ω0

2 =− J0

2r2N
dr , ω1

2 =−Ndφ . (2.12)

The parameter M0 is to be identified with the mass of the black hole while J0 represents

its angular momentum. Setting M0 = −1 and J0 = 0 in (2.9) we obtain the AdS metric in

global coordinates (2.8).6

To analyze the boundary fluid dynamic using fluid/gravity technique is convenient to

consider AdS3 metric written in a Poincaré patch

ds2 = −r2dt2 +
1

r2
dr2 + r2dx2 . (2.13)

As in [1, 2] we perform an ultralocal analysis and then we also use a Poincaré patch for

BTZ black hole metric

ds2 = −
(
r2 −M0

)
dt2 +

1

r2 −M0
dr2 + r2dx2 . (2.14)

Notice that in this case the AdS3 metric (2.13) is obtained by setting M0 = 0. The form

of the metric is similar to (2.9) but it will cover just a sector of the entire AdS space. As

we will show in the next section, after a finite boost transformation the metric (2.14) can

be cast as in (2.9), with mass and angular momentum depending on the boost parameters

and M0.

2.3 Killing vectors and Killing spinors

In this section we compute the Killing vectors and the Killing spinors for AdS3. As we will

discuss later, we consider the isometries of AdS3 space to generate orbits of the black hole

solution. This is obtained by acting with the generators of AdS3 isometries on the black

hole metric.

The Killing vectors are solutions to the equations

Lξ(gAdS) = 0 , (2.15)

where

ξ = ξt∂t + ξr∂r + ξφ∂φ , (2.16)

6Note that the region −1 < M0 < 0 is excluded since it corresponds to a naked singularity.
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and, for global AdS3 (2.8), they are

ξt =
r√

1 + r2
∂tA (t, φ) + e0 ,

ξr =
√

1 + r2A (t, φ) ,

ξφ =

√
1 + r2

r
∂φA (t, φ) + f0 , (2.17)

where the function A (t, φ) is defined as

A(t, φ) = a0 cos (t+ φ) + b0 cos (t− φ) + c0 sin (t+ φ) + d0 sin (t− φ) . (2.18)

The solution depends upon the 6 free parameters {a0, b0, c0, d0, e0, f0}, associated to the

AdS3-isometry group, namely, SO (2, 2).

The Killing vectors for AdS3 in Poincaré patch, defined as K = Kt∂t +Kr∂r +Kx∂x
are

Kt = −c1

2

(
1

r2
+ t2 + x2

)
− c2tx− bt+ wx+ t0 ,

Kr = r (c1t+ c2x+ b) ,

Kx = −c2

2

(
− 1

r2
+ t2 + x2

)
− c1tx+ wt− bx+ x0 . (2.19)

The 6 real infinitesimal constant parameters describe the 6-parameters isometry group of

AdS3: b is associated with dilatation, w is the boost parameter, c1 and c2 are related to

conformal transformations and t0 and x0 parameterize the t− and x−translations.

In order to complete the procedure outlined in [1, 2, 4, 8] we perform a finite boost on

the BTZ solution in the t-x plane, namely

t→ t− wx√
1− w2

, x→ x− wt√
1− w2

, (2.20)

where w is the boost parameter.

We now perform a finite dilatation of the BTZ black hole. This transformation will

allow us to define a parameter for the temperature of the fluid in the same fashion as [1].

The correct dilatation weights can be obtained by redefining the coordinates as follows

r → b̂r , t→ b̂−1t , φ→ b̂−1φ . (2.21)

The infinitesimal dilatation are given by b̂ = 1 + b + O(b2), where b is the infinitesimal

parameter introduced in eq. (2.19).

The boosted and dilatated metric can be recast in the form (2.9) by replacing

M0 →M =
1 + w2

1− w2

M0

b̂2
, J0 → J = − 2w

1− w2

M0

b̂2
, (2.22)

and

r2 → R2 = r2 +
w2

1− w2

M0

b̂2
. (2.23)
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Note that the boost transformations can be applied to the global BTZ metric (2.9) to

generate a new set of solutions, as described in [21] (see eq. (2.20) with x substituted by

the angular coordinate φ). In this case the replacing rules for mass, angular momentum

and radius coordinate will be

M0 →M =
1 + w2

1− w2
M0 −

2w

1− w2
J0 , (2.24a)

J0 → J =
1 + w2

1− w2
J0 −

2w

1− w2
M0 , (2.24b)

r2 → R2 = r2 − w

1− w2
(J0 − wM0) . (2.24c)

Defining

γ =
w2 + 1

w2 − 1
, β = − 2w

w2 + 1
, (2.25)

the metric for the new global BTZ solutions can be written modifying mass and angular

momentum in the following Lorentz-like form, i.e.

M = γM0 − βγJ0 ,

J = γJ0 − βγM0 ,

R2 = r2 − 1

2
[βJ0 − (γ + 1)M0] . (2.26)

Now, we need to construct the Killing spinors of AdS3 and the isometries generated

by them.7 To construct the BTZ wig we compute the Killing spinors ε for AdS3 Poincaré

patch, defined from Killing spinors equation

DAdSε = 0 . (2.27)

We have

ε =

[
1

2
√
r

(1l− rxµΓµ) (1l + Γ1) +

√
r

2
(1l− Γ1)

]
ζ , (2.28)

where ζ is a Dirac spinor with 2 complex constant components ζ1 and ζ2

∂Rζ = 0 . (2.29)

See also [8] where a deeper analysis of the Killing spinor is performed.

3 Fermionic wig

We now proceed to the construction of the fermionic wig (i.e. the complete solution in the

fermionic zero modes) associated with a boosted and dilatate BTZ black hole in Poincaré

7We remind the reader that Killing vectors can be obtained constructing Killing spinors bilinears such

as ξµ = ε̄Γµε. By construction they will indeed satisfy the Killing vectors equation.
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patch.8 As explained in the previous section, the boost and the dilatation shift the mass

and angular momentum of the black hole. Therefore, to get the complete solution, we first

compute the wig for the BH and then we perform the shift to the mass and of the angular

momentum.

Thus, we proceed in the usual way by constructing the wig for the black hole met-

ric (2.9) and then replacing M0 and J0 with M and J as defined in (2.22). This procedure

is iterative and can be found in [8]. The superpartner of a generic field Φ is constructed

by acting with a finite supersymmetry transformation on the original field [23]:

Φ = eδεΦ = Φ + δεΦ +
1

2
δ2
εΦ + . . . . (3.1)

In the present case, it is convenient to deal with an expansion in powers of bilinears of ε.

This is denoted by the superscript [n], counting the number of bilinears. Due to our choice

of the background fields, we have

B[n] =
1

2n!
δ2n
ε B , F [n] =

1

(2n− 1)!
δ2n−1
ε F , n > 0 , (3.2)

where B and F are generic bosonic and fermionic fields respectively. Then, for fermionic

fields [n] counts n−1 bilinears plus a spinor ε while for bosonic fields it indicates n bilinears.

The n = 0 case represents the background fields

e[0]A
M = eAM

∣∣
BTZ

, ψ[0]
M = 0 , A[0]

M = 0 . (3.3)

In the following we define the following real bilinears

B0 =− iζ†ζ , B1 =− iζ†σ1ζ , B2 =iζ†σ2ζ , B3 =− iζ†σ3ζ , (3.4)

due to the anticommutative nature of ζ1 and ζ2, these identities hold

B2
1 = B2

2 = B2
3 = −B2

0 , BiBj = 0 , i 6= j , Bn
0 = 0 , n > 2 . (3.5)

In the following, M,J are defined as in (2.20) and we replace ζ → ζ to highlight the

fermionic contributions. The gravitino reads

ψ[1] =
1

8r
√
r

[
σ1 [−J (1 + r)− 2r (r − 1) (r −N)]

+ iσ2 [−J (r − 1)− 2r (r + 1) (r −N)]

+ (σ0 + σ3) r (t− x)
(
−J − 2r2 + 2rN

) ]
ζ (dt− dx)

+
1

8r2
√
rN

(
J − 2r2 + 2rN

)
[σ0 (r − 1)− σ3 (r + 1) + (σ1 − iσ2) r (t− x)] ζ dr ,

(3.6)

8Note that our Killing spinors (or anti-Killing spinors as defined in [22]) are not time independent but

the fermionic black hole superpartner does not depend on t.
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and

ψ[2] =
1

192r2
√
r

[
iB3

([
1− r2

(
−1 + (t− x)2

)]
− 2r(r −N)

[
1 + r2

(
−1 + (t− x)2

)])
× (σ3(1− r) + σ0(1 + r) + (σ1 − iσ2)r(t− x))

+ iB0

([
1− r2

(
1 + (t− x)2

)]
− 2r(r −N)

[
1 + r2

(
1 + (t− x)2

)])
× (σ3(1− r) + σ0(1 + r) + (σ1 − iσ2)r(t− x))

− 2B2r
(
σ1 [J(1 + r) + 2r(r − 1)(r −N)]

+ iσ2 [J(r − 1) + 2r(r + 1)(r −N)]

+ (σ0 + σ3)r
(
J + 2r2 − 2rN

)
(t− x)

)
+ 2iB1r

2
(
−J − 2r2 + 2rN

) (
σ3(1− r)

+ σ0(1 + r) + (σ1 − iσ2)r(t− x)
)]
ζ (dt− dx)

+
J − 2r2 + 2rN

96r2N
√
r

[
i (−B1 + (B0 −B3)(t− x))

× (σ3(1− r) + σ0(1 + r) + (σ1 − iσ2) r(t− x))

+ B2 (σ0(r − 1)− σ3(1 + r) + (σ1 − iσ2) r(t− x)
]
ζ dr .

(3.7)

The metric corrections are

g[1] =
1

4

(
M − r2 + rN

)
B2dt2 − 1

8

(
J + 2M − 2r2 + 2rN

)
B2dtdx

+
1

8
JB2dx2 − 1

8r2N2

(
J − 2r2 + 2rN

)
B2dr2 , (3.8)

and

g[2] =
1

192

(
7M − 10r2 + 10rN

)
B2

2dt2 +
1

192

(
2J + 3M − 6r2 + 6rN

)
B2

2dx2

− 1

96

(
J + 5M − 8r2 + 8rN

)
B2

2dtdx

+
1

384r4N2

[
3J2 − 6r2M + 20r3 (r −N)− 2Jr (5r − 3N)

]
B2

2dr2 . (3.9)

The gauge field one-form is

A[1] =
1

32r2

[ (
J − 2r2 + 2rN

)
(B3 + B0) + r2

(
J + 2r2 − 2rN

) ((
1− r2 (t− x)2

)
B3

−
(

1 + r2 (t− x)2
)

B0 − 2 (t− x) B1

)]
(dt− dx)

− 1

16rN

(
J − 2r2 + 2rN

)
(B1 + (B0 + B3) (t− x)) dr , (3.10)

at second order, the gauge field is zero. Notice that in the large r expansion A
[1]
r = O

(
1
r3

)
.

As expected, the fermionic corrections collapse in the AdS3 limit M → 0, J → 0. Note that

the metric correction (wig) does not depend upon the boundary coordinates x,t. Moreover,

there is no off-diagonal corrections in the rt and rx components. Last remark: notice that
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the metric does not depend on boundary coordinates t and x, that is the two translational

isometries of BTZ black hole are preserved by the wig. This allows to define the wig’s mass

and the angular momentum.

3.1 Large r results

Here we present the obtained results in large r expansion. To simplify the notation, we

define the following expressions

F =
[
1 + (t− x)2

]
B0 +

[
−1 + (t− x)2

]
B3 + 2(t− x)B1 , F2 = 0 . (3.11)

and

H =
1

8
B2 +

1

96
B2

2 . (3.12)

The gravitino reads

ψ ∼ J +M

192

[√
rF (iσ0 + iσ3 − (iσ1 + σ2)(t− x))

− 1√
r

(2(12+B2) (σ1+iσ2)+(2(12 + B2)(t− x) + iF) (σ0 + σ3))

]
ζ (dt− dx)

+
J −M
96r2
√
r

[12 + B2 − iB1 − i (B0 + B3) (t− x)] [σ0 − σ3 + (σ1 − iσ2)(t− x)] ζ dr .

(3.13)

The full metric at large r is

g ∼ −
[
r2 −M (1 + H)

]
dt2 − [J + (M + J)H] dtdx

+
[
r2 + JH

]
dx2 +

1

r2

[
1 +

1

r2
(M − (M − J)H)

]
dr2 , (3.14)

that is

g ∼− (r2 −M)dt2 − Jdtdx+ r2dx2 +
1

r2

(
1 +

M

r2

)
dr2

+ H

[
Mdt2 − (M + J)dtdx+ Jdx2 − 1

r4
(M − J)dr2

]
. (3.15)

Last, the large r gauge field is

A ∼ −J +M

32
F(dt− dx)− J −M

16r3
[B1 + (B0 + B3)(t− x)] dr . (3.16)

In this limit we can rewrite the vielbein and the spin connection for the metric (3.14).

They read

e0 =

(
r − M

2r

)
dt+

M

2r
H(dx− dt) ,

e1 =

(
1

r
+
M

2r3
+
M − J

2r3
H

)
dr ,

e2 =

(
r − J

2r

)
dx+

J

2r
H(dx− dt) , (3.17)
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and

ω01 =

(
rdt− J

2r
dx

)
+ H

J

2r
(dt− dx) ,

ω02 = − 1

2r3
[J + (J −M)H] dr ,

ω12 = −
(
r − M

2r

)
dx−H

M

2r
(dt− dx) . (3.18)

The large–r curvature 2-form is computed from the definition in (2.1). The non-zero

components are

R01 =
M

2r2
Hdr ∧ dx+

(
1− J

2r2
H

)
dr ∧ dt ,

R02 =

[
r2 +

J

2
H− M

2
(1 + H)

]
dx ∧ dt ,

R12 =
J

2r2
(1 + H) dr ∧ dt−

[
1 +

M

2r2
(1 + H)

]
dr ∧ dx . (3.19)

It is easy to show that the equations of motion (2.6) are satisfied. In particular, in the

large r limit, the term −Λ
4 ε

AB
Cψ̄ΓCψ is subleading order, hence it does not contribute to

the equations of motion.

4 Linearized boundary equations

We refer to [1] to compute the Navier-Stokes equations dual to Einstein’s equations, for a

boosted and dilatate BTZ. However our method is slightly different: our fermionic degrees

of freedom induce a non-zero torsion that must be taken into account to verify Einstein’s

equations. Moreover, we derive a new set of equations of motion which emerges from the

gravitino field equation.

Technically for computing the Riemann tensor we use the spin connection formalism:

Rab = dωab + ωac ∧ ωcb . (4.1)

In the form language it is easy to check that — working at first order and expanding b̂

around 1 (no dilatation) and w around 0 (no boost) — the boosted metric together with

the boosted wig, satisfies (2.6).

As explained in [1] when we promote the parameters to local functions of the boundary

coordinates the obtained metric is not a solution of the equations of motion anymore. In

order to reconstruct a solution, we must constrain the parameters to fulfill some equations

which represent the equations of motion for the boundary fluid and we also need to add

corrections to the metric. Consequently, also the parameters must be modified accordingly.9

Since we work in a perturbative procedure, the metric is corrected order by order in the

derivative expansion:

g → g(0) + g(1) + . . . , (4.2)

9The interested reader shall refer to [1, 2] for further details.
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where g(0) represents the deformed metric and g(i) for i > 0 are the metric corrections at

the order i in boundary derivatives. In the following we limit our discussion at first order,

namely we consider only g(1) correction. Imposing the equations of motion on g, two kinds

of equations are found. The first one comprehends equations involving only derivatives of

local parameters and no terms belonging to the metric correction g(1): these are the lin-

earized Navier-Stokes equations for local parameters in 2-dimensions (the conformal factor

in front of the “divergence” of w is just 1). The second set of equations generically could de-

pend on both parameters and g(1) components. These are called dynamical equations and

are used to obtain the metric correction g(1) in terms of the derivatives of the parameters.

Notice that being g(1) a first-order contribution, it will depend on a single derivative of the

parameters. In general, it is convenient to classify them according to the representations

of the little group SO(1, d− 1).

As a warming-up exercise, we compute the NS equations derived from the metric

variation due to the AdS3 isometries acting on the global BTZ black hole metric

δg = Lξ (gBH) , (4.3)

where gBH is the BTZ metric (2.9) and ξ are defined in (2.17). We observe that all

isometries are broken, except the ones generated by e0 and f0.

We now proceed as follows. First of all, we promote all Killing vectors parameters to

local functions of the boundary coordinates (t and φ); then we check Einstein’s equations

for the metric

g = gBH + δg + g(1) (4.4)

which, as expected, are not satisfied. Yet, imposing them yields the following equations

for the functions b0, d0 . . . expanding near t = φ = 0 we get:

J0 [∂φ (b0 + d0) + ∂t (b0 − d0)]− 2 (1 +M0) ∂t (b0 + d0) = 0 ,

J0 [∂t (b0 + d0) + ∂φ (b0 − d0)]− 2 (1 +M0) ∂φ (b0 + d0) = 0 . (4.5)

Note that these equations are computed in the global AdS3; for other choices of neighbor-

hoods, for example t = φ = π/2, similar equations for the other parameters are obtained.

These are the Navier-Stokes equations derived by the global metric. As expected in the

empty AdS3 limit J0 → 0,M0 → −1 they are satisfied identically.

For what concerns the dynamical equations, the 3-dimensional case is slightly different

from higher dimensional cases. In fact, once the constraint equations are satisfied, no

further corrections are needed and Einstein’s equations are satisfied up to the first order

in the derivative expansion. Therefore g(1) can be set to zero. This is an important result

since it implies that we are dealing with a perfect fluid with no dissipative corrections

(contrary to [1], where the non-vanishing first order corrections corresponded to the shear

tensor) and with second order, non-dissipative transport coefficients.

– 12 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
3

4.1 Corrected NS equations

Having added fermionic fields to our scheme, the Navier-Stokes equations are now dual to

the equations of motion derived from the N = 2, D = 3 AdS−supergravity action (2.2).10

Once the fermionic bilinears are taken into account, imposing equations of motion (2.6)

and taking the large r limit, we find:

M0

[
∂xb+ ∂tw −

1

16
(∂x + ∂t) B2

]
= 0 ,

M0

[
∂tb+ ∂xw −

1

16
(∂x + ∂t) B2

]
= 0 . (4.6)

These are the Navier-Stokes equations for the Poincaré patch (cfr. (4.5)). Note that in this

case they are identically satisfied if M0 is set to zero.

Remarkably, as in the case of BTZ in global coordinates without fermionic wig, all

the equations of motion lead to (4.6). Therefore the first order metric correction g(1) can

be set to zero. As in the previous section, this means that the conformal fluid on the

boundary have non — dissipative first order corrections, as expected for a two dimensional

conformal fluid.

4.2 Dirac-type equation

This is a truly original study, since nobody takes the deformation of Rarita-Schwinger

equation in to account in the present framework. Therefore we explain carefully the tech-

nique adopted.

We proceed as follows: first we consider the solution of Dψ = 0 where the spinor ζ is a

constant field (zero mode) and we promote it to be local upon boundary coordinates. This

implies that we can rewrite the gravitino field proportional to the fermionic field itself:

ψM = ΥMζ , (4.7)

where ΥM is a generic 2×2 matrix which depends on the coordinates t, r, x (and in principles

also on the bilinears) that can be decomposed on the basis of the Pauli matrices (2.5) and

the identity. Notice that since ψt = −ψx we have

Υx = −Υt . (4.8)

Consequently, the equations of motion read

εMNRDN (ΥRζ) = 0 , (4.9)

By promoting ζ to be local on the boundary coordinates t, x and using the equations of

motion for the constant ζ, eqs. (4.9) become

εMNRΥR∂Nζ(t, x) = 0 . (4.10)

10Note that N = 2 supergravity Killing spinors do not suffer the problem pointed out by Gibbons in [24].

In fact, their behavior is stable even in the large r limit, in contrast with in N = 1 theories.
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Being ∂Nζ(t, x) a spinor, it can be written as a linear transformation of the spinor

ζ(t, x) itself

∂Nζ(t, x) = ΘNζ(t, x) , (4.11)

where ΘN is a 2× 2 matrix. Notice that since ζ is not a function of the radial coordinate

r, we have

ΘR = {Θt(t, x), 0,Θx(t, x)} . (4.12)

Eqs. (4.10) then reduce to

εMNRΥRΘNζ(t, x) = 0 , (4.13)

which in components read

(ΥrΘx −ΥxΘr) ζ = 0 , (ΥtΘx −ΥxΘt) ζ = 0 , (ΥrΘt −ΥtΘr) ζ = 0 . (4.14)

Using (4.8) and (4.12) we have

Θx = −Θt , ΥrΘtζ = 0 . (4.15)

Thus, there is only one independent matrix Θ:

Θt ≡ Θ =

(
θ11 θ12

θ21 θ22

)
. (4.16)

Considering only the first order gravitino (3.6), after a straightforward computation at

leading order in r →∞ expansion we get

Υr ∼
1

4
(J −M)r−5/2

(
−1/r 0

(t− x) 1

)
, (4.17)

In r → ∞ asymptotic limit the matrix Υr is no longer invertible, therefore the second

equation of (4.15) in that limit becomes:

[θ21 + θ11(t− x)] ζ1 + [θ22 + θ12(t− x)] ζ2 = 0 , (4.18)

where ζ1 and ζ2 are the Grassmann components of ζ. Solving for generic ζ1, ζ2, we obtain

θ21 = −(t− x)θ11 , θ22 = −(t− x)θ12 . (4.19)

Summing up the results, eqs. (4.11) read

∂tζ1 = θ11ζ1 + θ12ζ2 , ∂tζ2 = −(t− x) (θ11ζ1 + θ12ζ2) ,

∂xζ1 = −θ11ζ1 − θ12ζ2 , ∂xζ2 = +(t− x) (θ11ζ1 + θ12ζ2) , (4.20)

Notice that this implies

(∂t + ∂x) ζ = 0 . (4.21)
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From the definitions (3.4), we compute the bilinears derivatives

∂tB0 = B0 [Reθ11 − (t− x)Reθ12] + B1 [Reθ12 − (t− x)Reθ11]

+ B2 [Imθ12 + (t− x)Imθ11] + B3 [Reθ11 + (t− x)Reθ12] , (4.22)

∂tB1 = B0 [Reθ12 − (t− x)Reθ11] + B1 [Reθ11 − (t− x)Reθ12]

−B2 [Imθ11 + (t− x)Imθ12]−B3 [Reθ12 + (t− x)Reθ11] , (4.23)

∂tB2 = B0 [Imθ12 + (t− x)Imθ11] + B1 [Imθ11 + (t− x)Imθ12]

+ B2 [Reθ11 − (t− x)Reθ12]−B3 [Imθ12 − (t− x)Imθ11] , (4.24)

∂tB3 = B0 [Reθ11 + (t− x)Reθ12] + B1 [Reθ12 + (t− x)Reθ11]

+ B2 [Imθ12 − (t− x)Imθ11] + B3 [Reθ11 − (t− x)Reθ12] . (4.25)

where

Reθ =
1

2
(θ + θ∗) , Imθ =

1

2i
(θ − θ∗) . (4.26)

The x-derivative of bilinears satisfies

∂xBi = −∂tBi . (4.27)

The last equation has a strong implication on the linearized Navier-Stokes equations (4.6),

indeed this implies that the last term there vanishes. Therefore, the two sets of equations

are decoupled at the linearized level. This yields the possibility of a clear separation of

the bosonic and fermionic degrees of freedom. It would be very interesting to study the

complete non-linearized version of these equations.

5 Physics at the horizon and at the boundary

5.1 Energy-momentum tensor dual to BTZ black hole

Using [16] we compute the boundary energy-momentum tensor Tµν0 for the boosted metric.

Notice that Greek indices labels the boundary coordinates t, x. Defining the normal vector

nM to constant r−slice we can compute the extrinsic curvature

κMN =
1

2

(
∇MnN −∇NnM

)
, (5.1)

and then

TMN = κMN − (κ+ 1)γMN , (5.2)

where κ is the trace of κMN and γMN is the boundary metric. This turns out to be

Tµν0 =
1

2

(
M −J
−J M

)
. (5.3)

In order to get the usual form of perfect fluid energy-momentum tensor

Tµν0 = ηµν + 2uµuν , (5.4)
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it is sufficient to consider the case J0 = 0. Indeed the metric will acquire angular momen-

tum due to the Lorentz transformation as shown in (2.22). The fluid boundary energy-

momentum tensor dual to the metric (2.9) with J0 = 0,M0 6= 0 is the standard one for the

perfect fluid in the rest frame.

Then we perform the boost transformation which switches on an angular momentum

and modifies the mass parameter

M =
1 + w2

1− w2
M0 , J =

2w

1− w2
M0 . (5.5)

Notice that our results are in perfect agreement with [21] since we obtain the extremality

condition once we set |w| = 1. Starting from the boosted metric, i.e. the metric (2.9) in

which M0 and J0 has been replaced with eqs. (2.22) and r with (2.23), the computation of

Tµν0 yields

Tµν0 = M0γ

(
1 β

β 1

)
. (5.6)

where γ and β are defined in (2.25). Setting

u0 =
1√

1− w2
, u1 = − w√

1− w2
, (5.7)

we find precisely (5.4) where uµ is the normalized fluid velocity (i.e. uµuµ = −1).

It is now straightforward to recover the variation of Tµν0 due to a dilatation. In fact,

being proportional to M0, it scales as

Tµν0 → Tµν =
1

b̂2
Tµν0 . (5.8)

Using the results obtained in [8] we compute the Brown-York energy-momentum tensor

dual to the BTZ black hole with fermionic wig. Note that this is an exact result since the

series in the fermionic bilinears naturally truncates at second order:

Tµν =
M0

2b̂2
(1 + H) (ηµν + 2uµuν)− M0

2b̂2
H εµσ (δνσ + 2uνuσ) , (5.9)

Eq. (5.9) can be recast in the following form

Tµν =
M0

2b̂2
(1 + H) (ηµν + 2uµuν)− M0

b̂2
H ε(µ|σ uν)uσ . (5.10)

By assuming that the bilinears contained in H are local quantities, the equations for the

conservation of the energy-momentum tensor Tµν lead to differential equations involving

also the bilinears. At linearized level these equations reduce to eqs. (4.6).
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5.2 Redefining the velocity

At first glance, equation (5.10) reveals a parity-violating term. This term has been studied

in [26], where anomalous fluid are considered, and they concluded that the most general

form for it is

∆Tµν = −
[
µ2C + α

(
T 2 +

2nTµ

s

)]
u(µ ũν) , (5.11)

where ũµ = εµνuν , C is the coefficient of the anomaly, T is the temperature, n is the

fluid charge density, s the entropy density, µ is the chemical potential and α an arbitrary

integration constant.

Nevertheless, as pointed out by [27], the anomaly require the following background

metric and gauge field

ds2 = −e2σ (dt+ a1dx)2 + g11dx2 , (5.12)

A = A0dt+A1dx .

where σ, a1 and g11 are functions of x, t. In the present case we have

ds2 =− dt2 + dx2 , (5.13)

A =− 1

32
(M + J)

[
2B1 (t− x) + B3

(
−1 + t2 − 2tx+ x2

)
+B0

(
1 + t2 − 2tx+ x2

)]
(dt− dx) , (5.14)

and, comparing with (5.13) we get

σ = 0 , a1 = 0 , g11 = 0 , F = dA = 0 . (5.15)

Using the Poincaré lemma, we conclude that A = dλ globally, therefore A is a pure gauge

and our theory is not anomalous.

Thus C = 0 leads to

∆Tµν = 2αT 2u(µ ũν) . (5.16)

As explained in [26], in absence of an anomaly there is the freedom to add this term

and it corresponds to a choice of the entropy current. In fact, it is possible to recast the

energy-momentum tensor (5.10) in the perfect fluid form

Tµν =

(
1 +

1

8
B2 +

1

384
B2

2

)
M0

2b̂2
(2UµUν + ηµν) , (5.17)

through a redefinition of the velocity field

uµ → Uµ =

(
1 +

1

512
B2

2

)
uµ − 1

16

(
B2 −

1

24
B2

2

)
ũµ . (5.18)

Note that Uµ is correctly normalized to −1. Recalling the conformal thermodynamics

identities [28]

b =
1

2πT
, p = ρ =

M0

2b2
= 2π2T 2 , (5.19)

– 17 –



J
H
E
P
1
1
(
2
0
1
5
)
1
5
3

we immediately see that the temperature gets a shift due to the presence of bilinears

T ′ = T

(
1 +
〈B2〉
16
− 〈B

2
2〉

1536

)
, (5.20)

where the brackets denotes the vev of the bilinears.

We have to make one important remark: the expression of the temperature in terms of

the bilinear acquires a numerical value whenever the bilinear have a vev computed by path

integral means (we have to recall that Grassmann numbers pertain only to the quantum

realm). The procedure is similar to what is usually done in the case of solitons in gauge

theories and supergravity [29, 30] and the gravitinos condensate leads to non-vanishing

vev of the bilinears interested in the previous formula. In the case of BTZ black hole, the

gravitational action evaluated on the solution with the wig has never been computed and

it will be presented elsewhere.

5.3 Horizon and entropy

In the following we present the entropy computed from the wig of the BTZ in global

coordinates [8]. By direct computation we notice that the event horizon radius

r2
± =

1

2

(
M ±

√
M2 − J2

)
. (5.21)

is not modified by the presence of the fermionic wig. We can compute the entropy from

Bekenstein-Hawking formula

S =
1

4
AH , (5.22)

where the area of the horizon reads

AH =

∫ 2π

0

√
gφφ(r+)dφ , (5.23)

and is computed using the complete metric with the wig. We obtain the following result

S =
π

2

[
r+ + 〈B2〉

J

16r+
+ 〈B2

2〉
1

512r3
+

(
J2 + 2r2

+ (J − 2− 2M)
)]

, (5.24)

where we take the vev for the bilinears. As can be seen the entropy of the black hole

is modified by the presence of the wig confirming that we are studying a new solution

of the theory where the fermions play a fundamental rôle. Setting J = 0 the first order

correction vanishes. This could also have been checked by a simple infinitesimal calculation.

Nonetheless, the second order corrections do not vanish. In particular for vanishing angular

momentum the third term in the above equation becomes proportional to M + 1 which

vanishes for M = −1, namely global anti-de Sitter.

By setting J = M in the case of extremal solution, we find the simplified formula

S =
π

2

√
2M

(
1

2
+

1

16
〈B2〉+

M − 2

128M
〈B2

2〉
)
, (5.25)

showing that also in the case of extremal black hole the entropy is modified.
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5.4 Conserved charges

Here we compute the conserved charges associated with the isometries of the BTZ black

hole. We use holographic technique based on the boundary energy momentum tensor

Tµν [4, 15, 16, 19, 20]. To perform the computation we cast the boundary metric γµν in

ADM-like form

γµνdxµdxν = −N2
Σdt2 + σ(dφ+Nφ

Σdt)2 , (5.26)

where Σ is the 2-dimensional surface at constant time and the integration is over a circle at

spacelike infinity. The conserved charges associated to the Killing vectors ξ are defined as

Qξ = lim
r→∞

∫
V

dx
√
σuµTµνξ

ν (5.27)

where uµ = N−1
Σ δµt is the timelike unit vector normal to Σ.

In the present case, the wig does not depend on t and x. Thus, the two resulting

Killing vectors are

ξµ1 = δµt , ξµ2 = −δµx . (5.28)

The associated charges are respectively the mass Mtot and the angular momentum Jtot.

After a short computation we find

Mtot = M +
1

8
(M + J) 〈H〉 ,

Jtot = J +
1

8
(M + J) 〈H〉 , (5.29)

where H is defined in (3.12).

6 Conclusions

In this paper, we analyze in detail the structure of the fermionic wig for the BTZ black

hole. We derive the fermionic corrections to the mass and to the angular momentum

of the BTZ black hole. In addition, we compute the entropy of the black hole which

also shows new terms depending on the vev’s of the fermionic bilinears. Finally, we also

present the r-large expressions for the several geometrical quantities in the presence of the

fermionic corrections.

On the other hand, by following the rules of the fluid/gravity correspondence, we derive

the boundary equations of motion for a supersymmetric fluid. This means a set of bosonic

equations of motion, but also some Dirac-type equation for the supersymmetric long range

d.o.f. of the fluid. The computations is performed at the first order. Nonetheless, we are

also able to provide the energy-momentum tensor which is cast in a form from which one

can read the thermodynamic quantities.
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