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1 Introduction

Dualities between supersymmetric gauge theories have attracted much interest in the past.

In particular, dualities have shed light on understanding the strongly coupled regime of

supersymmetric gauge theories. One way to identify dual supersymmetric gauge theories

is to understand the structure of their vacuum moduli spaces. Recently, tools such as the

Hilbert series [1–8] have been effectively used to obtain a better understanding of vacuum

moduli spaces of various supersymmetric gauge theories.

Seiberg duality [9], proposed 20 years ago, is a quintessential example of an IR duality

that relates N = 1 SQCD theories with gauge group SU(Nc) and Nf flavors with SU(Nf −
Nc) gauge theories with Nf flavors. A 3d N = 2 analog of Seiberg duality was proposed

in 1997 [10–12]. The duality which is now known as Aharony duality relates a U(Nc)

theory with Nf chiral fundamental and Nf chiral anti-fundamental multiplets with a dual

U(Nf −Nc) theory with Nf chiral fundamentals and Nf chiral anti-fundamentals. These

Aharony dual theories have been studied extensively in the past, with attempts to match the

chiral rings of dual theories, in particular by computing the corresponding superconformal

indices [13–22]. In this work, we want to express the moduli space of Aharony dual theories

as an affine algebraic variety by computing the Hilbert series.

Hilbert series are generating functions which count gauge invariant operators in the

chiral ring of the supersymmetric gauge theory. They have been used to extract information

about the exact algebraic structure of vacuum moduli spaces [1–3]. For instance, Hilbert

series for instanton moduli spaces [23–26] and vortex moduli spaces [27] have shed light on
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the algebraic structure of the corresponding moduli spaces. Moreover, 4d N = 1 theories

represented by bipartite graphs on the torus known as brane tilings [28, 29] have been

studied with the help of Hilbert series. More recently, techniques have been developed for

computing the Hilbert series for the Coulomb branch moduli space of 3d N = 4 theories

in [8, 30, 31] and [26] which paved the way in further understanding among other things

instanton moduli spaces as Coulomb branches of extended Dynkin diagrams.

In this work, we want to express the moduli space of 3dN = 2 Aharony dual theories as

an algebraic variety. In order to compute the Hilbert series, recently developed techniques

for Coulomb branch Hilbert series in 3d N = 4 [8] are extended to 3d N = 2. Given

the Hilbert series, it is possible using plethystics [1, 3, 5] to extract information about the

generators and first order relations amongst the generators of the moduli space.

The moduli space for 3d N = 2 supersymmetric gauge theories is the space of dressed

monopole operators. These operators are dressed with gauge invariant operators which are

invariant under a residual gauge symmetry left unbroken under the monopole background.

Furthermore, the moduli space is partially lifted due to instanton effects [10–12, 32, 33].

As such, methods for the Coulomb branch Hilbert series for 3d N = 4 theories can be

generalized for Aharony dual theories. In this work, we use a sum over a sublattice of

GNO charges for the monopole operators which are dressed by suitable gauge invariant

operators. The sum over the GNO sublattice generates the Hilbert series of the moduli

space. By doing so, we are able to express the moduli space as an algebraic variety for any

U(Nc) gauge theory with Nf flavors and their Aharony dual theory.

Our Hilbert series computation identifies the generators of the moduli space which

agree with previously known results [20]. Moreover, since the Hilbert series computation

gives the algebraic structure of the chiral ring, including relations amongst the generators,1

we are able to study in detail the structure of the vacuum moduli space, including the

structure of its components.

This work compares the Hilbert series with the superconformal index for Aharony dual

theories. It is important to note that in order to know the entire algebraic structure of

the moduli space, it is crucial to compute the Hilbert series directly. The superconformal

index gives information on the moduli space only after one finds an appropriate limit to a

Hilbert series.

The work is structured as follows: section 2 introduces the 3d N = 2 supersymmetric

gauge theories which are discussed in this paper. Section 3 introduces the Hilbert series

and the method used to compute it for these theories. In particular, the section outlines

the structure of the partially lifted GNO charge lattice and the summation of the dressed

monopole operators which is necessary for the computation of the Hilbert series. The

generalisation of the algebraic variety and the corresponding Hilbert series for the moduli

space is presented. Section 4 compares the superconformal index with the Hilbert series.

Note added. We acknowledge a future paper to appear in [34] that also discusses moduli

spaces of dressed monopole operators for 3d N = 2 theories.

1This is up to numerical coefficients which can usually be absorbed into the elements of the chiral ring. In

this work, the numerical coefficients are not needed as the relations are homogeneous and there is precisely

one operator per relation.
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Figure 1. The quiver diagram for the 3d N = 2 theory with a U(Nc) gauge group and Nf flavors.

2 The theory and Aharony duality

The theory. We are interested in the moduli space of a 3d N = 2 U(Nc) gauge theory

with Nf flavors that has a global symmetry S(U(Nf )1 × U(Nf )2). The vector multiplet

of the theory contains the adjoint real scalar σ and the gauge field A. The scalar can be

diagonalised to give σ = diag(σ1, . . . , σNc). The theory also has chiral multiplets containing

chiral matter fields Q and Q̃ which respectively transform in the fundamental and anti-

fundamental representations of the gauge group U(Nc). The corresponding quiver diagram

of the theory is shown in figure 1.

The theory can be realized with D3 branes in a D5 and NS5-brane background [35]

as shown in figure 2. The Nc D3-branes are suspended between 2 NS5-branes and their

positions along the x3-direction are labelled by σi, where i = 1, . . . , Nc. For each of the

flavour groups U(Nf )1 and U(Nf )2, there is a stack of Nf D5 branes attached to the NS5′

along the x9-direction. Their positions along the x3-direction are respectively labelled by

the real masses ma and m̃b of Q and Q̃ where a, b = 1, . . . , Nf . For the theories considered

here, the bare masses are set to zero.

The moduli space of the 3d N = 2 U(Nc) theory receives quantum corrections. The

Higgs branch is parameterized by mesonic operators of the form M = QQ̃ which are

invariant under the gauge group U(Nc). The remaining moduli space is parameterized

by chiral operators that are composed of supersymmetrized ’t Hooft monopole operators

vm with magnetic charge m and mesonic operators of the form Mm = QQ̃ which are

invariant under a residual subgroup Hm ⊂ U(Nc). In other words, there are chiral gauge

invariant operators which are either bare monopole operators built out of vm, or dressed

monopole operators which are built out of the mesonic operators Mm and bare monopole

operators vm.

The ’t Hooft monopole operators are defined by introducing a Dirac monopole sin-

gularity at an insertion point in the Euclidean path integral [36]. By Dirac quantization,

the monopole operators are labelled by magnetic charges on a weight lattice ΓG∨ of the

GNO/Langlands dual group G∨ [37–39]. For gauge group G = U(Nc), the magnetic charge

takes the form

m = (m1,m2, . . . ,mNc) , (2.1)

where by fixing the action of the Weyl symmetry WG m1 ≥ m2 ≥ · · · ≥ mNc such that

m ∈ ΓG∨/WG. Note that the magnetic charges mi can be considered conjugate to the σi
of the diagonalised scalar adjoint in the vector multiplet of the theory.
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Figure 2. The brane construction for the 3d N = 2 U(Nc) theory with Nf flavors that has a global

symmetry S(U(Nf )1 × U(Nf )2). There are Nc D3-branes suspended between 2 NS5-branes. The

positions of the branes along the x3-direction are given by the scalar adjoints σi, where i = 1, . . . , Nc.

There are also Nf pairs of D5-branes which are attached to the NS5′-branes along the x9-direction.

The position along the x3-direction for the D5-branes are given by the real masses ma and m̃b for

Q and Q̃ respectively, where a, b = 1, . . . , Nf .

Instanton effects [10–12, 32] lift most of the moduli space of the theory such that

magnetic charges of the remaining monopole operators have

m2 = · · · = mNc−1 = 0 . (2.2)

The remaining GNO charges are m1 ≥ 0 ≥ mNc . For convenience, the index for the mag-

netic charge variable mNc is relabelled to m2 such that the magnetic charges of monopole

operators are of the form

m1 ≥ 0 ≥ m2 . (2.3)

We introduce the following notation for bare monopole operators with magnetic charges

(m1,m2) = (+1, 0) : vm ≡ v+ ,

(m1,m2) = (0,−1) : vm ≡ v− . (2.4)

The bare and dressed monopole operators have magnetic charges m1 ≥ 0 ≥ m2. Non-

zero magnetic charges m1,m2 give effective masses |σi − σj | and |σi| to the gauge field A

and the matter fields Q, Q̃ respectively. These massive fields are integrated out with the

gauge group G breaking into a residual subgroup Hm ⊂ G. For our theory with gauge

group U(Nc), the residual subgroup is one of the following:
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U(Nc)

SU(Nc) U(1)B SU(Nf )1 SU(Nf )2 U(1)A U(1)T U(1)R

Qa
i [1, 0, . . . , 0]z +1 [0, . . . , 0, 1]u 0 1 0 r

Q̃i
a [0, . . . , 0, 1]z −1 0 [1, 0, . . . , 0]ũ 1 0 r

v± 0 0 0 0 −Nf ±1 (1− r)Nf − (Nc − 1)

Table 1. The U(Nc) theory with Nf flavors (theory A). The table shows the fundamental and

anti-fundamental matter fields and bare monopole operators under gauge and global symmetries.

• m1,m2 = 0: U(Nc)

• m1 6= 0,m2 = 0 or m1 = 0,m2 6= 0: U(Nc − 1)×U(1)

• m1,m2 6= 0: U(Nc − 2)×U(1)×U(1)

The above values for m1,m2 can be thought of as 4 sublattices of the GNO lattice where

in each particular sublattice the gauge group U(Nc) breaks into a particular residual

subgroup Hm.

The global symmetry of our theory is SU(Nf )1 × SU(Nf )2 ×U(1)A ×U(1)T ×U(1)R,

where SU(Nf )1 × SU(Nf )2 is the flavour symmetry, U(1)A is the axial symmetry, U(1)T
is the topological symmetry and U(1)R is the R-symmetry. The global charges carried by

the bare monopole operators and matter fields are summarized in table 1.

Aharony duality and IR free theories. We call the 3d N = 2 theory with U(Nc)

gauge group and Nf flavors as theory A. Aharony duality [10–12] maps theory A to a new

theory for Nf > Nc. This dual theory, which we call theory B, is a N = 2 3d theory

with U(Nf −Nc) gauge symmetry and Nf flavors. The corresponding quiver diagrams are

shown in figure 3.

Let us comment on the case when Nc = Nf . The original U(Nc) theory with Nf = Nc

flavors has a dual description, the theory of Nf
2+2 chiral multiplets with the superpotential

W = −v+v− detM . (2.5)

When Nf = Nc = 1, U(1) theory A and its dual XY Z theory B flow to the same interacting

IR fixed point. On the other hand, when Nc = Nf > 1, it is known that the U(Nc) theory

A and its dual theory B flow to a IR free theory.

Firstly, let’s consider the Nc = Nf = 2 case. The R-charges of v± and M j
i are 1− rNf

and 2r respectively. r is a parameter to be determined so that 1− rNf and 2r give correct

R-charges at the IR fixed point. These R-charges are constrained by unitarity of the SCFT

to be larger than 1/2 for interacting fields or to be equal to 1/2 for non-interacting fields.

For Nc = Nf = 2, in order to meet the unitarity constraint one has 1 − 2r = 1/2 and

2r = 1/2, which in turn indicates that v± and M j
i are non-interacting. Therefore, the U(2)

theory with two flavors, and its dual B theory, flow to a free theory in the IR.
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monopoles: v±
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M j
i

theory A

theory B

Figure 3. The quiver diagrams of theories A and B under Aharony duality.

For Nc = Nf > 2, the situation is more complicated because both R-charges 1− rNf

and 2r cannot be larger than or equal to 1/2 simultaneously.2 This however doesn’t mean

that the unitarity bound cannot be met. Instead, new U(1) symmetry emerge in IR and the

R-charges would get corrections from the new symmetry to meet the unitarity constraint

for a IR fixed point. One can understand this better with theory B and the reader is

referred to [20, 41–43].

Towards the algebraic structure of moduli spaces. The following sections focus on

theory A and refer to theory B via Aharony duality. The focus is to identify the algebraic

structure of the moduli spaces by computing the Hilbert series [1–7] for theory A. The

Hilbert series counts gauge invariant operators that characterizes the entire chiral ring. By

direct generalization from the 3d N = 4 theories, the monopole operators for 3d N = 2

theories are dressed by gauge invariant operators which are invariant under the residual

gauge symmetry left unbroken in the monopole background. The following section outlines

the computation of the Hilbert series which counts dressed monopole operators for 3d

N = 2 theories.

3 Hilbert series

3.1 Computation

The Hilbert series counts gauge invariant operators on the moduli space of a supersym-

metric gauge theory. By doing so, the Hilbert series identifies the algebraic structure of

the moduli space of the theory. For the 3d N = 2 theory with U(Nc) gauge group and Nf

flavors, the Hilbert series counts mesonic gauge invariant operators of the form M = QQ̃

2In general, this happens for cases which do not satisfy Nf > 4Nc−2
3

. Such theories have been studied

in [40]. In this work, we only study cases for which the unitary bound is not broken.
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on the Higgs branch and dressed monopole operators of the form Mmvm on the remaining

moduli space of the theory. The aim of this section is to introduce the computation of the

Hilbert series for the 3d N = 2 theory.

Conformal dimension of monopole operators. For the 3d N = 2 theory with gauge

group U(Nc) and Nf flavors, the conformal dimension of a monopole operator with GNO

charge m = (m1, . . . ,mNc) has the general form

∆(m) = Nf (1− r)
Nc∑

i

|mi| −
∑

i<j

|mi −mj | , (3.1)

where r is the U(1)R charge of Qa
i . As reviewed in section 2, instanton effects [10–12, 32] lift

most of the moduli space such that the remaining monopole operators carry only magnetic

charges m1 ≥ 0 ≥ m2. Accordingly, (3.1) simplifies for Nc > 1 to

∆(m1,m2) = ((1− r)Nf − (Nc − 1))(m1 −m2) . (3.2)

If Nc = 1, the conformal dimension is

∆(m) = (1− r)Nf |m| , (3.3)

where m ∈ Z.

Hilbert series formula. The Hilbert series for the U(Nc) theory with Nf flavors is

given by [8]

g(t, τ, a, u, ũ;MU(Nc),Nf
) =

∞∑

m1=0

0∑

m2=−∞
τJ(m1,m2)aK(m1,m2)t∆(m1,m2)PU(Nc)(m1,m2;u, ũ, t) , (3.4)

where t counts the monopole operators according to their conformal dimension. J(m1,m2)=

m1 + m2 and K(m1,m2) = −Nf (m1 −m2) are respectively the charges under the U(1)T
topological and U(1)A axial symmetries. The respective fugacities are chosen to be τ and

a. The above Hilbert series is further refined under the flavour symmetries SU(Nf )1 and

SU(Nf )2 with the fugacities u and ũ respectively.

Instead of using fugacity t, one can identify a fugacity basis in terms of a new U(1)

symmetry that weights the bare monopole operators v+ and v− and mesonic operators Mm

equally. By doing so, a new fugacity t corresponding to this new U(1) symmetry can be

introduced which counts degrees of chiral operators according to the number of v+, v− and

Mm. The fugacity map between t and t is as follows,

t = t
2(Nf−Nc+1)

Nf+2 , (3.5)

with r mapping to the value r 7→ r0 =
(Nf−Nc+1)

Nf+2 under the new U(1) symmetry. In the

following sections, fugacity t is used instead of t in the Hilbert series.
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The dressing of monopole operators comes from the classical factor PU(Nc)(m1,m2;

u, ũ, t) in (3.4). As discussed in section 2, depending on the magnetic charge of the

monopole operator, the gauge group U(Nc) is broken to a residual subgroup Hm ⊂ U(Nc).

The dressing factor is a separate Hilbert series which counts mesonic operators of the form

Mm = QQ̃ that are invariant under the residual subgroup Hm.3 It takes the form [44]

PU(Nc)(m1,m2;u, ũ, t) =

∮
dµHm⊆U(Nc) PE

[
[1, 0, . . . , 0]z[0, . . . , 0, 1]uwat

1/2+

[0, . . . , 0, 1]z[1, 0, . . . , 0]ũw
−1at1/2

]
, (3.6)

where dµHm is the Haar measure of Hm and fugacities z and w correspond respectively to

the non-Abelian subgroup of Hm and a U(1) factor of Hm. The remaining U(1) factors

in Hm do not give charge to the matter fields. The dressing factor takes a concise form

when one uses the highest weight generating function of characters of the flavour symmetry

SU(Nf )1 × SU(Nf )2. It is

FNc,Nf
= PE

[
Nc∑

i=1

µNf−iνia
2itir

]
, (3.7)

where µi, νi count highest weights of SU(Nf ) representations. Monomials in µi, νi are

replaced by characters of SU(Nf )

Nf−1∏

i=1

µni
i 7→ [n1, . . . , nNf−1]

SU(Nf )1
u ,

Nf−1∏

i=1

νni
i 7→ [n1, . . . , nNf−1]

SU(Nf )2
ũ . (3.8)

Plethystic logarithm. The plethystic logarithm [1, 3, 5] of the Hilbert series

g(t;MU(Nc),Nf
) is defined as

PL
[
g(t;MU(Nc),Nf

)
]

=
∞∑

k=1

µ(k)

k
log
[
g(tk;MU(Nc),Nf

)
]
, (3.9)

where µ(k) is the Möbius function. The plethystic logarithm has a series expansion in t.

It extracts information from the Hilbert series about the algebraic structure of the moduli

space. As an expansion in t, the initial positive terms refer to generators of the moduli

space. The following negative terms refer to first order relations amongst the generators.

When the series terminates at this point, the moduli space is known to be a complete

intersection moduli space. If the series does not terminate, the moduli space is known

to be a non-complete intersection where relations form higher order relations known as

syzygies [1, 3, 5]. We expect the moduli space of the U(Nc) theory with Nf flavors to be

in one of these two classes.

3For a broken gauge group such as U(1)×U(Nc− 1), dressed monopole operators from the U(1) factors

are excluded whenever these states are not BPS.
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3.2 General result of the Hilbert series and moduli space

The Hilbert series g(t, τ, a, u, ũ;MU(Nc),Nf
) satisfies a general form. In order to present

this general form, we make use of the highest weight generating function for the characters

of irreducible representations of the flavour symmetry SU(Nf )1 × SU(Nf )2. The highest

weight generating function for Hilbert series makes use of the map

Nc−1∏

i=1

µni
i 7→ [n1, . . . , nNc−1]

SU(Nf )1
u ,

Nc−1∏

i=1

νni
i 7→ [n1, . . . , nNc−1]

SU(Nf )2
ũ , (3.10)

where fugacities µi and νi count the highest weight of the irreducible representations of

SU(Nf )1 × SU(Nf )2.

Using the highest weight generating function of Hilbert series, one can for instance

express concisely the dressing factor for monopole operators as follows,

FNc,Nf
= PE

[
Nc∑

i=1

µNf−iνia
2iti

]
. (3.11)

After the inclusion of the monopole operators the highest weight generating function is

G(t, τ, a, u, ũ;MU(Nc),Nf
) = FNc,Nf

+ FNc−1,Nf

[
1

1− τa−Nf t
+

1

1− τ−1a−Nf t
− 2

]

+ FNc−2,Nf

a−2Nf t2

(1− τa−Nf t)(1− τ−1a−Nf t)
, (3.12)

where t counts magnetic monopoles v± and mesonic operators Mm = QQ̃ and corresponds

to U(1) symmetry which replaces U(1)R. By identifying the exponents of fugacities µi and

νi in the expansion of the highest weight generating function in (3.12), one obtains the

character expansion of the Hilbert series.

The plethystic logarithm of the Hilbert series as a highest weight generating function is

µNf−1ν1a
2t+ (τ + τ−1)a−Nf t

− µNf−(Nc+1)νNc+1a
2(Nc+1)tNc+1

− µNf−NcνNc(τ + τ−1)a2Nc−Nf tNc+1

− µNf−(Nc−1)νNc−1a
2(Nc−1)−2Nf tNc+1 + . . . . (3.13)

The following product of mesonic operators is used in order to express relations amongst

moduli space generators,

R(Nc,Nf )

j1...jNf−Nc

i1...iNf−Nc
=

1

Nc!
εi1...iNf−Nck1...kNc

ε
j1...jNf−Ncm1...mNcMk1

m1
. . .M

kNc
mNc

, (3.14)

where

R(Nc,Nc) = det(M) . (3.15)

From the plethystic logarithm in (3.13), the general form of the generators can be

identified as
PL term → generator

µNf−1ν1a
2t → M j

i = Qa
i Q̃

j
a

τ±1a−Nf t → v±

. (3.16)
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Furthermore, the general form of the first order relations formed amongst the generators are

PL term → relation

−µNf−(Nc+1)νNc+1a
2(Nc+1)tNc+1 → R(Nc+1,Nf )

j1...jNf−Nc−1

i1...iNf−Nc−1
= 0

−µNf−NcνNc(τ + τ−1)a2Nc−Nf tNc+1 → v±R(Nc,Nf )

j1...jNf−Nc

i1...iNf−Nc
= 0

−µNf−(Nc−1)νNc−1a
2(Nc−1)−2Nf tNc+1 → v+v−R(Nc−1,Nf )

j1...jNf−Nc+1

i1...iNf−Nc+1
= 0

. (3.17)

It is important to note that the terms in the plethystic logarithm in (3.13) which correspond

to the above relations do not appear in the Hilbert series expansion itself. This can be seen

when one expands the dressing factor in (3.11) with the contributions from the monopole

operators. One can show that the terms of the plethystic logarithm in (3.17) do not appear

as operators in the Hilbert series expansion and that the relations in (3.17) are satisfied.

From the above analysis of the plethystic logarithm, the moduli space of the U(Nc)

theory with Nf flavors can be expressed as the following algebraic variety,

MU(Nc),Nf
= C[M j

i , v±]/I , (3.18)

where the quotienting ideal is

I = 〈R(Nc+1,Nf ) = 0 , v±R(Nc,Nf ) = 0 , v+v−R(Nc−1,Nf ) = 0〉 . (3.19)

Let us call Mk,N the space of all N × N matrices M j
i which at most have rank k. In

terms of (3.14), one can write Mk,N = C[M j
i ]/〈R(k+1,N) = 0〉. Then using Mk,N , the 4

components of the moduli space can be expressed as

M0
U(Nc),Nf

=MNc,Nf
,

M+
U(Nc),Nf

=MNc−1,Nf
× C[v+] ,

M−U(Nc),Nf
=MNc−1,Nf

× C[v−] ,

M+−
U(Nc),Nf

=MNc−2,Nf
× C[v+, v−] , (3.20)

whereM0
U(Nc),Nf

is the Higgs branch, M+
U(Nc),Nf

andM−U(Nc),Nf
are mixed branches, and

M+−
U(Nc),Nf

is a Coulomb branch when Nc = 1, 2 and a mixed branch when Nc > 2.4 The

corresponding highest weight generating functions for the Hilbert series are

G(t, τ, a, u, ũ;M0
U(Nc),Nf

) = FNc,Nf
,

G(t, τ, a, u, ũ;M+
U(Nc),Nf

) = FNc−1,Nf
× 1

1− τa−Nf t
,

G(t, τ, a, u, ũ;M−U(Nc),Nf
) = FNc−1,Nf

× 1

1− τ−1a−Nf t
,

G(t, τ, a, u, ũ;M+−
U(Nc),Nf

) = FNc−2,Nf
× 1

(1− τa−Nf t)(1− τ−1a−Nf t)
, (3.21)

where FNc,Nf
, FNc−1,Nf

and FNc−2,Nf
are the dressing factors in (3.11) for the different

GNO sublattices.
4Note that componentM0

U(Nc),Nf
is the dressing factor for componentsM+

U(Nc+1),Nf
andM−U(Nc+1),Nf

and the dressing factor for component M+−
U(Nc+2),Nf

.
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Let us discuss now the intersections of components of the moduli space in (3.20). First

of all, we denote by G(t, τ, a, u, ũ;Mi=1
U(Nc),Nf

) the total sum of the highest weight generating

function of each individual moduli space component in (3.21). The 4 components intersect

pairwise as follows,

M0
U(Nc),Nf

∩M+
U(Nc),Nf

=M0
U(Nc),Nf

∩M−U(Nc),Nf
=M+

U(Nc),Nf
∩M−U(Nc),Nf

= IM ,

M0
U(Nc),Nf

∩M+−
U(Nc),Nf

= I0 ,

M+
U(Nc),Nf

∩M+−
U(Nc),Nf

= I+ ,M−U(Nc),Nf
∩M+−

U(Nc),Nf
= I− , (3.22)

where

IM =MNc−1,Nf
, I0 =MNc−2,Nf

,

I+ =MNc−2,Nf
× C[v+] , I− =MNc−2,Nf

× C[v−] . (3.23)

The corresponding highest weight generating functions for the Hilbert series are

G(t, τ, a, u, ũ; IM ) = FNc−1,Nf
, G(t, τ, a, u, ũ; I0) = FNc−2,Nf

, (3.24)

G(t, τ, a, u, ũ; I+) = FNc−2,Nf
× 1

1−τa−Nf t
, G(t, τ, a, u, ũ; I−) = FNc−2,Nf

× 1

1−τ−a−Nf t
,

where we denote by G(t, τ, a, u, ũ;Mi=2
U(Nc),Nf

) the total sum of the highest weight generating

functions for pairwise intersections of moduli space components. The components also have

triple intersections,

M0
U(Nc),Nf

∩M+
U(Nc),Nf

∩M−U(Nc),Nf
= IM , (3.25)

M0
U(Nc),Nf

∩M+
U(Nc),Nf

∩M+−
U(Nc),Nf

=M0
U(Nc),Nf

∩M−U(Nc),Nf
∩M+−

U(Nc),Nf

=M+
U(Nc),Nf

∩M−U(Nc),Nf
∩M+−

U(Nc),Nf
= I0

and a quadruple intersection,

M0
U(Nc),Nf

∩M+
U(Nc),Nf

∩M−U(Nc),Nf
∩M+−

U(Nc),Nf
= I0 (3.26)

where we denote by G(t, τ, a, u, ũ;Mi=3
U(Nc),Nf

) and G(t, τ, a, u, ũ;Mi=4
U(Nc),Nf

) respectively

the total sum of the highest weight generating functions of the Hilbert series for triple and

quadruple intersections.

Taking into account all the intersections, the highest weight generating function for

the Hilbert series of the full moduli space MU(Nc),Nf
can be expressed as

G(t, τ, a, u, ũ;MU(Nc),Nf
)

= G(t, τ, a, u, ũ;Mi=1
U(Nc),Nf

)− G(t, τ, a, u, ũ;Mi=2
U(Nc),Nf

)

+ G(t, τ, a, u, ũ;Mi=3
U(Nc),Nf

)− G(t, τ, a, u, ũ;Mi=4
U(Nc),Nf

)

= G(t, τ, a, u, ũ;M0
U(Nc),Nf

) + G(t, τ, a, u, ũ;M+
U(Nc),Nf

)

+ G(t, τ, a, u, ũ;M−U(Nc),Nf
) + G(t, τ, a, u, ũ;M+−

U(Nc),Nf
)− 2G(t, τ, a, u, ũ; IM )

− G(t, τ, a, u, ũ; I+)− G(t, τ, a, u, ũ; I−) + G(t, τ, a, u, ũ; I0) . (3.27)

This expression for the highest weight generating function for the Hilbert series of the full

moduli space is in agreement with the Hilbert series expression in (3.12).
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3.2.1 Example: U(1) with 2 flavors

Let us look at specific examples of the computation of the Hilbert series. U(1) theories

with Nf flavors are special because they exhibit only 3 components for moduli space. This

section focuses on the U(1) theory with 2 flavors whose moduli space is made of two 1-

dimensional cones and a top component which is a conifold. As we are going to see, there is

a separation between components generated by monopole operators and mesonic operators

with a clear absence of any mixed components seen from the general result in section 3.2.

The Hilbert series for the U(1) theory with 2 flavors is given by

g(t;MU(1),2) =
∞∑

m=−∞
t∆(m)PU(1)(m; t) , (3.28)

where t is the fugacity which counts bare monopole operators according to their conformal

dimension. For a U(1) theory with Nf = 2 the conformal dimension of the bare monopole

operator is given by

∆(m) = 2(1− r)|m| , (3.29)

where r is the U(1) R-charge of the fundamental Qi and anti-fundamental Q̃i and m ∈ Z is

the GNO magnetic flux. The Hilbert series formula above can be refined with the charges

from the topological symmetry U(1)T and the axial symmetry U(1)A. The respective

fugacities are chosen to be τ and a. The refined Hilbert series is

g(t, τ, a, u, ũ;MU(1),2) =
∞∑

m=−∞
τJ(m)aK(m)t∆(m)PU(1)(m; t, a, u, ũ) , (3.30)

where J(m) = m and K(m) = −2|m| are respectively the topological and axial charges

of a monopole operator with GNO charge m as discussed in table 1. Under a new U(1)

symmetry that weights monopole operators v± and mesonic operators Mm equally, a new

fugacity t can be introduced by mapping the value of r to r 7→ r0 = 1
2 . As discussed

in (3.5), the fugacity map is t = t.

The classical factor of the Hilbert series formula is PU(1)(m; t, a, u, ũ) and it is further

refined under the flavour symmetries SU(2)1×SU(2)2. The fugacities u and ũ respectively

count charges under SU(2)1 and SU(2)2. The refined classical factor is given by

PU(1)(m; t, a, u, ũ) =
{∮
|w|=1

dw
w PE

[
w(u+ u−1)at1/2 + w−1(ũ+ ũ−1)at1/2

]
= f m = 0

1 m 6= 0
, (3.31)

where the integral gives

f =
(1− a4t2)

(1− uũa2t)(1− uũ−1a2t)(1− u−1ũa2t)(1− u−1ũ−1a2t)
. (3.32)

From the above Hilbert series corresponding to the classical component of the moduli space

where the GNO magnetic flux is m = 0, one can identify the classical component to be
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C[v+]C[v�]

C4[M j
i ]/hdetM = 0i

Figure 4. The moduli space of the U(1) theory with Nf = 2 is made of 3 cones which meet at

the origin.

the conifold C. The 4 generators of the conifold are the mesonic operators M = QQ̃ which

satisfy the quadratic relation detM = 0.

Summing up the Hilbert series formula in (3.28) for the entire moduli space gives

g(t, τ, a, u, ũ;MU(1),2) = f +
1

1− τa−2t
+

1

1− τ−1a−2t
− 2 . (3.33)

From the Hilbert series above one can observe that the moduli space is made of 3 cones,

one being the conifold generated by the mesonic operators and the other two being two C,

each generated by monopole operators of opposite topological U(1)T charge. The 3 cones

meet at the origin as shown in figure 4.

The Hilbert series has the following character expansion,

g(t, τ, a, u, ũ;MU(1),2)=
∞∑

n=0

[
[n]u[n]ũa

2n + (τn + τ−n)a−2n
]
tn − 2 (3.34)

=1+[1]u[1]ũa
2t+(τ + τ−1)a−2t+[2]u[2]ũa

4t2+(τ2+τ−2)a−4t2+. . . .

The plethystic logarithm of the refined Hilbert series of the full moduli space is

PL
[
g(t, τ, a, u, ũ;MU(1),2)

]
= [1]u[1]ũa

2t+ (τ + τ−1)a−2t

− a4t2 − a−4t2 − [1]u[1]ũ(τ + τ−1)t2 + . . . . (3.35)

From the initial positive terms of the plethystic logarithm, one can identify the generators

of the moduli space,
PL term → generator

+[1]u[1]ũa
2t → M j

i = Qa
i Q̃

j
a

+τa−2t → v+

+τ−1a−2t → v−

. (3.36)

The generators are the mesons and the bare monopoles. The first order relations formed

among the generators are identified as follows,

PL term → relation

−a4t2 → detM = 0

−[1]u[1]ũτt
2 → v+M

j
i = 0

−[1]u[1]ũτ
−1t2 → v−M

j
i = 0

−a−4t2 → v+v− = 0

. (3.37)
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The full moduli space of the U(1) theory with Nf = 2 can be expressed as the following

algebraic variety,

MU(1),2 = C[M j
i , v+, v−]/〈detM = 0 , v+M

j
i = 0 , v−M

j
i = 0 , v+v− = 0〉 . (3.38)

The moduli space MU(1),2 has the following components

M0
U(1),2 = C[M j

i ]/〈detM = 0〉 = C ,
M+

U(1),2 = C[v+] , M−U(1),2 = C[v−] , (3.39)

where the Higgs branch is given by M0
U(1),2 and the Coulomb branch by M+

U(1),2 and

M−U(1),2. The Higgs branch M0
U(1),2 is the conifold C. The Hilbert series of the 3 compo-

nents are as follows,

g(t, τ, a, u, ũ;M0
U(1),2) = PE

[
[1]u[1]ũa

2t− a4t2
]
,

g(t, τ, a, u, ũ;M+
U(1),2) =

1

1− τa−2t
, g(t, τ, a, u, ũ;M−U(1),2) =

1

1− τ−1a−2t
. (3.40)

The 3 components of the moduli space intersect only at the origin.

The moduli space is the union of the 3 components. By removing the contributions

from the intersections, the Hilbert series of MU(1),2 therefore can be expressed as

g(t, τ, a, u, ũ;MU(1),2) = g(t, τ, a, u, ũ;M0
U(1),2) + g(t, τ, a, u, ũ;M+

U(1),2)+

g(t, τ, a, u, ũ;M−U(1),2)− 2 . (3.41)

3.2.2 Example: U(2) with 3 flavors

The U(2) theory with 3 flavors has a moduli space with 4 components as it is discussed in

section 3.2. Special to this theory is the fact that the fourth component is purely generated

by monopole operators and therefore can be considered as a Coulomb branch of the theory.

The remaining 3 components are the Higgs branch generated by mesonic operators and

mixed branches. Let us illustrate the computation of the corresponding Hilbert series with

this section.

The Hilbert series for the U(2) theory with 3 flavors is given by

g(t;MU(2),3) =
∞∑

m1=0

0∑

m2=−∞
t∆(m1,m2)PU(2)(m1,m2; t) , (3.42)

where fugacity t counts bare monopole operators according to their conformal dimension.

For the U(2) theory with Nf = 3 the conformal dimension of the bare monopole operator

is given by

∆(m1,m2) = (2− 3r)(m1 −m2) , (3.43)

where m1,m2 are the GNO magnetic fluxes.
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The Hilbert series expression in (3.42) can be refined to include fugacities τ and a

which respectively count charges of the topological U(1)T and axial U(1)A symmetries.

The refined Hilbert series takes the following form

g(t, τ, a, u, ũ;MU(2),3) =

∞∑

m1=0

0∑

m2=−∞
τJ(m1,m2)aK(m1,m2)t∆(m1,m2)PU(2)(m1,m2; t, a, u, ũ) , (3.44)

where J(m1,m2) = m1+m2 and K(m1,m2) = −3(m1−m2) are respectively the topological

and axial charges of a monopole operator with GNO charge m1,m2. In addition, the Hilbert

series above is refined under the flavour symmetry SU(3)1×SU(3)2, where fugacities u and

ũ count the charges of the respective symmetries as summarised in table 1. By introducing

a new U(1) symmetry that replaces U(1)R and weights monopole operators v± and mesonic

operators Mm equally, a new fugacity t can be introduced that replaces t by mapping the

value of r to r 7→ r0 = 2
5 . Following (3.5), the fugacity map is t = t

4
5 .

The classical contribution comes from the factor PU(2)(m1,m2; t, a, u, ũ). The GNO

charge lattice with m1,m2 can be dividend into 4 sublattices under which monopole opera-

tors that contribute to the moduli space are charged. Depending on which GNO sublattice

one is, the gauge symmetry is either broken or unbroken. Accordingly, the classical factor

of the Hilbert series can be written as follows,

PU(2)(m1,m2; t, a, u, ũ) (3.45)

=





∮
dµSU(2)

∮
dµU(1)PE

[
[1]zw[0, 1]uat

1/2+[1]zw
−1[1, 0]ũat

1/2
]
=f1 m1,m2 = 0

∮
dµU(1)PE

[
w[0, 1]uat

1/2+w−1[1, 0]ũat
1/2
]

= f2

{
m1 6= 0,m2 = 0

m1 = 0,m2 6= 0

1 m1,m2 6= 0

,

where the integrals above give

f1 = PE
[
[0, 1]u[1, 0]ũa

2t− a6t3
]
,

f2 = (1− [0, 1]u[1, 0]ũa
4t2 + [1, 1]ua

6t3 + [1, 1]ũa
6t3 − [0, 1]u[1, 0]ũa

8t4 + a12t6)

× PE
[
[0, 1]u[1, 0]ũa

2t
]
. (3.46)

Summing up the refined Hilbert series in (3.44) gives

g(t, τ, a, u, ũ;MU(2),3) = f1 + f2

[
1

1− τa−3t
+

1

1− τ−1a−3t
− 2

]

+
a−6t2

(1− τa−3t)(1− τ−1a−3t)
. (3.47)
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The first few orders of the expansion of the Hilbert series is as follows,

g(t, τ, a, u, ũ;MU(2),3)

= 1 + ([0, 1]u[1, 0]ũa
2 + (τ + τ−1)a−3)t

+
(
([0, 2]u[2, 0]ũ + [0, 1]u[1, 0]ũ)a4 + [0, 1]u[1, 0]ũ(τ + τ−1)a−1 + (τ2 + τ−2 + 1)a−6

)
t2

+
(
([0, 3]u[3, 0]ũ + [1, 1]u[1, 1]ũ)a6 + [0, 2]u[2, 0]ũ(τ + τ−1)a

+ [1, 1]u[1, 1]ũ(τ2 + τ−2)a−4 + (τ3 + τ + τ−1 + τ−3)a−9
)
t3 + . . . . (3.48)

The corresponding plethystic logarithm is

PL
[
g(t, τ, a, u, ũ;MU(2),3)

]
= [0, 1]u[1, 0]ũa

2t+ (τ + τ−1)a−3t (3.49)

− a6t3 − [1, 0]u[0, 1]ũ(τ+τ−1)at3 − [0, 1]u[1, 0]ũa
−4t3 + . . . .

The plethystic logarithm encodes the generators and relations amongst generators

which define the moduli space. The generators of the moduli space correspond to the

initial positive terms of the plethystic logarithm. The generators are as follows

PL term → generator

+[0, 1]u[1, 0]ũa
2t → M j

i = Qa
i Q̃

j
a

+τa−3t → v+

+τ−1a−3t → v−

, (3.50)

where i, j = 1, 2, 3. The corresponding first order relations between the generators are

identified as follows
PL term → relation

−a6t3 → detM = 0

−[1, 0]u[0, 1]ũτat
3 → v+R(2,3)

i
j

= 0

−[1, 0]u[0, 1]ũτ
−1at3 → v−R(2,3)

i
j

= 0

−[0, 1]u[1, 0]ũa
−4t3 → v+v−M

j
i = 0

, (3.51)

where

R(2,3)
i
j

=
1

2
εjk1k2ε

im1m2Mk1
m1
Mk2

m2
. (3.52)

From the generators and first order relations, the moduli space can be expressed as

the following algebraic variety,

MU(2),3 = C[M j
i , v±]/〈detM = 0, v±R(2,3)

i
j

= 0, v+v−M
j
i = 0〉 . (3.53)

Let us call the space of N × N matrices M j
i with at most rank k as Mk,N . Using this

space, the components of the moduli space MU(2),3 can be expressed as

M0
U(2),3 =M2,3

M+
U(2),3 =M1,3 × C[v+] , M−U(2),3 =M1,3 × C[v−] ,

M+−
U(2),3 = C[v+, v−] , (3.54)
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where M0
U(2),3 and M+−

U(2),3 are identified as Higgs and Coulomb branches respectively

while M+
U(2),3 and M−U(2),3 are mixed branches. The corresponding Hilbert series are as

follows,

g(t, τ, a, u, ũ;M0
U(2),3) = f1 ,

g(t, τ, a, u, ũ;M+
U(2),3) = f2 ×

1

1− τa−3t
,

g(t, τ, a, u, ũ;M−U(2),3) = f2 ×
1

1− τ−1a−3t
,

g(t, τ, a, u, ũ;M+−
U(2),3) =

1

(1− τa−3t)(1− τ−1a−3t)
, (3.55)

where f1 and f2 correspond to the monopole dressing factors in (3.46). The 4 components

intersect in various subspaces which are

I0 = {0} , IM =M1,3 , I+ = C[v+] , I− = C[v−] , (3.56)

where {0} is the origin. The corresponding Hilbert series are

g(t, τ, a, u, ũ; IM ) = f2 , g(t, τ, a, u, ũ; I0) = 1 ,

g(t, τ, a, u, ũ; I+) =
1

1− τa−3t
, g(t, τ, a, u, ũ; I−) =

1

1− τ−a−3t
. (3.57)

We denote by g(t, τ, a, u, ũ;Mi=1
U(2),3) the total sum of the above Hilbert series for the 4

components of the modouli space.

Let us now identify the component intersections and the corresponding Hilbert series.

The components pairwise intersect as follows,

M0
U(2),3 ∩M+

U(2),3 =M0
U(2),3 ∩M−U(2),3 =M+

U(2),3 ∩M
−
U(2),3 = IM ,

M0
U(2),3 ∩M+−

U(2),3 = I0 ,

M+
U(2),3 ∩M

+−
U(2),3 = I+ , M−U(2),3 ∩M

+−
U(2),3 = I− . (3.58)

The triple intersections are

M0
U(2),3 ∩M+

U(2),3 ∩M
−
U(2),3 = IM ,

M0
U(2),3 ∩M+

U(2),3 ∩M
+−
U(2),3 =M0

U(2),3 ∩M−U(2),3 ∩M
+−
U(2),3

=M+
U(2),3 ∩M

−
U(2),3 ∩M

+−
U(2),3 = I0 , (3.59)

and the quadruple intersection is

M0
U(2),3 ∩M+

U(2),3 ∩M
−
U(2),3 ∩M

+−
U(2),3 = I0 . (3.60)

We denote by g(t, τ, a, u, ũ;Mi=2
U(2),3), g(t, τ, a, u, ũ;Mi=3

U(2),3) and g(t, τ, a, u, ũ;Mi=4
U(2),3) the

total Hilbert series for the pairwise, triple and quadruple intersections of the 4 moduli
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space components. By removing contributions from the intersections, the Hilbert series of

the full moduli space MU(2),3 can be expressed as

g(t, τ, a, u, ũ;MU(2),3)

= g(t, τ, a, u, ũ;Mi=1
U(2),3)− g(t, τ, a, u, ũ;Mi=2

U(2),3)

+ g(t, τ, a, u, ũ;Mi=3
U(2),3)− g(t, τ, a, u, ũ;Mi=4

U(2),3)

= g(t, τ, a, u, ũ;M0
U(2),3) + g(t, τ, a, u, ũ;M+

U(2),3) + g(t, τ, a, u, ũ;M−U(2),3)

+ g(t, τ, a, u, ũ;M+−
U(2),3)− 2g(t, τ, a, u, ũ; IM )− g(t, τ, a, u, ũ; I+)

− g(t, τ, a, u, ũ; I−) + g(t, τ, a, u, ũ; I0) . (3.61)

This expression for the Hilbert series of the full moduli space is in agreement with the

Hilbert series expression in (3.47).

4 The superconformal index and the Hilbert series

In this section, we examine the relation between the superconformal index and the Hilbert

series. The superconformal index by itself does not give information on the moduli space.

Only by taking appropriate limits to a Hilbert series one can derive information about the

structure of the moduli space. The following section proposes limits from the superconfor-

mal index which reproduce Hilbert series of certain subspaces of the moduli space of the

3d N = 2 theories.

4.1 The N = 2 superconformal index

Firstly, let us recall the definition of the superconformal index for 3d N = 2 theories. The

bosonic subgroup of the 3d N = 2 superconformal group is SO(2, 3)× SO(2) whose three

Cartan elements are denoted by E, j and R. The superconformal index is defined by [17]

I (x, ui) = Tr(−1)F exp(−β′{Q,S})xE+j

(∏

i

uFi
i

)
(4.1)

where Q is a supercharge of quantum numbers E = 1
2 , j = −1

2 and R = 1, and S = Q†.

x is the fugacity for E + j and ui’s are additional fugacities for global symmetries of the

theory. The trace is taken over the Hilbert space of the SCFT on R× S2, or equivalently

over the space of local gauge invariant operators on R3. As usual, only the BPS states,

which saturate the inequality

{Q,S} = E −R− j ≥ 0, (4.2)

contribute to the index.
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Using supersymmetric localization, the superconformal index can be exactly computed

as follows, [15, 16]5

I(x, u, ũ, a, τ) =

∑

m∈ZNc/SNc

∮ ( Nc∏

a=1

dza
2πiza

)
1

|Wm|
τ
∑

a maZvector(x, z,m)Zchiral(x, u, ũ, a, z,m) , (4.4)

where

Zvector(x, z,m) =

Nc∏

a,b=1
(a6=b)

x−|ma−mb|/2
(

1− zaz−1
b x|ma−mb|

)
, (4.5)

Zchiral(x, u, ũ, a, z,m) =

Nc∏

a=1

x(1−r)Nf |ma|a−Nf |ma|

×
Nf∏

i=1

(
z−1
a u−1

i a−1x|ma|+2−r;x2
)
∞
(
zaũ
−1
i a−1x|ma|+2−r;x2

)
∞(

zauiax|ma|+r;x2
)
∞
(
z−1
a ũiax|ma|+r;x2

)
∞

.

Above, |Wm| is the Weyl group order of the residual gauge group left unbroken by flux

m. We have taken into account the gauge group U(Nc) and the matter content: the

Nf pairs of fundamental and anti-fundamental chiral multiplets. u = (u1, . . . , uNf
), ũ =

(ũ1, . . . , ũNf
), a and τ are the fugacities for the global symmetry SU(Nf )1 × SU(Nf )2 ×

U(1)A ×U(1)T respectively. Note that
∏Nf

i=1 ui =
∏Nf

i=1 ũi = 1.

4.2 Limits of the N = 4 superconformal index

Let us review the proposal [45] for the relation between the superconformal index and the

Hilbert series of N = 4 theories [8, 23]. Let us denote by jH and jV the spins of the two

SU(2) in the SO(4)R = SU(2)H × SU(2)V R-symmetry. x is the E + j fugacity and x′ is

the jH − jV fugacity. The superconformal index for an N = 4 theory is

I(x, x′) = Tr′(−1)FxE+jx′jH−jV

= Tr′(−1)F tE−jVH tE−jHC

(4.6)

where we ignore other global symmetry fugacities and tH = xx′, tC = xx′−1. The primed

trace Tr′ denotes that the trace is taken over the BPS states. The BPS condition E =

jH + jV + j [46] is used for the second equality. Under N = 2 twisting some of the fermions

in the N = 4 vector multiplet get the same quantum numbers as the F-terms and play the

same role for the index as the F-terms for the Hilbert series. It is important to note that

the index is unreliable when there are accidental IR corrections to the R-symmetry.

5(a; q)n is the q-Pochhammer symbol, defined by

(a; q)n =

n−1∏
k=0

(
1− aqk

)
. (4.3)
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The proposed limits for getting the Hilbert series of the Higgs branch and the Coulomb

branch from the superconformal index are6

Higgs branch: HSH(tH) = lim
tC→0

I(tH , tC) ,

Coulomb branch: HSC(tC) = lim
tH→0

I(tH , tC) ,
(4.7)

where HSH and HSC are respectively the Hilbert series of the Higgs and Coulomb branches.

Note that the BPS condition E = jH + jV + j implies inequalities E ≥ jH and E ≥ jV .

Using (4.6) the first limit in (4.7) restricts to BPS states with E = jH implying jV = j = 0.

Similar arguments apply for the second limit in (4.7). Therefore, the index in each limit

captures the SU(2)V/H singlet scalar BPS states, which corresponds to the Hilbert series

of the Higgs/Coulomb branch of the N = 4 theory, respectively.

4.3 Generalized limits for the N = 2 superconformal index

N = 2 theories do not in general have distinct Higgs and Coulomb branches. Furthermore,

there is only one U(1)R symmetry in the superconformal algebra for N = 2 theories.

Nevertheless, one may try to generalize the limits in (4.7) for N = 2 theories. The N = 2

U(1)R charge plays the role of jH + jV in N = 4. In addition, one can choose one of

the N = 2 global U(1) symmetries and choose its charge to play the role of jH − jV in

N = 4. With these choices, it turns out that the resulting generalized limits of the N = 2

superconformal index give rise to Hilbert series of certain subspaces of the moduli space for

the N = 2 theory. In addition, such generalized limits of the N = 2 superconformal index

are not unique because the N = 2 theories we are considering have several U(1) global

symmetries.

We will examine 4 limits of the superconformal index of the N = 2 U(Nc) theory

with Nf flavors. The BPS condition and certain constraints on the global U(1) symmetry

charges, which derive from the requirement that the limit is well-defined and non-divergent,

can be used to show that there are just 4 relevant limits to consider. This is further

elaborated in the following section. Here it is noted that each of the 4 limits corresponds

to a Hilbert series of a certain subspace of the moduli space. 3 of them can be expressed

in terms of the 4 main components of the moduli space which are discussed in section 3.2.

These 3 subspaces are as follows:

• MU(Nc),Nf
/ 〈v± = 0〉 =M0

U(Nc),Nf

• MU(Nc),Nf
/ 〈v− = 0〉 =M0

U(Nc),Nf
∪M+

U(Nc),Nf

• MU(Nc),Nf
/ 〈v+ = 0〉 =M0

U(Nc),Nf
∪M−U(Nc),Nf

The 4th limit gives the Hilbert series of a subspace of the moduli space that cannot be

directly expressed in terms of the 4 main components. It is a subspace of component

M+−
U(Nc),Nf

as follows:

• MU(Nc),Nf
/
〈
M j

i = 0
〉
⊂M+−

U(Nc),Nf

6A crucial comment here is that the Higgs branch limit gives the Hilbert series only when a complete

Higgsing of the gauge group occurs along the Higgs branch.
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By considering all 4 limits, we are going to see that taking a limit of the superconformal

index cannot reproduce the Hilbert series of the whole component M+−
U(Nc),Nf

, and thus

that of the complete moduli space. The subsequent sections explain how we obtain the

Hilbert series of each subspace from the superconformal index.

Recall why the limits in (4.7) capture scalar BPS states: if energy E of a BPS state

is equal to the R-charge jH/V , the state is scalar BPS due to the N = 4 BPS condition

E ≥ jH + jV + j [46]. The idea for N = 2 theories is the same. We try to identify a

state whose energy is equal to the U(1)R charge R. Such a state then should be scalar

BPS because of the N = 2 BPS condition E ≥ R + j. We cannot trace every scalar

BPS state by taking a limit of the superconformal index because there are accidental

cancelations between the bosonic and the fermionic contributions to the index. This section

explains which remaining states can be traced by taking an appropriate limit of the N = 2

superconformal index.

For every factor U(1)k in the global symmetry of the theory, one can introduce a

corresponding fugacity uk. In order to have a well-defined non-divergent limit of the super-

conformal index, we propose the condition that for a U(1)k factor in the global symmetry,

the ratio of the U(1)k charge Fk to the U(1)R charge R satisfies the following bound

Fk

R
≤ 1 . (4.8)

We have assumed for simplicity that Fk is normalized such that the right hand side is 1.

The role of the above condition is going to become clearer when one revisits the general

form of the N = 2 index

I (x, ui) = Tr′(−1)FxE+j

(∏

i

uFi
i

)
,

where we can make shifts of the E+j fugacity and the U(1)k fugacity, x→ xy, uk → uky
−1,

such that in the limit y → 0 one has

lim
y→0

I(xy, ui(6=k), uky
−1) = lim

y→0
Tr′(−1)Fx2E−R

(∏

i

uFi
i

)
y2(E−R)+R−Fk . (4.9)

Again the primed trace Tr′ denotes that the trace is taken over the BPS states. Given the

BPS condition E ≥ R+j and the condition R ≥ Fk from (4.8), the power of y for each term

is non-negative. Therefore, the limit y → 0 only leaves terms which are independent of y.

The remaining terms correspond to the contributions of BPS states satisfying E = R = Fk

and j = 0. This is exactly the Hilbert series counting scalar BPS states of the theory,

g(x, ui) = lim
y→0

I(xy, ui(6=k), uky
−1) , (4.10)

where ui’s are the global symmetry fugacities and x is the energy fugacity.

The choice of global U(1) symmetries, the constraints set by the N = 2 BPS condition,

and the requirement for having a well-defined non-divergent limit of the superconformal

index all lead to precisely 4 limits of the N = 2 superconformal index for the theories

we are considering. In the following sections, these limits are presented and the resulting

Hilbert series are identified with subspaces of the moduli space of the N = 2 theory.
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4.3.1 MU(Nc),Nf
/ 〈v± = 0〉 and MU(Nc),Nf

/
〈
M j

i = 0
〉

We are considering N = 2 U(Nc) theories with Nf pairs of fundamental and anti-

fundamental chiral multiplets which have a global symmetry of SU(Nf )1 × SU(Nf )2 ×
U(1)A × U(1)T . Let us consider here the U(1)A axial symmetry. Given the charge assign-

ments summarized in table 1, one can identify bounds for the ratio of the U(1)A charge A

to the U(1)R charge R for a BPS state as follows:

− Nf

(1− r)Nf −Nc + 1
≤ A

R
≤ 1

r
(4.11)

where r is the U(1)R charge of the fundamental and anti-fundamental chiral multiplets

Q and Q̃. r is such that ∆M = 2r and ∆V = (1 − r)Nf − Nc + 1 for mesonic and

monopole operators respectively are larger than or equal to 1/2 due to unitarity. We

can take two differently normalized versions of U(1)A such that each inequality in (4.11)

takes the form of (4.8). Then, as we have proposed, the Hilbert series of a subspace

of the moduli space generated by generators saturating each inequality can be obtained

from the superconformal index. It turns out that the right inequality is saturated for

the mesonic operators M j
i , which have the U(1)A charge 2 and the U(1)R charge 2r,

whereas the left inequality is saturated for the monopole operators v±, which have the

U(1)A charge −Nf and the U(1)R charge (1 − r)Nf −Nc + 1. Therefore, we propose two

limits of the superconformal index which give rise to the Hilbert series of two subspaces of

the moduli space MU(Nc),Nf
/ 〈v± = 0〉 and MU(Nc),Nf

/
〈
M j

i = 0
〉

. MU(Nc),Nf
/ 〈v± = 0〉

is the same as component M0
U(Nc),Nf

of the moduli space as discussed in section 3.2 while

MU(Nc),Nf
/
〈
M j

i = 0
〉

is only a subspace of component M+−
U(Nc),Nf

:

MU(Nc),Nf
/ 〈v± = 0〉 =M0

U(Nc),Nf
,

MU(Nc),Nf
/
〈
M j

i = 0
〉

=M+−
U(Nc),Nf

/
〈
M j

i = 0
〉
⊂M+−

U(Nc),Nf
.

(4.12)

Their Hilbert series are given by

g(x, τ, a, u, ũ, ;MU(Nc),Nf
/ 〈v± = 0〉) = lim

y→0
I(xy, u, ũ, ay−r, τ), (4.13)

g(x, τ, a, u, ũ;MU(Nc),Nf
/
〈
M j

i = 0
〉

) = lim
y→0

I(xy, u, ũ, ay(1−r)−(Nc−1)/Nf , τ) . (4.14)

Again x is the energy fugacity of the Hilbert series. u, ũ, a and τ are identified as the

fugacities for SU(Nf )1 × SU(Nf )2 ×U(1)A ×U(1)T respectively.

Computation. Using the limits, we claim that one can obtain the explicit formulae for

the Hilbert series of the two subspaces MU(Nc),Nf
/ 〈v± = 0〉 and MU(Nc),Nf

/
〈
M j

i = 0
〉

from the superconformal index. Firstly, the Hilbert series of MU(Nc),Nf
/ 〈v± = 0〉 is given

by the limit (4.13). SinceMU(Nc),Nf
/ 〈v± = 0〉 is the same as componentM0

U(Nc),Nf
of the

moduli space,

g(MU(Nc),Nf
/ 〈v± = 0〉) = g(M0

U(Nc),Nf
). (4.15)
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In this limit the monomial factor x(1−r)Nf
∑

a |ma|−
∑

a<b |ma−mb|a−Nf
∑

a |ma| of the integrand

in (4.4) vanishes unless m = ~0. This is because the power of x, which is equal to ∆(m) =

(1 − r)Nf
∑

a |ma| −
∑

a<b |ma −mb|, should be positive for nonzero m. Therefore, only

the m = ~0 contribution remains such that

g(x, a, u, ũ;M0
U(Nc),Nf

) = lim
y→0

I(xy, u, ũ, ay−r, τ)

=

∮
dµU(Nc)

Nc∏

a=1

Nf∏

i=1

1

(1− zauiaxr)
(
1− z−1

a ũiaxr
) , (4.16)

where dµU(Nc) is the Haar measure for U(Nc). The formula in (4.16), which is obtained

from the index formula (4.4), is equivalent to the classical contribution of the mesonic

operators in (3.6) if we substitute x = t.

Next the limit (4.14) gives the Hilbert series of MU(Nc),Nf
/
〈
M j

i = 0
〉

. We consider

the U(1) case first and then consider general U(Nc) cases with Nc ≥ 2. For a U(1) theory

the vector multiplet does not contribute to the index. Only the contribution of chiral

multiplets is nontrivial, which becomes the monomial factor

x(1−r)Nf |m|a−Nf |m| (4.17)

under the limit. For the U(1) theory, MU(1),Nf
/
〈
M j

i = 0
〉

is nothing but component

M+−
U(1),Nf

of the moduli space. Therefore,

g(MU(1),Nf
/
〈
M j

i = 0
〉

) = g(M+−
U(1),Nf

) (4.18)

and

g(x, τ, a;M+−
U(1),Nf

) = lim
y→0

I(xy, u, ũ, ay1−r, τ)

=
∞∑

m=−∞
τma−Nf |m|x(1−r)Nf |m|

=
1− a−2Nfx2(1−r)Nf

(1− τa−Nfx(1−r)Nf )
(
1− τ−1a−Nfx(1−r)Nf

) . (4.19)

For a U(1) theory, the nontrivial components of the moduli space are only component

M0
U(1),Nf

and M+−
U(1),Nf

because component M+
U(1),Nf

and M−U(1),Nf
are included in

M+−
U(1),Nf

. The Hilbert series of component M0
U(1),Nf

is given by (4.16) and the Hilbert

series of component M+−
U(1),Nf

is given by (4.19). Taking into account the fact that their

intersection is only the origin, for this special case of the U(1) theory, the complete Hilbert

series can be written as

g(x, τ, a, u, ũ, τ ;MU(1),Nf
) = g(x, a, u, ũ;M0

U(1),Nf
) + g(x, τ, a;M+−

U(1),Nf
)

− g(M0
U(1),Nf

∩M+−
U(1),Nf

) , (4.20)
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where we use

g(M0
U(1),Nf

∩M+−
U(1),Nf

) = 1 . (4.21)

If we substitute x = t into (4.20), we recover the result in section 3.

Now let us consider a U(Nc) theory with Nc ≥ 2. In this case, the superconformal

index in the limit (4.14) is given by

g(x, τ, a;MU(Nc≥2),Nf
/
〈
M j

i = 0
〉

)

= lim
y→0

I(xy, u, ũ, ay(1−r)−(Nc−1)/Nf , τ)

=

∞∑

m1=0

0∑

m2=−∞
τm1+m2a−Nf (m1−m2)x(1−r)Nf (m1−m2)

=
1

(1− τa−Nfx(1−r)Nf−Nc+1)
(
1− τ−1a−Nfx(1−r)Nf−Nc+1

) .

(4.22)

The above Hilbert series shows that the chiral ring is freely generated by two monopole

operators v±. Note that especially for Nc = 2, MU(2),Nf
/
〈
M j

i = 0
〉

is again component

M+−
U(2),Nf

. Therefore,

g(MU(2),Nf
/
〈
M j

i = 0
〉

) = g(M+−
U(2),Nf

) . (4.23)

4.3.2 MU(Nc),Nf
/ 〈v− = 0〉 and MU(Nc),Nf

/ 〈v+ = 0〉

Let us consider in this section the topological symmetry U(1)T . Given that only monopole

operators are charged under U(1)T , we do not directly use the U(1)T symmetry for for-

mulating the N = 2 limit but use mixed symmetries U(1)+ and U(1)− instead whose

conserved currents are defined by

J± = rJA ± (Nf −Nc + 1)JT (4.24)

where JA and JT are the conserved currents of U(1)A and U(1)T . Following table 1, one

can show that the ratios of U(1)± to the R-charge are bounded from above as follows,

F+

R
≤ 1 , (4.25)

F−
R
≤ 1 , (4.26)

where F± are charges under U(1)±.

Recall that only the monopole operators v± are charged under U(1)T with the charges

T = ±1. Thus, the mesonic operators M j
i just have the U(1)± charges F± = rA = 2r

and saturate both inequalities (4.25) and (4.26). On the other hand, the two monopole

operators have different U(1)± charges and are summarized in table 2. As a result, v+

saturates the bound (4.25) while v− saturates the bound (4.26). Furthermore, the inequal-

ity (4.25) is saturated at a subspace of the moduli space MU(Nc),Nf
/ 〈v− = 0〉 while the
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F+ F−

v+ (1− r)Nf −Nc + 1 −(1 + r)Nf +Nc − 1

v− −(1 + r)Nf +Nc − 1 (1− r)Nf −Nc + 1

Table 2. Saturated U(1)+ and U(1)− charges for the monopole operators v±.

inequality (4.26) is saturated at a subspace of the moduli spaceMU(Nc),Nf
/ 〈v+ = 0〉. Each

subspace can be expressed in terms of the main components of the moduli space

MU(Nc),Nf
/ 〈v− = 0〉 =M0

U(Nc),Nf
∪M+

U(Nc),Nf
,

MU(Nc),Nf
/ 〈v+ = 0〉 =M0

U(Nc),Nf
∪M−U(Nc),Nf

.
(4.27)

Computation. In order to obtain the Hilbert series of M/ 〈v− = 0〉, we propose the

following limit of the superconformal index,

g(x, u+;MU(Nc),Nf
/ 〈v− = 0〉) = lim

y→0
I(xy, u+y

−1) , (4.28)

where u+ is the fugacity of U(1)+ and the other global symmetry fugacities are omitted.

The shift u+ → u+y
−1 here is equivalent to the shifts of the U(1)A and U(1)T fugacities

a → ay−r and τ → τy−(Nf−Nc+1) because u+ and u− are written in terms of a, τ as

u± = a
1
2r τ
± 1

2(Nf−Nc+1) . Therefore, (4.28) takes the form

g(x, τ, a, u, ũ, τ ;MU(Nc),Nf
/ 〈v− = 0〉) (4.29)

= lim
y→0

I(xy, u, ũ, ay−r, τy−(Nf−Nc+1))

=

∮
dµU(Nc)

Nc∏

a=1

Nf∏

i=1

1

(1− zauiaxr)
(
1− z−1

a ũiaxr
)

+
∞∑

m1=1

τm1a−Nfm1x(1−r)Nfm1

∮
dµU(Nc−1)

Nc−1∏

a=1

Nf∏

i=1

1

(1− zauiaxr)
(
1− z−1

a ũiaxr
)

= g(x, a, u, ũ;M0
U(Nc),Nf

) +
τa−Nfx(1−r)Nf−Nc+1

1− τa−Nfx(1−r)Nf−Nc+1
× g(x, a, u, ũ;M0

U(Nc−1),Nf
).

This is the same as the Hilbert series of the union of componentsM0
U(Nc),Nf

andM+
U(Nc),Nf

,

g(MU(Nc),Nf
/ 〈v− = 0〉) = g(M0

U(Nc),Nf
) + g(M+

U(Nc),Nf
)− g(M0

U(Nc),Nf
∩M+

U(Nc),Nf
) ,

(4.30)

where

M0
U(Nc),Nf

∩M+
U(Nc),Nf

=M0
U(Nc−1),Nf

. (4.31)

In the same way, the Hilbert series of MU(Nc),Nf
/ 〈v+ = 0〉 is obtained from the supercon-

formal index as follows:

g(x, τ, a, u, ũ, τ ;MU(Nc),Nf
/ 〈v+ = 0〉) = lim

y→0
I(xy, u, ũ, ay−r, τyNf−Nc+1). (4.32)
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As we observed in section 4.3.1, MU(Nc),Nf
/
〈
M j

i = 0
〉

is the same as component

M+−
U(Nc),Nf

for a U(2) theory. Thus, for a U(2) theory, we can completely recover the

Hilbert series for each of the four components of the moduli space from those of the four

subspaces we have examined.

Superconformal index and Hilbert series. In contrast to the Nc = 1, 2 cases, the

Hilbert series of component M+−
U(Nc),Nf

for Nc ≥ 3 cannot be reproduced as a limit of

the superconformal index. Because of this reason, one cannot obtain the exact Hilbert

series of a U(Nc) theory with Nc ≥ 3 by taking a limit of the superconformal index. The

index contribution of a chiral ring element in component M+−
U(Nc),Nf

could cancel with the

contribution of another fermionic operator. In that case any analytic manipulation of the

superconformal index, for example taking a limit of the index, cannot trace the contribution

of that chiral ring element. Let us consider an example. If we consider the U(3) theory with

five flavors, there is a chiral ring element of the form v+v−M
(j1
(i1
M j2

i2
M j3

i3
M j4

i4
M

j5)
i5) , which

has E+j = 6 and transforms in the representation [0, 0, 0, 5]× [5, 0, 0, 0] of SU(5)1×SU(5)2

whose dimension is given by 1262 = 15876, and most crucially has charges A = 0, T =

0. These charges make it easy to identify many non-zero spin operators. Most of them

are fermionic such that their contributions come with a negative sign and could cancel

the contributions of v+v−M
(j1
(i1
M j2

i2
M j3

i3
M j4

i4
M

j5)
i5) . For example, the index contributions of

v+v−M
(j1
(i1
M j2

i2
M j3

i3
M j4

i4
M

j5)
i5) contain the following terms:

. . .+ u5
1x

6 + u4
1u2x

6 + . . . . (4.33)

On the other hand, the index contributions of the nonzero spin states contain

. . .− u4
1u2x

6 + . . . , (4.34)

which comes from (Q1ψ
†
Q

3)(Q1ψ
†
Q

4)(Q1ψ
†
Q

5). That contribution cancels out the term

u4
1u2x

6 in (4.33). On the other hand, the other term u5
1x

6 in (4.33) does not ap-

pear in the contributions of the nonzero spin states. Therefore, the cancelation of

u4
1u2x

6 is accidental. In fact there are many cancelations between the contributions of

v+v−M
(j1
(i1
M j2

i2
M j3

i3
M j4

i4
M

j5)
i5) and those of the nonzero spin states. Because of these cancel-

lations, taking the limit of the index does not capture the presence of this operator in the

chiral ring.
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