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cGrupo de F́ısica de Altas Enerǵıas, Universidad del Bı́o-Bı́o,

Casilla 447, Chillán, Chile

E-mail: ioan.ghisoiu@helsinki.fi, jmoeller@physik.uni-bielefeld.de,

yschroeder@ubiobio.cl

Abstract: Building upon our earlier work, we compute a Debye mass of finite-temperature

Yang-Mills theory to three-loop order. As an application, we determine a g7 contribution

to the thermodynamic pressure of hot QCD.

Keywords: Thermal Field Theory, Quark-Gluon Plasma, Effective field theories, Phase

Diagram of QCD

ArXiv ePrint: 1509.08727

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2015)121

mailto:ioan.ghisoiu@helsinki.fi
mailto:jmoeller@physik.uni-bielefeld.de
mailto:yschroeder@ubiobio.cl
http://arxiv.org/abs/1509.08727
http://dx.doi.org/10.1007/JHEP11(2015)121


J
H
E
P
1
1
(
2
0
1
5
)
1
2
1

Contents

1 Introduction 1

2 Setup: effective theory and matching 3

2.1 Screening mass in QCD 4

2.2 Screening mass in EQCD 5

3 Completing the calculation 5

3.1 Basis transformation 6

3.2 Renormalization 7

3.3 Numerical evaluation 8

4 A g
7 contribution to the QCD pressure 9

5 Conclusions 11

6 Lower-order ingredients 12

7 Master sum-integrals 12

8 Coefficients of eq. (2.5) 13

9 IBP relations for basis transformation 14

1 Introduction

In electromagnetic plasmas, the Debye screening massmel — or the inverse screening length

of electric fields within the plasma — is a most fundamental quantity. While it is sometimes

defined as the small-momentum limit of the static Coulomb propagator 1/[k2+Π00(0,k)] as

m2
D = Π00(ω = 0,k→0), where Π00(ω,k) is the longitudinal part of the photon self-energy,

an alternative definition is in terms of the pole of the same static propagator,

0 = k2 +Π00(0,k)
∣

∣

k2=−m2
el

. (1.1)

Equivalently, in a quark-gluon plasma, the Debye screening mass parameterizes the dynam-

ically generated screening of chromo-electric fields, due to the strong interactions of hot

quantum chromodynamics (QCD). Now, since the longitudinal gluon self-energy is not a

gauge invariant quantity, and since its static low-momentum limit exhibits severe infrared

(IR) divergences [1, 2], it is not at all obvious that the above definitions for a physical

quantity make sense. Indeed, after a number of investigations of this matter [3–7], it has
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turned out that the definition of eq. (1.1) is the physically sensible one,1 leading to a gauge

invariant and infrared finite Debye mass also at higher orders in perturbation theory, as

has been demonstrated in refs. [9–12].

The analytic treatment of such hot QCD systems can be transparently organized af-

ter identifying the different dynamically generated energy scales. Applying the concept

of effective theories (EFTs) to this multi-scale system, it has been understood how to

reduce the root cause of the IR problem to a well-defined non-perturbative lattice mea-

surement which, after mapping to the continuum, constitutes a systematic approach that

evades the IR problem and renders thermodynamic observables theoretically computable,

allowing for systematic improvements. In the case of QCD in thermal equilibrium, one

can identify three relevant energy scales, being effectively described by a set of three dis-

tinct theories: 4-dimensional hot QCD, 3-dimensional Electrostatic QCD (EQCD) and 3-

dimensional Magnetostatic QCD (MQCD), respectively. Together, after proper matching

of their parameters, they allow for consistent weak-coupling expansions of static quantities.

In the present paper, by a three-loop determination of the Debye mass of hot Yang-

Mills theory, we intend to contribute yet another coefficient to the weak-coupling EFT

setup, which is needed for matching QCD and EQCD. Our motivation is threefold. First,

our new result immediately determines a (gauge invariant part of the) g7 contribution to

the thermodynamic pressure. The importance of this higher-order contribution lies in the

fact that it represents the next-to leading order (NLO) correction to what can be called the

physical leading order,2 ultimately enabling the first sound statements about convergence

and (renormalization) scale dependence, going beyond existing discussions that are based

on truncated (or, in the modern understanding, incomplete3 LO) versions of the series.

Second, the Debye mass plays a prominent role in various channels of gauge-invariant

gluonic screening masses [7, 14, 15]. Within a weak-coupling expansion, a number of these

are at leading order proportional to the Debye mass followed by a formally sub-leading,

but numerically large, logarithmic correction. There are examples, however, where the

logarithmic term is known to be small, such that the Debye mass dominates the functional

behavior in the phenomenologically relevant temperature range, such as has been observed

for the lowest-lying color-magnetic screening mass [15].

Third, we regard the determination of the 3-loop Debye screening mass m2
E, as an

EFT matching parameter, as a proof-of-principle that also the corresponding evaluation

of the 3-loop effective gauge coupling constant g2E is within reach. The latter does bring

a direct phenomenological application, allowing for a precise comparison of the so-called

spatial string tension σs (as evaluated in the EFT setting) with lattice determinations,

where a previous 2-loop analysis had shown great promise, while leaving room for further

corrections. Furthermore, such a comparison can be regarded as an important consistency

check, validating the EFT approach as a whole.

1Note that the proper definition of the pole location is a bit more subtle, see e.g. section 5 of [8], but

this makes no difference here.
2In the EFT setup, this is defined to be the order in which all potentially large logarithmic terms

originating from the different physical scales of the problem have entered the observable at hand for the

first time; for the pressure, this happens to be the order g6 [13], see also section 4 below.
3Since the effect of large logarithms is then not considered properly.
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The structure of the paper is the following. In section 2 we provide a brief overview

of the theoretical setup and of the matching relations between full QCD and EQCD and

sketch the status of the Debye mass computation reached in ref. [16]. In section 3 we

complete the calculation, restricting ourselves to the case Nf = 0 (pure gauge theory),

express the bare mass parameter in terms of a few master sum-integrals, renormalize and

analyze our result numerically. We then use the renormalized result for extracting a g7

contribution to the QCD pressure in section 4. We conclude in section 5, while some

technicalities are relegated to the appendices.

2 Setup: effective theory and matching

At finite temperatures, gluons exhibit three characteristic momentum scales (2πT , gT and

g2T ) of which the ultra-soft color-magnetic mode (g2T ) leads to a breakdown of the ordi-

nary perturbative expansion [2]. A straightforward approach that sidesteps this problem

is scale separation. This is achieved by constructing dimensionally reduced effective the-

ories [17–19] whose parameters are matched to full QCD. Following this procedure, two

effective theories in d = 3 dimensions emerge: electrostatic QCD (EQCD) is an SU(N)

gauge theory coupled to a massive scalar field in the adjoint representation. EQCD con-

tains two scales (the soft and the ultra-soft one) while the hard scale enters only through

the perturbative matching of the theory’s parameters. Magnetostatic QCD (MQCD) is a

pure SU(N) gauge theory containing only the non-perturbative ultra-soft scale, whereas

the hard and the soft scales enter again only through the matched parameters of the theory.

MQCD can only be studied with non-perturbative methods such as lattice QCD [20, 21].

In the following, we are concerned only with matching hot QCD to EQCD. The bare

EQCD Lagrangian reads

L3d
EQCD = −

1

2g2E
Tr[Di, Dj ]

2 +Tr[Di, A0]
2 +m2

ETrA
2
0 + λ

(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0 + δLE ,

Di = 1 ∂i − igEAi , A = AaT a , [T a, T b] = ifabcT c , TrT aT b = δab/2 . (2.1)

The operators quartic in the fields A0 are linearly independent for N > 3 only, while for

N = 2, 3 we have TrA4
0 = 1

2(TrA
2
0)

2. The term δLE collects the infinite tower of higher-

order operators that are generated by integrating out the hard scale, the lowest of which

have been classified in ref. [22]. We shall be needing a single one of them, cf. eq. (2.8) below.

The detailed framework of performing the matching computation has been presented

in [16, 23]. Here, we merely provide a concise version of it and generalize the matching

condition in order to account for higher-order operators. The general prescription is to

require that various static quantities computed in both theories match to a certain order

in a strict perturbative expansion with respect to the gauge coupling g. By using the

background field gauge, we make sure that on the QCD side only the coupling constant g

requires renormalization [24, 25].
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2.1 Screening mass in QCD

Following eq. (1.1), we define the screening mass mel as the pole of the static (K0 = 0)

momentum-space propagator of A0 with the on-shell condition k2 = −m2
el. On the full

QCD side, writing Πab
00(0,k) ≡ δabΠE(0,k) we therefore have

0 = k2 +ΠE(0,k)
∣

∣

k2=−m2
el

. (2.2)

The self-energy is written as an expansion in both the gauge coupling g and in the external

momentum k in order to permit a strict perturbative expansion. The k-expansion is

justified due to the soft scale |k| ∝ gT at which the pole in the propagator arises [26]:

ΠE(0,k) =
∞
∑

n=1

(g2)n
[

ΠEn + k2Π′

En + (k2)2Π′′

En + . . .
]

. (2.3)

Solving iteratively, eq. (2.2) leads to the following expression for the screening mass:

m2
el = g2ΠE1 + g4

[

ΠE2 −Π′

E1ΠE1

]

+ g6
[

ΠE3 −Π′

E1ΠE2 −Π′

E2ΠE1 +Π′′

E1(ΠE1)
2 +ΠE1(Π

′

E1)
2
]

+O(g8) . (2.4)

Full d-dimensional representations of the various coefficients ΠEn can be found in ap-

pendix C of [16]. For the reader’s convenience, we have collected the corresponding one-

and two-loop self-energies in appendix 6 below.

The evaluation of the QCD self-energy tensor Πµν(K) to three-loop order generates

approximately 500 Feynman diagrams, necessitating an automatized procedure to handle

this task (cf. [16, 23] and references therein). Generation of the Feynman diagrams, the

color algebra computation of SU(N), the Lorentz contraction and the Taylor expansion

into external momentum have been performed using specialized software (we have em-

ployed QGRAF [27, 28] and FORM [29, 30]). The resulting ≈ 107 sum-integrals have then

been reduced via systematic use of integration-by-parts (IBP) relations [31] in the thermal

context [32] to a small number of master sum-integrals J and I, as defined in appendix 7.

For Nf = 0, the bare 3-loop result of refs. [16, 33] reads

ΠE3 = N3

( 8
∑

i=1

αi(d) Ji + α9(d, ξ) I3I1I1 + α10(d, ξ) I2I2I1

)

, (2.5)

{

J1, . . . , J8
}

≡
{

J000
210011, J

002
220011, J

020
310011, J

200
310011, J

130
410011, J

600
510011, J

640
530011, J

730
620011

}

, (2.6)

with pre-factors α1...10 given in appendix 8. Inspecting this result, there are two trivial

products of one-loop tadpole sum-integrals ∼ I · I · I that are already known analytically

(cf. eq. (7.3)) and eight non-trivial three-loop cases Jαβγ
ab00cd of basketball-type, of which so

far only a few terms of the one multiplying α1 (originally given in [34] and re-evaluated as

a specific case of the class J000
N10011 in [35]) as well as the one multiplying α4 (treated as a

special case of JM00
N10011 in section 5 of [16]) are known.

As discussed in ref. [16], the difficulty in calculating the 3-loop sum-integrals Ji that

appear in eq. (2.5) lies in the fact they would have to be expanded beyond the constant
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term in ǫ (in our notation, d = 3 − 2ǫ) due to their singular pre-factors, cf. appendix 8.

Conventional techniques of evaluating basketball-type sum-integrals [36, 37], relying on

setting d = 3 for determining their constant parts in coordinate space representations,

make this task difficult (if not impossible). We will show in section 3 how to proceed.

2.2 Screening mass in EQCD

In EQCD, writing the self-energy of the adjoint scalar A0 as Πab
EQCD = δabΠEQCD, the pole

mass of the A0 propagator is

0 = k2 +m2
E +ΠEQCD(k)

∣

∣

k2=−m2
el

. (2.7)

By performing the same twofold expansion of the A0 self-energy ΠEQCD as in eq. (2.3), it

vanishes to all orders in perturbation theory due to the absence of any scale in the resulting

three-dimensional vacuum integrals4 (cf. discussion in section 2.1 of [16]). However, in [16]

higher-order operators to eq. (2.1), such as those computed in [22] and that contribute to

O(g6) in m2
E, were not yet considered. Indeed, in the context of the double expansion, in

which only scale-free vacuum integrals emerge, one might expect that these higher-order

contributions all vanish.

It turns out, however, that one higher-order operator does contribute to the self-energy,

since it generates a tree-level two-point contribution that is not affected by the momentum

expansion. This dimension six operator can be extracted from ref. [22]:

δLE ∋ c6 × g2RTr(∂2
i A0)

2 , c6 =
34N

15

ζ(3)

(4π)4 T 2
, (2.8)

where g2R is the (dimensionless) renormalized 4d QCD gauge coupling. Since at the pole,

the four derivatives will scale as (k2)2 ∼ g4T 4, eq. (2.7) receives a correction of O(g6).

Adding the contribution of eq. (2.8) to ΠEQCD, it reads

0 = −m2
el +m2

E + c6 g
2
R(−m2

el)
2 +O(g8) . (2.9)

The matching now follows from replacing m2
el in eq. (2.9) with its QCD value eq. (2.4).

3 Completing the calculation

As already emphasized, a technically challenging part of the matching is the evaluation of

the master sum-integrals. We also mentioned the impossibility of computing sum-integrals

beyond the constant term in ǫ with state of the art techniques. However, in eq. (2.5)

the singular pre-factors in ǫ multiplying the master sum-integrals require their evaluation

including O(ǫ).

4Regarding the mass term mE ∝ gT as a perturbation, the propagator can be taken to be massless.
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t t t

Figure 1. The three non-trivial three-loop sum-integrals J11, J12 and J13 of eq. (3.2) that are

needed for the Debye mass. A dot on a line stands for an extra power of the corresponding

propagator, a cross denotes an extra factor of P 2
0 in the numerator, and a slash means the line

appears in the numerator.

3.1 Basis transformation

A possible way out is to search for a suitable basis transformation that — much in the spirit

of the ǫ-finite basis advocated in ref. [38] — removes the singularities of the pre-factors in

eq. (2.5) for the price of introducing master sum-integrals that are of a different topology

and might therefore be more difficult to compute. Using the master integrals defined in

appendix 7 as well as the IBP relations of appendix 9, we have succeeded in rewriting

the bosonic part of ΠE3 shown in eq. (2.5) as the remarkably compact expression

ΠE3

N3(d− 1)2
= −

d− 3

4

[

(7d− 13) J11 + 32(d− 4) J12 + 2(d− 7) J13

]

+

[

(d− 7)(3d− 7)

(d− 1)2
+ ξ +

d− 6

12
ξ2
]

(d− 1)2I3I1I1 (3.1)

+

[

85+4d−15d2+2d3

d− 5
+ (16−13d+2d2) ξ

+
16−13d+3d2

4
ξ2
]

d− 3

2(d−2)
I2I2I1 ,

{

J11, J12, J13
}

≡
{

J000
111110, J

020
211110, J

000
31111−2

}

. (3.2)

Using the lower-order self-energies listed in appendix 6, eq. (2.4) then immediately gives

m2
el = Ng2(d− 1)2I1

{

1 +Ng2
46− 11d+ d2

6
I2

+N2g4
(

−
d− 3

4

[

(7d− 13)J11/I1 + 32(d− 4)J12/I1 + 2(d− 7)J13/I1

]

+
1

6d(d− 7)

[

p1(d)

5
I3I1 +

p2(d)

6(d− 5)(d− 2)
I2I2

])

+O(g6)

}

, (3.3)

with polynomials p1(d) = (720 − 12472d + 9779d2 − 2686d3 + 364d4 − 26d5 + d6) and

p2(d) = (3024 − 42028d + 81720d2 − 56428d3 + 19783d4 − 3898d5 + 448d6 − 30d7 + d8).

Note that all dependence on the gauge parameter ξ has duly canceled in this d-dimensional

result. By plugging the leading term of eq. (3.3) into eq. (2.9), we finally obtain

m2
E = m2

el − c6 g
2
R g4N2(d− 1)4I1I1 +O(g8) . (3.4)

The remaining task is to evaluate the sum-integrals J11,12,13 that enter our expression

for m2
el and that are depicted in figure 1. To this end, the 1-loop substructure can be

– 6 –
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exploited, a method pioneered by Arnold and Zhai [36, 37]. Their technique of solving

basketball-type and spectacle-type sum-integrals relies on a careful subtraction of sub-

divergences which is specific for every sum-integral in part. Nevertheless, it was possible to

develop a semi-automatized procedure for an analytic calculation of the divergent parts of a

large class of spectacle-type sum-integrals. This was necessary for evaluating the Mercedes

type sum-integral with two inverse propagators, J13. Its computation required the use of

the dimensional method of Tarasov [39], in which the tensor structure of a sum-integral is

translated into a sum of higher dimensional scalar integrals.

The last remaining pieces of the matching computation, the 3-loop vacuum sum-

integrals J12 and J13, have been determined only recently in refs. [40, 41] and are listed in

appendix 7.

3.2 Renormalization

We now turn to renormalized quantities. In the 4-dimensional theory, we need to renor-

malize the gauge coupling. The bare coupling gB (denoted as g in the previous sections) is

related to the renormalized coupling gR via g2B = g2Rµ
2ǫZg (note that g2R is dimensionless),

µ̄ being the MS scheme scale defined as µ̄2 = 4πe−γEµ2 and

Zg = 1 +
g2R

(4π)2
β0
ǫ

+
g4R

(4π)4

(

β1
2ǫ

+
β2
0

ǫ2

)

+
g6R

(4π)6

(

β2
3ǫ

+
7β0β1
6ǫ2

+
β3
0

ǫ3

)

+O(g8) , (3.5)

where, for Nf = 0, β0 = −11N/3, β1 = −34N2/3 and β2 = −2857N3/54.

In the 3-dimensional theory, only the mass parameter requires renormalization. This is

due to the fact that the EQCD Lagrangian in eq. (2.1) is super-renormalizable in d = 3−2ǫ

dimensions. The few divergent diagrams in this theory arise solely at two-loop order and

account only for the mass renormalization. Hence, the renormalization relations are simply

g2E = g2ERµ
2ǫ
3 , λ

(1/2)
E = λ

(1/2)
ER µ2ǫ

3 , m2
E = m2

ER + δm2
E , (3.6)

the renormalized EQCD couplings g2ER and λ
(1/2)
ER being of dimension one, while the EQCD

mass counterterm reads [42–44]

δm2
E = −

1

(4π)2
1

4ǫ

[

2Ng2ER

(

(N2 + 1)λ
(1)
ER + (2N2 − 3)

λ
(2)
ER

N

)

−2(N2 + 1)[λ
(1)
ER]

2 − 4(2N2 − 3)λ
(1)
ER

λ
(2)
ER

N
− (N4 − 6N2 + 18)

[λ
(2)
ER]

2

N2

]

. (3.7)

This leads to an exact RG equation for the mass parameter: µ2
3∂µ2

3
m2

ER = 2ǫ δm2
E.

In order to express δm2
E in terms of the 4d QCD coupling g2R, the EQCD parame-

ters g2E and λ
(1/2)
E need to be matched to full QCD at leading order (1-loop). The cor-

responding relations are given in the literature as g2ER = g2RT , λ
(1)
ER = g4RT/(4π

2) and

λ
(2)
ER = g4RTN/(12π2) [18, 45], however without regularization parameter ǫ, which we here

need due to the presence of the 1/ǫ divergence in eq. (3.7). We hence need d-dimensional

– 7 –
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matching relations, which can be extracted from [19], in our notation, as

g2E = g2BT +O(g4B) , λ
(1)
E =

(3−d)(d−1)2

2
I2g

4
BT +O(g6B) , λ

(2)
E =

N

3
λ
(1)
E +O(g6B) . (3.8)

Using these expressions, the mass counterterm simplifies to

δm2
E =

5N3(d− 3)(d− 1)2µ2ǫI2
12ǫ

(

µ

µ3

)4ǫ g6RT
2

(4π)2
+O(g8RT

2) , (3.9)

such that we finally get the renormalized Debye mass up to 3-loop order as

m2
ER

(4πT )2
=

N

3

g2R
(4π)2

+

[

N

3

g2R
(4π)2

]2

(22L+ 5)+

+

[

N

3

g2R
(4π)2

]3(

484L2+424L−180L3+
731

2
−
56ζ(3)

5
−3×

34ζ(3)

15

)

+O(g8R) ,

L = ln
µ̄eγE

4πT
, L3 = ln

µ2
3e

Z1

4πT 2
, Z1 =

ζ ′(−1)

ζ(−1)
, (3.10)

where the 1-loop and 2-loop contributions have been calculated in ref. [46] and where we

have expressed the contribution coming from eq. (2.8) separately.

The g6R coefficient contains two independent mass scales, µ and µ3. The first arises

through the 4d dimensional regularization scheme and the subsequent renormalization of

the 4d coupling, gR, whereas the second scale µ3 enters through the regularization of the

divergent integrals of the 3d SU(N) + adjoint Higgs theory and ultimately through the

mass renormalization.

3.3 Numerical evaluation

For the numerical evaluation of mER, the running of the 4d coupling with respect to the

energy scale is obtained by solving the RGE iteratively to three-loop order [47, 48]

g2R
(4π)2

= −
1

β0t
−

β1 ln t

β3
0t

2
−

1

β3
0t

3

(

β2
1

β2
0

(ln2 t− ln t− 1) +
β2
β0

)

, (3.11)

with t = ln[µ̄2/Λ2
MS

] and ΛMS the QCD scale defined in the MS scheme [48, 49].

In order to display numerical results, we need to choose values for the two arbitrary

mass scales, µ and µ3. For the former one, we adopt the procedure of of minimal sensi-

tivity [46]. The scale is computed to be µ̄opt/T = 4πe−γE−
1
22 ≈ 2π. We then extend this

idea to choosing µ3,opt. As m2
ER(µ̄, µ3) is not a monotonic function with respect to µ̄, we

impose that the absolute variation of m2
ER(µ̄, µ3) in the interval (µ̄opt/2, 2µ̄opt) is minimal

for a specific scale µ3 ≡ µ3,opt, or
[

∂

∂µ3

∫ 2µ̄opt

µ̄opt

2

∣

∣

∣

∣

∂m2
ER(µ̄, µ3)

∂µ̄

∣

∣

∣

∣

dµ̄

]

µ3=µ3,opt

= 0 . (3.12)

Taking the absolute variation ensures that an oscillatory behavior of m2
ER in the considered

interval is ruled out to be regarded as a scale for minimal sensitivity. Solving the equation

numerically, we obtain µ3,opt/T ≈ 2.85.

– 8 –
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(a) (b)

Figure 2. Left: dimensionless Debye mass m2
ER/T

2 as a function of the temperature T , in units

of ΛMS and with the variation of µ̄ = (0.5 . . . 2.0)× µ̄opt. Right: variation of the mass with respect

to µ̄ at the scale T/ΛMS = 2 and with µ3 = µ3,opt.

In figure 2, we analyze the running of the Debye mass with respect to the temperature

(T ). We have used the solution of the renormalization group equation of the 4d coupling g,

in which the QCD β-function was truncated afterO(g8). The parameter ΛMS corresponds to

the QCD scale defined in ref. [46], and here simply sets the scale through the t-dependence

of the running coupling eq. (3.11). The arbitrary scale µ̄ was chosen at the point where the

effective coupling gER has a minimal sensitivity to it: µ̄opt/T ≈ 2π. The 3 bands in the plot

arise by varying µ̄ = (0.5 . . . 2)× µ̄opt. Using the prescription described above for choosing

a sensible scale for the EQCD scale parameter, µ3/T ≈ 2.85, we obtain a three-loop result

with a vanishingly narrow band width.

From the figure, one notices a slight increase of the Debye mass with respect to the

2-loop result. In addition, the sensitivity with respect to the arbitrary scale µ̄ decreases,

which indicates that the perturbative expansion up to 3-loop order shows good conver-

gence properties.

4 A g
7 contribution to the QCD pressure

Having the 3-loop Debye mass at hand, we can use it to extract a gauge-invariant piece

of a higher-order perturbative (g7) correction to the QCD pressure. The order g7 owes

its importance to the fact that it represents, in the effective theory setup we are working

in, the leading correction to what has been called the physical leading order, i.e. all terms

up to order g6 that, for the first time, include all potentially large logarithms entering the

QCD pressure [13].

As already discussed in the introduction, in the effective theory framework, the QCD

partition function factorizes, such that the pressure pQCD splits into three parts pE, pM
and pG originating from contributions of the hard- 2πT , soft- gT and ultra-soft scale g2T ,

respectively [26, 50]. These three parts can be extracted as matching coefficients of QCD,
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EQCD and MQCD, along the following chain of equations (recall d = 3− 2ǫ),

pQCD(T ) = lim
V→∞

1

Vd+1
ln

∫

DAa
µ exp

[

−

∫ 1/T

0
dτ

∫

ddx L4d
QCD

]

= pE(T ) + lim
V→∞

T

Vd
ln

∫

DAa
k DAa

0 exp

[

−

∫

ddx L3d
EQCD

]

= pE(T ) + pM(T ) + lim
V→∞

T

Vd
ln

∫

DAa
k exp

[

−

∫

ddx L3d
MQCD

]

= pE(T ) + pM(T ) + pG(T ) , (4.1)

supplemented with the corresponding matching of the couplings, as has been explained in

the previous sections on the example of the chromo-electric screening mass.

It turns out that the different pieces in eq. (4.1), when re-expressed in terms of the

renormalized 4d gauge coupling gR (and omitting logarithms of the coupling), contribute as

pE ∼ T 4(1 + g2R + g4R + g6R + . . . ) , (4.2)

pM ∼ T 4(g3R + g4R + g5R + g6R + g7R + . . . ) , (4.3)

pG ∼ T 4(g6R + g7R + . . . ) . (4.4)

Both parts of the pressure coming from the 3d reduced effective theories describing soft

and ultra-soft effects, EQCD and MQCD, contain contributions of order g7R. The latter

part originates from matching of the MQCD gauge coupling gM, as pG = Tg6McG, with

cG being a non-perturbative coefficient determined in [13, 51], and the coupling g2M ∼

g2E(1+ g2E/mE+O(g4E/m
2
E)) ∼ Tg2R(1+ gR+O(g2R)) with coefficients known from e.g. [44].

The contributions of order g7R to the pressure of hot QCD from the soft scale gT

entering through EQCD originate from a number of different sources. Within EQCD, the

expansion reads (see e.g. [26])

pM(T ) = Tm3
ER

[

N2−1

12π
+ a2 x+ a′2 y + a3 x

2 + a′3 x y + a4 x
3 + a5 x

4 + . . .

]

, (4.5)

with known 2. . . 4-loop coefficients a2...4 [52], and a5 coming from a 5-loop calculation of

the EQCD pressure including contributions from higher-order operators [22] omitted in

eq. (2.1), both of which remain unknown to date. The expansion parameters above relate

to the 4d coupling as

x ≡
g2ER
mER

∼ gR(1 +O(g2R)) , y ≡
λ
(1/2)
ER

mER
∼ g3R(1 +O(g2R)) , (4.6)

such that we can already fix the other g7 pieces by multiplying out the expansion parameters

and our new 3-loop result for m2
E. Writing

m2
ER = g2R T 2

[

αE4 +
g2R

(4π)2
αE6 +

g4R
(4π)4

αE8 + . . .

]

, (4.7)
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where αE8 represents our new 3-loop result of eq. (3.10), this coefficient contributes a g7

term to the QCD pressure, via

m3
ER = g3R T 3 α

3/2
E4

[

1 +
g2R

(4π)2
3

2

αE6

αE4
+

g4R
(4π)4

3

8

α2
E6 + 4αE4αE8

α2
E4

+ . . .

]

, (4.8)

pM(T )|m3
ER

,g7
R
= T 4 g7R

(4π)5
N2−1

8

α2
E6 + 4αE4αE8

α
1/2
E4

= 8π2T 4(N2−1)

[

N

3

g2R
(4π)2

]

7
2
[

605L2 + 479L− 180L3 +
1487

4
− 18ζ(3)

]

,

(4.9)

with logarithms L and L3 as in eq. (3.10) above.

5 Conclusions

In this paper, we have determined the Debye screening mass of hot Yang-Mills theory

to 3-loop (NNLO) accuracy, by combining various results of a long-term project, with a

number of independent ingredients, each of which needed novel state-of-the art techniques

for a successful determination. While the feasibility of such a precision calculation in the

thermal context was not at all clear from the outset, we have here succeeded to overcome

the last major obstacle — namely to map a sum of seven non-trivial master sum-integrals

(that remained after the IBP reduction algorithm had halted, but which would have been

needed to an expansion depth for which no technique existed) to a small number of (three)

computable cases. We have achieved this reduction in complexity of the calculation by a

clever basis transformation, which was made possible by searching our extensive database

of IBP relations.

To our utmost satisfaction, the final assembly of all building blocks revealed (a) gauge

parameter independence, (b) a finite result after renormalization, and (c) good convergence

properties. We were therefore able to add another term to the pool of known (and heavily

used) matching coefficients of EQCD, and to utilize this fresh term right away, determining

one of the physical next-to-leading order (g7) contributions to the pressure of hot QCD.

As we have discussed above, this is of course not the complete g7 result, but represents a

well-defined (and gauge invariant) contribution to it.

Thus, looking back on the many technical and systematic advances that have been

made during this project, we conclude that a determination of the 3-loop effective gauge

coupling g2E, which originates from a (by one) higher moment of two-point functions and

which is hence amenable to the same techniques as m2
E, should be within reach.

Another avenue for further investigations would be a generalization of our strategy to

fermionic contributions, which we have ignored completely here, setting Nf = 0. While

the reduction to basketball-type master integrals is done [16], open problems are finding

a suitable basis change, and evaluating the corresponding fermionic masters — which,

containing no zero-modes on fermionic lines, could however turn out to be less involved

than the bosonic cases that we have used here.
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The result for the Debye mass shows a good convergence in a large temperature range,

suggesting that already at the three-loop order the corrections are numerically negligible,

but would serve merely in future perturbative calculations (of observables such as the

pressure of QCD) to ensure finite renormalized results (cancellation of UV divergences).

In the light of the apparent fast convergence of the analytic result, a re-evaluation of the

non-perturbative constant of the QCD screening mass can be considered [53, 54] since this

latter quantity is in fact used in studies of quark gluon plasma parameters such as the jet

quenching parameter [55, 56].
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6 Lower-order ingredients

The one- and two-loop expressions entering eq. (2.4) have been given in ref. [16] in terms

of one-loop sum-integrals I. Their Nf = 0 pieces read

ΠE1 = N(d− 1)2 I1 , (6.1)

Π′

E1 = −N

[

28− 5d+ d2

6
+ (d− 3)ξ

]

I2 , (6.2)

Π′′

E1 = N

[

46− 7d+ d2

30
+

d− 3

3
ξ +

d− 6

12
ξ2
]

I3 , (6.3)

ΠE2 = −N2(1 + ξ)(d− 3)(d− 1)2 I2I1 , (6.4)

Π′

E2 = N2

[

−
72− 42d+ 13d2 − d3

3d(d− 7)
+

d

3
ξ +

d− 6

6
ξ2
]

(d− 1)2 I3I1 (6.5)

+N2

[

p(d)

2d(d−7)(d−5)(d−2)
−
44−29d+7d2−d3

6(d− 2)
ξ+

16−13d+3d2

8(d− 2)
ξ2
]

(d−3) I2I2 ,

with p(d) = 56 + 315d− 231d2 + 57d3 − 5d4.

7 Master sum-integrals

Let us define a generic notation for massless 3-loop vacuum sum-integrals

Jαβγ
abcdef ≡

a

b c

d e
f

≡
∑

∫

PQR

(P0)
α(Q0)

β(R0)
γ

[P 2]a[Q2]b[R2]c[(P −Q)2]d[(P −R)2]e[(Q−R)2]f
, (7.1)

where all momenta are understood bosonic. Let us remark that from the outset, only

integrals J000
abcdef enter the calculation; however, due to the fact that the IBP relations act
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in the d spatial dimensions only and hence explicitly break (d+1)-dimensional rotational

invariance introducing the 4-vector U = (1,0), the numerator structure of eq. (7.1) occurs

naturally in the reduction step. The original integral reduction eq. (2.5) contains only

basketball-type sum-integrals Jαβγ
ab00ef as well as trivial products of one-loop cases

Jαβγ
abc000 = Iαa Iβb Iγc , (7.2)

Ias ≡
∑

∫

Q

|Q0|
a

[Q2]s
=

2T ζ(2s− a− d)

(2πT )2s−a−d

Γ(s− d
2)

(4π)d/2Γ(s)
, Is ≡

∑

∫

Q

1

[Q2]s
= I0s . (7.3)

Of these, we need the products

I3I1I1 =
T 2

(4π)4

(

eγ

4πT 2

)3ǫ 2 ζ(3)

144

[

1 + 2ǫ(3− 3γE + Z3 + 2Z1) +O(ǫ2)

]

, (7.4)

I2I2I1 =
T 2

(4π)4

(

eγ

4πT 2

)3ǫ 1

12 ǫ2

[

1 + 2ǫ(1− γE + Z1) + 2ǫ2
(

2 +
3π2

8
+ 2Z1

− γE(γE + 2 + 2Z1)− 4γ1 +
ζ ′′(−1)

ζ(−1)

)

+O(ǫ3)

]

, (7.5)

containing the numbers γE and γ1 arising from the expansion of the Riemann Zeta function

around its pole at unity, ζ(1− ǫ) ≈ −1/ǫ+ γE + γ1ǫ+ . . . , as well as Zn ≡ ζ ′(−n)/ζ(−n).

The specific cases on the left-hand sides of eqs. (9.1)-(9.3) are more complicated integrals,

which have however already been evaluated up to their constant terms in a number of tour

de force computations documented in refs. [40, 58, 59] and [41], respectively, from where

we collect the results for convenience:5

J11 ≡ J000
111110 =

T 2

(4π)4

(

1

4πT 2

)3ǫ −1

4 ǫ2

[

1 +

(

4

3
+γE+2Z1

)

ǫ+c1ǫ
2 +O(ǫ3)

]

, (7.6)

J12 ≡ J020
211110 =

T 2

(4π)4

(

1

4πT 2

)3ǫ 1

96 ǫ2

[

1 +

(

67

6
+γE+2Z1

)

ǫ+c2ǫ
2 +O(ǫ3)

]

, (7.7)

J13 ≡ J000
31111−2 =

T 2

(4π)4

(

1

4πT 2

)3ǫ −5

36 ǫ2

[

1 +

(

71

30
+γE+2Z1

)

ǫ+c3 ǫ
2 +O(ǫ3)

]

. (7.8)

The constant parts are known numerically only, and have been determined in the

above-mentioned references to be c1 ≈ +43.8676(1), c2 ≈ +93.0894417(2) and c3 ≈

+44.629857(1). In the present computation, however, these constant parts do not con-

tribute, since the integrals are multiplied by pre-factors ∼ ǫ, cf. eq. (3.1).

8 Coefficients of eq. (2.5)

The coefficients α1...10 of eq. (2.5), as determined in ref. [16], are rational functions in

d (recall that we use d = 3 − 2ǫ in this work), in some cases also containing the gauge

5Note that in those references, the naming scheme is {J11, J12, J13} = {M1,0, V2,M3,−2}.
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parameter ξ,

α1 = −
(d− 1)a1(d)

24(d− 6)(d− 5)(d− 4)(d− 3)(d− 2)(3d− 17)
,

α2 = −
3(d− 1)a2(d)

4(d− 6)(d− 5)(d− 3)(d− 2)(3d− 17)
,

α3 = −
(d− 1)a3(d)

4(d− 6)(d− 5)(d− 2)(3d− 17)
,

α4 = −
(d− 1)a4(d)

12(d− 6)(d− 5)(d− 3)(d− 2)(3d− 17)
,

α5 =
36(d− 11)(d− 9)(d− 1)

(d− 6)(d− 2)(3d− 17)
,

α6 =
512(d− 1)(1954− 641d+ 48d2)

(d− 5)(d− 3)(d− 2)
,

α7 = −
49152(d− 1)

(d− 5)(d− 3)(d− 2)
,

α8 = −
122880(d− 1)

(d− 5)(d− 3)(d− 2)
,

α9 = −
(d− 1)a9(d)

4(d− 6)(d− 5)(d− 3)(d− 2)(3d− 17)
+ (d− 1)4ξ +

(d− 6)(d− 1)4

12
ξ2 ,

α10 = −
(d− 1)a10(d)

4(d− 7)(d− 6)(d− 5)2(d− 3)(d− 2)(3d− 17)

+
(d− 3)(d− 1)2(16− 13d+ 2d2)

2(d− 2)
ξ +

(d− 3)(d− 1)2(16− 13d+ 3d2)

8(d− 2)
ξ2 , (8.1)

where we have for convenience used the abbreviations

a1(d) = 5982874650− 9764062527d+ 6860483170d2 − 2710270726d3 + 658312418d4

− 100632587d5 + 9447810d6 − 497520d7 + 11232d8,

a2(d) = 14947857− 14330519d+ 5758990d2 − 1245506d3 + 153345d4 − 10215d5 + 288d6,

a3(d) = 8970183− 7006766d+ 2180196d2 − 337402d3 + 25941d4 − 792d5,

a4(d) = 1784823003− 1809632517d+ 757032878d2 − 167080938d3 + 20490319d4

− 1321425d5 + 34920d6,

a9(d) = 17888670− 22432867d+ 10547330d2 − 2313976d3 + 186752d4 + 17787d5

− 5140d6 + 416d7 − 12d8,

a10(d) = − 835002999 + 1120616178d− 653300169d2 + 218578438d3 − 47171745d4

+ 7193512d5 − 870355d6 + 92054d7 − 8000d8 + 458d9 − 12d10. (8.2)

9 IBP relations for basis transformation

The idea of performing a basis transformation on ΠE3 translates into going some steps back

into its IBP reduction [16]. The goal is to search for relations that change the coefficients

of the master sum-integrals (cf. the last paragraph of appendix C in [16]) in such a way

– 14 –



J
H
E
P
1
1
(
2
0
1
5
)
1
2
1

as to eliminate all factors of (d − 3) in the denominator. While it is not at all clear from

the outset that this can always be achieved, it happens indeed if we use the following three

automatically generated IBP relations, expressed in terms of the basis of basketball-type

3-loop master integrals defined in eq. (2.6):

J11 =
2(47− 24d+ 3d2)

3(d− 3)2(d− 4)
J1 +

16

3(d− 3)2
J4 , (9.1)

J12 =
(d− 9)(d− 7)(d− 2)

2(d− 6)(d− 5)(d− 4)(d− 3)2
I3I1I1 +

519− 312d+ 61d2 − 4d3

2(d− 6)(d− 5)2(d− 4)(d− 3)
I2I2I1

−
(3d− 10)(10791− 9060d+ 2806d2 − 380d3 + 19d4)

12(d− 6)(d− 5)(d− 4)2(d− 3)2
J1

+
3(d− 7)

2(d− 6)(d− 4)(d− 3)
J2 −

(d− 9)(d− 7)

2(d− 6)(d− 5)(d− 4)(d− 3)
J3

+
31401− 16707d+ 2951d2 − 173d3

6(d− 6)(d− 5)(d− 4)(d− 3)2
J4 +

512

(d− 5)(d− 4)(d− 3)2
J6 , (9.2)

J13 =
b1(d) J1 + 18(d− 4)b2(d) J2 + 6(d− 4)(d− 3)b3(d) J3 + 2(d− 4)b4(d) J4

12(d− 7)(d− 6)(d− 5)(d− 4)(d− 3)2(d− 2)(d− 1)(3d− 17)

−
72(d− 11)(d− 9) J5

(d− 7)(d− 6)(d− 3)(d− 2)(d− 1)(3d− 17)

+ 1024
(−1970 + 665d− 56d2) J6 + 96 J7 + 240 J8

(d− 7)(d− 5)(d− 3)2(d− 2)(d− 1)
+

+
(d− 7)(d− 5)b9(d) I3I1I1 + b10(d) I2I2I1

2(d− 7)2(d− 6)(d− 5)2(d− 3)2(d− 2)(d− 1)(3d− 17)
, (9.3)

where eq. (9.3) contains the polynomials

b1(d) = 6039084810− 9921665183d+ 7037865926d2 − 2817068438d3 + 696438686d4

− 108972587d5 + 10546622d6 − 577632d7 + 13716d8 ,

b2(d) = 14890737− 14196135d+ 5642398d2 − 1196706d3 + 142785d4 − 9079d5 + 240d6 ,

b3(d) = 8935911− 6940606d+ 2138852d2 − 326810d3 + 24757d4 − 744d5 ,

b4(d) = 1801692987− 1846811125d+ 786404686d2 − 178072266d3 + 22616879d4

− 1527809d5 + 42888d6 ,

b9(d) = 18419886− 24034307d+ 12505438d2 − 3593336d3 + 677116d4 − 95461d5

+ 10336d6 − 736d7 + 24d8 ,

b10(d) = − 834536043 + 1116882072d− 645264933d2 + 210429806d3 − 42367633d4

+ 5387676d5 − 421763d6 + 18526d7 − 348d8 . (9.4)
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[51] F. Di Renzo, M. Laine, V. Miccio, Y. Schröder and C. Torrero, The Leading non-perturbative

coefficient in the weak-coupling expansion of hot QCD pressure, JHEP 07 (2006) 026

[hep-ph/0605042] [INSPIRE].

[52] K. Kajantie, M. Laine, K. Rummukainen and Y. Schröder, Four loop vacuum energy density
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