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1 Introduction

T-duality [1-5] was first introduced to represent the fact that the toroidal compactifica-
tions [6-9] of a closed string to a radius R and a radius 1/R are equivalent. Although the
compactified theories are defined for different target spaces, their spectrum is the same.
The observed symmetry lead to investigation for discovering the connections between the
theories having the same spectrum, what resulted in T-dualization procedures. These pre-
scriptions consist of rules which transform the given theory to its T-dual theory. The
T-dual theories describing strings moving in a geometrically different backgrounds, having
the same predictions, were found for some particular backgrounds. The general procedure,
applicable to an arbitrary background is still to be determined.

T-duality was found to be connected with the isometries of a sigma model. This
discovery was included as an inevitable condition for T-dualization, as the isometry was



built in the T-dualization procedure. The first procedure determining the T-duals of the
constant background fields was the Buscher procedure [10-13]. This procedure, called the
standard T-dualization procedure, is founded in localizing the global isometry by introduc-
ing the gauge fields, whose field strength is set to zero by a Lagrange multiplier term. The
gauged theory reduces to the initial theory for the equations of motion for the Lagrange
multiplier and to the T-dual theory for the equations of motion for the gauge fields. This
procedure enabled investigation of the coordinate dependent backgrounds as well, when the
T-dualizations are performed along the directions which do not appear as the background
fields arguments.

The generalized T-dualization proposed in paper [14], addressing the non-abelian
isometries lead to observation that the application of T-dualization procedures can lead to
theories without an isometry. These theories are obviously T-dual to the initial theories,
but, the initial theories can not be obtained as a result of the same T-dualization proce-
dure starting with the theory without isometry. This observation implied that T-duality
in general must be understood from some other perspective.

The investigation of the relations between non geometric backgrounds lead to a new
generalized T-dualization in string field theory [15]. It was proposed that particular non
geometric backgrounds should be understood as string backgrounds which are the result of
generalized T-dualization applied along nonisometry directions. In paper [16], the condi-
tions for a background to have a geometric or non geometric T-dual were sought for. It was
concluded that the large class of sigma models that cannot be gauged can be T-dualized.

In paper [17], one considers similarity transformations of the stress energy tensor of a
conformal field theory which do not change the Virasoro alebra. There exists the transfor-
mations of the background fields which produce the same change of the stress tensor as the
change generated by some similarity transformations. A particular generator of a similarity
transformation produces symmetry transformation, such as general coordinate transforma-
tions and gauge transformations of a Kalb-Ramond field. However, some particular forms
of these generators produce T-duality transformations at critical radius. Investigation leads
to T-dualization techniques directly applicable to an arbitrary string backgrounds.

In paper [18], a generalization of a Buscher T-dualization procedure was given. The
generalized procedure is applicable to backgrounds depending on all the space-time co-
ordinates, along arbitrary background fields argument. The procedure was realized for a
weakly curved background which consists of a constant metric and a coordinate dependent
Kalb-Ramond field with an infinitesimal strength. The difference between the generalized
and standard Buscher procedure is in an invariant coordinate. Standardly, one substi-
tutes the derivatives with the covariant derivatives to obtain the gauge invariant action,
but in the generalized procedure one additionally substitutes the argument of the back-
ground field with the invariant argument. It was confirmed in [18] that the generalized
T-dualization procedure does not harm the interchange of equations of motion and Bianchi
identities [19]. However, it strongly changes the geometry of a target space. The geometric
space is transformed to a double non-geometric space. The commutative space is trans-
formed to a non-commutative space, as shown in [20]. The closed string non-commutativity
was previously investigated in [21-25]. The application of a procedure to an arbitrary set



of coordinates was considered in [26]. It was concluded that the geometric background
again transforms to a double space, with double coordinates present for both T-dualized
and undualized directions.

In the present paper, we consider the weakly curved background of the second order.
We take a metric which consists of a constant and quadratic in coordinate term and linearly
coordinate dependent Kalb-Ramond field. This background does not posses the global shift
symmetry. In comparison to the previously considered backgrounds there is an additional
difference. The Ricci tensor of the metric here considered is nonzero. The background has
to be the solution of the space-time equations of motion, obtained from the demand of
the conformal invariance of the quantum theory. To satisfy these equations one takes the
coordinate dependent parts to be infinitesimal.

The original form of the generalized Buscher T-dualization procedure [18] is not appli-
cable to a weakly curved background of the second order. Here, we search for the procedure
which will be applicable and will preserve the general features of the previous procedure.
We find the appropriate formulation and investigate the properties and the consequences
of the new generalization. We apply the procedure along all space-time coordinates and
obtain the T-dual theory. We obtain a geometrical structure that differs from the double
non geometrical space. The dual background field arguments do not depend only on the
dual coordinate and its double. However the application of the procedure to all dual coor-
dinates leads again to the initial theory. We obtain T-dual coordinate transformation laws
and confirm that T-duality interchanges equations of motion and Bianchi identities.

2 Bosonic string action and choice of background

Let us consider the closed bosonic string propagating in the background fields: a metric
G, and a Kalb-Ramond antisymmetric tensor field By, described by the action

Slx] = H/ d*¢ D" [;WQBGW(UC) + GaﬁB,w(x) Ogx”, 0l = 1. (2.1)
b

The integration goes over two-dimensional world-sheet 3 parametrized by £*,a = 0,1
(€0 = 7, ¢! = o). The coordinates of the D-dimensional space-time are marked by
(&), uw=0,1,...,D — 1. From the action principle one obtains the equations of motion

it — "™ 2Bk, iV a'? + T (22 — 2"V a'P) = 0, (2.2)

where B",, = (G™1)"?B,,, and B, = 8,B,, + 0, B, + 0,B,, is the field strength of the
field By, and '), = %(G_l)“"(&,Gm + 0,Goy — 05Gy)) is a Christoffel symbol.
Introducing the light-cone coordinates and their derivatives

§i:17j:0, Oy =0, + 0, 2.3
2

the action (2.1) can be rewritten as

Slx] = /i/zd2§ 042ty (x)0_2, (2.4)



where II1,, is the combination of background fields, defined by

1
4, (z) = Bu(z) £ §GW(JU). (2.5)
The equation of motion (2.2) can be rewritten as
0. 0_zt + (r/;p - Bﬂyp) 0, 2" d_aP = 0. (2.6)

In order to obtain a conformally invariant quantum theory, the background fields must
obey the space-time equations of motion, which for the constant dilaton field have the
following form

Ry — Bupe B, =0, (2.7)
D,B",, =0, (2.8)

where R, is Ricci tensor defined by

Ry, = RP R, =T0 TP  4+T7 TP —T7 TV (2.9)

upv? uov uv,o uo,v uvt o uot TU
and D, is a covariant derivative
DpBU;w = apBUw, + ngBaw, — FZPBUEV — FipBUM. (2.10)
We will consider the following solution of the space-time equations of motion (2.7), (2.8)
Guy(l') = Guv + 3hiy(l‘), Buu(x) = b/w + h,ul/(x)a (2'11)

with g, by, = const and hy, = %Bu,,pxp, hfw = (hg_lh)w,, where By, is constant and
infinitesimal. Throughout the paper the calculation will be done up to the second order in
B,,,,. We will refer to this solution as the weakly curved background of the second order.
More general discussion about the solutions of the space-time equations of motion, up to
the second order terms, can be found in ref. [27].

Let us demonstrate that (2.11) satisfies (2.7) and (2.8). The inverse metric and the
Cristoffel symbol are

(@ = (g7 = 32, (2.12)
F’V‘p = —B"Whgp — B“pah(’y, (2.13)

with (h*)* = (g7 'hg~'hg™")" and B%h%, = (¢7")**Beyo(9~')""hrp. Therefore, the
Ricci tensor equals
R = Bupo B, (2.14)

which is just the eq. (2.7). The equation (2.8) is satisfied, because the term corresponding
to the first term in (2.10) is zero and the others can be neglected as the third order terms
in Byyp.

Let us notice, using (2.9) and (2.13), that the coefficient in the second order term of
the metric (2.11) is in fact the Riemann curvature tensor

1
GHV = 9w — gR,u,chrxpxa- (215)



The solutions which where previously investigated in this context where the constant
background and the weakly curved background of the first order. In both cases the Ricci
tensor R, is absent, in the first case because it equals zero and in the second because it
is neglected as the second order term. Here, the Ricci tensor is of the second order and its
contribution becomes nontrivial because we work up to the second order in B,,,.

3 T-dualization procedure

In the majority of papers addressing T-dualization of a bosonic string theory, one performs
T-dualizations along directions on which the background does not depend. The first proce-
dure, applicable to coordinates on which the background fields depend, the generalization
of the Buscher T-dualization procedure, was presented in [18]. It was applied to a bosonic
string moving in the weakly curved background, composed of a constant metric and a lin-
early coordinate dependent Kalb-Ramond field with an infinitesimal strength. This theory
has a global shift symmetry. This fact is used in the T-dualization prescription, which
relies on gauging the global symmetry. The locally invariant action was built substituting
the ordinary derivatives with the covariant ones and substituting the coordinate in the
argument of the background fields with the invariant coordinate (a line integral of a co-
variant derivatives of the original coordinates). The physical equivalence was achieved by
introduction of the Lagrange multiplier term, which makes the gauge fields nonphysical.

3.1 Auxiliary action

Here, we will consider the weakly curved background of the second order. As in the
first order weakly curved background, the Kalb-Ramond field is linear in coordinate and
has an infinitesimal field strength. The metric however, beside of a constant term has a
quadratic in coordinate part which is an infinitesimal of the second order. Such a metric
has an infinitesimal but nonzero Ricci tensor R,, # 0. The bosonic string theory in
this background does not possess the shift symmetry. However, defining of the new T-
dualization rules on the grounds of the existing procedure is still possible. The main object
in the conventional procedure, is the gauge fixed action which reduces to the initial action
for the equations of motion for the Lagrange multipliers and becomes T-dual action for
the equations of motion for the gauge fields. Here we will define its substitution, which
inherits these two features. We postulate the auxiliary action by

1
Saux|y, v1] = /@/d%‘ [UiHJrW (AV)v” + §(vi8,yu — "4y, |- (3.1)
It can be obtained from the initial action (2.4), by making the following substitutions
Orat — ol ot — AVH (3.2)

and adding the Lagrange multiplier y,, term. This action is of the same form as the gauge
fixed action, however, v/ are here some auxiliary fields, which take over the role of the



gauge fields. Similarly as in [18], the argument of the background fields is the line integral
of the auxiliary fields taken along a path P (from &y to &)

AVH*vg,v_] E/Pclﬁavg‘ :/]D(d§+vi+d§_v’i). (3.3)

Note that as well as in ref. [18], the equation of motion with respect to y,, forces the “field
strength” to vanish 04 v" —9_v% = 0, which is just the condition for the path independence
of AV#. In the resulting theories, the argument reduces to AV# = VH#(£) — VH(&y) and we
will chose the value of V#(&) to be zero.
3.2 From the auxiliary to the initial and T-dual theory
Let us confirm that the auxiliary action (3.1) becomes the initial action (2.4) for the
equations of motion obtained varying over the Lagrange multiplier y,,

(94_’1)5 — 8_Ui =0. (34)
Using their solution

v = Oyat, (3.5)

one obtains V#(§) = z#(§), and therefore taking z#(£y) = 0 the auxiliary action reduces to
the initial action (2.4).
The equations of motion for the auxiliary fields v/ are

1
g (V)0E + §8iyu =FB5 (V). (3.6)

Here the functions ﬁfj are defined by

Oy Saux = —ﬁ/d&zﬂﬁ(&)g, (37)

where 0y Saux stands for the variation of the action (3.1) over the background field argu-
ment V#.

Let us introduce the following background fields: an effective metric and a non-commu-
tativity parameter, defined by

2

G, =(G-4BG™'B), ., 0" = —E(G;BG*)W, (3.8)
and their combinations
2 1
oL = _;<G?H1G’l)’” = 0" F —(GE )", (3.9)
K

which are the inverses of the background field compositions 2xIls,,. Now, one can rewrite
the equations of motion (3.6) as

Wh(y) = —k O (V) |Den + 287 (V(y)) - (3.10)



The equation (3.10) is not the solution of (3.6), because v} appears within the argument
V# of both ©4 and 3. We will solve this equation iteratively.

The T-dual theory is obtained, by inserting the equation of motion (3.10) into the
action (3.1)

/<;2
*Sly, ve] = 2/d2£ [3+yu9’i”(V(y))37yu+45;(V(y))@’i”(V(y))ﬁf(V(y))]- (3.11)

In order to obtain the explicit form of the T-dual action one has to calculate the beta
functions 53 for a concrete background, solve (3.10) to find the explicit y-dependence
of the auxiliary fields v/, = v%(y), and therefrom determine the argument of the dual
background fields V*#(y).

4 T-dual action in a weakly curved background

Let us find the explicit expression for the T-dual action (3.11), in the weakly curved
background of the second order. The main task is to obtain the ﬁff functions (B.6), which
are calculated in appendix B. Because they are infinitesimal, it is enough to consider their
first order value and to determine the zeroth order value of V*, in order to calculate the
last term in the action

461, (Vo()) 05~ 81, (Vo(y)) = 04V huw (Vo (1)) ©67 hpe (Vo (y) ) OV - (4.1)

Let us find the explicit form of the dual background fields argument. We will solve the
equations (3.10) iteratively and find the zeroth and the first order in B,,, values of the
auxiliary fields v (y). In the zeroth order one has

Vi (y) = —K OFY Oxy,, (4.2)
consequently the zeroth order value of V# defined in (3.3) is
VHE — _k o L @t o K o _ gt ~(0)
0 = 2( o + 967 ). 2( 0+ 0" )0y

= 05"y + (95" 3, (4.3)
where g, is a double coordinate defined by
U = /Pdéo‘eﬁaﬁgy#. (4.4)

Now, using (4.3) and (A.8), the last term (4.1) in the T-dual action (3.11), becomes

185, (Vo)) O82 B, (Vo) = = 5040 [©1- (Vo(y)) o+ O1- (Vo(w)) | -1
= —04yp AR (Vb(y))a—yua (4.5)

with A%Y explicitly given by (A.9).



The first order value of the auxiliary field v/, defined by (3.10), is obtained using the
first order value of ﬁff, (B.6), and the expressions for ©4% given by (A.8)

Vi (y) = —k OfY Oy — *@“ Y (Voly)osyl. (4.6)

Let us note that, because of (4.2) and (4.6), the complete first order value of the auxiliary
field can be written as
1 Dpv
o (y) = O (V ()0, (4.7)

where °©4" is defined in (A.14).
Substituting (4.6) into (3.3), we obtain the first order value of V*

Vi) = =5 (06 + 05 )y — Z(efy — f)aY

K3

5 (B8 +64") Bupo (OFTOF Mre(y) + 65707 M_re(1)+057 65 (1 0y)) )

w

K v v oT oT
7 (O ~O") Bupo (O67 067 Mare(y) — 05704 M_re () + 077 05, y ) )

(4.8)

where

Maul) = 3 [ a6 (40008~ 100483, 9

and (y ( T)y(ﬁ)) is a double (defined by (4.4)) of the quantity y( T)y(%)
Once the argument of the background fields is calculated, we can write the explicit
form of the T-dual action

2
Syl =% [ @€ oy 10 (Vin)oy,

,{2
5[ #eomm[er (Vi) - & ()] o-n. (4.10)

with V# = VIr = VI 4+ VI given by (4.3) and (4.8). The second term in the dual
background fields composition A" is the contribution from the term quadratic in 3, and
has a form (A.9).

Comparing the initial action (2.4) with the T-dual action (4.10), one can conclude that
they are equal under the following transformations

6il’u — 8iyu,

Wi (2) = T (y) = Z(02 (Viy) — A% (Vo(y)) )
gTG)’i”(V(y)). (4.11)

The T-dual metric (the symmetric part of the T-dual background fields composition) and
the T-dual Kalb-Ramond field (the antisymmetric part) are

*GM = (G — KX (0ohbohgy' + 0ohgg'hbo + g5 hbohbo)"™ — (95 hgp hgp ), (4.12)



and

K 3

*BHY — §ew _ %(aoheoheo)w — g(eohg;hg,gl + g5 hbohgy + g hgp hoo)". (4.13)

The characteristics of the dual geometry, are considered in section 7.

5 T-dual of T-dual

Let us now follow the prescription of section 3, and show that the T-dual of a T-dual theory
is the original theory. To obtain the auxiliary action of the T-dual action (4.10), let us
substitute the dual coordinate derivatives 01y, with some auxiliary fields u+,, substitute
the coordinate in the argument of background fields with AU, = [(d§Tuy, +dé u_,) and
require the “flatness® of uy, by introducing the Lagrange multiplier terms

K

*Saux [Za Ui] = 9

/d2§ [nu+u fer (V(AU)) u—y + uy 02" — u,uc'“)Jrz“} . (5.1)

For the solution u+, = 0+y, of the equations of motion d_uy, + d;u—_, = 0, which are
obtained varying the auxiliary action over the Lagrange multiplier z#, the variable U,
reduces to ¥, (yu(§) = 0). So, the auxiliary action reduces to the original one.

The original theory should be obtained for the equations of motion for the auxiliary

fields u,
w10 (V(U))uwy + de2t = 67 (V (D)), (5.2)

with *5T# defined by (C.2), being the contribution from the variation over the background
fields argument. Multiplying the equations by THQW (the inverse of the background field
composition TO4”, defined in (A.11)) one obtains

Wiy = —26 Ty V(D) [%@Ez” L5 (V). (5.3)

Using the last equation and the first order value of the dual beta function *5T given
by (C.15), we can determine the value of the variable U, up to the first order

v sV v 14 0/_\_/0 14
U (2) = =262 + guw?” — By [Mﬁ () + M? (20) — ;02O )], (5.4)

with MY (z) defined in (4.9).  Substituting (5.4) to (4.3) and (4.8) we confirm
that VH#(U) = z*.
So, substituting (5.3) to the action (5.1), we obtain

** Saux (2] = H/d2§|:8+2“ T (2)0_ 2" + K2*B7H(2) TH+W(Z)*B+”(Z)]. (5.5)

Using the first order value of *#*#, given by (C.15), the second term of the action be-
comes —2k04 2" (Ilg1 A_(2)I1p4 ), 0—2" and therefore the action (5.5) is just the initial
action (2.4)

** Saux (2] = /i/d2f 042! Ty (2)0-2". (5.6)



6 Features of T-duality

In the previous sections, we showed how the original and its T-dual theory can be trans-
formed one to the other. In both directions, both theories follow from the auxiliary action
and are obtained for a concrete form of the auxiliary fields. Comparing these auxiliary
fields one obtains the T-dual coordinate transformation laws.

In section 3, we showed how the original theory can be transformed into its T-dual
theory. So, comparing the expressions for the auxiliary fields (3.5) and (3.10), one obtains
the T-dual coordinate transformation law

Opat = —k 0L (V(y)) [f%:yu + 267 (V(y))] : (6.1)
In the first order this law implies
gMr = (D), (6.2)
Substituting the beta functions (B.6) into the transformation law (6.1), we obtain
Ouat = =k | *O (V(y)) + AL (V () | i (6.3)

with °©%" are A4” given by (A.14) and (A.9). Using these laws one can show that the
equation of motion of the original theory transform to an identity (Bianchi identity) in the
T-dual theory, and vice verse. From (6.1) and (6.3), using (6.2) one obtains

63(37) = :F(QHi;w(l‘) - Hi,ul/(l‘))8$xy- (6.4)

In section 5, the T-dual theory was transformed to the original theory. Comparing
the solutions for the auxiliary fields we obtain the following T-dual coordinate transforma-
tion law

KOLY, = —26 g, (2) (8iz” + R*BJF”(Z)). (6.5)

In the first order this law implies

12

y = UM (2). (6.6)
Substituting the explicit value of the dual beta function (C.15), we obtain
sy = —2 Mgy (2)04.27, (6.7)

with °II¢,, defined in (A.15). Eliminating 0+2z* from (6.5) and (6.7), using (6.2) one
obtains

BE(V () = :F(O@*;; — oM 4 2A*;”)aiyy. (6.8)

Let us show that the T-dual coordinate transformation laws (6.1) and (6.5) are inverse
to each other. Multiplying (6.5) by T0L(V(y)) = 7@, (z) we obtain

kTOL (V(y)dryy 2 —0s2" F 1*BF(2). (6.9)

~10 -



Using (C.15), (A.10) and (A.14) it becomes

a2t = —k 1O (V(y)day, F 26 °00" (V () BF(V (1))
= s (V(y) [0 £ 257 (V(»))]
FRAY (V(y))dsy, F 5O (V ()BT (V (1)) (6.10)

Recalling the definitions (A.9), (A.8) and (B.6) the last two terms cancel out and one
obtains

Oust = i O (V(y) [0 287 (V)] (6.11)

which is just (6.1). The equivalent conclusion that (6.3) and (6.7) are inverse to each other,
follows from (A.16).

Let us finally show, that using the T-dual coordinate transformation laws one can
confirm that the equations of motion and the Bianchi identities of the original and T-dual
theory interchange. Applying the transformation law (6.7) to the identity

8+8_yu - 8_8+yu = 0, (612)
we obtain
0,.0_ 21 + (°TL; — °IL_ )~ (afmw - afn_yp) 0, 2P0_2% = 0. (6.13)

Using the explicit form of the composition °IL,,, given by (A.15), expression (A.19) and
the value of the Christoffel symbol (2.13), we obtain

(L, — °TL_ )~ (afmw - aUOH_V,J) — Bt 4T (6.14)

So, (6.13) is the initial equation of motion (2.6).
The equation of motion of the T-dual theory (4.10) is

o, [(06, + A (V(y))a,yy} — o [(0@+ + A+)W(V(y))8+y,,} —0. (6.15)

Using the T-dual coordinate transformation law (6.7) (with z# = z#) and (6.2), we obtain

04 ((O- + A" (@) T (@)0-2| = 0-[ (4 + AL)" (2)TLyp (2)012° | = 0, (6.16)
which with a help of (A.16) is just the identity

0,0 x" — D_dya" = 0. (6.17)

7 Original and dual geometries

Let us discuss what the geometry of the T-dual theory looks like and compare it with the
geometry of the original theory. To simplify discussion we will put the constant part of the
original Kalb-Ramond field, b,,, to zero. In fact it appears in front of a topological term
and can contribute only in the quantum theory.

- 11 -



Let us first note the substantial difference between our T-dual theories and the standard
o-formulations of string theories. In our approach argument of the background fields is
expression V*#, which is a line integral of the T-dual coordinate derivatives. For b,, = 0
it essentially depends on a double coordinate g, = [, df%’g a08Yu, €q. (4.4), which makes
the T-dual theory non-geometric. In some particular examples such theories are known as
the theories with R-flux. For these theories, the equations of motion are not necessarily
equal to the standardly derived space-time equations of motion for the background fields
depending just on the coordinate z* or y,. Although we do not expect that all relations
between background fields of the original and T-dual theories in our approach will coincide
with those in the literature, we are going to compare them.

Let us first make a simple qualitative analysis. In the approximation of the first order
it is easy to see, without calculation, that the T-dual space-time equations of motion are
satisfied. In fact both dual metric *G*” and dual Kalb-Ramond field *B*" are linear in
coordinates with infinitesimal coefficients. Consequently, the dual Christoffel *I';” and
the dual field strength *B**P are constant and infinitesimal. So, both dual space-time
equations, for the metric and for the Kalb-Ramond field, are equal to the second order
infinitesimals which are neglected, meaning they are satisfied. In our case of the second
order approximation, a similar analysis shows that both Riemann tensor and square of
the Kalb-Ramond field are constant and the second order infinitesimals in both initial and
T-dual theories.

In this section we are going to discuss the following issues: the geometries and the
space-time equations of motion of the initial and T-dual theories as well as the integrability
conditions of ref. [28].

7.1 Geometry of the original theory

For the original theory we take
G () = g + 3h;2w($) ) By (z) = hyw (), (7.1)

so that the corresponding Christoffel symbols are linear in coordinate and infinitesimals of
the second order while the Kalb-Ramond field strength is a constant infinitesimal of the
first order

ry,=-B",h°, — B h%,, Hyuyp = By, - (7.2)

Therefore, the Riemann tensor is a constant infinitesimal of the second order

2 1
B EBspcr + 7(Bp,uz-:B€m/ - BU;LEBEPV)) (73)

Rpo';u/ - g v 3

which produces the constant second order infinitesimal Ricci tensor
Ruu = BupaBpUy- (74)

Note that the covariant derivative of the field strength is equal to the ordinary derivative
D,H",, = 0,H",,. This is the consequence of the fact that the Christoffel symbols are
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infinitesimals of the second order and the terms I'H are infinitesimals of the third order
which should be neglect in our case. When H* ,; is constant one has D ,H* ,; = 0.
Therefore, the space-time equations of motion can be written in the form

S =0,  DyH",, =0, (7.5)

where for future benefits, following ref. [28], we introduced the tensors

2
SPouw = RP oy — 5B, B

1 € €
3w spa - §(BpusB ov Bau Bspu) ) (76)

and
S =500 - (7.7)

Note that the coefficients in front of the squares of field strength differ from that in ref. [28],
because of a different notation. In both articles they are adjusted in such a way that S, = 0
is the space-time equation of motion.

7.2 Geometry of the T-dual theory
The background fields of the T-dual theory are

G = (g, FBR(V) = =g hg T V), (78)

where

Vi = (g_l)}wgv- (7.9)

In comparison to the original theory, the term h? of the metric tensor is missing and the
background fields depend on V* instead of x*.

The dual metric is constant and therefore the dual Christoffel symbol, dual Riemann
and Ricci tensors are zero. But, the dual Kalb-Ramond field strength is constant infinites-
imal of the first order *H,,,, = —B,,,. As we explained in the beginning of this section the
T-dual fields do not satisfy the standard space-time equations of motion because the space
is nongeometric and the background fields depend on the dual coordinate §. The T-dual
space-time equations of motion are

"RMY =0,  *DMH,T =0, (7.10)

where again dual covariant derivative is equal to the ordinary derivative. It is interesting to
note that although the initial theory is curved, the corresponding T-dual is flat. It seems
that at least in the second order the T-duality acts as a parallelizable transformation. This
assumption should be checked in the higher orders of approximations.

7.3 Relation with ref. [28]

Although, as we explained, we should not expect for our background to satisfy the pseudo-
duality conditions of ref. [28], we are going to discuss the relation with this article. Let us

~13 -



first note that ,B;—L functions, introduced in the generalized T-dualization procedure, origi-
nate from the fact that T-dual background fields do not depend on the coordinate y, but
on its dual V# = (g~ 1)*7,. So, in order to compare our relations with the conditions
derived in the literature we will omit the term £, ©"”4F. Then, the T-dual metric tensor
acquires the quadratic term and the Kalb-Ramond field is unchanged

G = (g (V) CBR(V) = (g g T (V). (T

Secondly, one can note that the pseudoduality relation in ref. [28], which is the starting
point in that paper corresponds to the relation (6.7) in this paper. Taking b,, = 0 the
relation (6.7) reduces to

1Yy =2 F(9 F 3h + 6h2) 4 (v) 012" = £TL 012", (7.12)

where T is the notation from the article [28] where only the case Ty = T_ was treated.
Obviously, the T-dual coordinate transformation laws differ at least by the term 3h.

The Christoffel symbol and the Kalb-Ramond field strength for the background
fields (7.11) are

1
*sz = 3 (Buyahap + Bupahay>7 *HMP = —BHr. (7'13)

The Riemann tensor is

2 1 1
*Rﬁ"” = —§Bp“€BE”‘7 — §BPVEBE“" + §BP‘TEBE’“’, (7.14)
and the Ricci tensor equals
1
*RM = gB”apBap”. (7.15)

Note that the Christoffel symbols, Riemann and Ricci tensors are one third of the
corresponding variables of the original theory. The same as in the original theory, the
Christoffel symbols are infinitesimals of the second order and the covariant derivative of
the field strength is equal to the ordinary derivative * D#* HHP? = gH* HFP? . Because the
tensor * H#P? is constant the right hand side is zero.

The dual space-time equations of motion can be written as

"SHY =0, *DFH =0, (7.16)

ouy

where we define dual tensors *S, with additional coefficient % in the last three terms in

comparison to the tensor S,

2 1
*Spa;w — *Rpa;w _ §BMVEBEpa _ §(BP}L5BEUV . BU“EBEpV) 7 (717)

and as usual

XGHY — *G v (7.18)
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The pseudoduality conditions of the ref. [28], in our notation read as follows
*SP oy = =50 *D,*H*,; = =D, H" ;. (7.19)

Note that because both equations are infinitesimal we can raise and lower indices with
the constant part of the metric. Both pseudoduality conditions are fulfilled because all
terms are separately equal to zero. The second relation is valid without derivatives as well
*HV e = —HV ).

8 Conclusion

In this paper, we presented the T-dualization procedure applicable to string backgrounds
with nontrivial Ricci tensor and without isometries. The procedure is the generalization
of the one given in paper [18], for a weakly curved background. It was applied to a
string moving in the weakly curved background of the second order, composed of a linearly
coordinate dependent Kalb-Ramond field with an infinitesimal strength and a metric with
an infinitesimal of the second order quadratic in coordinate term.

The generalized Buscher procedure was not applicable to the second order weakly
curved background, because the action does not possess a global symmetry. If there is no
global symmetry, there is no corresponding gauge symmetry, which is the crucial ingredient
of the T-dualization procedure. However, it is possible to construct an auxiliary action,
which plays the role of the gauge fixed action. The auxiliary action is constructed from
the initial action, substituting the derivatives of the coordinates by some auxiliary fields,
and the background fields argument by a line integral of these auxiliary fields. This action
reduces to the initial action and to the T-daul action on its equations of motion. So, there
is a full analogy between the T-dualization procedures for backgrounds with and without
a global symmetry. The only difference is in fact the interpretation of the auxiliary fields
which are understood as the gauge fields in the case of a background with symmetry.

The realization of the new generalized Buscher procedure is more complicated. The
main problem is to solve the equations of motion, obtained varying the auxiliary action
with respect to the auxiliary fields, in terms of the Lagrange multipliers. To solve them, one
should iteratively calculate the argument of the background fields and the beta functions
defined in appendices B and C. It turns out that the argument of the dual background fields
has a more complicated form then in the weakly curved background of the first order. This
argument represents the complicated structure of the dual geometry. In the first order the
argument is given in terms of the dual coordinate y,, and its double g,. In the second order
the argument is given in terms of the dual coordinate, its double and an additional form
Miw(y) = %f de* (ygﬂiyg — yfgaiyf}‘), which can be interpreted as the left and the
right “angular momentum?”.

Applying the T-dualization procedure to all the coordinates of the initial theory, the
theory transforms to a T-dual theory. The initial background which is curved and geometric
transforms to a non geometric curved background

(o) = T () = 5102 (V(y),
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where ©" is defined in (4.11). Consequently the T-dual theory can not be directly com-
pared with the standard theories, where the background fields depend on the ordinary
coordinates. The T-dual Riemann tensor is zero, which means that T-dual background is
flat. It would be interesting to check whether T-duality in the higher orders can make the
target space parallelizable. Although the T-dual background is flat, certain adjustments
can be made in order for our approximation to satisfy the relations analogue to the general
relations of ref. [28].

Applying the procedure to all the dual coordinates, T-dual theory transforms to the
initial theory. Comparing the solutions for the auxiliary fields we obtain the T-dual coor-
dinate transformation laws, connecting initial and dual coordinates, which are inverse to
each other. Using these laws one confirms that the equations of motion and the Bianchi
identity of one theory transform to the Bianchi identity and the equations of motion of
the other theory. Because these laws have obtained the second order correction, they will
enable further investigation of the non-commutativity properties of the spaces connected
by T-duality. Furthermore, the laws are the basis for a double formulation [29-32] where
T-duality is interpreted as an exchange of the initial and dual coordinates.

So, we showed that the T-dualization of the theory with a non-trivial Ricci tensor and
without global symmetry is possible, and that it does not break the standard features of
T-duality. The non geometric structure of T-dual theory is much richer than in the cases
previously analyzed and may be a subject of further investigations.

A The expansion of the background fields

All the expressions will be divided into its zeroth, first and second order values, for example
Guu = GO/u/ + Glul/ + GQ;U/' By

GE}V) = GO;U/ + Glum (Al)
we mark the value up to the first order. The inverse of G, is given by
—W\pv _ (—1ypv -1 -1 —1y "
(G = (@ = [(6710(Gr + Gz = G1G)0G1 ) (Gl (A.2)
e Original background fields

1
GO[LV = Guv, BOuV = bp,ua HO:I:/U/ = b/ﬂ/ + ig,um

Glul/ = 07 Bl/ux = hw/’ Hli,ul/ = h;u/v
3
Gy = 3h%,,  Bauw =0, Hoty = ighiw (A.3)

e Inverse of a metric (G—1)*

(GO = (g H™,
(GHY =0,
(G5 = =3(g 'h?g~ )™ (A.4)
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e Effective metric (Gg)w = G — 4(BG™1B),,

<GE0)#V = Guv — 4b;2u/ = (gE),LLl/7
(GE1)u = —A4(bh + hb)
(GEg2)uw = —hi, + 12(bA%b) . (A.5)

e Effective metric inverse
(GE" = (9",
v — 1M — — v
(GEOE = 4]g5" (bh+hb)g5'|" = ~2n(bhg" + g hbo)™,
(GEME = ~[95" (= h? + 12602 — 16(bh + hb)g (bl + b)) g;]“”

= —3(g5'h’g5" )" + 657 (Boh*60)" + (g hyy hgy )
+412(0ohg Wby + ohgy' hbo + g5 hbohby ). (A.6)

e Parameter of noncommutativity 64" = —%(GEIBG_l)W
V22 _g -1 —1\uv
O = ——(95 b9~ )",

v 2 - - v 2 — - v
0 = —;(gEl(h + 4bhb) gt )M = —E@Elthl + K200hbo)"" |
05" = —3(6oh*gy" + 95" h?00)" + 4K*(Bohbohby )"
+4(0ohgz g + g5 hbohgs' + g5 hag ho)H” . (A7)
e Theta function O} = —2(G5' .G~ 1) = g LG hmw

K

1 _ v
@gi = 06“/ + E(gEl)M )
uv

O = —21[00:h00s] ",

O = Of2 | +3rh? + 457hO0.h| it

P
= +3kOhLh2, 00 + 4ALY. (A.8)

e The second order contribution 04y, A" (Vo(y))0-y, = —48y, (Vo)) ©§ 51, (Vo(v))
v K ov m
ALY = §@f1‘i1‘[0¢p091i = K’ <@0ih901h®0i> ' (8.9

e Dual background fields composition 164" = @4 — A%

Tary g
@Oi - @()i’
=Y ny
@H: - elﬂ:7
uv

v 1, - _
Tehy = 3x2 [@oﬂl<90 + E(g 1 gE1)> h@()i] : (A.10)
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e Dual background fields composition Iy, = I, + P/ N ESVANAY |

Jrl_IO:I:;w = HO:EMV?
THli,ul/ = Hliw/,
R g
Maspw = Mo + 5 hupOfFhov- (A.11)

The last two compositions are inverse to each other

1
vp _
My 'O = 4. (A.12)
e Functions °F4
2 n
Fi=) (1 + 2>Fni, (A.13)
n=0
3
°en = o + 5@’1‘1 + 2047, (A.14)
3
<>l_I:i:ul/ = HO:EMV + inliuy + 2H2:|:/u/‘ (A15)

e Inverses of functions °©4” and °Ily,,

1
(OHiw, + QRHOiMpA';:UHOiJV) o@ip = —4°

26 M’
1% 1% 1

My ("0 + AF) = 3. (A.16)

In the first order one has

o) ogwe _ 1 ¢
Hiw @:F = %5” (A.17)
e Difference
<>I_Lr;u/ - OHﬁuV =gw + 6h’iy7 (A18)
and its inverse

(OHJr;LV - QH*,LLI/)_l = (g—l)/w - G(hQ)MV. (A.lg)

B Beta function BZ:

Let us calculate the beta functions defined in (3.7), for the action (3.1). The variation of

the action over the background fields argument is
1
0y Saux = K / d*¢ [eaﬁa,,BW + 2naﬁ8pG,w] B VHOZVVEVP. (B.1)

Partially integrating, using the zeroth order equation of motion naﬁé?a@gV” =01in a
quadratic in B,,,, terms, we obtain

1
Oy Saux = _’Q/d2§|:<€aﬁap3;u/ + 27]aﬁame,> V“@gv”évg

+%naﬁaaap0w,v“aﬁvvavp . (B.2)

~ 18 —



Using the explicit value of the initial metric the second term can be rewritten as

1 1 1
5naﬁaaapcz,wwaﬁV”Wﬂ = §naﬁaaamp(V)aﬁwaw = 577&% <G2up(V)aﬂv#) SVP,

(B.3)

and therefore

1 1
v Sue = =10 [ €| (250, By + 3700,Gi VIOV 508 — L1 Ca(V)051 00|

(B.4)
So, the beta functions, defined by (3.7), are
o _ 0By g yH. VY 4 Lpad " v
By = &0, VIOV + 50 (0,Gu (VIVF = Gap(V) ) 95V
_ (eaﬁhW(V) + BnQﬁhiV(V)>85V”, (B.5)
and in the light-cone coordinates they become
550 = 5 (80 83) = 5 (F hpuV) — 82,(V) )0V (B.6)

C Dual beta function *3+*

In this section we will find the beta functions for the dual theory auxiliary action (5.1)
2

*Soux = % /d2§ [u.,.u O™ (V(U)) u_, + %(u.i_uﬁ_z“ - u_H8+z”)] . (C.1)

We define them as usual by

2
Oy  Saux = % / d*€ usy, 0, (V(U)) uy 6VP(U)

162

_ —2/d2§ [*5+u5u+u +* BM(SU_M]_ (02)

Multiplying the equation (4.7) by °H$2W, defined by (A.15) (the inverse of Q@S_Ll)“ Y,

see (A.17)), one obtains the auxiliary fields u., in terms of the auxiliary fields v/

ul) = —2oml) (VU)W PH ). (C.3)

Substituting these expressions to the first expression in (C.2) we obtain
Sy *Saunx = —2k> / d*€ 0L VFF,, ,(V(U))O_VV§VP(U), (C.4)

with the background field composition £}, , defined by

1 3
Flvp = (°H+ 8pT970H+)W =5, [h + §h(/{@0, + g_l)h} ; (C.5)
v
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where the second expression is obtained using (A.15) and (A.10). Partially integrating
in (C.4) we obtain

D / d2¢ { [waww(x/)a,v" + 0L VIO_F,, ,(V)V |sve(U)
VI, (VIO_VY 02 (U) + 0,V Ey, (V) V50" (U)}. (C.6)

The term F,, ,(V)(VF0,0_VY + 0,0_-VFV")6V? is absent, because, the antisymmetric
in first two indices part of F, , gives zero, while its symmetric part is of the second
order and therefore the whole expression vanishes on the zeroth order equation of motion
040_VH =0.

Taking the variation of (4.7), using (A.14), one obtains

SV (U) = —2@ "™ (V(U)dusy, + S03(U), (C.7)
N 3 v
SUH(U) = —gapef;iuoﬂmpwo). (C.8)

Using (A.8) and (4.2) one observes that
v (U) = —3k0450,hy,e 01 VISVP. (C.9)

Let us calculate the contribution from v} (U) terms. Because these terms are of the
first order it is enough to use the first order value of F),, ,, defined by (C.5). One obtains

S5y* Saux = K2 / d%¢ (VHFW(V)a_V"avf(U) + a+V“FW,,J(V)V"5vj”(U)>

3K2
- / € 0.V, (hO)_h) u (V)O_VV 5V, (C.10)
Partially integrating we obtain
* SHQ 2 m v
v Saux = e d“¢ || VF04+0,(h©o—h)u (V)0_V

+a+wa_a,,(h@0_h)W(V)W) sVP
HVH0,(hO0_ 1)y (V) VY502 + 0, V0, (hOg_h) V)V 60" } , (C.11)

where we again used the zeroth order equation of motion 0;9_V*# = 0. Finally, substitut-
ing (C.7) and (C.5) into (C.6), using (C.11), and noting that 0+0,h,, = 0, the variation
of the auxiliary action becomes

* 3 14 3 14
Ov* Saux = K> / d*¢ { [— @Vﬂamphi,,(ma,v — @mwa,aphiy(vw }WP(U)

1 o
—v#ap<h+ 3h2> (V)o_V* (=k)° 07 (V)su,
2K 2 v

—;aw#ap(m;h?) (V)V”(—n)O@(_l)p”(V)éua}. (C.12)
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The first two terms can be rewritten as

VIO 0,h2,0- VY + 0, VIO _0,hs, VY = 0, VEO R, + 0_VFOL Y,
=o_(0.vin2,) + oy (0-vin2,). (C.13)

Partially integrating, using (C.7), we obtain

2
v S =~ / a6 {Gu_y, 2O (V) (h = 312),,,(V)0, v

+ou, 2O (VY (=h — 3h2),,p(V)8_Vp}. (C.14)

Finally, recalling (B.6) we obtain the dual beta functions

BEV(U)) = 2900 (V) BE(V (D). (C.15)
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