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1 Introduction

Quantum chromodynamics (QCD) is nowadays accepted to be the theory describing the
strong force. The smallness of the coupling constant at high energies makes it possible to
test and confirm the theory in highly energetic scattering. It also provides — at least in
principle — a way to obtain various low-energy hadronic observables, such as masses and
decay constants, but it has hitherto been impossible to derive such quantities of interest in
terms of analytical expressions by means of ab initio calculations. A numerical approach
that can circumvent the problem is lattice QCD. A review of the applications to flavour and
low-energy hadron physics is [1]. To calculate observables, one uses a numerical evaluation
of the QCD path integral in a Monte Carlo approach. A number of restrictions follow
from the nature of the calculation. Since it is carried out on a space-time lattice in a finite
volume, it is of high interest to have the effect of the finite volume under good control.
Furthermore, although lattice computations in meson physics are now feasible when using
physical parameters for the light quark masses, a lot of calculations still use unphysically
high masses for the quarks. It is also useful to vary quark masses to study a number of



phenomena. A common solution to study quark mass dependence with lower computational
needs is given by partial quenching. In partially quenched QCD (PQQCD), one associates
different masses (usually larger ones) to the sea quarks and the valence quarks. Valence
quarks are those connected to the external operators while sea quarks are those in the
fermion determinant or equivalently in closed loops. Sea quarks are only connected to
external states via gluons.

The preferable way to correct for unphysical quark masses is by means of Chiral Pertur-
bation Theory (ChPT) [2-4]. Finite volume effects for ChPT have been introduced in [5-7].
The corresponding effective theory for PQQCD is given by Partially Quenched Chiral Per-
turbation Theory (PQChPT) [8]. The arguments underlying this are elaborated in [9].

The proper matching of calculations in PQChPT to results from Partially Quenched
Lattice QCD allows a whole new landscape of possibilities, such as improved validation and
extrapolation of lattice results, or a more accurate determination of the chiral low-energy
constants (LECs), see e.g. [10]. It should be stressed that, as opposed to fully quenched cal-
culations, partially quenched calculations are connected to their corresponding unquenched
scenarios by a continuous change in variables, making it possible to immediately extract
physical results from otherwise unphysical simulations.

In this paper, we address the finite volume corrections through two-loop order in
the PQChPT framework, specifically for the flavour-charged or off-diagonal mesons. The
infinite volume (IV) results in PQChPT to this order are known for three [11-13] and
two [14] sea quark flavours. The finite volume (FV) corrections in (unquenched) ChPT at
two-loop order have been addressed in our earlier study [15]. The needed integrals have
been worked out in [16]. Our expressions are valid in the frame with vanishing spatial
momentum, p = 0, often called the center-of-mass frame. In the so-called moving frames
or with twisted boundary conditions there will be additional terms. We have chosen to
present our result in terms of lowest order masses given the ambiguity in expressing the
results in terms of the large number of possible different physical masses.

Earlier work on finite volume corrections at NNLO are besides our own work [15], the
pion mass in two-flavour ChPT [17] and the vacuum expectation value in three flavour
ChPT [18]. Extensions of the latter work to partially quenched are in [19]. We did not
find published results for the finite volume corrections at one-loop order in the partially
quenched case. They are however implicit in the expressions given for the staggered par-
tially quenched case in [20, 21].

We give a short list of references for ChPT and discuss some small points in section 2.
The definitions of the integrals we use and how they relate to the results in [16] is given
in section 3. The next section describes our major result which is the full finite volume
correction to the pion mass and decay constant to two-loop order in ChPT. Section 4
contains the results for the three-flavour case for pion, kaon and eta for both the mass
and decay constant. The large two-loop order formulas are collected for one case in the
appendices and all of them can be downloaded from [22]. A numerical discussion of our
results is in section 5.



2 Partially Quenched Chiral Perturbation Theory

This section is very similar to the description of PQChPT given in [13] since our work is
the extension to finite volume of that paper.

An introduction to ChPT can be found in [23, 24] and in the two-loop review [25].
The lowest order and p*-Lagrangian can be found in [4]. The order p® Lagrangian is given
in [26]. We use the standard renormalization scheme in ChPT. An extensive discussion of
the renormalization scheme can be found in [27] and [28]. Important for our work is that
the LECs do not depend on the volume [7]. An introduction with applications to lattice
QCD is [29]. References to more introductory literature can be found in [22].

The expansion in ChPT is in momenta p and quark-masses. We count the latter as
two powers of p. This counting is referred to as p-counting. We prefer to designate orders
by the p-counting order at which the diagram appears. Thus we refer to lowest order (LO)
as order p?, next-to-leading order (NLO) as order p* or one-loop order and next-to-next-
to-leading order (NNLO) as order p® or two-loop order and include in the terminology one-
or two-loop order also the diagrams with fewer loops but the same order in p-counting.

2.1 The Lagrangian
Three massless quark flavours QCD has a chiral symmetry
G= SU(nf)L X SU(nf)R, (2.1)

which is spontaneously broken to the diagonal subgroup SU(3)y. The Goldstone bosons
following from this spontaneous breakdown are described by the meson octet matrix

o(x) = T —%7‘1’?;— %n K10 . (2.2)

The flavour-singlet component has been integrated out since it is heavy due to the U(1) 4
anomaly. The spontaneous symmetry breaking is the basis of ChPT.

In partially quenched QCD one distinguishes between valence and sea quarks. Valence
quarks are connected to the external states (or operators) while the sea-quarks are those
contributing in closed loops only connected via gluons to external states. These can be
given different masses in lattice QCD calculations. The ChPT for this partial quenching
can be done by studying the quark flow generalizing the quenched case studied in [30].
One can then treat the sea and valence lines differently. Alternatively, one can make use
of the supersymmetric formulation of PQChPT [8]. In the latter, three corresponding sets
of quarks are introduced instead of only two: in addition to the valence and sea sector,
a set of so-called ghost quarks is added. These are “bosonic” in the sense that they are
treated as commuting variables. With their masses fixed to the same numerical values
as present in the valence sector, they will cancel exactly the contribution coming from
closed valence quark loops. Most of the remainder of this section will be concerned with
the supersymmetric formulation. The changes needed to use a quark flow technique are
discussed at the end.



The chiral symmetry group is formally extended to the graded®
G = SU(nval + nsea’nval)L X SU(nval + nsea’nval)R7 (23)

for the case of ny, valence and nge, quarks. The chiral group G is spontaneously broken
to the diagonal subgroup SU(7yal + Nsea|nval)v- We will work in the flavour basis rather
than in the meson basis. We will thus use fields ¢, corresponding to the flavour content
of ¢,@,- The mixing of the neutral eigenstates and the integrating out of the singlet degree
of freedom is taken care of by using a more complicated propagator.?

The corresponding Goldstone degrees of freedom are put in a matrix with the generic

structure ) o o )
Qv av qvqs qvaqB
P = qsqv qsds 4sdB : (2.4)
qBqv qB4s qB4B

V' denotes valence, S denotes sea and B denotes the bosonic ghost quarks. Note that the
meson fields containing one single ghost quark only will themselves obey fermionic, i.e.
anticommuting, statistics.

The structure of the Lagrangian is similar to standard ChPT for a generic number of
flavours. The lowest order Lagrangian is

kg
Lo = T(uuu“ + X4) - (2.5)
At one-loop, it is given by
L4 =Ly (uHu"uyu,) + L (utu,)? + Ly (ufu”) (upuy) + L ((u"u,)?) (2.6)

~ ~ N

~ 1/38
+ La () () + s (w'uaxe) + Lo (x)” + L () + 5 0 +2) + -

We show only the terms relevant for our work.
The generalized Goldstone manifold is parametrized by

u = exp (z‘cb/(\/iﬁ)) (2.7)

similar to the exponential representation in standard ChPT. It is a 9 x 9 matrix with
fermionic parts. We have furthermore introduced

Uy =1 {uT(aﬂ —iry)u—u(0y — ilu)uT} ,

ye =ulxu £uxtu. (2.8)

!The precise structure of the symmetry group is somewhat different, but the one given here is sufficient
for both the present discussion as well as for practical calculations. The “approximate” symmetry group
reproduces the right Ward identities [10, 31].

2This is described in detail in [31]. Tt is possible to use the same method also in standard ChPT.



The matrix x is for this work restricted to
X = 2By diag(my, ..., mg) (2.9)

with m; the quark mass of quark 7 and By a LEC. We have here mq = m7, mo = mg, m3 =
myg as the valence masses and my4, ms, mg as the sea quark masses. Ordinary traces have
been replaced by supertraces, denoted by ( ), defined in terms of the ordinary ones by

A B
Str(CD) =TrA-TrD. (2.10)

B and C denote the fermionic blocks in the matrix. The supersinglet ®, generalizing the
7', is integrated out to account for the axial anomaly as in standard ChPT, implying the

additional condition
(P) = Str (®) =0. (2.11)

However, as mentioned above, we will work in the flavour basis enforcing the con-
straint (2.11) via the propagator.

A calculation in PQChPT has to be performed using a larger set of operators since
no further reduction by means of Cayley-Hamilton relations can be performed. The three-
flavour PQChPT Lagrangian (equation (2.6)) thus has 11 LECs for PQChPT.

The LECs for standard three flavour ChPT are related to those of three flavour
PQCHPT via

Ly =L+ Ly/2, Ly=Ly+ L, b=1L5-2Lf, (2.12)

and L] = ﬁ: for the others. Note that a numerical value for Lo cannot be obtained by
experiment, but can be determined only via PQQCD lattice simulations or modelling.

An additional comment is that the divergences for PQChPT are directly related to
those for nge-flavour ChPT [28] when all traces are replaced by supertraces. This can
be argued using the formal equivalence of the equations of motion used or via the replica
trick [32].

2.2 The propagator and notation for masses and residues

The variant of PQChPT, considered in this paper, comes with three valence quarks, with
masses my,mg, m3 and three sea quarks with masses my, m5, mg. The additional ghost
quarks emerging only in the supersymmetric formulation have masses my, mg, mg. They
do not appear explicitly since they are fixed to the ones in the valence sector, i.e. m7 = my,
mg = Mo, M9 = Mg3.

We use the numbers dy, and dge, to denote the number of non-degenerate quark
masses in each sector. In the case of two non-degenerate mass scales for one sector, it is
the two masses with the lowest indices that we set degenerate, which will in turn both
be represented by the mass scale with the lowest index, e.g. in the case dsen, = 2 we have
my4 = ms 7 mg and expressions will be explicitly dependent on m,4 and mg only.



In fact we will always absorb a factor 2By in the notation and we use

1

Xi = 2Bom; , Xij = 5 (xi +x5) - (2.13)

The lowest order masses for off-diagonal mesons with flavour content ¢;q; are given by
Xi; and we will use x; rather then x;; for equal masses. Dealing with masses for the
diagonal valence mesons in PQChPT is not trivial. This is discussed in detail in [31] and
extended to NNLO in [33]. The diagonal sea quark sector has two masses associated with
it, corresponding to the neutral pion and eta masses. These we denote by x and x;,. They
are defined as the solutions to the equations

2
xﬂ+xn=§(x4+x5+x6),
1
XrXn = 3 (xax5 + X5X6 + X4X6) - (2.14)

They are non-polynomial in the sea masses x; for three non-degenerate quark masses, i.e.
dsea = 3. For dgea = 2 one has instead xr = x4 and xy, = (1/3) (x4 + 2x6)-
The flavour-charged propagator, connecting ¢;; with ¢;;, is given by [8, 10, 31]
€
—iGS (k)= —2L—— (i#]), 2.15
OG0 = pi g (#9) (215)
with x5 = (xi + X;j)/2, the lowest order meson mass, and the signature ¢; is defined as +1
for the flavor indices of the 7y, + Nsea fermionic quarks, and as —1 for the flavor indices of
the ny,1 bosonic ghost quarks. In the present calculation, with the number of valence and
sea quarks as given above, €; thus takes the values
1 f ) =1,...,6
=4 T I (2.16)
—1for 7=7,8,9.
The flavour-neutral propagator, connecting a flavour field ¢;; to ¢,;, on the other hand
suffers from additional contributions emerging from the elimination of the ®y3 and the
partial quenching [8, 10, 31]. We write it as

G:L](k> = ng(’@ 5ij - ng(k)/nsea- (2.17)
The additional terms are either
Rt RJ
—iGL(k) = Jm i
Y k2 —xi+ie k2 —xj+ic
RT R

nj T
2.18
kz—xw+i5+k2—xn+is’ (2.18)

for the case with 7 # j and x; # x;, or

R4 RS
_Gq k‘ — ) )
A v PR ¥ B
+ . o (2.19)

kQ—xﬂ—Fz’a—Fk?—xn%—ie’



for the case with x; = x; which clearly includes ¢ = j. In the second case, the sum of
single poles is supplemented with an unphysical double pole. Since double poles emerge
due to the partial quenching in the valence sector, they disappear by taking the appropriate
unquenched limit.

Using the ratios of products of differences of masses

éb = Xa = Xby

2z Xa— Xb

abc — Ya — Xc’
o (Xa = x6)(Xa — Xe)
abed Xa — Xd ’

(Xa — Xb)(Xa — Xe) (Xa — Xd)
(Xa - Xe)(Xa - Xf)(Xa - Xg)’

szcdefg = (220)

the residues R of the neutral meson propagator in equations (2.18) and (2.19) are (for
dsea = 3)

. d . . . . .
R;'kl = Rz'z456jk:l7 Rz - Rf4567rr]7 ch - Riﬂ'r] + R%ﬂn + Réﬂﬁ - R;nn - Rerrn' (221)

Note that many of these quantities vanish when 7 takes the value of a sea quark index.
The sea-quark propagators thus do not contribute any double poles as expected since these
originate from the quenching in the valence sector.

For dgen = 2 or X7 = x5 = X4. The needed residues simplify to

Rl = Ry, R =R, Rj=Ry, +R; — Rl (2.22)

The corresponding propagator can be obtained by removing all pion indices as well as the
pion mass pole from equations (2.18) and (2.19).

The physically less interesting case dsea = 1 immediately yields xr =X, =Xx6=X5=X4-
All residues from the sea quark sector are reduced to numbers, only

R} = Rey RY = R, (223)

appear.

2.3 The quark flow case

We have performed the calculation using the supersymmetric method described above but
also with the quark flow method [30]. We use the same Lagrangians as in (2.5) and (2.6)
but with normal traces everywhere. The matrix ® is now written in terms of generic fields
¢ and all indices are kept symbolic implying summations.

Connecting propagators of a field ¢;; to ¢; should be done by using

Gijri(k) = G5;(k)0adjr — 040G (k) /Nsea - (2.24)

The propagators G7;(k), ng(k) remain the same but we can now disregard the factors ¢;
since with this method there are no bosonic ghost quarks.



After constructing the Feynman diagrams using the above, the quark flow is visible
following the symbolic flavour indices. Next, one replaces the index lines that connect to
external fields or operators by their appropriate valence value. The remaining index lines
are now sea indices and are summed over with the sea quark indices.

The results obtained with the quark flow method agreed in all cases with those of the
supersymmetric method.

3 The finite volume integrals

The loop integrals at finite volume at one-loop are well known. There is a sum over
discrete momenta in every direction with a finite size rather than a continuous integral.
The Poisson summation formula allows to identify the infinite volume part and the finite
volume corrections. The remainder can be done with two different methods. For one-loop
tadpole integrals the first method was introduced by [5—7] and a sum over Bessel functions,
that for large M L converges fast, remains to be done. With the other method one remains
instead with an integral over a Jacobi theta function, this method can be used for small and
medium ML as well. It can be found in [34]. The extensions to other one-loop integrals is
done in both cases by combining propagators with Feynman parameters. The first method
was extended to the equal mass two-loop sunset integral [17] and later to the more general
mass case in [16]. The latter extended the Jacobi theta function method as well to the
sunset case. Details and further references can be found in [16]. In this paper we use
Minkowski notation for the integrals.

For the one-loop integrals needed here, we use a notation that does a first classi-
fication according to the sum of the powers of the propagators with different masses,
mi,ma, ..., Mmax- We label the integrals A, B,C, D for a total power of propagators of
n = 1,2, 3,4 respectively, since total powers of up to 4 can appear in the calculation as
follows from the discussion of double poles in section 2.2. The different mass scales are
given as consecutive arguments of the integral. Alternatively, if only one mass scale in total
is present, we omit its repetition as a shorthand notation. For the present calculation at
most two different scales can appear.

Both scalar and tensor integrals will occur, e. g. in the simplest case of one single
propagator raised to single power

1 dir {1,r,r,}
A(m?), Ay (m? :/ R 3.1
{ ( )7 MV( )} i v (27r)d (742 _ m2) ( )
We used the subscript V' to indicate it is a finite volume sum and integral.
More Lorentz structures are possible than in the infinite volume case. We define the
tensor ¢, as the spatial part of the Minkowski metric g,,,, to express these. For the center-
of-mass (cms) case this is sufficient. The needed functions for the above example are

AMV(m2) = g;wAQQ (m2) + t,uZ/A23(m2) . (3.2)

We then use Passarino-Veltman identities in order to further simplify the result. In infinite
volume the relation obtained by considering g"”A4,,,(m?) can be used to remove As. In



niy nNg N3
n=1 |1 1 1
n=2 2 1 1
n=3 |1 2 1
m=4)|1 1 2
n=5 1|2 2 1
n=6)| 2 1 2
n=71,1 2 2
n=8 |2 2 2

Table 1. Overview of the notation for the possible configurations of powers of propagators in the
H functions in PQChPT. Redundant configurations are given in parentheses.

finite volume, we again remove the Aso-type integrals from the extended relation
dAss (m2) + 3A23(m2) = mzA(WLQ) . (3.3)

Each integral is split into an infinite volume contribution and a finite volume correction
by means of the Poisson summation formula, while simultaneously being expanded in € up

to the necessary order.

2

2y —
A7) = 2o 1672

+A(m?) + AV (m?) + € (Ae(m2) + AVE(mQ)) +- (3.4)

Here, Ay = % + log(4m) + 1 — . The same split is done for all one-loop integrals. The
expressions can be obtained by using the relations

0
2y _ 2
B(m?) = = A(m?),
1 0
2y _ 1+ 2
Cm?) = 55 B(m?)
1 0
D(m2) = - 2
(m*) = 55 —Clm?),
A(m3) — A(m3)
B(m3,m3) = L 2 3.5
(mlva) m%_m% ( )
The sunset integrals, defined as
{H, Hy, Hjy, Hy, Hypy, His } (n,md,mi,m3, p) =
1/ ddr ddS {17TM7 Sps TuTv, TuSv, SNSV} (3 6)
2 )y ry @ (Z—md) (2 —md) " (s —pP—md)

now come with eight different pole configurations. We label these by the index n according
to table 1 analoguous to the infinite volume definitions of [11-14].

The interchange (r,m3,n1) < (s,m3,ns) allows to show that H . Hp;, are related
directly to Hj, H};,. H}; can also be related to H,, using the trick shown in [35] and



also used in [16], now taking the pole configurations into account properly. The resulting
H,, and H, can then be reduced to six pole configurations only, cf. table 1, the bracketed
ones can be eliminated via the interchange above. In the scalar case H, only four pole
configurations are needed.

For the partially quenched calculation we thus generalized the sunset integrals used in
our earlier work via

H(xi, Xj5 Xk P%) = H (0, Xi, X5, Xk D7), (3.7)
introducing the new index n for the pole configurations as the first argument. Note on the
side that all new pole configurations are related to the simplest one by differentiation with
respect to the mass scales.

In the cms frame, we reduce the tensor structure of the sunsets as

H, = p.H (3.8)
Hw/ = pMpV-HQl + g,uVHQZ + tul/HQ’? .

As in [15], we renormalize the FV sunsets by not only subtracting the infinite part but also
an additional finite part containing O(e) contributions of one-loop integrals. In this way,
the latter integrals will cancel out of the final result, and thus do not need to be computed.
The splitting for n =1

AY = 200 (Y (md) + AV () + A (m)) + = (A< () + A< (m3) + A< (m3)
+HY,

v _ 2o 1oy v L 1o ve Ve %

AY = 002 (AY (md) + AV (m) + 1o g (4 3) + A< (md) + HY

Al = 2052 (A () + AV (md) + oy 5 (AVOmd) + AV () + HY,,

il = ot (AK0md) + g An(md) + gali(md))
+ 1oz (ABOn) + A nd) + gAY ) ) + (39)

has to be generalized for the other pole configurations by taking the appropriate derivatives
w.r.t. the masses.

4 Analytical results

The calculation of the masses proceeds in the usual way from the Feynman diagrams for
the self-energy shown in figure 1. We have performed the calculation for the off-diagonal
mesons, i.e. consistening of a valence quark and a different valence anti-quark, and for the
case of three flavours of sea quarks. The calculation has been done for all mass cases, equal
and different valence quark-masses, d., = 1,2, and sea quark masses all equal, dgen = 1,
two equal and the third different, dee, = 2 and all three different, dgea = 3.

A large number of checks have been done on the calculations. They have been per-
formed both in the supersymmetric formalism and using quark flow techniques. The infinite

~10 -
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Figure 1. Diagrammatic contributions to the pseudoscalar self-energy, up to O(p®). Circular
vertices are of O(p?), the filled boxes are of O(p*), the open box is of O(p®). The tree level
diagrams (a,b,i) do not contribute to finite volume corrections.

volume results are also in full agreement with [11-13]. The finite volume parts agree with
our earlier results [15] when these are expressed in terms of lowest order masses and when
the sea masses are put equal to the valence masses.

The formulas especially for the case of three different sea quark masses are very long.
In appendix A we list the case of equal valence masses and two sea quark masses. This cor-
responds to the charged pion mass in the isospin limit. The other cases can be downloaded
from [22].

The masses are given as

m?j = Xij + m?j(4) + Avm%@) + mz@) + Avm?](ﬁ) . (4.1)

In addition a superscript indicating dy,1dgea is added. The infinite volume and the one-
loop finite volume corrections were known before. The new parts are the two-loop finite
volume corrections. These we split in addition in an L] dependent part and a pure two-loop
contribution

Avmfj@ = Avm?j(GL) + Avm?j(ﬁR) : (4.2)
The subscript ¢j is set to 12 for dy,; = 1 and to 13 for dy, = 2 similar to the infinite
volume work.

The decay constant is defined in the usual way as
(0185975611 Mij (p)) = iV2Fyjpy (4.3)

for the pseudoscalar meson M;; with quark content ¢ # j and momentum p. The calculation
needs the the diagrams of figure 1 for the wave function renormalization and the same ones
with one external meson leg replaced by an insertion of the axial current.

We split the result as

4 4 6 6
Fy=F+F) +AVEY + B9 4 AVED. (4.4)
The NNLO part is split again in
AVED = AVESY 4 AVED, (4.5)

- 11 -



The calculations have been done using the supersymmetric and the quark flow meth-
ods. The infinite volume and NLO results agree with the known expressions and the result
reduces in the correct limit to the unquenched results of our earlier work [15]. The formulas
are rather long, the case for equal valence masses and two different sea masses correspond-
ing to the charged pion decay constant in the isospin limit is given in appendix B. The
expressions for the other cases can be downloaded from [22].

5 Numerical examples

The intention is that various lattice QCD collaborations can use our formulas. All cases
discussed have been included in the package CHIRON [36] available from [37]. The nu-
merical results shown in this section have been obtained with that implementation. The
programs have been cross-checked with an independent version. It has been checked that
the results reduce in the appropriate limits to those of our earlier work [15]. For this pur-
pose the expressions obtained in [15], but rewritten in terms of lowest order masses and
decay constants, have been implemented and included in CHIRON [37]. In addition, a
check has been done that the different mass cases reduce to each other numerically.

For input values we have chosen the recent global fit for the L] [38]. We have set the
extra LEC L = 0. We always use a scale of = 0.77 GeV. For the size of the lattice we
present results for a length L such that ML = 2 for M = 0.13 GeV. The lowest order pion
decay constant we have chosen throughout as Fy = 87.7 MeV.

The numerical results are presented via
’LZ]V - m%?o

Xij
Fo

m,

A =
(5.1)

We thus plot the size of the finite volume corrections relative to the lowest order value
of the quantity under consideration. Note that the results are for charged or off-diagonal
mesons. They consist of a quark and a different anti-quark which might have equal mass.

5.1 dyal = dsea = 1=1

Here we set all valence and all sea masses equal, dy, = dgea = 1. The size of the finite
volume corrections as a function of x; and x4 is shown in figure 2. The corrections in this
case are reasonable, at most a few %, except for very low masses and become very large
for low valence and high sea quark mass.

5.2 The pion mass

In this subsection we look at the case where the lowest order mass is around the pion
mass. We plot A}\Q with /x12 = 0.13GeV. The strange sea quark mass we have always
chosen such that the average lowest order kaon mass is 0.45GeV. This corresponds to
VX6 = 1/2(0.45)2 — (0.13)2 GeV =~ 0.623 GeV. The other input parameters are chosen as
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Figure 2. The finite volume corrections relative to the lowest order value as defined in (5.1) for
the case with all valence masses equal and all sea masses equal. Left: A]‘\Q the correction to the
mass-squared, contour lines are drawn at 0.03,0.01,0.003,0, —0.03, —0.01 starting from the bottom
left and going counterclockwise. Right: the correction to the decay constant, contour lines are
drawn at —0.001, —0.002, —0.005, —0.01, —0.02, —0.05 going from top-right to bottom-left.

given in the introduction of this section. We have restricted the sea up and down quark
masses corresponding to a lowest order sea quark pion mass of 100 to 300 MeV.

The first case we look at is dya = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass. This is the isospin limit. The result is shown in figure 3(a). There is a rather
large cancellation between the p? and pb correction while the p® contribution coming from
the LI is fairly small.

We now include isospin breaking in the valence sector. We thus look at the case
with dya = 2,dsea = 2. We fix the valence quark masses such that y; + x2 = 2x12 and
X1/x2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in figure 3(b).

The opposite case, isospin breaking in the sea sector, but not in the valence sector,
leads to numerically similar but opposite sign corrections. Here we used x1 = X2, x4 = X5/2
and x4 + x5 = 2Xav. The results are shown in figure 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
X1/X2 = 1/2, x4 = Xx5/2 and x4 + X5 = 2Xav- The results are shown in figure 3(d). The
total isospin corrections are rather small.

The numerical cancellation between the isospin breaking in the valence and sea quark
case is accidental. The corrections due to valence and sea quark masses are all second order
in isopin breaking. The same argument as in the unquenched case goes through both for
the valence and sea quark masses. We have compared four scenarios in figure 4. We show
the p* and the full p* + p° result first with no isospin breaking, then only in the valence
sector or only in the sea sector and finally in both sectors. The curves are those shown

~13 -



0.15 ‘4 0.15 ~
6p Gp
o1 P Li-=- ] 04 P L--- ]
p6 R ------- p6 R -------
(V] Al
I, 0.05 Lptep® —— ] Iy 0.05 Lptep® —— ]
'Om 'Ow
T e B i,
= \ T e £ R N
>32 -0.05 | 1 >3 -0.05 | ]
< <
01 | B 01 | 1
-0.15 N — -0.15 T
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Xay [GEV?] Xay [GEVZ]
(a) (b)
0.15 " 0.15 ’
6p Gp
01 P L--- 4 01 P L--- i
pG R ,,,,,,, p6 R ,,,,,,,
[e2] ™
. 0.05 tp*+p° ] . 0.05 [p+p° —— ]
g g
© ©
T | R
'l::g ~.TTF _o§ TS
>3 -0.05 | ] >3 -0.05 | 1
< <
0.1 01 ]
-0.15 e -0.15 e
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
Xay [GEV?] Xay [GEV?]
(c) (d)

Figure 3. The corrections for the pion mass relative to the lowest order mass as a function of the
average up and down sea quark mass via Xay. (a) The isospin limit, x1 = x2, x4 = X5 = Xav- (b)
TIsospin breaking in the valence sector, x1 = x3/2 and x4 = X5 = Xav- (¢) Isospin breaking in the
sea sector, x1 = X2 and x4 = x5/2. (d) Isospin breaking in both sectors, x1 = x3/2 and x4 = x5/2.

in figure 3(a—d). We have checked numerically by using a different ratio for the isospin
breaking that the corrections are indeed second order in isospin breaking.

5.3 The pion decay constant

In this subsection we look at the same cases as before. The lowest order mass is
around the pion mass. We plot A% with /x12 = 0.13GeV, and as before /xg =
v/2(0.45)2 — (0.13)2GeV ~ 0.623 GeV. The other input parameters are again chosen as
given in the introduction of this section. We have restricted the sea up and down quark

masses corresponding to a lowest order sea quark pion mass of 100 to 300 MeV.
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Figure 4. Comparing the finite volume correction for the meson masses for the cases with no
isospin breaking (none), only in the valence sector (val), only in the sea sector (sea) and in both
(full) for the meson mass squared. The upper curves are the p*, the bottom the p* + p% results.

The first case we look at is dya = 1, dsea = 2. This corresponds to taking the up and
down quark masses equal in both the valence and sea quark sector and a different strange
quark mass, i.e. the isospin limit. The result is shown in figure 5(a). The total p% correction
is fairly small.

We now include isospin breaking in the valence sector. We thus look at the case
with dya = 2,dsea = 2. We fix the valence quark masses such that y; + x2 = 2x12 and
X1/Xx2 = 1/2. There is a sizable isospin breaking visible in the finite volume corrections,
as shown in figure 3(b).

The opposite case, isospin breaking in the sea sector but not in the valence sector leads
to numerically much smaller effects. Here we used x1 = x2, x4 = x5/2 and x4+ X5 = 2Xav-
The results are shown in figure 3(c).

Finally, we introduce isospin breaking in both the valence and sea quark sector with
X1/Xx2 = 1/2, x4 = x5/2 and x4 + x5 = 2Xay- The results are shown in figure 3(d). The
total isospin corrections are failry small.

The corrections due to valence and sea quark masses are all second order in isospin
breaking. The same argument as in the unquenched case goes through both for the valence
and sea quark masses. We compare the same four scenarios as for the pion mass, no isospin
breaking, only in the valence sector, only in the sea sector and in both sectors. The curves
are those shown in figure 5(a—d). In figure 6 we compare the different isospin breaking
cases for p* and p* + pS.

5.4 The kaon mass and decay constant

We now look only at the dya = dsea = 2 case but choose the valence masses such that we
have a lowest order pion mass of 130 MeV and a lowest order kaon mass of 450 MeV. This
corresponds to /x1 = 130 MeV and ,/x3 ~ 623 MeV. We plot the finite volume corrections
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Figure 5. The corrections for the pion decay constant relative to its lowest order value as a function
of the average up and down sea quark mass via Yay. (a) The isospin limit, x1 = X2, X4 = X5 = Xav-
(b) Isospin breaking in the valence sector, x1 = Xx3/2 and x4 = X5 = Xav- (C) Isospin breaking
in the sea sector, x1 = x2 and x4 = X5/2. (d) Isospin breaking in both sectors, x; = x3/2 and
X4 = X5/2.

relative to the lowest order value of the quantity in figure 7 as a function of x4 = x5. For
the sea quark strange mass we use xg = 1.02y3. The LECs are again the ones from [38]
and L such that ML =2 for M = 130 MeV.

For the kaon we see that we reproduce the results of [15] that near the physical case
the p* corrections are very small. The total finite volume corrections to the mass remain
fairly small. The kaon decay constant has larger corrections but they remain in the few %
region for the parameters considered.
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Figure 6. Comparing the finite volume correction for the meson decay constant and masses for
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0.008 0.03
0.006 0.02 | 1
0.004 |
0.01 | ]
0.002
>z & 0
0 —
4 -0.01
0002 P 1
oL - - -
0.004 | p*R o 0.02
4 6
b ——
o006 LB . . . . . -0.03
0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
X4 [GeV] %4 [GeV]
(a) (b)

Figure 7. The finite volume corrections for a valence mass close to the kaon mass relative to the
lowest order value. (a) the kaon mass squared. (b) the kaon decay constant.

6 Conclusions

We have computed the NNLO expressions for the masses and decay constants in three-
flavour partially quenched ChPT for all possible mass cases. The calculation has been
performed using two different formalisms, quark flow and the supersymmetric method.
The known infinite volume expressions have been reproduced. We quoted the expressions
for the case of equal valence and two different sea quark masses in the appendices. The
other cases can be obtained from [22].
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The numerical work shows finite volume corrections of a similar size as those in the
unquenched case [15]. We have presented some representative numerics. The numerical
work has been done using C+-+. The programs are available together with the infinite
volume results in [37]. The analytical work relied heavily on FORM [39].
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+ A (x14)BY (xa1, Xn)< 4/9(xa + 2X1)Xan61> + A" (x16) 161 ( — 1/12x1 Riss,

— 1/18(6x5 + 3x6 + x1)x1 561 + 1/36(6xy + 3x6 + Xl)Xanm +1/72(12x5 + 15x6
+36x4 — x1)x1 + 1/36(3x6 + Tx1)x1Ri4, — 1/72(3x6 + 7X1)X1R146n)

+ AV(X16)2< — 1/2TR{4g, + 5/54x1 Riyy + 1/27(2xn — 2x6 — 5x1) + 1/54(4xy + 4x6

+ 9)(1)Rf;612 —1/27(dxy + x1) Ry — 1/108(4xe + 13X1)R§46n)

+ AV (x16)AY (i) (= 4/4500n = X6) = 4/45(xy + 1) s + 4/45(2x = X6 + 9%1) R )
+ AY (x16)BY (1) (47931 oy — 2/90x6 + 2x1)x1 Riay ) + AY (x16) BY (1, x) (4/9(0xs

+ 20 Ri ) + A7 () BY () (1/3x0aRis,)
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+ A (x4)BY (x1, xn) (2/3X1X4RT6nR§61) + AV (xa)BY (x) (1/3X1X4R7Z7612>
+ AV(X46)AV(X77)< - 2/3X1R1761 —4/9x1 Rig, 61 + 4/9x1Rf4,7Rf761>
+ A (xa6)B" (x1) (4/27(X6 + x4 + x1)x1 Risy Rig, + 2/27(x6 — x1)x1 R,
+2/27(x — x1)xaRig,?) + AV (xa) BY (1, xa) (= 4/270x6 = xa = 3x1)x1 Ry R
—4/27(2x6 + x4 + 3X1)XlRTGnR§61> + AV(X46)BV(X17)( —2/903xy + X4)X135612>
+ AV (xn)? (2/9X1Rn61 ) + AV(Xn)BV(X1)< - 2/9X1RT4677RZ61 + 2/27XIX6R1477
+1/27x1x4Ri6,” — 4/9X1 R s 5612> + AV(Xn)BV(Xl,Xn)< — 8/2Tx1x6 R4y 61
+2/2TxaxaRig, Ryg1 + 8/9X1R7761 ) + AV (xy)BY (xn) (1/27(8X6 + X4)X1R727612>
+ AV (o) CY () ( = 4/ Risoy i) + BY (01)? (1/18%1 Riaoy” + 2/9%3 Ri s B
+BY (1)BY (¢t x) (= 4/9 Riaon i) +BV<X1>0V<X1>(2/9XIR14M )
+ A%MTEQ (3/41 = 1/2x1Rig, — /41 Riy ) + A¥3<xl4>@ (1/6x1 = 1/3x1 Biy
1B R~ 1/3%1 Rigy +1/6x1 R, ) + Ay (x16) 155 (1/12x1 + 1/3x: Ry
- 1/6X1Rn61 —1/6X1Rf4n+1/12X1R§46n) + HV(L X15 X1, X1, X1) (1/3X% + 2/9X%R§46n2)
+H" (1, x1,x1, Xle)( — 8/9x1 RS 46y, 5612) +HY (1, X1, X14, X145 X1)< — 11/18x1 Ri4ey
—5/6x7 Risg, — 1/9(4xa — 7X1)X1Rf6,7> +HY(1, X17X167X167X1)( —11/36x1 Ri46y,
—5/12xF Risg, — 1/18(4x6 — T ) X1 Biay ) + HY (1,31 X X 1) (8/93 R )
+ HY (1, x14, X145 Xop X1) (1/27(Xn —x4) (xn — X4 — 6x1) + 4/27(xn + 2x1) (xn — 4x1) Rig1”
+4/27(x} — XaXn — 41Xy + X1X4 — 6X7) 261) + HY (1, x16, X165 Xn> X1) (2/27(Xn
—x6) (xn — X6 — 6x1) + 2/27(xn + 2x1) (X — 4X1) Ri1” — 4/27(x2 — X6Xn — 4X1Xn
+ X1x6 — 6X7) %1) + H" (1, X4, X14, X145 X1) (3/4X1X4> + H" (1, x46, X14, X16, Xl)(l/Q(X6
+ X4)X1) + HY (1, Xy, X14 X145 X1) (1/12X1Xn +1/3x1xnRe1 + 1/3xa X0 Rr61 )
HY (1, Xn, X165 X16, X1) (1/6X1Xn — 1/3x1xnRpe1 + 1/6x1X0Rr61 )
HY (2, X17X17X1,X1)(4/9X%RT4677 f46n) + HV(27X17X1,X777X1)< — 8/9x7 Risq, 7Z7612>
HY (2, Xl,X14,><14,><1)( 5/6x7 14677) +HY (2, X1,X16,X16,X1)( 5/12x3% 14677)
+ HV(57X17X17X1,X1)(2/9X% 1a6n ) +HY(LX17X14,X14,X1)(4/9X1Rf46n +4/3X1 R 46,
+4/9(xa — 4X1)X1Rfﬁn> + HY (1, x1, X165 X16: X1) (2/9X1Rf46n +2/3X3 R4y,
( ) (4/9(><n — Xa)x1 +16/9(xy

+2/9(x6 — 4x1)X1Ri4, ) + HY (1, x14, X14, X> X1)
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+2x1)x1Ri61” 4+ 8/9(2xy — X4+ 2X1)X1Rf,61> + HY' (1, X16, X16: Xn> X1) (8/9(Xn - X6)X1
+8/9(xs + 2x1)x1 Rig > — 8/9 (2X,7 ~ e+ 2X1)X1Rf761)
+HY (2, Xl,X14,X14,X1)<4/3X%Rf46n) + HY(Q,XlaXlﬁaXlﬁaX1)<2/3X%Ri46n)
+ Hy (1, X17X147X147X1)<X%Rf6n 1/2x} 14677) +H;/l(LX1>X16>X16>X1)<1/2X% 1an
—1/4x7 f46n) + szi(lvX45X145X145X1)(9/4X1) + H2V1(17X467X147X167X1)<3X%>
+ H¥1(1, Xn» X145 X145 X1) (1/4X1 + XlRZ61 + X1R7Z7612> + H¥1(17 Xns X165 X165 X1) (1/2X%
— 3 Rig +1/23 Rien?) + H3 (20, a0 x10x0) (= /28 Risgy)
+ H3\ (2, X1, X165 X165 Xl)( - 1/4X%R”1Z46n) + Hy; (1, x1. X145 X145 Xl)( — x1 R,
+1/21 Ry ) + HI (L X1, X160, 316 x0) (= 1/2x1 Riay + 1/4%0 Ry )
+ Hyp (1, X4, X145 X145 X1)< - 9/4><1) + Hyr (1, Xa6, X14, X165 X1)( - 3><1>
+ Hy7 (1, Xy X145 X145 Xl)( —1/4x1 — xaRpg — X1R1Z]612>
+ Hy7 (1, Xn, X165 X165 X1)<— 1/2xa+x1Rpe — 1/2X1Rf,612)
( )

+ Hy(2, X1, X145 X145 X1 (1/2X1Rf46n> +H27(2,X1»X167X167X1)(1/4X1Rf4677> (A.3)

B Expressions for the decay constant

RAVFYY = +4Y (a0 (1) + 4Y () (1/2) (B.1)

F(?AVF122(6L)12 = +AV(X1)( 4/3L% X1R146n+4ﬁ§ f46n+4ﬁ§X1Rf46n_10ﬁ5X1—4f/7{X1
+4Lj Riye, +4 LG xa Rhan) + A" (x14) (4 LEx1 —4(xe +2x4) L — 10 (xa + x1) Lj
—4(xa + X1)ﬁ6> + AV (x16) <2L5X1 — 2(x6 + 2xa) L3 — 5(xs + x1) L — 2(x6 + Xl)Lo>
+ AV () (12 B xa = 6 L xea — 24 L5 xa ) + AV (as) (8 (o + xa) L5 — 4 (x6 +xa) L

— 16/ (x6 +xa) £ ) + A (xa) (8/3 L5 x1 Rii® — 8 L xy Ria® — 2 Ly — S Ly

=8 Ly Rigr® +4/3(2x6 + xa) L) + BY (1) ( = 4/3 L5 x1 Rigy + 4 L5 x1 Riag,

+ 4 L5 x1 Riasy ) + B (xa) (8 (xa +x1) (s +2x0) L = 4 (a + x1) (6 + 2 ) L
+4(u+x1)° LE—2(xa+x1)? ﬁg) + B" (x16) (4 (xs +x1) (x6 +2x4) L§

=2 (o +x1) (%o + 2xa) L +2 (x6 +x0)? L — (36 + x0)2 £5) + A3 001) ( — 4 L R,
+ 615 +12 L5 — 415 Rfy, ) + Afy(aa) (1265 + 24 1) + Al (xie) (6 15 + 12 L)

+ Ay (xa) (18 L5) + AYs0cas) (24 L) + A3 060) (8 L R + 6 Ly + 8L i)
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+ Bgz&@ﬁ)( — 4L Ta6n — ALG f46n) (B.2)

FSAVFR®™ = 4 A001) BY (x1a) (1/18Rias, — 1/900 + 2x1) iy )

x1)BY (x16) (1/361%%4677 —~1/18(x6 + 2X1>Ran)

Xn)BV(X16)< = 1/18(xy — x6) + 1/9(xn + x6 + X1)Ry61 — 1/18(xy — XI)R7Z7612>
BlanA (1) (1/18R5a6, — 1/90xa + 2x1) i, ) + Blxan)AY (en) ( = 1/3600, — x4)

= 1/90x + x4 + X1) Ry — 1/900n = X1) Rign® ) + Blxao)AY (1) (1/36 Ris,

— 1/18(x6 + 2X1)RT4,7) + E(XlG)AV(XW)( = 1/18(xyn — x6) + 1/9(xn + x6 + X1)Ry61

/1800, 1) Rer?) + AV () 355 (181 — 1/12x1 Ri, — 1/201 i, )

+ AV () BY (1) (1/18 B4 — 1/9<><4 +2x1) Rigy) + AV () BY (x16) (1/36 R,

~1/18(x6 + 21 Riay ) + A (01a) 70 (1/12Riu6, — 1/24(x9 + 6x6 + Lxa +5x1)

—1/12(2xy + xa + X1) Rier — 1/12(2xy + xa + X1) Rig1” — 1/12(xa + 3x1) Risy
1/24(xa + 3X1)R‘{467,> + AV(X14) (5/108 5/54Rz, — 5/54Rz, > — 5/54R5;,

"
"
+ A(x16)AY (x16) (5 /108 + 5/27TRzg) — 5/54Rz5, % — 5/54R5 4, + 5/108R§46n)
"
n
n

(
(
(
A(x) B (aan) (= 1/3600 = xa) = 1/90x + X1+ x1) Rigr = 1/90¢y = x1) Rier?)
(
(

+5/108RS.5,) + A (x16) 705 (1/24Ri0, + /1220 + X6 + x1) Ry
—1/24(2xy + X6 + X1) Rip1 > — 1/48 (4Xn +5x6 + 12x4 + 5x1) — 1/24(x6 + 3x1) Riyy,
+1/48(x6 + 3X1)R§46n> + AV (x16)? (5/216 +5/54Rz; — 5/108Rzg,% — 5/108R;,,
+ 5/216R§46n> + AV(Xn)BV(XM)( = 1/36(xn — x4) — 1/9(xn + x4 + x1) Rp61
—1/90xy — x1) 727612) + AV(XU)BV(XM)( —1/18(xy — x6) +1/9(xn + X6 + XI)R72761
1180k — ) Rign?) + A% 00) g5 ( — 3/8+ 1/4Ri, + 1/8Ri,, )
- AQV?,(XM)HJ?( 1124 1/6R5e, +1/6Rig® +1/6Rig, — 1/12R5, )
+ AQVg(Xw)IGI?< —1/24 — 1/6Rzg, + 1/12Rzg,% + 1/12R%,, — 1/24354677)

HY (1, x1, x14, X14, X1) (1/12R]2f46n — 1/6x1Rig, + 1/12X1R§46n)
+ HVu 16 16 x0) (1/24R5 45, — 1/12x0 Ry + 1/24x0 R, )
HY (

1 X4,><14,X14,><1)( - 3/8><4) + HV(LX46,X14,X16,X1)( —1/4(x6 + X4)>
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HY (1, xy, X14, X14, X1 ( — 1/24xy — 1/6xyRy61 — 1/6Xn35612)

1, Xn» X165 X165 X1) <— 1/12xy + 1/6xy Ry — 1/12xy 727612>

2, X1, X14, X145 X1) (5/54X1R146n) +HY (2, XlaX167X167X1)<5/108X1R14677>

+ HY' (2, x1, X14, X1, X1) ( — 1/108X1R14617) +HY (2, X17X167X167X1>< - 1/216X1Rf4an>

+ HY (3, X145 X1, x14: x1) | — 1/54X1R146n) + HY (3, X16, X1, X165 Xl)( - 1/108X1Rf46n>

+ Hyp(1, X1, X145 X14, X1)  1/2R6, — 1/4R146n>+H2V7(17X17X16,X16,X1)(1/4Rf47;—1/8Rf46n)
9 ) —|—H27 (1, x46, X145 X165 X1)(3/2)

(
(
(of
+ Hy (1, X X145 X145 X1 (1/8+1/2R 61 T 1/2R56 )
(1
(-

HY(
+HV(

+ Hy7(1, xa5 X145 X145 X1)
)
+ Hyp (1, X, X165 X165 X1) ( 1/4 — 1/2RZ6) + 1/4R;g) )
+ Hy7(2,X1, X145 X145 X1) 1/4R14677> + H37(2, X1, X165 X165 X1)( - 1/8Rf467;>
V(1 x1, x1. X1, 01 (1/6X1+1/9X1 1346772) +HV (1, X1, X1 X Xl)(—4/9X%Rf46nR7Z7612>
H'Y (1, x1, X14, X14, X1) ( — 11/36x1Ri 46, — 5/12X3 Risgy — 1/18(4xa — 7X1)XlR'f6n)
V(1 X1, X165 X165 X1 ( — 11/72x1 R} 46 — 5/24X7 Ri 46 — 1/36(4x6 — 7X1)XlRf4n)
Y1, X1, Xns Xps X1) (4/9X1Rn61 ) + H'YV (1, x14, X145 X X1) (1/54(Xn —x4)(Xn — X4
— 6x1) +2/27(xy + 2x1) Oty — A1) Rig1” + 2/27(xp — Xaxn — 4x1Xn + X1X4 — ﬁxf)Rf,m)
+ H'V(1,X16, X16, X» X1) (1/27( — X6)(xXn = X6 — 6x1) + 1/27(xn + 2x1) (X5 — 4x1)
2610 — 2/27(x3 — XeXn — 4X1Xn + X1X6 — 6X3) 72761> + H'YV (1, x4, X14, X145 X1) (3/8X1X4>
+ H'V (1, X46, X14, X165 X1) (1/4(><6 + X4)X1> + H' (1, xn, X14, X14, X1) (1/24x1><77
+ 1/6x1xy 61 + 1/6X1XnR7Z7612> + H'V (1, X, X165 X16: X1)<1/12X1Xn — 1/6x1xn 61
+ 1/12X1X?7R7Z7612) +H'™V(2,x1, X1, X1, X1)<2/9X%R§46n f46n)
2 XbXmeXl)( — 4/9x1 Ri sy, 57612) + HIV(27X17X147X14,X1)( —5/12x7 f46n)
( - 5/24X%Rf46n) +H'Y (5, x1,X1, X1, X1) (1/9X% f46n2>
(2/ 9x1 Rigy + 2/3x1 Risey +2/90xa — 4X1)X1Rfﬁn)
(1/9X1Rf46n + 1/3x1R§ Ta6n +1/9(x6 — 4X1)X1Rf4n)
+ HY (1, 14, X14, X X1 (2/9(907 — xa)x1 +8/90xn + 2x1)x1Rie1” +4/9(2xy — x4
+ 2X1)X1R261> + H," (1, X16, X165 X X1) (4/9(Xn —x6)X1 +4/9(xn + 2x1)Xx1 R}

—4/9(2xy — X6 + 2X1)X1Rf761) + HY (2, x1, X14, X14, X1) (Q/SX%RﬁGn)

2, X1, X165 X165 X

"

"
+H1V(1,X1,X14,X14,X1
+ Hl (

(

X1)
)
1, X1, X165 X165 X1)
)
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+Hiv(2>X17X167X167X1)(1/3X% f46n)+H;‘1/(17X17X14,X14,Xl)(1/2X%R’126n—1/4X%Rf46n>
+ Hyy (1, X1, X165 X165 X1) (1/4X% Tan — 1/8X%R§46n> + HaY (1, X4, X14, X14, X1) <9/8X%)

+ HyY (1, 46, X145 X165 X1) (3/2x?> + HoY (1, X, X145 X145 X1) (1/8xf + 1/2x1R; 61

+1/2x3 ;612) + HoY (1, X, X165 X165 X1) (1/4X% —1/2X3R6) + 1/4X%R7z7612>

+ HoY (2, X1, Y14, X14, Xl)( —1/4x3 f46n) + HyY (2, X1, X16, X16, X1)< —1/8xi f46n>

(= /20 R, + /40 Fisg, )

) (=140 Ry 1/8%1 R, ) + Ho¥ (L, xaa, 10, x) (—9/8%1)
+ HyY 1,X46,X14,X16,X1)( - 3/2X1) + Hé¥(17Xn7X147X14,X1)( —1/8x1 — 1/2x1 R

- 1/2X1Rf,612) +HY (1, X777X167X167X1)( —1/4x1 +1/2x1Rp6; — 1/4X1R;612)

+ Hy (2, X1, X145 X145 X1) (1/4X1Rf46n) + Hy¥ (2, X1, X16, X165 X1) (1/8X1RT4677> (B.3)

+ Hé‘7/ 1, X1, X14, X14, X1

(
+ Hy¥Y (1, X1, X165 X165 X1
(
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