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point of the effective action (or a zero point of the fermion determinant). For a subset of

critical point solutions in the uniform-field subspace, we examine the upward and downward
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the intersection numbers to determine the thimbles contributing to the path-integration of

the partition function. We show that the original integration path becomes equivalent to a

single Lefschetz thimble at small and large chemical potentials, while in the crossover region

multiple thimbles must contribute to the path integration. Finally, reducing the model to

a uniform field space, we study the relative importance of multi-thimble contributions and
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Lefschetz thimbles.

Keywords: Lattice Quantum Field Theory, Phase Diagram of QCD, Lattice Integrable

Models

ArXiv ePrint: 1509.08176

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP11(2015)079

mailto:hfujii@phys.c.u-tokyo.ac.jp
mailto:skamata@rikkyo.ac.jp
mailto:kikukawa@hep1.c.u-tokyo.ac.jp
http://arxiv.org/abs/1509.08176
http://dx.doi.org/10.1007/JHEP11(2015)079


J
H
E
P
1
1
(
2
0
1
5
)
0
7
9

Contents

1 Introduction 1

2 One-dimensional massive Thirring model on the lattice 3

3 Lefschetz thimble approach 6

3.1 Preliminaries 6

3.2 Critical points and determinant zero points 7

4 Thimble structure at µ = 0 9

4.1 Bosonic theory 9

4.2 Thirring model 11

5 Stokes phenomenon and structure change at finite µ 13

5.1 Stokes jumps with increasing µ 14

5.2 Multi-thimble contributions and weight factor 16

6 Multi-thimble contributions in uniform-field model 19

6.1 Single-thimble approximation 20

6.2 Toward continuum limit 20

6.3 Toward low temperature limit 21

6.4 Multi-thimble contributions 21

7 Summary and discussions 23

A Exact expression and asymptotics of Z 26

1 Introduction

The sign problem is the longstanding obstacle which prevents us from applying nonpertur-

bative lattice simulations directly to the physical systems with complex actions, including

quantum chromodynamics (QCD) at finite baryon chemical potential µ. The fermion deter-

minant at finite µ becomes complex, which invalidates the importance sampling algorithm.

In contrast, the determinant is real at finite temperature (T ) with µ = 0, and lattice sim-

ulations of QCD have proved now to be a reliable nonperturbative method to evaluate

(e.g.) the equation of state of strongly interacting matter. Nonetheless, studies of QCD-

inspired models at finite T and µ have suggested a variety of phase changes from nuclear

liquid-vapor transition, to chiral symmetry restoration, and to color-superconducting phase

transition, etc. With this situation, in order to unveil the QCD phase diagram from the
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first principles, many attempts have been made to circumvent the sign problem in lattice

QCD simulations, although the complete resolution is still not available [1].

To study the physical systems with complex actions, two alternative approaches have

attracted much attention recently — complex Langevin equation [2–4] and Lefschetz thim-

ble integration [5–7], both of which involve complexification of the dynamical field variables.

Statistical sampling with the complex Langevin equation has been applied to various

models [8–47], including the massive Thirring model with chemical potential [21, 22], as

testing grounds, and it is successful in some cases but not in other cases. A formal proof

for the correctness of the method has been elaborated under certain conditions [13, 17],

but full justification of the complex Langevin approach is not established, where loga-

rithm terms such as the ferimon determinant in the action cause a subtlety [44]. Note-

worthily, complex Langevin simulations have been applied to full QCD at finite T and

µ [26, 30, 34–36, 38, 40, 45, 47], showing consistent results with those obtained by the

reweighting method in the parameter region where both methods are stable [47].

Path integration on the Lefschetz thimbles was introduced in the study of analytic

property of gauge theories [5], and it was soon recognized as a mathematically sound way

to resolve the sign problem [48–50]. It can be regarded as a functional generalization of

the steepest descent method of complex analysis. In this approach the original integration

cycle is deformed to a sum of the curved manifolds, called Lefschetz thimbles, in the

complexified field space. On a thimble the imaginary part of the action ImS is constant,

and this property allows importance sampling with the weight e−ReS ≥ 0. This advantage

was first applied to numerical simulations for 4-dimensional λφ4 theory with chemical

potential with use of Langevin [49] and hybrid Monte Carlo (HMC) [50] algorithms on a

single thimble, and successfully reproduced the known results including the so-called Silver

Blaze behavior [51] — complete insensitivity of the system to µ below a certain critical

value at T = 0. The residual phase problem from the Jacobian due to the curvature is mild

and can be efficiently taken into account by reweighting for this theory [50]. The Lefschetz

thimble integration has been examined in other models [52–55] and has been studied from

other aspects [56–62] which involve the sign problem. This approach also shed new light

on the complex Langevin sampling method [27, 33, 62], and vice versa [61].

In this paper, we study the path integration on the Lefschetz thimbles in the (0+1)

dimensional massive Thirring model at finite chemical potential µ [63], in order to clarify

the effects of the fermion determinant on the structure of the thimbles contributing to the

partition function [55]. The lattice model is formulated with the staggered fermions [64, 65]

and a compact auxiliary vector boson (a link field). This model shows a crossover transition

from the low to the high density phase at finite T as a function of µ, and the transition

becomes first order in T = 0 limit. Furthermore the exact solution of this model is available

on the finite lattice as well as in the continuum limit, and therefore one can assess the

validity of the approach precisely by comparing the results with the exact ones.

The fermion determinant has zero points on the complexified field space and actually

those zeros form continuous submanifolds on which the effective action S becomes singular.

At the same time, the determinant brings in many critical points, each of which a thimble

is associated to. We classify the critical points into subsets according to the subspaces they
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belong to, and identify all the critical points and thimbles in each subspace by noting a

one-to-one correspondence between a critical point and a zero point of the determinent.

The thimbles whose critical points are located in the uniform-field subspace are shown to

dominate the integral toward the continuum limit. Hence we study within the uniform-

field subspace how the set of the contributing thimbles to the partition function changes

via the Stokes phenomenon as the chemical potential µ varies. We will see that in the

crossover region multi-thimble contributions are inevitable, and become more significant

for small inverse coupling and/or in low temperature limit. We study this interplay in more

detail by reducing the model degrees of freedom to the uniform-field subspace and show

how the crossover behavior is reproduced as adding the multi-thimble contributions to the

observables.

This paper is organized as follows. In section 2 we introduce the (0+1) dimensional

massive Thirring model with chemical potential on the lattice in terms of the staggered

fermions and the compact auxiliary vector boson. In section 3, after a briefly review of the

Lefschetz thimble approach, we study the critical points and determinant zeros of the lattice

model in the complexified field space. The critical points are classified by the subspaces they

live, and all the critical points are identified. In section 4, we study the thimble structure of

the model at µ = 0, discuss the importance of each thimble by looking at the relative weight

at µ = 0. In section 5, we show within the uniform-field subspace the change of the thimble

structure with increasing the chemical potential µ via the Stokes phenomenon, and show

that the multiple thimbles contribute to the partition function in the crossover region. In

section 6, taking the uniform-field subspace, we examine the validity of the single thimble

approximation, and discuss the continuum and low temperature limits. Especially in the

low temperature limit, the importance of the multi-thimble contributions are clarified.

Section 7 is devoted to summary and discussions. The exact solution of the model is

derived in appendix A.

2 One-dimensional massive Thirring model on the lattice

The (0+1)-dimensional lattice Thirring model we consider in this paper is defined by the

following action [21, 22, 63],

S0 =β
L∑
n=1

(
1− cosAn

)
−

L∑
n=1

Nf∑
f=1

χ̄fn

{
eiAn+µa χfn+1 − e−iAn−1−µa χfn−1 +maχfn

}
, (2.1)

where β = (2g2a)−1, ma, µa are the inverse coupling, mass and chemical potential in

the lattice unit, and L is the lattice size which defines the inverse temperature as 1/T ≡
La. The fermion field has Nf flavors and satisfies the anti-periodic boundary conditions:

χfL+1 = −χf1 , χf0 = −χfL, χ̄fL+1 = −χ̄f1 , and χ̄f0 = −χ̄fL. The partition function of this
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lattice model is defined by the path-integration,

Z =

∫
DADχDχ̄ e−S0

=

∫ π

−π

L∏
n=1

dAn e−β
∑L
n=1

(
1−cosAn

)
(detD [A])Nf , (2.2)

where D denotes the lattice Dirac operator,

(Dχ)n = eiAn+µa χfn+1 − e−iAn−1−µa χfn−1 +maχfn. (2.3)

The functional determinant of D can be evaluated explicitly (see appendix A for deriva-

tion) as

detD [A] =
1

2L−1

[
cosh(Lµ̂+ i

∑L
n=1An) + coshLm̂

]
(2.4)

with µ̂ = µa, m̂ = sinh−1ma. It is not real-positive for µ 6= 0 in general, but instead it has

the property (detD[A]|+µ)∗ = detD[−A]|+µ = detD[A]|−µ. This fact can cause the sign

problem in Monte Carlo simulations.

This lattice model is exactly solvable in the following sense. The path-integration over

the field An can be done explicitly and the exact expression of the partition function is

obtained (Nf = 1) as

Z =
e−βL

2L−1

[
I1(β)L coshLµ̂+ I0(β)L coshLm̂

]
, (2.5)

where I0,1(β) are the modified Bessel functions of the first kind. The number density and

scalar condensate of the fermion field are then obtained as

〈n〉 ≡ 1

La

∂ lnZ

∂µ

=
I1(β)L sinhLµ̂

I1(β)L coshLµ̂+ I0(β)L coshLm̂
, (2.6)

〈χ̄χ〉 ≡ 1

La

∂ lnZ

∂m

=
1

cosh m̂

I0(β)L sinhLm̂

I1(β)L coshLµ̂+ I0(β)L coshLm̂
. (2.7)

The µ-dependence of these quantities are shown in figure 1 for L = 8, ma = 1, and β = 1, 3,

and 6. It shows a crossover behavior in the chemical potential µ̂ (in the lattice unit) around

µ̂ ' m̂+ ln(I0(β)/I1(β)).

The continuum limit (a→ 0) of this lattice model at finite T may be defined as

β =
1

2g2a
→∞, L =

1

Ta
→∞ with β/L = T/(2g2) fixed. (2.8)
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Figure 1. (a) Fermion number density and (b) scalar condensate with L = 8, ma = 1 for β = 1

(solid), 3 (dashed), and 6 (dotted).

Figure 2. Number density 〈n〉 on the T -µ plane in the continuum limit (g2/m = 1/2).

In this limit the partition function scales as

Z → 1

2L−1

(
1

2πβ

)L/2
e

3g2

4T

(
cosh

µ

T
+ e

g2

T cosh
m

T

)
, (2.9)

and the continuum limits of 〈n〉 and 〈χ̄χ〉 are obtained as follows:

lim
a→0
〈n〉 =

sinh µ
T

cosh µ
T + e

g2

T cosh m
T

,

lim
a→0
〈χ̄χ〉 =

e
g2

T sinh m
T

cosh µ
T + e

g2

T cosh m
T

. (2.10)

From these results, one sees that the model shows a crossover behavior in the chemical

potential µ at non-zero temperatures T > 0, while in the zero temperature T = 0 limit it

shows a first-order transition at the critical chemical potential |µc| = m+ g2. See figure 2.
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3 Lefschetz thimble approach

3.1 Preliminaries

Now we consider the complexification of the Thirring model on the lattic and reformulate

the defining path-integration of eq. (2.2) by the integration over Lefschetz thimbles. In the

complexification, the field variables An are extended to complex variables zn (∈ CL) and

the action is extended to a holomorphic function given by S[z] = β
∑L

n=1(1 − cos zn) −
ln detD[z].1 For each critical point z = σ given by the stationary condition,

∂S[z]

∂zn

∣∣∣∣
z=σ

= 0 (n = 1, · · · , L), (3.1)

the thimble Jσ is defined as a union of all the (downward) gradient flow curves deter-

mined by

d

dt
zn(t) =

∂S̄[z̄]

∂z̄n
(t ∈ R) s.t. z(−∞) = σ. (3.2)

The thimble so defined is an L-dimensional real submanifold in CL. Then, according to

Picard-Lefschetz theory (complexified Morse theory), the original path-integration region

CR ≡ [−π, π]L can be replaced with a set of Lefschetz thimbles,2

CR =
∑
σ

nσJσ, (3.3)

where nσ stands for the intersection number between CR and the dual submanifold Kσ,

which is another L-dimensional real submanifold associated to the same critical point σ

and is defined as a union of all the gradient flow curves s.t. z(+∞) = σ. With denoting the

set of the critical points as Σ ≡ {σ}, the partition function and the correlation functions

of the lattice model can be expressed by the formulas

Z =
∑
σ∈Σ

nσ Zσ, Zσ ≡
∫
Jσ
D[z] e−S[z], (3.4)

〈O[z]〉 =
1

Z

∑
σ∈Σ

nσZσ〈O[z]〉σ, 〈O[z]〉σ ≡
1

Zσ

∫
Jσ
D[z] e−S[z]O[z]. (3.5)

The functional measure D[z] along the thimble Jσ is specified as dLz
∣∣
Jσ = dL(δξ) detUz

by the orthonormal basis of tangent vectors {Uαz |(α = 1, · · · , L)} which span the tangent

space as δz = Uαz δξ
α (δz ∈ CL, δξ ∈ RL).

The integration on each Lefschetz thimble is convergent because the real part of the

action increases monotonically to ∞ while the imaginary part stays constant along the

downward flow,

dReS

dt
≥ 0,

d ImS

dt
= 0. (3.6)

1The logarithm has branch cuts, but it does not affect the gradient flows as discussed below.
2We will extend this original integration region to CR ≡ ([−π + i∞,−π] ⊕ [−π, π] ⊕ [π, π + i∞])L as

the well-defined integration cycle. The value of the integral is unchanged by this extension thanks to 2π

periodicity of S.
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The sign problem remains in the Lefschetz thimble approach in two facts. First, it

seems that when we factor out the complex weight e−S[σ], the integrand of each thim-

ble, e−(S[z]−S[σ]) > 0, is real positive. But a complex phase appears from the Jacobian

factor detUz in the integration, which is called residual sign problem. For λφ4 theory it

is demonstrated that the residual sign problem can be treated by the reweighting method

safely [50]. Second, the terms Zσ and 〈O[z]〉σ are actually complex quantities although the

total averages Z and 〈O[z]〉 should be real. If there is a certain symmetry in the thim-

ble structure of the system, one can show the cancellation of the phases in the sum [58].

The multi-thimble contributions to the partition function and observables will be more

elaborated in this paper.

3.2 Critical points and determinant zero points

Given the above mathematical results, however, it is not straightforward to work out for

general fermionic models all the critical points Σ = {σ}, the thimbles {Jσ}, and their

intersection numbers {nσ}. Fortunately in our lattice model, we can find all the critical

points determined by the stationary condition eq. (3.1).

The critical point condition for the Thirring model is written as

∂S

∂zn
= β sin zn −

i sinh(Lµ̂+ is)

cosh(Lµ̂+ is) + coshLm̂
= 0 with s ≡

L∑
`=1

z`. (3.7)

The key observation is that the second term depends on the field configuration only through

the sum s, so that all sin zn (n = 1, · · · , L) of a critical point σ must have the same value

to cancel the common second term. Let us denote it as sin z, then the field components

can be either zn = z or π − z and the sum s is written as

s = n+z + n−(π − z) = (L− 2n−)z + n−π, (3.8)

where n± are the numbers of z and π− z in the components {zn} with n+ + n− = L. The

critical point condition for z is now explicitly written as

β sin z − i sinh [Lµ̂+ i(L− 2n−)z]

cosh [Lµ̂+ i(L− 2n−)z] + (−)n− coshLm̂
= 0. (3.9)

This can be regarded as the critical point condition for a one-variable model;

Sn− = (L− 2n−)β(1− cos z)− log
(

cosh [Lµ̂+ i(L− 2n−)z] + (−)n− coshLm̂
)
. (3.10)

The case of n− = 0 corresponds to a uniform field configuration, where zn = z (n =

0, · · · , L − 1), and the case n− = 1 means that there is one flipped component π − z, · · · ,
etc. In the case of n− = L/2, the second term of (3.9) becomes independent of z. The case

of n− > L/2 gives the same critical points as in the case L − n− with z ↔ π − z. Hence

we need to consider n− = 0, · · · , L/2− 1.

Thus we have classified the critical points with index n−. By solving the condition

eq. (3.9) of the one-variable model for each n−, we can locate all the critical points of
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the model. Note that a critical point is

(
L

n−

)
-ply degenerated for n− 6= 0 due to the

combination about which components to be flipped.

One of the distinctive features of fermionic theories is the fact that the fermion deter-

minant has many zero points within a compact domain in the complexified space. The real

part of the effective action ReS diverges at these zeros, and therefore the downward cycle

Jσ may flow into one of these zeros, otherwise it must extend outward to the safe exterior

region where ReS = +∞. Hence, in addition to the critical points, we need to locate all

the zeros of the fermion determinant

detD[z] = 0 . (3.11)

Thanks to the concise expression of detD[z] in eq. (2.4), one can easily find all zero

points:

szero = iL(µ̂± m̂) + (2n+ 1)π (n ∈ Z). (3.12)

This only fixes s =
∑L−1

`=0 z`, and thus defines submanifolds with the complex dimension

L − 1, embedded in the L dimensional complexified configuration space. Note that these

zero points are independent of β, and that nonzero µ̂ simply shifts the zero points along the

imaginary axis. Restricting this submanifold of the zeros in the subspace n− = 0, where

s = Lz, we find 2L isolated zeros of

zzero = i(µ̂± m̂) +
2n+ 1

L
π (n ∈ Z mod L), (3.13)

while in the subspace (n− = 1) with a single link flipped to π − z (and thus s = (L −
2n−)z + π), we have 2(L− 2) zeros of

zzero = i
L

L− 2
(µ̂± m̂) +

2n

L− 2
π (n ∈ Z mod L− 2). (3.14)

Figure 3 shows two sections of the gradient flows in the uniform-field subspace (n− = 0;

left) and in the subspace with one link flipped (n− = 1; right) of the model with L = 4,

β = 3− 0.1i and ma = 1 at µ̂ = 0. (The reason for complex β will be explained in the next

section.) Globally, the flows are streaming out of the remote points z = ±i∞ and flowing

away towards the safe remote points z = ±π ± i∞. We solve eq. (3.9) numerically, and

find ten (eight) critical points3 for n− = 0 (1), as shown with green dots in figure 3. For

later convenience, we have numbered the critical points as shown here. We also put the

zero points of the determinant detD[z] with red dots. Each critical point apparently pairs

up with a zero point next to it, besides the two sitting at the origin and ±π.

Now that we have identified all the critical points and the zeros of the Thirring model,

we can study the structure of the Lefschetz thimbles of the model in detail.

3The two critical points located at z = ±π are identical.
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Figure 3. Critical points (green dots) and determinant zeros (red dots) of the Thirring model

with L = 4 and ma = 1 at µ̂ = 0 within the subspaces of n− = 0 (left) and 1 (right). We set

β = 3−0.1i. Gradient flows are drawn with arrows. We assign numbers to the critical points as σi,̄i
here. The downward Jσ and upward Kσ cycles of a critical point σ are shown with solid and dashed

lines, respectively. The brighter background indicates the larger value of ReS (in arbitrary unit).

Figure 4. Downward flow, critical points of free theory for β = 3 − 0.1i in the complex z plane.

The horizontal (vertical) axis is for the real (imaginary) part.

4 Thimble structure at µ = 0

4.1 Bosonic theory

It would be instructive to start our discussion with the bosonic theory without fermions,

S[z] ≡
∑L

n=1 Sn(zn) =
∑L

n=1 β(1 − cos zn), whose complexified configuration space is a

direct product of (S1 × R)L. The downward flow is simply given by

dzn
dt

=
∂S̄[z̄]

∂z̄n
= β̄ sin z̄n , (4.1)

which is depicted in figure 4 for a certain zn with β = 3− 0.1i.
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Let us focus on this complex zn plane for a moment. The action is periodic in the

direction of the real axis, so that the configuration space is equivalent to S1×R, a cylinder.

There are two critical points, zn = 0 and ±π (shown in green dots),4 corresponding to the

Gaussian and doubler solutions, respectively. The downward cycle (thimble) J0 associated

to zn = 0, extends to the “safe” exterior regions toward zn = ±π ± i∞ depicted with

light-red color at the corners. There is another thimble J−π associated to the doubler

solution zn = −π, which connects these two “safe” regions vertically along the imaginary

direction. In other words, the two safe regions are connected by two cycles with and

without winding around the cylinder. These cycles constitute the base of homology of this

restricted space S1 × R.

We notice here that the original integration path from zn = −π to π is ill-defined as a

homology cycle. A well-defined downward cycle should extend to a “safe” region where the

Morse function (h = −ReS) approaches −∞ [5]. Actually, the thimble J0 coincides with

this original path only for real β, which is the very parameter for the Stokes phenomenon

to occur between zn = 0 and ±π (the action is real at both points; Sn = 0 and 2β). Hence

in figure 4 we have added nonzero imaginary part to the coupling β = 3 − 0.1i,5 to make

the thimble J0 well-defined.

Thanks to the periodicity of the action Sn(z), we can exptend the original integration

path without changing the value of Z to a U-shaped integration cycle which starts at

zn = −π+i∞ and comes down along the imaginary direction to zn = −π then moves along

the real axis to zn = π, and goes up to zn = π + i∞.6 This U-shaped cycle (which we

simply denote with C) is equivalent to the sum of the two thimbles:

C ∼ J0 + J−π . (4.2)

Here we set the orientation of the thimbles so that “+” sign is appropriate here. One can

confirm that both the upward cycles K0 and K−π intersect this integration cycle C.
There are 2L critical points in the (0+1) dimensional bosonic theory with L lattice

sites from combinatorics, and its thimble structure is obtained as a direct product of the

thimbles J0 and J−π. The integration cycle equivalent to the original integration path is

symbolically written as

CL ∼ (J0 + J−π)L . (4.3)

The safe exterior region where the real part of the action ReS diverges has the complex

dimension (L− 1) because it is characterized by the condition
∑L

n=1(1− cos zn) =∞, i.e.,

at least one of {zn} is fixed to π ± i∞.

We comment on the continuum limit (β → ∞ with fixed β/L). In this limit the

contribution to the partition function from each variable becomes Gaussian:∫ π

−π

dz

2π
e−β(1−cos z) = I0(β)e−β → 1√

2πβ
. (4.4)

4Note that zn = ±π are the same point on S1 × R.
5If we take β = 3 + 0.1i, the flow structure is just reflected about the imaginary axis from figure 4.
6One may choose alternatively the cycle which connects zn = ±π − i∞ passing through zn = 0, which

does not change the discussions below.
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The integration along the vertical path, which we have added to make the integration

cycle well-defined, becomes irrelevant giving only a contribution which is exponentially

suppressed. For example, ∫ π−i∞

π+i∞

dz

2π
e−β(1−cos z) → − i√

2πβ
e−2β . (4.5)

Thus we see that the doubler contribution J−π is suppressed by e−2β and the free theory

with L degrees of freedom is correctly reproduced by the integration on the thimble J L0 .

4.2 Thirring model

We have already idintified the critical points and determinant zeros of the Thirring model in

the previous section and shown them in figure 3. There we also noticed a certain correlation

between a critical point and a determinant zero. Now let us look at the thimble structure

of the model at µ̂ = 0.

In the uniform-field (n− = 0) subspace shown in figure 3 (left), the thimble Jσ0 extends

from one safe remote z = −π− i∞ to another safe remote z = π+ i∞ passing through the

critical point σ0 at the origin, and the U-shaped cycle is still equivalent to the sum of the

two thimbles, associated to the Gaussian and doubler critical points:

C c∼ Jσ0 + Jσ0̄
, (4.6)

where “
c∼” indicates the equivalence as the integration cycles under the constraint n− = 0.

In the subspace of n− = 1 (figure 3 (right)), on the other hand, the critical point σ0

contains one doubler component π − z, and the thimble Jσ0 ends at determinant zeros.7

The U-shaped cycle within n− = 1 space is covered by the sum of four thimbles:

C c∼ Jσ2̄
+ Jσ0 + Jσ0̄

− Jσ2̄
, (4.7)

with two Jσ2̄
contributions canceling out in the end.

The strong correlation between a critical point and a zero point may be expected by

noticing the fact that because a zero point zzero is a simple pole of the flow field, one can

always find in its vicinity the point on which the first term of eq. (3.9) can be counter-

balanced by the would-be pole contribution, especially when β is large.

One can also understand the paring between them by considering the thimble structure

of the one-variable model assigned by n−, where a thimble Jσ becomes a line segment

associated to a critical point σ and connects between the zeros and/or safe remote points

z = ±π ± i∞. In n− = 0 case, for example, two safe remote points are connected by the

two thimbles, Jσ0 and Jσ0̄
. Because the thimbles form the basis of independent cycles, no

trivial loops are allowed. That is, a set of thimbles must be a connected skeleton graph on

S1 ×R subspace assigned by n−. One can add a new critical point, which is accompanied

by a new thimble, only when one has a new zero point. Hence the number of thimbles

7Note that we use the same notation σ0 for the critical points in n− = 0, 1 subspaces without any

confusion.
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L n− 0 1 2 3 4 · · · 0̄ 2β(L− 2n−)

4 0 −0.8 1.6 25.5 — — — 23.2 24

1 5.3 −3.6 32.4 — — — 17.3 12

8 0 1.7 2.5 32.0 73.1 101.5 — 97.7 96

1 13.7 8.5 30.8 74.4 95.7 — 85.7 72

16 0 7.1 7.5 37.6 92.5 164 · · · 391 384

1 31.2 26.7 44.6 93.5 164 · · · 367 336

Table 1. ReS at the critical points σi (i = 0, 1, 2, 3, 4, 0̄) with L = 4k, β = 3k, and ma = 1/k

(k = 1, 2, 4) at µ = 0. The rightmost column shows the difference of ReS between σ0 and σ0̄.

coincides with the number of the critical points, and furthermore with the number of the

end-point zeros (including two safe remote points) in our model.

The formulas (3.13) and (3.14) with L = 4 give us eight and four zeros for n− = 0 and

1, respectively, as seen in figure 3. Adding two remote zeros, we have ten thimbles, ten

critical points, and ten zeros for n− = 0, and six of those for n− = 1. We have just two

thimbles in n− = 2 subspace because we have no determinent zeros there.

Note that a thimble Jσ is not a simple curve but extends with real dimension L, and

its section with the subspace is seen as a curve in figure 3. For example, integration on the

thimble Jσ0 associated to the Gaussian critical point z = σ0 in n− = 0 subspace contains

the perturbative fluctuations in all the directions around z = σ0.

Finally in this subsection, let us look at the real part of the action ReS[σi] at these

critical points for real β = 3, which is listed in the first row (L = 4) of table 1. The

background brightness of figure 3 actually indicates the value of ReS[z] (in arbitrary unit).

We only list the values at σ0,1,2,0̄ because the critical points which interchange with each

other by the reflection about the real and imaginary axes have the same ReS[σi] at µ̂ = 0

for real β.

The value ReS[σ0̄] of the doubler solution is larger than ReS[σ0] by 2βL = 24 for

n− = 0 and 2β(L − 2) = 12 for n− = 1. This difference comes from the bosonic part

β(1 − cos z) of the action. On the other hand, the action ReS[σ0] at σ0 in n− = 1 sector

is larger than that in n− = 0 sector by a factor of order 2β = 6 because the former point

contains one doubler component zn = π. One may notice that ReS[σ1] in n− = 1 sector

takes a smaller value than ReS[σ0], indicating the larger weight for it. But Kσ1 has no

intersection with C at µ̂ = 0, and the thimble Jσ1 is not a member of the integration

cycles for Z.

It is intriguing to check this behavior with changing the lattice size L towards the

continuum limit. By increasing L and β with keeping β/L and Lma fixed, there appear

more zero points and accordingly the critical points aligned in two rows. We compute

ReS[σi] and list the results for L = 8 and 16 in the lower part of table 1. We observe that

the contributions from the n− = 1 sector to Z are more suppressed by the factor e−2β for

the larger L and β. Within the n− = 0 sector, we can estimate the difference between

ReS[σ1] and ReS[σ2] as 4π2β/L for larger L, basing on the bosonic part Lβ(1− cos z) and

expanding it with approximation σk ∼ zzero,k ≡ (2k − 1)π/L − im. This gives us a factor
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3π2 ∼ 30, which is consistent with the numerical result of table 1. For the smaller β/L we

have the smaller gap between ReS[σ1] and ReS[σ2]. The difference between ReS[σ0] and

ReS[σ1] is more sensitive to the choice of parameters β/L and Lma.

In summary, we have clarified the thimble structure of the Thirring model in this

section. The determinant zeros form submanifolds with complex dimension L − 1, and

their sections in the subspace assigned with n− appear as isolated zero points. The critical

points of the model are classified with n−, and each of them pairs up with a zero point in

the subspace assigned with n− (except for the Gaussian critical point σ0 and its doubler

counterpart σ0̄). Thus all the thimbles are identified in the (0+1) dimensional Thirring

model. Towards the continuum limit (β → ∞), ReS[σ] with nonzero n−, which contains

n− “doubler” components, acquire the large values of order 2n−β compared to ReS[σ0] in

the n− = 0 subspace. This implies that the relative weights of their contributions to Z

are strongly suppressed toward the continuum limit, even when they join the set of the

integration cycles as µ increases.

5 Stokes phenomenon and structure change at finite µ

In this section, with increasing µ, we study the change of the intersection numbers and

thimbles which contribute to the partition function Z from the viewpoint of the Stokes

phenomenon and jumps. We restrict our discussion in the uniform configuration space

n− = 0.

Figure 5 shows the downward gradient flows of the model with L = 4, β = 3 and

ma = 1 for µ̂ = 0.6, 1.2 and 1.8. The zero points zzero’s and their associated critical points

σ’s move upward as µ̂ increases. Then the critical points which align on the lower side, cross

the real axis at certain values of µ̂ ∼ m̂ (see eq. (3.13)), and accordingly the intersection

numbers of Kσ’s with C change on the way. Now one encounters the situation where certain

thimbles join and/or leave the set of integration cycles for the partition function Z. For

a large enough µ̂, as can be inferred from figure 5 (c), the single thimble Jσ0 comes to

connect the two safe remote points z = ±π + i∞, to become an equivalent cycle to the

original U-shaped cycle: C ∼ Jσ0 .

The downward and upward cycles Jσ and Kσ of a critical point σ generally extend to

“safe” and “unsafe” remote regions, respectively, without crossing other cycles Jσ′ and Kσ′
which have different values of ImS. When multiple critical points share the same value of

ImS, the cycle associated to one of those critical points may meet another critical point.

This is the so-called Stokes phenomenon. Change of the intersection number is achieved

only by a jump of one endpoint of a upward cycle Kσ from (e.g.) z = −i∞ to z = i∞, and

in between the critical point σ must undergo the Stokes phenomenon with another critical

point σ′ in which Kσ and Jσ′ just overlap.

As has been discussed in the previous section, zeros of the fermion determinant be-

come endpoints of the thimbles. Because the determinant appears as −Nf log detD in

the action S, the imaginary part ImS changes by −2πNf when we encircle a zero point

counterclockwise from one side to the other side of a thimble which terminates at this

zero. However this difference is not reflected in the gradient flow. Therefore the necessary
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(a) µ̂ = 0.6 (b) µ̂ = 1.2 (c) µ̂ = 1.8

Figure 5. Downward gradient flows, critical points (green) and zero points (red) in complex z

plane of the Thirring model with ma = 1, β = 3 and L = 4 for (a) µ = 0.6, (b) 1.2, and (c) 1.8.

The downward (upward) cycles, Jσ (Kσ), are depicted with solid (dashed) lines.

condition for the Stokes phenomenon to occur between critical points σ and σ′ is

ImSσ = ImSσ′ + 2πk k ∈ Z . (5.1)

Incidentally, the imaginary part ImS on the upward cycle (e.g.,) Kσ may differ by a multiple

of 2π depending on which side of the thimble Jσ the cycle starts. Moreover, since the value

of ImS changes around a zero point, two thimbles can meet at the zero point making an

angle determined by the difference of their ImS(σi). Thus, one can read the relative phase

of the two thimbles from their relative angle when they meet at the zero point.

5.1 Stokes jumps with increasing µ

Let us study the Stokes phenomenon with increasing µ in more details. We set Nf = 1.

Because the configuration subspace for real β is symmetric under reflection about the

imaginary axis as seen in figure 5, we discuss the thimble structure on the right-half plane

hereafter. Even at finite chemical potential µ 6= 0, this reflection symmetry z → −z̄ guar-

antees the realness of Z; the thimbles which interchange under this transformation give the

contributions which are complex conjugate to each other and whose sum becomes real [58].

In figure 6, we compare the values of the action at the critical points σi. We first

note that ImS = 0 at σ0 and σ0̄ independently of the chemical potential µ. Indeed, in

figure 5 (a), we see the Stokes phenomenon between σ0 and σ0̄, where the cycles Jσ0 and

Kσ0̄
overlap, and

C c∼ Jσ0 + Jσ0̄
. (5.2)

At µ̂ = 0 the critical points σī on the upper side have positive values of ImS(σī) and

their associated upward cycles Kσī extend to the unsafe region toward z = +i∞. With

increasing µ̂ the values of ImS(σī) increase monotonically and Kσī continue to have no

intersection with C. On the other hand, the critical points σi on the lower side move
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Figure 6. (a) ImS(σi) on the right half plane as a function of µ̂. (b) Enlarged plot of (a).

(c) ReS(σi). The dashed line indicates min.x∈RReS(x). Parameters are set to L = 4, β = 3 and

ma = 1.

upward and the imaginary parts ImS(σi) at these points increase from negative to positive

values with increasing µ̂, as seen in figure 6 (a). In the enlarged plot in the panel (b), the

lines of ImSσi show three crossings at µ̂ = µ̂∗1 = 0.7, µ̂∗2 = 0.735 and µ̂∗3 = 0.86. We now

discuss the Stokes phenomenon and the change of the intersection numbers at each µ̂∗i .

In figure 7 we show typical thimble structures at several values of µ̂. At µ̂ < µ̂∗1, the

cycles Kσ1,2 starting from σ1,2 extend to the lower unsafe region toward z = −i∞, while

Kσ1̄,2̄
extend to the upper unsafe region toward z = +i∞. None of them has nonzero

intersection with C, and C c∼ Jσ0 + Jσ0̄
as was discussed previously. At µ̂ = µ̂∗1, ImSσ0 =

ImSσ2 is achieved, and the two cycles Jσ0 and Kσ2 overlap. Across µ̂∗1, one end of the

upward cycle Kσ2 jumps from −i∞ to +i∞, to give the intersection number n2 = 1 with C
(see panel (b)). (And one end of the cycle Jσ0 jumps from σ0̄ to zzero,2.)

At the same value of µ̂ = µ̂∗1, the point σ2 shows the Stokes phenomenon with another

critical point σ0̄ because ImSσ0 = ImSσ0̄
= 0. (This coincidence could be avoided by

adding a small imaginary part to β, again.) In this case, the two cycles, Jσ2 and Kσ0̄

overlap, and one end of the cycle Jσ2 jumps from π− i∞ to π+ i∞ across µ̂ = µ̂∗1. Hence,

we have the equivalence of the cycles8

C c∼ Jσ−2 + Jσ0 + Jσ2 for µ̂∗1 < µ̂ < µ̂∗2 . (5.3)

At µ̂ = µ̂∗2 (panel (c)), the Stokes phenomenon happens between the critical points,

σ0 and σ1. The two cycles Jσ0 and Kσ1 overlap there. When µ̂ passes µ̂∗2, one end of the

cycle Kσ1 jumps from −i∞ to +i∞ and one end of the cycle Jσ0 from zzero,2 to zzero,1, and

therefore the critical point σ1 now acquires the intersection number nσ1 = 1. Hence,

C c∼ Jσ−2 + Jσ−1 + Jσ0 + Jσ1 + Jσ2 for µ̂∗2 < µ̂ < µ̂∗3 . (5.4)

At µ̂ = µ̂∗3 (panel (e)), ImS of σ1 and σ2 coincide, which allows the Stokes phenomenon

between them. Across µ̂ = µ̂∗3 one end of the cycle Kσ2 flips down from +i∞ to −i∞, while

one end of the cycle Jσ1 jumps from zzero,2 to π + i∞, so that the intersection number n2

changes from 1 to 0. Thus, we have (µ̂∗4 introduced below)

C c∼ Jσ−1 + Jσ0 + Jσ1 for µ̂∗3 < µ̂ < µ̂∗4 . (5.5)

8We define the orientation of a thimble as the direction where Rez increases, and define it for thimble

Jσ0̄
on the left as the direction of decreasing Imz.
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So far we have discussed only the cases where the Stokes phenomenon occurs between

the critical points having the same value of ImS. For µ̂ larger than µ̂∗3 we need to take

into account the multivaluedness of the logarithm because the edge of Jσ0 is now going

around the zero points. The condition for the Stokes phenomenon to occur is the equality

of ImS modulo 2π between the two critical points as announced in eq. (5.1). For our

model parameters, there are three more critical values µ̂∗4,5,6. At µ̂ = µ̂∗4 (figure 8 (g)), the

condition ImSσ0 +2π = ImSσ1 is fulfilled, and for µ̂∗4 < µ̂ < µ̂∗5 (figure 8 (h)) the equivalent

integration cycle becomes

C c∼ Jσ0 for µ̂∗4 < µ̂ < µ̂∗5 . (5.6)

At µ̂ = µ̂∗5 (figure 8 (i)) the condition ImSσ0 + 2π = ImSσ2 is fulfilled, and the equivalent

integration cycle changes to

C c∼ Jσ−2 + Jσ0 + Jσ2 for µ̂∗5 < µ̂ < µ̂∗6 . (5.7)

At µ̂ = µ̂∗6 (figure 8 (k)), the condition ImSσ0 + 4π = ImSσ2 holds and the equivalent

integration cycle now consists of a single thimble

C c∼ Jσ0 for µ̂∗6 < µ̂ . (5.8)

5.2 Multi-thimble contributions and weight factor

We have seen how the original integration cycle C is decomposed equivalently into a set

of thimbles with increasing µ̂. The partition function Z is correctly reproduced only if we

evaluate the contributions from all the thimbles in the set, in principle. Especially in the

crossover region of µ̂, multiple thimbles take part in the set of the integration cycles.

However, importance of their contributions depends on the weight factor

exp[−ReS(σ)]. For example, the integration cycle consists of Jσ0 and Jσ0̄
for 0 ≤ µ̂ < µ̂∗1.

But the contribution from Jσ0̄
is numerically negligible because ReS(σ0̄) is larger than

ReS(σ0) by a large amount ∼ 2Lβ as seen in figure 6 (c) (see also table 1 for µ̂ = 0 value).

For µ̂∗1 < µ̂ < µ̂∗4 and µ̂∗5 < µ̂ < µ̂∗6, the thimbles Jσ±1 and/or Jσ±2 are in the set of

the integration cycles in addition to Jσ0 . According to the weight factor exp(−ReS(σ)) in

figure 6 (c), the thimble Jσ0 will give the largest contribution and Jσ±1 will contribute as

the second largest. The contributions from Jσ±2 will be strongly suppressed. This behavior

is mainly controlled by the bosonic part Lβ(1 − cos z) of the action. (The thimble Jσ1̄
is

not a member of the integration cycle, although ReS(σ1̄) becomes smallest as µ̂ increases.)

In figure 9 we plot the β dependence of the critical chemical potential µ̂∗i for L = 4

and ma = 1. Outside of the interval µ̂∗1 < µ̂ < µ̂∗6 the single thimble Jσ0 becomes (almost)

equivalent to the original integration cycle C, but within this interval multiple thimbles need

to be considered. Especially, the second-dominant thimbles Jσ±1 contribute in the interval

µ̂∗2 < µ̂ < µ̂∗4. We notice that the crossover region µ̂ ∼ m̂ is indeed covered by this interval

µ̂∗2 < µ̂ < µ̂∗4, which indicates that the multi-thimble contribution is requited to reproduce

the crossover behavior correctly. The interval becomes wider (narrower) for smaller (larger)

β. From this β-dependence there may be a possibility that the approximate evaluation of
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(a) µ̂ = µ̂∗1 (b) µ̂∗1 < µ̂ < µ̂∗2

(c) µ̂ = µ̂∗2 (d) µ̂∗2 < µ̂ < µ̂∗3

(e) µ̂ = µ̂∗3 (f) µ̂∗3 < µ̂ < µ̂∗4

Figure 7. Stokes phenomena at µ̂ = µ̂∗i (µ̂ < µ̂∗4).
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(g) µ̂ = µ̂∗4 (h) µ̂∗4 < µ̂ < µ̂∗5

(i) µ̂ = µ̂∗5 (j) µ̂∗5 < µ̂ < µ̂∗6

(k) µ̂ = µ̂∗6 (l) µ̂∗6 < µ̂

Figure 8. Stokes phenomena at µ̂ = µ̂∗i (µ̂∗4 ≤ µ̂).
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Figure 9. Critical values of µ̂∗1,6 at which ImSσ2
= 0, 4π, and µ̂∗2,4 at which ImSσ1

= 0, 2π, as a

function of the coupling β (L = 4 and ma = 1).

Z with the single thimble Jσ0 becomes better for larger β. Note that for larger β the

difference in the relative weights among the critical points also becomes more significant

and the thimbles whose critical point locates away from σ0 in the real axis direction is

expected to less contribute to Z.

In summary, for L = 4 case, we have clarified the change of the Lefschetz thimble

structure and the set of the thimbles contributing to Z as µ̂ increases. At small and large

chemical potentials outside of the interval µ̂∗2 < µ̂ < µ̂∗4, the evaluation of Z with the single

thimble Jσ0 is legitimate, provided that Jσ±2 contributions are negligibly small. But in the

crossover region Jσ±1 contributions must be taken into account in addition to that of Jσ0 .

The approximate evaluation by taking only one thimble Jσ0 is performed in numerical

simulations for several models so far [49, 50, 52, 53]. Hence it would be worthwhile to

examine the validity of the single thimble approximation across the crossover region with

varying β. Furthermore it would be intriguing to study how the crossover behavior is

reproduced by the multi-thimble contributions with increasing the lattice size L toward

the continuum and/or low temperature limits.

6 Multi-thimble contributions in uniform-field model

In order to examine the single thimble approximation and to investigate how the crossover

behavior is reproduced by contributions from multiple thimbles, we study the Thirring

model in the uniform-field subspace. The limitation to uniform-field configurations cor-

responds to the classical approximation with neglecting the quantum fluctuations. The

partition function of this restricted model is analytically evaluated to be

Z0 =

∫ π

−π

dx

2π

1

2L−1

[
cosh(L(µ̂+ ix)) + coshLm̂

]
e−Lβ(1−cosx)

=
e−βL

2L−1

[
IL(βL) coshLµ̂+ I0(βL) coshLm̂

]
, (6.1)
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and the fermion number density and chiral condensate are obtained by

〈n〉0 =
1

La

∂

∂µ
logZ0, 〈χ̄χ〉0 =

1

La

∂

∂m
logZ0. (6.2)

Interestingly, in the T = 0 limit this classical model shows a first order transition at the

same value of |µc| = m2 + g2 as the original model.

6.1 Single-thimble approximation

We compare the values evaluated on the single thimble Jσ0 to the exact ones by taking

their ratios in figure 10. We show the results with L = 4 and ma = 1 for β = 1 (left) and

3 (right). The critical values of the chemical potential µ̂∗i=1,...,6 for the Stokes phenomenon

are found to be {0.40, 0.56, 0.73, 2.10, 2.31, 3.0} for β = 1, and {0.70, 0.735, 0.86, 1.39,

1.48, 2.01} for β = 3. We see that the single thimble integration gives us practically the

exact results outside the region of µ̂∗2 < µ̂ < µ̂∗4 in both cases. This is because, compared

to the thimbles Jσ0 and Jσ±1 , the thimbles Jσ±2 and Jσ0̄
have so small weight factor

exp(−ReS) that their participation in the integration cycle are numerically negligible.

On the other hand, the results deviate from unity in the range of µ̂∗2 < µ̂ < µ̂∗4,

indicating that the contributions from Jσ±1 need to be included to reproduce the original

integral quantitatively. The much smaller deviation for β = 3 case can be understood if

one recalls the rough estimate for the weight factor exp(−ReS(σ±1)) ∼ exp(−βπ2/(2L))

as discussed in subsection 4.2. Furthermore, we notice that the missing Jσ±1 contribution

to Z changes the sign from positive to negative, and back to positive again, as µ̂ increases.

This is the reflection of the fact that ImS(σ1) increases from 0 at µ̂ = µ̂∗2 to 2π at µ̂ = µ̂∗4.

Because ImS(σ0) = 0 for any µ̂, the two thimbles Jσ1 and Jσ0 contribute additively just

above µ̂ = µ̂∗2. But when ImS(σ1) = π, they contribute with opposite signs. At this point

they are connected at z = zzero,1 with an angle π between their edges as seen in figure 7

(f). The Jσ±1 contributions return to be positive as µ̂ approaches the critical value µ̂∗4
for the Stokes phenomenon. Regarding 〈n〉 and 〈χ̄χ〉, their integrands have non-constant

imaginary parts on Jσ±1 , and the contributions of Jσ±1 to these densities alternate in

different ways in the interval µ̂∗2 < µ̂ < µ̂∗4.

6.2 Toward continuum limit

In figure 11 we examine the behavior of the fermion number density 〈n〉J0
evaluated only

on the single thimble Jσ0 as a function of µ/m for L = 4, 8, 16 toward the continuum

limit. The parameters are set to (a) (β/L,Lm) = (1/4, 4) and (b) (β/L,Lm) = (3/4, 4).

In figure 11 (a), some discrepancy from the exact value (dashed line) is seen between

µ̂∗2 < µ̂ < µ̂∗4 for L = 4, where the thimbles Jσ±1 have the nonzero intersection number

and need to be included in the integration. This behavior persists when we increase the

lattice size to L = 8, 16 toward the continuum limit (thin black dashed curve). The critical

values µ∗i /m for the Stokes phenomenon with the thimbles Jσ±1 only slightly shift to larger

µ̂ toward the continuum limit. In figure 11 (b), The discrepancy from the exact values is

practically invisible and again the results are relatively insensitive to the size of the lattice

with our parameters. This implies that at finite temperatures Monte Carlo simulations on

a single thimble may work well for a certain parameters.
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Figure 10. Z0 (solid), 〈n〉0 (dashed) and 〈χ̄χ〉0 (dotted) evaluated on the single thimble Jσ0

normalized by the exact values of the uniform-field model for β = 1 (a) and 3 (b) with L = 4 and

ma = 1. Arrows indicate the values of µ̂∗i (i = 1, · · · , 5).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3

<
n
>

µ/m

(a) β/L=1/4, Lm=4

L=4

L=8

L=16

L→ ∞
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2

<
n
>

µ/m
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Figure 11. (a) Fermion number density as a function of µ̂, evaluated on the single thimble Jσ0 for

L = 4 (red), 8 (green), 16 (blue) with fixed (β/L,Lm) = (1/4, 4). (b) The same as (a) but with

(β/L,Lm) = (3/4, 4). The uniform-field exact ones are shown in dashed lines for comparison.

6.3 Toward low temperature limit

Next we change L as 4, 8, and 16 with fixed β = 1 and ma = 1, toward the zero temperature

limit in figure 12. We find that the agreement between 〈n〉J0
and 〈n〉0 is getting worse as

L increases. Even in β = 3 case (figure 12 (b)) we see a significant discrepancy from the

exact result (dashed line) for larger L. As L increases, the slope of the exact curve becomes

steeper in the crossover region and eventually converges to a step function, while the single

thimble result 〈n〉J0
behaves almost as a linear function between two kink points. The

singular points indicate the Stokes jump occurring there, through which the thimbles Jσ±1

join or leave the set of the integration cycles for the partition function Z.

6.4 Multi-thimble contributions

We draw the thimble structure on the right-half plane for L = 16 at µ̂ = 0.8, 1.0, 1.35, 1.7

in the crossover region with β = 1,ma = 1 in figure 13. At µ̂ = 0.8 the three thimbles Jσ0

and Jσ±1 have the nonzero intersection numbers with the original integration cycle, while
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Figure 12. (a) Fermion number density as a function of µ̂, evaluated on the single thimble Jσ0

for L = 4 (red), 8 (green), 16 (blue) with fixed (β,m) = (1, 1). (b) The same as (a) but with

(β,m) = (3, 1). The uniform-field exact ones are shown in dashed lines. For L = 16, improved

evaluations by including thimbles Jσ±1(±2)
are shown with dots (crosses). L→∞ limit is shown in

a thin solid line.

Figure 13. Thimble structure on the right-half plane of z with L = 16, β = 1,ma = 1 for

µ̂ = 0.8, 1.0, 1.35, 1.7 (from bottom to top). The critical (zero) points are indicated with green (red)

dots.

at larger µ̂ the thimbles Jσ0,±1,±2,±3,±4 (according to our numbering) intersect, and they

need to be included as the integration cycles to reproduce the partition function Z0.

Based on this observation, we extend the evaluation by including the contributions

from Jσ±1 for β = 1, 3 and those from Jσ±2 further for β = 1, as shown with dots and

crosses in figure 12. Indeed, the agreement between the exact and multi-thimble evaluations

becomes systematically improved by taking into acount the multi-thimble contributions.

In table 2 we listed the contributions to the partition function Z0 and the fermion

density 〈n〉0 from each thimble with L = 16, β = 1 and ma = 1. The thimbles Jσ±i give the

contributions which are complex conjugate to each other so that their sum becomes always

real. Regarding partition function Z0, the thimble Jσ±0 gives the largest contribution, but

the thimbles Jσ±1 also provide a substantial contribution in this crossover region. Those

from Jσ±i (i ≥ 2) decrease rather quickly as i = 2, 3, 4 increases, which will be very

favorable for a systematic expansion. But we notice that a cancellation occurs between the

Jσ0 and Jσ±1 contributions at µ̂ = 1.35 owing to the negative sign of the Jσ±1 contributions.
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µ̂ Z0, 〈n〉0 σ0 σ1 σ2 σ3 σ4

0.8 2.04 1.19 (0.43, 0.04) — — —

1.3E-4 -7.33E-3 (3.73E-3, -7.351E-2) — — —

1.0 2.05 1.50 (0.28, -0.42) (-0.005, -0.021) (-1E-4, -1E-4) (-3E-7, -2E-7)

3.2E-3 0.1186 (-0.0508, -0.0774) (-6.9E-3, 0.6E-3) (-5E-5, 5E-5) (-9E-8, 2E-7)

1.35 3.80 9.09 (-2.72, -0.39) (0.07, 0.05) (1E-3, -4E-4) (-3E-7, -3E-7)

0.46 1.17 (-0.37, 0.23) (0.016, -0.008) (-9E-5, -4E-5) (-1E-7, 8E-8)

1.7 474.2 374.7 (51.0, 80.7) (-1.3, 0.9) (1E-3, -2E-3) (-7E-7, -2E-7)

1.00 0.67 (0.16, 0.09) (-1E-4, 4E-3) (-4E-6, -5E-6) (-7E-10, 2E-9)

1.35 54.91 569.97 (-298.63, -30.39) (42.60, 13.20) (-1.51,-1.27) (5E-3, 2.8E-2)

0.47 5.05 (-2.72, 0.84) (0.45, -0.20) (-0.025, 6.6E-3) (4E-4, 1E-4)

Table 2. Contributions of thimbles Zσi
and Zσi

〈n〉σi
/Z0 (i = 0, 1, 2, 3, 4) on the right-half plane

to Z0 (upper) and to 〈n〉0 (lower) with L = 16, β = 1 and ma = 1 for µ̂ = 0.8, 1.0, 1.35, 1.7.

Thimbles on the left-half plane give the values complex conjugate to those in the list. Below the

double line, those values with L = 32 are listed.

For the fermion density 〈n〉0 the cancellation between the Jσ0 and Jσ±1 contributions

becomes more delicate at µ̂ = 0.8 and 1.0, while those come to contribute additively at

µ̂ = 1.7. Insensitivity of the observables in small chemical region at low temperatures,

especially at zero temperature, is sometimes called Silver Blaze phenomenon. We find

here that when multiple thimbles contribute to the partition function they show a delicate

cancellation between them.

The alternating sign exp(−i ImS) of the thimbles at µ̂ = 1.35 manifests in figure 13 as

the fact that the critical points and zero points are aligned and the thimbles are connected

at each zero point with the angle about π. In order to check this alternating pattern, we

extend our calculation to L = 32 as listed in the bottom row in table 2. We find that the

thimble-by-thimble alternating sign and cancellation become more striking not only for Z0

but also for 〈n〉0. In this case, we need to include the thimbles up to Jσ±3 to evaluate the

observables with a few % accuracy. At larger L more zero points appear near the imaginary

axis (eq. (3.13)), and in between the critical points and associated thimbles are aligned at

µ̂ in the crossover region. The weight factor from the bosonic part of the action does

not suppress these thimble contributions as far as Re(Lβ(1 − cosσi)) < 1. Therefore we

need to treat the neat cancellation in multiple thimble contributions in order to reproduce

the sharp rise of the fermion density at low temperature (large L). Implication of this

observation to the feasibility of the numerical simulations with large lattice size is left for

future study.

7 Summary and discussions

We have studied the Lefschetz thimble structure of the (0+1) dimensional Thirring model

at finite chemical potential, which is formulated on the lattice of size L with the staggered

fermions and a compact auxiliary vector field. This model suffers from the sign problem

by the complex fermion determinant.
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The fermion determinant brings in two important features in the complexified field

space: many isolated critical points of the gradient flow and submanifolds of the zero

points with complex dimension (L − 1). Those critical points accompany the Lefschetz

thimbles and the submanifolds of the zeros serve the ending points for the thimbles. We

have identified all the critical points of this model, and furthermore we have pointed out

a one-to-one correspondence between a critical point and a zero point within a projected

configuration subspace assigned with n−.

We argued that the thimbles associated with the critical points in n− = 0 subspace

become more important toward the continuum limit because the relative weights of the

other critical points located in n− 6= 0 subspaces are suppressed by powers of e−2β . The

critical points with nonzero n− actually involve the doubler components and they are

expected naturally to decouple from the system in the continuum limit.

Hence, restricting our analysis to the critical points in the n− = 0 subspace, we have

shown how the thimble structure changes via the Stokes jumps as the chemical potential µ

increases. We found that at small and large chemical potentials the single thimble Jσ0 is

sufficient as the integration cycle to reproduce the partition function of the model. However

in the crossover region we must include multiple thimbles in the set of the integration cycles

for the partition function Z. Their relative weights depend on the lattice size L and the

coupling strength β.

Taking the uniform-field model as a concrete example, we have examined the impor-

tance of the multi-thimble contributions and how the crossover behavior is generated by

them. The single-thimble approximation is justified for large β/L ∼ T/g2, even in the

continuum limit. But as we increase the lattice size L, i.e., lower the temperature T with

β and ma fixed, we have seen the breakdown of the single-thimble approximation, which

indicates the necessity of the multi-thimble contributions. The sign of those contributions

is alternating, which yields a neat cancellation to reproduce the correct values of Z and

observables at large L. We notice that the contributions from the thimbles away from the

origin diminish rather quickly. The Silver Blaze behavior and the following abrupt rise of

the density 〈n〉 with increasing µ are achieved by the interplay among the multi-thimble

contributions in the crossover region.

We have performed HMC simulations for the (0+1) dimensional Thirring model with

finite chemical potential on the single thimble Jσ0 in ref. [66]. We observed scaling behavior

of the results to the continuum limit at finite temperature and to the low-temperature limit.

The single thimble evaluation in the crossover region is getting worse for smaller β and/or

larger L, which is consistent with the results obtained in the uniform-field model. We show

one example of the simulation results for L = 16, β = 3 and ma = 1 in figure 14.

For comparison, we also tried the complex Langevin simulation as yet another approach

with complexification and as a possible way to include the “multi-thimble” contributions,

which is shown in figure 14. We find that the Langevin result also deviates from the exact

one in the crossover region, but in a different manner. We observed that the sampling

points in the Langevin simulation are distributed around the thimbles Jσ0 and Jσ±1 . The

details of the Langevin simulation will be reported elsewhere.
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Figure 14. Result of HMC simulation on the thimble Jσ0 with L = 16, β = 3 and ma = 1. The

curve indicates the exact value. Result of complex Langevin simulation (step size 10−4, and 104

samples taken every 100 steps) is also shown for comparison.

We have seen that an interplay among multi-thimble contributions are necessary and

important to describe the rapid crossover behavior of the fermion system. However it is a

difficult task to identify all the critical points in generic models. Our analysis suggests that

the thimbles whose critical points locate in the uniform-field subspace will give dominant

contributions, while those with critical points in non-uniform-field subspace will decouple

by the suppressed weight factor toward the continuum limit because they have doubler

components. Assuming that we can identify all the relevant thimbles to be integrated

over, we will face another challenge — how to add up the multi-thimble contributions

in the Monte Carlo simulation. In our model analysis we can sum up them by knowing

the partition function values 〈Z〉σ precisely, but in Monte Carlo simulations we compute

only the average of the observables not the partition function. It is, therefore, extremely

important to devise an efficient way to perform the multi-thimble integration by extending

the Monte Carlo algorithm for practical applications of the Lefschetz thimble integration

to fermionic systems with the sign problem.

The multi-thimble structure, which stems from the fermion determinant, will be rela-

vant also in QCD at finite chemical potential. One surely needs to elaborate the study

on the complex saddle points, intersection numbers and the Stokes jumps in QCD on the

lattice, especially in the cross-over and first-order transition regions. We have seen that in

the Thirring model the sum of multi-thimble contributions with alternating signs is rapidly

converging, but it is quite intriguing to clarify the scaling properties of the situation in lat-

tice QCD as a funcition of the lattice parameters and the choice of the lattice fermion

formulations, as well as the spacetime dimensionality. We remark here that the thimble

analysis of SU(3) Yang-Mills thoery without fermions is already worthwhile to be pursued,

which will provide more insights on the Lefschetz thimbles in gauge theories. We leave

these points for future study.
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A Exact expression and asymptotics of Z

In this appendix, we give the exact expression for the partition function of the Thirring

model with the compact action. We assume Nf = 1 and L is even.

A useful formula for a matrix determinant is known in [67]:

det


a1 b1 0 c0

c1
. . .

. . . 0

0
. . .

. . . bL−1

bL 0 cL−1 aL

 =− (bL · · · b1 + cL−1 · · · c0)

+ tr

[(
aL −bL−1cL−1

1 0

)
· · ·

(
a2 −b1c1

1 0

)(
a1 −bLc0

1 0

)]
. (A.1)

In application of this formula to the Dirac operator D, the components an, bn and cn read

a1 = · · · = aL = m,

bn =

{
1
2e+µ̂Un−1 for n < L

−1
2e+µ̂UL−1 for n = L

,

cn =

{
−1

2e−µ̂U−1
n−1 for n > 0

1
2e−µ̂U−1

L−1 for n = 0
(A.2)

with Un = eiAn and U−1
n = e−iAn . Then the 2-by-2 matrix under the trace turns out to

be an L-th power of a constant matrix
(
m 1

4
1 0

)
. Now it is straightforward to reach the

expression

detD[A] =
1

2L

[
2 cosh

(
Lµ̂+ i

L−1∑
n=0

An

)
+mL

+ +mL
−

]
, (A.3)

where m± = m ±
√
m2 + 1. With m̂ ≡ sinh−1m and with even L, this can be written as

in eq. (2.4).

Because the An-odd terms in the determinant vanish after the integration over An
with weight e−β(1−cosAn), we can write the partition function as

Z =
1

2L−1

∫ π

−π

L−1∏
n=0

dAn
2π

[
coshLµ̂

L−1∏
n=0

cosAn + coshLm̂
]

exp
(
− β

L−1∑
n=0

(1− cosAn)
)
.

(A.4)
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This integration is easily performed to yield

Z =
e−Lβ

2L−1

[
I1(β)L coshLµ̂+ I0(β)L coshLm̂

]
, (A.5)

where I0(x) and I1(x), respectively, are the zeroth and first order modified Bessel functions

of the first kind. The fermion number density and the scalar density can be derived by

differentiating lnZ with respect to µ and m, respectively.

Using the asymptotic expression of the modified Bessel function I0,1(β) for a large β,

we find that in the continuum limit at finite T , the partition function eq. (2.5) scales as

Z → 1

2L−1

(
1

2πβ

)L/2
e−

3g2

4T

[
cosh

µ

T
+ e

g2

T cosh
m

T

]
, (A.6)

where we have used L/β = 2g2/T and Lµ̂ = µ/T . For the uniform-field model (6.1),

applying the asymptotic form for large L,

IL(Lβ)→ eLη√
2πL (1 + β2)1/4

(A.7)

with η = (1 + β2)1/2 + log β
1+(1+β2)1/2 , we find

Z0 →
1

2L−1

(
1

2πLβ

)1/2

e−
g2

T

[
cosh

µ

T
+ e

g2

T cosh
m

T

]
. (A.8)

It is interesting to observe that in the T → 0 limit both models show a first order transition

at the same point |µc| = m+ g2.

If we take L large with β fixed, we find

Z → 1

2L

(
1

2πβ

)L/2 [
I1(β)LeL|µ̂| + I0(β)LeLm̂

]
, (A.9)

and for the uniform-field model

Z0 →
1

2L

(
1

2πLβ

)1/2
[√

β eL(η−β)

(1 + β2)1/4
eL|µ̂| + eLm̂

]
. (A.10)

In the infinite-L limit these models show a first-order transition at |µ̂c| = m̂ +

ln(I0(β)/I1(β)) and |µ̂c| = m̂+ β − η, respectively.
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[45] G. Aarts, F. Attanasio, B. Jäger, E. Seiler, D. Sexty and I.-O. Stamatescu, The phase

diagram of heavy dense QCD with complex Langevin simulations, Acta Phys. Polon. Supp. 8

(2015) 405 [arXiv:1506.02547] [INSPIRE].

[46] K. Nagata, J. Nishimura and S. Shimasaki, Justification of the complex Langevin method

with the gauge cooling procedure, arXiv:1508.02377 [INSPIRE].

[47] Z. Fodor, S.D. Katz, D. Sexty and C. Török, Complex Langevin dynamics for dynamical

QCD at nonzero chemical potential: a comparison with multi-parameter reweighting,

arXiv:1508.05260 [INSPIRE].

[48] AuroraScience collaboration, M. Cristoforetti, F. Di Renzo and L. Scorzato, New

approach to the sign problem in quantum field theories: High density QCD on a Lefschetz

thimble, Phys. Rev. D 86 (2012) 074506 [arXiv:1205.3996] [INSPIRE].

[49] M. Cristoforetti, F. Di Renzo, A. Mukherjee and L. Scorzato, Monte Carlo simulations on

the Lefschetz thimble: Taming the sign problem, Phys. Rev. D 88 (2013) 051501

[arXiv:1303.7204] [INSPIRE].

[50] H. Fujii, D. Honda, M. Kato, Y. Kikukawa, S. Komatsu and T. Sano, Hybrid Monte Carlo

on Lefschetz thimbles — A study of the residual sign problem, JHEP 10 (2013) 147

[arXiv:1309.4371] [INSPIRE].

[51] T.D. . Cohen, Functional integrals for QCD at nonzero chemical potential and zero density,

Phys. Rev. Lett. 91 (2003) 222001 [hep-ph/0307089] [INSPIRE].

[52] A. Mukherjee and M. Cristoforetti, Lefschetz thimble Monte Carlo for many-body theories: A

Hubbard model study, Phys. Rev. B 90 (2014) 035134 [arXiv:1403.5680] [INSPIRE].

– 30 –

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)199
http://arxiv.org/abs/1411.0949
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.0949
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)200
http://arxiv.org/abs/1411.2632
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.2632
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(LATTICE2014)207
http://arxiv.org/abs/1412.5775
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5775
http://arxiv.org/abs/1412.0847
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.0847
http://dx.doi.org/10.1103/PhysRevD.91.036007
http://arxiv.org/abs/1412.2729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.2729
http://dx.doi.org/10.1103/PhysRevD.92.085020
http://arxiv.org/abs/1503.00417
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.00417
http://arxiv.org/abs/1503.08813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08813
http://dx.doi.org/10.1103/PhysRevD.92.011501
http://arxiv.org/abs/1504.08359
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.08359
http://dx.doi.org/10.5506/APhysPolBSupp.8.405
http://dx.doi.org/10.5506/APhysPolBSupp.8.405
http://arxiv.org/abs/1506.02547
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.02547
http://arxiv.org/abs/1508.02377
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.02377
http://arxiv.org/abs/1508.05260
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.05260
http://dx.doi.org/10.1103/PhysRevD.86.074506
http://arxiv.org/abs/1205.3996
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.3996
http://dx.doi.org/10.1103/PhysRevD.88.051501
http://arxiv.org/abs/1303.7204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7204
http://dx.doi.org/10.1007/JHEP10(2013)147
http://arxiv.org/abs/1309.4371
http://inspirehep.net/search?p=find+EPRINT+arXiv:1309.4371
http://dx.doi.org/10.1103/PhysRevLett.91.222001
http://arxiv.org/abs/hep-ph/0307089
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0307089
http://dx.doi.org/10.1103/PhysRevB.90.035134
http://arxiv.org/abs/1403.5680
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5680


J
H
E
P
1
1
(
2
0
1
5
)
0
7
9

[53] F. Di Renzo and G. Eruzzi, Thimble regularization at work: from toy models to chiral

random matrix theories, Phys. Rev. D 92 (2015) 085030 [arXiv:1507.03858] [INSPIRE].

[54] Y. Tanizaki, Lefschetz-thimble techniques for path integral of zero-dimensional O(n)

σ-models, Phys. Rev. D 91 (2015) 036002 [arXiv:1412.1891] [INSPIRE].

[55] T. Kanazawa and Y. Tanizaki, Structure of Lefschetz thimbles in simple fermionic systems,

JHEP 03 (2015) 044 [arXiv:1412.2802] [INSPIRE].

[56] M. Cristoforetti et al., An efficient method to compute the residual phase on a Lefschetz

thimble, Phys. Rev. D 89 (2014) 114505 [arXiv:1403.5637] [INSPIRE].

[57] Y. Tanizaki and T. Koike, Real-time Feynman path integral with PicardLefschetz theory and

its applications to quantum tunneling, Annals Phys. 351 (2014) 250 [arXiv:1406.2386]

[INSPIRE].

[58] Y. Tanizaki, H. Nishimura and K. Kashiwa, Evading the sign problem in the mean-field

approximation through Lefschetz-thimble path integral, Phys. Rev. D 91 (2015) 101701

[arXiv:1504.02979] [INSPIRE].
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