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1 Introduction

Higher-spin (HS) theories are receiving a great amount of attention in the recent years (see

e.g. [1–7] for some reviews). Both in 3d and 4d, key conjectures have been put forward

linking Vasiliev’s equations [8, 9] to free or interacting vectorial CFTs [10–12]. The power

of these dualities relies in their weak-weak character, to be distinguished from the standard

manifestations of holographic dualities. In principle this feature allows to directly compare

bulk and boundary physics, allowing to test quantum gravity and holography itself. These

conjectures, mostly based on the analysis of symmetries of the boundary theories, have

driven a lot of interest also in relation to string theory [13–17] with a resurgence of old

and new relations among string theory and Vasiliev’s equations (see e.g. [18, 19]). So far,

most of the attention has been limited to the CFT side, where we currently dispose of

many field theory tools that allow remarkable computations and checks within a standard

and well understood setting. On the contrary, the bulk Vasiliev side has attracted less
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attention beyond the free theory regime, with the exception of a handful of works [20–27].

A better understanding of the bulk side of the correspondence is however desirable in order

to achieve a better grasp of Vasiliev’s equations and also of the proposed dualities.

Many questions are still to be addressed and in this paper we aim to consider the

problem of defining an appropriate functional class within the unfolded formalism [28, 29]

to describe what one would call a local bulk theory in this framework (see e.g. [30] for

some recent attempts in this direction). We also underline the links between the bulk

and boundary side of the problem towards a better grasp of locality from an AdS/CFT

perspective.

Before moving to the actual analysis, it is important to recall that HS theories are

based on an infinite-dimensional symmetry, HS symmetry [31], that at the free level is

given by a HS algebra acting on the jet space of fields. The HS algebra often admits a

⋆-product realisation [31–33] and combines fields of all spins s = 0, 1, 2, 3, . . . into a single

multiplet. Moreover, the HS algebra relates also different derivatives of the fields together

in a single multiplet. In particular, a HS transformation can change the order in derivatives

of a given expression and HS algebra covariant expressions contain for this reason infinitely

many derivatives, i.e. are naturally pseudo-local (see e.g. eq. (1.1)). This is the reason why

understanding pseudo-local quantities is of utter importance for HS theories.

At present all examples of HS theories are given by Vasiliev’s equations [8, 9, 34].

Vasiliev’s equations are generating equations, i.e. they lead to the physical HS equations of

motion provided they are partially solved (with respect to certain auxiliary directions) and,

most importantly, the gauge is fixed appropriately.1 Solving for the auxiliary directions in

different gauges might well lead to inequivalent results if the corresponding gauge choices

are inequivalent or, possibly, inconsistent. So far the most convenient gauge choice has

been the Schwinger-Fock gauge, whose main virtue is to make the link between unfolded

formalism and Fronsdal’s equations more direct and, as well, to make manifest Lorentz

symmetry at any perturbative order.

Remarkably, in the Schwinger-Fock gauge mentioned above, the unfolded HS equations

that one can extract from the Vasiliev equations turn out to contain certain pseudo-local

tails [26, 27]. In particular, the second-order equations, as extracted from Vasiliev’s theory,

have pseudo-local sources on the r.h.s. of the Fronsdal equations:

(�−m2
φ)φm1...ms

+ . . . =
∑

l,q

αl
s,q(Λ)

−l gnn · · · gnn︸ ︷︷ ︸
l

∇m(s−q)n(l)Φ
∗∇m(q)n(l)Φ+ . . . . (1.1)

This is true surprisingly even at the quadratic- (cubic- from the point of view of the

action) order, where it is well known that interactions are higher-derivative but local —

given three spins the number of independent vertices is finite while each of them have a

number of derivatives not exceeding the sum over spins [35]. We refer to the latter couplings

as primary canonical couplings hereafter, to stress that they have the minimal number of

derivatives and that improvement terms have been discarded. The appearance of such

expressions can be easily expected taking into account the choice of field frame selected by

HS covariance in Vasiliev’s equations.

1Notice here that different gauge choices in this context correspond to different field frames related by

pseudo-local field redefinitions after the equations have been solved with respect to the auxiliary directions.
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Indeed, on the one hand, when looking for an action one begins with a quadratic La-

grangian that describes the propagation of free fields over a fixed background, of which the

empty Anti-de-Sitter (AdS) space is the usual choice in the HS case. On the other hand,

when interactions are included, one can have access to more complicated HS backgrounds,

of which a flat connection of the HS algebra is the simplest example, and empty AdS space

is just a particular case. From this respect, unfolded HS equations are naturally an expan-

sion over a flat connection of the HS algebra rather than just AdS space. Therefore, also

the first nontrivial corrections to the free unfolded equations must contain some informa-

tion about backgrounds that are more complicated than empty AdS space. This feature

is a direct analogue, in the context of HS theories, of the complexity of cubic couplings

extracted from the Einstein-Hilbert action. Those contain indeed a particular combination

of improvement terms required by general covariance. Analogously, the effect of HS covari-

ance when extracting the couplings from Vasiliev’s equations naturally manifests itself into

pseudo-local tails with an infinite number of improvement terms. Such pseudo-local tails

are therefore natural in view of the HS symmetry, which mixes derivatives of all orders and

fields of all spins together.

In this paper we want to quantitatively address the question of locality in AdS space for

a generic pseudo-local field theory at least to the lowest non-trivial order. The motivation

is twofold in view of the above discussion: first of all, it is desirable to have a quantita-

tive understanding of what it means to have a local theory in AdS, especially when one

deals with pseudo-local expansions in derivatives; secondly, it is compelling to improve our

understanding of the degree of (non-)locality of existing HS theories. This issue becomes

relevant in view of the fact that one is also led to consider field-redefinitions that are pseudo-

local. Allowing for generic pseudo-local redefinitions erases the difference between trivial

and nontrivial interactions2 [9, 26, 36] and allows in principle also to solve the Noether

procedure up to any order in perturbation theory without any obstruction3 [37, 38]. For

these reasons the problem of constraining admissible pseudo-local redefinitions cries for a

prescription of functional class to give them a well-defined physical interpretation.

Our proposal at this order can be summarised as follows. (i) first one decomposes a

given coupling into an orthogonal basis made of primary canonical currents and improve-

ments; (ii) one is allowed to redefine away each local improvement one by one; (iii) we

strictly forbid pseudo-local redefinitions that remove primary canonical currents (e.g. the

usual stress tensor or the electromagnetic current). In this way the (pseudo-local) redef-

inition will never change the coefficient of the primary canonical component. Admissible

redefinitions defined here can only touch improvement terms. Let us also stress that at this

order, as we will prove in the following, there exists a basis of improvements and canonical

currents such that each element of such basis is local.

2Notice for instance the result of [9] in which the interactions in 3d Vasiliev’s equations were shown to

be reconstructed via a pseudo-local redefinition expressed in terms of an integration flow.
3It can be useful to recall here the logic of [37]. The logic there was first to study the generic non-local

solution and then look for a locality criterion to identify a local solution among the non-local ones. In flat

space no local solution could be found. However, in our case there are various holographic indications that

such local solution should indeed exist when expanding around AdS background.

– 3 –



J
H
E
P
1
1
(
2
0
1
5
)
0
4
4

While our locality proposals are bench-marked against concrete Vasiliev’s HS theories,

the considerations are quite general and apply to any theory in AdS. Finally, our main

result can be summarised by the following conditions for the asymptotic behaviour of the

coefficients αl
s,q in eq. (1.1):

αl
s,q ≺

1

l2s
1

(2l)!
, d = 3 , (1.2a)

αl
s,q ≺

1

l2s+1

(
1

l!

)2

, d = 4 , (1.2b)

compatibly with a consistent resummation of the above higher-derivative tails.

The plan of the paper is as follows. In section 2 we discuss the main logic of the paper.

In section 3 we discuss the locality criterion in the ambient space formalism and in generic

dimensions. In section 4, we analyse the same problem in the context of 3d unfolding. In

section 5 we extend the analysis to 4d unfolding and in section 6 we study the implications

of the locality criterion from the AdS/CFT perspective. We discuss and summarise the

results and their implications in section 7. Our conventions are listed in appendix A.

2 Redefinition and functional class: a general criterion

Before moving to detailed examples we would like to describe the general ideas and frame-

work. In this section we illustrate the generic structure of pseudo-local couplings discussing

our main proposal for a definition of functional class in a pseudo-local field theory. As we

will see, the locality criterion proposed here will not be fulfilled by Vasiliev’s equations in

the Schwinger-Fock gauge, which appear to be a bit more non-local than expected. We

will comment more on the consequences of this observation in the discussion section.

Without loss of generality, the essence of our discussion can be illustrated starting

from the simplest possible cubic coupling describing the interaction of a scalar field with a

spin-s HS field: ∫
φm(s)J

m(s) . (2.1)

This induces a source in the Fronsdal equations [39] of the type:

�φm(s) + . . . = Jm(s) . (2.2)

Here φm(s) is a massless totally symmetric Fronsdal’s field [39] subject to the gauge invari-

ance condition:

δφm(s) = ∇mξm(s−1) , ξm(s−3)n
n = 0 , (2.3)

while Jm(s) is a conserved rank-s tensor that for example can be built out of two scalar

fields as:

Jcan
m(s) ≈ Φ∗←→∇m . . .

←→∇mΦ+O(Λgmm) . (2.4)

We call it hereafter primary canonical current to distinguish it from its higher-derivative

dressings below. The O(Λgmm) terms are proportional to the uncontracted metric gmm

and are required in order to make the above currents conserved in AdS. Furthermore, by
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convention, the covariant derivatives are symmetrised and unless specified we set Λ = 1.

While it is well known that the above current is unique modulo redefinitions, off-shell

one can write down an infinite number of local improvements. The existence of infinitely

many local improvements is tantamount to the possibility of considering higher-derivative

dressings of the above couplings described by more general conserved currents that take

the following form:

Jpl
m(s) =

∑

l,q

(Λ)−lαl
s,q(g

nn)l∇m(s−q)n(l)Φ
∗∇m(q)n(l)Φ+O(Λgmm) . (2.5)

We will refer to such higher-derivative currents (l > 0) as successors of the primary canon-

ical one (2.4) to stress that they have the same structure but dressed with a tail of deriva-

tives. We call otherwise the sector of all currents proportional to the primary canonical

one with possible higher derivative dressings just canonical.

Assuming for a moment to consider such pseudo-local tails in Minkowski space, in

terms of some other dimensionful parameter like α′ but keeping massless the HS fields, we

would quickly discover that those terms boil down to something vanishing. The main reason

is due to commutativity of derivatives. Indeed in flat space one can factor all contracted

derivatives and express them just as:

Jpl
m(s) ≈

∑

l

α̃l
s

(
�

2

)l

Jcan.
m(s) , (2.6)

assuming the scalar to be massless too and where with ≈ we mean on-shell with respect

to the scalar.4 At this point, one can proceed in more than one way. An option is to

integrate box by parts under the integral sign so as to get something that is vanishing on-

shell unless l = 0. Another option is to realise that the fact that � could be factorised for

each individual term in the sum allows to find a redefinition removing the higher-derivative

tail: δS =
∫
φ�δφ. At the equations of motion level:

�φm(s) + . . . =

(
�

2

)l

Jcan.
m(s) , (2.7)

this is even more clear since the source terms above precisely have the structure �δφm(s)

typical of redefinitions and can be removed with:

φm(s) → φm(s) +
1

2

(
�

2

)l−1

Jcan.
m(s) . (2.8)

The latter redefinition would generate cubic and higher order terms in the scalar field

contributing to higher contact terms.

In flat space, yet another way to understand the idea described above is to consider

the same vertex in momentum space. The higher derivative couplings just discussed would

then look simply:

δ(d)(p1 + p2 + p3) (p2 · p3)l(p2 − p3)m(s) φ̃
m(s)(p1)Φ̃

∗(p2)Φ̃(p3) . (2.9)

4At the equation of motion level, the equations of motion for the scalar are just part of the equations and

can be used without any problem. The Lagrangian counterpart of this is a redefinition of the scalar field.
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The logic is then to realise that up to redefinitions (or equivalently on-shell) the following

identity holds:

(p2 · p3)l =
[
1

2
(p21 − p22 − p23)

]l
≈
[
1

2
(m2

1 −m2
2 −m2

3)

]l
, (2.10)

which indeed tells us that the above coupling vanishes in the massless case, giving the same

conclusions drawn above. Notice however that this would not be true already for massive

fields in flat space giving a non-vanishing projection of the higher derivative couplings on

the primary canonical ones. The latter observation is relevant, in particular, for AdS space

(see below) where indeed the AdS mass of the HS fields is non-vanishing also for massless

representations.

All of the above possibilities are equivalent. Therefore, in flat space and for massless

fields the pseudo-local tail does not have physical effect on S-matrix amplitudes at this

order. We stress that the trick here at the S-matrix level is to commute the infinite sum

and the integral5 over space-time. Performing first the integral than the sum one would

conclude that, since each individual term vanishes identically on-shell (can be removed by

a local redefinition), the corresponding infinite sum also vanishes (can be removed by a

redefinition), apart from the l = 0 term.

The integration by parts trick is a quick and effective way to see what is going on.

However, factorizing �
l in a higher-derivative current just makes manifest the fact that

the above terms can be removed by a field redefinition. This step does not actually require

any integration by parts, as it is clear working just at the equations of motion level. To

summarise, the above discussion shows that in flat space and for massless fields higher-

derivative currents have a vanishing projection onto the primary canonical one (2.4). For

this reason they can be removed by an admissible pseudo-local redefinition without affecting

the coefficient of the primary canonical current.

Even if the situation in flat space appears clear, things change rather quickly as antic-

ipated upon turning on a cosmological constant. The obstruction to the above argument is

that it is not anymore true that contracted derivatives can be represented just as
(
�

2

)l
Jcan.
m(s).

This is due to the fact that the latter and the former expressions differ now by a chain

of commutators arising from moving covariant derivatives around. Those produce lower

derivative terms of the same type as those in (2.5) which may give a leftover proportional

to the primary canonical current itself (2.4). Furthermore, one must recall that massless

Fronsdal’s fields have a non-vanishing AdS mass (see also the remark above after eq. (2.10)):

�φm(s)−∇m∇nφnm(s−1)+
1

2
∇m∇mφn

nm(s−2)−m2
φφm(s)+2Λgmmφn

nm(s−2) = 0 , (2.11a)

m2
φ = −Λ[(d+ s− 3)(s− 2)− s] . (2.11b)

This time, the terms with derivatives contracted together boil down to a single tensor

structure, given just by a primary canonical current (2.4), plus a remainder:
∑

q

αl
s,q (g

nn)l∇m(s−q)n(l)Φ
∗∇m(q)n(l)Φ+O(Λgmm) ≈ C

(s)
l+1(α)J

can.
m(s) + J impr.

m(s) , (2.12)

5This is assumed to be always possible in a pseudo-local theory.
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where the sign ≈ indicates that we are dropping terms proportional to the equations of

motion of the scalar. Above, the C
(s)
l (α) coefficients depend on the original α coefficients

in a way that we will determine later using various formalisms (unfolding, ambient space,

etc.). Notice that the above should be considered as an explicit projection of a given

current onto its primary canonical component plus what is orthogonal to it: J impr.
m(s) —

certain (pseudo-local) current that is a sum of local improvements. Again the equations of

motion for the scalar have been used and are implied by the ≈ sign. The flat space result

is recovered by noticing that the above C
(s)
l (α) coefficients and the AdS masses are, for

dimensional reasons, proportional to Λ.

Making more transparent our use of a nomenclature borrowed from the CFT frame-

work, and quite appropriate here, equation (2.12) is nothing but the statement that in AdS,

higher-derivative terms of the type above, successors, do have a non-vanishing projection

onto the primary canonical current:
〈
∑

q

αl
s,q (g

nn)l∇m(s−q)n(l)Φ
∗∇m(q)n(l)Φ+O(Λgmm)

∣∣∣∣∣ J
(s)
can.

〉
= C

(s)
l+1(α) . (2.13)

The higher derivative currents on the left that we referred to above as successors of the

primary canonical current should be distinguished from improvements, which would be

more properly associated with descendants of the primary canonical current with a van-

ishing projection on it (see the explicit decomposition of eq. (2.12)). To summarise, all of

this gives a definition of an orthogonal basis for currents, allowing us to define an admis-

sible redefinition at this order, to be any pseudo-local redefinition that does not affect the

primary canonical current sector.

Finally, the fact that everything boils down to a finite number of tensor structures

is consistent with the classification of cubic couplings and with the corresponding classi-

fication of three-point functions from the CFT side. The link between the above locality

definition and the CFT definition is here quite manifest since, as we will show in section 6,

improvements do not contribute at this order to the computation of CFT correlators.

Locality. We are now ready to formulate our locality criterion. Starting from any pseudo-

local expression we can reduce cubic couplings to a finite number of tensor structures

(primary currents) plus improvements (descendants). Hence, a pseudo-local coupling (2.12)

will boil down to a linear combination of such primary tensor structures multiplied by

infinite sums of the type:6

(
∞∑

l=1

C
(s)
l (α)

)∫
φm(s)J

m(s)
can. + Improvements . (2.14)

The locality criterion proposed here amounts to the condition that the above series

converges:
∞∑

l=1

C
(s)
l (α) < ∞ , (2.15)

6A precursor of this functional class prescription was also given in [40, 41] in order to present a classifi-

cation of couplings in the metric-like language.
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while improvement terms (descendants) can be removed by an admissible redefinition (see

above) and furthermore do not contribute to the computation of CFT correlators at this

order (see section 6). The above shows how a pseudo-local tail can be resummed into a

primary canonical current piece plus descendants. We stress that no field-redefinition is

involved in this step, while of course improvements can be removed if desired, bringing the

result into its local form. Therefore, our locality criterion amounts to a projection of the

initial current in the orthogonal basis described in eq. (2.13).

In the following we shall consider various examples of pseudo-local theories including

in particular Vasiliev’s equations in 3d and 4d. So far there are two interesting observations

that we anticipate here:

• Vasiliev’s equations in the Schwinger-Fock gauge both in 3d and 4d fail to pass this

criterion giving rise to divergent series (see also [22]). The possible interpretation of

this observation will be discussed later.

• A factorially damped behaviour for the α-coefficients may not suffice in general to

satisfy the above criterion putting some constraints on couplings based on ⋆-products,

as in Vasiliev’s equations [29], or on similar exponential functions.7 In view of these

considerations one would need to reconsider also the question of locality at the quartic

order, that we plan to address in the near future. Finally, the statement that ⋆-

product interactions lead to non-local vertices in AdS can be used to constrain the

functional ambiguity present in Vasiliev’s equations [29]. The latter is given in terms

of a function f⋆(B) of the master zero-form B(y, z|x). One can then argue that it

should be reduced to a simple phase eiθ upon dropping terms of the type B ⋆ . . . ⋆ B

that do not seem to have an interpretation in terms of local vertices.8 This is also in

agreement with the CFT expectations which forbids any such functional ambiguity,

shedding light on a possible bulk mechanism leading to such a result.

In the rest of the paper, following the general discussion and ideas sketched above,

we are going to present the explicit form of the coefficients C
(s)
l (α) and their asymptotic

behaviours using various formalisms. First of all we will discuss the generic result in

arbitrary dimension using ambient space techniques. Later on we will use the unfolded

techniques to compute the above coefficients in the context of 3d and 4d Vasiliev theories

with the aim of comparing with the couplings found in [26, 27].

3 The generic case from the ambient space formalism

Before fixing the dimensionality to 3d or 4d, it is useful to discuss the generic case that can

be dealt with quite easily using ambient space techniques. The ambient space formalism

provides an efficient set of tools to explicitly compute the above C
(s)
l coefficients in the

7It would be interesting to link the above criterion to analogous results in the context of string theory

or non-local gravity models (see e.g. [42, 43] for a non-exhaustive list of references).
8See also [44] for another argument based on a Fefferman-Graham-type expansion which allows similar

conclusions.
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general case. The whole idea of ambient space is to embed AdSd into a flat (d + 1)-

dimensional space with appropriate signature. The Fronsdal fields φm(s) are then embedded

into ambient tensor avatars of the type:

ΦM(s)(X) , (3.1)

subjected to the following tangentiality and homogeneity constraints:

XN ΦNM(s−1)(X) = 0 , (X · ∂ − s+ 2 + µ)ΦM(s)(X) = 0 . (3.2)

The standard Fierz system takes the general form

�ΦM(s)(X) = 0 , ∂N ΦNM(s−1)(X) = 0 , ΦN
NM(s−2)(X) = 0 . (3.3)

Above, the degree of homogeneity µ is related to the mass entering the AdS Klein-Gordon

equation upon reduction as

m2 = −Λ [(µ− s+ 2)(µ− s− d+ 3)− s] , (3.4)

where massless fields correspond to µ = 0. Cubic current interactions can be then repre-

sented in ambient space as: ∫

AdS
ΦM(s)J

M(s) , (3.5)

which induces a source to the Fronsdal tensor of the type:

[�−m2]ΦM(s) + . . . = JM(s) . (3.6)

Above we have used an appropriate ambient covariant AdS-measure,9 while we refer for

more details of the formalism to the literature.

This formalism gives a simple rule for the integration by parts of � under the in-

tegral sign that can be summarised on-shell, and in the TT gauge that suffice for our

purposes, as:10

�JM(s)(X) ∼ Λ(∆ + s+ d− 3)(∆− s+ 2)JM(s)(X) . (3.8)

Here ∆ is the degree of homogeneity of the current in the ambient coordinate X

(X · ∂J = ∆J).

The above formula can be easily derived by contracting the conserved current with an

on-shell field and integrating the corresponding density by parts with respect to the given

9A convenient choice of this type is given by the following measure [3, 40]:

∫
AdS

=

∫
Rd+1

δ(
√
X2 − L) , (3.7)

with Λ = − 1

L2 which we use hereafter. The latter is however not unique and can be rescaled by powers of√
X2 with the effect of changing slightly the basis of couplings after performing the radial reduction.
10For more details see appendix B of [45].
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AdS measure. By iterations one then arrives to an explicit formula for the C
(s)
l coefficients

in this formalism:

�
lJM(s)(X) ∼ Λ(∆− 2l + s+ d− 1)(∆− 2l − s+ 4)�l−1JM(s)(X)

= Λl

[
l∏

k=1

(∆− 2k + s+ d− 1)(∆− 2k − s+ 4)

]
JM(s)(X) . (3.9)

The locality criterion then requires:

∑

l

4lα
(s)
l

(
3−∆− s− d

2

)

l

(
2 + s−∆

2

)

l

< ∞ , (3.10)

where we use the ascending Pochammer symbol (a)l = a(a + 1) · · · (a + l − 1). From the

above, for given spin and ∆, one can read off the required asymptotic behaviour on the

coefficients α
(s)
l . In the simplest case µ = 0, that is relevant for the gauge multiplet in

Vasiliev’s equations, one finds for 0− 0− s currents ∆ = −s− 4 obtaining:

∑

l

4lα
(s)
l

(
7− d

2

)

l

(3 + s)l < ∞ . (3.11)

The above coefficients show how fast the α
(s)
l need to go to zero to satisfy the locality crite-

rion. Even a factorially damped behaviour typical of exponential functions and ⋆-products

may not be sufficient. Notice that in odd dimensions d ≥ 7 the above ambient basis of

improvements collapses so that there is no overlap between higher-derivative currents and

the primary canonical ones, as in flat space. This is a particular feature of the above basis

and it is sufficient to change slightly the ambient measure by including some factor of
√
X2

together with the δ-function to modify the basis in such a way that any higher-derivative

term has some non-vanishing overlap with primary canonical currents.

To summarise, it is a generic feature of AdSd that higher-derivative currents have a non-

vanishing overlap with primary canonical currents, requiring some care when resumming

an infinite number of higher-derivative terms.

The generic lesson we can draw from the above result is that any HS interaction that

can be expressed in terms of ⋆-products up to possible polynomial damping coefficients,

may not pass the above criterion, since ⋆-products typically give just a factorial damping 1
l! .

In the next section we shall discuss in detail the 3d and 4d unfolded examples com-

menting explicitly on Vasiliev’s equations. Indeed each formalism requires a detailed study

of the above coefficients because of the different normalisations of the basis that are used

to write down the currents (see also [46] for some discussion of current interactions in the

context of 4d unfolded formalism).

4 3d unfolding and 0 − 0 − s currents

In this section we introduce the ingredients to compute the Cl coefficients directly in the

unfolded language [47] in order to be able to compare explicitly with 3d Vasiliev’s equations

and to study their degree of non-locality. For a review of the unfolded formalism and for

the explicit currents extracted from Vasiliev’s equations we refer to [26].
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The system we are interested in is a generic (perturbative) current interaction that, in

the unfolded language, can be described by the following equations:

Dω(2) = J(C(1), C(1)) , (4.1a)

D̃C(1) = 0 , (4.1b)

DJ = 0 . (4.1c)

The above equations are formulated in terms of a zero-form C(y, φ|x) describing a scalar

field, and a master one-form ω(y, φ|x) encoding the HS gauge potentials in the frame-like

formalism [48]. The superscript (n) refers to the order in perturbation theory and will be

omitted whenever possible. The system above is written in terms of appropriate nilpotent

derivatives:

D = ∇− φhααyα∂α , (4.2a)

D̃ = ∇+
i

2
φhαα(yαyα − ∂α∂α) , (4.2b)

where ∇ is the covariant Lorentz derivative:

∇ = d− ωααyα∂α . (4.3)

Here, hαα and ωαα are the dreibein and spin-connection of AdS3. The current J describes

the backreaction on the one-form sector that is quadratic in the zero-forms. It is supposed

to give stress-tensors built out of the scalar field on the r.h.s. of the Fronsdal equations.

Above we have restricted the attention for simplicity to the HS-algebra hs(1/2) ⊕
hs(1/2) with λ = 1

2 , where we can use the spinorial language of [48]. In particular we

have an explicit realisation for the HS-algebra hs(1/2) ⊕ hs(1/2) in terms of spinorial

oscillators yα:

[ŷα, ŷβ ] = 2iǫαβ , (4.4)

supplemented with a Clifford algebra element φ (φ2 = 1). One then works in terms of

functions ω(y, φ|x) and C(y, φ|x) of symbols of the above oscillators using the isomorphism

sp2 ≃ sl2 ≃ so(1, 2) , (4.5)

realised through standard σ-matrices, while contracting all spinorial indices with auxiliary

spinorial variables:

V a(k) σa
αα · · ·σaαα︸ ︷︷ ︸

k

←→
∑

k

V α(2k)yα(2k) = V (y) . (4.6)

As anticipated, the zero-form C(y, φ|x) describes in 3d a complex scalar field with conformal

mass together with all of its derivatives:

Cα(2n) ∼ (σm
αα∇m)nC(x) , (4.7)
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while the current J is a generic conserved bilinear in the zero forms that can be written as:

J =

∫
dξ dηK(ξ, η, y)C(ξ, φ|x)C(η,−φ|x) , (4.8)

in terms of the Fourier transformed zero form

C(y, φ|x) =
∫

dξ eiyξ C(ξ, φ|x) . (4.9)

For ease of notation we call both C(y, φ|x) and its y-Fourier transform with the same letter.

Now the main observation is that there is a basis that diagonalises the action of the

adjoint derivative D and that disentangles independently conserved subsectors of it [26, 36]

(pure improvements, primary canonical currents and their successors). This basis will

be used to identify the canonical current sector of the backreaction and to find explicit

improvement terms to further disentangle all successors from the primary canonical piece.

In order to define such basis we will introduce a convenient generating function tech-

nique whose main virtue is to map any tensor operation in the above language into

standard ODE.

4.1 The contour integral representation for the currents

The above representation (4.8) of the generic 3d current can be decomposed in terms of

three basic contractions:

K(ξ, η, y) ∼ K̃(τ, r, s) = exp
[
iτξαηα + isyαξα + iryαηα

]
. (4.10)

Each of the above terms in the exponents encodes one of the 3 possible contractions among

indices belonging to the zero-forms:

(yξ)n(yη)m(ξη)l ∼ Cα(n)ν(l)C
ν(l)

α(m) . (4.11)

Furthermore, by defining:

ω = τ−1 , β = (s+ r)−1 = X−1 , γ = (s− r)−1 = Y −1 , (4.12)

one can rewrite the most general tensorial expression in terms of generating functions of

their relative coefficients:

J(0) =

∮
(βγ) J (0) K̃ , (4.13a)

J(1) = φ

∮
hαα

[
J
(1)
1 yαyα − 2i(βγ)J

(1)
2 yα∂α − 4(βγ)2J

(1)
3 ∂α∂α

]
K̃ , (4.13b)

J(2) =
1

4

∮
Hαα

[
J
(2)
1 yαyα − 2i(βγ)J

(2)
2 yα∂α − 4(βγ)2J

(2)
3 ∂α∂α

]
K̃ , (4.13c)

J(3) =
φ

6

∮
H (βγ) J (3) K̃ . (4.13d)

Here the contour integration is over τ , X and Y ,

Hαα = hασ ∧ hασ , H = Hαα ∧ hαα , (4.14)
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while we use a contour integral representation for the generating functions of relative

coefficients (see [26] for more details). Above, we have also fixed the freedom in Fierz

identities by reducing the ansatz to 3 functions only instead of 6. The functions

J
(k)
i (ω, β, γ) ∼

∞∑

l=1

k
(k)
i (l, n,m)ωl X−n Y −m , (4.15)

are formal series in τ−1, X−1, Y −1 encoding the relative coefficients of each tensor struc-

ture. Notice that we are basically stripping off the factorial damping associated with the

exponential. The factorial damping will appear again after the contour integration has

been performed. The ∼ sign just implies that the above formal expansion should be con-

sidered as an equivalence class modulo arbitrary polynomial functions in τ , X and Y that

vanish upon performing the contour integration (see e.g. [26, 36]). The K̃ function can be

rewritten in terms of X and Y as:

K̃(τ,X, Y ) = exp

[
i

2
τ ζ+ · ζ− +

i

2
X y · ζ+ +

i

2
Y y · ζ−

]
, (4.16)

where we have defined

ζ±α = (ξ ± η)α .

Remarkably, one can observe that in the above basis both ∇ and D preserve the power of

X and Y . It is convenient then to restrict the attention to such orthogonal subsectors of

the backreaction:

k
(n,m)
i (ω) ∼

∞∑

l=1

ki(l, n,m)ωl X−nY −m . (4.17)

The explicit form of the derivative D as well as other differential operators in terms of the

above representation can be found in [26, 36]. In the following we are interested in the

canonical current sector sitting in two components of the above basis. These are in k3(τ
−1)

with possibly two choices (n = 1−2s,m = 1) and (n = 1,m = 1−2s) respectively for the X

and Y dependence. The latter boil down to a single component upon performing a bosonic

projection. Any other choice is related to improvement tensor structures [26]. It is easy to

see that with this choice of the X and Y dependence all other components of the current

vanish identically due to the contour integration, while conservation is trivial for any choice

of the function k3(ω = τ−1). It is precisely this functional freedom that encodes the higher-

derivative tail of improvements present in this sector, while the primary canonical current

corresponds just to the choice k3(ω) = ω up to an overall constant — successors are here

represented by higher powers of ω: ω2n+1 ∼ �
n.

On these sub-sectors we can easily write down the representation of the D operator as

well as the operator that computes the source to the Fronsdal tensor solving the torsion

constraint.

J3 with (n = 1−2s,m = 1). In this component of the backreaction the generic form of

the redefinition (exact current in cohomology) can be given in terms of a function f(τ) as:

δJ
(1−2s,1)
3 (τ) = (1 + τ)2s(1− τ)2∂τ

[
(1 + τ)1−2s(1− τ)−1f(τ)

]
. (4.18)
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The corresponding source to the Fronsdal tensor can be also easily obtained and expressed

in terms of J
(2)
3 (τ):

JFr.
3 (τ) =

1

2(s− 1)
(1− τ)2s(1 + τ)2∂τ

[
(1− τ)1−2s(1 + τ)−1J

(2)
3 (τ)

]
. (4.19)

We recall that the above should be considered in the space of functions defined as formal

series in ω = τ−1.

J3 with (m = 1− 2s, n = 1). In this case the generic form of the redefinition is given

in terms of a function f(τ) as:

δJ
(2)
3 (t) = (1− τ)2s(1 + τ)2∂τ

[
(1− τ)1−2s(1 + τ)−1J

(1)
3 (τ)

]
. (4.20)

The corresponding source to the Fronsdal tensor can be also easily obtained and expressed

in terms of J
(2)
3 (τ):

JFr.
3 (τ) =

1

2(s− 1)
(1 + τ)2s(1− τ)2∂τ

[
(1 + τ)1−2s(1− τ)−1J

(2)
3 (τ)

]
. (4.21)

Again, the above should be considered in the space of generating functions defined as formal

series in ω = τ−1.

Before moving on with the analysis of the locality criterion it is useful to have a

look at the currents which, upon solving the torsion condition, give the primary canonical

current as source to the Fronsdal tensor. This current is also pseudo-local [26] and the

corresponding coefficients will already give us an idea of the required convergence properties

that are needed.

The solution to this problem can be found with the above ODE techniques and reads

for (n = 1− 2s,m = 1):

J
(2)
3 (ω) ∼ (1− ω)2s−1(1 + ω)

ω2s
log(1− ω) , (4.22)

while the corresponding coefficients

α
(s)
l =

(l − 1)!

(l + 2s)!
, (4.23)

go to zero as

α
(s)
l ∼ 1

l2s
. (4.24)

The above behaviour should be confronted with the one obtained from 3d Vasiliev’s equa-

tions in the Schwinger-Fock gauge [26], given by α
(s)
l ∼ 1

l3
.

The above result can be also written down using a more standard notation by perform-

ing the contour integrations in τ = ω−1. The two-form J that is pseudo-local but yields the

primary canonical currents as sources to the Fronsdal’s equation has a rather simple form:

J =

∫ 1

0
dt

2− t

t
Hαα∂α∂α exp i [ty(ξ − η)− (1− t)ξη]C(ξ, φ|x)C(η,−φ|x) . (4.25)
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4.2 Local improvements and functional class

The above formalism is quite efficient in order to define local improvements within the

canonical current sector so as to remove the higher derivative tail as described in section 2.

What we want to do is to find the local redefinition that projects some higher power of

ω = τ−1 (ω2n+1 ∼ �
n), i.e. successors, into the primary canonical current given by a single

power of ω = τ−1:

local improvement = (
√
�)l−1Jcan. − Cl Jcan. , (4.26)

where we have used11 ξαηα ∼
√
� while fixing our convention for the coefficients Cl. This

becomes a simple ODE problem whose solution will determine for us the coefficients C
(s)
l .

What we need to do is to require the particular solution to the following ODE to be a

polynomial:

ω−2s(1 + ω)2s(1− ω)2∂ω

[
ω2s(1 + ω)1−2s(1− ω)−1J

(1)
3 (τ)

]
∼ C

(s)
l ω − ωl , (4.27)

so as to identify a orthogonal basis for improvements with no overlap with the primary

canonical current piece. The general solution to the above differential equation modulo

polynomials can be extracted in integral form as:

J
(1)
3 (ω) ∼ (1− ω)2s−1(1 + ω)

ω2s

∫ ω

0
dx

x2s

(1− x)2(1 + x)2s

[
C

(s)
l x− xl + p(x−1)

]
. (4.28)

One can then determine C
(s)
l enforcing the cancellation of the single poles of the integrand

in x = 1 and x = −1. Those indeed, due to the factor multiplying the integral, are the only

terms producing non-polynomial logarithmic contributions to the solution. Their absence

is equivalent to polynomiality (locality) of J
(1)
3 (ω). We thus get the following locality

condition for the function J
(1)
3 (ω):

∮

x=1

x2s

(1− x)2(1 + x)2s

[
C

(s)
l x− xl + p(x−1)

]
= 0 , (4.29)

∮

x=−1

x2s

(1− x)2(1 + x)2s

[
C

(s)
l x− xl + p(x−1)

]
= 0 , (4.30)

admitting a unique solution up to a choice of the first coefficient in p(x−1):

C
(s)
l = (−1)l

s (2s+ l)!

(2s)!(l + 1)!

[
2 (l+ s) 2F1(1, l+2s+1; l+2;−1)− l− 1

]
+4−s(l+ s) . (4.31)

The above realises the locality criterion in the context of 3d unfolding by computing the

explicit projection onto the primary canonical current of each higher-derivative term. The

remainder will be given solely by improvements. A redefinition would then allow us to re-

place any higher power of ω with just a linear dependence modulo the above spin-dependent

coefficients. The latter redefinitions will otherwise never suffice to remove the primary

11Indeed, a pair of contracted derivatives is equivalent to (ξη)2 in the spinorial language, cf. (4.10).
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canonical currents. Notice that as soon as each redefinition above does not affect the com-

putation of Witten diagrams (see section 6) we can also consider an infinite number of

them. On the other hand, allowing for generic pseudo-local redefinitions outside the above

class, will affect the Witten diagram result and for this reason would allow for removal of

primary canonical currents too [26, 36]. The above prescription completely specifies redef-

initions that do not affect the Witten diagram computation, as we will explicitly check in

section 6.

Finally, for later convenience it is quite useful to extract the leading l behaviour of the

above coefficients as l → ∞ since this asymptotic behaviour will constrain the growth of

the coefficients in a pseudo-local backreaction. This can be easily extracted from (4.31)

and reads:12

C
(s)
l ∼ l2s−1 . (4.32)

4.3 Locality and 3d Vasiliev’s equations

We say that a canonical current, i.e. a primary current with a possibly infinite tower of

successors, characterised in the above basis by a function J3(ω) admitting an expansion at

ω = 0 of the type:

J3(ω) =
∞∑

l=1

α
(s)
l ωl , (4.33)

satisfies the locality criterion if the corresponding series that is obtained by rewriting the

same coupling by singling out the primary canonical current converges. Namely:

∞∑

l=1

α
(s)
l C

(s)
l < ∞ . (4.34)

Combining the above criterion with the asymptotic behaviour of the coefficients C
(s)
l , we

are readily able to deduce the corresponding asymptotic behaviour for the pseudo-local

backreaction to pass this test:

α
(s)
l ≺ 1

l2s
. (4.35)

If the above requirement is not met one would face divergences that would require some

analytic continuation in order to link the corresponding backreaction to its primary canon-

ical form. In the case such analytic continuation (ζ-function regularisation for instance) is

available we would refer to the corresponding backreaction as non-local. Notice that there

might still be a possibility that no such analytic continuation would be available due to

cut or pole singularities in the corresponding analytic continuation.

We shall discuss the implications of the above discussion from the AdS/CFT per-

spective later. Let us conclude this section by applying the above locality criterion to

12We can also ask whether the current, which upon solving torsion gives rise to the primary canonical

current as source to the Fronsdal tensor, (4.22), is equivalent to the primary canonical current in the frame-

like formalism as source to Dω. As one can explicitly check, and as should be expected, the corresponding

series converges to 1 for any s, showing in fact their equivalence within our functional class.
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3d Vasiliev’s equations. As described in [26], the backreaction of Vasiliev’s theory in the

Schwinger-Fock gauge has the following asymptotics:

α
(s)
l ∼ 1

l3
, (4.36)

independently of the spin of the current. This means that, apart from the s = 1 case, for

which the corresponding sum gives − i
8 in the notation of [26], and the s = 2 case that gives

a convergent but not absolutely convergent series resumming to − i
24 , all other couplings

give divergent results. We do not give the explicit form of the divergent series for generic

spin because it is not necessary for the discussion and a bit cumbersome. However, we

tried standard ζ-function regularisation procedure without succeeding in getting results

compatible with HS symmetry [26] when using the same regularisation for all spins.

5 4d unfolding and current couplings

In 4d we can consider the analogue of the problem studied in the previous section (for

a review of 4d unfolding we refer to [1, 7, 8, 29]). In 4d one can use the isomorphism

so(3, 2) ∼ sp(4) in order to translate space time indices into spinorial sp(4) indices. One

then contracts all free indices with symbols of spinorial oscillators YA ∼ (yα, ȳα̇) and

introduces a master 1-form ω(y, ȳ|x) as a generating function of gauge fields together with

a master 0-form C(y, ȳ|x) as a generating function of HS Weyl tensors and their derivatives.

Putting together all these ingredients, we are again interested in a generic perturbative

unfolded system of equations of the type

Dω(1) = Hαα∂α∂αC
(1)(y, 0) + h.c. , (5.1)

Dω(2) = J(C(1), C(1)) +Hαα∂α∂αC
(2)(y, 0) + h.c.+ . . . , (5.2)

D̃C(1) = 0 , (5.3)

D̃C(2) = . . . , (5.4)

DJ = 0 , (5.5)

where the . . . represent further terms which will not be important for the succeeding dis-

cussion (see however [27]). The above system reduces to free theory upon setting J to

zero. Above the label (n) denotes the perturbative order of the various fields that will

be left unspecified unless needed. The above system is formulated in terms of nilpotent

derivatives:

D̃ = ∇+ ihαα̇(yαȳα̇ − ∂α∂̄α̇) , (5.6a)

D = ∇− hαα̇(yα∂̄α̇ + ȳα̇∂α) , (5.6b)

relevant for the description of the corresponding sp(4) modules, while the Lorentz covariant

derivative is given by

∇ = d− ωααyα∂α −̟α̇α̇ȳα̇∂̄α̇ . (5.7)

Here above, hαα̇, ̟αα and ̟α̇α̇, are the vierbein and (anti-)self-dual components of the

spin-connection of AdS4. The above system describes the subsector of current interactions
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that also arise from Vasiliev’s equations as studied in [27] (see also [46]). Along lines similar

to the 3d case, the generic form of the current can be specified in terms of a kernel:

J(C,C) =

∫
d4ξ d4η

(
HααJαα(Y, ξ, η) +H α̇α̇Jα̇α̇(Y, ξ, η)

)
C(ξ|x)C(η|x) , (5.8)

where we have defined:

H α̇α̇ = hν
α̇ ∧ hνα̇ , Hαα = hαν̇ ∧ hαν̇ , hαν̇ ∧H β̇ν̇ = ĥαβ̇ . (5.9)

Furthermore, upon considering the following splitting of the adjoint derivative D of

eq. (5.6b):

(∇+Q)ω = J , Q = yαhα
α̇ ∂̄α̇ + ȳα̇hαα̇ ∂α = Q+ +Q− , (5.10)

one can rewrite the above equation in terms of the components ω±k denoting

ωα(s−1±k),α̇(s−1∓k), so that the k = 0 piece is the HS vielbein. In this way the first two

equations read (the one for ω±1 splits in two)

R0 = ∇ω0 +Q+ω−1 +Q−ω+1 = J0 , (5.11)

R+1 = ∇ω+1 +Q+ω0 +Q−ω+2 = J+1 , (5.12)

R−1 = ∇ω−1 +Q+ω−2 +Q−ω0 = J−1 , (5.13)

and allow to solve for torsion (R0 equations) and get the source to the Fronsdal tensor as

we will describe below (see [27] for more details).

5.1 The 4d contour integral representation for canonical currents

In terms of y and ȳ oscillators and using an analogous contour integral representation as

the one used in 3d, we have a basis of canonical currents of the type:13

Jcan.
2 = −

∮

τi,s,r

[
β2 g

(2)
1 (α1, α2, β, γ)H

αα∂α∂α + γ2 g
(2)
2 (α1, α2, β, γ)H

α̇α̇∂̄α̇∂̄α̇

]

× ei(syζ
−+τ1ξη+rȳζ̄++τ2ξ̄η̄) , (5.14)

where:

α1 = τ−1
1 , α2 = τ−1

2 , β = s−1 , γ = r−1 , (5.15)

ζ± = ξ ± η , ζ̄± = ξ̄ ± η̄ , (5.16)

parameterise the four contractions of indices relevant to the canonical current sector in 4d

among the six possible ones:

(yξ)n(yη)m(ȳξ̄)n̄(ȳη̄)m̄(ξη)l(ξ̄η̄)l̄ ∼ Cα(n)ν(l);α̇(n̄)ν̇(l̄)Cα(m)
ν(l)

α̇(m)
ν̇(l̄) . (5.17)

13See e.g. [49] for a conventional generating function thereof.
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We should also restrict the attention to the subsector of the backreaction relevant for the

canonical current sector at one- and three-form level:

Jcan.
1 = −

∮

τi,s,r
(βγ) g(1)(α1, α2, β, γ)h

αα̇∂α∂̄α̇e
i(syζ−+τ1ξη+rȳζ̄++τ2ξ̄η̄) , (5.18)

Jcan.
3 = −

∮

τi,s,r
(βγ) g(3)(α1, α2, β, γ)ĥ

αα̇∂α∂̄α̇e
i(syζ−+τ1ξη+rȳζ̄++τ2ξ̄η̄) , (5.19)

respectively. We can then obtain the action of D on the above ansatz in closed form:

Dg(1) =

(
1

4α1β
[γ(α1γ + β)∂γ + α2β(α1α2 + 1)∂α2

]
1

4α2γ
[β(α2β − γ)∂β − α1γ(α1α2 + 1)∂α1

]

)
g(1) , (5.20)

and

D~g(2) = − 1

2α1α2

[
α1(α1α2 + 1)(α1∂α1

)g
(2)
1 + α1γ

−1(γ − α2β)(β∂β)g
(2)
1 + α1g

(2)
1

+ α2(α1α2 + 1)(α2∂α2
)g

(2)
2 + α2β

−1(α1γ + β)(γ∂γ)g
(2)
2 + α2g

(2)
2

]
. (5.21)

that one can explicitly check to be nilpotent.

For the purpose of solving torsion and checking conservation it is also needed to work

out the analogous representations for ∇ on the same canonical current space. The corre-

sponding expressions are given by:

∇g(1) =
1

4

(
+ 1

α1
[α2(α1α2 + 1)∂α2

+ γ∂γ ]

− 1
α2

[α1(α1α2 + 1)∂α1
+ β∂β]

)
g(1) , (5.22)

and

∇~g(2)= − 1

2α1α2

[
α2
1(α1α2+1)∂α1

g1+α1β∂βg1+α1g1+α2 (γ∂γg2+α2(α1α2+1)∂α2
g2+g2)

]
.

In a similar fashion one can also write down the differential operator that computes the

source to the Fronsdal tensor upon solving the torsion condition. For later convenience we

give below the operator that computes the source to the Fronsdal tensor given a canonical

current in eq. (5.14):

JFr.
+1 =+

(βγ)s+1

s−1
α−1
2 [α1(α1α2+1)∂α1

k1(α1, α2)+(s+1)k1(α1, α2)+α2(s−1)k4(α1, α2)] , (5.23)

JFr.
−1 =− (βγ)s+1

s−1
α−1
1 [α2(α1α2+1)∂α2

k2(α1, α2)+(s+1)k2(α1, α2)−α1(s−1)k3(α1, α2)] . (5.24)

Here we use the notation:

~J0 = (βγ)s

(
k1(α1, α2)

k2(α1, α2)

)
, (5.25)

and

~J±1 = (βγ)s
(
β

γ

)±1
(
k3(α1, α2)

k4(α1, α2)

)
, (5.26)

for the corresponding components of the current according to the grading induced by
1
2(y∂ − ȳ∂̄).
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As in 3d, before moving to the analysis of locality, it is instructive to find the simplest

current within the unfolded formalism which, upon solving torsion, produces the primary

canonical current with no higher derivative dressing as source to the Fronsdal tensor.

Considering Bel-Robinson type currents of spin s for ease of notation, this problem can

be solved with the formalism described above. Starting from a canonical current ansatz

written as an exact form:

~J0 =
1

4
(βγ)s

(
+α2 [(1 + s+ τ)k(τ) + τ(1 + τ)k′(τ)]

−α1 [(1 + s+ τ)k(τ) + τ(1 + τ)k′(τ)]

)
, (5.27a)

~J+1 =
s

4
(βγ)s

(
β

γ

)(
0

τ k(τ)

)
, (5.27b)

τ = α1 α2 . (5.27c)

with arbitrary higher-derivative dressing described by a function k(τ), the correspond-

ing Fronsdal current can be expressed in terms of a differential operator acting on k(τ)

and reads:

(βγ)s+1

4(s− 1)

[
τ(τ+1)

(
τ(τ + 1)k′′(τ) + k′(τ)(2s+ 3τ + 3)

)
+k(τ)

(
s2(τ + 1) + 2s+ (τ + 1)2

) ]
.

(5.28)

Requiring it to be just proportional to a primary canonical current τ (βγ)s+1 fixes the

function k to be:

k(s)(τ) =
∞∑

l=1

(2l + s+ 2)

(
l!

(l + s+ 1)!

)2

(−τ)l , (5.29)

Hence, one gets an asymptotic behaviour for k(τ) given by l−2s−1 that translates into an

asymptotic behaviour for J0 in eq. (5.27a) given again by l−2s−1. As in 3d this behaviour is

spin-dependent and converges faster than the Vasiliev equations result 1
l3

in the Schwinger-

Fock gauge (see [27]). Incidentally the above discussion also gives the exact representative

for the primary canonical current. Therefore, we have generalized to 4d the analogous

result of [26, 36] upon which allowing arbitrary pseudo-local redefinitions it is possible to

remove also the primary canonical currents. Below we are going to discuss the functional

class of admissible field redefinitions in 4d that avoids this problem.

The above result can be nicely translated back and expressed via homotopy inte-

grals performing the contour integration in (5.14). Combining different spins together, we

get a simple expression for J that, while still pseudo-local, yields primary canonical cur-

rents as Fronsdal currents with some finite coefficients upon solving the torsion constraint.

This reads:

J = D

∫ 1

0
dt dq

2− t

t
hαα̇∂α∂̄α̇ exp i

[
ty(ξ−η)−(1−t)ξη+qȳ(ξ̄+η̄)+(1−q)ξ̄η̄

]
. (5.30)

Here the pole in t is canceled by ∂α. As announced, the Fronsdal current contains just the

primary canonical current with coefficient:

as = − 1

2(s− 1)
. (5.31)
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Upon introducing an additional parameter that counts the spin of the current one can

change the coefficient above into any other. Such J solves the same problem as stud-

ied in [46] where the current interactions involving only primary canonical currents were

constructed.

Another example of the backreaction that is pseudo-local but can be localised back to

the primary canonical current is:

J = D

∫ 1

0
dt dq hαα̇∂α∂̄α̇ exp i

[
ty(ξ − η)− (1− t)ξη + qȳ(ξ̄ + η̄) + (1− q)ξ̄η̄

]
, (5.32)

which gives the following coefficients for the Fronsdal current:

αs,l =
s

s− 1

(
l! s!

(l + s+ 1)!

)2

. (5.33)

We see that the above Fronsdal current is pseudo-local. It is important that the dependence

on the homotopy parameters yields the beta function that improves the large-l behavior.

Thanks to the fast large-l fall-off, the above Fronsdal current can be resummed (see next

section) to

∞∑

l=0

αs,l C
s
l =

1

2(s− 1)
. (5.34)

However, such dependence on the spin is still not compatible with the HS symmetry

(see [50, 51]). The right spin dependence requires some more work and can be obtained

for instance with a clever use of the integral formula for the reciprocal gamma function to

define the homotopy integrations.

5.2 Local improvements and functional class

As in the 3d case one can translate the projection of higher derivative currents onto pri-

mary canonical ones in terms of an ODE. What needs to be done is to identify all local

improvements of the schematic form:14

local improvement = �
l−1Jcan. − Cl Jcan. , (5.35)

where we use (ξαηα)(ξ̄
α̇η̄α̇) ∼ �, while projecting out from each higher derivative piece

(successor of the primary canonical current) its primary canonical component. One pro-

ceeds by studying the generic structure of an improvement term by solving torsion starting

with an exact representative for the current. Combining the explicit form of the exact

representative with the solution to the torsion equation, the coefficients C
(s)
l specifying the

aforementioned projection can be then determined by requiring a particular solution to the

following differential equation to be polynomial:

1

4(s− 1)

[
τ(τ + 1)

(
τ(τ + 1)k′′(τ) + k′(τ)(nτ + n+ 2s+ 3τ + 3)

)

+ k(τ)
(
n(τ + 1)(s+ τ + 1) + s2(τ + 1) + 2s+ (τ + 1)2

) ]
= C

(s,n)
l τ + α− τ l . (5.36)

14Notice that our convention for Cl is shifted by one unit with respect to the one used in [27]. We choose

this convention to make contact with the notation used in the 3d section. To match the convention of [27]

it is sufficient to shift l → l + 1 in any formula of this paper.
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Above, n ≥ 0 gives the difference between undotted and dotted contracted indices so that

when n = 0 one reduces to the case of Bell-Robinson type currents.

In order to analyze the polynomiality of the particular solution to the above equation

we resort to the method of variation of parameters. First of all we need to find the

solutions to the homogeneous equation above. These can be conveniently expressed in

terms of standard hypergeometric functions as:

k1(τ) =
τn+s

(1 + τ)2
2F1(s, n+ s; 1 + n;−τ) , (5.37)

k2(τ) =
(−1)−n(−τ)−nτn+s

(1 + τ)2
2F1(s,−n+ s; 1− n;−τ) . (5.38)

The method of variation of parameters gives the following particular solution:

k(τ) = −k1(τ)

∫
dτ

k2(τ)
(
C

(s,n)
l τ+α−τ l

)

W τ2(1+τ)2
+k2(τ)

∫
dτ

k1(τ)
(
C

(s,n)
l τ+α−τ l

)

W τ2(1+τ)2
, (5.39)

where W is the Wronskian:

W = τ−3−n−2s(1 + τ)2s . (5.40)

Let us draw the attention on few observations that will allow us to compute the coefficients

C
(s,n)
l :

• The solution (5.37) and (5.38) are independent and both rational functions of τ with

just pole singularities in τ = −1 only for n ≥ s. They are instead proportional to

each other if n < s. In the latter case the second independent solution contains

logarithmic singularities beyond the pole singularity around τ = −1. Hence, there

are two cases to analyze separately.

• When n ≥ s in order to ensure the polynomiality of the above particular solution it is

sufficient to require the above two integrands in (5.39) to have vanishing logarithmic

singularity, namely:

∮

τ=−1

k2(τ)
(
C

(s,n)
l τ + α− τ l

)

W τ2(1 + τ)2
= 0 , (5.41)

∮

τ=−1

k1(τ)
(
C

(s,n)
l τ + α− τ l

)

W τ2(1 + τ)2
= 0 . (5.42)

The above equations turn into an algebraic system of equations for α and C
(s,n)
l which

allows to extract the corresponding value of C
(s,n)
l :

C
(s,n)
l = −(−1)l

(s+ l)!

(s+ 1)!

∑s
k=0

(−1)k

Γ(1+l+k−s) F (s, n; k)
∑s

k=0
(−1)k

Γ(2+k−s) F (s, n; k)
, (5.43)

where

F (s, n; k) ≡ (n−k−1)!

k!(s−k−1)!(s+n−k−1)!(2s−k)!
2F1(1+k−s, 1+k−n−s; 1+k−n; 1).
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Practically the first equation does not depend on α and allows directly to get the

above result.

• When n < s the solution for C
(s,n)
l can be just extracted from

∮

τ=−1

k1(τ)
(
C

(s,n)
l τ + α− τ l

)

W τ2(1 + τ)2
= 0 , (5.44)

which does not depend on α, while α can always be tuned in order to cancel the log-

arithmic singularity contained into the other solution of the homogeneous equation.

Hence, one arrives at:

C
(s,n)
l = − (−1)l

2(2s− 1)

n! (l + n+ s)!

s!(s+n−1)!Γ(1+l+n−s)
3F2

(
1− s 1 + n− s − 2s

2− 2s 1 + l + n− s
; 1

)
.

(5.45)

A few examples for n = 0, with the asymptotic behaviour are given below:

s = 2 : C
(2)
l = −(−1)l

2 · 3! l(l + 1)2(l + 2) , (5.46)

s = 3 : C
(3)
l = −(−1)l

5!
l(l + 1)(l + 2)(l + 3)(l(l + 3) + 1) , (5.47)

s = 4 : C
(4)
l = −(−1)l

2 · 7! l(l + 1)(l + 2)2(l + 3)(l + 4)(5l(l + 4) + 3) . (5.48)

l → ∞ behaviour. The generic behaviour can be estimated with analogous techniques

observing that in the l → ∞ limit (n = 0 for simplicity):

2F1(s, s; 1;−τ) ∼
s−1∑

k=0

βk
(τ + 1)s+k

. (5.49)

Setting to zero the pole in τ = −1 in eq. would then require expanding τ s
(
α− τ l + τχ

)

up to order 2s around τ = −1. Therefore, the leading behaviour for l → ∞ is given by:

C
(s)
l ∼ l2s . (5.50)

The same behaviour holds for n 6= 0.

5.3 Locality and 4d Vasiliev’s equations

We should now compare the above asymptotic behaviour with the corresponding behaviour

extracted from Vasiliev’s equations in the Schwinger-Fock gauge, [27]:

α
(s)
l ∼ 1

l3
. (5.51)

Surprisingly, the above gives a divergent series for any s. This persists also for other

couplings beyond the n = 0 case as soon as the interaction is pseudo-local. Some examples
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are the s = 2 case, for which the overall coefficient of the corresponding primary canonical

current reads:

− 1

12

∞∑

n=1

l , (5.52)

and the spin-4 and spin-6 cases, where one finds the following primary canonical current

overall coefficients:

s = 4 , − 1

3 · 7!

∞∑

l=1

l(l + 1)(l + 2)2(3l + 11)(5l(l + 4) + 3)

(l + 3)(l + 4)
, (5.53)

s = 6 , − 3

5 · 11!

∞∑

l=1

(l + 4)!

(l − 1)!

(l + 3)(5l + 28)(7l(l + 6)(3l(l + 6) + 19) + 20)

(l + 5)(l + 6)
. (5.54)

Other spin-s examples can be easily found by combining the Cl coefficients with the coeffi-

cients extracted from Vasiliev’s theory in [27]. We then conclude that Vasiliev’s equations

in the Schwinger-Fock gauge do not give rise to local cubic couplings in the bulk. The

main reason for this can be traced back to the fact that couplings are realised in Vasiliev’s

equations in terms of the ⋆-product with a typical factorial damping 1
l! (that is factorised

and always implicit in the contour integral representation above) only improved by an ad-

ditional 1
l3
. Notice that even attempting a naive ζ-function regularisation does not seem

to give results compatible with HS-symmetry due to the spin-dependent behaviour of the

most divergent piece ∼ l2s−3. Possible interpretation of this result will be discussed in the

conclusions. What we can say at this point is that these divergences signal that Vasiliev’s

equations in the Schwinger-Fock gauge turn out to be a bit more non-local than expected,

to the extent that it is not possible to extract from them the coefficient of the primary

canonical couplings without specifying a regularisation scheme for the above series (5.52)

and (5.53). Furthermore, let us mention that we have been unable to find any standard

ζ-function regularisation compatible with HS-symmetry for all spins. Finally we want to

stress here the key difference between our case and the infinite sums appearing in [52]

is that what needed to be regularised was the sum over spins rather than the sum over

contributions from higher-derivative terms.

6 AdS/CFT and locality: the 3d example

This section is devoted to correlation function computations in the context of 3d AdS/CFT

correspondence (see e.g. [25, 53–56] for related results and similar computations). For

brevity we concentrate on the 3d case leaving the 4d case for a future publication. The

main outcome of this discussion will be to translate the implications of the locality criterion

of the previous section in terms of Witten diagrams and corresponding CFT correlators

(see also [57] for some related CFT results). To anticipate the result, the primary canonical

current projection mentioned above turns out to match what one would obtain by pulling

back in AdS the standard CFT bilinear form, making the CFT nomenclature primary

current even more appropriate.
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6.1 Scalar propagators

Before moving to the detailed amplitude computation it is useful to set all relevant con-

ventions for boundary-to-bulk propagators. The AdS3-space in Poincare coordinates is

given by

hαβ = − 1

2z

(
dz dx+

dx− −dz

)
, ωα

β = − 1

2r

(
0 dx+

−dx− 0

)
, (6.1)

with x± = x± t, which results into

ds2 = Tr(h ⋆ h) =
1

2z2
(dx+dx− + dz2) . (6.2)

Boundary-to-bulk propagator is a simple Gaussian [24]:

C(y) = K
1

2 exp

(
iφ

2
yαF

ααyα

)
, (6.3)

where K is the Witten propagator

K =
z

x+x− + z2
, (6.4)

and the wave vector

Fαα
0 =

1

x+x− + z2

(
2zx+ x+x− − z2

x+x− − z2 −2zx−

)
, (6.5)

squares to the unit matrix

FαβF β
γ = ǫαγ . (6.6)

Given two points on the boundary, which are specified by some matrices F1 = (F1)α
β and

F2 = (F2)α
β , we need to estimate how Cα(n)ν(l)(F1)C

ν(l)
α(m) (F2) grows with l. In order to

analyse this problem systematically it is convenient to resort again to a generating function

representation for the above terms. In the following we introduce the generating function:

K(τ, s, r) = e−iτ∂α
u ∂vαC(u+ sy, φ)C(v + ry,−φ)

∣∣∣
u=v=0

, (6.7)

from which one can extract the term with l contractions of indices simply looking at the

coefficient of τ l. Let us notice that every backreaction can be expressed in terms of K. In

the following we are going to compute the above generating function on propagators. The

above computation can be performed explicitly with an integral representation similar to

the one used for the Moyal product. To this end, upon performing a Fourier transform on

appropriate complex directions we end up with the following integral representation:

K(τ, s, r) =
1

τ2

∫
d2u d2v e

i
τ
uαvαC(sy + u|φ)C(ry + v| − φ) . (6.8)

It is now straightforward to plug in the Gaussian propagator Ci(y|φ) = e−
iφ

2
yFiy and

perform the Gaussian integrals ending up with:

K(τ, s, r) = [K1K2]
1

2det(1− τ2F1F2)
− 1

2

× exp

[
− iφ

2
y

[
1

1− τ2F1F2

s

τ
(sτF1−φr)− 1

1−τ2F2F1

r

τ
(rτF2−φs)

]
y

]
. (6.9)
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For later convenience it is useful to restrict the attention to canonical currents:

s =
X

2
, r =

X

2
. (6.10)

Any other choice associated to improvements gives vanishing Witten diagrams regardless

the number of derivatives. We also observe that the above expression has an expansion in

terms of τ of the type:

K(τ,X) ∼
∑

X2sτ l−1[K1K2]
1

2
+s+⌊(l−1)/2⌋ × . . . (6.11)

where the . . . are non-singular functions in x±1 and x±2 . Assuming that we can compute the

CFT correlator summing over each independent contribution for various l we then need the

asymptotic expansion of the boundary to bulk propagator [K1K2]
1

2
+s+⌊(l−1)/2⌋ as z → 0.

This can be easily extracted by considering the following identity:

∫
dx2

(
z

x+x− + z2

)λ+n

(x+x−)k = 2πz2−λ−n+2k

∫ ∞

0
dr

r2q+1

(r2 + 1)λ+n

= πz2−λ−n+2k k!Γ(n+ λ− k − 1)

Γ(n+ λ)
, (6.12)

from which:

[K1K2]
λ+s+l̂ ∼ πKλ+s+l̂

1

s+l̂∑

k=0

z2−λ−s−l̂+2kΓ(s+ l̂ + λ− k − 1)

k!Γ(s+ l̂ + λ)
(∂x+∂x−)kδ(2)(x2) (6.13)

+ πKλ+s+l̂
2

s+l̂∑

k=0

z2−λ−s−l̂+2kΓ(s+ l̂ + λ− k − 1)

k!Γ(s+ l̂ + λ)
(∂x+∂x−)kδ(2)(x1) , (6.14)

where l̂ = ⌊(l − 1)/2⌋, while only the leading terms have been kept, discarding trivial

contact terms proportional to δ(2)(x1)δ
(2)(x2). As we will see increasing powers of l require

to take into account more and more contact terms for the computation of the amplitude.

This feature is the counterpart of the convergence behaviour mentioned above and will lead

to the same conclusions for locality.

6.2 ω propagator

We now turn to the discussion of the boundary to bulk propagator for ω. The trick here,

since any ω is pure gauge, is to find the corresponding gauge parameter that would give

rise to the correct Brown-Henneaux boundary behaviour [58–60].

In our conventions the flat AdS3 connection is embedded into the ⋆-product algebra

as follows:

W0 =
1

z

[
dx+ T22+dx− T̃11+Ddz

]
= e− log zD

[
dx+ T22+dx− T̃11

]
elog zD + e− log zDd elog zD,

(6.15)

where we have conveniently defined the generators:

Tii = − i

4

(
1 + φ

2

)
yi yi , T̃ii = − i

4

(
1− φ

2

)
yi yi , D = − i

4
φ y1 y2 , (6.16)
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with D the dilatation generator satisfying:

[
D,

(
1 + φ

2

)
y1

]

⋆

= −1

2

(
1 + φ

2

)
y1 , (6.17)

[
D,

(
1 + φ

2

)
y2

]

⋆

= +
1

2

(
1 + φ

2

)
y2 , (6.18)

[
D,

(
1− φ

2

)
y1

]

⋆

= +
1

2

(
1− φ

2

)
y1 , (6.19)

[
D,

(
1− φ

2

)
y1

]

⋆

= −1

2

(
1− φ

2

)
y2 . (6.20)

In our conventions:

y1⋆ = y1 + i∂y2 , y2⋆ = y2 − i∂y1 , (6.21)

⋆y1 = y1 − i∂y2 , ⋆y2 = y2 + i∂y1 . (6.22)

At the boundary of AdS3 we can then require:

Dξ=dx−
(
− i

4

)s−1(1+φ

2

)
y2s−2
1 2πµδ(x+0 −x+3 )−dx+

(
− i

4

)s−1(1+φ

2

)
y2s−2
2

2s− 1

(x+0 −x+3 )
2s

,

that upon acting with e− log zD has the right Brown-Henneaux behaviour for a chiral δ-

function source to the spin-s field ω. Using that the adjoint derivative takes the simple

boundary form

Dξ = dx+
[
∂+ +

(
1 + φ

2

)
y1∂y2

]
ξ + dx−

[
∂− −

(
1− φ

2

)
y2∂y1

]
ξ , (6.23)

and requiring the above boundary condition to be matched we get the following simple

form for the gauge parameter ξ (see also [53]):

ξ(s)(x±0 ;x
±
3 ) = µ

(
− i

4

)s−1(1 + φ

2

) 2s−1∑

n=1

1

(x+0 − x+3 )
n
y2s−n−1
1 yn−1

2 . (6.24)

6.3 Witten diagram computation

We can now turn to the computation of Witten diagrams using the following trick (see

e.g. [53]) to perform the integral over AdS3 that also makes manifest that the 3d theory

dynamics is purely from the boundary:

∫

AdS3

Tr [ω ⋆ J ]=

∫

AdS3

Tr
[
Dξ(s) ⋆ J

]
=

∫

AdS3

dTr
[
ξ(s) ⋆ J

]
= lim

z→0

∫

∂AdS3

Tr
[
ξ(s) ⋆ J

]

dz=0
.

(6.25)

Considering now that in Poincaré coordinates

J
∣∣∣
dz=0

= Hαα∂y
α∂

y
αK(τ) = − 1

2z2
dx− ∧ dx+∂y1∂y2K(τ) , (6.26)
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and using the ⋆-product formulae (6.21) we end up with the following result for the Witten

diagram:

lim
z→0

∫
dx−dx+

µ

4z2

(
− i

4

)s−1 2s−1∑

n=1

−zn−s

(x+0 − x+3 )
n
(i∂y2)

2s−n(−i∂y1)
nK(τ)

∣∣∣
y1=y2=0

, (6.27)

where the dependence on s and r in K(τ) has been fixed in order to pick the canonical

current sector. The leftover integral can then be easily evaluated upon substituting the

expansion (6.13) into the above formula and integrating the δ-functions. The main sim-

plification is that all other non-contact terms do not contribute to the limit z → 0. As a

result, considering an expansion in τ of K(τ), we are able to compute all Witten diagrams.

The end result is very simple and provides us also with a double check of the computation

of local improvements performed in section 4.2. Indeed, calling W0 the result obtained for

τ = 0, and corresponding to the Witten diagram of a primary canonical current with no

higher-derivative contribution, the corresponding τ l term can be expressed as:

W (s)
∣∣∣
τ l

= C
(s)
l+1W

(s)
0 . (6.28)

HereW0 is proportional to the canonical conformal structure up to an overall normalisation:

W
(s)
0 = π

(
−1

4

)s (s− 1)!

|x12|

(
x+12

x+13x
+
23

)s

, (6.29)

and the C
(s)
l coincide with the coefficients given in eq. (4.31). This provides a key check

also for the bulk definition of bilinear form given in eq. (2.13) to reproduce the CFT

bilinear form (6.28). We want to also stress again here that this result is a double-check

of the computation of C
(s)
l coefficients given in section 4.2. Furthermore, combining the

above computation for W
(s)
0 with the explicit computation of the corresponding coupling

constants gs = 1
(2s−2)! at the action level in [26] we are also able to match the Witten

diagram computation against the CFT one. Taking into account the normalisation included

in the generating function K(τ) one obtains:

〈
O(x1)Ō(x2)Js(x3)

〉
= π (−1)s

(s− 1)!

|x12|

(
x+12

x+13x
+
23

)s

. (6.30)

Notice also that in our normalisation the two point function is given by:

〈Js(x1)Js(x2)〉 =
π

4

(2s− 1)!

(x+12)
2s

, (6.31)

which makes our result in complete agreement with the results of [24] and with the CFT

side. Therefore this computation is also a double-check of the coupling constants found

in [26], as they precisely match the coupling constants one would extract by requiring the

bulk theory to reproduce the CFT correlators.

To summarise, the Witten diagram computation leads to the same conclusions about

convergence and hence to the same distinction between non-local and local interactions
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according to section 4.2. Most importantly the above analysis proves that our criterion

for the functional class in HS theory gives a complete prescription for a proper set of non-

local redefinitions that do not affect the computation of AdS/CFT observables (Witten

diagrams in particular). More interestingly, our bulk locality criterion defines a bilinear

form on the space of currents (2.13) which agrees with the one on the CFT side (6.28). We

expect the above results to generalise to higher dimensions too and we defer the explicit

4d Witten-diagram results to a future publication.

To reiterate, the generalised locality condition is tantamount to the requirement that

the formal pseudo-local expansion commutes with the integration over AdS space. It

might still be however possible that the pseudo-local expansion does not make sense after

taking the AdS integral term by term, but it does make sense if one considers the pseudo-

local kernel as a whole. In this case the interaction will be considered non-local. This

possibility should be understood as the possibility to regularise the sum using some analytic

continuation.

7 Discussions

The aim of this paper is to fill a gap in the formulation of HS theories by proposing a

functional-space for admissible pseudo-local redefinitions. We also give explicit conditions

on convergence of the corresponding pseudo-local interactions focusing for convenience on

the quadratic order in terms of the equations of motion or cubic order from a Lagrangian

perspective. We hope the result of this paper to be useful for a better understanding of

the locality issue in the context of HS theories.

The results presented in this paper provide a criterion to understand the pseudo-local

tails arising in HS theories but also present some puzzles in relation with Vasiliev’s equa-

tions. Indeed the main outcome of this paper is that the Schwinger-Fock gauge usually used

to derive unfolded equations from Vasiliev’s ones gives rise to divergent pseudo-local tails.15

Let us stress on the other hand that in [26] the cubic action was completely fixed

by requiring the associated deformation of gauge symmetries to match the HS algebra

structure constants. Unfortunately, similar results can be extended to 4d only for a subset

of the vertices for which a pseudo-local tail is found from Vasiliev’s equations.

To conclude, we observe that (i) at the level of cubic action the current coupling is

unique and any pseudo-local tail can be projected onto its primary canonical component;

(ii) recent results [26, 27, 50] as well as general considerations point towards HS theories

being ordinary field theories in AdS in the sense that there exists an action with some finite

couplings in front of each orthogonal local term, there should be infinitely many of different

local couplings though; (iii) HS symmetry favors pseudo-local expressions since it mixes

derivatives of the fields. Given (iii) it seems that the most natural vertices consistent with

the HS symmetry should still be pseudo-local. This is not in contradiction with (i) and (ii)

as one can delocalise any local primary coupling by representing the coefficient a in front of

it as a convergent infinite sum a =
∑

l al. In this way every primary canonical coupling can

be replaced with
∑

l C
−1
l al times a successor with l pairs of contracted derivatives. Rapid

15See also [61] for some preliminary discussion regarding the non-local tails arising in Vasiliev’s equations.
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growth of Cl imposes severe restrictions on such delocalised representations. Obviously, any

such delocalised coupling can be resummed back into the primary canonical one without

producing any infinity.

While a full exhaustive solution to this puzzle is outside the scope of this paper, there

are at least two alternatives to consider:

• Some of the gauge transformations in the Vasiliev theory correspond to non-

acceptable field-frames at the level of the physical HS equations of motion. In

particular, at this order the gauge ambiguity in Vasiliev’s equations amounts to a

functional ambiguity that is commonly set to zero, but which plays an important

role in determining the physical unfolded equations. Unless the class of such gauge

transformations is constrained in some way and at least one point in the domain of

admissible gauge transformations is given, one generically ends up with a “non-local”

HS theory. One would then need to find an appropriate gauge choice tantamount to

identifying a local HS theory among all possible non-local ones. One option is to find

at least one gauge choice in Vasiliev’s equations that produces local HS interactions

yielding the correct holographic correlation functions compatible with HS symme-

try [62–65] without regularising any infinity. At present, however, we can only say

that the problem is nontrivial since in the Schwinger-Fock gauge Vasiliev’s theory

does not obey the locality criterion discussed here, while all naive regularisations of

the divergent series we find seem to be incompatible with HS symmetries.

Note that the gauge freedom mentioned above can be also reduced to (not-admissible)

field-redefinitions of the physical fields ω and C. Therefore, instead of looking for a

physical gauge in Vasiliev’s equations we can also look for redefinitions that render

the pseudo-local expressions localisable in the sense of eq. (2.15). However, by looking

at J(C,C) we see that there is no way to cure the problem by a simple modification of

the coefficients. This is true because of their spin-independent fall-off at l → ∞. The

only resolution would be to redefine the whole pseudo-local current by some exact

form J = DU with a new one Jloc., which can also be represented in D-exact form,

since any D-closed two-form bilinear in C is exact. Therefore, the redefinition or the

gauge choice that solves the problem has to be a quite singular one.

• Another possible way to attack this problem is to rely on holography by starting from

the most general ansatz for the bulk interactions and requiring it to reproduce the

correct correlation functions. The outcome of this result will lead us to infer a poste-

riori the correct gauge-choice. This program however seems to be intractable without

using specific features of the theory to be reconstructed, i.e. the HS symmetry for in-

stance.16 In addition one can avoid proliferation of pseudo-local expressions to some

extent by choosing the ansatz appropriately and fixing a minimal basis. However, it

is important to keep in mind that going to quartic or higher orders in perturbation

theory one will face a more complicated version of the same functional class problem

analysed in this paper that deserves a close study for a better understanding of HS

16See however [50, 66] for some recent results along such direction.
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theories. First of all, it should be analysed what is the minimal basis to study the

locality problem at higher orders due to the mixing between current exchange and

contact terms. Secondly, a naive extension of the locality condition considered here

to the quartic order:
∑

l,s

α
(s)
l J

(l)
m(s)(C,C) J (l)m(s)(C,C) , (7.1)

with J
(l)
m(s)(C,C) a conserved current with s+ l derivatives of the type:

J
(l)
m(s)(C,C) ∼ �

lJcan
m(s)(C,C) , (7.2)

suggests the following asymptotic behaviour for the corresponding quartic coefficients

in the derivative expansion:

α
(s)
l ≺ 1

l!2
1

l2s+1
, (7.3)

which should be verified against explicit computations. Notice that here we have

restored the factorial damping coefficients hidden in our generating function repre-

sentation of the coefficients. On top of this, one should also take into account the fact

that a redefinition at cubic order will have the effect of mixing current exchange am-

plitude and contact terms possibly making the contact terms divergent and non-local

in some field frame.

For this reason it is quite important to generalise our discussion of locality at higher-

orders to be able to quantify along the lines of the discussion carried out here the

degree of non-locality of higher-order interactions. We leave a detailed analysis of

this problem for the near future.
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A Notation and conventions

The indices m, n, . . . = 0, . . . , d are covariant AdS indices. Indices a, b, . . . = 0, . . . , d are

tangent indices at a point on AdS. Indices M, N, . . . = 0, . . . , d + 1 are ambient space

indices. Dotted and undotted indices α, β, . . . = 1, 2 and α̇, β̇, . . . = 1, 2 refer to the

fundamental and anti-fundamental representations of 4d Lorentz algebra sl(2,C) while in

3d we only have undotted indices of sl(2,R). Finally, the indices A, B, . . . = 1, . . . , 4 label

the vectorial representation of sp(4,R) ∼ so(3, 2).

The symmetrisation convention and index notation goes as follows: symmetrised in-

dices are denoted by the same letter and are assumed to be symmetrised without extra
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factors. For example, XαYα will stand for Xα1
Yα2

+Xα1
Yα2

, without further normalisation.

If symmetric indices sit on the same object we further contract the notation as Tα(n). Note

that this can lead e.g. to expressions of the form XαYα(n−1), which should be understood

as Xα1
Yα2...αn + (n− 1) terms.

All symplectic indices are raised and lowered with the appropriate antisymmetric met-

ric: ǫαβ = −ǫβα, ǫ12 = 1 or CAB = −CBA in the sp(4) case that is a block diagonal

matrix built from the sp(2) epsilon tensor. By convention, when not displayed explicitly,

contraction of indices goes from up-down: ξη ≡ ξαηα.
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