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Abstract: In F-theory, U(1) gauge symmetries are encoded in rational sections, which

generate the Mordell-Weil group of the elliptic fibration of the compactification space. Re-

cently the possible U(1) charges for global SU(5) F-theory GUTs with smooth rational

sections were classified [1]. In this paper we utilize this classification to probe global F-

theory models for their phenomenological viability. After imposing an exotic-free MSSM

spectrum, anomaly cancellation (related to hypercharge flux GUT breaking in the pres-

ence of U(1) gauge symmetries), absence of dimension four and five proton decay operators

and other R-parity violating couplings, and the presence of at least the third generation

top Yukawa coupling, we generate the remaining quark and lepton Yukawa textures by

a Froggatt-Nielsen mechanism. In this process we require that the dangerous couplings

are forbidden at leading order, and when re-generated by singlet vevs, lie within the ex-

perimental bounds. We scan over all possible configurations, and show that only a small

class of U(1) charge assignments and matter distributions satisfy all the requirements. The

solutions give rise to the exact MSSM spectrum with realistic quark and lepton Yukawa

textures, which are consistent with the CKM and PMNS mixing matrices. We also dis-

cuss the geometric realization of these models, and provide pointers to the class of elliptic

fibrations with good phenomenological properties.
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1 Introduction and overview

Remarkable progress in the construction of global F-theory compactifications in recent

years has resulted in both conceptual and technical advances. After the initial surge in

particle physics explorations of local F-theory Grand Unified Theories (GUTs), the study

of phenomenological implications was somewhat side-stepped in recent advances in global

model building.

Global models have in particular seen much progress in view of a comprehensive un-

derstanding of F-theory vacua — both in terms of the base as well as the fiber geometry.

In view of this, it is timely to conduct a survey of 4d F-theory vacua and their phenomeno-

logical viability. The goal of this paper is to provide such an analysis, by imposing the

most stringent phenomenological requirements upon the F-theory compactifications with

additional U(1) symmetries and their 4d effective theories, in particular an exotic-free

Minimal Supersymmetric Standard Model (MSSM) spectrum, absence of dangerous cou-

plings, such as proton decay operators, as well as consistent flavor physics generated by a

Froggatt-Nielsen mechanism.

Central to both guaranteeing the absence of dangerous couplings and the applicability

of a Froggatt-Nielsen mechanism is the presence abelian gauge symmetries. One of the

string theoretic inputs in our analysis is the classification of U(1) charges in SU(5) F-

theory GUTs, which was recently performed in [1]. This classification result utilizes general

insights from codimension two fibers in [2], which realize the matter fields, and consistency

of rational sections, which give rise to U(1) gauge potentials. The one assumption in this
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classification is that the rational sections are smooth. The resulting analysis does not

provide a constructive way of obtaining the elliptic fibrations, but gives a classification

of all consistent fibers with rational sections, which in turn determines the set of matter

U(1) charges. It reproduces all charges known to exist in explicit geometric constructions

based on hypersurfaces and complete intersections [3–20], but the set of possible charges

from this classification is strictly larger than the ones arising from known geometries. This

üeber-set obtained in [1] contains all charges that can potentially arise in global F-theory

compactifications, under the assumption of smooth rational sections, and will be referred

to as F-theoretic U(1) charges.

A second constraining factor in F-theory GUT model building is the requirement of can-

cellation of anomalies that arise in the context of GUT breaking via hypercharge flux [21–

23], which to date is the only known mechanism to break the GUT group in F-theory with-

out immediately introducing exotics, such as is the case for Wilson line breaking [22, 24].

In the presence of additional U(1) symmetries, hypercharge flux induces a chiral spectrum,

which can be anomalous. The MSSM-U(1) mixed anomalies were determined in [25–28]

and form a stringent constraint on the matter spectra and associated U(1) charges. It is

worth noting, that none of the models with charges in known geometric constructions solve

these anomaly constraints without introducing exotics or dangerous proton decay opera-

tors.1 However in the F-theory charge set obtained in [1] we do find solutions, including

models with realistic flavor physics. One of the goals of this paper is to identify these

phenomenologically sound models, provide the corresponding charge patterns as well as

fiber types, and thereby give guidance towards their geometric construction.

Before diving into a summary of the results of our analysis, we begin with a brief

overview of F-theory phenomenology, in particular in view of flavor physics, which will

play a key role in our analysis. The most promising particle physics results were thus

far obtained in local F-theory GUTs and their associated spectral cover models, i.e. 4d

supersymmetric GUTs obtained from compactifications of the 7-brane effective theory on

a four-cycle, that is embedded in a Calabi-Yau four-fold. Proton decay was studied in

the context of local spectral cover models in [25, 27, 29–32]. The anomalies of [25–28] in

conjunction with constraints on proton decay operators were surveyed in [27, 32] and in

particular it was shown that in local spectral cover models, the anomalies were in conflict

with U(1) symmetries required for suppression of dimension five proton decay operators.

The only way to consistently combine these two effects was to allow for exotics.

Flavor in local F-theory models has a long history starting with the initial exciting

insight that the top Yukawa coupling is generated at order one at a local E6 enhance-

ment point [23, 33–35] and furthermore refined developments regarding corrections to the

leading order Yukawa matrices [36–51], see [52, 53] for reviews of various particle physics

implications of F-theory models. Local flavor models have undergone various stages of

accurateness. The present status is that world-volume gauge fluxes do not lead to any cor-

rections at all, but non-commutative fluxes in combination with non-perturbative effects

1We will determine a new class of elliptic fibrations, which do in fact solve the anomalies and suppress

the couplings of dangerous operators. This will be discussed in section 7.2. However these models are not

amenable for an FN-type generation of flavor textures.
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can potentially give rise to suitable corrections. Froggatt-Nielsen models in local F-theory

models were studied comprehensively in [54], however it was shown that unless one imposes

by hand an R-parity, the local models universally suffer from regeneration of dangerous

couplings. Clearly, global constraints, such as the type of U(1) charges, fluxes and most

likely the base geometry provide an additional set of constraints. The local models, by

now are understood to be incomplete in that they do not seem to give rise to all possible

U(1) symmetries that can be constructed globally — this holds true for the geometrically

realized charges, and even more so for the charge classification in [1]. This leads then to the

question whether global models can more successfully implement these phenomenological

constraints, and whether there are any distinct features in such models.

Phenomenological studies of global models have been rather scarce. The toric top-

models were shown not to give rise to appealing flavor models and a stable proton [55].

As an alternative to GUTs, recent work has considered direct construction of the MSSM

in F-theory [56–58], which however requires further careful analysis of the phenomenology.

In this paper we will assess the question of phenomenological implications of the U(1)

symmetries in F-theory based on the über-set obtained in [1], in conjunction with consis-

tency requirements such as anomalies, and provide some insights into how to construct the

relevant geometries.

Overview of results and search strategy

To give the reader an overview of the results, we now summarize our framework and

constraints, and provide pointers to where these are found in the main text of the paper.

The setups we consider are SU(5) GUTs with hypercharge flux GUT breaking in F-theory

compactification on an elliptically fibered Calabi-Yau four-fold. In addition, the following

consistency requirements are imposed:

1. Exact MSSM spectrum and absence of anomalies (A1.)−(A5.) listed in (2.3)−(2.8).

2. U(1) charges within the classification of [1] as summarized in (2.34).

3. U(1) symmetries forbid all couplings (C1.)−(C7.) listed in (2.9)−(2.15).

4. U(1) symmetries are compatible with one generation top Yukawa coupling.

5. Froggatt-Nielsen (FN) mechanism to generate remaining Yukawa textures for both

quarks and leptons, by giving vevs to U(1)-charged GUT singlets without getting in

conflict with the constraints (C1.)−(C7.).

A more detailed exposition of these conditions can be found in section 2. The survey is

organized by number of U(1) symmetries, number of 10 and 5̄ representations, N10 andN5̄,

respectively. The models with a single U(1) generically do not allow for very interesting

flavor physics, without further input, such as non-perturbative effects, going beyond an

FN-type mechanism. For N10 = 1 there is exactly one solution, which satisfies all anomaly

and (C1.)–(C7.) constraints, given by I.1.4.a in table 1. All other models for any N5̄

regenerate dangerous couplings at the same order as Yukawa couplings, or include exotics

(for high enough number of matter multiplets).
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Models with two additional U(1) symmetries allow for a more interesting solution

space. We find a large set of solutions to the constraints, and focus on two subclasses:

either the models satisfy conditions 1.−5., or they satisfy 1.−4., but have a geometric

realization. The models satisfying 1.−5., which will be referred to as F-theoretic FN-models,

are discussed in section 5, and their spectra are summarized in tables 4 and 5. These models

generate known Yukawa textures for the quarks, and furthermore provide realistic lepton

and neutrino sectors. The matter charges of these solutions are within the set of F-theory

U(1) charges, however we do not yet know of an explicit construction. Nevertheless, to guide

such geometric endeavours, we summarize the fiber types of these models in section 7.3.

The second subclass of two U(1) models satisfy 1.−4., but not 5., i.e. do not allow for

a realistic FN-mechanism. However, they have the advantage that we can construct the

corresponding geometries:

5̃. Geometric construction in terms explicit realization of the elliptic fiber.

The existence of such global solutions to the anomalies and constraints on couplings is in

stark contrast to local models, where there are no solutions satisfying all the conditions

1.−4. (with 2. modified to mean local spectral cover U(1)s). This class of global models

are discussed in section 4 and their geometric realization is given in section 7.2.

2 Constraints

This section provides an overview of all the constraints, and outlines the scope and strategy

of our search. The setup in the following will be SU(5) supersymmetric GUTs, with

additional U(1) symmetries with a realization in F-theory compactifications on Calabi-Yau

four-folds.

The first type of conditions arise from basic consistency of the 4d effective theories,

namely an exotic-free MSSM spectrum and superpotential couplings, as well as absence of

dangerous couplings that render the models inconsistent, which arise for instance through

proton decay and R-parity violation. Throughout this paper we will impose that suppres-

sions of couplings will be administered through additional U(1) symmetries, which will be

one of the F-theoretic inputs into the models. Additional phenomenological requirements

arise from flavor constraints. There is somewhat more flexibility in how the flavor hierar-

chies are engineered, and we will do a systematic analysis including flavor considerations

using Froggatt-Nielsen type models in section 5.

The second type of constraints are specific to the class of theories, namely GUTs with a

UV completion within F-theory. Here, one class of constraints arise from the GUT breaking,

which in F-theory can be realized in terms of hypercharge flux breaking, i.e. non-trivial

flux in the direction of the U(1)Y [22, 23]. In addition to imposing geometric conditions

on the class of this background flux,2 if the model has in addition abelian symmetries, the

2The requirement is that it is topologically trivial as a two-form in the Calabi-Yau, but non-trivial on

the 4-cycle that realizes the GUT theory. Examples of geometries realizing such classes are known see

e.g. [59, 60]. However constructions of the hypercharge flux in terms of an M-theory G4 flux is thus far

been elusive, although recent progress was made in [61] for the U(1)-restricted Weierstrass model of [3].

Extending this work to models with rational sections would be of vital importance.
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mixed MSSM-U(1) anomalies need to be cancelled [25–28].The second class of F-theoretic

constraints is the type of U(1) symmetries. In the recent work [1], constraints on these

have been determined. The combination of F-theoretic U(1) charges and the hypercharge

flux induced anomalies result in additional constraints on the possible U(1) charges and

distributions of the matter fields. In the following we will discuss both classes of constraints

in detail.

2.1 MSSM spectrum and anomalies

We consider N = 1 supersymmetric GUTs with SU(5) gauge group and matter in the

10 and 5̄ representation. The Higgs doublets of the MSSM arise from fundamental and

anti-fundamental representations of the SU(5). In F-theory the GUT multiplets are ge-

ometrically localized on complex curves, so-called matter curves inside a 4-cycle SGUT,

which is wrapped by 7-branes in F-theory. The low energy theory on the 7-brane realizes

the gauge degrees of freedom. Chirality is induced by G4-flux, and will be labeled by Ma

and Mi for 10 and 5̄ matter. GUT breaking is achieved by non-trivial flux in the U(1)Y
direction, 〈FY 〉. This lifts both the XY bosons of the gauge group SU(5), as well as ensures

that the Higgs triplets are massive. The restrictions of the hypercharge flux on the 10 and

5̄ matter curves will be referred to in terms of integers Na and Ni, respectively.

In summary the matter content of the SU(5) GUT, with M chiral generations and

restriction of hypercharge flux N is parametrized as follows:

SU(5) representation MSSM representation Particle Chirality

(3,2)1/6 Q Ma

10a (3̄,1)−2/3 ū Ma −Na

(1,1)1 ē Ma +Na

5̄i
(3̄,1)1/3 d̄ Mi

(1̄,2)−1/2 L Mi +Ni

(2.1)

The integers M and N have to satisfy basic requirements of realizing the exact MSSM

spectrum. In this paper we will in particular impose that the spectra are free from exotics.

In addition to placing constraints on the values of M and N , the absence of exotics places

a bound on the number N of distinctly charged 10 and 5̄,

N10 ≤ 3

N5̄ ≤ 8 .
(2.2)

To derive these bounds, note that if we were to consider more than three 10s then some of

these must have Ma = 0 as there are only three generations of left-handed quarks. Allowing

a non-zero restriction of hypercharge flux over these allows the presence of either a right-

handed quark or lepton with the wrong chirality for the MSSM spectrum, which results in

the presence of exotics. Likewise, the maximum number of 5̄s is given by the sum of three

generations of left-handed leptons and right-handed quarks, in addition to Hu and Hd.
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In addition to the GUT gauge symmetry, we require additional abelian gauge factors,

U(1)α, α = 1, . . . , A, under which the SU(5) representations 10a and 5̄i carry charges qαa
and qαi , respectively. The type of U(1) charges are determined in terms of the F-theory

geometry and will be the subject of section 2.4. The combined system of FY hypercharge

flux breaking and additional U(1) symmetries implies that there can potentially be mixed

MSSM-U(1) anomalies.

Anomaly cancellation and the requirement of three generations imply the following

set of constraints on the chiralities M , hypercharge flux restriction N and charges qα —

all sums
∑N10

a=1 are over 10 representations,
∑N5̄

i=1 over 5̄s, with NR corresponding to the

number of matter multiplets in the representation R with distinct U(1) charge:

(A1.) MSSM anomalies ∑
i

Mi =
∑
a

Ma . (2.3)

(A2.) Mixed U(1)Y -MSSM anomalies [25–27]∑
i

qαi Ni +
∑
a

qαaNa = 0 , α = 1, . . . , A . (2.4)

(A3.) Mixed U(1)Y -U(1)α-U(1)β anomalies [28]

3
∑
a

qαa q
β
aNa +

∑
i

qαi q
β
i Ni = 0 , α, β = 1, . . . , A . (2.5)

(A4.) Three generations of quarks and leptons:∑
a

Ma =
∑
i

Mi = 3 . (2.6)

(A5.) Absence of exotics: ∑
a

Na =
∑
i

Ni = 0 . (2.7)

(A5.) One pair of Higgs doublets: ∑
i

|Mi +Ni| = 5 . (2.8)

The set of constraints (A1.)−(A5.) will be strictly imposed on each model, as a minimal

requirement for realistic 4d physics. Note that we have not as yet imposed any Yukawa

couplings — which Yukawas will be required to be compatible with the U(1) charges will

be discussed in section 2.3. We now turn to additional conditions on the U(1) charges, on

top of the anomaly constraints, which will ensure absence of dangerous couplings, such as

proton decay.

2.2 Proton decay, µ-term and R-parity violation

Rapid proton decay and R-parity violation (RPV) can cause supersymmetric GUTs to

become phenomenologically unfit. In this paper we will utilize U(1) symmetries to forbid

these couplings. The U(1) symmetries are broken, at a higher scale and for some of these

couplings we will require that they are not regenerated, e.g. by giving vevs to U(1)-charged

singlets.
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2.2.1 Summary of dangerous couplings

Let us first summarize the various problematic couplings and then discuss the bounds on

their suppression — i, j, · · · and a, b, · · · label matter representations, whereas I, J, · · · =

1, 2, 3 and A,B, · · · = 1, 2, 3 label generations:

(C1.) µ-term:

µ5Hu 5̄Hd
(2.9)

(C2.) Dimension five proton decay:

δ
(5)
abci10a10b10c5̄i (2.10)

(C3.) Bilinear lepton number violating superpotential coupling:

βi5̄i5Hu ⊃ βILIHu (2.11)

(C4.) Dimension four proton decay:

λ
(4)
ija5̄i5̄j10a (2.12)

(C5.) Tri-linear lepton number violating Kähler potential couplings:

κabi10a10b5̄
†
i ⊃ κABIQAūBL

†
I (2.13)

(C6.) Dimension five lepton violating superpotential coupling:

γi5̄i5̄Hd
5Hu5Hu ⊃ γILIHdHuHu (2.14)

(C7.) Dimension five lepton violating Kähler potential coupling:

ρa5̄Hd
5†Hu

10a ⊃ ρAHdH
†
uēA (2.15)

We require these couplings to be absent at leading order. Furthermore, if a Yukawa matrix

element is generated by a singlet vev, we require that these operators do not re-appear

with the same singlet suppression. In the case that multiple singlet vevs are required to

generate a certain forbidden coupling, we study in detail whether the suppression is within

the bounds that we summarize below. This occurs frequently in our analysis for dimension

four and five proton decay operators.

Note that, if the top and bottom Yukawas are generated for all generations, then

compatibility of the U(1) symmetries with the Yukawas as well as absence of the µ-term

(C1.) implies (C2.) with opposite sign. However, this needs to be checked in addition, if

not all Yukawas are generated perturbatively, as in most of the following models.

Imposing one top Yukawa coupling (for at least one generation, see (2.25)), as well as

the absence of (C5.) implies that there cannot be 5̄ matter on the same curve as Hu i.e.

Y t, (C5.) ⇒ Mi = 0 , Ni = −1 i = Hu . (2.16)

Likewise, imposing that the bottom Yukawa couplings are realized (either at leading order

or regenerated by singlet vevs, see (2.26)), as well as the absence of the coupling (C4.)

implies that there cannot be 5̄ matter on the same curve as Hd, i.e.

Y b, (C4.) ⇒ Mi = 0 , Ni = 1 i = Hd . (2.17)

– 7 –
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2.2.2 µ-term

The µ-term is a supersymmetric Higgsino mass term. Radiative electroweak supersymme-

try without much tuning in the MSSM requires µ to be around O(100)GeV. If this coupling

is generated at tree-level, this cannot be achieved without a fair amount of fine-tuning and

low-energy supersymmetry does not address the hierarchy problem. One way to avoid this

problem is to forbid the µ-term at the high scale with a U(1) symmetry — a so-called

PQ U(1) symmetry, i.e. the charge of the Hu and Hd do not add up to zero. The µ-term

can then be generated by a coupling to a charged singlet S (or products of singlets) either

via the superpotential or the Kähler potential. Concretely the µ-term can for instance be

generated as follows
S†

Λ
HuHd , (2.18)

where the 〈FS〉
Λ then generically sets the scale of the µ-term, which is the Giudice-Masiero

mechanism [62]. This type of µ-term has wide application in gravity [62, 63] but also in

gauge mediated supersymmetry breaking models, see for instance also in F-theory [64].

We shall not discuss the specific mechanisms of supersymmetry breaking in this paper, as

these are highly model dependent, thus deviating from the goal that we set out here, to

be as comprehensive and general as possible. For our purposes we will impose that the

coupling (C1.) is absent at tree-level.

2.2.3 Dimension 4 proton decay operators

Dimensions four and five proton decay operators are highly constrained in GUT models,

and one of the requirements in our search is the compatibility of the models with the bound

on the lifetime of the proton given by τp ≥ 1034 years [65]. The dimension four proton

decay operators originate in the coupling

λ
(4)
ija5̄i5̄j10a, (2.19)

where the 5̄i and 10a denote matter representations. This operator results in the following

couplings,

λ0
IJALILJ ēA + λ1

IJAd̄ILJQA + λ2
IJAd̄I d̄J ūA , (2.20)

where I, J,A label the generation index. Dimension four proton decay occurs via interac-

tions involving products of λi, the main decay channel being p→ π0e+ [66] which involves

the product λ1λ2. If both operators with couplings λ1 and λ2 are present this results in

very fast proton decay. Proton lifetime results in the following bounds on the coupling

constants for the lightest generation [67]

√
λ1λ2 ≤

(
MSUSY

TeV

)
10−12 . (2.21)

Here MSUSY is the mass scale of the supersymmetric particles entering the process, and

will be taken of O(1) TeV. Bounds on the other generation couplings for GUT models are

discussed in [68] and an up to date summary of all bounds can be found in section 6.5

of [69] from indirect searches, and section 7 from direct searches. In particular for λ0 there
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Figure 1. Process giving rise to dimension five proton decay parametrized by δ1
11aI .

are bounds which are much weaker ∼ 10−5, cf. (6.100), and for the other components of

λ1λ2 see (6.110) in [69]. These operators violate baryon or lepton number and thereby

R-parity. In this analysis we require the U(1) symmetry forbid all operators of this type,

and furthermore that singlets do not regenerate them outside of the bounds listed above.

2.2.4 Dimension 5 proton decay operators

The main contribution to proton decay from dimension five operators occurs through the

coupling

δ
(5)
abci10a10b10c5̄i , (2.22)

which gives rise to the operators

δ1
ABCIQAQBQCLI + δ2

ABCI ūAūB ēC d̄I + δ3
ABCIQAūB ēCLI . (2.23)

The bound on the coupling constant due to the interaction involving δ1 is [67]

δ1
112I ≤ 16π2

(
MSUSY

M2
GUT

)
I = 1, 2, 3 , (2.24)

where the relevant diagram is shown in figure 1. The mass MSUSY is set by the mass of

the sfermions contributing to the loop diagram. The operators involving other (s)quark

generations are suppressed with appropriate flavor insertions, i.e. at least the appropriate

CKM elements have to be inserted. This ameliorates the bounds, in particular for operators

involving the third generation.

2.2.5 Remaining B/L violating operators

The remaining couplings are also constrained in particular from limits on flavor changing

processes, see [70] and for a review [69] . The bilinear coupling (C3.) violates lepton number

and leads to a mixing between the Higgs and lepton sectors. At tree-level we will forbid

this coupling, however in section 6 use it to generate neutrino masses. The couplings (C5.),

(C6.) and (C7.) violate either lepton or baryon number, and thus contribute to proton

decay in combination with the other B/L violating operators.
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2.3 Flavor constraints and FN-models

The assignment of the U(1) charges of matter must be such that it allows for a top Yukawa

coupling for the third generation, which amounts to requiring at least one charge neutral

coupling of the form

Y t
ab : λtab10a10b5Hu ⊃ Y u

ABQAūBHu , (2.25)

where A,B label the quark generations. As the mass of the bottom quark is suppressed

with respect to the mass of the top, a bottom Yukawa coupling

Y b
ai : λbai10a5̄i5̄Hd

⊃ Y d
AIQAd̄IHd + Y L

IALI ēAHd , (2.26)

is not necessarily imposed at leading order. Both cases of rank 0 and rank 1 bottom

Yukawa matrices at first order are studied. The up-type and down-type Yukawa matrices,

Y u and Y d are the matrices formed from the couplings Y u
AB and Y d

AI , respectively after the

distribution of MSSM matter has been assigned to the 10 and 5̄ representations.

In the present context we will apply a FN-type mechanism [71] to generate the remain-

ing Yukawa matrix entries, i.e. the U(1)-charged couplings are generated by giving suitably

charged singlets a vev. In a generic F-theory models, the couplings between conjugate fields

are always geometrically generated, i.e. the singlets required for all possible couplings of

the form
1 5̄i5j

1 10m10n ,
(2.27)

are always present. Giving these singlets a vacuum expectation value breaks the U(1) sym-

metry under which the singlet is charged, and generates the remaining Yukawa couplings.

Whether or not such a vacuum expectation value can indeed be obtained, is a question of

moduli stabilisation, which is beyond the scope of this paper. For a singlet S of charge q

a coupling, with charge nq, is regenerated with suppression

sn =

(
〈S〉

MGUT

)n
. (2.28)

Experimentally masses, mixing angles and CP violation are measured at low energies

compared to the UV scale at which we are calculating (see PDG flavor reviews [65] for

the latest experimental summary). To compare UV models of Yukawa couplings to low-

energy data, one needs to appropriately renormalize the couplings via the RG equations.

This evolution allows for additional effects that can explain the flavor structure at low

energies. For example flavor-violating effects from soft supersymmetry breaking can give

large contributions to flavor observables, in fact they could even generate the entire flavor

structure [72, 73].

However, the question here is different, namely, can the pattern that we can obtain from

the additional U(1)s account for the entire flavor physics, i.e. with minimal RG evolution

effects. This limit can be achieved when large flavor violating effects are absent in the

soft-terms and canonical kinetic terms are present. In this context the RG evolution of

– 10 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
8

quark and lepton masses as well as mixing parameters to high energies, e.g. the GUT scale

at around 1016 GeV, has been performed (see for instance [74]). Roughly speaking one

observes with the above assumptions that the quark mixing parameters and masses do

not run very much. To first approximation, we hence aim at obtaining the following mass

ratios and mixing angles in the quark and lepton sector [75, 76]:

mt : mc : mu ∼ 1 : ε4 : ε8

mb : ms : md ∼ 1 : ε2 : ε4

mτ : mµ : me ∼ 1 : ε2 : ε4,5 ,

(2.29)

and quark mixing angles

θ12 ∼ ε , θ23 ∼ ε2 , θ31 ∼ ε3 , (2.30)

where ε ≈ 0.22 is the Wolfenstein parameter [77]. We do not determine the ratio mb
mt

=

εx tan−1 β as this is part of a full-fledged supersymmetry breaking model, which is not part

of our analysis. Furthermore, we do not discuss CP violation here as the U(1) symmetries

used for obtaining the hierarchical scaling do not constrain the complex phases of the

singlet insertions.

This experimentally constrained structure of masses and flavor mixings does not fix

the entire structure in the Yukawa matrices. There are various popular models for this

such as [75, 78, 79]. More systematically, by focusing on generating all hierarchies with

one singlet, one can classify all viable textures for the quark masses [79]. In the present

context, the only model in this classification, which is consistent with SU(5), is the following

hierarchical scaling of the Yukawa matrices first obtained by Haba in [80]

Y u
Haba ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , Y d
Haba ∼


ε4 ε4 ε4

ε2 ε2 ε2

1 1 1

 . (2.31)

Another texture which will be shown to be consistent with the F-theoretic setup was already

obtained by Babu, Enkhbat and Gogoladze (BaEnGo) in [81] and is given by

Y u
BaEnGo ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , Y d
BaEnGo ∼


ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1

 . (2.32)

The U(1) symmetries and associated singlet vevs generate these hierarchies in the couplings,

but do not predict the exact values for the masses. These are obtained by O(1) numbers

in front of each coupling, whose string theoretic origin can for instance be non-canonical

contributions to the kinetic terms. The couplings do not only depend on the singlets but

also on uncharged complex structure moduli. In practice we will determine O(1) numbers

which generate the experimentally favored values, in particular for the lepton sectors, which

will be discussed in section 6.

A detailed analysis of the flavor constraints in the context of Froggatt-Nielsen models

will be done in section 5. We find F-theoretic models consistent with the above two
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hierarchies as in [80] and [81]. In appendix D we consider other known textures [54, 74]

and show that it is not possible to find F-theoretic charges, which solve the anomaly

cancellation conditions and generate the required quark Yukawa matrices.

2.4 F-theory U(1)s and the Mordell-Weil group

The key input from F-theory — apart from the anomalies — is the set of possible U(1)

charges for matter fields as determined in [1]. Much recent progress in F-theory model

building has resulted in constructions of examples of global elliptic Calabi-Yau four-folds,

which realize both, GUT gauge groups in terms of singularities in the elliptic fiber, as well

as additional abelian gauge symmetries (see introduction for a list of references). Abelian

gauge symmetries are constructed in terms of so-called rational sections, which are maps

from the base of the fibration back to the fiber [82]. None of the explicit algebraic realiza-

tions, however, resulted in a complete classification of the possible U(1) symmetries. The

collection of rational sections form a finitely generated abelian group (under the elliptic

curve group law), called the Mordell-Weil group, which is isomorphic to Zr⊕Γ, where Γ is

the torsional part, which will not play a role in the current discussion. If the Mordell-Weil

group has rank r, then the resulting compactification will have r additional U(1) symme-

tries. Realizing elliptic fibrations with multiple matter curves of distinct U(1) charges is

technically a highly challenging enterprise. Therefore an alternative approach that would

yield the charges, without necessarily constructing the corresponding geometries is highly

desirable.

2.4.1 Models with one U(1)

Such a full classification of possible U(1) symmetries for SU(5) was obtained in [1].3 There

the starting point is not a concrete realization of the elliptic fiber, but a more abstract

approach pursued by studying the constraints on the possible U(1) charges in terms of

general consistency requirements between the rational sections and codimension two fibers

from the classification in [2]. This approach has the great advantage of giving rise to a

super-set of U(1) charges, that can be realized in F-theory, without however providing a

direct geometric construction. We take this set of charges as an input for our analysis and

show that certain charges in this set are phenomenologically favored, as they satisfy all

constraints and provide realistic flavor physics. In this way, we provide a pointer towards

which geometric constructions can yield globally consistent compactifications. We shall

give some details on geometries of this type later in the paper in section 7.

The input from the classification result in [1] for F-theory compactifications to 4d with

r U(1) symmetries, and matter in the 10 and 5̄ of SU(5) is the set of possible charges. For

a single U(1), are three types of distinct distributions of sections in the codimension one

fiber4 — for the reader interested solely in the model building aspects, it is sufficient to

3There is an assumption, that the section is a smooth divisor in the resolved Calabi-Yau four-fold. A

discussion of this particular point and potential extensions beyond that can be found in [83].
4Recall that sections can be thought of as marked points on the elliptic curve. A model that realizes an

SU(5) gauge theory has special, so-called singular I5 fibers above a codimension one locus in the base of the

fibrations. Geometrically these are a ring of five rational curves, i.e. two-sphere, which intersect in the affine
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(01) (0||1)(0|1)

Figure 2. The configurations of fibers for an SU(5) model with one U(1) symmetry. The I5 fiber,

realized by the five black lines (corresponding to P1s in the fiber) gives rise to the SU(5) gauge

bosons, and the sections, shown as colored dots corresponding to the zero-section (blue) and the

additional section (yellow), give rise to the additional abelian gauge factor.

understand that there are three set of charges, labeled by

I
(01)
5 , I

(0|1)
5 , I

(0||1)
5 . (2.33)

and are shown in figure 2. For a given codimension one distribution of sections labeled by

I5 with the superindex indicating the separation between the zero-section (0) and the extra

section (1), it was found in [1] that, for smooth rational sections, the possible charges for

10 and 5̄ matter that can arise in SU(5) F-theory models are as follows:5

I
(01)
5 :

{
q10 ∈{−3,−2,−1, 0,+1,+2,+3}
q5̄ ∈{−3,−2,−1, 0,+1,+2,+3}

I
(0|1)
5 :

{
q10 ∈{−12,−7,−2,+3,+8,+13}
q5̄ ∈{−14,−9,−4,+1,+6,+11}

I
(0||1)
5 :

{
q10 ∈{−9,−4,+1,+6,+11}
q5̄ ∈{−13,−8,−3,+2,+7,+12} .

(2.34)

A natural question is then to determine, whether there are integral solutions for the Ms

and Ns, such that the resulting charge assignments solve anomaly conditions (A1.)−(A5.)

and do not give rise to proton decay.

Finally we should comment on the U(1) charges of GUT singlets, which will play a role

later on in the Froggatt-Nielsen inspired flavor construction. In F-theory SU(5) GUTs, the

singlets arise at the intersection of any two 5̄ curves (as well as two 10s). Hence, we can

read off the singlet charges from the difference of charges

q1ij = q5̄i
− q5̄j

, i 6= j , (2.35)

for each of the three codimension one models.

SU(5) Dynkin diagram — as shown in figure 2. To describe a model with a single U(1) there is a zero-section

(origin of the elliptic curve) and the additional rational section, which generates the Mordell-Weil group.

The codimension one fibers with rational sections are thus decorations of the affine SU(5) Dynkin diagram

with two marked points, modulo trivial relabelling. These are shown in figure 2.
5For some studies it will be useful to rescale the models in I

(01)
5 by 5, so that a uniform treatment is

possible, i.e. that the unit charges is “normalized” to 5.
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(012) (01|2) (01||2)

(0|1|2)(0|12) (0||12)

Figure 3. The configurations of fibers for an SU(5) model with two U(1) symmetries. The I5 fiber,

realized by the five black lines (corresponding to P1s in the fiber) gives rise to the SU(5) gauge

bosons, and the sections, shown as colored dots corresponding to the zero-section (blue) and the

two additional sections (red, yellow), give rise to the additional abelian gauge factors.

Throughout the main text we will consider only these F-theory charges (2.34). In

certain cases it is possible to use methods from solutions of Diophantine equations to solve

the anomalies in general and we will provide these in appendix C.

2.4.2 Models with two U(1)s

As we will see in section 3, there are only very few viable solutions with one U(1) symmetry.

To construct models with two additional U(1)s we need two additional rational sections,

σ1 and σ2 in the elliptic fibration, in addition to the zero-section, σ0. There are nine

possible codimension one fiber types in this case, up to a reordering of the simple roots

and exchanging the two rational sections. These are given by,

I
(012)
5 , I

(01|2)
5 , I

(01||2)
5 , I

(0|12)
5 , I

(0|1|2)
5 , I

(0|1||2)
5 , I

(0|1|||2)
5 , I

(0||12)
5 , I

(0||1|2)
5 ,

(2.36)

where i = 0, 1, 2 denotes the position of the section σi. For each codimension one fiber

there is a collection of codimension two fibers, and thus charge-sets.

The charges that appear in each of these codimension one fibers can be obtained from

the charges in (2.34) by noting that the charges in an I
(0|||1)
5 model are simply the negative

of those in I
(0||1)
5 . The same statement holds for I

(0||||1)
5 and I

(0|1)
5 . The two codimension

one fibers, I
(0|||1)
5 and I

(0||||1)
5 , were not considered in the case of a single additional rational

section as they are equivalent, under a reordering of the simple roots to I
(0||1)
5 and I

(0|1)
5 ,

respectively. In the case of two rational sections it is not always possible to bring both of

the sections into one of these forms.

From what was stated above, it is clear that not all of the codimension one fibers

in (2.36) are distinct. For example, the charges in I
(0|12)
5 are the same as those in I

(0|1|||2)
5

if the charges under the second U(1) are multiplied by −1. The anomaly cancellation con-

ditions (A2.) and (A3.) are invariant under such re-scalings of the U(1) charges therefore
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these two fibers will give rise to the same set of solutions up to the normalisation of one

of the U(1)s. In this analysis we will consider the reduced set of codimension one fibers

which give rise to distinct U(1) charges given by

I
(012)
5 , I

(01|2)
5 , I

(01||2)
5 , I

(0|12)
5 , I

(0|1|2)
5 , I

(0||12)
5 . (2.37)

These configurations are also shown in figure 3. For these fibers, each additional rational

section with the zero-section will generate a U(1) with charges equal to those in (2.34). By

taking all possible pairings between these two sets of charges one obtains the charges for a

model with two additional U(1) symmetries.

3 Single U(1) models

We begin our analysis by considering SU(5) models with one additional U(1) symmetry,

and varying N10 and N5̄. In summary: a single phenomenologically good model is found

for N10 = 1 and N5̄ = 4, denoted I.1.4.a in table 1, where the unwanted operators are not

regenerated at the same order as the remaining charged Yukawa couplings. For N10 = 1

and N5̄ = 5 as well as N10 > 1 (see appendix A) solutions are found, which however

regenerate some dimension five proton decay operators along-side the charged Yukawas.

This in itself is not problematic, as long as the suppression is high enough. However, single

U(1) models suffer generically from a poor flavor structure as generated by a FN-type

mechanism. Nevertheless it is interesting to note that there are solutions to the constraints

within the F-theoretic U(1) charges, which could be augmented with other mechanisms for

generating flavor such as [51], to produce a phenomenologically consistent F-theory model.

Contrary to this, models with two U(1)s can satisfy the constraints from anomalies

and couplings, and in addition will generate successful flavor physics via an FN-mechanism

as will be discussed in section 5.

3.1 N10 = 1

We start the analysis with one 10 representation. Requiring one top Yukawa coupling im-

plies that not all 10 charges listed in (2.34) can be used. The charges, in each codimension

one configuration, which have a top Yukawa coupling with one of the possible 5 charges

are

U(1) charges of 10 with 10q10q5−2q:


I

(01)
5 q10 ∈ {−1, 0,+1}

I
(0|1)
5 q10 ∈ {−7,−2,+3}

I
(0||1)
5 q10 ∈ {−4,+1,+6} .

(3.1)
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For the case of one 10 representations the solutions to the anomaly equations can be

parametrized as follows6

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
−qHu + 5wHd

0 1

5̄i −qHu + 5w5̄i Mi Ni

10 q10 3 0

(3.2)

where i = 1, . . . ,N5̄− 2, where N5̄ is the number of 5̄ representations. The integer param-

eters wHd
and w5̄i denote the separation between the charges of Hd and 5̄ matter from the

charge of Hu.7 The charges for the 10 and 5̄ representations take values in (3.1) and (2.34),

respectively.

3.1.1 N5̄ = 3

In view of the arguments in (2.16) and (2.17), the minimal number of 5̄ representations is

three. However this case always allows the µ-term, which disfavors these models. To see

this, parametrize the models as in (3.2) with one 5̄1 curve, which has M = 3 and N = 0.

The anomaly condition (A2.) implies wHd
= 0, which exactly generates the µ-term.

3.1.2 N5̄ = 4

For four 5̄ representations, the anomaly conditions can be solved exactly, and we will find

one model, which is phenomenologically viable. Consider again the parametrization

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
−qHu + 5wHd

0 1

5̄1 −qHu + 5w5̄1
M N

5̄2 −qHu + 5w5̄2
3−M −N

10 −1
2qHu 3 0

(3.3)

where M,N ∈ Z+. In the analysis of four and more8 5̄s we do not allow solutions where

Mi = Ni = 0 for any of the 5̄s. The above parametrization already satisfies (A1.), (A4.)

and (A5.) by construction. Constraint (A2.) and (A3.) imply

wHd
= N(w5̄2

− w5̄1
) , N(w5̄1

− w5̄2
)(w5̄1

+Nw5̄1
+ w5̄2

−Nw5̄2
) = 0 , (3.4)

6Note that we give the charge of the conjugate of the up-type Higgs, i.e. qHu is the charge of 5, whereas

−qHu is the charge for 5̄.
7In this analysis we have multiplied the charges of the fiber type I

(01)
5 by 5 so that all fiber types can

be analysed with the same parametrization.
8This is to avoid repetition of solutions and in all sections that follow each 5̄ will have a non-zero net

flux restriction.
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where we exclude cases N = 0 as well as w5̄1
= w5̄2

as they imply qHu = −qHd
. If we do not

require a bottom Yukawa coupling qHu is left unconstrained and the charges are given by

qHd
= −qHu +

10w5̄2
N

1 +N
q5̄1

= −qHu +
5w5̄2

(N − 1)

1 +N
q5̄2

= −qHu + 5w5̄2
. (3.5)

Requiring a bottom Yukawa with 5̄1 gives the additional constraint

qHu =
6N − 2

N + 1
w5̄2

. (3.6)

This results in the following set of charges

q10 =
−3N + 1

N + 1
w5̄2

, qHd
=

4N + 2

N + 1
w5̄2

q5̄1
= −N + 3

N + 1
w5̄2

, q5̄2
=
−N + 7

N + 1
w5̄2

,

(3.7)

where w5̄2
is unconstrained. In this case we do not consider the case M = 0 as we want a

bottom Yukawa coupling with q5̄1
, which must then contain a down-type quark.

To exemplify our solution process, in this case we summarize all solutions in table 1,

which fall within (2.34) and (3.1). This corresponds to picking a specific value for w5̄2
,

and qHu in the case without a leading order bottom Yukawa coupling. The table also

displays the charges of the forbidden couplings (C1.)−(C7.) as well as the charged Yukawa

couplings, Y b
i . The solutions can be summarised as follows:

• Model I.1.4a is the only phenomenologically viable solution for a single U(1) solving all

constraints, without bringing back any of the dangerous operators, when generating

the remaining Yukawa couplings. It does regenerate the µ-term with two singlet

insertions. As noted already in general, the flavor physics of this model is however

quite limited, which is a matter that will be improved upon in the multiple U(1) case.

• Model I.1.4.c regenerates both dimension five proton decay operators with two and

three singlet insertions and all other remaining models regenerate the dimension four

proton decay operators (C4.).

3.1.3 N5̄ = 5, 6, 7

For N5̄ > 4 solving the anomaly cancellation conditions for general charges is difficult,

however we provide a method for solving these in general in appendix C. In practice given

the finite set of charges, one can simply scan over all possibilities. For each 10 charge

in (3.1), one can require the top Yukawa coupling, which fixes the charge of 5Hu . Solving

(A1.)−(A5.) and requiring absence of (C1.)−(C7.), we find very few solutions, where every

single one regenerates dimension 5 or dimension 4 proton decay operators at the same order

as the remaining Yukawa couplings (with exactly the same singlet suppression). Thus all

models are disfavored.

For N5̄ ≥ 6 there are no solutions. The case of six 5̄ is maximal for two of the charge

sets in (2.34). For these sets the only freedom comes in selecting the charge of the 10

representation which will fix qHu . As there are seven possible charges for fundamental
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matter in the case of I
(01)
5 we need to consider all possible subsets of six once the charge

of the 10 has been fixed.

One can go further and allow for seven distinctly charged 5̄ representations in the case

of the I
(01)
5 models. One finds two solutions to the anomaly cancellation conditions for

q10 = ±1, however, these solutions do not forbid (C2.) and are therefore excluded.

3.2 N10 ≥ 2

The case of multiple 10 representations for a single U(1) symmetry does not yield any

interesting solutions to the constraints. In particular for a single U(1) the flavor physics is

very constrained. The analysis is provided in appendix A for completeness. In summary

we find the following:

• There are two solutions for N10 = 2 and N5̄ = 4, shown in table 8. Both these models

regenerate dimension five operators at the same order as the charged Yukawas. In

terms of the flavor physics of these models, with only two 10 representations and four

5̄s one can not satisfy the mass hierarchies for the up-type and down-type quarks

simultaneously.

• For N10 = 3 there is one model, which has realistic flavor structure for the quark sec-

tor. In fact it generates the Haba textures (2.31), albeit it does regenerate dimension

four proton decay operators at the same order as the Yukawas.

• No other solution exists with two or three 10s, which solve the anomaly cancellation

conditions and forbid the dangerous operators.

It is clear from the analysis carried out in this section that in order to construct feasible

models, that might give rise to interesting flavor structure, it is necessary to extend to

multiple U(1)s.

4 Two U(1) models with hypersurface realization

For two additional U(1) symmetries, the phenomenological properties of the models become

much more favorable. Allowing models with up to three 10 and eight 5̄ representations

in the survey, one finds a large number of solutions to the anomaly cancellation condition

with no exotics, which furthermore forbid the unwanted operators. In view of this, it is

then useful to focus on two subclasses of solutions:

1. Models with charges that have a known geometric realization.

2. Models, where the U(1) symmetries can be used to construct realistic flavor textures.

This is detailed in section 5.

We now turn to point 1. and find solutions, which have charges that are closest to

known geometric models. We will find in this section that there are no solutions, which are

within the charges obtained in the literature. However, there are solutions, summarized
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II.1.6.a II.1.6.b

M1 1 1

M2 1 1

M3 0 0

N1 1 1

N2 −1 −1

N3 1 1

q10 (−2, 3) (−2, 1)

qHu (4,−6) (4,−2)

qHd
(6,−4) (6, 2)

q5̄1
(−4, 1) (−4,−3)

q5̄2
(1,−4) (1,−3)

q5̄3
(1, 6) (1, 7)

q5̄4
(6, 1) (6, 7)

Y b
1 (0,0) (0,0)

Y b
2 (5,−5) (5, 0)

Y b
3 (5, 5) (5, 10)

Y b
4 (10, 0) (10, 10)

µ (10,−10) (10, 0)

C2 {(−10, 10), (−5, 5), (−5, 15), (0, 10)} {(−10, 0), (−5, 0), (−5, 10), (0, 10)}

C3 {(0,−5), (5,−10), (5, 0), (10,−5)} {(0,−5), (5,−5), (5, 5), (10, 5)}

C4
{(−10, 5), (−5, 0), (−5, 10), (0, 5), (0,−5), {(−10,−5), (−5,−5), (−5, 5), (0, 5), (0,−5),

(5, 0), (0, 15), (5, 10), (10, 5)} (5, 5), (0, 15), (5, 15), (0, 15)}

C5 {(0, 5), (−5, 10), (−5, 0), (−10, 5)} {(0, 5), (−5, 5), (−5,−5), (−10,−5)}

C6 {(10,−15), (15,−20), (15,−10), (20,−15)} {(10,−5), (15,−5), (15, 5), (20, 5)}

C7 (0, 5) (0, 5)

Table 2. Solutions for N10 = 1 and N5̄ = 6 with 2 U(1)s. The charges of the bottom Yukawa

couplings are shown in the row Y b
i , where i = 1, 2, 3, 4 labels the 5̄i involved in the coupling. The

charges of the couplings (C1.)−(C7.) are shown in the corresponding rows.
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II.1.6.c II.1.6.d

M1 1 1/2

M2 1 1/2

M3 1 0/1

N1 1 -1

N2 −1 −1

N3 −1 1

q10 (3, 1) (3, 1)

qHu
(−6,−2) (−6,−2)

qHd
(−4, 2) (−4, 2)

q5̄1
(1,−3) (1,−3)

q5̄2
(−4,−3) (−4, 7)

q5̄3
(1, 7) (1, 7)

q5̄4
(6,7) (6, -3)

Y b
1 (0,0) (0,0)

Y b
2 (−5, 0) (−5, 10)

Y b
3 (0, 10) (0, 10)

Y b
4 (5, 10) (5,0)

µ (−10, 0) (−10, 0)

C2 {(10, 0), (5, 0), (10, 10), (15, 10)} {(10, 0), (5, 10), (10, 10), (15, 0)}

C3 {(−5,−5), (−10,−5), (−5, 5), (0, 5)} {(−5,−5), (−10, 5), (−5, 5), (0,−5)}

C4
{(5,−5), (0,−5), (5, 5), (10, 5), (−5,−5), {(5,−5), (0, 5), (5, 5), (10,−5), (−5, 15)}

(0, 5), (5, 5), (5, 15), (10, 15), (15, 15)} {(0, 15), (5, 15), (10, 5), (15,−5)}

C5 {(5, 5), (10, 5), (5,−5), (0,−5)} {(5, 5), (10,−5), (5,−5), (0, 5)}

C6 {(−15,−5), (−20,−5), (−15, 5), (−10, 5)} {(−15,−5), (−20, 5), (−15, 5), (−10,−5)}

C7 (5, 5) (5, 5)

Table 3. Solutions for N10 = 1 and N5̄ = 6 with 2 U(1)s. The model II.1.6.d regenerates

dimension five proton decay operators with multiple insertions of the singlets regenerating the

charged Yukawas.
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in tables 2 and 3, for which we determine new geometric models, that give rise to these

charges in section 7.

In the following we restrict to the set of U(1) charges which have appeared in explicit

realizations of two U(1) models [7–10, 15]. These charges are given by9

I
(01)
5 :

{
q10∈{0,+1}
q5̄∈{−1, 0,+1}

I
(0|1)
5 :

{
q10∈{−2,+3}
q5̄∈{−4,+1,+6}

I
(0||1)
5 :

{
q10∈{−4,+1}
q5̄∈{−3,+2,+7}

(4.1)

Taking this reduced set of charges we look for subsets, which solve the anomaly cancellation

conditions, allowing up to N10 = 3 and N5̄ = 8. The set of models, which solve the

conditions (A1.)−(A5.) are then further filtered down to those which forbid the dangerous

couplings (C1.)−(C7.) at leading order. These dangerous couplings should also not be

regenerated with the same singlet insertion, that regenerates the charged Yukawa couplings.

The phenomenologically good solutions are given in tables 2 and 3. These models

all feature N10 = 1 and 5̄ = 6 and have a top and bottom Yukawa coupling at leading

order. The model II.1.6.d regenerates dimension five proton decay operators with multiple

insertions of the singlets, that generate the charged Yukawas. The remaining three models

all give rise to the µ-term with two singlet insertions. Interesting flavor textures for these

models, which have only a single 10, cannot be generated through the U(1) symmetries,

however these models have the advantage of having a concrete geometric realization: none

of the geometries in the literature [7–10, 15] generate this particular combination of charges,

however we will determine elliptic fibrations for these models in section 7.

5 F-theoretic Froggatt-Nielsen models with two U(1)s

The constructions passing all anomaly and coupling constraints with charges seen in known

geometric constructions have not revealed an interesting flavor structure from the U(1)s, as

we only found solutions with a single 10 curve. We now turn our discussion to the question

whether we can find models with two U(1)s and three 10 curves with the more general,

F-theoretic set of charges in (2.34). This increase in complexity improves the models, which

as we will see, allow for realistic flavor physics. In short, we identify models that lead to a

realization of the FN mechanism. Note that we will match the quark Yukawas to several

known flavor hierarchies. It certainly would be very interesting to scan through all the

possibilities in the solution space, and possibly determine new textures. Concretely, we

find two classes of flavor models, which appeared in [80, 81], for the quark sector that can

be realized. This will be the topic of the current section, and the resulting new lepton

flavor structure is discussed in section 6. There are several popular flavor models, that we

cannot realize in our class of models, which are detailed in appendix D.

9Note that not all combinations of these charges are realized in geometric models in the literature — for

instance the models we find in tables 2 and 3 are of this type. However in section 7, we will determine new

geometries (based on the generalized cubic model of [20]), which give a concrete realization of these models.
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5.1 Models with N10 = 3

We now analyze F-theoretic U(1) models with two U(1)s for their potential to solve all the

constraints as well as induce realistic flavor hierarchies by a Froggatt-Nielsen type mecha-

nism. Each entry in the Yukawa matrix for the up-type quarks, Y u, is given by the couplings

Y u
ij QiūjHu , i, j = 1, 2, 3 . (5.1)

The U(1) charges of 10 representations within which these quarks reside will determine

the charges of the singlets required to regenerate these couplings and therefore their sup-

pression. If we require that Y u is rank one at leading order so that only Y u
3,3, for the third

generation, is uncharged under the additional U(1)s and that Y u
1,1 and Y u

2,2 appear with

different suppressions, to match with a large class of known textures, we are required to

consider models with three 10 representations.

A leading order rank one up-type Yukawa matrix is achieved most easily by having Q3

and ū3 residing on the same 10 representation, 103, with U(1) charges satisfying

2q103 + qHu = 0 . (5.2)

In order for the top Yukawa coupling involving 103 to only generate a leading order mass

for the top quark we require

M103 = 1 and N103 = 0, (5.3)

so that only the third generation of left- and right-handed quarks lie within this 10 rep-

resentation. It is crucial that only the third generation is present on 103 otherwise off

diagonal terms in the Yukawa matrix will also be regenerated at first order.

Between the remaining two 10 representations, 101 and 102, one can have the following

distribution of the remaining quarks:

T.1: M101 = M102 = 1, N101 = N102 = 0

For these configurations one has

10A ⊃ QA + ūA + ēA, A = 1, 2, 3 , (5.4)

and the resulting Yukawa matrix is symmetric. These textures could potentially agree

with those in [54, 74, 80, 81].

T.2: M101 = M102 = 1, N101 = −1, M102 = 1

Here, both the remaining right-handed up-type quarks, ū1 and ū2, originate from 101,

101 ⊃ Q1 + ū1 + ū2

102 ⊃ Q2 + ē1 + ē2 .
(5.5)

The resulting Y u, denoting the singlet insertion which regenerates the top Yukawa

coupling between 10A and 10B as sAB, has the following form

Y u ∼


s11 s11 s13

s12 s12 s23

s13 s13 1

 , (5.6)
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where two columns have identical singlet insertions, as the charges for the couplings

involving ūA, A = 1, 2 are the same. This does not match known textures, where off

diagonal terms have a greater suppression compared to their nearest diagonal terms.

T.3: M101 = 2,M102 = 0, N101 = 0, M102 = 0

We do not consider this case as 102 has no net chirality and therefore this case reduces

to two 10 representations.

The case T.2 can be shown to not give rise to good flavor textures. In the following section

we focus on case T.1, where each differently charged 10 representation contains a different

generation of QA and uA, and match to known textures in the literature. We show in

appendix D that the flavor hierarchies in [54, 74] cannot be realized within our global F-

theoretic charge framework. Note that the textures in [79], which do not have a symmetric

Y u, cannot be realized. The two flavor models that can be realized in our framework are

those in Haba [80] as well as Babu, Enkhbat, and Gogoladze [81], which we now discuss in

turn.

5.2 F-theoretic FN-models (Haba1) and (Haba2)

In this section we determine solutions to our constraints, which furthermore generate the

Yukawa textures in Haba [80]

Y u
Haba ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , Y d
Haba ∼


ε4 ε4 ε4

ε2 ε2 ε2

1 1 1

 (5.7)

from a Froggatt-Nielsen type mechanism. Let

M10A = 1, N10A = 0, A = 1, 2, 3 . (5.8)

The charges of the 10 representations therefore do not contribute to the anomaly cancella-

tion conditions, as N10A = 0. We consider N5̄ = 4 in the following. The sets of 5̄ charges,

which solve the conditions were determined in appendix B and are given in (B.4), (B.5)

and (B.6).

In order to match to this texture we need to impose that all d̄i are from the same 5̄

representation, which is achieved by

M5̄1
= 0, N5̄1

= 1, 2 or 3

M5̄2
= 3, N5̄2

= −N5̄1
.

(5.9)

The cases N5̄1
= 1, 3 give phenomenologically disfavorable models as the solutions either

allow the µ-term or regenerate dimension four proton decay with the remaining charged

Yukawas. This leaves only N = 2, the solutions of which are given in table 9. Imposing

the presence of a bottom Yukawa coupling of the form

1035̄2Hd , (5.10)
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restricts the set of solutions further. The set of charges with

M51 = 0, N51 = 2

M52 = 3, N52 = −2 ,
(5.11)

which furthermore allow for a bottom Yukawa coupling are as follows:

103 5Hu 5̄Hd
5̄1 5̄2

q(R)1 −q1
Hu
/2 q1

Hu
3q1
Hu
/7 −9q1

Hu
/14 q1

Hu
/14

q(R)2 −q2
Hu
/2 q2

Hu
3q2
Hu
/7 −9q2

Hu
/14 q2

Hu
/14

(5.12)

where we have imposed the top Yukawa coupling for 103. The charges of 101 and 102 are

given by10 (
q1

10A
, q2

10A

)
=

(
−1

2
q1
Hu
,−1

2
q2
Hu

)
+ 5

(
w1

10A
, w2

10A

)
, (5.13)

where qα denotes the charges under U(1)α and A = 1, 2. The charges of matter under these

two U(1)s will therefore be almost identical, the only difference being in the charge of 101

and 102, which should be chosen so that no dangerous couplings are allowed at leading

order. Restricting these general charges to the F-theory charges one finds that there are

only two choices for the charge of the Higgs up given by

(q1
Hu
, q2
Hu

) = (14, 14) or (0, 14) . (5.14)

The integer separations, parametrized by wα10A
, satisfy the constraint

w1
10A
6= w2

10A
, A = 1, 2 , (5.15)

as there were no two 10 models for a single U(1) which were phenomenologically viable. Vi-

olating the above constraint for either 101 or 102 will either bring back dangerous operators

or regenerate them with the charged Yukawas. This implies the following distribution:

Representation Charge M N Matter

101

(
−1

2q
1
Hu

+ 5w1
101
,−1

2q
2
Hu

+ 5w2
101

)
1 0 Q1, ū1, ēA, A = 1, 2

102

(
−1

2q
1
Hu

+ 5w1
102
,−1

2q
2
Hu

+ 5w2
102

)
1 0 Q2, ū2, ēB, B 6= A, B = 1, 2

103

(
−1

2q
1
Hu
,−1

2q
2
Hu

)
1 0 Q3, ū3, ē3

5̄Hu (−q1
Hu
,−q2

Hu
) 0 −1 Hu

5̄Hd
(3

7q
1
Hu
, 3

7q
2
Hu

) 0 1 Hd

5̄1 (− 9
14q

1
Hu
,− 9

14q
2
Hu

) 0 2 LI , I = 1, 2

5̄2 ( 1
14q

1
Hu
, 1

14q
2
Hu

) 3 −2 L3, d̄I , I = 1, 2, 3

(5.16)

10In order to uniformly study all F-theoretic charges we rescaled for convenience the models of type I
(01)
5 by

a factor of 5. This allows us to study all the models where the unit charges is now set to be 5 (rather than 1).

– 25 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
8

The necessary singlet insertions to regenerate the full up and down-type Yukawa matrices

can be determined to be

Y u ∼


s2

1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1

 , Y d ∼


s1 s1 s1

s2 s2 s2

1 1 1

 , (5.17)

where si = 〈Si〉
MGUT

. The charges of the singlets, S1 and S2 are given by

(q1
S1
, q2
S1

) = −5(w1
101
, w2

101
)

(q1
S2
, q2
S2

) = −5(w1
102
, w2

102
) .

(5.18)

These singlets exactly correspond to those which are present in 10310A1 couplings, where

A = 1, 2, as can be seen from their charges.

Choosing s1 = ε2 and s2 = ε4 one obtains the Haba texture in (2.31). When the

charges of the two singlets are not coprime we have the following relation

(q1
S1
, q2
S1

) = n(q1
S2
, q2
S2

) , (5.19)

for some integer n. In (5.17) s1 can be replaced with sn2 , and from this we see that in order

to match to the texture in (2.31) we must have n = 2. In this case we can generate the

entire Yukawa matrix by giving a vev to only one singlet.

One choice of wα10A
which avoids all dangerous operators is given by11

(w1
101
, w2

101
) = (2, 0)

(w1
102
, w2

102
) = (1, 0) .

(5.20)

Within this setup there are two choices for the charge of the up-type Higgs:

(Haba1) : (q1
Hu
, q2
Hu

) = (14, 14)

(Haba2) : (q1
Hu
, q2
Hu

) = (0, 14) .
(5.21)

The full set of charges for these models are as follows12

GUT Charges for (Haba1) Charges for (Haba2) M N MSSM Matter

101 (3,−7) (10,−7) 1 0 Q1, ū1, ēA, A = 1, 2

102 (−2,−7) (5,−7) 1 0 Q2, ū2, ēB, B 6= A, B = 1, 2

103 (−7,−7) (0,−7) 1 0 Q3, ū3, ē3

5̄Hu (−14,−14) (0,−14) 0 −1 Hu

5̄Hd
(6, 6) (0, 6) 0 1 Hd

5̄1 (−9,−9) (0,−9) 0 2 LI , I = 1, 2

5̄2 (1, 1) (0, 1) 3 −2 L3, d̄I , I = 1, 2, 3

(5.22)
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(Haba1) (Haba2)

M 0 0

N 2 2

M10A
1 1

N10A
0 0

q101
(3,−7) (10,−7)

q102
(−2,−7) (5,−7)

q103
(−7,−7) (0,−7)

qHu
(14, 14) (0, 14)

qHd
(6, 6) (0, 6)

q5̄1
(−9,−9) (0,−9)

q5̄2
(1, 1) (0, 1)

µ (20, 20) (0, 20)

C2

{(0,−30), (10,−20), (−5,−30), (5,−20), {(30,−30), (30,−20), (25,−30), (25,−20),

(−10,−30), (0,−20), (−15,−30), (−5,−20), (20,−30), (20,−20), (15,−30), (15,−20),

(−20,−30), (−10,−20), (−25,−30), (10,−30), (10,−20), (5,−30), (5,−20),

(−15,−20), (−30,−30), (−20,−20)} (0,−30), (0,−20)}

C3 {(5, 5), (15, 15)} {(0, 5), (0, 15)}

C4

{(−15,−25), (−5,−15), (−20,−25), {(10,−25), (10,−15), (5,−25), (5,−15),

(−10,−15), (−25,−25), (−15,−15), (5,−5), {(0,−25), (0,−15), (10,−5), (5,−5),

(0,−5), (−5,−5)} (0,−5)}

C5

{(15,−5), (5,−15), (10,−5), (0,−15), {(20,−5), (20,−15), (15,−5), (15,−15),

(5,−5), (−5,−15), (0,−5), (−10,−15), (10,−5), (10,−15), (5,−5), (5,−15),

(−5,−5), (−15,−15)} (0,−5), (0,−15)}

C6 {(25, 25), (35, 35)} {(0, 25), (0, 35)}

C7 {(−5,−15), (−10,−15), (−15,−15)} {(10,−15), (5,−15), (0,−15)}

Table 4. F-theoretic FN-models (Haba1) and (Haba2): these models have two U(1)s and N10 = 3

and N5̄ = 4 and have realistic flavor textures, which for the quark sector match those by Haba

in [80].

The models are summarized in table 4, including the charges for all the couplings

(C1.)−(C7.). Both models have up- and down-type Yukawas with the same singlet insertion

11The charge of the 101,2 are not fixed so far, even when including the constraint of suppressing all

dangerous couplings. Here they are chosen to bring them closest to the known geometric models.
12Note, that as mentioned earlier we rescaled the charges of the class of models I

(01)
5 by 5, to allow for a

uniform treatment of all models. This means, that instead of the 10 charges (2,1,0) we write (10, 5, 0).
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structure

(Haba1,2) : Y u ∼


ω4

1 ω
3
1 ω

2
1

ω3
1 ω

2
1 ω1

ω2
1 ω1 1

 , Y d ∼


ω2

1 ω
2
1 ω

2
1

ω1 ω1 ω1

1 1 1

 , (5.23)

where ω1 = 〈W1〉
MGUT

, where the charge of the singlet W1 is

(q1
W1
, q2
W1

) = (−5, 0) . (5.24)

By choosing ω1 = ε2 one recovers the Haba flavor texture in (2.31). The lepton Yukawa

matrices, from the above sets of charges, have the following singlet structure

(Haba1,2) : Y L ∼


ω2

1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2

ω2
1 ω1 1

 with 10A ⊃ ēA, where A = 1, 2 . (5.25)

Here again the second singlet vev is ω2 = 〈W2〉
MGUT

. The choice for how the eA are distributed

on the 10B matter loci is made to get the standard hierarchy between first and second

generation. To regenerate the entries in these matrices the following charged singlets must

gain a vacuum expectation value

(Haba1) : (q1
W2
, q2
W2

) = (10, 10)

(Haba2) : (q1
W2
, q2
W2

) = (0, 10) .
(5.26)

As one can see from the charges of the (C2.) couplings in table 4, regenerating the lepton

Yukawas regenerates all the dimension five operators in both models. The dangerous

dimension five couplings with coupling constant δ1
112I that are regenerated with certain

singlet insertions are shown below for both models, where we take ω2 = O(1):

Model Coupling Charge Singlet insertions ε suppression

(Haba1) 1011011025̄1 (−5,−30) ω5
1ω

3
2 ≤ ε10

1011011025̄2 (5,−20) ω5
1ω

2
2 ≤ ε10

(Haba2) 1011011025̄1 (25,−30) ω5
1ω

3
2 ≤ ε10

1011011025̄2 (25,−20) ω5
1ω

2
2 ≤ ε10

(5.27)

For both models, in order for the

ε10

MGUT
≈ 10−7

MGUT
≤ 16π2MSUSY

M2
GUT

, (5.28)

where the Wolfenstein parameter is ε ≈ 0.22. This translates into the following relation

MSUSY ≥ 10−9MGUT , (5.29)
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where as before ω1 = ε2 and ω2 = O(1). The latter can be improved upon by considering

lepton flavor, where the most constraining factor, for both the models, is the mass ratio

between the second and third generation, which is of order ε2. This is discussed in section 6.

Other dimension five operators of type Q3L are also regenerated with suppressions of

ε2 and higher. For example, in this case one also gets the coupling

1031031035̄2 ⊃ Q3Q3Q3L3 , (5.30)

which can be compared to the bound on δ1
112I by inserting suppression factors from the

CKM between the third generation and the first and second. One finds that this coupling,

which has ε2 suppression from the singlets, picks up at least an additional ε10 once we

take into account the mixing between the quark generations. This coupling does not pose

a greater threat than those considered above and the lower bound of MSUSY from this

model is unchanged. In section 6 we consider the lepton and neutrino flavor physics of

these models in more detail.

We extended this analysis to N5̄ = 5 and 6, which are all possible choices, however

there are no further solutions. Extending the number of 5̄ beyond that results in exotics.

Thus the presently analyzed case of N5̄ = 4 presents a sort of sweetspot.

5.3 F-theoretic FN-models (BaEnGo1)−(BaEnGo3)

Below we consider solutions which allow for a symmetric up-type Yukawa matrix paired

with a down-type Yukawa matrix, which has only two distinct columns. These tex-

tures (2.32), as we shall show give rise to a realistic CKM structure. This has appeared in

the literature before in [81], and will be referred to as the BaEnGo texture

Y u
BaEnGo ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 , Y d
BaEnGo ∼


ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1

 . (5.31)

In this case the structure of singlet insertions is of the form

Y u ∼


s2

1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1

 , Y d ∼


s1s3 s1 s1

s2s3 s2 s2

s3 1 1

 , (5.32)

where si = 〈Si〉
MGUT

. The charges of the singlets, S1, S2 and S3 are given by

(q1
S1
, q2
S1

) = −5(w1
101
, w2

101
)

(q1
S2
, q2
S2

) = −5(w1
102
, w2

102
)

(q1
S3
, q2
S3

) = −5(w1
5̄n
− w1

5̄2
, w2

5̄n
− w2

5̄2
) ,

(5.33)

where one of the 5̄s, in this case 5̄2, is the one taken to have a leading order bottom Yukawa

coupling and must contain two down-type quarks. One other 5̄, in the above, labelled 5̄n,
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must contain the last down-type quark. Assuming the dominant contribution to the masses

comes from the diagonal elements, we choose

s1 = ε4, s2 = ε2 , (5.34)

to satisfy the up-type ratios in (2.29). Taking s3 = 1 we recover a down-type Yukawa

matrix in section 5.2, here we take the third singlet insertion to be

s3 = ε . (5.35)

Using the formulas for the three mixing angles derived in [84, 85] the CKM, neglecting the

CP phase, can be calculated to take the form

VCKM ∼


1 ε2 ε4

ε2 1 ε2

ε4 ε2 1

 , (5.36)

to leading order in ε. The corresponding Yukawas are those shown in (2.32). Below we

study the models, which realize these textures with four and five 5̄s. These models share

the same up-type and down-type Yukawas, which have the structure in (5.32), however,

they differ on the texture of the lepton Yukawa matrix.

5.3.1 N5̄ = 4

One class of such solutions can be obtained by altering the M,Ns in (5.11) to

M51 = 1, N51 = 2

M52 = 2, N52 = −2 ,
(5.37)

which gives rise to models with the same set of possible charges, but the down-type Yukawa

matrix now has the structure in (5.32). In this distribution of M,Ns all three generations

of leptons reside in 5̄1 which produces lepton Yukawas of the form

(BaEnGo1,2) : Y L ∼


s1s3 s2s3 s3

s1s3 s2s3 s3

s1s3 s2s3 s3

 , (5.38)

where we have chosen the following distribution of right-handed leptons 10A ⊃ ēA, where

A = 1, 2, 3 for both models. These choices ensure that the singlet suppressions generate

the correct hierarchy in lepton masses.

Restricting to the charges in (5.22), where the singlets si are not coprime, the up- and

down-type Yukawa matrices take the form

(BaEnGo1,2) : Y u ∼


ω4

1 ω
3
1 ω

2
1

ω3
1 ω

2
1 ω1

ω2
1 ω1 1

 , Y d ∼


ω2

1ω2 ω
2
1 ω

2
1

ω1ω2 ω1 ω1

ω2 1 1

 , (5.39)
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where ωi = 〈Wi〉
MGUT

. The lepton Yukawa matrix for both sets of charges takes the form

Y L ∼


ω2

1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2

ω2
1ω2 ω1ω2 ω2

 , (5.40)

where the singlets Wi have the following charges

(BaEnGo1) : (q1
W1
, q2
W1

) = (−5, 0)

(q1
W2
, q2
W2

) = (10, 10)

(BaEnGo2) : (q1
W1
, q2
W1

) = (−5, 0)

(q1
W2
, q2
W2

) = (0, 10) .

(5.41)

The singlet suppressions, in terms of the Wolfenstein parameter ε, are given by

w1 = ε2, w2 = ε , (5.42)

to match the suppression of the singlets si in the general texture.

The charges of the unwanted operators are shown in table 5, in this case one regenerates

dimension five proton decay operators with the down-type Yukawas. For the couplings

involving δ1
112I one finds the following suppression:

Model Coupling Charge Singlet insertions ε suppression

(BaEnGo1) 1011011025̄1 (−5,−30) ω5
1ω

3
2 ≤ ε13

(BaEnGo2) 1011011025̄1 (25,−30) ω5
1ω

3
2 ≤ ε13

(5.43)

The suppression of these dimension five couplings are bounded as

ε13

MGUT
≈ 10−9

MGUT
≤ 16π2MSUSY

M2
GUT

, (5.44)

which results in the following bound on the mass of the sparticles participating in the

process:

MSUSY ≥ 10−11MGUT . (5.45)

As in the earlier case of the Haba textures, the other operators are further suppressed

compared to δ1
112I and thus not threatening to the consistency of the model.

5.3.2 N5̄ = 5

Finally, we discuss a solution, which has a distinct lepton flavor structure, by extending

the solution in section 5.2 to five 5̄s with

M51 = 0, N51 = 2

M52 = 2, N52 = −2

M53 = 1, N53 = 0 .

(5.46)
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(BaEnGo1) (BaEnGo2)

M 1 1

N 2 2

M10A
1 1

N10A
0 0

q101
(3,−7) (10,−7)

q102
(−2,−7) (5,−7)

q103
(−7,−7) (0,−7)

qHu
(14, 14) (0, 14)

qHd
(6, 6) (0, 6)

q5̄1
(−9,−9) (0,−9)

q5̄2
(1, 1) (0, 1)

µ (20, 20) (0, 20)

C2

{(0,−30), (10,−20), (−5,−30), (5,−20), {(30,−30), (30,−20), (25,−30), (25,−20),

(−10,−30), (0,−20), (−15,−30), (−5,−20), (20,−30), (20,−20), (15,−30), (15,−20),

(−20,−30), (−10,−20), (−25,−30), (10,−30), (10,−20), (5,−30), (5,−20),

(−15,−20), (−30,−30), (−20,−20)} (0,−30), (0,−20)}

C3 {(5, 5)} {(0, 5)}

C4

{(−15,−25), (−5,−15), (−20,−25), {(10,−25), (10,−15), (5,−25), (5,−15),

(−10,−15), (−25,−25), (−15,−15), (5,−5), {(0,−25), (0,−15), (10,−5), (5,−5),

(0,−5), (−5,−5)} (0,−5)}

C5

{(15,−5), (10,−5), (5,−5), (0,−5), {(20,−5), (15,−5), (10,−5), (5,−5),

(−5,−5)} (0,−5)}

C6 {(25, 25)} {(0, 25)}

C7 {(−5,−15), (−10,−15), (−15,−15)} {(10,−15), (5,−15), (0,−15)}

Table 5. F-theoretic FN-models (BaEnGo1) and (BaEnGo2): these models have two U(1)s and

N10 = 3 and N5̄ = 4 and have realistic flavor textures, which for the quark sector match those by

BaEnGo in (2.32).

In this case the charges of the three 10s, 5̄1 and 5̄2 are as in (5.12) and (5.13). However

the charge of 5̄3 is constrained not by the anomaly cancellation conditions, but by the
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requirement of suppressing the unwanted operators. The distribution of MSSM matter is

Representation Charge M N Matter

101 (q1
101
, q2

101
) 1 0 Q1, ū1, ē3

102 (q1
102
, q2

102
) 1 0 Q2, ū2, ē2,

103 (−7,−7) 1 0 Q3, ū3, ē1

5̄Hu (−14,−14) 0 −1 Hu

5̄Hd
(6, 6) 0 1 Hd

5̄1 (−9,−9) 0 2 LI , LJ , I, J = 1, 2, 3

5̄2 (1, 1) 2 −2 d̄2, d̄3

5̄3 (q1
53
, q2

53
) 1 0 LK , d̄1

(5.47)

where there is a choice in how the different generations of leptons are distributed, which

is unfixed by the anomaly cancellation conditions. The general structure of the lepton

Yukawas is given by

Y L ∼


s4s1 s4s2 s4

s4s1 s4s2 s4

s3s1 s3s2 s3

 , (5.48)

where the singlets have charges

(q1
S3
, q2
S3

) = −5(w1
53
− w1

52
, w2

53
− w2

52
)

(q1
S4
, q2
S4

) = −5(w1
51
− w1

52
, w2

51
− w2

52
) .

(5.49)

The up-type and down-type Yukawa textures are given in (5.32). One choice of charges,

which we will denote as model (BaEnGo3), that does not allow unwanted operators at

leading order is given by:

(BaEnGo3) :

Representation Charge M N Matter

101 (−12, 13) 1 0 Q1, ū1, ē3

102 (−7, 3) 1 0 Q2, ū2, ē2,

103 (−7,−7) 1 0 Q3, ū3, ē1

5̄Hu (−14,−14) 0 −1 Hu

5̄Hd
(6, 6) 0 1 Hd

5̄1 (−9,−9) 0 2 L1, L2

5̄2 (1, 1) 2 −2 d̄2, d̄3

5̄3 (−4,−9) 1 0 L3, d̄1

(5.50)

A scan yields that there are no models, which give a lower bound on MSUSY than that

derived in the case for four 5̄s. This model has been chosen as it produces the same bound

for MSUSY as in (5.45) and does not regenerate any dimension four operators with any

number of singlet insertions.
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In this case the charges of the singlets required to regenerate the up-type, W1 and W2,

down-type, W3, and lepton Yukawa matrices, W4, have charges

(q1
W1
, q2
W1

) = (5,−20)

(q1
W2
, q2
W2

) = (0,−10)

(q1
W3
, q2
W3

) = (5, 10)

(q1
W4
, q2
W4

) = (10, 10) ,

(5.51)

where the Yukawa matrices take the general forms (5.32) and (5.48). The singlet insertions,

ω1 and ω2, expressed in terms of the Wolfenstein parameter, ε, are

ω1 = ε4, ω2 = ε2, ω3 = ε . (5.52)

As was the case in the previous textures, regenerating the lepton Yukawas also re-

generates dimension five operators. The dangerous couplings with coupling constant δ1
112I

are given below where we have written the singlet insertions which give rise to the lowest

suppression

Model Coupling Charge Singlet insertions ε suppression

(BaEnGo3) 1011011025̄1 (−40, 20) ω2
1ω2ω

3
4 ε13

1011011025̄3 (−35, 20) ω1ω
3
2ω

3
4 + ω2

1ω2ω
2
4ω3 ≤ ε13

(5.53)

In the coupling involving 5̄3 we have taken ω4 = ε, which is consistent with the lepton mass

hierarchies, in the estimation of the suppression. These suppression levels are the same

as those derived in the previous section and give rise to the bound on MSUSY in (5.45).

In the next section we examine model (BaEnGo1-3), as well as the models (Haba1) and

(Haba2) of section 5.2 under the constraints of lepton and neutrino flavor.

Finally, we should note, extending the current analysis to more 5̄ matter we find, for

N5̄ = 6 there no solutions with suitable flavor structure. It would be interesting to extend

this to N5̄ = 7 (which is the largest for this type of model without introducing exotics),

however increasing the number of 5̄s usually brings back proton decay operators.

6 Lepton and neutrino flavor

Let us now turn to the lepton and neutrino flavor properties of the F-theoretic FN-models

of the last section. Unlike the quark sector and the lepton masses (2.29), the neutrino sector

is far less experimentally constrained. Nevertheless let us state the respective experimental

bounds on the masses13

∆m2
12

[
10−5eV2

]
= 7.54+0.64

−0.56

∆m2
23

[
10−3eV2

]
= 2.43+0.18

−0.20∑
mνj < 0.66 eV

(6.1)

13These are best-fit values and 3σ allowed ranges for neutrino masses with a normal hierarchy (m1 <

m2 < m3). The sum of neutrino masses and the other values can be found in the Neutrino mass, mixing

and oscillations chapter of [65].
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and mixing angles

θ12 = 0.59+0.05
−0.06 , θ23 = 0.72+0.19

−0.06 , θ13 = 0.15+0.02
−0.02 . (6.2)

The absolute masses for the neutrinos are not known and various different hierarchies

could be accommodated within these constraints. Furthermore the mixing angles are not

hierarchical. Nevertheless, we show that our F-theoretic FN-models from above can ac-

commodate the mixing angles.

The neutrino masses can arise from a so-called standard type I seesaw mechanism, for

which we introduce three right-handed neutrinos that are SU(5) singlets but are charged

under the additional U(1)s. The couplings needed are

(Yν)IJ5LI
5Hu1νJR

, MIJ1νIR
1νJR

, (6.3)

where MIJ is generated by singlets with a vev. Below the mass scale of the right-handed

neutrinos Λ this leads to an effective neutrino mass via the Weinberg operator

1

Λ
LILJHuHu . (6.4)

Again this operator can be forbidden by the additional U(1) symmetries, but regenerated

by appropriate singlet insertions. Note that the charges of the right-handed neutrinos do

not enter the effective Weinberg operator and are not relevant for the discussion of neutrino

mixing. For the flavor models in section 5, the three distinct phenomenological scenarios

are studied in turn in the following.

6.1 Models (Haba1) and (Haba2)

Including the structure of the neutrino Yukawa matrix arising from the Weinberg operators,

the models from section 5.2 have the following Yukawa structures

Y u
Haba ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 Y d
Haba ∼


ε4 ε4 ε4

ε2 ε2 ε2

1 1 1



Y L ∼


ε4+a ε2+a εa

ε4+a ε2+a εa

ε4 ε2 1

 Mν ∼


κ1 κ1 κ2

κ1 κ1 κ2

κ2 κ2 κ1κ2 + κ3
1

 ,

(6.5)

where the charges of singlets regenerating entries in the neutrino Yukawa matrices are given

by
(Haba1) : qK1 = (−10,−10), qK2 = (−20,−20)

(Haba2) : qK1 = (0,−10), qK2 = (0,−20) .
(6.6)

Note also that despite the fact that the quark mixing are those in Haba [80] (and

BaEnGo [81] in section 6.2) the lepton and neutrino textures are distinct from the models

in the literature.
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For each choice of hierarchical singlet scalings, we scan over the O(1) coefficients in

front of each coupling and identify experimentally viable masses and mixings using the

Mathematica package Mixing Parameter Tools [86]. For each of the three different scal-

ings we find consistent mixing angles with suitable choices for the O(1) coefficients and

mass hierarchies that are consistent with (2.29). We allow the O(1) coefficients, z, for the

Yukawa matrices to be within the range

0.8 < |z| < 1.2 , (6.7)

where in the case of the lepton Yukawa matrices z is complex.

For models (Haba1), (Haba2) with a = 0.05, κ1 = 0.1 and κ2 = 0.3 one choice of O(1)

coefficients for the lepton and neutrino Yukawa matrices which give consistent mixing

angles is given by

Y L ∼


1.00ε4.05 −(0.68 + 0.97i)ε2.05 (0.30− 0.78i)ε0.05

(−0.89 + 0.54i)ε4.05 −(0.14 + 1.13i)ε2.05 −(0.43 + 1.10i)ε0.05

(0.64 + 0.63i)ε4 −(0.12 + 0.97i)ε2 −0.81− 0.10i



Mν ∼


1.17κ1 1.13κ1 0.92κ2

1.13κ1 0.92κ1 0.83κ2

0.92κ2 0.83κ2 0.96(κ1κ2 + κ3
1)

 .

(6.8)

This choice for a means that s2 in these models is a O(1) number as was assumed in the

calculation of the bound for MSUSY in section 5.2. This set of matrices gives the following

mass ratios and mixing angles

θ12 = 0.60, θ13 = 0.20, θ23 = 0.72

mτ : mµ : me = 1 : 0.88ε2 : 0.63ε4 ,
(6.9)

which are consistent with the constraints in (2.29) and (6.2).

More interestingly, one can take a = 1 and still find O(1) coefficients which give rise

to good mixing angles and lepton mass hierarchies. This choice for a improves the bound

on MSUSY in (5.29) to

MSUSY ≥ 10−10MGUT , (6.10)

as now s2 = 0.22. In this case the other singlets take values κ1 = 0.7, κ2 = 0.7 and the

Yukawa matrices are given by

Y L ∼


1.00ε5 (−0.79 + 0.27i)ε3 (0.72− 0.61i)ε

−(0.70 + 0.87i)ε5 (−0.86 + 0.57i)ε3 (0.99 + 0.01i)ε

(0.98− 0.30i)ε4 (0.32− 1.08i)ε2 0.34− 0.80i



Mν ∼


0.90κ1 0.98κ1 1.07κ2

0.98κ1 1.16κ1 0.89κ2

1.07κ2 0.89κ2 1.00(κ1κ2 + κ3
1)

 .

(6.11)
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The mixing angles and mass hierarchies are in very good agreement with those in (6.2)

and (2.29)

θ12 = 0.56, θ13 = 0.14, θ23 = 0.71

mτ : mµ : me = 1 : 0.68ε2 : 1.02ε5 .
(6.12)

6.2 Models (BaEnGo1)−(BaEnGo3)

For the matter distributions in the F-theoretic FN-models (BaEnGo1) and (BaEnGo2) of

section 5.3 we find that the leptons and neutrinos are different from the models in [81],

and are given by

Y u
BaEnGo ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 Y d
BaEnGo ∼


ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1



Y L ∼


ε5 ε3 ε1

ε5 ε3 ε1

ε5 ε3 ε1

 Mν ∼


κ1 κ1 κ1

κ1 κ1 κ1

κ1 κ1 κ1

 ,

(6.13)

where the singlets have charges

(BaEnGo1) : qK2 = (−10,−10), (BaEnGo2) : qK2 = (0,−10) . (6.14)

Likewise for model (BaEnGo3) we get

Y u
BaEnGo ∼


ε8 ε6 ε4

ε6 ε4 ε2

ε4 ε2 1

 Y d
BaEnGo ∼


ε5 ε4 ε4

ε3 ε2 ε2

ε 1 1



Y L∼


ε4+c ε2+c εc

ε4+c ε2+c εc

ε5 ε3 ε

 Mν ∼


κ1 κ1 κ1κ2

κ1 κ1 κ1κ2

κ1κ2 κ1κ2 κ1κ
2
2

 ,

(6.15)

where

qK1 = (−10,−10) , qK2 = (−5, 0) . (6.16)

For (BaEnGo1) and (BaEnGo2) the following O(1) coefficients in the lepton and neutrino

Yukawa matrices

Y L ∼


(1.09− 0.04i)ε5 (−1.11 + 0.42i)ε3 (−0.13− 0.91i)ε

(0.19 + 1.05i)ε5 (−0.88 + 0.31i)ε3 (1.04− 0.52i)ε

(−0.21 + 0.93i)ε5 (−0.24 + 1.00i)ε3 0.97 + 0.10iε



Mν ∼


0.81κ1 1.10κ1 1.03κ1

1.10κ1 1.11κ1 1.05κ1

1.03κ1 1.05κ1 1.01κ1


(6.17)
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with κ1 = 0.22 result in PMNS mixing angles and lepton mass hierarchies, which are

consistent with the phenomenological constraints (2.29) and (6.2)

θ12 = 0.60, θ13 = 0.18, θ23 = 0.69

mτ : mµ : me = 1 : 0.92ε2 : 0.59ε5 .
(6.18)

This model fits precisely the anarchy models in [87].

Finally, consider FN-model (BaEnGo3), where in addition to the quark Yukawa ma-

trices in (6.15) one finds the following set of lepton and neutrino Yukawa matrices for

c = 1, κ1 = 0.2 and κ2 = 0.4

Y L ∼


(−0.92 + 0.08i)ε5 (1.06 + 0.36i)ε3 (0.69− 0.57i)ε

(0.89− 0.33i)ε5 (1.00 + 0.10i)ε3 (0.30− 0.77i)ε

(0.38 + 0.82i)ε5 (1.02 + 0.19i)ε3 (0.53 + 0.61i)ε



Mν ∼


0.82κ1 0.88κ1 0.85κ1κ2

0.88κ1 0.94κ1 1.10κ1κ2

0.85κ1κ2 1.10κ1κ2 0.93κ1κ
2
2

 .

(6.19)

The resulting mixing angles and lepton mass ratios are

θ12 = 0.61, θ13 = 0.16, θ23 = 0.71

mτ : mµ : me = 1 : 0.92ε2 : 0.97ε4 ,
(6.20)

which again are phenomenologically sound.

7 Geometric realization

In this section we discuss how some of the phenomenologically viable models can be realized

geometrically. For the case of the two U(1) models, some of the solutions in section 4 can

be realized in terms of a general cubic in P2. For the F-theoretic FN-models, we have not

determined a geometric construction, however we provide the necessary fiber types, that

realize the charge patterns underlying these flavor models.

7.1 Single U(1) models

For one U(1) there is exactly one model that is consistent, denoted by I.1.4.a in table 1.

All other models bring back in one way or another the dimension four or five proton

decay operators. In addition the single U(1) models have very limited scope with respect

to flavor. Nevertheless to geometrically engineer the solution I.1.4.a one has to consider

the codimension one fiber type I
(01)
5 . As one can see however, the charges in the model

are wider separated than in known constructions. We will focus our attention on the

phenomenologically more interesting multiple U(1) models.
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Section Line bundle

s1,j O(−6KB − 2[a1]− 2[a2]− 2[a3]− 3[s8]− jSG)

s2,j O(−4KB − [a1]− [a2]− [a3]− 2[s8]− jSG)

s3,j O(−2KB − [s8]− jSG)

s5,j O(−3KB − [a1]− [a2]− [a3]− [s8]− jSG)

s6,j O(−KB − jSG)

s8,j O([s8]− jSG)

a1,j O([a1]− jSG)

a2,j O([a2]− jSG)

a3,j O([a3]− jSG)

b1,j O(KB + [a1] + [s8]− jSG)

b2,j O(KB + [a2] + [s8]− jSG)

b3,j O(KB + [a3] + [s8]− jSG)

Table 6. Classes of the sections for the elliptic fibration realised in terms of a general cubic in P2.

7.2 Two U(1) models

In section 4, the charge spectrum of the four models, with two U(1) symmetries, which

solved the anomaly cancellation conditions and forbid dangerous proton decay operators

were detailed. In this section we show how three of these models can be constructed by

considering elliptic fibrations with two additional rational sections, described by enhancing

the singularity type of the general cubic in P2. The elliptically fibered Calabi-Yau four-fold,

as a hypersurface in an ambient five-fold, is given by the following cubic equation [20]

w(s1w
2 + s2wx+ s3x

2 + s5wy + s6xy + s8y
2) +

3∏
i=1

(aix+ biy) = 0 , (7.1)

where [w : x : y] are projective coordinates in P2. This fibration has three rational sections

given by

σ0 : [0 : −b1 : a1], σ1 : [0 : −b2 : a2], σ2 : [0 : −b3 : a3] . (7.2)

By expanding the coefficients above, which we denote generally as ci, along a coordinate

in the base, z, as

ci =

∞∑
j=1

ci,jz
j , (7.3)

singularities can be tuned along the locus z = 0. The coefficients si,j , ai,j and bi,j are

sections of the following holomorphic line bundles over the base shown in table 6, where

KB is the pullback of the canonical class of the base, B, and SG is the class of z.

As we are interested in SU(5) GUTs we will only consider models which realize I5

singularities. To determine this, we apply Tate’s algorithm to the general cubic. Resolving
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the I5 singularities introduces four exceptional curves Fi into the fiber. The fibration of

each Fi over the singular locus z gives a divisor DFi . With each rational section, in addition

to the zero-section σ0, we can define the Shioda map, S(σi) such that

S(σi) ·Y Fj = 0 . (7.4)

Here ·Y denotes that the intersection is taken in the fourfold Y . The Shioda map constructs

from each rational section a divisor which corresponds to the generator of the U(1) sym-

metry. The U(1) charges of matter are found by intersecting S(σi) with the matter curves

obtained from the splitting of the Fj in codimension two. The resolutions and intersections

carried out in this paper are computed using the Mathematica package Smooth [88].

Here, we label our models as in [15], where the vanishing orders, nci , are given in the

order

(ns1 , ns2 , ns3 , ns5 , ns6 , ns8 , na1 , nb1 , na2 , nb2 , na3 , nb3) . (7.5)

Furthermore it will be necessary to consider so-called non-canonical models, where the

enhancement of the discriminant to O(z5), occurs not by simply specifying the vanishing

order of the coefficients, but by subtle cancellations between the coefficients, which are

non-trivially related see e.g. [14, 15, 89]. In the models we consider here the enhancement

to I5 requires solving

AB − CD = 0 , (7.6)

in terms of the coefficients of the hypersurface equation. This has to be solved over the

coordinate ring of the base of the elliptic fibration, which is a unique factorization domain.

Applying the standard Tate’s algorithm in this context [14, 15, 89] the enhancement is

obtained as a so-called non-canonical solution in terms of sections ξi

A = ξ1ξ2, B = ξ3ξ4, C = ξ1ξ3, D = ξ2ξ4 . (7.7)

In addition to specifying the vanishing order, the labelling of the non-canonical models also

includes the specialisation of the coefficients in terms of ξi, which is given underneath the

vanishing orders.

The models which realize the solutions in section 4 are given in table 7. For each model

the fiber type, vanishing orders and non-canonical specialisation is given along with the

charges of the 10 and 5̄ matter in the model. The equations for the matter loci referred

to in the table are given below:

ξ2ξ3ξ
2
4s3,0 + ξ1ξ4(ξ2

3a3,1 + ξ2
2a1,0b2,0s5,0 − ξ2ξ3s6,1)

−ξ2
1(ξ2

3b3,1 + ξ2
2b1,0b2,0s5,0 − ξ2ξ3s8,1) = 0 (7.8)

a2
1,0b2,0b3,0s5,0 + b1,0s

2
6,0 − a1,0s6,0s8,0 = 0 (7.9)

ξ2
4(ξ2

3s1,1 − ξ2ξ3s2,1 + ξ2
2s3,0)

−ξ1ξ4(ξ2
2a1,0a3,0b2,0 + ξ2

3s5,1 − ξ2ξ3s6,1) + ξ2
1ξ3(−ξ2a1,0b2,0b3,0 + ξ3s8,0) = 0 (7.10)

These models provide new charge configurations that have thus far not been obtained in

the literature.
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Each of the models in table 7 have additional charged matter, which is not present in the

corresponding solutions given in section 4, which can be forbidden in the base. As an aside:

as noted in the table, the charges for the non-canonical model (3, 2, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0)

under the first U(1) is reversed to those in solution II.1.6.a. This can be further seen by the

fact that the fiber type of this model is not one considered in the analysis in section 4, as

was noted earlier. This is justified as the charges in an I
(i|j|k)
5 model are the same as those

in I
(i|jk)
5 except with the sign of one of the U(1)s reversed. As the anomaly cancellation

conditions are unaffected by global rescalings of the U(1) charges, the model in the table

solves the anomaly cancellation condition as in solution II.1.6.a.

7.3 Fibers for models (Haba1) and (Haba2)

The F-theoretic FN-models in section 5.2 have particularly nice phenomenology in addition

to satisfying all anomaly constraints and absence of dangerous couplings. The charges for

those models are within the classification of the F-theory charges [1], however so far no

concrete geometric realization is known. To guide the construction of these geometries,

we now provide the possible fiber types necessary for these models in the following for the

models in table 4.

The models are based on I
(02|1)
5 , where the two additional sections σ1 and σ2 generate

the two extra U(1) symmetries. For simplicity we discuss the model (Haba2) in table 4 —

for model (Haba1) the only change is that the two extra sections have the same charges,

for the 5̄ matter loci, and thus have the same configurations. The fibers in codimension

two, including the configuration of the sections is shown in figure 4. We shall refrain

from providing the details of this result and refer the reader to [1], where a comprehensive

discussion of these fibers was obtained.

The main difficulty in constructing this class of models is that the charges are sepa-

rated, e.g. the 5̄ charges have a range from q2 = −14 to 6, i.e. qmax
5̄
− qmin

5̄
= 20, which

is in current algebraic constructions not observed. Generically the charge differences are

qmax
5̄
− qmin

5̄
= 10, with the only example, known to us, with this difference given by 15 is

a toric construction obtained in [12]. It would be very interesting to systematically search

for models with wider separation of charges. One complication is of course, that the codi-

mension two fibers will have to be more and more wrapped, i.e. there will be components

in the codimension two fibers that are contained within the section, as shown in figure 4.

8 Conclusions

We have shown that there are viable models in the class of F-theory charge configurations

from the classification in [1], which satisfy all consistency requirements (A1.)−(A5.) and

(C1.)−(C7.), and have realistic flavor physics, however these are very scarce.

We considered one or two U(1) symmetries, although our analysis can be easily ex-

tended to three or more U(1)s. For single U(1) models there is one solution, which does not

regenerate any of the dangerous couplings at the same order as the Yukawa couplings, how-

ever single U(1) models have very limited scope with regards to FN-type modeling. For two
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Figure 4. Fibers for the F-theoretic FN-model (Haba2) of table 4. The codimension one type

I
(02|1)
5 is as in figure 3 (up to permutation of the two extra sections), with the zero-section shown

in blue. The nomenclature is as in [1]: the codimension two fibers realizing the 5̄ matter (I6) as

well as 10 matter (I∗1 fibers) are shown together with their charges. The coloring correspond to the

wrapping of the fibers, and the labels along the wrapped components correspond to the degrees of

the normal bundle, which in turn determine the charges. For the 5̄ matter, the blue and yellow

sections have to have the same configurations, as the charge is zero. These are shown in terms of

green coloring. The blue/yellow colored representation graphs (box graphs) indicate the phases of

the respective resolution type, see [2].
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U(1)s we studied two sets of solutions: one which solves all the constraints and has an ex-

plicit geometric construction — albeit coming short on the flavor physics. The second class

of solutions have realistic flavor textures generated by an FN-mechanism, which we studied

in both quark and lepton sectors, however their geometric construction is unknown — these

were denoted by (Haba1)-(Haba2) and (BaEnGo1)-(BaEnGo3), according to the Yukawa

textures for the quarks. We provided the required fiber types for (Haba1) and (Haba2) and

hope that our result gives a guidance to the geometric efforts to construct more elaborate

F-theory compactifications. It would be very exciting to find a geometric construction of

these models summarized in table 4. This includes the construction of the elliptic fibration

with two rational sections as well as the G-flux, in particular also the hypercharge flux,

that induces the necessary matter distributions as detailed by the M and N values. Fur-

thermore, combining our general insights from the structure of the elliptic fiber with recent

advances on the understanding of the base of the fibration of four-folds [90, 91] would lead

to a very powerful way to constrain the set of phenomenologically viable F-theory vacua.
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A Multiple 10 curves for single U(1) models

In this appendix we provide details on multiple 10 representations for single U(1) models,

completing the analysis in section 3. We find only models with N10 = 2 and N5̄ = 4 solve

the anomaly cancellation conditions and forbid the unwanted operators at leading order.

These models regenerate dimension five proton decay operators with the remaining charged

Yukawas, which if sufficiently suppressed, could still leave these models phenomenologically

viable. However their flavor physics is highly constrained and does not yield phenomeno-

logically interesting textures.

A.1 N10 = 2

For the case of multiple 10 representations with one U(1) symmetries it is possible to have

top Yukawa couplings of the form,

10q110q25−q1−q2 , (A.1)

where the two 10 representations do not have the same charge under the U(1). This means

we can make use of the full set of charges in (2.34) and, in particular, we do not require

one of the 10 representations to have a U(1) charge within the set given in (3.1).
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In this case the general parametrization will be of the form,

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
qHd

0 1

5̄i q5̄i Mi Ni

101 q101 M10 N10

102 q102 3−M10 −N10

(A.2)

where i = 1, . . . ,N5̄, the latter being the number of 5̄ representations.

A.1.1 N5̄ = 3

Here the anomaly cancellation conditions can be solved for general charges. There are two

possible parametrizations, which differ in the structure of the top Yukawa coupling.

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
−qHu + 5wHd

0 1

5̄1 −qHu + 5w5̄1
3 0

101 −1
2qHu M10 N10

102 −1
2qHu + 5w10 3−M10 −N10

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
−qHu + 5wHd

0 1

5̄1 −qHu + 5w5̄1
3 0

101 q10 M10 N10

102 −q10 − qHu 3−M10 −N10

(a) (b)

(A.3)

In the above parametrization, N10 = 0,±1, this is to ensure the absence of exotics. However

setting N10 = 0 only gives solutions where the µ-term is allowed at leading order, therefore

we neglect this case and focus on N10 = ±1. For parametrization (a) the top Yukawa

coupling is of the standard form,

10q110q1Hu , (A.4)

where the two 10s have the same charge under the U(1). In (b) the top Yukawa coupling is

of the form given in (A.1). Below we outline the solution for (a) but a very similar analysis

can be done for (b).

The anomaly condition (A2.) imposes wHd
= w10N10, which upon imposing (A3.)

yields

w10N10(qHu + 5w10(N10 − 3)) = 0 . (A.5)

As we require the two 10s to be different charged and wHd
6= 0 to avoid the µ-term thus

w10, N10 6= 0, the only allowed solution to (A.5) is given by qHu = −5w10(N10 − 3). The
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charges, which satisfy the anomaly conditions are

R q(R) M N

5̄Hu 5w10(N10 − 3) 0 −1

5̄Hd
5w10(2N10 − 3) 0 1

5̄1 5(w5̄1
+ w10(N10 − 3)) 3 0

101
5
2w10(N10 − 3) M10 N10

102
5
2w10(N10 − 1) 3−M10 −N10

(A.6)

Imposing a bottom Yukawa coupling with 101 gives the additional constraint,

w5̄1
=
w10

2
(15− 7N10) . (A.7)

There are solutions to the above set of charges, which satisfy the F-theory charge pattern,

which we summarize in table 8. Here we have not imposed the presence of the bottom

Yukawa coupling explicitly as these solutions correspond to one particular choice for w5̄1
.

Restricting to the F-theory charge range, (3.1) and (2.34), we are constrained to take w10±1,

and, without loss of generality, we take w10 = 1 as the two choices differ by an overall factor

of −1 in normalisation of the U(1) charges. Likewise we have taken qHu = 5 in case (b).

All the possible choices for w5̄1
, which are within the F-theory charge range, are given by,

w5̄1
for

{
I.2.3.a ∈ {−1, 2, 3, 4, 5}
I.2.3.b ∈ {−2, 1, 2, 3, 4} .

(A.8)

As one can see from the general solutions, all but one of these allow either the dimension

five proton decay operators (C2.) or (C6.) and are therefore excluded. The case which

forbids the unwanted operators at leading order is given by w5̄1
= −2 in I.2.3.b however

in this model dimension four proton decay operators are regenerated with bottom Yukawa

couplings and therefore is also not a viable model.

A.1.2 N5̄ = 4

For N5̄ ≥ 4, the strategy for finding solutions to the anomaly conditions is to take all

possible sets of 10 and 5̄ charges, selected from (2.34) and find those, which can solve

(A1.)−(A5.) for allowed M,Ns. The two solutions shown in table 8 solve the anomaly

cancellation conditions, forbid operators (C1.)−(C7.) and do not regenerate dimension four

proton decay operators with the charged Yukawas. They do, however, regenerate dimension

five proton decay operators, which, if sufficiently suppressed, could still give viable models.

The matter in the MSSM can be allocated to the U(1) charged 10 and 5̄ representations
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in model I.2.4.a as follows:

Representation Charge M N Matter

101 −3 1 −1 Q1, ū1, ū2,

102 −1 2 1 Q2, Q3, ū3, ēA, A = 1, 2, 3

5̄Hu −2 0 −1 Hu

5̄Hd
2 0 1 Hd

5̄1 −3 0 3 LI , I = 1, 2, 3

5̄2 −1 3 −3 d̄I , I = 1, 2, 3

(A.9)

In this spectrum the following couplings are allowed by the additional U(1) symmetry

Y t
221021025Hu ⊃ Q3ū3Hu

Y b
241025̄Hd

5̄2 ⊃ Q3d̄3Hd +Q2d̄2Hd .
(A.10)

In order to regenerate the remaining Yukawa couplings one needs the singlet of charge 2

to acquire a vev, which however, also regenerates all dimension five operator, with various

suppressions. This model may still be viable from the point of view of proton decay, with

sufficient suppression, however, the flavor physics based on an FN-type model is not very

realistic, and we therefore discard these solutions.

For model I.2.4.b the spectrum is given by

Representation Charge M N Matter

101 −3 2 0 Q1, Q2, ū1, ū2, ē1, ē2

102 −1 1 0 Q3, ū3, ē3

5̄Hu −2 0 −1 Hu

5̄Hd
2 0 1 Hd

5̄1 −1 1 2 d̄3, LI , I = 1, 2, 3

5̄2 1 2 −2 d̄1, d̄2

(A.11)

For this model there were two sets of M,Ns which solved the anomaly cancellation con-

ditions, the values displayed in (A.11) are the ones compatible with having rank one top

and bottom Yukawa matrices at tree level. In order to regenerate the top Yukawa coupling

involving the two differently charged 10s a singlet of charge 2 is required, and the same

remarks as for I.2.4.a apply.

A.1.3 N5̄ ≥ 5

All but one of the models, for N5̄ = 5,regenerate the dimension four operator (C4.) with

the missing Yukawa couplings. The remaining model however is inconsistent with the

hierarchy of Yukawa couplings. For the cases of six and seven 5̄ representations there are

no solutions, which both solve the anomaly cancellation conditions and forbid the unwanted

operators, in agreement with what was found for a single 10 representation.
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A.2 N10 = 3

This case is maximal for the number of 10 representations and has the greatest potential

for generating a Yukawa texture with good quark mass ratios. However, by increasing the

number of 10s one increases the chance of generating forbidden couplings, in particular

the operator (C5.) becomes unavoidable in most models. There is only one solution to the

anomaly cancellation conditions which forbids the unwanted couplings at leading order.

This solution, I.3.4.a

Representation Charge M N

101 −3 1 0

102 −2 1 0

103 −1 1 0

5̄Hu −2 0 −1

5̄Hd
1 0 1

5̄1 −1 0 3

5̄2 0 3 −3

(A.12)

A full rank Yukawa matrix can be generated by giving a vev to the singlet of charge 1.

This model interestingly generates the Haba textures (2.31), however one also regenerates

dimension four proton decay operators with a singlet insertion of the singlet, which is

phenomenologically unacceptable.

In conclusion we see that for a single U(1) the solution space is very limited — even

disregarding flavor problems — and for solutions to the anomalies and constraints on

couplings, generically the Yukawas bring back the unwanted couplings at subleading order.

B General solution for N10 = 1 and N5̄ = 4 with multiple U(1)s

B.1 Two U(1)s

In this appendix the general solution for the case of one 10 and four 5̄s is derived for two

U(1)s. This class of solutions, which give rise to good phenomenological models, is given

in table 9. The extension of the solutions for the case of two U(1)s to multiple U(1)s is

also discussed. Consider a model with two abelian factors, parametrized as

R q(R)α M N

5̄Hu −qαHu
0 −1

5̄Hd
−qαHu

+ 5wαHd
0 1

5̄1 −qαHu
+ 5wα

5̄1
M N

5̄2 −qαHu
+ 5wα

5̄2
3−M −N

10 q10 = −1
2q
α
Hu

3 0

(B.1)

where qαi denotes the charges under U(1)α, α = 1, 2. Without loss of generality, we take

N ≥ 0. The linear anomaly (A2.) for each abelian factor is of the form

wαHd
+N(wα5̄1

− wα5̄2
) = 0 , (B.2)
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which can be solved for wαHd
. Inserting this equation into the quadratic set of anomalies

(A3.), we have,

N(w1
5̄1
− w1

5̄2
)(w1

5̄1
+ w1

5̄2
+ (w1

5̄1
− w1

5̄2
)N) = 0

N(w2
5̄1
− w2

5̄2
)(w2

5̄1
+ w2

5̄2
+ (w2

5̄1
− w2

5̄2
)N) = 0

N(w1
5̄1
w2

5̄1
− w1

5̄2
w2

5̄2
+ (w1

5̄1
− w1

5̄2
)(w2

5̄1
− w2

5̄2
)N) = 0 .

(B.3)

Setting N = 0 solves all the anomaly conditions simultaneously but from (B.2) we see that

this results in the presence of the µ-term at tree-level, which is unfavorable. We therefore

neglect this class of solutions. The first two quadratic anomalies can be solved in three

distinct ways:

a) w1
5̄1

= w1
5̄2
, w2

5̄1
= w2

5̄2

b) w1
5̄1

= (N−1)
N+1 w

1
5̄2
, w2

5̄1
= (N−1)

N+1 w
2
5̄2

c) w1
5̄1

= w1
5̄2
, w2

5̄1
= (N−1)

N+1 w
2
5̄2

The sets of charges from these three possibilities are given below.

a) Upon the insertion of w1
5̄1

= w1
5̄2
, w2

5̄1
= w2

5̄2
into the third anomaly condition in (B.3)

the mixed quadratic anomaly is automatically solved. The U(1) charges in this case

are

10 5Hu 5̄Hd
5̄1 5̄2

q1(R) −1
2q

1
Hu

q1
Hu
−q1

Hu
−q1

Hu
+ 5w1

5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu
−q2

Hu
−q2

Hu
+ 5w2

5̄2
−q2

Hu
+ 5w2

5̄2

(B.4)

This pair of U(1)s always gives rise to the µ-term at leading order and therefore does

not give phenomenologically favorable models.

b) Here the solutions for w1
5̄1

and w2
5̄1

have the same form as in the single U(1) case. The

mixed anomaly in (B.3) is automatically solved and the charges for each U(1) are

10 5Hu 5̄Hd
5̄1 5̄2

q1(R) −1
2q

1
Hu

q1
Hu
−q1

Hu
+ 10N

1+Nw
1
5̄2
−q1

Hu
+ 5(N−1)

1+N w1
5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu
−q2

Hu
+ 10N

1+Nw
2
5̄2
−q2

Hu
+ 5(N−1)

1+N w2
5̄2
−q2

Hu
+ 5w2

5̄2

(B.5)

c) The mixed anomaly in (B.3) is not automatically solved, but instead it reduces to

w1
5̄2
w2

5̄2
N

1 +N
= 0 . (B.6)

The charges for the two different solutions to (B.6) are:

i) w1
5̄2

= 0

10 5Hu 5̄Hd
5̄1 5̄2

q1(R) −1
2q

1
Hu

q1
Hu

−q1
Hu

−q1
Hu

−q1
Hu

q2(R) −1
2q

2
Hu

q2
Hu
−q2

Hu
+ 10N

1+Nw
2
5̄2
−q2

Hu
+ 5(N−1)

1+N w2
5̄2
−q2

Hu
+ 5w2

5̄2

(B.7)
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II.1.4.a II.1.4.b

M 0/1 0/1

N 2 2

q101 (−1
2q

1
Hu
,−1

2q
2
Hu

) (−1
2q

1
Hu
,−1

2q
2
Hu

)

qHu (q1
Hu
, q2
Hu

) (q1
Hu
, q2
Hu

)

qHd
(−q1

Hu
+ 20

3 w
1
52
,−q2

Hu
+ 20

3 w
2
52

) (−q1
Hu
,−q2

Hu
+ 20

3 w
2
52

)

q5̄1
(−q1

Hu
+ 5

3w
1
52
,−q2

Hu
+ 5

3w
2
52

) (−q1
Hu
,−q2

Hu
+ 5

3w
2
52

)

q5̄2
(−q1

Hu
+ 5w1

52
,−q2

Hu
+ 5w2

52
) (−q1

Hu
,−q2

Hu
+ 5w2

52
)

Y b
1 (−5

2q
1
Hu

+ 25
3 w

1
52
,−5

2q
2
Hu

+ 25
3 w

2
52

) (−5
2q

1
Hu
,−5

2q
2
Hu

+ 25
3 w

2
52

)

Y b
2 (−5

2q
1
Hu

+ 35
3 w

1
52
,−5

2q
2
Hu

+ 35
3 w

2
52

) (−5
2q

1
Hu
,−5

2q
2
Hu

+ 35
3 w

2
52

)

Table 9. Solution for N5̄ = 4, N10 = 1 for two U(1)s.

ii) w2
5̄2

= 0

10 5Hu 5̄Hd
5̄1 5̄2

q1(R) −1
2q

1
Hu

q1
Hu
−q1

Hu
−q1

Hu
+ 5w1

5̄2
−q1

Hu
+ 5w1

5̄2

q2(R) −1
2q

2
Hu

q2
Hu
−q2

Hu
−q2

Hu
−q2

Hu

(B.8)

This set of charges also does not forbid the µ-term at leading order and therefore

is disfavored.

Excluding the cases where the tree-level µ-term is not forbidden by the additional U(1)

symmetries we are left with only case b) and ci). In both cases setting N = 1 results in

the separation between the charges of 5̄1 and 5̄Hu becoming zero, this produces a leading

order coupling of the form (C5.)

10110151 , (B.9)

which is forbidden. Similarly, N = 3 can be excluded as these cases always regenerate

dimension four proton decay operators with the remaining charged Yukawa couplings.

This can be seen from the charge relation

qαHd
+ qα5̄1

= 2qα5̄2
, α = 1, 2 , (B.10)

which is true only when N = 3. This relation implies that the charge of the dimension four

proton operator coupling 101 and 5̄2 will be the same as the bottom Yukawa couplings for

5̄1.

The charges for case (b) and (ci) for N = 2 are given in table 9. If the charges are to

remain within the F-theory charge set then wα52
= ±3, α = 1, 2 and the charges of Hu are

– 51 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
8

restricted to,

qαHu
for


I

(01)
5 ∈ {−2,+2}

I
(0|1)
5 ∈ {−14,+6}

I
(0||1)
5 ∈ {−8,+12} .

(B.11)

Each distinct pair of charges (q1
Hu
, q2
Hu

) gives a phenomenologically viable model, which

forbids the unwanted operators at leading order.

Imposing the presence of a bottom Yukawa coupling further constrains the sets of

possible U(1) charges. For II.1.4.a the requirement of a bottom Yukawa coupling with either

5̄1 or 5̄2 gives solutions where all matter is charged the same under both U(1)s. In model

II.1.4.b requiring a bottom Yukawa coupling forces all matter to be completely uncharged

under one of the two U(1)s. Thus in both cases, the solutions reduce to the single U(1)

models I.1.4.a and I.1.4.c given in table 1. Extending to two additional U(1) symmetries

results in no new models, if one requires the presence of a bottom Yukawa coupling.

B.2 Extension to multiple U(1)s

The pairs of matter charges for two U(1)s, determined above, can be combined to give

models charged under multiple U(1)s. Every pair of U(1)s must solve the anomaly cancel-

lation conditions in one of the cases a), b), ci) or cii). From examining the charges in each

case one can rule out certain combinations of the four different pairs of U(1) charges. One

obtains four types of models with multiple U(1)s:

Type A: charges from case a) and case cii) are combined in one model

Type B: charges from case a) are combined in one model

Type C: charges from case b) and case ci) are combined in one model

Type D: charges from case b) are combined in one model

Models of type A and B are phenomenologically disfavored as the µ-term is always present

at leading order. This can be seen from the charges in (B.4) and (B.8). All models of type

C and D can be obtained by combining the charges which arise in II1.4.a and II.1.4.b in

table 9, however none of these allow for a leading order bottom Yukawa coupling. This

implies that all multiple U(1) models in this case, with F-theory charges and a bottom

Yukawa coupling at leading order, are trivial extensions of the single U(1) solutions I.1.4.a

and I.1.4.c in table 1.

C General solutions to anomaly equations

Solving the anomaly constraints in generality for multiple matter curves can be quite

difficult. Here we provide some systematic approach how to do so. The quadratic anomaly

(A3.) is a diophantine equation in terms of the U(1) charges and integer multiplicities

M and N , and we will use some methods from Mordell’s work in [92] to find general

solutions. Note that for the case of the restricted F-theory charge range (as we can simply
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scan through all the possibilities), these methods are not necessary, however it provides an

elegant approach to finding closed forms of the solutions.

We would like to stress that this approach can be used to classify all possible solutions

allowed after imposing the constraints (A1.)-(A5.) and (C1.)-(C7.). This approach allows

to classify all phenomenologically allowed solutions and can be used to survey all field-

theoretically allowed FN models. It is similar to the approach taken in [70, 93] where

anomaly free, flavor universal gauge symmetry extensions to the MSSM were classified.

C.1 Mordell’s solution for Diophantine equations

Consider one U(1) withN10 = 1 andN5̄ = n. We will now solve the system of anomaly con-

straints using a method of Mordell. First let us set up the equations: the matter spectrum

in this case takes the following form, where the top Yukawa coupling is already imposed

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
qHd

0 1

5̄i 6=n qi Mi Ni

5̄n qn 3−
∑n−1

i=1 Mi −
∑n−1

i=1 Ni

10 q10 = −1
2qHu 3 0

(C.1)

The constraints on the integers Mi and Ni is

0 ≤Mi ≤ 3 , 0 ≤Mi +Ni ≤ 3 ,
n−1∑
i=1

Mi ≤ 3 , (N1, . . . , Nn) 6= (0, . . . , 0) . (C.2)

Imposing the anomaly constraint

(A2.) ⇒ qHd
= −qHu +

n−1∑
i=1

Ni(qn − qi) . (C.3)

This automatically implies that the charge of the µ-term is

qµ = qHu + qHd
=

n−1∑
i=1

Ni(qn − qi) . (C.4)

Next, impose the bottom Yukawa coupling, without loss of generality, for 5̄1

(Y2.) : q1 + qHd
+ q10 = 0 ⇒ qHu =

2

3

(
q1 +

n−1∑
i=1

Ni(qn − qi)

)

qHd
=

1

3

(
−2q1 +

n−1∑
i=1

Ni(qn − qi)

)
.

(C.5)

Finally, we impose the anomaly (A3.), which results for a single U(1) in a quadratic con-

straint

qµ (qHd
− qHu) +

n−1∑
i=1

Ni(q
2
i − q2

n) = 0 , (C.6)
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which after inserting the solution of the charges for the Higgs doublets takes the form of a

Diophantine equation
n−1∑
i,j=1

aijqiqj = 0 , (C.7)

where the integers aij depend on the multiplicities Ni. From the form (C.6) it is clear

that each term in the anomaly is proportional to the difference of two charges, so that one

initial seed solution is

qi = q0 i = 1, . . . , n . (C.8)

Starting from this solution, we can generate all solutions to this with the method from

Mordell [92].

The theorem in Mordell [92] states, that if a non-zero integer solution to

aq2
1 + bq2

2 + cq2
3 + 2fq2q3 + 2gq1q3 + 2hq1q2 = 0 (C.9)

exists, then the general solution with all qi coprime, i.e. (q1, q2, q3) = 1, is given by expres-

sions

qi = aip
2 + bipq + ciq

2 , (p, q) = 1 , p, q ∈ Z , (C.10)

with ai, bi, ci ∈ Z constants. In fact a constructive method is given: consider an initial seed

solution (q0
1, q

0
2, q

0
3). Then let

q1 = rq0
1 + p , q2 = rq0

2 + q , q3 = rq0
3 . (C.11)

Inserting this back into (C.9) results in a linear equation for r, which can be solved and

thus one determines the expressions for qi from (C.11).

This method can be applied more generally for n > 2. The ansätze are

qi = q0
i r + pi , for i = 1, . . . , n− 1

qn = q0
nr .

(C.12)

Again, the resulting equation (C.7) becomes lines in r, and can be solved in each case to

yield the charges qi for all i. In general this leaves n− 1 charges unfixed by the constraints

imposed thus far. For each case we will now consider in the following the charges of the

unwanted couplings (C1.)−(C7.), in order to determine the phenomenological soundness

of the models.

C.2 General solutions for N5̄ = 5

To exemplify the method in the last section, consider the case of three matter 5̄ represen-

tations, in addition to the two Higgs ones, which will be parametrized as

R q(R) M N

5̄Hu −qHu 0 −1

5̄Hd
qHd

0 1

5̄1 q1 M1 N1

5̄2 q2 M2 N2

5̄3 q3 3−M1 −M2 −N1 −N2

10 q10 = −1
2qHu 3 0

(C.13)
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Note that for fewer, the equations always factor and can be solved easily. The first non-

trivial case is n = 5. The constraints on the integers Mi and Ni is

0 ≤Mi ≤ 3 , 0 ≤Mi +Ni ≤ 3 , M1 +M2 ≤ 3 , (N1, N2) 6= (0, 0) . (C.14)

There are 90 solutions, however only 40 will be eventually of interest and distinct from

earlier cases with fewer, distinctly charged matter.

Again, we first solve the anomaly constraint (A2.) which yields

(A2.) ⇒ qHd
= q3(N1 +N2)−N1q1 −N2q2 − qHu . (C.15)

Furthermore, without loss of generality, we impose the bottom Yukawa coupling for the 5̄1

matter, i.e.

(Y2.) ⇒ q1+qHd
+q10 = 0 ⇒ qHu = −2

3
(N1q1−N1q3+N2q2−N2q3−q1) , (C.16)

where qHd
from the anomaly was used. Furthermore as we impose the bottom Yukawa for

5̄1, we require M1 6= 0. Note that the µ-term has charge

qµ = qHu + qHd
= (N1 +N2) q3 −N1q1 −N2q2 6= 0 . (C.17)

This in particular implies

(N1, N2) 6= (0, 0) . (C.18)

The anomaly (A2.) constraint now reads

(A3.)⇒ (7−N1)N1q
2
1 + (3−N2)N2q

2
2 − (N1 +N2) (N1 +N2 + 3) q2

3

+ 2(N1−2) (N1+N2) q1q3−2 (N1−2)N2q1q2+2N2 (N1+N2) q2q3 =0 ,
(C.19)

which is a homogeneous quadratic equation in qi with integer coefficients. We are searching

for rational solutions, although by rescaling, we can consider integer solutions. Such Dio-

phantine equations are for instance discussed in [92], which gives a systematic construction

of its solution, starting with a seed solution.

Applying this to the anomaly constraint (C.19) with the seed solutions

q0
1 = 4N1N2 − 3N1 + 9N2 , q0

2 = 4N1N2 + 17N1 − 11N2 , q0
3 = 4N1N2 − 3N1 − 11N2 ,

(C.20)

which is non-trivial as Ni cannot both vanish. We now need to choose these integers so

that the seed solution satisfies (q0
1, q

0
2, q

0
3) = 1. Examples of these are

(N1, N2, N3) = (−1,−2, 3), (1,−2, 1), (−3, 2, 1), (−2, 1, 1), (2,−1,−1) . (C.21)

The resulting charges from the Mordell argument are

q1 = p−
(9N2+N1 (4N2−3))

(
(N1−7)N1p

2+2 (N1−2)N2pq+(N2−3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)

q2 = q−
(N1 (4N2+17)−11N2)

(
(N1−7)N1p

2+2 (N1−2)N2pq+(N2−3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)

q3 = −
(N1 (4N2−3)−11N2)

(
(N1−7)N1p

2+2 (N1−2)N2pq+(N2−3)N2q
2
)

10 (N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q)
.

(C.22)
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Here, p, q ∈ Z and coprime. The µ-term is

qµ = − 3 (N1 +N2) (N1p−N2q)
2

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q
6= 0 . (C.23)

The remaining bottom Yukawa couplings have charge

q(λb2) = − (N1 +N2) (N1p−N2q) ((2N1 − 11) p+ (2N2 − 3) q)

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q

q(λb3) = −(N1p−N2q) (−11N2p+N1 (2N2 + 3) p+ 2 (N2 − 3)N2q)

N1 (N1 (4N2 + 3)− 25N2) p+N2 (3N2 +N1 (4N2 − 9)) q
.

(C.24)

Similarly one can solve for more 5̄ curves using this Mordell approach. In the main text

we will constrain ourselves to the F-theoretic charges, which comprise a finite set, and thus

do not necessarily need to use this method.

D Search for other known textures

In section 5 we saw that the case of four 5̄ representations produced Yukawa textures

matching (2.31) and (2.32). Extending the analysis to five and six 5̄s we find that there

are no solutions to the anomaly cancellation conditions, which produce the same Yukawa

hierarchies. Here we consider whether other known flavor models can be realized within

our F-theory framework. We find no fits to other known flavor textures.

D.1 Symmetric textures

Consider first the Yukawa hierarchies in [74] given by

Y u ∼


ε4 ε3 ε3

ε3 ε2 ε2

ε3 ε2 1

 , Y d ∼


ε4 ε3 ε3

ε3 ε2 ε2

ε3 ε2 1

 . (D.1)

In this section we will show it is not possible to match to this texture in our framework,

due to the form of the down-type Yukawa matrix. To see this, note that we need at least

five 5̄s so that each down-type quark resides within a differently charged 5̄. Consider the

parametrization

R q1(R) q2(R) M N

5̄Hu −q1
Hu

−q2
Hu

0 −1

5̄Hd
3
2q

1
Hu
− 5w1

53

3
2q

2
Hu
− 5w2

53
0 1

5̄1 −q1
Hu

+ 5w1
51

−q2
Hu

+ 5w2
51

1 N1

5̄2 −q1
Hu

+ 5w1
52

−q2
Hu

+ 5w2
52

1 N2

5̄3 −q1
Hu

+ 5w1
53

−q2
Hu

+ 5w2
53

1 −N1 −N2

101 −1
2q

1
Hu

+ 5w1
101
−1

2q
2
Hu

+ 5w2
101

1 0

102 −1
2q

1
Hu

+ 5w1
102
−1

2q
2
Hu

+ 5w2
102

1 0

103 −1
2q

1
Hu

−1
2q

2
Hu

1 0

(D.2)
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where the charge of Hd has been chosen to allow an order one bottom Yukawa coupling

(which we choose to be 5̄3) at leading order. This set of charges gives rise to the following

Yukawa textures written in terms of the singlet insertions required to regenerate each entry

Y u ∼


s2

1 s1s2 s1

s1s2 s2
2 s2

s1 s2 1

 , Y d ∼


s4s1 s1s3 s1

s4s2 s2s3 s2

s4 s3 1

 . (D.3)

where si = 〈Si〉
MGUT

and the charges of the singlets Si are

(q1
S1
, q2
S1

) = −5(w1
101
, w2

101
)

(q1
S2
, q2
S2

) = −5(w1
102
, w2

102
)

(q1
S3
, q2
S3

) = −5(w1
5̄2
− w1

5̄3
, w2

5̄2
− w2

5̄3
)

(q1
S4
, q2
S4

) = −5(w1
5̄1
− w1

5̄3
, w2

5̄1
− w2

5̄3
) .

(D.4)

From the structure of the singlet insertions in the Yukawa matrices shown above one can

see that it is not possible to match to the ε suppressions shown in (D.1). The problem lies

in the texture of the down-type matrix in (D.3), if the singlet insertions in (2,3) and (3,2)

are chosen to have ε2 suppression then the (2,2) entry is automatically of order ε4. This is

in disagreement with (D.1) therefore it is not possible achieve the texture in [74].

D.2 E8-model textures

Consider the Yukawa hierarchies discussed in [54],14 which was discussed in the context of

local models in F-theory in the context of models obtained by higgsing E8,

Y u ∼


ε6 ε5 ε3

ε5 ε4 ε2

ε3 ε2 1

 , Y d ∼


ε6 ε5 ε3

ε4 ε3 ε

ε3 ε2 1

 . (D.5)

One finds that it is not possible to match to this set of textures either. It is not surprising

that the local analysis in [54] is not consistent with the analysis here, as it relied on local

U(1) charges and does not consider the quadratic anomaly (A3.). To see that the global

F-theory charges do not allow for these texture in (D.5), note that each down-type quark

must originate from a differently charged 5̄ representation which requires

M5i = 1,

N5i = −1, 0, 1, 2, i = 1, 2, 3 ,
(D.6)

where the restriction on N5i stems from imposing the absence of exotics. For general 5̄

charges there are three distinct cases to consider

(N51 , N52 , N53) = {(0, 0, 0), (1,−1, 0), (2,−1,−1)} . (D.7)

14The down-type Yukawa matrix has been transposed to match the convention defined in (2.26).
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The first case is excluded as the cancellation of the linear anomaly (A2.) requires the

presence of the µ-term at leading order which is unfavorable. We shall see in the following

that we find no phenomenologically good models for the second and third cases either. For

the second case, the anomaly cancellation conditions can be solved exactly for the following

parametrization,

R q1(R) q2(R) M N

5̄Hu −q1
Hu

−q2
Hu

0 −1

5̄Hd
−q1

Hu
+ 5w1

Hd
−q2

Hu
+ 5w2

Hd
0 1

5̄1 −q1
Hu

+ 5w1
51

−q2
Hu

+ 5w2
51

1 1

5̄2 −q1
Hu

+ 5w1
52

−q2
Hu

+ 5w2
52

1 −1

5̄3 −q1
Hu

+ 5w1
53

−q2
Hu

+ 5w2
53

1 0

101 −1
2q

1
Hu

+ 5w1
101
−1

2q
2
Hu

+ 5w2
101

1 0

102 −1
2q

1
Hu

+ 5w1
102
−1

2q
2
Hu

+ 5w2
102

1 0

103 −1
2q

1
Hu

−1
2q

2
Hu

1 0

(D.8)

The third generation quarks are taken to reside within 103, the charge of which has been

fixed to allow for a leading order top Yukawa coupling. Inserting this set of charges and

M,Ns into the linear anomaly we obtain,

wαHd
+ wα51

− wα52
= 0 , (D.9)

where α = 1, 2. Solving for wαHd
and inserting into the quadratic anomaly (A3.) we obtain,

wα51
(wα51

− wα52
) = 0,

2w1
51
w2

51
− w2

51
w1

52
+ w1

51
w2

52
= 0 .

(D.10)

This set of three equations has two distinct solutions however neither of them lead to

phenomenologically good models

• w1
51

= w2
51

= 0

Substituting this into the charges in (D.8) we observe that,

(q1
Hu
, q2
Hu

) = (q1
51
, q2

51
) , (D.11)

which means that the unwanted operator (C5.) is present at leading order through

the coupling 1031035̄1. This set of solutions is therefore not viable.

• w1
51

= w1
52

and w2
51

= w2
52

Substituting this solution into (D.9) one observes that wαHd
= 0, which results in a

leading order µ-term which is unfavorable.

To find solutions for the last case, given by the choice, N51 = 2, N52 = N53 = −1 we scan

through the possible charges of 10 and 5̄ matter under two U(1)s for the six codimension

one fibers in (2.37). We find no sets of charges which solve the anomaly cancellation

conditions for this set of N5is. Therefore, in order to obtain a model that is consistent
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with the flavor texture in (D.5), anomaly cancellation and absence of dangerous operators

one must go to greater than five 5̄ representations. However, on extending this analysis

to six 5̄ representations, there are again no solutions matching to flavor texture in (D.5).

Possibly, by including more U(1)s these other textures become accessible in this class of

models as well. We leave this for future investigations.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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symmetries: generalities and survey, Phys. Rev. D 84 (2011) 066008 [arXiv:1102.0290]

[INSPIRE].

[28] E. Palti, A note on hypercharge flux, anomalies and U(1)s in F-theory GUTs, Phys. Rev. D

87 (2013) 085036 [arXiv:1209.4421] [INSPIRE].
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