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1 Introduction

Weakly coupled gauge theories with conventional matter don’t seem to be UV complete in

6d. Indeed, consider such a theory defined at some energy scale. Since the mass dimension

of any gauge coupling g in 6d is −1, the strength of the interactions becomes stronger and

stronger in the UV and the theory lacks a proper definition.

However, in the mid-1990s, many examples of 6d N = (1, 0) SCFTs were found using

brane constructions in string theory [1–4]. Some of these theories have a tensor branch of

vacua on which the effective theory in the IR becomes a conventional 6d N = (1, 0) gauge

theory coupled to tensor multiplets. The number of tensor multiplets coincides with the

number of gauge groups and the gauge couplings are controlled by the vevs of the scalars

in the tensor multiplet [5]. The IR effective gauge theory has BPS instantons which are

strings in 6d. The tension of these strings is also controlled by tensor moduli. At the origin

of tensor branch, all of these strings become tensionless.

Moreover, similar constructions led to the discovery of new types of theories in 6d

which enjoyed T-duality but did not have gravitons [6, 7]. These theories were termed as

little string theories. Some of these theories also lead to a gauge theory in the IR but with

one less tensor multiplet than the number of gauge groups. So, one of the gauge couplings

remains a dimensionful parameter of the theory independent of the tensor moduli. Hence,
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these theories have a mass scale and are not conformal. This mass scale can also be viewed

as the tension of a BPS instanton string. This string gives the necessary winding modes

upon compactification that are required for T-duality.

A couple of remarks are in order to clear some confusions that may arise in above

mentioned statements. First, in this paper, we are only considering 6d theories in which

all the strings of the theory have an interpretation in terms of instanton strings of the low

energy gauge theory on a generic point on tensor branch. In general, we should check if the

number of tensor multiplets is equal to or one less than the number of strings in the theory

to characterize if we have an SCFT or a little string theory, respectively. But in the class

of theories we are considering, we can identify the number of strings with the number of

simple gauge groups. Second, when we say that the number of tensor multiplets is equal to

or one less than the number of gauge groups, we have in our mind irreducible or connected

theories. Of course, one can consider many irreducible theories at the same time such that

they are all decoupled from each other. If we consider a theory which has p irreducible

little string theory sectors, then it would have number of tensor multiplets p less than the

number of gauge groups. From now on, we will only talk about connected theories.

Now, one can ask what are the allowed 6d N = (1, 0) gauge theories with conventional

matter which can possibly arise as an IR effective field theory of a UV complete theory in

the form of a 6d N = (1, 0) SCFT or little string theory. These gauge theories have to

satisfy some consistency conditions which we will describe below. The purpose of this note

is to outline the classification of all gauge theories satisfying these consistency conditions.

We don’t know if all of these gauge theories actually have a UV completion in the form of

a 6d SCFT or little string theory. We find two possibilities:

• The number of tensor multiplets required to cancel the gauge anomaly (via Green-

Schwarz mechanism) is equal to the number of gauge groups. There seems to be no

mass parameter in these theories. Hence, we conjecture that if the UV completion of

such a theory exists, it must be a 6d N = (1, 0) SCFT.

• The number of tensor multiplets required to cancel the gauge anomaly (via Green-

Schwarz mechanism) is one less than the number of gauge groups. There is a BPS

instanton string in the theory whose tension is not controlled by the vevs of the

scalars in the tensor multiplets. This tension becomes a mass parameter of the

theory. We conjecture that if the UV completion of such a theory exists, it must be

a 6d N = (1, 0) little string theory.

While this paper was near its completion, we received [8] which has a significant amount

of overlap with this work.

The paper is organized as follows. In section 2, we review certain aspects of 6d N =

(1, 0) gauge theories relevant for the study of this work. In section 3, we describe the

necessary consistency conditions which we demand from gauge theories in our classification.

In section 4, we delineate the classification procedure. We carry out the procedure fully for

the case in which all the simple gauge group factors are classical groups and the matter is in

half/full hypermultiplets transforming in bifundamentals and fundamentals of the simple
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gauge factors. In section 5, we present a summary of the work and comment on some

possible future directions.

2 Review of 6d N = (1, 0) gauge theories

We start by reviewing some aspects of 6d N = (1, 0) gauge theories relevant for the study

of this work. A large part of this section is taken from [5].

6d N = (1, 0) theories have 8 real supercharges. These theories admit the following

field multiplets,

1. Vector multiplet: the bosonic field content is only a vector field A. Hence, these

theories do not have a Coulomb branch of vacua.

2. Hypermultiplet: the bosonic field content is 4 real scalars. These scalars parametrize

the Higgs branch of vacua.

3. Tensor multiplet: the bosonic field content is a two-form B and a real scalar φ. The

field strength H corresponding to B is constrained to be self dual, that is H = ⋆H.

The real scalar φ parametrizes the tensor branch of vacua.

For the purpose of illustration, we consider only the case of a simple gauge group in

this section. First consider a consistent gauge theory with matter only in hypermultiplets.

Then, the gauge coupling is a dimensionful parameter of the theory. This follows from

the fact that the gauge field A must have mass dimension 1 for it to mix with ordinary

derivative to form covariant derivative. Thus, for a typical process with characteristic

energy scale E, the strength of the interactions would be captured by the dimensionless

quantity s = g2E2. We see that such a theory is trivial in the IR but lacks a proper

definition in the UV. The theory has instantons which, because we are in 6d, are string

like excitations. Notice that the gauge kinetic term

1

g2

∫

tr(F ∧ ⋆F ) (2.1)

implies that a BPS instanton satisfying F = ⋆F has a tension

TBPS ∝
1

g2
. (2.2)

Since the tension of these strings is a parameter of the theory, it seems that the winding

modes of these strings might give rise to a notion of T-duality in this theory. This suggests

that there might be a good chance that this theory has a UV completion in the form of a

theory which enjoys T-duality. In fact, using string theory arguments, many such gauge

theories have been found as the low energy limits of little string theories which are UV

complete theories having T-duality [6, 9].

Now consider a consistent gauge theory with matter in hypermultiplets and a single

tensor multiplet. Because the theory contains a self-dual field strength H, it is not known

how to write down a useful Lagrangian for the theory. In what follows, we will pretend
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that the interactions are described by conventional Lagrangian interaction terms with the

added constraint of H = ⋆H. These interaction terms should legitimately be viewed as

a convenient representation of equations of motion (which are well-defined). The tensor

multiplet scalar couples to the gauge field with an interaction term of the form

c

∫

φ tr(F ∧ ⋆F ) (2.3)

where c is a constant. We absorb the gauge coupling into φ by a field redefinition. On the

tensor branch, this term gives rise to an effective gauge coupling for the theory

1

g2eff
= c〈φ〉 . (2.4)

Thus, we see that the effective gauge coupling of the theory is controlled by the tensor

modulus. A BPS instanton now has a tension which is controlled by the vev of scalar in

the tensor multiplet

TBPS ∝
1

g2eff
= c〈φ〉 . (2.5)

Hence, the tension of these strings is not a parameter of the theory and winding modes

cannot give rise to a notion of T-duality. But, instead, one can notice that the only

dimensionful quantity TBPS vanishes at the origin of tensor branch hinting at the possibility

of a strongly coupled fixed point. This suggests that there might be a good chance that

this theory has a UV completion in the form of a theory enjoying scale invariance. In

fact, using string theory arguments, many such gauge theories have been found as the low

energy limits on tensor branch of SCFTs [4].

(2.3) and supersymmetry imply that there must exist an interaction term of the form

c

∫

B ∧ tr(F ∧ F ) (2.6)

which is equivalent to the equation of motion

d ⋆ H = c tr(F ∧ F ) . (2.7)

Self-duality then implies that the Bianchi identity of H is modified to

dH = c tr(F ∧ F ) . (2.8)

This is precisely the statement that instantons are charged under the two-form B. These

charges must be quantized by an analog of the Dirac quantization condition. This means

that c2 must be quantized. Also, via descent equations, the modification of Bianchi identity

provides a contribution to the anomaly polynomial of the form

I8 = −c2(tr(F ∧ F ))2 . (2.9)

Hence, in a consistent gauge theory, the coefficient of the quadratic part of the anomaly

polynomial coming from one-loop gauge anomaly must be c2 ≥ 0. In other words, even if the
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quadratic part of the 1-loop anomaly polynomial does not vanish, the gauge theory can be

made consistent by the addition of a tensor multiplet as long as the coefficient of quadratic

part is positive definite. This is an illustration of Green-Schwarz mechanism of anomaly

cancellation in 6d gauge theories. Also notice that the above mentioned quantization of

c2 requires that the coefficient of the quadratic part of 1-loop anomaly polynomial be

appropriately quantized.

3 Consistency conditions on gauge theories

3.1 Anomaly cancellation

Consider a 6d N = (1, 0) gauge theory with the gauge group

G = G1 ×G2 × · · ·Gs, (3.1)

(where Ga is simple) along with full/half hypermultiplets in the representations Rp where

Rp = R1,p ⊗R2,p ⊗ · · · ⊗Rs,p (3.2)

with Ra,p being an irreducible complex representation of Ga. Ra,p can be a trivial one-

dimensional representation. The pure gauge part of the anomaly polynomial can be writ-

ten as

I8 =
∑

a

TrF 4
a −

∑

p

ηpTrRp

(

∑

a

1⊗ · · · ⊗ 1⊗ Fa ⊗ 1⊗ · · · ⊗ 1

)4

(3.3)

where ηp = 1/2 if there is a half-hypermultiplet in representation Rp and ηp = 1 if there

is a full hypermultiplet in representation Rp. Throughout this paper, Tr denotes a trace

in the adjoint representation and TrR denotes a trace in the representation R. The above

can always be rewritten as

I8 = αaTrF 4
a + cab (trF 2

a )(trF
2
b ) (3.4)

where cab = cba. Here tr denotes a trace in a representation of our choice for each group.

We choose this to be the fundamental representation for SU(n) and USp(n); the vector for

SO(n ≥ 7), E6, E7, F4 and G2; and the adjoint for E8. We will call this chosen representation

the fundamental representation of the group by a slight abuse of terminology.

The gauge part of the anomaly polynomial must vanish for the theory to make sense

on R
6. This requires that at least

αa = 0 ∀ a . (3.5)

Now, suppose that the rest of the anomaly factorizes as

cab (trF 2
a )(trF

2
b ) =

∑

i

(kai trF
2
a )

2 . (3.6)

Then, this can be cancelled by adding a number of (1, 0) tensor multiplets equal to the

number of terms in the above sum. Specifically, one modifies the Bianchi identity of the

ith self dual field strength to

dHi = kai trF
2
a . (3.7)
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The tensor multiplet i then contributes a term to the anomaly polynomial equal to −
∑

i(k
a
i

trF 2
a )

2 which cancels against the quadratic part mentioned above. This is known as the

Green-Schwarz mechanism of anomaly cancellation and is explained well in [10]. This is

equivalent to the condition that the matrix cab is positive semi-definite. When it is positive

definite, the number of tensor multiplets required to cancel the anomaly is equal to the

number of gauge groups and hence the gauge theory should have a UV completion (if it

exists) in the form of a (1, 0) SCFT. When it is not positive definite but positive semi-

definite with one zero eigenvalue, then we conjecture it to be a little string theory based

on the reason mentioned in the introduction. Other cases with multiple zero eigenvalues

do not appear in our classification.

Now, consider a (1, 0) gauge theory which might have a UV completion in the form

of an SCFT. One would like to be able to put a CFT on an arbitrary background. For

the theory to make sense on an arbitrary background, the mixed gauge-gravitational part

of the anomaly polynomial must also vanish. It turns out that, in the case when the

number of tensor multiplets equals the number of gauge groups, one can always modify the

Green-Schwarz mechanism without the addition of any new tensor multiplets to cancel the

mixed anomaly too. This modification does not modify the anomaly cancellation conditions

written above [11].

3.2 Global anomaly

There is also a global anomaly which affects SU(2), SU(3) and G2 respectively [12]:

4− n2 = 0 mod 6 (3.8)

n3 − n6 = 0 mod 6 (3.9)

1− n7 = 0 mod 3 (3.10)

where n2 is the number of full hypers in the doublet of SU(2); n3 and n6 are the number of

hypers in the fundamental and symmetric representations of SU(3) respectively; and n7 is

the number of hypers in the fundamental of G2. Here n2 also includes a contribution from

a full hyper charged in fundamental of SU(2) and some representation R of another group

G. The contribution is equal to dimension of R. There are similar contributions from

representations charged under SU(2) and two or more other groups. The same is true for

n3, n6 and n7 where instead we look at representaions charged under SU(3), SU(3) and G2

respectively. In addition to above contributions, n7 also receives contributions from a half

hyper charged in the fundamental of G2 and some pseudo-real representation R of another

group G. This contribution is equal to half the dimension of R.

3.3 Quantization of charges of instanton strings

Incidentally, there is an extra consistency check one can perform on the theories satisfying

above mentioned conditions. In the Green-Schwarz mechanism recalled above, the Bianchi

identity for Hi was modified. It is clear from the modification that instanton configurations

of gauge fields are charged under B and kai are related to the charges of these instantons.

In 6d, instantons are string like excitations in the theory and hence their charges must be
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appropriately quantized. The fact that the term on the right hand side of the modified

Bianchi identity also appears in the Green-Schwarz contribution to the anomaly means

that the matrix cab must also be appropriately quantized. The full details of the argument

can be found in [11]. This condition translated into our notation is

Mab =
cabnanb

12
∈ Z ∀ a, b (3.11)

where na is an integer assigned to every group and is listed in table 1.

Incidentally, the matrix M can be thought of as controlling the kinetic term for the

scalars in the tensor multiplets (where we add a few decoupled tensor multiplets corre-

sponding to zero eigenvalues of M). This requires that M must be positive semi-definite

but this is not a new consistency condition because the positive semi-definiteness of M

is equivalent to the positive semi-definiteness of the matrix cab. To see this, recall the

fact that a matrix is postive semi-definite if and only if the determinant of every principal

sub-matrix (including the full matrix itself) is non-negative. The determinant of a princi-

pal sub-matrix of M is equal to the determinant of the corresponding principal submatrix

of the matrix cab times
∏

p
np√
12

∏

q
nq√
12

where p runs over the rows and q runs over the

columns of the principal sub-matrix. As all na are positive numbers, our above claim is

justified and we need only demand the positive semi-definiteness of the matrix cab.

4 Classification

4.1 An assumed restriction on the allowed representations

For any representation R of a simple group G we define αR and cR through

TrR F 4 = αR trF 4 + cR(trF
2)2 . (4.1)

The condition that the matrix cab is positive semi-definite is equivalent to the condition

that the determinant of every principal submatrix (including the full matrix itself) is non-

negative. In particular, this means that every diagonal entry caa is non-negative

caa = cadj −
∑

p

ηpcRa,p

∏

b 6=a

dRb,p
≥ 0 (4.2)

where dR denotes the dimension of the representation R. We restrict our analysis to those

irreps Ra,p that satisfy

• dRa,p
≤ dadja for a complex or strictly real Ra,p.

• dRa,p
≤ 2 dadja for a pseudo-real Ra,p.

All the irreps satisfying these conditions have cRa,p
> 0. This means that we need to only

look at irreducible representations Ra,p of Ga such that

ηpcRa,p
≤ cadja . (4.3)

We are not aware of any consistent (1, 0) gauge theory which we would not be able to see

because of this restriction. The irreps satisfying (4.3) are listed in table 2 and table 3 [13].

We don’t mention the symmetric traceless irrep of SO(n) because if there is a hyper in this

irrep then it is not possible to obtain αSO(n) = 0.
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Group na

SU(n) 2

SO(n) 4

USp(n) 2

G2 4

F4 12

E6 12

E7 24

E8 120

Table 1. List of integers relevant for the quantization condition.

Type Name dimension αR cR

SU(n ≥ 4)

Complex fund n 1 0

Complex asym n(n−1)
2 n− 8 3

Complex sym n(n+1)
2 n+ 8 3

Strictly real adj n2 − 1 2n 6

SO(n ≥ 7)

Strictly real vect n 1 0

Strictly real adj n(n− 1)/2 n− 8 3

USp(n ≥ 4)

Pseudo-real vect n 1 0

Strictly real asym (n+1)(n−2)
2 n− 8 3

Strictly real adj n(n+1)
2 n+ 8 3

Table 2. List of allowed representations for single gauge group: infinite series. fund: fundamental,

asym: two-index antisymmetric tensor, sym: two-index symmetric tensor, adj: adjoint, vect:

vector. The asym for USp is the antisymmetric traceless representation. We also sometimes call

vect of SO and USp as fund, if no confusion arises.

4.2 Some illustrations

We think that at this point we should illustrate how some of the theories already known

in the literature arise in our analysis.

For instance, it is known that SO(7) gauge theory with two full hypers in the spinor

representation S is consistent [14]. Let’s see why this is so in our notation:

I8 = TrF 4 − 2 trS F
4 . (4.4)
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Group Type Name Dimension αR cR

SU(2) Pseudo-real fund 2 0 1/2

SU(2) Strictly real adj 3 0 8

SU(3) Complex fund 3 0 1/2

SU(3) Complex sym 6 0 17/2

SU(3) Strictly real adj 8 0 9

SU(6) Pseudo-real asym3 20 −6 6

SO(7) Strictly real S 8 −1/2 3/8

SO(8) Strictly real S 8 −1/2 3/8

SO(9) Strictly real S 16 −1 3/4

SO(10) Complex S 16 −1 3/4

SO(11) Pseudo-real S 32 −2 3/2

SO(12) Pseudo-real S 32 −2 3/2

SO(13) Pseudo-real S 64 −4 3

SO(14) Complex S 64 −4 3

E6 Complex fund 27 0 1/12

E6 Strictly real adj 78 0 1/2

E7 Pseudo-real fund 28 0 1/24

E7 Strictly real adj 133 0 1/6

E8 Strictly real adj 248 0 1/100

F4 Strictly real fund 26 0 1/12

F4 Strictly real adj 52 0 5/12

G2 Strictly real fund 7 0 1/4

G2 Strictly real adj 14 0 5/2

Table 3. List of allowed representations for single gauge group: isolated ones. asym3: three-index

antisymmetric, S: spinor representation. We don’t distinguish between the two spinors of SO(8)

and SO(12) in our classification.

Using table 2 we see that

TrF 4 = − trF 4 + 3(trF 2)2 (4.5)

and using table 3 we see that

trS F
4 = −

1

2
trF 4 +

3

8
(trF 2)2 . (4.6)

So, (4.4) becomes

I8 =
9

4
(trF 2)2 . (4.7)
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Thus, α = 0 and c = 9/4, and the anomaly can be cancelled by adding a single tensor

multiplet. Let’s compute the matrix controlling the kinetic term for scalar in the tensor

multiplet

M =
cn2

12
(4.8)

and reading n from table 1 we find that

M = 3 (4.9)

which is an integer, as required by the quantization condition. Hence, we conclude that

this theory is consistent.

A well known example is SU(n)× SU(n) gauge theory with a full hyper in the bifun-

damental and n full hypers in the fundamental representation of each gauge group. In

this case

I8 = TrF 4
1 +TrF 4

2 − n trF 4
1 − n trF 4

2 − trfund⊗fund(F1 ⊗ 1 + 1⊗ F2)
4 (4.10)

= 2n trF 4
1 + 6(trF 2

1 )
2 + 2n trF 4

2 + 6(trF 2
2 )

2 − n trF 4
1 − n trF 4

2

− trF 4
1 dfund − dfund trF

4
2 − 6 trF 2

1 trF 2
2 (4.11)

= 6(trF 2
1 )

2 + 6 tr(F 2
2 )

2 − 6 trF 2
1 trF 2

2 . (4.12)

Hence, we see that α1 = α2 = 0, c11 = c22 = 6 and c12 = c21 = −3. Thus, the anomaly can

be cancelled by adding two tensor multiplets. We can calculate the matrix controlling the

kinetic terms of tensor multiplet scalars yielding M11 = M22 = 2 and M12 = M21 = −1

which satisfies the quantization condition.

4.3 Theories with simple gauge group

The classification for the case of simple gauge group was already done in [15]. Here we

re-derive this as a sub-result of our classification.

From now on we only consider theories such that for every Ga there is at least one

hyper charged non-trivially under Ga and some other group Gb. In a sense, to be made

precise in the form of quiver diagrams later, we are only looking at connected theories. Any

other theory can be seen as a disjoint union of connected theories. Hence, we only need to

classify the connected ones.

An off diagonal element of the matrix [cab] can be written as

cab = −
1

2

∑

p

ηpCpiRa,p
iRb,p

∏

c 6=a,b

dRc,p
(4.13)

where Cp is a combinatorial factor and the index iRa,p
is defined by

TrRa,p
F 2
a = iRa,p

trF 2
a . (4.14)

Therefore,

cab < 0 ∀ a 6= b . (4.15)
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This means that if caa = 0 for some Ga, then the full gauge group of the theory must

be G = Ga and the theory would be a potential little string theory. We can show it by

contradiction. Suppose there is another simple factor Gb in G. Then, the determinant of

the two by two principal submatrix formed by row a and row b would be negative.

Hence, we are already done with the classification of the potential little string theories

based on simple gauge group. These are the theories with caa = 0,

• Any group with 1 hyper in adj.

• SU(n ≥ 4) with 2 hypers in asym and 16 hypers in fund. SU(3) with 18 hypers in

fund. SU(2) with 16 full hypers in fund.

• SU(n ≥ 4) with 1 hyper in asym and 1 hyper in sym. SU(3) with 1 hyper in fund

and 1 hyper in sym.

• SU(6) with 1 full hyper in asym3 and 18 hypers in fund.

• SO(7 ≤ n ≤ 14) with 27−⌊(n+1)/2⌋ full hypers in S and n − 4 hypers in fund. Here

⌊r⌋ denotes the greatest integer less than or equal to r.

• USp(2n ≥ 4) with 1 hyper in asym and 16 hypers in fund.

• G2 with 10 hypers in 7 dimensional rep.

• F4 with 5 hypers in 26 dimensional rep.

• E6 with 6 hypers in 27 dimensional rep.

• E7 with 4 hypers in 56 dimensional rep.

We will find that most of the potential SCFTs with simple gauge group arise when we

take the quiver size to be 1 of the generalized quiver gauge theories that we will introduce

later. So, we don’t mention all those potential SCFTs having simple gauge group here.

However, we will soon see that the exceptional groups except G2 don’t couple to any other

group and have α = 0. So, we write potential SCFTs having simple exceptional group here:

• E6 with less than or equal to 5 hypers in fund.

• E7 with less than or equal to 7 half-hypers in fund.

• F4 with less than or equal to 4 hypers in fund.

• G2 with 1, 4, 7 hypers in fund. These are the only allowed theories because of the

global anomaly mentioned in section 3.2.

For now, one can manually check that the quantization condition is satisfied for all the

above mentioned theories. Later we will give a proof that any theory satisfying the con-

straints of anomaly cancellation will automatically satisfy the quantization condition too.
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Ga×Gb half hyper? Ra ⊗ Rb

SU(n)×SU(m) full fund⊗fund

SO(n)×USp(m) half fund⊗fund

SU(m)×SO(n) full fund⊗fund

SU(m)×USp(n) full fund⊗fund

USp(m)×USp(n) full fund⊗fund

SO(7, 8)×SU(4) full S ⊗fund

G2×SU(4) full fund⊗fund

SU(4)×SU(2) half asym⊗fund

SO(7, 8)×USp(n ≤ 12) half S ⊗fund

G2×USp(n ≤ 14) half fund⊗fund

SO(7, 8)×SU(2) half S ⊗fund

G2×SU(2) half fund⊗fund

SO(7, 8)×SU(2) half fund⊗fund

Table 4. List of hypers for G1 ×G2.

4.4 Possible hypers between multiple groups

There are a few possible hypers charged under two groups and they are collected in ta-

ble 4. Some of these combinations already have determinant zero. Let’s say we couple

another group to such determinant 0 combinations by adding new hypers charged under

the new group and old groups. Then evaluate the determinant around new row. We will

get a sum of 2× 2 determinants with one of them being the determinant of the submatrix

corresponding to the old groups. After the addition of new matter, the diagonal entries

of this submatrix either decrease or stay the same and the off diagonal entries remain the

same. Hence this determinant is non-positive. The other determinants can be expanded

once again, but this time we expand them around the new column to yield 1× 1 determi-

nants. It is easy to see that, for every term, the total coefficient (coming from expansion)

times the 1× 1 determinant is strictly negative. Hence, it is not possible to couple a deter-

minant 0 combination of two groups to other groups and matter. Using this and similar

computations, one can show that it is not possible to couple other groups and matter to a

determinant zero combination of n groups. So, we obtain a few more potential little string

theories:

• USp(m)×USp(n) theory with a hyper in fund⊗ fund, m+8−n full hypers in fund

of USp(m) and n+ 8−m full hypers in fund of USp(n). Of course, |m− n| ≤ 8 for

the theory to exist.

• SO(7)× SU(4) theory with a hyper in S⊗ fund and 1 hyper in fund of SO(7).

• SO(8)× SU(4) theory with a hyper in S⊗ fund and 2 hypers in fund of SO(8).

• G2 × SU(4) theory with a hyper in fund⊗ fund and 1 hyper in fund of SU(4).

There is only one possible hyper charged under three groups and it gives rise to a

potential little string theory,
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• SU(2) × SU(2) × SU(2) theory with a half hyper in fund ⊗ fund ⊗ fund and a full

hyper in fund of each SU(2).

There are no possible hypers charged under more than three groups.

We now turn to the proof that quantization condition is automatically satisfied for all

the theories satisfying constraints of anomaly cancellation. The proof is just based on a

few observations and we don’t have a deep reason why every anomaly cancellable theory

must satisfy quantization condition.

4.5 Quantization condition is automatically satisfied

Consider a full/half hypermultiplet charged in a representation R of a gauge group G.

From table 2 and table 3, we see that cR × n2
G/12 is an integer for all cases except S of

SO(7, 8) for which it is half-integer.

Next, consider a full/half hypermultiplet charged in R1⊗R2 of G1×G2. From table 4,

we see that all contributions to the matrix are integers for all cases except 1
2
S ⊗ fund of

SO(7, 8)×USp(2, 6, 10) for which the contribution to the diagonal entry corresponding to

SO(7, 8) is half-integral. We write SU(2) as USp(2) for this subsection only.

Now, notice that for both of these exceptions, their contribution to αSO(7,8) is half-

integral but for all other combination of representations the contribution is integral. Hence,

if we want to arrange a configuration such that αSO(7,8) = 0, we must include these ex-

ceptions even number of times. But this means that their combined contribution to the

diagonal entry corresponding to SO(7, 8) is integral too.

For the trifundamental, it can be manually checked that the quantization condition

is satisfied. This completes the proof that if a theory satisfies the constraints of anomaly

cancellation, then it satisfies quantization condition too. Combining this result with our

previous result that the positive semi-definiteness of M is equivalent to the positive semi-

definiteness of the matrix cab, we see that the matrix M provides no new consistency

conditions over the anomaly cancellation constraints. Thus, we will not be computing the

matrix M from now on.

4.6 Quivers and branches

Notice from table 4 that the majority of combinations are bifundamentals between classical

gauge groups. We first consider all theories with classical gauge groups and full/half hypers

in bifundamental and fundamental representations. For such theories, we introduce quiver

diagrams,

• n denotes an SU(n) group, 2n denotes a USp(2n) group, and n denotes an

SO(n) group. We also allow nodes of the form 2 , 3 and 2 . At this point

these are formal nodes since these gauge groups behave differently than the other

ones in the same classical family. Later, we will give a meaning to these nodes.

• An edge between SU(n) and any other group X denotes a full hyper in fund⊗fund of

SU(n)×X. An edge between SO(m) and USp(n) denotes a half hyper in fund⊗fund
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of SO(m)×USp(n). We don’t have to consider edges between two USp and two SO

nodes because in the former case only one theory is allowed which we have already

listed and in the latter case there is no allowed theory.

As all the traces involved are in fundamentals and bifundamentals, the diagonal entries

of [cab] are independent of the matter content of the theory and depend only on the type

of group involved. It is 6 for SU and 3 for SO and USp. This means that if a diagram is

allowed then any subdiagram formed by a subset of nodes and all the edges between these

subset of nodes is also allowed. Therefore, we can construct all allowed theories by adding

one node (with any number of edges) at a time to an allowed theory and checking if the

resulting theory is allowed or not. This is captured completely by the determinant of [cab].

An allowed theory has non-negative determinant. If the determinant is 0, adding any new

node will make the determinant negative. The original allowed theory is a potential little

string theory. If the determinant is positive, then one has to check the determinant of the

resulting theory after adding the new node.

The above procedure can be carried out by first forgetting about the labels of the

nodes and just classifying the structure of the diagrams. Then, one can put the labels in

the nodes and see if there exists some consistent set of labels for every structure. To list

all the possible labellings, we find it convenient to introduce some more terminology,

• When there is single edge between SU(m) and X(n) = SU(n),USp(n), SO(n), we say

there is a current of m− n from SU(m) to X(n) and a current of n−m from X(n)

to SU(m).

• When there is a single edge between USp(m) and SO(n), we say there is a current of

m+8−n from USp(m) to SO(n) and a current of n− 8−m from SO(n) to USp(m).

• Sometimes we denote the current i from X(m) to Y (n) as a directed edge from the

node X(m) to node Y (n) with i written on top of this directed edge. Notice that the

direction of the arrow should not be confused with the direction of flow of positive

current. There can be a directed edge with i < 0.

We define three types of branches in the spirit of [16]:

• SU(n0) branches: such a branch is composed of a chain of SU nodes starting with

a node SU(n0) such that every node except SU(n0) has α = 0. We often suppress

the square nodes corresponding to hypers in fundamental of a node while writing a

branch as they can always be figured out from the currents in the edges emanating

from the node. Let’s call the node following SU(n0) as SU(n1). We define the branch

current as n0 −n1. Notice that the current in a particular direction is monotonically

increasing.

• SO(n0) branches: such a branch is composed of a chain of alternating SO-USp nodes

starting with a node SO(n0) such that every node except SO(n0) has α = 0. We often

suppress the square nodes corresponding to hypers in fundamental. Let’s call the node

following SO(n0) as USp(n1). We define the branch current as n0 − 8 − n1. Notice

that the current in a particular direction is monotonically increasing.
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• USp(n0) branches: such a branch is composed of a chain of alternating USp-SO

nodes starting with a node USp(n0) such that every node except USp(n0) has α = 0.

We often suppress the square nodes corresponding to hypers in fundamental. Let’s

call the node following USp(n0) as SO(n1). We define the branch current as n0+8−n1.

Notice that the current in a particular direction is monotonically increasing.

4.7 Classification of bifundamentals and fundamentals

From now on, we often suppress hypers in fund.

Carrying out the classification process outlined above, we obtain the following list of

allowed theories composed only of bifundamentals and fundamentals.

Potential little string theories.

• m

m m m m

•

m

m

2m 2m 2m

m

m

•

m 2m 3m

2m

4m 3m 2m m

•

m 2m 3m

3m

4m 5m 6m 4m 2m

•

m 2m 3m

2m

m

2m m
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• m+ 8

m m+ 8 m

•

n+16
2

n+16
2

n m

m−16
2

m−16
2

where a current of 8 flows in the straight chain from USp(n) to SO(m).

• m+16
3

2m−16
3

m 2m−16
3

m+16
3

2m−16
3

m+16
3

• n−16
3

2n+16
3

n 2n+16
3

n−16
3

2n+16
3

n−16
3

• n

iu
il

ir
; take three SO(n) branches of appropriate

lengths with branch currents satisfying iu ≤ n/2; il, ir ≤ n/4 and il+ iu+ ir ≥ n− 8.

• n

iu
il

ir
; take three SO(n) branches of appropri-

ate lengths with branch currents satisfying iu ≤ n/2; il ≤ (n − 8)/3; ir ≤ n/6 and

il + iu + ir ≥ n− 8.

• n
il ir ; il, ir ≤ n/2; il + ir ≥ n− 8.
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• n
il

ir

iu
; iu ≤ 8; il, ir ≤ n/2; il + iu + ir ≥ n.

• m m− 8 n+ 8 n ; a current of 8 flows from left to

right.

• m n
i j

i ≥ −8; j ≤ 8; take an SU(m − i) branch with

branch current at least i such that the current in last edge is j, and replace the last

SU node by USp(n) with 8− j full hypers in fund of USp(n).

• m
j iuil

ir
j ≤ 8; take three SU(m) branches (decorated

at the end by USp in the sense described in above point) with branch currents satis-

fying iu, ir ≤ m/2; il + iu + ir ≥ m.

• n
il ir ir ≤ n/2; il ≤ n/4; 2il+ ir ≥ n−8; and take an SU(n− il)

branch of length 3 with branch current at least il.

• n
il ir ; take a USp(n) branch of length three; ir ≤ (n + 8)/3;

il ≤ n/3; 2il + ir ≥ n − 8; and take an SU(n − il) branch of length 2 with branch

current at least il.

• n
il

ir

iu
; il, iu, ir ≤ n/2; il + iu + ir ≥ n.

• m 2m 2n n ; a current of 8 flows from left to right in the al-

ternating SO-USp chain.

• m n
il ir jl jr

; take a USp(m) branch decorated at the

end by SU; il ≤ m/2; jr ≤ n/2; 2il + ir ≥ m− 8; 2jr + jl ≥ n− 8.

• m 2m 2n n− 8

n− 8

; a current of 8 flows in alternating SO-USp

chain from SO(2m) to SO(2n).
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• m 2m 2n n+ 8

n+ 8

; a current of 8 flows in alternating USp-SO

chain from USp(2n) to USp(2m).

• m n
jl jr il

ir

iu

; take a USp(n) branch with a decoration

by SU at the end; jl ≤ m/2; iu, ir ≤ n/2; −jr ≥ il; il+iu+ir ≥ n−8; 2jl+jr ≥ m−8.

• m n

ju
jl

jr

il

ir

iu

; jl, ju ≤ m/2; iu, ir ≤ n/2; −jr ≥ il;

il + iu + ir ≥ n− 8; jl + ju + jr ≥ m− 8.

Potential SCFTs.

• Any SU branch.

• m
il

ir

iu
; take an SU(m) branch of branch current il; ir, iu ≤

m/2; il + iu + ir ≥ m.

• m
il

ir

iu
; take three SU(m) branches of appropriate lengths; ir, il ≤

m/3; iu ≤ m/2; il + iu + ir ≥ m.

• m
il

ir

iu
; take three SU(m) branches of appropriate lengths;

ir ≤ m/4; il ≤ m/3; iu ≤ m/2; il + iu + ir ≥ m.

• m
il

ir

iu
; take three SU(m) branches of appropriate

lengths; ir ≤ m/5; il ≤ m/3; iu ≤ m/2; il + iu + ir ≥ m.

• Any SO branch.

• Any USp branch.

• m
il

ir

iu
; the dashed line denotes any SO(m) branch of branch

current il; ir, iu ≤ m/2; il + iu + ir ≥ m− 8.
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• m
il

ir

iu
; the dashed line denotes a USp(m ≥ 16) branch of

branch current il; ir, iu ≤ m/2; il + iu + ir ≥ m+ 8.

• m
il

ir

iu
; take three SO(m) branches of appropriate lengths; ir, il ≤

(m− 8)/3; iu ≤ m/2; il + iu + ir ≥ m− 8.

• m
il

ir

iu
; take three USp(m ≥ 32) branches of appropriate lengths;

ir, il ≤ (m+ 8)/3; iu ≤ m/2; il + iu + ir ≥ m+ 8.

• m
il

ir

iu
; take three SO(m) branches of appropriate lengths;

ir ≤ m/4, il ≤ (m− 8)/3; iu ≤ m/2; il + iu + ir ≥ m− 8.

• m
il

ir

iu
; take three USp(m ≥ 64) branches of appropriate

lengths; ir ≤ m/4, il ≤ (m+ 8)/3; iu ≤ m/2; il + iu + ir ≥ m+ 8.

• m
il

ir

iu
; take three SO(m) branches of appropriate

lengths; ir ≤ (m− 8)/5, il ≤ (m− 8)/3; iu ≤ m/2; il + iu + ir ≥ m− 8.

• m
il

ir

iu
; take three USp(m ≥ 112) branches of appro-

priate lengths; ir ≤ (m+ 8)/5, il ≤ (m+ 8)/3; iu ≤ m/2; il + iu + ir ≥ m+ 8.

• n
i ; i ≥ 8; Take an SU(n− i) branch with branch current of

at least i.

• n
i ; i ≥ −8; Take an SU(n− i) branch with branch current

of at least i.

• n
il ir ; ir ≤ n/2; il ≤ n/3; 2il + ir ≥ n − 8; and take an SU(n − il)

branch of length 2 with branch current at least il.

• n
il ir ; n ≥ 48; ir ≤ n/2; il ≤ n/3; 2il + ir ≥ n + 8; and take an

SU(n− il) branch of length 2 with branch current at least il.
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• m
il ir

; take a USp(m) branch with a branch current ir ≥

−8; il ≤ m/2; 2il + ir ≥ m− 8.

• m
il ir

; take an SO(m) branch with a branch current ir ≥ 8;

il ≤ m/2; 2il + ir ≥ m+ 8.

4.8 Adding other matter

Thanks to the restrictions imposed by the vanishing of global anomaly, we can replace

2 in our classification by SU(2) having n2 = 4, 2 by SU(2) having n2 = 10 and

3 by SU(3) having n3 = 6. However, in the case of SU(3) having n3 = 12, we need to

look at those theories in which there exists at least one SO or USp node that couples to

other groups only through full hypers. Then, we need to replace one or more of such nodes

by an SU(3) node having n3 = 12 and redo the labelling analysis. There are only a few

such theories and the labellings can be found exactly as we found the labellings for above

mentioned theories.

A lot of other matter can be incorporated into our classification above in a similar

fashion,

• An SU(n) node with a hyper charged under asym behaves exactly as a USp(n) node.

We just need to consider theories where at least one USp(n) couples to other groups

only through full hypers. We don’t have to redo the labelling analysis for this case.

One might worry that n is always even for USp(n), but it doesn’t matter as we have

not used this to constrain our analysis so far. So, our previous results can be taken

and extended for USp(n) with odd n.

• An SU(n) node with a hyper charged under sym behaves exactly as an SO(n) node.

We just need to consider theories where at least one SO(n) couples to other groups

only through full hypers. Fortunately, we don’t have to redo the labelling analysis

for this case either.

• An SU(6) node with a half hyper charged under asym3 behaves like an SO or USp

node. We just need to consider theories where at least one SO or USp couples to

other groups only through full hypers. The labelling analysis has to be redone for

this case.

This leaves us with S of SO(7 ≤ n ≤ 14). We concern ourselves with only the struc-

ture of the unlabeled quivers. As far as the classification of structures is concerned,

13 1
2
S , 11,12 S , 9,10 2S , and 7,8 4S behave in the same

way. Here m nS denotes n full hypers charged under S of SO(m). We denote all

of these by a new vertex U .

11,12 1
2
S , 9,10 S , 7,8 2S also behave in the same way and we

denote them by the vertex . Notice that adding just one hyper in S of SO(7, 8) is not
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possible (unless it couples to other groups with hypers in S ⊗ fund) because we cannot

make αSO(7,8) = 0 by adding any number of hypers in fundamentals and binfundamentals.

We obtain some potential SCFTs:

• U where the dashed line denotes a chain of alternating USp-

SO nodes.

• where the dashed line denotes a chain of SU nodes of length

at most 2.

•

• where the total number of USp and SO nodes can at most

be 6.

• where a box means either a USp node or an SO node

(still respecting the alternating condition).

•

•

•

•

• U

•

•

•

• where the USp-SO chain at the end must be

composed of at most 4 nodes.

•

• .
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And we obtain some potential little string theories:

• U U

• U

• U

•

•

•

•

•

•

•

•

•

•

•

•

•

• U

•

– 22 –



J
H
E
P
1
1
(
2
0
1
5
)
0
0
2

•

•

•

• .

One can go on to include other entries from table 4 that we have not included yet by the

same strategy. The structure can be classified by adding them one by one in all possible

ways to the above mentioned theories and checking the resulting determinant. Once the

structures have been classified, one can classify all labellings associated to a structure in

terms of some inequalities.

5 Summary and future directions

We classified a large class of 6d N = (1, 0) gauge theories satisfying the consistency con-

ditions that gauge anomalies can be cancelled by Green-Schwarz mechanism, the global

anomaly vanishes and the charges of instanton strings in the theory are properly quan-

tized. These theories fall into two classes,

• The number of tensor multiplets required to cancel the anomaly is equal to the

number of gauge groups. We argued that if such theories have a UV completion it

must be a 6d N = (1, 0) SCFT.

• The number of tensor multiplets required to cancel the anomaly is one less than the

number of gauge groups. We argued that if such theories have a UV completion it

must be a 6d N = (1, 0) little string theory.

One can ask which of the potential SCFTs we found have already been given a UV

completion in F-theory [8, 17]. If there are some potential SCFTs which don’t appear

in F-theory, there are a few possibilities to consider. First, these gauge theories could

be pathological by themselves. For instance, they could violate some other consistency

condition for 6d N = (1, 0) gauge theories. Second, they could have a UV completion in

the form of a (1,0) SCFT but these SCFTs cannot be constructed in F-theory. Third, they

could be consistent effective field theories in 6d but they don’t come from deformations of

(1,0) SCFTs. It would be very interesting to figure out which of the possibilities is true

for theories which don’t appear in F-theory constructions. Such developments can teach

us about general properties of 6d (1, 0) theories.

The same set of questions can be asked for potential little string theories mentioned

above. In a sense, these questions are more challenging and interesting because of a lack

of known features/properties of little string theories. It would be nice to find precise

arguments for/against our conjecture that 6d (1,0) gauge theories with one tensor multiplet
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less than the number of gauge groups must be little string theories if their UV completion

exists.

It would also be interesting to understand the compactifications of these theories to

lower dimensions and see what they can teach us about field theories with less than or

equal to 8 supercharges in lower dimension and vice versa.

The close relation between the classifications of potential SCFTs and potential little

string theories seems to suggest that there might exist a broader framework of 6d theories

which treats 6d (1,0) SCFTs and little string theories almost on an equal footing. Under-

standing the relationship between the two might lead to new insights in the understanding

of little string theories and may be also 6d SCFTs.
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